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Abstra
t

We report on the design of S
ream, a new software-eÆ
ient stream 
ipher, whi
h was designed

to be a \more se
ure SEAL". Following SEAL, the design of S
ream resembles in many ways a

blo
k-
ipher design. The new 
ipher is roughly as fast as SEAL, but we believe that it o�ers a

signi�
antly higher se
urity level. In the pro
ess of designing this 
ipher, we re-visit the SEAL

design paradigm, exhibiting some tradeo�s and limitations.
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1 Introdu
tion

A stream 
ipher (or pseudorandom generator) is an algorithm that takes a short random string,

and expands it into a mu
h longer string, that still \looks random" to adversaries with limited

resour
es. The short input string is 
alled the seed (or key) of the 
ipher, and the long output

string is 
alled the output stream (or key-stream). Stream 
iphers 
an be used for shared-key

en
ryption, by using the output stream as a one-time-pad. In this work we aim to design a se
ure

stream 
ipher that has very fast implementations in software.

1.1 A more se
ure SEAL

The starting point of our work was the SEAL 
ipher. SEAL was designed in 1992 by Rogaway and

Coppersmith [6℄, spe
i�
ally for the purpose of obtaining a software eÆ
ient stream 
ipher. Nearly

ten years after it was designed, SEAL is still the fastest steam 
ipher for software implementations

on 
ontemporary PC's, with \C" implementations running at 5 
y
le/byte on 
ommon PC's (and

3.5 
y
le/byte on some RISC workstations).

The design of SEAL shares many similarities with the design of 
ommon blo
k 
iphers. It is built

around a repeating round fun
tion, whi
h provides the \
ryptographi
 strength" of the 
ipher.

Roughly speaking, the main body of SEAL keeps a state whi
h is made of three parts: an evolving

state, some round keys, and a mask table. The output stream is generated in steps (or rounds).

In ea
h step, the round fun
tion is applied to the evolving state, using the round keys. The new
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evolving state is then masked by some of the entries in the mask table and this value is output as

a part of the stream. The mask table is �xed, and some of the round keys are be 
hanged every so

often (but not every step).

In terms of se
urity, SEAL is somewhat of a mixed story. SEAL is designed to generate up to 2

48

bytes of output per seed. In 1997, Hands
huh and Gilbert showed, however, that the output stream


an be distinguished from random after seeing roughly 2

34

bytes of output [4℄. SEAL was slightly

modi�ed after that atta
k, and the resulting algorithm is known as SEAL 3.0. Re
ently, Fluhrer

des
ribed an atta
k on SEAL 3.0, that 
an distinguish the output stream from random after about

2

44

output bytes [3℄. Hen
e, it seems prudent to avoid using the same seed for more than about

2

40

bytes of output.

The goal of the 
urrent work was to 
ome up with a \more se
ure SEAL". As part of that, we

studied the advantages, drawba
ks, and tradeo�s of this style of design. More spe
i�
ally, we tried

to understand what makes a \good round fun
tion" for a stream 
ipher, and to what extent a

\good round fun
tion" for a blo
k 
ipher is also good as the basis for a stream 
ipher. We also

studied the intera
tion between the properties of the round fun
tion and other parts of the 
ipher.

Our design goals for the 
ipher were as follows:

� Higher se
urity than SEAL: It should be possible to use the same seed for 2

64

bytes of output.

More pre
isely, an atta
ker that sees a total of 2

64

bytes of output (possibly, using several IV's

of its 
hoi
e), would be for
ed to spend an infeasible amount of time (or spa
e) in order to

distinguish the 
ipher from a truly random fun
tion. A reasonable measure of \infeasibility"

is, say, 2

80

spa
e and 2

96

time, so we tried to get the se
urity of the 
ipher 
omfortably above

these values.

1

� Comparable speed to SEAL, i.e., about 5 
y
les per byte on 
ommon PC's.

� We want to allow a full 128-bit input non
es (vs. 32-bit non
e in SEAL).

� Other, se
ondary, goals were to use smaller tables (SEAL uses 4KB of se
ret tables), get

faster initialization (SEAL needs about 200 appli
ations of SHA to initialize the tables),

and maybe make the 
ipher more amenable to implementation in other environments (e.g.,

hardware, smart
ard, et
.) We also tried to make the 
ipher fast on both 32-bit and 64-bit

ar
hite
tures.

1.2 The end result(s)

In this report we des
ribe three variants of our 
ipher. The �rst variant, whi
h we 
all S
ream-

0, should perhaps be viewed as a \toy 
ipher". Although it may be se
ure enough for some

appli
ations, it does not live up to our se
urity goals. In this report we des
ribe a \low-di�usion

atta
k" that works in time 2

80

and spa
e 2

50

, and may distinguish S
ream-0 from random after

seeing about 2

43

bytes of the output stream.

We then des
ribe S
ream, whi
h is the same as S
ream-0, ex
ept that it repla
es the �xed S-boxes

of S
ream-0 by key-dependent S-boxes. S
ream has very fast software implementations, but to get

this speed one has to use se
ret tables roughly as large as those of SEAL (mainly, in order to store

1

This se
urity level is arguably lower than, say, AES. This seems to be the pri
e that one has to pay for the

in
reased speed. We note that the \obvious solution" of using Rijndael with less rounds, fails to a
hieve the desired

se
urity/speed tradeo�.
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the S-boxes). On our Pentium-III ma
hine, an optimized \C" implementation of S
ream runs at

4.9 
y
le/byte, slightly faster than SEAL. On a 32-bit PowerPC, the same implementation runs

at 3.4 
y
le/byte, again slightly faster than SEAL. This optimized implementation of S
ream uses

about 2.5 KB of se
ret tables. S
ream also o�ers some spa
e/time tradeo�s. (In prin
iple, one


ould implement S
ream with less than 400 bytes of memory, but using so little spa
e would imply

a slowdown of at least two orders of magnitude, 
ompared to the speed-optimized implementation.)

In terms of se
urity, if the atta
ker is limited to only 2

64

bytes of text, we do not know of any atta
k

that is faster than exhaustively sear
hing for the 128-bit key. On the other hand, we believe that

it it possible to devise a linear atta
k to distinguish S
ream from random, with maybe 2

80

bytes of

text.

At the end of this report we des
ribe another variant, 
alled S
ream-F (for Fixed S-box), that does

not use se
ret S-boxes, but is slower than S
ream (and also somewhat \less elegant"). An optimized

\C" implementation of S
ream-F runs at 5.6 
y
le/byte on our Pentium-III, whi
h is 12% slower

than SEAL. On our PowerPC, this implementation runs at 3.8 
y
le/byte, 10% slower than SEAL.

This implementation of S
ream-F uses 560 bytes of se
ret state. We believe that the se
urity of

S
ream-F is roughly equivalent to that of S
ream.

1.3 Organization

In Se
tion 2 below we �rst des
ribe S
ream-0 and then S
ream. In Se
tion 3 we dis
uss implementa-

tion issues and provide some performan
e measurements. In Se
tion 4 we dis
uss the 
ryptanalysis

of S
ream-0. Finally, in Se
tion 5, we des
ribe the 
ipher S
ream-F. In the appendix we give the


onstants that are used in S
ream, and also provide some \test ve
tors".

2 The design of S
ream

We begin with the des
ription of S
ream-0. As with SEAL, this 
ipher too is built around a \round

fun
tion" that provides the 
ryptographi
 strength. Early in our design, we tried to use an \o� the

shelf" round fun
tion as the basis for the new 
ipher. Spe
i�
ally, we 
onsidered using the Rijndael

round fun
tion [2℄, whi
h forms the basis of the new AES. However, as we dis
uss below, the \wide

trail strategy" that underlies the design of the Rijndael round fun
tion is not a very good mat
h

for this type of design. We therefore designed our own round fun
tion.

