
Sream: a software-eÆient stream ipher

Shai Halevi Don Coppersmith Charanjit Jutla

IBM T. J. Watson Researh Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

fshaih,opper,sjutlag�watson.ibm.om

June 5, 2002

Abstrat

We report on the design of Sream, a new software-eÆient stream ipher, whih was designed

to be a \more seure SEAL". Following SEAL, the design of Sream resembles in many ways a

blok-ipher design. The new ipher is roughly as fast as SEAL, but we believe that it o�ers a

signi�antly higher seurity level. In the proess of designing this ipher, we re-visit the SEAL

design paradigm, exhibiting some tradeo�s and limitations.

Key words: Stream iphers, Blok iphers, Round funtions, SEAL.

1 Introdution

A stream ipher (or pseudorandom generator) is an algorithm that takes a short random string,

and expands it into a muh longer string, that still \looks random" to adversaries with limited

resoures. The short input string is alled the seed (or key) of the ipher, and the long output

string is alled the output stream (or key-stream). Stream iphers an be used for shared-key

enryption, by using the output stream as a one-time-pad. In this work we aim to design a seure

stream ipher that has very fast implementations in software.

1.1 A more seure SEAL

The starting point of our work was the SEAL ipher. SEAL was designed in 1992 by Rogaway and

Coppersmith [6℄, spei�ally for the purpose of obtaining a software eÆient stream ipher. Nearly

ten years after it was designed, SEAL is still the fastest steam ipher for software implementations

on ontemporary PC's, with \C" implementations running at 5 yle/byte on ommon PC's (and

3.5 yle/byte on some RISC workstations).

The design of SEAL shares many similarities with the design of ommon blok iphers. It is built

around a repeating round funtion, whih provides the \ryptographi strength" of the ipher.

Roughly speaking, the main body of SEAL keeps a state whih is made of three parts: an evolving

state, some round keys, and a mask table. The output stream is generated in steps (or rounds).

In eah step, the round funtion is applied to the evolving state, using the round keys. The new

1

evolving state is then masked by some of the entries in the mask table and this value is output as

a part of the stream. The mask table is �xed, and some of the round keys are be hanged every so

often (but not every step).

In terms of seurity, SEAL is somewhat of a mixed story. SEAL is designed to generate up to 2

48

bytes of output per seed. In 1997, Handshuh and Gilbert showed, however, that the output stream

an be distinguished from random after seeing roughly 2

34

bytes of output [4℄. SEAL was slightly

modi�ed after that attak, and the resulting algorithm is known as SEAL 3.0. Reently, Fluhrer

desribed an attak on SEAL 3.0, that an distinguish the output stream from random after about

2

44

output bytes [3℄. Hene, it seems prudent to avoid using the same seed for more than about

2

40

bytes of output.

The goal of the urrent work was to ome up with a \more seure SEAL". As part of that, we

studied the advantages, drawbaks, and tradeo�s of this style of design. More spei�ally, we tried

to understand what makes a \good round funtion" for a stream ipher, and to what extent a

\good round funtion" for a blok ipher is also good as the basis for a stream ipher. We also

studied the interation between the properties of the round funtion and other parts of the ipher.

Our design goals for the ipher were as follows:

� Higher seurity than SEAL: It should be possible to use the same seed for 2

64

bytes of output.

More preisely, an attaker that sees a total of 2

64

bytes of output (possibly, using several IV's

of its hoie), would be fored to spend an infeasible amount of time (or spae) in order to

distinguish the ipher from a truly random funtion. A reasonable measure of \infeasibility"

is, say, 2

80

spae and 2

96

time, so we tried to get the seurity of the ipher omfortably above

these values.

1

� Comparable speed to SEAL, i.e., about 5 yles per byte on ommon PC's.

� We want to allow a full 128-bit input nones (vs. 32-bit none in SEAL).

� Other, seondary, goals were to use smaller tables (SEAL uses 4KB of seret tables), get

faster initialization (SEAL needs about 200 appliations of SHA to initialize the tables),

and maybe make the ipher more amenable to implementation in other environments (e.g.,

hardware, smartard, et.) We also tried to make the ipher fast on both 32-bit and 64-bit

arhitetures.

1.2 The end result(s)

In this report we desribe three variants of our ipher. The �rst variant, whih we all Sream-

0, should perhaps be viewed as a \toy ipher". Although it may be seure enough for some

appliations, it does not live up to our seurity goals. In this report we desribe a \low-di�usion

attak" that works in time 2

80

and spae 2

50

, and may distinguish Sream-0 from random after

seeing about 2

43

bytes of the output stream.

We then desribe Sream, whih is the same as Sream-0, exept that it replaes the �xed S-boxes

of Sream-0 by key-dependent S-boxes. Sream has very fast software implementations, but to get

this speed one has to use seret tables roughly as large as those of SEAL (mainly, in order to store

1

This seurity level is arguably lower than, say, AES. This seems to be the prie that one has to pay for the

inreased speed. We note that the \obvious solution" of using Rijndael with less rounds, fails to ahieve the desired

seurity/speed tradeo�.

2

the S-boxes). On our Pentium-III mahine, an optimized \C" implementation of Sream runs at

4.9 yle/byte, slightly faster than SEAL. On a 32-bit PowerPC, the same implementation runs

at 3.4 yle/byte, again slightly faster than SEAL. This optimized implementation of Sream uses

about 2.5 KB of seret tables. Sream also o�ers some spae/time tradeo�s. (In priniple, one

ould implement Sream with less than 400 bytes of memory, but using so little spae would imply

a slowdown of at least two orders of magnitude, ompared to the speed-optimized implementation.)

In terms of seurity, if the attaker is limited to only 2

64

bytes of text, we do not know of any attak

that is faster than exhaustively searhing for the 128-bit key. On the other hand, we believe that

it it possible to devise a linear attak to distinguish Sream from random, with maybe 2

80

bytes of

text.

At the end of this report we desribe another variant, alled Sream-F (for Fixed S-box), that does

not use seret S-boxes, but is slower than Sream (and also somewhat \less elegant"). An optimized

\C" implementation of Sream-F runs at 5.6 yle/byte on our Pentium-III, whih is 12% slower

than SEAL. On our PowerPC, this implementation runs at 3.8 yle/byte, 10% slower than SEAL.

This implementation of Sream-F uses 560 bytes of seret state. We believe that the seurity of

Sream-F is roughly equivalent to that of Sream.

1.3 Organization

In Setion 2 below we �rst desribe Sream-0 and then Sream. In Setion 3 we disuss implementa-

tion issues and provide some performane measurements. In Setion 4 we disuss the ryptanalysis

of Sream-0. Finally, in Setion 5, we desribe the ipher Sream-F. In the appendix we give the

onstants that are used in Sream, and also provide some \test vetors".

2 The design of Sream

We begin with the desription of Sream-0. As with SEAL, this ipher too is built around a \round

funtion" that provides the ryptographi strength. Early in our design, we tried to use an \o� the

shelf" round funtion as the basis for the new ipher. Spei�ally, we onsidered using the Rijndael

round funtion [2℄, whih forms the basis of the new AES. However, as we disuss below, the \wide

trail strategy" that underlies the design of the Rijndael round funtion is not a very good math

for this type of design. We therefore designed our own round funtion.

At the heart of our round funtion is a saled-down version of the Rijndael funtion, that operates

on 64-bit bloks. The input blok is viewed as a 2 � 4 matrix of bytes. First, eah byte is sent

through an S-box, S[�℄, then the seond row in the matrix is shifted ylially by one byte to the

right, and �nally eah olumn is multiplied by a �xed 2 � 2 invertible matrix M . Below we all

this funtion the \half round funtion", and denote it by G

S;M

(x). A pitorial desription of G

S;M

an be found in Figure 1.

