
Cryptanalysis of stream
iphers with linear masking

Don Coppersmith Shai Halevi Charanjit Jutla

IBM T. J. Watson Resear
h Center, NY, USA

f
opper,shaih,
sjutla�watson.ibm.
omg

May 31, 2002

Abstra
t

We des
ribe a
ryptanalyti
al te
hnique for distinguishing some stream
iphers from a truly

random pro
ess. Roughly, the
iphers to whi
h this method applies
onsist of a \non-linear

pro
ess" (say, akin to a round fun
tion in blo
k
iphers), and a \linear pro
ess" su
h as an

LFSR (or even �xed tables). The output of the
ipher
an be the linear sum of both pro
esses.

To atta
k su
h
iphers, we look for any property of the \non-linear pro
ess" that
an be distin-

guished from random. In addition, we look for a linear
ombination of the linear pro
ess that

vanishes. We then
onsider the same linear
ombination applied to the
ipher's output, and try

to �nd tra
es of the distinguishing property.

In this report we analyze two spe
i�
 \distinguishing properties". One is a linear approxima-

tion of the non-linear pro
ess, whi
h we demonstrate on the stream
ipher SNOW. This atta
k

needs roughly 2

95

words of output, with work-load of about 2

100

. The other is a \low-di�usion"

atta
k, that we apply to the
ipher S
ream-0. The latter atta
k needs only about 2

43

bytes of

output, using roughly 2

50

spa
e and 2

80

time.

Key words: Hypothesis testing, Linear
ryptanalysis, Linear masking, Low-Di�usion atta
ks,

Stream
iphers.

1 Introdu
tion

A stream
ipher (or pseudorandom generator) is an algorithm that takes a short random string, and

expands it into a mu
h longer string, that still \looks random" to adversaries with limited resour
es.

The short input string is
alled the seed (or key) of the
ipher, and the long output string is
alled

the output stream (or key-stream). Although one
ould get a pseudorandom generator simply by

iterating a blo
k
ipher (say, in
ounter mode), it is believed that one
ould get higher speeds by

using a \spe
ial purpose" stream
ipher.

One approa
h for designing su
h fast
iphers, is to use some \non-linear pro
ess" that may

resemble blo
k
ipher design, and to hide this pro
ess using linear masking. A plausible rationale

behind this design, is that the non-linear pro
ess behaves roughly like a blo
k
ipher, so we expe
t

its state at two \far away" points in time to be essentially un
orrelated. For
lose points, on the

other hand, it
an be argued they are masked by independent parts of the linear pro
ess, and so

again they should not be
orrelated.

Some examples of
iphers that use this approa
h in
lude SEAL [18℄ and S
ream [11℄, where the

non-linear pro
ess is very mu
h like a blo
k
ipher, and the output from ea
h step is obtained by

adding together the
urrent state of the non-linear pro
ess and some entries from �xed (or slowly

1

modi�ed) se
ret tables. Other examples are PANAMA [3℄ and MUGI [21℄, where the linear pro
ess

(
alled bu�er) is an LFSR (Linear Feedba
k Shift Register), whi
h is used as input to the non-linear

pro
ess, rather than to hide the output. Yet another example is SNOW [4℄, where the linear LFSR

is used both as input to the non-linear �nite state ma
hine, and also to hide its output.

In this work we des
ribe a te
hnique that
an be used to distinguish su
h
iphers from ran-

dom. The basi
 idea is very simple. We �rst
on
entrate on the non-linear pro
ess, looking for a

hara
teristi
 that
an be distinguished from random. For example, a linear approximation that

has noti
eable bias. We then look at the linear pro
ess, and �nd some linear
ombination of it

that vanishes. If we now take the same linear
ombination of the output stream, then the linear

pro
ess would vanish, and we are left with a sum of linear approximations, whi
h is itself a linear

approximation. As we show below, this te
hnique is not limited to linear approximations. In some

sense, it
an be used with \any distinguishing
hara
teristi
" of the non-linear pro
ess. In this

report we analyze in details two types of \distinguishing
hara
teristi
s", and show some examples

of its use for spe
i�

iphers.