At the heart of our round fun
tion is a s
aled-down version of the Rijndael fun
tion, that operates

on 64-bit blo
ks. The input blo
k is viewed as a 2 � 4 matrix of bytes. First, ea
h byte is sent

through an S-box, S[�℄, then the se
ond row in the matrix is shifted 
y
li
ally by one byte to the

right, and �nally ea
h 
olumn is multiplied by a �xed 2 � 2 invertible matrix M . Below we 
all

this fun
tion the \half round fun
tion", and denote it by G

S;M

(x). A pi
torial des
ription of G

S;M


an be found in Figure 1.

Our round fun
tion, denoted F (x), uses two di�erent instan
es of the \half-round" fun
tion, G

S

1

;M

1

and G

S

2

;M

2

, where S

1

; S

2

are two di�erent S-boxes, and M

1

;M

2

are two di�erent matri
es. The

S-boxes S

1

; S

2

in S
ream-0 are derived from the Rijndael S-box, by setting S

1

[x℄ = S[x℄, and

S

2

[x℄ = S[x�00010101℄, where S[�℄ is the Rijndael S-box. The 
onstant 00010101 (de
imal 21) was


hosen so that S

2

will not have a �xed-point or an inverse �xed-point.

2

The matri
es M

1

;M

2

were


hosen so that they are invertible, and so that neither of M

1

;M

2

and M

�1

2

M

1


ontains any zeros.

2

An inverse �xed-point is some x su
h that S[x℄ = �x.
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S[a℄ S[
℄ S[e℄ S[g℄

row shift

S[h℄ S[b℄ S[d℄ S[f ℄


olumn mix

a

0




0

e

0

g

0

b

0

d

0

f

0

h

0

repla
e ea
h 
olumn 


by M
, for some �xed

2� 2 matrix M

a 
 e g

b d f h

S[a℄ S[
℄ S[e℄ S[g℄

S[b℄ S[d℄ S[f ℄ S[h℄

repla
e ea
h byte

x by S[x℄

shift 2nd row by

one byte to right

byte substitution

Figure 1: The \half round" fun
tion G

S;M

Spe
i�
ally, we use

M

1

=

�

1 x

x 1

�

M

2

=

�

1 x+ 1

x+ 1 1

�

where 1; x; x+1 are elements of the �eld GF (2

8

), whi
h is represented as Z

2

[x℄=(x

8

+x

7

+x

6

+x+1).

The fun
tion F is a mix of a Feistel ladder and an SP-network. A pseudo
ode of F is provided

below, and a pi
torial des
ription 
an be found in Figure 2.

Fun
tion F (x):

1. Partition x into two 2� 4 matri
es

A :=

�

x

0

x

4

x

8

x

12

x

1

x

5

x

9

x

13

�

B :=

�

x

2

x

6

x

10

x

14

x

3

x

7

x

11

x

15

�

2. B := B �G

S

2

;M

2

(A) // use A to modify A;B

3. A := G

S

1

;M

1

(A)

4. B :=

�

B

0;2

B

0;3

B

0;0

B

0;1

B

1;2

B

1;3

B

1;0

B

1;1

�

// rotate B by two 
olumns

5. Swap A$ B

6. B := B �G

S

2

;M

2

(A) // use A to modify A;B

7. A := G

S

1

;M

1

(A)

8. Colle
t the 16 bytes in A;B ba
k into x

x

0

:= (A

0;0

A

1;0

B

0;0

B

1;0

A

0;1

A

1;1

B

0;1

B

1;1

A

0;2

A

1;2

B

0;2

B

1;2

A

0;3

A

1;3

B

0;3

B

1;3

)
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�<

x

0

x

4

x

8

x

12

x

1

x

5

x

9

x

13

x

2

x

6

x

10

x

14

x

3

x

7

x

11

x

15

j

j

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

G

S

1

;M

1

G

S

2

;M

2

G

S

1

;M

1

G

S

2

;M

2

x

0

0

x

0

4

x

0

8

x

0

12

x

0

1

x

0

5

x

0

9

x

0

13

x

0

2

x

0

6

x

0

10

x

0

14

x

0

3

x

0

7

x

0

11

x

0

15


y
li
 shift by

two 
olumns

Figure 2: The round fun
tion, F

The main loop of S
ream-0. As with SEAL, the 
ipher S
ream-0 maintains a state that 
onsists

of the \evolving state" x, some round keys y; z, and a \mask table" W . In S
ream-0, x; y and z

are 16-byte blo
ks, and the table W 
onsists of 16 blo
ks, ea
h of 16 bytes. In step i of S
ream-0,

the evolving state is modi�ed by setting x := F (x� y)� z, and we then output x�W [i mod 16℄.

In S
ream-0, both the mask table and the round keys are modi�ed, albeit slowly, throughout the


omputation. Spe
i�
ally, after every pass through the mask table (i.e., every 16 steps), we modify

y; z and one entry inW , by passing them through the F fun
tion. The entries of W are modi�ed in

order: after the j'th pass through the table we modify the entry W [j mod 16℄. Moreover, instead

of keeping both y; z 
ompletely �xed for 16 rounds, we rotate y by a few bytes after ea
h use. The

rotation amounts were 
hosen so that the rotation would be \almost for free" on 32-bit and 64-bit

ma
hines. This simple measure provides some prote
tion against \low-di�usion atta
ks" and linear

analysis. A pseudo
ode of the body of S
ream-0 is des
ribed in Figure 3.

Key- and non
e-setup. The key- and non
e-setup pro
edures of S
ream-0 are quite straight-

forward: We just use the round fun
tion F to derive all the quantities that we need. The key-setup

routine �lls the table W with some initial values. These values are later modi�ed during the

non
e-setup routine, and they also double as the equivalent of a \key s
hedule" for the non
e-setup

routine. A pseudo
ode for these two routines is provided in Figures 4 and 5.

2.1 The 
iphers S
ream

The 
ipher S
ream is the same as S
ream-0, ex
ept that we derive the S-boxes S

1

[�℄; S

2

[�℄ from the

Rijndael S-box S[�℄ in a key-dependent fashion. We repla
e line 0a in Figure 4 by the following

0a. set S

1

[x℄ := S[: : : S[S[x+ seed

0

℄ + seed

1

℄ : : : + seed

15

℄ for all x

(Noti
e that + denotes integer addition mod 256, rather then ex
lusive-or.) In terms of speed

(in software), S
ream-S is just as fast as S
ream-0, ex
ept for the key-setup. However, it has a

5



The main loop of S
ream:

State: x; y; z { three 16-byte blo
ks

W { a table of 16 16-byte blo
ks

i

w

{ an index into W (initially i

w

= 0)

1. repeat (until you get enough output bytes)

2. for i = 0 to 15 // generate the next 16 output blo
ks

3. x := F (x� y) // modify the \evolving state" x

4. x := x � z

5. output x�W [i mod 16℄

6. if i = 0 or 2 mod 4 // rotate y

7. rotate y by 8 bytes, y := y

8::15;0::7

8. else if i = 1 mod 4

9. rotate ea
h half of y by 4 bytes, y := y

4::7;0::3;12::15;8::11

10. else if i < 15 // no point in rotating when i = 15

11. rotate ea
h half of y by three bytes to the right, y := y

5::7;0::4;13::15;8::12

12. end-if

13. end-for

14. y := F (y � z) // modify y; z, and W [i

w

℄

15. z := F (z � y)

16. W [i

w

℄ := F (W [i

w

℄)

17. i

w

:= i

w

+ 1 mod 16

18. end-repeat

Figure 3: The main body of S
ream and S
ream-0

Key-setup:

Input: seed { a 16-byte blo
k

State: a; b { temporary variables, ea
h a 16-byte blo
k

Output: W0 { a table of sixteen 16-byte blo
ks

0a. set S

1

[x℄ := S[x℄ for all x // S[�℄ is the Rijndael S-box

0b. set S

2

[x℄ := S

1

[x� 00010101℄ for all x

1. a := seed

2. b := F (a� pi) // pi is a 
onstants: the �rst 16 bytes in the binary expansion of �

3. for i = 0 to 15

4. a := F

4

(a)� b // four appli
ations of the fun
tion F

5. W0[i℄ := a

6. end-for

Figure 4: The key-setup of S
ream-0

6



Non
e-setup:

Input: non
e { a 16-byte blo
k

State: W0 { a table of sixteen 16-byte blo
ks

a; b { temporary variables, ea
h a 16-byte blo
k

Output: x; y; z { three 16-byte blo
ks

W { a table of sixteen 16-byte blo
ks

1. z := F

2

(non
e�W0[1℄) // two appli
ations of the fun
tion F

2. y := F

2

(z �W0[3℄)

3. a := F

2

(y �W0[5℄)

4. x := F (a�W0[7℄) // only one appli
ation of F

5. b := x

6. for i = 0 to 7 // set W as a modi�
ation of W0

7. b := F (b�W0[2i℄)

8. W [ 2i ℄ := W0[ 2i ℄� a

9. W [2i+ 1℄ :=W0[2i+ 1℄� b

10. end-for

Figure 5: The non
e-setup of S
ream and S
ream-0

mu
h larger se
ret state (a speed-optimized software implementation of S
ream-S uses additional

2Kbyte of se
ret tables). We note that we still have S

2

[x℄ = S

1

[x� 00010101℄, so a spa
e-eÆ
ient

implementation need only store S

1

.

3 Implementation and performan
e

Software implementation of the F fun
tion. A fast software implementation of the F fun
-

tion uses tri
ks similar to Rijndael: Namely, we 
an implement the two \half round" fun
tions

G

S

1

;M

1

; G

S

2

;M

2

together, using just eight lookup operations into two tables, ea
h 
onsisting of 256

four-byte words. Let the eight-byte input toG

S

1

;M

1

; G

S

2

;M

2

be denoted (x

0

; x

1

; x

4

; x

5

; x

8

; x

9

; x

12

; x

13

),

the output of G

S

1

;M

1

be denoted (u

0

; u

1

; u

4

; u

5

; u

8

; u

9

; u

12

; u

13

), and the output of G

S

2

;M

2

be de-

noted (u

2

; u

3

; u

6

; u

7

; u

10

; u

11

; u

14

; u

15

). Then we 
an write:

u

0

= M

1

(0; 0) � S1[x

0

℄ � M

1

(0; 1) � S1[x

13

℄

u

1

= M

1

(1; 0) � S1[x

0

℄ � M

1

(1; 1) � S1[x

13

℄

u

2

= M

2

(0; 0) � S2[x

0

℄ � M

2

(0; 1) � S2[x

13

℄

u

3

= M

2

(1; 0) � S2[x

0

℄ � M

2

(1; 1) � S2[x

13

℄

(where M(i; j) is the entry in row i, 
olumn j of matrix M , indexing starts from zero). Similar

expressions 
an be written for the other bytes of u. Therefore, if we set the tables T

0

; T

1

as

T

0

(x) =

�

M

1

(0; 0) � S1[x℄ j M

1

(1; 0) � S1[x℄ j M

2

(0; 0) � S2[x℄ j M

2

(1; 0) � S2[x℄

�

T

1

(x) =

�

M

1

(0; 1) � S1[x℄ j M

1

(1; 1) � S1[x℄ j M

2

(0; 1) � S2[x℄ j M

2

(1; 1) � S2[x℄

�
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Then we 
an 
ompute u

0::3

:= T

0

[x

0

℄ � T

1

[x

13

℄, u

4::7

:= T

0

[x

4

℄ � T

1

[x

1

℄, u

8::11

:= T

0

[x

8

℄ � T

1

[x

5

℄,

and u

12::15

:= T

0

[x

12

℄� T

1

[x

9

℄. A \reasonably optimized" implementation of the round fun
tion F

on a 32-bit ma
hine, may work as follows:

3

Fun
tion F (x

0

; x

1

; x

2

; x

3

): // ea
h x

i

is a four-byte word

Temporary storage: u

0

; u

1

; u

2

; u

3

, ea
h a four-byte word

1. u

0

:= T

0

[byte0(x

0

)℄� T

1

[byte1(x

3

)℄ // �rst \half round"

2. u

1

:= T

0

[byte0(x

1

)℄� T

1

[byte1(x

0

)℄

3. u

2

:= T

0

[byte0(x

2

)℄� T

1

[byte1(x

1

)℄

4. u

3

:= T

0

[byte0(x

3

)℄� T

1

[byte1(x

2

)℄

5. [byte2(u

0

) j byte3(u

0

)℄ := [byte2(u

0

) j byte3(u

0

)℄ � [byte2(x

0

) j byte3(x

0

)℄

6. [byte2(u

1

) j byte3(u

1

)℄ := [byte2(u

1

) j byte3(u

1

)℄ � [byte2(x

1

) j byte3(x

1

)℄

7. [byte2(u

2

) j byte3(u

2

)℄ := [byte2(u

2

) j byte3(u

2

)℄ � [byte2(x

2

) j byte3(x

2

)℄

8. [byte2(u

3

) j byte3(u

3

)℄ := [byte2(u

3

) j byte3(u

3

)℄ � [byte2(x

3

) j byte3(x

3

)℄

9. u

0

:= u

0

�< 2 bytes // swap the two halves

10. u

1

:= u

1

�< 2 bytes

11. u

2

:= u

2

�< 2 bytes

12. u

3

:= u

3

�< 2 bytes

13. x

0

:= T

0

[byte0(u

2

)℄� T

1

[byte1(u

1

)℄ // se
ond \half round"

14. x

1

:= T

0

[byte0(u

3

)℄� T

1

[byte1(u

2

)℄

15. x

2

:= T

0

[byte0(u

0

)℄� T

1

[byte1(u

3

)℄

16. x

3

:= T

0

[byte0(u

1

)℄� T

1

[byte1(u

0

)℄

17. [byte2(x

0

) j byte3(x

0

)℄ := [byte2(x

0

) j byte3(x

0

)℄ � [byte2(u

0

) j byte3(u

0

)℄

18. [byte2(x

1

) j byte3(x

1

)℄ := [byte2(x

1

) j byte3(x

1

)℄ � [byte2(u

1

) j byte3(u

1

)℄

19. [byte2(x

2

) j byte3(x

2

)℄ := [byte2(x

2

) j byte3(x

2

)℄ � [byte2(u

2

) j byte3(u

2

)℄

20. [byte2(x

3

) j byte3(x

3

)℄ := [byte2(x

3

) j byte3(x

3

)℄ � [byte2(u

3

) j byte3(u

3

)℄

21. output (x

0

; x

1

; x

2

; x

3

)

We note the need for expli
it swapping of the two halves above (lines 9-12). The reason for that is

that the tables T

0

; T

1

are arranged so that the part 
orresponding to G

S

1

;M

1

is in the �rst two bytes

of ea
h entry, and the part of G

S

2

;M

2

is in the last two bytes. The 
ode above 
an be optimized

further, 
ombining the rotation in these lines with the masking, whi
h is impli
it in lines 5-8, 17-20.

Hen
e, the rotation be
omes essentially \for free".

This stru
ture provides a spa
e/time tradeo� similar to Rijndael: Sin
e the matri
es M

1

;M

2

are

symmetri
, one 
an obtain T

2

(x) from T

1

(x) using a few shift operations. Hen
e, it is possible to

store only one table, at the expense of some slowdown in performan
e. This tradeo� is parti
ularly

important for S
ream, where the tables T

0

; T

1

are key-dependent.

The non
e-setup routine. The non
e-setup routine was designed so that the �rst output blo
k


an be 
omputed as soon as possible. Although all the entries of the table W have to be modi�ed

during the non
e-setup, an appli
ation that does not use all of them 
an modify only as many as

it needs. Hen
e an appli
ation that only outputs a few blo
ks per input non
e, does not have to

3

In this des
ription, we use [b1jb2℄ to denote the 
on
atenation of the bytes b1 and b2.