Our round funtion, denoted F (x), uses two di�erent instanes of the \half-round" funtion, G

S

1

;M

1

and G

S

2

;M

2

, where S

1

; S

2

are two di�erent S-boxes, and M

1

;M

2

are two di�erent matries. The

S-boxes S

1

; S

2

in Sream-0 are derived from the Rijndael S-box, by setting S

1

[x℄ = S[x℄, and

S

2

[x℄ = S[x�00010101℄, where S[�℄ is the Rijndael S-box. The onstant 00010101 (deimal 21) was

hosen so that S

2

will not have a �xed-point or an inverse �xed-point.

2

The matries M

1

;M

2

were

hosen so that they are invertible, and so that neither of M

1

;M

2

and M

�1

2

M

1

ontains any zeros.

2

An inverse �xed-point is some x suh that S[x℄ = �x.

3

S[a℄ S[℄ S[e℄ S[g℄

row shift

S[h℄ S[b℄ S[d℄ S[f ℄

olumn mix

a

0

0

e

0

g

0

b

0

d

0

f

0

h

0

replae eah olumn

by M, for some �xed

2� 2 matrix M

a e g

b d f h

S[a℄ S[℄ S[e℄ S[g℄

S[b℄ S[d℄ S[f ℄ S[h℄

replae eah byte

x by S[x℄

shift 2nd row by

one byte to right

byte substitution

Figure 1: The \half round" funtion G

S;M

Spei�ally, we use

M

1

=

�

1 x

x 1

�

M

2

=

�

1 x+ 1

x+ 1 1

�

where 1; x; x+1 are elements of the �eld GF (2

8

), whih is represented as Z

2

[x℄=(x

8

+x

7

+x

6

+x+1).

The funtion F is a mix of a Feistel ladder and an SP-network. A pseudoode of F is provided

below, and a pitorial desription an be found in Figure 2.

Funtion F (x):

1. Partition x into two 2� 4 matries

A :=

�

x

0

x

4

x

8

x

12

x

1

x

5

x

9

x

13

�

B :=

�

x

2

x

6

x

10

x

14

x

3

x

7

x

11

x

15

�

2. B := B �G

S

2

;M

2

(A) // use A to modify A;B

3. A := G

S

1

;M

1

(A)

4. B :=

�

B

0;2

B

0;3

B

0;0

B

0;1

B

1;2

B

1;3

B

1;0

B

1;1

�

// rotate B by two olumns

5. Swap A$ B

6. B := B �G

S

2

;M

2

(A) // use A to modify A;B

7. A := G

S

1

;M

1

(A)

8. Collet the 16 bytes in A;B bak into x

x

0

:= (A

0;0

A

1;0

B

0;0

B

1;0

A

0;1

A

1;1

B

0;1

B

1;1

A

0;2

A

1;2

B

0;2

B

1;2

A

0;3

A

1;3

B

0;3

B

1;3

)

4

�<

x

0

x

4

x

8

x

12

x

1

x

5

x

9

x

13

x

2

x

6

x

10

x

14

x

3

x

7

x

11

x

15

j

j

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

G

S

1

;M

1

G

S

2

;M

2

G

S

1

;M

1

G

S

2

;M

2

x

0

0

x

0

4

x

0

8

x

0

12

x

0

1

x

0

5

x

0

9

x

0

13

x

0

2

x

0

6

x

0

10

x

0

14

x

0

3

x

0

7

x

0

11

x

0

15

yli shift by

two olumns

Figure 2: The round funtion, F

The main loop of Sream-0. As with SEAL, the ipher Sream-0 maintains a state that onsists

of the \evolving state" x, some round keys y; z, and a \mask table" W . In Sream-0, x; y and z

are 16-byte bloks, and the table W onsists of 16 bloks, eah of 16 bytes. In step i of Sream-0,

the evolving state is modi�ed by setting x := F (x� y)� z, and we then output x�W [i mod 16℄.

In Sream-0, both the mask table and the round keys are modi�ed, albeit slowly, throughout the

omputation. Spei�ally, after every pass through the mask table (i.e., every 16 steps), we modify

y; z and one entry inW , by passing them through the F funtion. The entries of W are modi�ed in

order: after the j'th pass through the table we modify the entry W [j mod 16℄. Moreover, instead

of keeping both y; z ompletely �xed for 16 rounds, we rotate y by a few bytes after eah use. The

rotation amounts were hosen so that the rotation would be \almost for free" on 32-bit and 64-bit

mahines. This simple measure provides some protetion against \low-di�usion attaks" and linear

analysis. A pseudoode of the body of Sream-0 is desribed in Figure 3.

Key- and none-setup. The key- and none-setup proedures of Sream-0 are quite straight-

forward: We just use the round funtion F to derive all the quantities that we need. The key-setup

routine �lls the table W with some initial values. These values are later modi�ed during the

none-setup routine, and they also double as the equivalent of a \key shedule" for the none-setup

routine. A pseudoode for these two routines is provided in Figures 4 and 5.

2.1 The iphers Sream

The ipher Sream is the same as Sream-0, exept that we derive the S-boxes S

1

[�℄; S

2

[�℄ from the

Rijndael S-box S[�℄ in a key-dependent fashion. We replae line 0a in Figure 4 by the following

0a. set S

1

[x℄ := S[: : : S[S[x+ seed

0

℄ + seed

1

℄ : : : + seed

15

℄ for all x

(Notie that + denotes integer addition mod 256, rather then exlusive-or.) In terms of speed

(in software), Sream-S is just as fast as Sream-0, exept for the key-setup. However, it has a

5

The main loop of Sream:

State: x; y; z { three 16-byte bloks

W { a table of 16 16-byte bloks

i

w

{ an index into W (initially i

w

= 0)

1. repeat (until you get enough output bytes)

2. for i = 0 to 15 // generate the next 16 output bloks

3. x := F (x� y) // modify the \evolving state" x

4. x := x � z

5. output x�W [i mod 16℄

6. if i = 0 or 2 mod 4 // rotate y

7. rotate y by 8 bytes, y := y

8::15;0::7

8. else if i = 1 mod 4

9. rotate eah half of y by 4 bytes, y := y

4::7;0::3;12::15;8::11

10. else if i < 15 // no point in rotating when i = 15

11. rotate eah half of y by three bytes to the right, y := y

5::7;0::4;13::15;8::12

12. end-if

13. end-for

14. y := F (y � z) // modify y; z, and W [i

w

℄

15. z := F (z � y)

16. W [i

w

℄ := F (W [i

w

℄)

17. i

w

:= i

w

+ 1 mod 16

18. end-repeat

Figure 3: The main body of Sream and Sream-0

Key-setup:

Input: seed { a 16-byte blok

State: a; b { temporary variables, eah a 16-byte blok

Output: W0 { a table of sixteen 16-byte bloks

0a. set S

1

[x℄ := S[x℄ for all x // S[�℄ is the Rijndael S-box

0b. set S

2

[x℄ := S

1

[x� 00010101℄ for all x

1. a := seed

2. b := F (a� pi) // pi is a onstants: the �rst 16 bytes in the binary expansion of �

3. for i = 0 to 15

4. a := F

4

(a)� b // four appliations of the funtion F

5. W0[i℄ := a

6. end-for

Figure 4: The key-setup of Sream-0

6

None-setup:

Input: none { a 16-byte blok

State: W0 { a table of sixteen 16-byte bloks

a; b { temporary variables, eah a 16-byte blok

Output: x; y; z { three 16-byte bloks

W { a table of sixteen 16-byte bloks

1. z := F

2

(none�W0[1℄) // two appliations of the funtion F

2. y := F

2

(z �W0[3℄)

3. a := F

2

(y �W0[5℄)

4. x := F (a�W0[7℄) // only one appliation of F

5. b := x

6. for i = 0 to 7 // set W as a modi�ation of W0

7. b := F (b�W0[2i℄)

8. W [2i ℄ := W0[2i ℄� a

9. W [2i+ 1℄ :=W0[2i+ 1℄� b

10. end-for

Figure 5: The none-setup of Sream and Sream-0

muh larger seret state (a speed-optimized software implementation of Sream-S uses additional

2Kbyte of seret tables). We note that we still have S

2

[x℄ = S

1

[x� 00010101℄, so a spae-eÆient

implementation need only store S

1

.