Perhaps the most obvious use of this te
hnique, is to devise linear atta
ks (and indeed, many

su
h atta
ks are known in the literature). This is also the easiest
ase to analyze. In Se
tion 4

we
hara
terize the statisti
al distan
e between the
ipher and random as a fun
tion of the bias of

the original approximation of the non-linear pro
ess, and the weight distribution of a linear
ode

related to the linear pro
ess of the
ipher.

Another type of atta
ks uses the low di�usion in the non-linear pro
ess. Namely, some in-

put/output bits of this pro
ess depend only on very few other input/output bits. For this type

of atta
ks, we again analyze the statisti
al distan
e, as a fun
tion of the number of bits in the

low-di�usion
hara
teristi
. This analysis is harder than for the linear atta
ks. Indeed, here we do

not have a
omplete
hara
terization of the possible atta
ks of this sort, but only an analysis for

the most basi
 su
h atta
k.

We demonstrate the usefulness of our te
hnique by analyzing two spe
i�

iphers. One is the

ipher SNOW [4℄, for whi
h we demonstrate a linear atta
k, and the other is the variant S
ream-0

of the stream
ipher S
ream [11℄, for whi
h we demonstrate a low-di�usion atta
k.

1.1 Relation to prior work

Linear analyses of various types are the most
ommon tool for
ryptanalyzing stream
iphers. Mu
h

work was done on LFSR-based
iphers, trying to dis
over the state of the LFSRs using
orrelation

atta
ks (starting from Meier and Sta�elba
h [17℄, see also, e.g., [14, 13℄). Goli�
 [8, 9℄ devised

linear models (quite similar to our model of linear atta
ks) that
an be applied in prin
iple to any

stream
ipher. He then used them to analyze many types of
iphers (in
luding, for example, a

linear distinguisher for RC4 [10℄). Some examples of linear distinguishers for LFSR based
iphers,

very similar to our analysis of SNOW, are [1, 5℄, among others. Few works used also di�erent

ryptanalyti
al tools. Among them are the distinguishers for SEAL [12, 6℄ and for RC4 [7℄.

The main
ontribution of the
urrent work is in presenting a simple framework for distinguishing

atta
ks. This framework
an be applied to many
iphers, and for those
iphers it in
orporates linear

analysis as a spe
ial
ase, but
an be used to devise many other atta
ks, su
h as our \low-di�usion

atta
ks". (Also, the atta
ks on SEAL due to [12℄ and [6℄
an be viewed as spe
ial
ases of this

framework.) For linear atta
ks, we believe that our expli
it
hara
terization of the statisti
al

distan
e (Theorem 6) is new and useful. In addition to the
ryptanalyti
al te
hnique, the expli
it

formulation of atta
ks on stream
iphers, as done in Se
tion 3, is a further
ontribution of this

work.

2

Organization. In Se
tion 2 we brie
y review some ba
kground material on statisti
al distan
e

and hypothesis testing. In Se
tion 3 we formally de�ne the framework in whi
h our te
hniques

apply. In Se
tion 4 we des
ribe how these te
hniques apply to linear atta
ks, and in Se
tion 5 we

show how they apply to low-di�usion atta
ks.

2 Elements of statisti
al hypothesis testing

If D is a distribution over some �nite domain X and x is an element of X, then by D(x) we denote

probability mass of x a

ording to D. For notational
onvenien
e, we sometimes denote the same

probability mass by Pr

D

[x℄. Similarly, if S � X then D(S) = Pr

D

[S℄ =

P

x2S

D(x).

De�nition 1 (Statisti
al distan
e) Let D

1

;D

2

be two distributions over some �nite domain X.