8




omplete the entire non
e-setup. Alternatively, an appli
ation 
an exe
ute the non
e-setup together

with the �rst \
hunk" of 16 steps, modifying ea
h mask of W just before this mask is needed.

Performan
e in software. We tested the software performan
e of S
ream and S
ream-F on two

platforms, both with word-length of 32 bits: One platform is an IBM PC 300PL, with a 550MHz

Pentium-III pro
essor, running Linux and using the g

 
ompiler, version 3.0.3. The other platform

is an RS/6000 43P-150 workstation, with a 375MHz 304e PowerPC pro
essor, running AIX 4.3.3 and

using the IBM C 
ompiler (xl
) version 3.6.6. On both platforms, we measured peak throughput,

and also timed the key-setup and non
e-setup routines. To measure peak throughput, we timed

a pro
edure that produ
es 256MB of output (all with the same key and non
e). Spe
i�
ally, the

pro
edure makes one million 
alls to a fun
tion that outputs the next 256 bytes of the 
ipher. To

eliminate the e�e
t of 
a
he misses, we used the same output bu�er in all the 
alls. We list our

test results in the table below.

Platform Operation S
ream-F S
ream SEAL

Pentium-III throughput 5.6 
y
le/byte 4.9 
y
le/byte 5.0 
y
le/byte

550 MHz key-setup 3190 
y
les 27500 
y
les

Linux, g

 non
e-setup 1276 
y
les 1276 
y
les

604e PowerPC throughput 3.8 
y
le/byte 3.4 
y
le/byte 3.45 
y
le/byte

375 MHz key-setup 1950 
y
les 16875 
y
les

AIX, xl
 non
e-setup 670 
y
les 670 
y
les

Implementation in di�erent environments. Being based on a Rijndael-like round fun
tion,

S
ream is amenable for implementations in many di�erent environments. In parti
ular, it should

be quite easy to implement it in hardware, and the area/speed tradeo� in su
h implementation

may be similar to Rijndael (ex
ept that S
ream needs more memory for the mask table). Also,

it should be quite straightforward to implement it for 8- and 16-bit pro
essors (again, as long as

the ar
hite
ture has enough memory to store the internal state). S
ream is 
learly not suited for

environments with extremely small memory, but it 
an be implemented with less than 400 bytes of

memory (although su
h implementation would be quite slow).

4 Se
urity Analysis

Below we examine some possible atta
ks on S
ream-0 and S
ream. The dis
ussion below deals

mostly with S
ream-0. At the end we brie
y dis
uss the e�e
t of S
ream's key-dependent S-boxes

on these atta
ks. We examine two types of atta
ks, one based on linear approximations of the F

fun
tion, and the other exploits the low di�usion provided by a single appli
ation of F . In both

atta
ks, the goal of the atta
ker is to distinguish the output of the 
ipher from a truly random

stream.

4

4

In a separate paper [1℄, we show that these two types of atta
ks 
an be viewed as two spe
ial 
ases of a generalized

distinguishing atta
k.

9



4.1 Linear atta
ks

It is not hard to see that the F fun
tion has linear approximations that approximate only three

of the 8-by-8 S-boxes. Sin
e the S-boxes in S
ream-0 are based on the Rijndael S-box, the best

approximation of them has bias 2

�3

, so we 
an probably get a linear approximation of the F fun
tion

with bias 2

�9

. Namely, there exists a linear fun
tion L su
h that Pr

x

[L(x; F (x)) = 0℄ = (1�2

�9

)=2.

In Appendix A, we show that there are no approximation of the F fun
tion with bias of more than

2

�9

.

To use su
h approximation, we need to eliminate the linear masking, introdu
ed by the y; z and

the W [i℄'s. Here we use the fa
t that ea
h one of these masks is used sixteen times before it is

modi�ed. For ea
h step of the 
ipher, the atta
ker sees a pair (x� y�W [i℄; F (x)� z�W [i+1℄),

where x is random. Applying the linear approximation L to this pair, we get the bit

� = L(x; F (x)) � L(y; z) � L(W [i℄;W [i + 1℄)

For simpli
ity, we ignore for the moment the rotation of the y blo
k after ea
h step. If we add

two su
h �'s that use the same y and z blo
ks, we get � = � � �

0

= L(x; F (x)) � L(x

0

; F (x

0

)) �

L(W [i℄;W [i + 1℄) � L(W [j℄;W [j + 1℄). The last bit does not depend on y; z anymore. We 
an

repeat this pro
ess, adding two su
h � 's that use the same masks, we end up with a bit

� = � � �

0

= L(x; F (x)) � L(x

0

; F (x

0

))� L(x

00

; F (x

00

))� L(x

000

; F (x

000

))

Sin
e L(x; F (x)) has bias of 2

�9

, the bit � has bias of 2

�36

, so after seeing about 2

72

su
h bits, we


an distinguish the 
ipher from random.

Sin
e ea
h of the masks is used sixteen times before it is modi�ed, we have about

�

16

2

�


hoi
es for

the pairs of �'s to add (still ignoring the rotation of y), and about

�

16

2

�


hoi
es for the pairs of

� 's to add. Hen
e, 256 steps of the 
ipher gives us about

�

16

2

�

2

� 2

14

bits �. After seeing roughly

256 �2

58

= 2

66

steps of the 
ipher (i.e., 2

70

bytes of output), we 
an to 
olle
t the needed 2

72

samples

of �'s to distinguish the 
ipher from random.

The rotation of y. The rotation of y makes it harder to devise atta
ks as above. To 
an
el both

the y and the z blo
ks, one would have to use two di�erent approximations with the same output

bit pattern, but where the input bit patterns are rotated a

ordingly. We do not know if it possible

to devise su
h approximation with \reasonably high" bias.

The se
ret S-boxes. The introdu
tion of key-dependent S-boxes in S
ream does not signi�
antly

alter the analysis from above. Sin
e the S-boxes are key-dependent, an atta
ker 
annot pi
k \the

best approximations" for them, but on the other hand these S-boxes have better approximations

than the Rijndael S-box. Thus, the atta
ker 
an use a random approximation, and it will likely to

be roughly as good as the best approximation for the �xed S-boxes.

The non
e-setup pro
edure. The analysis from above assumed that the atta
ker only uses one

non
e, and wat
hes many output bytes from the resulting stream. In our atta
k model, however, the

atta
ker is able to feed the 
ipher with many di�erent non
es. To see why this may be an e�e
tive

atta
k, 
onsider what would happen if we eliminate the mask modi�
ation pro
ess (Lines 5{10)

from the non
e-setup pro
edure. The atta
ker 
ould then feed many di�erent non
es, wat
hing

only the �rst few output blo
ks from ea
h non
e. In this pro
ess, the masks are �xed, and therefore

10



there is no need to 
an
el them out. The only thing that needs to be 
an
eled out are the y; z

blo
ks, and the atta
ker 
an do that by approximating only two steps for ea
h non
e. This 
ould

potentially yield an approximation with bias as high as 2

�18

, so the atta
ker only needs about 2

36

di�erent non
es before it 
an distinguish the 
ipher from random.

5

The simplest �x is to modify all the masks (in an \un
orrelated" way) during the non
e-setup.

However, doing that is rather expensive. We therefore used an \optimization tri
k", where we

modi�ed the odd entries by adding to them di�erent values, and modi�ed all the even entries by

adding to them the same value. The reason that this helps, is that an approximation of a single

step in
ludes two masks, one even and one odd. Thus, we still need to 
an
el out the odd masks,

whi
h means that we still need to add at least four approximations.

The only way to avoid using masks from odd steps, is to use an approximation of two 
onse
utive

F fun
tions, and this is likely to have small bias. Moreover, to be able to 
an
el the value that was

added to the even masks, and also the y and z blo
ks, and to do it using just two steps, one must

use approximations of the F fun
tion, where

(a) the same bitwise pattern is used on both the input and the outputs of the fun
tion; and

(b) this bitwise pattern is periodi
.