3 Implementation and performane

Software implementation of the F funtion. A fast software implementation of the F fun-

tion uses triks similar to Rijndael: Namely, we an implement the two \half round" funtions

G

S

1

;M

1

; G

S

2

;M

2

together, using just eight lookup operations into two tables, eah onsisting of 256

four-byte words. Let the eight-byte input toG

S

1

;M

1

; G

S

2

;M

2

be denoted (x

0

; x

1

; x

4

; x

5

; x

8

; x

9

; x

12

; x

13

),

the output of G

S

1

;M

1

be denoted (u

0

; u

1

; u

4

; u

5

; u

8

; u

9

; u

12

; u

13

), and the output of G

S

2

;M

2

be de-

noted (u

2

; u

3

; u

6

; u

7

; u

10

; u

11

; u

14

; u

15

). Then we an write:

u

0

= M

1

(0; 0) � S1[x

0

℄ � M

1

(0; 1) � S1[x

13

℄

u

1

= M

1

(1; 0) � S1[x

0

℄ � M

1

(1; 1) � S1[x

13

℄

u

2

= M

2

(0; 0) � S2[x

0

℄ � M

2

(0; 1) � S2[x

13

℄

u

3

= M

2

(1; 0) � S2[x

0

℄ � M

2

(1; 1) � S2[x

13

℄

(where M(i; j) is the entry in row i, olumn j of matrix M , indexing starts from zero). Similar

expressions an be written for the other bytes of u. Therefore, if we set the tables T

0

; T

1

as

T

0

(x) =

�

M

1

(0; 0) � S1[x℄ j M

1

(1; 0) � S1[x℄ j M

2

(0; 0) � S2[x℄ j M

2

(1; 0) � S2[x℄

�

T

1

(x) =

�

M

1

(0; 1) � S1[x℄ j M

1

(1; 1) � S1[x℄ j M

2

(0; 1) � S2[x℄ j M

2

(1; 1) � S2[x℄

�

7

Then we an ompute u

0::3

:= T

0

[x

0

℄ � T

1

[x

13

℄, u

4::7

:= T

0

[x

4

℄ � T

1

[x

1

℄, u

8::11

:= T

0

[x

8

℄ � T

1

[x

5

℄,

and u

12::15

:= T

0

[x

12

℄� T

1

[x

9

℄. A \reasonably optimized" implementation of the round funtion F

on a 32-bit mahine, may work as follows:

3

Funtion F (x

0

; x

1

; x

2

; x

3

): // eah x

i

is a four-byte word

Temporary storage: u

0

; u

1

; u

2

; u

3

, eah a four-byte word

1. u

0

:= T

0

[byte0(x

0

)℄� T

1

[byte1(x

3

)℄ // �rst \half round"

2. u

1

:= T

0

[byte0(x

1

)℄� T

1

[byte1(x

0

)℄

3. u

2

:= T

0

[byte0(x

2

)℄� T

1

[byte1(x

1

)℄

4. u

3

:= T

0

[byte0(x

3

)℄� T

1

[byte1(x

2

)℄

5. [byte2(u

0

) j byte3(u

0

)℄ := [byte2(u

0

) j byte3(u

0

)℄ � [byte2(x

0

) j byte3(x

0

)℄

6. [byte2(u

1

) j byte3(u

1

)℄ := [byte2(u

1

) j byte3(u

1

)℄ � [byte2(x

1

) j byte3(x

1

)℄

7. [byte2(u

2

) j byte3(u

2

)℄ := [byte2(u

2

) j byte3(u

2

)℄ � [byte2(x

2

) j byte3(x

2

)℄

8. [byte2(u

3

) j byte3(u

3

)℄ := [byte2(u

3

) j byte3(u

3

)℄ � [byte2(x

3

) j byte3(x

3

)℄

9. u

0

:= u

0

�< 2 bytes // swap the two halves

10. u

1

:= u

1

�< 2 bytes

11. u

2

:= u

2

�< 2 bytes

12. u

3

:= u

3

�< 2 bytes

13. x

0

:= T

0

[byte0(u

2

)℄� T

1

[byte1(u

1

)℄ // seond \half round"

14. x

1

:= T

0

[byte0(u

3

)℄� T

1

[byte1(u

2

)℄

15. x

2

:= T

0

[byte0(u

0

)℄� T

1

[byte1(u

3

)℄

16. x

3

:= T

0

[byte0(u

1

)℄� T

1

[byte1(u

0

)℄

17. [byte2(x

0

) j byte3(x

0

)℄ := [byte2(x

0

) j byte3(x

0

)℄ � [byte2(u

0

) j byte3(u

0

)℄

18. [byte2(x

1

) j byte3(x

1

)℄ := [byte2(x

1

) j byte3(x

1

)℄ � [byte2(u

1

) j byte3(u

1

)℄

19. [byte2(x

2

) j byte3(x

2

)℄ := [byte2(x

2

) j byte3(x

2

)℄ � [byte2(u

2

) j byte3(u

2

)℄

20. [byte2(x

3

) j byte3(x

3

)℄ := [byte2(x

3

) j byte3(x

3

)℄ � [byte2(u

3

) j byte3(u

3

)℄

21. output (x

0

; x

1

; x

2

; x

3

)

We note the need for expliit swapping of the two halves above (lines 9-12). The reason for that is

that the tables T

0

; T

1

are arranged so that the part orresponding to G

S

1

;M

1

is in the �rst two bytes

of eah entry, and the part of G

S

2

;M

2

is in the last two bytes. The ode above an be optimized

further, ombining the rotation in these lines with the masking, whih is impliit in lines 5-8, 17-20.

Hene, the rotation beomes essentially \for free".

This struture provides a spae/time tradeo� similar to Rijndael: Sine the matries M

1

;M

2

are

symmetri, one an obtain T

2

(x) from T

1

(x) using a few shift operations. Hene, it is possible to

store only one table, at the expense of some slowdown in performane. This tradeo� is partiularly

important for Sream, where the tables T

0

; T

1

are key-dependent.

The none-setup routine. The none-setup routine was designed so that the �rst output blok

an be omputed as soon as possible. Although all the entries of the table W have to be modi�ed

during the none-setup, an appliation that does not use all of them an modify only as many as

it needs. Hene an appliation that only outputs a few bloks per input none, does not have to

3

In this desription, we use [b1jb2℄ to denote the onatenation of the bytes b1 and b2.

8

omplete the entire none-setup. Alternatively, an appliation an exeute the none-setup together

with the �rst \hunk" of 16 steps, modifying eah mask of W just before this mask is needed.

Performane in software. We tested the software performane of Sream and Sream-F on two

platforms, both with word-length of 32 bits: One platform is an IBM PC 300PL, with a 550MHz

Pentium-III proessor, running Linux and using the g ompiler, version 3.0.3. The other platform

is an RS/6000 43P-150 workstation, with a 375MHz 304e PowerPC proessor, running AIX 4.3.3 and

using the IBM C ompiler (xl) version 3.6.6. On both platforms, we measured peak throughput,

and also timed the key-setup and none-setup routines. To measure peak throughput, we timed

a proedure that produes 256MB of output (all with the same key and none). Spei�ally, the

proedure makes one million alls to a funtion that outputs the next 256 bytes of the ipher. To

eliminate the e�et of ahe misses, we used the same output bu�er in all the alls. We list our

test results in the table below.