We were not able to �nd su
h an approximation that uses less than all the S-boxes.

4.2 Low-di�usion atta
ks

A low-di�usion atta
k exploits the fa
t that not every byte of F (x) is in
uen
ed by every byte of

x (and vise versa). For example, there are output bytes that only depend on six input bytes. In

fa
t, in Appendix B we show that knowing two bytes of x and one byte of (linear 
ombination of

bytes in) F (x), we 
an 
ompute another byte of (linear 
ombination of bytes in) F (x). Namely, we

have a (non-degenerate) linear fun
tion L with output length of four bytes, so that we 
an write

L(X;F (x))

3

= g(L(X;F (x))

0::2

), where g is an known deterministi
 fun
tion (with three bytes of

input and one byte of output).

As for the linear atta
ks, here too we need to eliminate the linear masking, introdu
ed by the y; z

and theW [i℄'s. This is done in very mu
h the same way. Again, we ignore for now the rotation of the

blo
k y. For ea
h step of the 
ipher the atta
ker sees the four bytes L(x�y�W [i℄; F (x)�z�W [i+1℄).

We eliminate the dependen
e on y; z by adding two su
h quantities that use the same y; z blo
ks.

This gives a four-byte quantity L(x; F (x))� L(x

0

; F (x

0

))� L(W [i℄;W [i+ 1℄)� L(W [j℄;W [j + 1℄).

Adding two of those with the same i; j, we then obtain the four byte quantity

L(x; F (x)) � L(x

0

; F (x

0

))� L(x

00

; F (x

00

))� L(x

000

; F (x

000

))

We 
an write this last quantity in terms of the fun
tion g, as a pair (u

1

� u

2

� u

3

� u

4

; g(u

1

) �

g(u

2

)� g(u

3

)� g(u

4

) ), where ea
h of s; t; u; v is three-byte long, and the g(?)'s are one-byte long.

In a separate paper [1℄, we analyze the statisti
al properties of su
h expressions, and 
al
ulate the

number of samples that needs to be seen to distinguish them from random.

The rotation of y. Again, the rotation of y makes it harder to devise atta
ks as above. In

Appendix B we show, however, that we 
an still use a low-di�usion atta
k on the F fun
tion, in

whi
h guessing six bytes of (x; F (x)) yields the value of four other bytes. Applying tools from our

5

As noted above, the a
hievable bias is likely to be smaller, due to the rotations of the y blo
k.

11



paper [1℄ to this relation, we estimate that the amount of output text that is needed to distinguish

the 
ipher from random along the lines above, is merely 2

43

bytes. However, the pro
edure for

distinguishing is quite expensive. The most eÆ
ient way that we know how to use these 2

43

bytes

would require roughly 2

50

spa
e and 2

80

time.

The se
ret S-boxes. At present, we do not know how to extend low-di�usion atta
ks su
h as

above to deal with se
ret S-boxes. Although we 
an still write the same expression L(X;F (x))

3

=

g(L(X;F (x))

0::2

), the fun
tion g now depends on the key, so it is not known to the atta
ker.

Although it is likely that some variant of these atta
ks 
an be devised for this 
ase too, we strongly

believe that su
h variants would require signi�
antly more text than the 2

64

bytes that we \allow"

the atta
ker to see.

5 The 
ipher S
ream-F

In S
ream, we used key-dependent S-boxes to defend against \low-di�usion atta
ks". A di�erent

approa
h is to keep the S-box �xed, but to add to the main body of the 
ipher some \key dependent

operation" before outputting ea
h blo
k. This approa
h was taken in S
ream-F, where we added

one round of Feistel ladder after the round fun
tion, using a key-dependent table. However, sin
e

the only key-dependent table that we have is the mask table W, we letW double also as an \S-box".

Spe
i�
ally, we add the following lines 3a-3e between lines 3 and 4 in the main-loop routine from

Figure 3.

3a. view the table W as an array of 64 4-byte words

^

W [0::63℄

3b. x

0::3

:= x

0::3

�

^

W [1 + (x

4

^ 00111110)℄

3
. x

4::7

:= x

4::7

�

^

W [x

8

^ 00111110℄

3d. x

8::11

:= x

8 ::11

�

^

W [1 + (x

12

^ 00111110)℄

3e. x

12::15

:= x

12::15

�

^

W [x

0

^ 00111110℄

We note that the operation x

i

^ 00111110 in these lines returns an even number between 0 and 62,

so we only use odd entries of W to modify x

0::3

and x

8::11

, and even entries to modify x

4::7

and

x

12::15

. The reason is that to form the output blo
k, the words x

0::3

; x

8::11

will be masked with even

entries of W , and the words x

4::7

; x

12::15

will be masked by odd entries. The odd/even indexing is

meant to avoid the possibility that these masks 
an
el with the entries that were used in the Feistel

operation.

6

5.1 Con
lusions

We presented S
ream, a new stream 
ipher with the same design style as SEAL. The new 
ipher

is roughly as fast as SEAL, but we believe that it is more se
ure. It has some pra
ti
al advantages

over SEAL, in 
exibility of implementation, and also in the fa
t that it 
an take a full 128-bit non
e

(vs. 32 bits in SEAL). In the pro
ess of designing S
ream, we studied the advantages and pitfalls

of the SEAL design style. We hope that the experien
e from this work would be bene�
ial also for

future 
iphers that uses this style of design.

6

It is still possible that two words, say x

0::3

and x

4::7

, are masked with the same mask, but it seems less harmful.
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A Linear approximations of the F fun
tion of S
ream-0

A detailed des
ription of the round fun
tion F is provided again in Figure 6. Throughout the next

two se
tions, we refer to the notation that are used in that �gure.

A.1 The S-boxes

Sin
e every S-box lookup in F uses the same input for the two S-boxes S

1

; S

2

, one should view these

two S-boxes as one box, with one byte input and two byte output. As both S

1

; S

2

are permutations,

any approximation of this 8�16 S-box (with non-zero bias) must look at at least two of the three

bytes (x; S

1

[x℄; S

2

[x℄). Below we say that an approximation is a two-value approximation if it uses

only two of these values, and it is a three-value approximation if it uses all three.
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Figure 6: Details of the round fun
tion F . (The bytes in boldfa
e are used in the low-di�usion

atta
k from Appendix B.)
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Proposition 1 For the S-boxes S

1

; S

2

of S
ream-0:

(a) Any two-value approximation of x; S

1

[x℄; S

2

[x℄ has bias of at most 2

�3

.

(b) Any three-value approximation of x; S

1

[x℄; S

2

[x℄ has bias of at most 2

�2

.

Proof: These fa
ts 
an be 
on�rmed by an exhaustive sear
h. Below we provide an analyti
al

proof for (a): Re
all that the S-boxes S

1

; S

2

in S
ream-0 are de�ned as S

1

[x℄ = A(

1

x

)� b, S

2

[x℄ =

A(

1

x�Æ

) � b, where A is an invertible boolean matrix, the (1=x) operation is de�ned in GF (2

8

),

and b; Æ are two bytes, with Æ 6= 0. As the operation Az � b is just an aÆne transformation, it is

suÆ
ient to prove the assertion for the \underlying S-boxes"

S

0

1

[x℄ =

1

x

S

0

2

[x℄ =

1

x� Æ

It is known that the best linear approximation of the fun
tion f(x) = 1=x in GF (2

n

) has bias

2

1�n=2

[5℄. Hen
e, every approximation that only uses (x; S

0

1

[x℄) (or only uses (x; S

0

2

[x℄)) must have

bias at most 2

�3

. It is left to show that an approximation that only uses the values (S

0

1

[x℄; S

0

2

[x℄)


annot do any better. For any two masks �

1

; �

2

and any bit �, denote

X

�

1

;�

2

;�

= fx : �

1

� (1=x) � �

2

� (1=(x � Æ)) = �g

We need to show that for any �

1

; �

2

; �, we have jX

�

1

;�

2

;�

j �

256

2

(1 + 2

�3

) = 144.

We now 
hange the variable, setting y = 1 � (Æ=x) (all the operations in GF (2

8

)). With this

assignment, we have 1=x = (1� y)=Æ and 1=(x� Æ) = (1� (1=y))=Æ. The transformation from x to

y is a bije
tion, so we have

jX

�

1

;�

2

;�

j =

�

�

�

�

�

y : �

1

�

�

1� y

Æ

�

� �

2

�

�

1� (1=y)

Æ

�

= �

�

�

�

�

�

Finally, sin
e Æ is �xed, then division by Æ in GF (2

8

) is a linear operation, and therefore it 
ommutes

with the inner-produ
t operation. Hen
e, we have

jX

�

1

;�

2

;�

j =

�

�

�

�

fy : (�

1

=Æ) � y � (�

2

=Æ) � (1=y) = � � ((�

1

=Æ) � 1)� ((�

2

=Æ) � 1)g

�

�

�

�

� 144

where the last inequality follows sin
e this is the bias of some linear approximation of the fun
tion

f(y) = 1=y, and we already know that that fun
tion 
annot be approximated with bias of more

than 2

�3

. 2

A.2 The F fun
tion

It is easy to see that the F fun
tion has approximations that only look at three S-boxes. For example

(using the notations from Figure 6), one 
an use the 2-value approximations (x

0

; S

2

[x

0

℄); (x

13

; S

2

[x

13

℄)

and (v

2

; S

1

[v

2

℄). Sin
e there is a linear relation between S

2

[x

0

℄; S

2

[x

13

℄; x

2

and v

2

, and another linear

relation between S

1

[v

2

℄; x

0

8

; x

0

9

, we obtain an approximation of input bytes x

0

; x

13

; x

2

and output

bytes x

0

8

; x

0

9

. Sin
e the approximations of the S-boxes have bias at most 2

�3

, this approximation

of F has bias at most 2

�9

. This, however, is the best possible approximation of the F fun
tion, as

we prove below.

Proposition 2 Any approximation of the F fun
tion has bias of at most 2

�9

.
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Proof: First some terminology: As usual, we view an approximation of the fun
tion F as a sum

(modulo 2) of approximations involving the intermediate 
omponents. Sin
e the only non-linear


omponents are the S-boxes, we identify an approximation of F with an assignment of masks to the

inputs and outputs of all the S-boxes in Figure 6. For example, we may talk about \the mask of

S

1

[x

0

℄" in some approximation. We say that an approximation uses some spe
i�
 byte, if it assigns

a non-zero mask to that byte, and it uses some S-box if it uses some of its input and outputs.

We now present some useful observations. Consider, for example, the mask of the bytes S

2

[x

0

℄,

S

2

[x

13

℄, S

2

[v

10

℄ and S

2

[v

7

℄. Note that these bytes (and the output bytes x

0

2

; x

0

3

) are related by

�

S

2

[v

10

℄

S

2

[v

7

℄

�

= M

�1

2

�

x

0

2

x

0

3

�

�M

�1

2

M

1

�

S

1

[x

0

℄

S

1

[x

13

℄

�

Therefore, in any approximation (with non-zero bias), the masks of these bytes must also be related.

Namely, if we have an approximation with the masks �

1

; �

2

; �

3

; �

4

assigned respe
tively to S

2

[x

0

℄,

S

2

[x

13

℄,S

2

[v

10

℄,S

2

[v

7

℄, then it must be the 
ase that

�

�

1

�

2

�

= M

�1

2

M

1

�

�

3

�

4

�

(1)

In parti
ular, the values of �

1

; �

2

determine the values of �

3

; �

4

, and vi
e versa. Moreover, sin
e

M

�1

2

M

1

is an MDS matrix, then if one of these masks is non-zero, at least three of them must be

non-zero. Similarly, the masks assigned to the bytes S

2

[x

0

℄; S

2

[x

13

℄; v

2

and v

3

are related by

�

�

1

�

2

�

=M

2

�

�

3

�

4

�

(2)

Again, sin
e M

2

is MDS, then if one of these masks is non-zero, at least three of them must be

non-zero. In Table 1 we list eight sets of bytes for whi
h the masks must be related in the same

manner. The analysis above says that for any 
olumn in Table 1, either all the bytes are assigned

the mask zero, or at least three are assigned a non-zero mask. The rest of the proof follows by

some observations on the stru
ture of that table.

Bytes related by Eq. (1) Bytes related by Eq. (2)

S

1

[x

0

℄ S

1

[x

4

℄ S

1

[x

7

℄ S

1

[x

12

℄

S

1

[x

13

℄ S

1

[x

1

℄ S

1

[x

5

℄ S

1

[x

9

℄

S

2

[v

10

℄ S

2

[v

14

℄ S

2

[v

2

℄ S

2

[v

6

℄

S

2

[v

7

℄ S

2

[v

11

℄ S

2

[v

15

℄ S

2

[v

3

℄

S

2

[x

0

℄ S

2

[x

4

℄ S

2

[x

7

℄ S

2

[x

12

℄

S

2

[x

13

℄ S

2

[x

1

℄ S

2

[x

5

℄ S

2

[x

9

℄

v

2

v

6

v

10

v

14

v

3

v

7

v

11

v

15

Table 1: Some intermediate bytes of the F fun
tion

Looking at Table 1, we see that it 
ontains two of the three bytes from every S-box in the F

fun
tion, and that these two bytes never appear in the same 
olumn. Therefore, every two-value

approximation of an S-box in F must assign non-zero mask to at least one byte in Table 1, and

every three-value approximation of an S-box must assign non-zero mask to at least two byte in two

di�erent 
olumns.

Below we say that two 
olumns in Table 1 interse
t, if they 
ontain bytes from the same S-box.

We say that the 
olumns interse
t at the top if the upper halves of these 
olumns interse
t, and

16



that they interse
t at the bottom if the lower halves interse
t. Due to the \matrix shift" operation

in the F fun
tion, there are no two 
olumns in Table 1 that interse
t both at the top and at the

bottom. That is, if the top halves of two 
olumns interse
t, then their bottom halves do not, and

vi
e versa.

We now 
an prove Proposition 2. First, every approximation must assign non-zero value to at least

one byte in some 
olumn the table. But this implies that at least three bytes in that 
olumn has

to be assigned non-zero values. Hen
e, every approximation must use bytes from at least three

di�erent S-boxes.

Next, if an approximation of F uses any three-value approximation of an S-box, then it must assign

non-zero values to bytes in at least two di�erent 
olumns of Table 1. Sin
e in ea
h of these 
olumns

there must be at least three bytes with non-zero masks (and sin
e these 
olumns 
annot interse
t

both at the top and at the bottom), it follows that the approximation uses bytes from at least four

di�erent S-boxes.

Finally, if an approximation of F uses only three-value approximations of S-boxes, then it must

assign non-zero values to bytes in more than two 
olumns, and therefore use bytes from more than

four di�erent S-boxes (in fa
t, at least six S-boxes). Using the bounds from Proposition 1 on the

bias of S-box approximations, we 
on
lude that in either 
ase, an approximation of the F fun
tion


annot have bias of more than 2

�9

. 2

B Low-di�usion atta
k on the F fun
tion

Low-di�usion atta
ks exploit the limited di�usion provided by just one appli
ation of the F fun
tion.

The goal is to guess just a few of the input/output bytes of the fun
tion, and get at least one byte of


onsisten
y 
he
k. It is not hard to see that we 
an get some relations by guessing only four (linear


ombinations of the) input and output bytes. For example, it 
an be seen from Figure 6, that there

is a relation involving input bytes x

0

; x

13

, a one-byte linear 
ombination of x

0

0

; x

0

1

(namely S

1

[v

10

℄),

and a one-byte linear 
ombination of x

0

2

; x

0

3

: If we guess S

1

[v

10

℄, then we also know S

2

[v

10

℄, whi
h

is some linear 
ombination of w

2

= u

0

� x

0

2

and w

3

= u

1

� x

0

3

. If we also guess x

0

and x

13

, we


an 
ompute u

0

and u

1

, thereby dedu
ing the linear 
ombination of x

0

2

and x

0

3

.