Platform Operation Sream-F Sream SEAL

Pentium-III throughput 5.6 yle/byte 4.9 yle/byte 5.0 yle/byte

550 MHz key-setup 3190 yles 27500 yles

Linux, g none-setup 1276 yles 1276 yles

604e PowerPC throughput 3.8 yle/byte 3.4 yle/byte 3.45 yle/byte

375 MHz key-setup 1950 yles 16875 yles

AIX, xl none-setup 670 yles 670 yles

Implementation in di�erent environments. Being based on a Rijndael-like round funtion,

Sream is amenable for implementations in many di�erent environments. In partiular, it should

be quite easy to implement it in hardware, and the area/speed tradeo� in suh implementation

may be similar to Rijndael (exept that Sream needs more memory for the mask table). Also,

it should be quite straightforward to implement it for 8- and 16-bit proessors (again, as long as

the arhiteture has enough memory to store the internal state). Sream is learly not suited for

environments with extremely small memory, but it an be implemented with less than 400 bytes of

memory (although suh implementation would be quite slow).

4 Seurity Analysis

Below we examine some possible attaks on Sream-0 and Sream. The disussion below deals

mostly with Sream-0. At the end we briey disuss the e�et of Sream's key-dependent S-boxes

on these attaks. We examine two types of attaks, one based on linear approximations of the F

funtion, and the other exploits the low di�usion provided by a single appliation of F . In both

attaks, the goal of the attaker is to distinguish the output of the ipher from a truly random

stream.

4

4

In a separate paper [1℄, we show that these two types of attaks an be viewed as two speial ases of a generalized

distinguishing attak.

9

4.1 Linear attaks

It is not hard to see that the F funtion has linear approximations that approximate only three

of the 8-by-8 S-boxes. Sine the S-boxes in Sream-0 are based on the Rijndael S-box, the best

approximation of them has bias 2

�3

, so we an probably get a linear approximation of the F funtion

with bias 2

�9

. Namely, there exists a linear funtion L suh that Pr

x

[L(x; F (x)) = 0℄ = (1�2

�9

)=2.

In Appendix A, we show that there are no approximation of the F funtion with bias of more than

2

�9

.

To use suh approximation, we need to eliminate the linear masking, introdued by the y; z and

the W [i℄'s. Here we use the fat that eah one of these masks is used sixteen times before it is

modi�ed. For eah step of the ipher, the attaker sees a pair (x� y�W [i℄; F (x)� z�W [i+1℄),

where x is random. Applying the linear approximation L to this pair, we get the bit

� = L(x; F (x)) � L(y; z) � L(W [i℄;W [i + 1℄)

For simpliity, we ignore for the moment the rotation of the y blok after eah step. If we add

two suh �'s that use the same y and z bloks, we get � = � � �

0

= L(x; F (x)) � L(x

0

; F (x

0

)) �

L(W [i℄;W [i + 1℄) � L(W [j℄;W [j + 1℄). The last bit does not depend on y; z anymore. We an

repeat this proess, adding two suh � 's that use the same masks, we end up with a bit

� = � � �

0

= L(x; F (x)) � L(x

0

; F (x

0

))� L(x

00

; F (x

00

))� L(x

000

; F (x

000

))

Sine L(x; F (x)) has bias of 2

�9

, the bit � has bias of 2

�36

, so after seeing about 2

72

suh bits, we

an distinguish the ipher from random.

Sine eah of the masks is used sixteen times before it is modi�ed, we have about

�

16

2

�

hoies for

the pairs of �'s to add (still ignoring the rotation of y), and about

�

16

2

�

hoies for the pairs of

� 's to add. Hene, 256 steps of the ipher gives us about

�

16

2

�

2

� 2

14

bits �. After seeing roughly

256 �2

58

= 2

66

steps of the ipher (i.e., 2

70

bytes of output), we an to ollet the needed 2

72

samples

of �'s to distinguish the ipher from random.

The rotation of y. The rotation of y makes it harder to devise attaks as above. To anel both

the y and the z bloks, one would have to use two di�erent approximations with the same output

bit pattern, but where the input bit patterns are rotated aordingly. We do not know if it possible

to devise suh approximation with \reasonably high" bias.

The seret S-boxes. The introdution of key-dependent S-boxes in Sream does not signi�antly

alter the analysis from above. Sine the S-boxes are key-dependent, an attaker annot pik \the

best approximations" for them, but on the other hand these S-boxes have better approximations

than the Rijndael S-box. Thus, the attaker an use a random approximation, and it will likely to

be roughly as good as the best approximation for the �xed S-boxes.

The none-setup proedure. The analysis from above assumed that the attaker only uses one

none, and wathes many output bytes from the resulting stream. In our attak model, however, the

attaker is able to feed the ipher with many di�erent nones. To see why this may be an e�etive

attak, onsider what would happen if we eliminate the mask modi�ation proess (Lines 5{10)

from the none-setup proedure. The attaker ould then feed many di�erent nones, wathing

only the �rst few output bloks from eah none. In this proess, the masks are �xed, and therefore

10

there is no need to anel them out. The only thing that needs to be aneled out are the y; z

bloks, and the attaker an do that by approximating only two steps for eah none. This ould

potentially yield an approximation with bias as high as 2

�18

, so the attaker only needs about 2

36

di�erent nones before it an distinguish the ipher from random.

5

The simplest �x is to modify all the masks (in an \unorrelated" way) during the none-setup.

However, doing that is rather expensive. We therefore used an \optimization trik", where we

modi�ed the odd entries by adding to them di�erent values, and modi�ed all the even entries by

adding to them the same value. The reason that this helps, is that an approximation of a single

step inludes two masks, one even and one odd. Thus, we still need to anel out the odd masks,

whih means that we still need to add at least four approximations.

The only way to avoid using masks from odd steps, is to use an approximation of two onseutive

F funtions, and this is likely to have small bias. Moreover, to be able to anel the value that was

added to the even masks, and also the y and z bloks, and to do it using just two steps, one must

use approximations of the F funtion, where

(a) the same bitwise pattern is used on both the input and the outputs of the funtion; and

(b) this bitwise pattern is periodi.

We were not able to �nd suh an approximation that uses less than all the S-boxes.

4.2 Low-di�usion attaks

A low-di�usion attak exploits the fat that not every byte of F (x) is inuened by every byte of

x (and vise versa). For example, there are output bytes that only depend on six input bytes. In

fat, in Appendix B we show that knowing two bytes of x and one byte of (linear ombination of

bytes in) F (x), we an ompute another byte of (linear ombination of bytes in) F (x). Namely, we

have a (non-degenerate) linear funtion L with output length of four bytes, so that we an write

L(X;F (x))

3

= g(L(X;F (x))

0::2

), where g is an known deterministi funtion (with three bytes of

input and one byte of output).

As for the linear attaks, here too we need to eliminate the linear masking, introdued by the y; z

and theW [i℄'s. This is done in very muh the same way. Again, we ignore for now the rotation of the

blok y. For eah step of the ipher the attaker sees the four bytes L(x�y�W [i℄; F (x)�z�W [i+1℄).

We eliminate the dependene on y; z by adding two suh quantities that use the same y; z bloks.

This gives a four-byte quantity L(x; F (x))� L(x

0

; F (x

0

))� L(W [i℄;W [i+ 1℄)� L(W [j℄;W [j + 1℄).

Adding two of those with the same i; j, we then obtain the four byte quantity

L(x; F (x)) � L(x

0

; F (x

0

))� L(x

00

; F (x

00

))� L(x

000

; F (x

000

))

We an write this last quantity in terms of the funtion g, as a pair (u

1

� u

2

� u

3

� u

4

; g(u

1

) �

g(u

2

)� g(u

3

)� g(u

4

)), where eah of s; t; u; v is three-byte long, and the g(?)'s are one-byte long.

In a separate paper [1℄, we analyze the statistial properties of suh expressions, and alulate the

number of samples that needs to be seen to distinguish them from random.

The rotation of y. Again, the rotation of y makes it harder to devise attaks as above. In

Appendix B we show, however, that we an still use a low-di�usion attak on the F funtion, in

whih guessing six bytes of (x; F (x)) yields the value of four other bytes. Applying tools from our

5

As noted above, the ahievable bias is likely to be smaller, due to the rotations of the y blok.

11

paper [1℄ to this relation, we estimate that the amount of output text that is needed to distinguish

the ipher from random along the lines above, is merely 2

43

bytes. However, the proedure for

distinguishing is quite expensive. The most eÆient way that we know how to use these 2

43

bytes

would require roughly 2

50

spae and 2

80

time.

The seret S-boxes. At present, we do not know how to extend low-di�usion attaks suh as

above to deal with seret S-boxes. Although we an still write the same expression L(X;F (x))

3

=

g(L(X;F (x))

0::2

), the funtion g now depends on the key, so it is not known to the attaker.

Although it is likely that some variant of these attaks an be devised for this ase too, we strongly

believe that suh variants would require signi�antly more text than the 2

64

bytes that we \allow"

the attaker to see.

5 The ipher Sream-F

In Sream, we used key-dependent S-boxes to defend against \low-di�usion attaks". A di�erent

approah is to keep the S-box �xed, but to add to the main body of the ipher some \key dependent

operation" before outputting eah blok. This approah was taken in Sream-F, where we added

one round of Feistel ladder after the round funtion, using a key-dependent table. However, sine

the only key-dependent table that we have is the mask table W, we letW double also as an \S-box".

Spei�ally, we add the following lines 3a-3e between lines 3 and 4 in the main-loop routine from

Figure 3.

3a. view the table W as an array of 64 4-byte words

^

W [0::63℄

3b. x

0::3

:= x

0::3

�

^

W [1 + (x

4

^ 00111110)℄

3. x

4::7

:= x

4::7

�

^

W [x

8

^ 00111110℄

3d. x

8::11

:= x

8 ::11

�

^

W [1 + (x

12

^ 00111110)℄

3e. x

12::15

:= x

12::15

�

^

W [x

0

^ 00111110℄

We note that the operation x

i

^ 00111110 in these lines returns an even number between 0 and 62,

so we only use odd entries of W to modify x

0::3

and x

8::11

, and even entries to modify x

4::7

and

x

12::15

. The reason is that to form the output blok, the words x

0::3

; x

8::11

will be masked with even

entries of W , and the words x

4::7

; x

12::15

will be masked by odd entries. The odd/even indexing is

meant to avoid the possibility that these masks anel with the entries that were used in the Feistel

operation.

6

5.1 Conlusions

We presented Sream, a new stream ipher with the same design style as SEAL. The new ipher

is roughly as fast as SEAL, but we believe that it is more seure. It has some pratial advantages

over SEAL, in exibility of implementation, and also in the fat that it an take a full 128-bit none

(vs. 32 bits in SEAL). In the proess of designing Sream, we studied the advantages and pitfalls

of the SEAL design style. We hope that the experiene from this work would be bene�ial also for

future iphers that uses this style of design.

6

It is still possible that two words, say x

0::3

and x

4::7

, are masked with the same mask, but it seems less harmful.

12

Aknowledgments

This design grew out of a study group in IBM, T.J. Watson during the summer and fall of

2000. Other than the authors, the study group also inluded Ran Canetti, Rosario Gennaro,

Nik Howgrave-Graham, Tal Rabin and J.R. Rao. The motivation for this work was partly due to

the NESSIE \all for ryptographi primitives" (although we missed their deadline by more than

a year). We thank Christian Rose and Lina P�alsson for pointing out a typo in a previous version

of this report, and for Eli Biham for suggesting improved test vetors.

Referenes

[1℄ D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream iphers with lin-

ear masking. In Advanes in Cryptology { CRYPTO'02, Leture Notes in Computer

Siene. Springer-Verlag, 2002. to appear. A longer version is available on-line from

http://eprint.iar.org/2002/020/.

[2℄ J. Daemen and V. Rijmen. AES proposal: Rijndael. Available on-line from NIST at

http://sr.nist.gov/enryption/aes/rijndael/, 1998.

[3℄ S. Fluhrer. Cryptanalysis of the SEAL 3.0 pseudorandom funtion family. In Proeedings of the

Fast Software Enryption Workshop (FSE'01), 2001.

[4℄ H. Handshuh and H. Gilbert. �

2

ryptanalysis of the SEAL enryption algorithm. In Pro-

eedings of the 4th Workshop on Fast Software Enryption, volume 1267 of Leture Notes in

Computer Siene, pages 1{12. Springer-Verlag, 1997.

[5℄ K. Nyberg. Di�erentially uniform mappings for ryptography. In Advanes in Cryptography,

Eurorypt'93, volume 765 of Leture Notes in Computer Siene, pages 55{64. Springer-Verlag,

1993.

[6℄ P. Rogaway and D. Coppersmith. A software optimized enryption algorithm. Journal of

Cryptology, 11(4):273{287, 1998.

A Linear approximations of the F funtion of Sream-0

A detailed desription of the round funtion F is provided again in Figure 6. Throughout the next

two setions, we refer to the notation that are used in that �gure.

A.1 The S-boxes

Sine every S-box lookup in F uses the same input for the two S-boxes S

1

; S

2

, one should view these

two S-boxes as one box, with one byte input and two byte output. As both S

1

; S

2

are permutations,

any approximation of this 8�16 S-box (with non-zero bias) must look at at least two of the three

bytes (x; S

1

[x℄; S

2

[x℄). Below we say that an approximation is a two-value approximation if it uses

only two of these values, and it is a three-value approximation if it uses all three.

13

x

0

x

4

x

8

x

12

x

1

x

5

x

9

x

13

v

2

v

6

v

10

v

14

v

3

v

7

v

11

v

15

byte substitution byte substitution

u

2

u

6

u

10

u

14

u

3

u

7

u

11

u

15

byte substitution byte substitution

w

0

w

4

w

8

w

12

w

1

w

5

w

9

w

13

l

l

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

x

2

x

6

x

10

x

14

x

3

x

7

x

11

x

15

v

10

v

14

v

2

v

6

v

11

v

15

v

3

v

7

matrix shift

olumn mix

row shift

 :=M

2

�

olumn mix

 :=M

1

�

u

0

u

4

u

8

u

12

row shift

olumn mix

row shift

 :=M

2

�

olumn mix

 :=M

1

�

row shift

S

1

[v

10

℄ S

1

[v

14

℄ S

1

[v

2

℄ S

1

[v

6

℄ S

2

[v

10

℄ S

2

[v

14

℄ S

2

[v

2

℄ S

2

[v

6

℄

S

1

[x

0

℄ S

1

[x

4

℄ S

1

[x

8

℄ S

1

[x

12

℄

S

1

[x

13

℄ S

1

[x

1

℄ S

1

[x

5

℄ S

1

[x

9

℄

S

2

[x

0

℄ S

2

[x

4

℄ S

2

[x

8

℄ S

2

[x

12

℄

S

2

[x

13

℄ S

2

[x

1

℄ S

2

[x

5

℄ S

2

[x

9

℄

S

1

[v

7

℄ S

1

[v

11

℄ S

1

[v

15

℄ S

1

[v

3

℄ S

2

[v

7

℄ S

2

[v

11

℄ S

2

[v

15

℄ S

2

[v

3

℄

u

1

u

5

u

9

u

13

w

2

w

6

w

10

w

14

w

3

w

7

w

11

w

15

x

0

0

x

0

4

x

0

8

x

0

12

x

0

1

x

0

5

x

0

9

x

0

13

x

0

2

x

0

6

x

0

10

x

0

14

x

0

3

x

0

7

x

0

11

x

0

15

Figure 6: Details of the round funtion F . (The bytes in boldfae are used in the low-di�usion

attak from Appendix B.)

14

Proposition 1 For the S-boxes S

1

; S

2

of Sream-0:

(a) Any two-value approximation of x; S

1

[x℄; S

2

[x℄ has bias of at most 2

�3

.