7

It is not hard to

see that guessing any three of these bytes, we 
an 
ompute the fourth byte. Another example is a

relation between S

1

[v

10

℄ and the three input bytes x

5

; x

8

; x

10

.

These \guess three, get one free" relations, however, 
annot be used dire
tly to mount an atta
k,

be
ause of the rotations of the y blo
k. To mount an atta
k, we need to 
an
el out both the rotated

y blo
ks, and the �xed z blo
k (and also the �xed masks W [i℄). This means that we must �nd

two relations that use the same (linear 
ombinations of) output bytes, but rotated version of the

(linear 
ombinations of) input bytes.

The best strategy that we found for doing that, is to use two 
opies of the \guess three, get one

free" relations from above. For example, the atta
ker 
an guess the six bytes x

0

, x

13

, S

1

[v

10

℄ and

x

8

, x

5

, S

1

[v

2

℄ and use the fa
t that every other step, the y blo
k is rotated by eight bytes. An

added bonus (for the atta
ker) is that now both types of the relations from above 
an be used.

Namely, guessing these six bytes, one 
an derive four other bytes: a one-byte linear 
ombination of

x

0

2

; x

0

3

, a one-byte linear 
ombination of x

0

10

; x

0

11

, and the bytes x

10

and x

2

. Noti
e that the input

7

We note that guessing just one of x

0

; x

13

yields some linear 
ombination of u

0

; u

1

, but sin
e M

�1

2

M

1

is MDS, we


annot get the \right" 
ombination.
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bytes in these relations are arranged in pairs, (x

0

; x

8

), (x

5

; x

13

), and (x

2

; x

10

), so we still use the

same six bytes of y as masks, even after y is rotated by eight byte positions.

To make the notations below a little less horrible, we denote x

0

a

= S

1

[v

2

℄, x

0

b

= S

1

[v

10

℄, also also

denote the one-byte linear 
ombination of x

0

2

; x

0

3

by x

0




, and the one-byte linear 
ombination of

x

0

10

; x

0

11

by x

0

d

. The important thing to remember is that x

0

a

, x

0

b

, x

0




, x

0

d

are all one-byte linear


ombinations of some bytes of x

0

. The relation that we use 
an now be des
ribed as

0

B

B

�

f

1

(x

0

)

f

1

(x

8

)

f

2

(x

0

)

f

2

(x

8

)

1

C

C

A

+

0

B

B

�

g

1

(x

13

)

g

1

(x

5

)

g

2

(x

13

)

g

2

(x

5

)

1

C

C

A

+

0

B

B

�

h

1

(x

0

a

)

h

1

(x

0

b

)

h

2

(x

0

b

)

h

2

(x

0

a

)

1

C

C

A

=

0

B

B

�

x

2

x

10

x

0




x

0

d

1

C

C

A

(3)

where the f

i

; g

i

; h

i

fun
tions are known permutations. (For example, f

1

(�) = S

2

[�℄, and h

1

(�) =

S

2

[S

�1

1

[�℄℄.)

To 
an
el out the y; z blo
ks and the masks W [i℄, the atta
ker 
onsiders a \2� 2 matrix of steps",

i, i+1, i+16, i+17 for even i. Sin
e i is even, then the y blo
k is rotated by eight bytes between

steps i; i + 1 and between steps i+ 16, i+ 17. Also, the masks from W that are used in the steps

i� 1; i; i+ 1 are the same as in steps i+ 15; i+ 16; i+ 17. For example, below we 
onsider steps 2,

3, 18 and 19 in the 
ipher. We use the following notations:

� We denote by x(i) the input blo
k to the F fun
tion in step i, and by x

0

(i) the 
orresponding

output blo
k. As before, we use subs
ript to denote bytes within a blo
k. For example, x(2)

10

or x

0

(18)




.

� We denote the y; z blo
ks at step 2 by y1; z1, and the y; z blo
ks at step 18 by y2; z2. Note that

in step 3 we have z = z1; y = y1

8::15;0::7

and similarly in step 19 we have z = z2; y = y2

8::15;0::7

.

� We denote the mask in steps 1,17 by W [1℄, the mask in steps 2,18 by W [2℄, and the mask in

steps 3,19 by W [3℄.

The atta
ker, wat
hing the output stream, 
an see the sums of those bytes. For example, it 
an get

the byte x(2)

2

� y1

2

�W [1℄

2

from the output blo
k in step 1, and the bytes x

0

(2)




� z1




�W [2℄




and x(3)

2

� y1

10

�W [2℄

2

from the output blo
k from step 2. In the sums that we get from these

six steps, ea
h byte of y1; y2; z1; z2;W [1℄;W [2℄;W [3℄ appears exa
tly twi
e. The atta
ker 
an then

sum-up these bytes, to eliminate the y's, z's and W

0

s. For example, we have the following:

from step 2 we have x

0

(2)




� z1




� W [2℄




from step 3 we have x

0

(3)




� z1




� W [3℄




from step 18 we have x

0

(18)




� z2




� W [2℄




from step 19 we have x

0

(19)




� z2




� W [3℄




summing them, we get x

0

(2)




� x

0

(3)




� x

0

(18)




� x

0

(19)




Another example, relating to input bytes is as follows:

from step 1 we have x(2)

0

� y1

0

� W [1℄

0

from step 2 we have x(3)

8

� y1

0

� W [2℄

8

from step 17 we have x(18)

0

� y2

0

� W [1℄

0

from step 18 we have x(19)

8

� y2

0

� W [2℄

8

summing them, we get x(2)

0

� x(3)

8

� x(18)

0

� x(19)

8

18



The atta
ker 
olle
t ten su
h sums, one for ea
h byte in Eq. (3). We now 
laim that the distribution

over these ten bytes is signi�
antly di�erent than the uniform distribution. To see that, we show

that we 
an write these ten sums as

hu1� u2� u3� u4; F

1

(u1)� F

2

(u2) � F

1

(u3) � F

2

(u4)i (4)

where the u's are six-byte long, and F

1

; F

2

: f0; 1g

48

! f0; 1g

32

are known fun
tions. Indeed, it is

easy to 
he
k that this is exa
tly what we get when we set

u1 =




x(2)

0

; x(2)

8

; x(2)

13

; x(2)

5

; x

0

(2)

a

; x

0

(2)

b

�

u2 =




x(3)

8

; x(3)

0

; x(3)

5

; x(3)

13

; x

0

(3)

a

; x

0

(3)

b

�

u3 =




x(18)

0

; x(18)

8

; x(18)

13

; x(18)

5

; x

0

(18)

a

; x

0

(18)

b

�

u4 =




x(19)

8

; x(19)

0

; x(19)

5

; x(19)

13

; x

0

(19)

a

; x

0

(19)

b

�

and

F

1

(a)

def

=

f

1

(a

0

)

f

1

(a

1

)

f

2

(a

0

)

f

2

(a

1

)

+

g

1

(a

2

)

g

1

(a

3

)

g

2

(a

2

)

g

2

(a

3

)

+

h

1

(a

4

)

h

1

(a

5

)

h

2

(a

5

)

h

2

(a

4

)

F

2

(a)

def

=

f

1

(a

0

)

f

1

(a

1

)

f

2

(a

1

)

f

2

(a

0

)

+

g

1

(a

2

)

g

1

(a

3

)

g

2

(a

3

)

g

2

(a

2

)

+

h

1

(a

5

)

h

1

(a

4

)

h

2

(a

5

)

h

2

(a

4

)

Moreover, ea
h of the fun
tions F

i


an be written as a sum, F

i

(a) = F

1

i

(a

0;1

)+F

2

i

(a

2;3

)+F

3

i

(a

4;5

).