(b) Any three-value approximation of x; S

1

[x℄; S

2

[x℄ has bias of at most 2

�2

.

Proof: These fats an be on�rmed by an exhaustive searh. Below we provide an analytial

proof for (a): Reall that the S-boxes S

1

; S

2

in Sream-0 are de�ned as S

1

[x℄ = A(

1

x

)� b, S

2

[x℄ =

A(

1

x�Æ

) � b, where A is an invertible boolean matrix, the (1=x) operation is de�ned in GF (2

8

),

and b; Æ are two bytes, with Æ 6= 0. As the operation Az � b is just an aÆne transformation, it is

suÆient to prove the assertion for the \underlying S-boxes"

S

0

1

[x℄ =

1

x

S

0

2

[x℄ =

1

x� Æ

It is known that the best linear approximation of the funtion f(x) = 1=x in GF (2

n

) has bias

2

1�n=2

[5℄. Hene, every approximation that only uses (x; S

0

1

[x℄) (or only uses (x; S

0

2

[x℄)) must have

bias at most 2

�3

. It is left to show that an approximation that only uses the values (S

0

1

[x℄; S

0

2

[x℄)

annot do any better. For any two masks �

1

; �

2

and any bit �, denote

X

�

1

;�

2

;�

= fx : �

1

� (1=x) � �

2

� (1=(x � Æ)) = �g

We need to show that for any �

1

; �

2

; �, we have jX

�

1

;�

2

;�

j �

256

2

(1 + 2

�3

) = 144.

We now hange the variable, setting y = 1 � (Æ=x) (all the operations in GF (2

8

)). With this

assignment, we have 1=x = (1� y)=Æ and 1=(x� Æ) = (1� (1=y))=Æ. The transformation from x to

y is a bijetion, so we have

jX

�

1

;�

2

;�

j =

�

�

�

�

�

y : �

1

�

�

1� y

Æ

�

� �

2

�

�

1� (1=y)

Æ

�

= �

�

�

�

�

�

Finally, sine Æ is �xed, then division by Æ in GF (2

8

) is a linear operation, and therefore it ommutes

with the inner-produt operation. Hene, we have

jX

�

1

;�

2

;�

j =

�

�

�

�

fy : (�

1

=Æ) � y � (�

2

=Æ) � (1=y) = � � ((�

1

=Æ) � 1)� ((�

2

=Æ) � 1)g

�

�

�

�

� 144

where the last inequality follows sine this is the bias of some linear approximation of the funtion

f(y) = 1=y, and we already know that that funtion annot be approximated with bias of more

than 2

�3

. 2

A.2 The F funtion

It is easy to see that the F funtion has approximations that only look at three S-boxes. For example

(using the notations from Figure 6), one an use the 2-value approximations (x

0

; S

2

[x

0

℄); (x

13

; S

2

[x

13

℄)

and (v

2

; S

1

[v

2

℄). Sine there is a linear relation between S

2

[x

0

℄; S

2

[x

13

℄; x

2

and v

2

, and another linear

relation between S

1

[v

2

℄; x

0

8

; x

0

9

, we obtain an approximation of input bytes x

0

; x

13

; x

2

and output

bytes x

0

8

; x

0

9

. Sine the approximations of the S-boxes have bias at most 2

�3

, this approximation

of F has bias at most 2

�9

. This, however, is the best possible approximation of the F funtion, as

we prove below.

Proposition 2 Any approximation of the F funtion has bias of at most 2

�9

.

15

Proof: First some terminology: As usual, we view an approximation of the funtion F as a sum

(modulo 2) of approximations involving the intermediate omponents. Sine the only non-linear

omponents are the S-boxes, we identify an approximation of F with an assignment of masks to the

inputs and outputs of all the S-boxes in Figure 6. For example, we may talk about \the mask of

S

1

[x

0

℄" in some approximation. We say that an approximation uses some spei� byte, if it assigns

a non-zero mask to that byte, and it uses some S-box if it uses some of its input and outputs.

We now present some useful observations. Consider, for example, the mask of the bytes S

2

[x

0

℄,

S

2

[x

13

℄, S

2

[v

10

℄ and S

2

[v

7

℄. Note that these bytes (and the output bytes x

0

2

; x

0

3

) are related by

�

S

2

[v

10

℄

S

2

[v

7

℄

�

= M

�1

2

�

x

0

2

x

0

3

�

�M

�1

2

M

1

�

S

1

[x

0

℄

S

1

[x

13

℄

�

Therefore, in any approximation (with non-zero bias), the masks of these bytes must also be related.

Namely, if we have an approximation with the masks �

1

; �

2

; �

3

; �

4

assigned respetively to S

2

[x

0

℄,

S

2

[x

13

℄,S

2

[v

10

℄,S

2

[v

7

℄, then it must be the ase that

�

�

1

�

2

�

= M

�1

2

M

1

�

�

3

�

4

�

(1)

In partiular, the values of �

1

; �

2

determine the values of �

3

; �

4

, and vie versa. Moreover, sine

M

�1

2

M

1

is an MDS matrix, then if one of these masks is non-zero, at least three of them must be

non-zero. Similarly, the masks assigned to the bytes S

2

[x

0

℄; S

2

[x

13

℄; v

2

and v

3

are related by

�

�

1

�

2

�

=M

2

�

�

3

�

4

�

(2)

Again, sine M

2

is MDS, then if one of these masks is non-zero, at least three of them must be

non-zero. In Table 1 we list eight sets of bytes for whih the masks must be related in the same

manner. The analysis above says that for any olumn in Table 1, either all the bytes are assigned

the mask zero, or at least three are assigned a non-zero mask. The rest of the proof follows by

some observations on the struture of that table.

Bytes related by Eq. (1) Bytes related by Eq. (2)

S

1

[x

0

℄ S

1

[x

4

℄ S

1

[x

7

℄ S

1

[x

12

℄

S

1

[x

13

℄ S

1

[x

1

℄ S

1

[x

5

℄ S

1

[x

9

℄

S

2

[v

10

℄ S

2

[v

14

℄ S

2

[v

2

℄ S

2

[v

6

℄

S

2

[v

7

℄ S

2

[v

11

℄ S

2

[v

15

℄ S

2

[v

3

℄

S

2

[x

0

℄ S

2

[x

4

℄ S

2

[x

7

℄ S

2

[x

12

℄

S

2

[x

13

℄ S

2

[x

1

℄ S

2

[x

5

℄ S

2

[x

9

℄

v

2

v

6

v

10

v

14

v

3

v

7

v

11

v

15

Table 1: Some intermediate bytes of the F funtion

Looking at Table 1, we see that it ontains two of the three bytes from every S-box in the F

funtion, and that these two bytes never appear in the same olumn. Therefore, every two-value

approximation of an S-box in F must assign non-zero mask to at least one byte in Table 1, and

every three-value approximation of an S-box must assign non-zero mask to at least two byte in two

di�erent olumns.

Below we say that two olumns in Table 1 interset, if they ontain bytes from the same S-box.

We say that the olumns interset at the top if the upper halves of these olumns interset, and

16

that they interset at the bottom if the lower halves interset. Due to the \matrix shift" operation

in the F funtion, there are no two olumns in Table 1 that interset both at the top and at the

bottom. That is, if the top halves of two olumns interset, then their bottom halves do not, and

vie versa.

We now an prove Proposition 2. First, every approximation must assign non-zero value to at least

one byte in some olumn the table. But this implies that at least three bytes in that olumn has

to be assigned non-zero values. Hene, every approximation must use bytes from at least three

di�erent S-boxes.

Next, if an approximation of F uses any three-value approximation of an S-box, then it must assign

non-zero values to bytes in at least two di�erent olumns of Table 1. Sine in eah of these olumns

there must be at least three bytes with non-zero masks (and sine these olumns annot interset

both at the top and at the bottom), it follows that the approximation uses bytes from at least four

di�erent S-boxes.

Finally, if an approximation of F uses only three-value approximations of S-boxes, then it must

assign non-zero values to bytes in more than two olumns, and therefore use bytes from more than

four di�erent S-boxes (in fat, at least six S-boxes). Using the bounds from Proposition 1 on the

bias of S-box approximations, we onlude that in either ase, an approximation of the F funtion

annot have bias of more than 2

�9

. 2

B Low-di�usion attak on the F funtion

Low-di�usion attaks exploit the limited di�usion provided by just one appliation of the F funtion.

The goal is to guess just a few of the input/output bytes of the funtion, and get at least one byte of

onsisteny hek. It is not hard to see that we an get some relations by guessing only four (linear

ombinations of the) input and output bytes. For example, it an be seen from Figure 6, that there

is a relation involving input bytes x

0

; x

13

, a one-byte linear ombination of x

0

0

; x

0

1

(namely S

1

[v

10

℄),

and a one-byte linear ombination of x

0

2

; x

0

3

: If we guess S

1

[v

10

℄, then we also know S

2

[v

10

℄, whih

is some linear ombination of w

2

= u

0

� x

0

2

and w

3

= u

1

� x

0

3

. If we also guess x

0

and x

13

, we

an ompute u

0

and u

1

, thereby deduing the linear ombination of x

0

2

and x

0

3

.

7

It is not hard to

see that guessing any three of these bytes, we an ompute the fourth byte. Another example is a

relation between S

1

[v

10

℄ and the three input bytes x

5

; x

8

; x

10

.

These \guess three, get one free" relations, however, annot be used diretly to mount an attak,

beause of the rotations of the y blok. To mount an attak, we need to anel out both the rotated

y bloks, and the �xed z blok (and also the �xed masks W [i℄). This means that we must �nd

two relations that use the same (linear ombinations of) output bytes, but rotated version of the

(linear ombinations of) input bytes.

The best strategy that we found for doing that, is to use two opies of the \guess three, get one

free" relations from above. For example, the attaker an guess the six bytes x

0

, x

13

, S

1

[v

10

℄ and

x

8

, x

5

, S

1

[v

2

℄ and use the fat that every other step, the y blok is rotated by eight bytes. An

added bonus (for the attaker) is that now both types of the relations from above an be used.

Namely, guessing these six bytes, one an derive four other bytes: a one-byte linear ombination of

x

0

2

; x

0

3

, a one-byte linear ombination of x

0

10

; x

0

11

, and the bytes x

10

and x

2

. Notie that the input

7

We note that guessing just one of x

0

; x

13

yields some linear ombination of u

0

; u

1

, but sine M

�1

2

M

1

is MDS, we

annot get the \right" ombination.

17

bytes in these relations are arranged in pairs, (x

0

; x

8

), (x

5

; x

13

), and (x

2

; x

10

), so we still use the

same six bytes of y as masks, even after y is rotated by eight byte positions.

To make the notations below a little less horrible, we denote x

0

a

= S

1

[v

2

℄, x

0

b

= S

1

[v

10

℄, also also

denote the one-byte linear ombination of x

0

2

; x

0

3

by x

0

, and the one-byte linear ombination of

x

0

10

; x

0

11

by x

0

d

. The important thing to remember is that x

0

a

, x

0

b

, x

0

, x

0

d

are all one-byte linear

ombinations of some bytes of x

0

. The relation that we use an now be desribed as

0

B

B

�

f

1

(x

0

)

f

1

(x

8

)

f

2

(x

0

)

f

2

(x

8

)

1

C

C

A

+

0

B

B

�

g

1

(x

13

)

g

1

(x

5

)

g

2

(x

13

)

g

2

(x

5

)

1

C

C

A

+

0

B

B

�

h

1

(x

0

a

)

h

1

(x

0

b

)

h

2

(x

0

b

)

h

2

(x

0

a

)

1

C

C

A

=

0

B

B

�

x

2

x

10

x

0

x

0

d

1

C

C

A

(3)

where the f

i

; g

i

; h

i

funtions are known permutations. (For example, f

1

(�) = S

2

[�℄, and h

1

(�) =

S

2

[S

�1

1

[�℄℄.)

To anel out the y; z bloks and the masks W [i℄, the attaker onsiders a \2� 2 matrix of steps",

i, i+1, i+16, i+17 for even i. Sine i is even, then the y blok is rotated by eight bytes between

steps i; i + 1 and between steps i+ 16, i+ 17. Also, the masks from W that are used in the steps

i� 1; i; i+ 1 are the same as in steps i+ 15; i+ 16; i+ 17. For example, below we onsider steps 2,

3, 18 and 19 in the ipher. We use the following notations:

� We denote by x(i) the input blok to the F funtion in step i, and by x

0

(i) the orresponding

output blok. As before, we use subsript to denote bytes within a blok. For example, x(2)

10

or x

0

(18)

.

� We denote the y; z bloks at step 2 by y1; z1, and the y; z bloks at step 18 by y2; z2. Note that

in step 3 we have z = z1; y = y1

8::15;0::7

and similarly in step 19 we have z = z2; y = y2

8::15;0::7

.

� We denote the mask in steps 1,17 by W [1℄, the mask in steps 2,18 by W [2℄, and the mask in

steps 3,19 by W [3℄.

The attaker, wathing the output stream, an see the sums of those bytes. For example, it an get

the byte x(2)

2

� y1

2

�W [1℄

2

from the output blok in step 1, and the bytes x

0

(2)

� z1

�W [2℄

and x(3)

2

� y1

10

�W [2℄

2

from the output blok from step 2. In the sums that we get from these

six steps, eah byte of y1; y2; z1; z2;W [1℄;W [2℄;W [3℄ appears exatly twie. The attaker an then

sum-up these bytes, to eliminate the y's, z's and W

0

s. For example, we have the following:

from step 2 we have x

0

(2)

� z1

� W [2℄

from step 3 we have x

0

(3)

� z1

� W [3℄

from step 18 we have x

0

(18)

� z2

� W [2℄

from step 19 we have x

0

(19)

� z2

� W [3℄

summing them, we get x

0

(2)

� x

0

(3)

� x

0

(18)

� x

0

(19)

Another example, relating to input bytes is as follows:

from step 1 we have x(2)

0

� y1

0

� W [1℄

0

from step 2 we have x(3)

8

� y1

0

� W [2℄

8

from step 17 we have x(18)

0

� y2

0

� W [1℄

0

from step 18 we have x(19)

8

� y2

0

� W [2℄

8

summing them, we get x(2)

0

� x(3)

8

� x(18)

0

� x(19)

8

18

The attaker ollet ten suh sums, one for eah byte in Eq. (3). We now laim that the distribution

over these ten bytes is signi�antly di�erent than the uniform distribution. To see that, we show

that we an write these ten sums as

hu1� u2� u3� u4; F

1

(u1)� F

2

(u2) � F

1

(u3) � F

2

(u4)i (4)

where the u's are six-byte long, and F

1

; F

2

: f0; 1g

48

! f0; 1g

32

are known funtions. Indeed, it is

easy to hek that this is exatly what we get when we set

u1 =

x(2)

0

; x(2)

8

; x(2)

13

; x(2)

5

; x

0

(2)

a

; x

0

(2)

b

�

u2 =

x(3)

8

; x(3)

0

; x(3)

5

; x(3)

13

; x

0

(3)

a

; x

0

(3)

b

�

u3 =

x(18)

0

; x(18)

8

; x(18)

13

; x(18)

5

; x

0

(18)

a

; x

0

(18)

b

�

u4 =

x(19)

8

; x(19)

0

; x(19)

5

; x(19)

13

; x

0

(19)

a

; x

0

(19)

b

�

and

F

1

(a)

def

=

f

1

(a

0

)

f

1

(a

1

)

f

2

(a

0

)

f

2

(a

1

)

+

g

1

(a

2

)

g

1

(a

3

)

g

2

(a

2

)

g

2

(a

3

)

+

h

1

(a

4

)

h

1

(a

5

)

h

2

(a

5

)

h

2

(a

4

)

F

2

(a)

def

=

f

1

(a

0

)

f

1

(a

1

)

f

2

(a

1

)

f

2

(a

0

)

+

g

1

(a

2

)

g

1

(a

3

)

g

2

(a

3

)

g

2

(a

2

)

+

h

1

(a

5

)

h

1

(a

4

)

h

2

(a

5

)

h

2

(a

4

)

Moreover, eah of the funtions F

i

an be written as a sum, F

i

(a) = F

1

i

(a

0;1

)+F

2

i

(a

2;3

)+F

3

i

(a

4;5

).