In our paper [1℄ we analyze distributions su
h as the one in Eq. (4). In that paper, it is shown that

for the 
ase of two fun
tions F

1

; F

2

: f0; 1g

m

! f0; 1g

m

0

, whi
h are applied to four inputs u1 : : : u4,

where ea
h of the fun
tion is a sum of three fun
tions F

j

i

: f0; 1g

m=3

! f0; 1g

m

0

, we expe
t

the statisti
al distan
e between the distribution from Eq. (4) and the uniform distribution to be

p

16=� � 2

3(m

0

�m)=2

. Plugging in the values m = 48, m

0

= 32 we get

p

16=� � 2

3�(32�48)=2

� 2

�20:5

.

(We note that the analysis in [1℄ deals with the 
ase where the fun
tions F

j

i

are random and

independent. Here, these are �xed fun
tions whi
h are very mu
h dependent. We plan to perform

some experiments to better estimate the statisti
al distan
e for the a
tual fun
tions that are used

in this atta
k.)

The atta
k. The atta
k 
an now be su

in
tly des
ribed as follows: Wat
hing the output stream,

the atta
ker 
olle
ts suÆ
iently many samples from the distribution of Eq. (4), until it 
an dis-

tinguish this distribution from random. Sin
e we have statisti
al distan
e 2

�20:5

, then we need

roughly 2

41

su
h samples.

It 
an be shown that from 256 steps of the 
ipher, the atta
ker 
an 
olle
t about 2

10

samples. To

see this, note that ea
h pair of y; z blo
ks is used 16 times before it is modi�ed, and we 
an partition

these 16 times into eight pairs (i; i+1) (with even i) and use ea
h of these pairs in pla
e of steps 2,3

above. Next, the atta
k above looks at three 
onse
utive masks,W [i�1℄;W [i℄;W [i+1℄. In S
ream-

0, we have 14 \bat
hes" of 16 steps where all three masks are the same, before we modify one of

them. We 
an 
hoose any pair of these bat
hes to 
an
el out the masksW . Namely, instead of steps

2,3,18,19 as in the example above, we 
an use any four steps of the form i; i+1; i+16j; i+16j +1,

with even i � 16 and as long as the masks W [i� 1 mod 16℄, W [i mod 16℄, W [i+1 mod 16℄ remain

the same in all these steps (whi
h means that we must have j � 14). This gives us 8�

�

14

2

�

� 2

10

samples from ea
h 
olle
tion of 16 bat
hes (or 256 steps). To get the 2

41

samples that we need, we

therefore need to see about 2

31


olle
tions, whi
h is 2

43

bytes of output.
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The atta
k works by 
olle
ting these 2

41

samples, and for ea
h one 
omputing the probability of

that value a

ording to the distribution from Eq. (4). In our paper [1℄, we show how one 
an

eÆ
iently 
ompute this distribution, by pre-
omputing some large tables that 
an be used during

the atta
k, using Walsh-Hadamard transforms. For the 
ase of S
ream-0, where ea
h fun
tion F

i

is a sum of three fun
tions, ea
h from m=3 to m

0

bits, the total time that we spend on the atta
k

is roughly m

0

� 2

m

0

per sample, and the spa
e requirement is 3 � 2

(m=3)+m

0

. In our 
ase, we have

m = 48 and m

0

= 32, so we need about 2

50

spa
e and 2

41

� 32 � 2

32

= 2

78

time.

C Constants and Test Ve
tors

The Rijndael S-box, S[0..255℄ = [

63 7
 77 7b f2 6b 6f 
5 30 01 67 2b fe d7 ab 76 
a 82 
9 7d fa 59 47 f0

ad d4 a2 af 9
 a4 72 
0 b7 fd 93 26 36 3f f7 

 34 a5 e5 f1 71 d8 31 15

04 
7 23 
3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 09 83 2
 1a 1b 6e 5a a0

52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 f
 b1 5b 6a 
b be 39 4a 4
 58 
f

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3
 9f a8 51 a3 40 8f 92 9d 38 f5

b
 b6 da 21 10 ff f3 d2 
d 0
 13 e
 5f 97 44 17 
4 a7 7e 3d 64 5d 19 73

60 81 4f d
 22 2a 90 88 46 ee b8 14 de 5e 0b db e0 32 3a 0a 49 06 24 5



2 d3 a
 62 91 95 e4 79 e7 
8 37 6d 8d d5 4e a9 6
 56 f4 ea 65 7a ae 08

ba 78 25 2e 1
 a6 b4 
6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e

61 35 57 b9 86 
1 1d 9e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 
e 55 28 df

8
 a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 ℄

The 
onstant pi (for key-setup)

pi = [24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44℄

Test ve
tors for S
ream

key = [01 23 45 67 89 ab 
d ef fe d
 ba 98 76 54 32 10℄

W0[0℄ = [
8 97 b1 b0 5e dd 3d de 8f a2 9
 f0 5b a6 45 33℄

W0[15℄ = [d6 96 54 a5 fa db 4f 
9 3d 4a f8 94 09 80 02 62℄

non
e = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00℄

X = [7e 
b 1
 84 fe 46 e6 28 e5 b0 05 37 f1 e6 82 10℄

Y = [88 e5 13 73 
4 16 ee 01 44 3f f2 fd a3 41 
6 5b℄

Z = [5e 4f a5 42 96 a3 59 35 27 f6 af ae e7 
b bf 6f℄

W[0℄ = [78 2b 67 a7 de 5e 5b 38 4a b1 a7 97 b9 08 80 1e℄

W[1℄ = [30 02 80 ba 46 da b7 0a 45 a1 
b 3f 1f 
0 4b eb℄

out[0℄ = [74 8
 59 f2 0d 76 9e a8 7a 6d 
1 87 46 e6 4a 
0℄

out[1℄ = [bd 3b 39 
d 12 18 43 0f 80 fa e0 1b 2e 60 f1 74℄

out[4℄ = [15 21 8a 46 fb ee 26 54 98 8d 2b 80 8a 87 f4 5e℄

out[16℄ = [
b 32 f4 d6 f7 
e 57 69 e2 a3 a
 d8 37 e1 37 82℄

out[1023℄ = [97 e
 87 f0 a0 6
 e7 0b 75 e6 12 25 50 1f 82 e3℄

Test ve
tors for S
ream-F

key = [01 23 45 67 89 ab 
d ef fe d
 ba 98 76 54 32 10℄

W0[0℄ = [5f 42 2f 0b 5f 54 83 a1 7b 41 7b 76 0d f9 42 1f℄

W0[15℄ = [b5 b0 d8 43 
5 ad e7 21 b
 30 f1 b2 48 92 80 71℄

non
e = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00℄

X = [20 4
 f7 71 2a e0 91 
8 4a 3b 0b 6f e
 b6 bf 0d℄
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Y = [8e 69 92 

 
a 8a 28 b8 ed bd 2f 7d d3 74 
f 3
℄

Z = [d2 22 b8 b5 61 97 eb 80 31 02 13 ae a2 b8 f9 f1℄

W[0℄ = [eb e0 fe f4 22 e0 0b 83 70 d3 69 99 0a a
 8
 3
℄

W[1℄ = [95 b5 e7 a9 e1 
5 e3 8f 0e a9 93 6d 8d b2 2f 06℄

out[0℄ = [39 e
 4a 06 45 4d 
3 
d 96 dd ef 0
 f0 
2 67 40℄

out[1℄ = [a0 ea 56 e7 e3 
8 f5 df 34 ea 35 ee 77 ed da 66℄

out[4℄ = [8a 
8 93 af 83 ed 0a 53 6b e9 f4 7
 b6 6d 21 67℄

out[16℄ = [e0 8
 fe 31 34 a7 48 
a 14 10 f9 58 50 71 49 20℄

out[1023℄ = [a4 e2 f
 be 0a 47 53 9a 23 e0 79 25 5
 be ea e7℄
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