In our paper [1℄ we analyze distributions suh as the one in Eq. (4). In that paper, it is shown that

for the ase of two funtions F

1

; F

2

: f0; 1g

m

! f0; 1g

m

0

, whih are applied to four inputs u1 : : : u4,

where eah of the funtion is a sum of three funtions F

j

i

: f0; 1g

m=3

! f0; 1g

m

0

, we expet

the statistial distane between the distribution from Eq. (4) and the uniform distribution to be

p

16=� � 2

3(m

0

�m)=2

. Plugging in the values m = 48, m

0

= 32 we get

p

16=� � 2

3�(32�48)=2

� 2

�20:5

.

(We note that the analysis in [1℄ deals with the ase where the funtions F

j

i

are random and

independent. Here, these are �xed funtions whih are very muh dependent. We plan to perform

some experiments to better estimate the statistial distane for the atual funtions that are used

in this attak.)

The attak. The attak an now be suintly desribed as follows: Wathing the output stream,

the attaker ollets suÆiently many samples from the distribution of Eq. (4), until it an dis-

tinguish this distribution from random. Sine we have statistial distane 2

�20:5

, then we need

roughly 2

41

suh samples.

It an be shown that from 256 steps of the ipher, the attaker an ollet about 2

10

samples. To

see this, note that eah pair of y; z bloks is used 16 times before it is modi�ed, and we an partition

these 16 times into eight pairs (i; i+1) (with even i) and use eah of these pairs in plae of steps 2,3

above. Next, the attak above looks at three onseutive masks,W [i�1℄;W [i℄;W [i+1℄. In Sream-

0, we have 14 \bathes" of 16 steps where all three masks are the same, before we modify one of

them. We an hoose any pair of these bathes to anel out the masksW . Namely, instead of steps

2,3,18,19 as in the example above, we an use any four steps of the form i; i+1; i+16j; i+16j +1,

with even i � 16 and as long as the masks W [i� 1 mod 16℄, W [i mod 16℄, W [i+1 mod 16℄ remain

the same in all these steps (whih means that we must have j � 14). This gives us 8�

�

14

2

�

� 2

10

samples from eah olletion of 16 bathes (or 256 steps). To get the 2

41

samples that we need, we

therefore need to see about 2

31

olletions, whih is 2

43

bytes of output.

19

The attak works by olleting these 2

41

samples, and for eah one omputing the probability of

that value aording to the distribution from Eq. (4). In our paper [1℄, we show how one an

eÆiently ompute this distribution, by pre-omputing some large tables that an be used during

the attak, using Walsh-Hadamard transforms. For the ase of Sream-0, where eah funtion F

i

is a sum of three funtions, eah from m=3 to m

0

bits, the total time that we spend on the attak

is roughly m

0

� 2

m

0

per sample, and the spae requirement is 3 � 2

(m=3)+m

0

. In our ase, we have

m = 48 and m

0

= 32, so we need about 2

50

spae and 2

41

� 32 � 2

32

= 2

78

time.

C Constants and Test Vetors

The Rijndael S-box, S[0..255℄ = [

63 7 77 7b f2 6b 6f 5 30 01 67 2b fe d7 ab 76 a 82 9 7d fa 59 47 f0

ad d4 a2 af 9 a4 72 0 b7 fd 93 26 36 3f f7 34 a5 e5 f1 71 d8 31 15

04 7 23 3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 09 83 2 1a 1b 6e 5a a0

52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 f b1 5b 6a b be 39 4a 4 58 f

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3 9f a8 51 a3 40 8f 92 9d 38 f5

b b6 da 21 10 ff f3 d2 d 0 13 e 5f 97 44 17 4 a7 7e 3d 64 5d 19 73

60 81 4f d 22 2a 90 88 46 ee b8 14 de 5e 0b db e0 32 3a 0a 49 06 24 5

2 d3 a 62 91 95 e4 79 e7 8 37 6d 8d d5 4e a9 6 56 f4 ea 65 7a ae 08

ba 78 25 2e 1 a6 b4 6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e

61 35 57 b9 86 1 1d 9e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 e 55 28 df

8 a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 ℄

The onstant pi (for key-setup)

pi = [24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44℄

Test vetors for Sream

key = [01 23 45 67 89 ab d ef fe d ba 98 76 54 32 10℄

W0[0℄ = [8 97 b1 b0 5e dd 3d de 8f a2 9 f0 5b a6 45 33℄

W0[15℄ = [d6 96 54 a5 fa db 4f 9 3d 4a f8 94 09 80 02 62℄

none = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00℄

X = [7e b 1 84 fe 46 e6 28 e5 b0 05 37 f1 e6 82 10℄

Y = [88 e5 13 73 4 16 ee 01 44 3f f2 fd a3 41 6 5b℄

Z = [5e 4f a5 42 96 a3 59 35 27 f6 af ae e7 b bf 6f℄

W[0℄ = [78 2b 67 a7 de 5e 5b 38 4a b1 a7 97 b9 08 80 1e℄

W[1℄ = [30 02 80 ba 46 da b7 0a 45 a1 b 3f 1f 0 4b eb℄

out[0℄ = [74 8 59 f2 0d 76 9e a8 7a 6d 1 87 46 e6 4a 0℄

out[1℄ = [bd 3b 39 d 12 18 43 0f 80 fa e0 1b 2e 60 f1 74℄

out[4℄ = [15 21 8a 46 fb ee 26 54 98 8d 2b 80 8a 87 f4 5e℄

out[16℄ = [b 32 f4 d6 f7 e 57 69 e2 a3 a d8 37 e1 37 82℄

out[1023℄ = [97 e 87 f0 a0 6 e7 0b 75 e6 12 25 50 1f 82 e3℄

Test vetors for Sream-F

key = [01 23 45 67 89 ab d ef fe d ba 98 76 54 32 10℄

W0[0℄ = [5f 42 2f 0b 5f 54 83 a1 7b 41 7b 76 0d f9 42 1f℄

W0[15℄ = [b5 b0 d8 43 5 ad e7 21 b 30 f1 b2 48 92 80 71℄

none = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00℄

X = [20 4 f7 71 2a e0 91 8 4a 3b 0b 6f e b6 bf 0d℄

20

Y = [8e 69 92 a 8a 28 b8 ed bd 2f 7d d3 74 f 3℄

Z = [d2 22 b8 b5 61 97 eb 80 31 02 13 ae a2 b8 f9 f1℄

W[0℄ = [eb e0 fe f4 22 e0 0b 83 70 d3 69 99 0a a 8 3℄

W[1℄ = [95 b5 e7 a9 e1 5 e3 8f 0e a9 93 6d 8d b2 2f 06℄

out[0℄ = [39 e 4a 06 45 4d 3 d 96 dd ef 0 f0 2 67 40℄

out[1℄ = [a0 ea 56 e7 e3 8 f5 df 34 ea 35 ee 77 ed da 66℄

out[4℄ = [8a 8 93 af 83 ed 0a 53 6b e9 f4 7 b6 6d 21 67℄

out[16℄ = [e0 8 fe 31 34 a7 48 a 14 10 f9 58 50 71 49 20℄

out[1023℄ = [a4 e2 f be 0a 47 53 9a 23 e0 79 25 5 be ea e7℄

21