The statisti
al distan
e between D

1

;D

2

, is de�ned as

jD

1

�D

2

j

def

=

X

x2X

jD

1

(x)�D

2

(x)j = 2 �max

S�X

D

1

(S)�D

2

(S)

(We note that the statisti
al distan
e is always between 0 and 2.) In our analysis, we often view

the statisti
al distan
e jD

1

�D

2

j as (a s
aling of) the expe
ted value of jD

1

(x) �D

2

(x)j, where x

is
hosen a

ording to the uniform distribution. Namely, we
an write

jD

1

�D

2

j = jXj �

X

x

1

jXj

� jD

1

(x)�D

2

(x)j = jXj � E

x

[jD

1

(x)�D

2

(x)j ℄

Below are two useful fa
ts about this measure:

� Denote by D

N

the distribution whi
h is obtained by pi
king independentlyN elements x

1

; :::; x

n

2

X a

ording to D. If jD

1

�D

2

j = �, then to get jD

N

1

�D

N

2

j = 1, the number N needs to be between

(1=�) and O(1=�

2

). (A proof
an be found, for example, in [20, Lemma 3.1.15℄.) In this work

we sometimes make the heuristi
 assumption that the distributions that we
onsider are \smooth

enough", so that we really need to set N � 1=�

2

.

� If D

1

; :::;D

N

are distributions over n-bit strings, we denote by

P

D

i

the distribution over the

sum (ex
lusive-or),

P

N

i=1

x

i

, where ea
h x

i

is
hosen a

ording to D

i

, independently of all the

other x

j

's. Denote by U the uniform distribution over f0; 1g

n

. If for all i, jU � D

i

j = �

i

, then

jU �

P

D

i

j �

Q

i

�

i

. (We in
lude a proof of this simple \xor lemma" in Se
tion 2.1 below.) In the

analysis in this paper, we sometimes assume that the distributions D

i

are \smooth enough", so

that we
an use the approximation jU �

P

D

i

j �

Q

i

�

i

.

Hypothesis testing. We provide a brief overview of (binary) hypothesis testing. This material

is
overed in many statisti
s and engineering textbooks (e.g., [16, Ch.5℄). In a binary hypothesis

testing problem, there are two distributions D

1

;D

2

, de�ned over the same domain X. We are given

an element x 2 X, whi
h was drawn a

ording to either D

1

or D

2

, and we need to guess whi
h is

the
ase. A de
ision rule for su
h hypothesis testing problem is a fun
tion DR : X ! f1; 2g, that

tells us what should be our guess for ea
h element x 2 X. Perhaps the simplest notion of su

ess

for a de
ision rule DR, is the statisti
al advantage that it gives (over a random
oin-toss), in the

ase that the distributions D

1

;D

2

are equally likely a-priori. Namely,

adv(DR) =

1

2

�

Pr

D

1

[DR(x) = 1℄ + Pr

D

2

[DR(x) = 2℄

�

�

1

2

3

Proposition 2 For any hypothesis-testing problem hD

1

;D

2

i, the de
ision rule with the largest ad-

vantage is the maximum-likelihood rule,

ML(x) =

(

1 if D

1

(x) > D

2

(x)

2 otherwise

The advantage of the ML de
ision rule equals a quarter of the statisti
al distan
e, adv(ML) =

1

4

jD

1

�D

2

j.

2.1 Proof of the xor-lemma for statisti
al distan
e

Lemma 3 Let D

1

;D

2

be two distributions over f0; 1g

k

, let D

3

= D

1

+ D

2

, and denote by U the

uniform distribution over f0; 1g

k

, and �

i

= jU � D

i

j. Then �

3

� �

1

�

2

.

Proof: For ea
h r; s 2 f0; 1g

k

, denote e

r

= D

1

(r) � 2

�k

and f

s

= D

2

(s) � 2

�k

. By de�nition of

statisti
al distan
e, we have �

1

= jU �D

1

j =

P

r

je

r

j and similarly �

2

=

P

s

jf

s

j. For ea
h t 2 f0; 1g

k

,

we then have

D

3

(t) =

X

r+s=t

(2

�k

+ e

r

)(2

�k

+ f

s

)

= 2

k

� 2

�2k

+

X

r+s=t

2

�k

(e

r

+ f

s

) +

X

r+s=t

e

r

f

s

= 2

�k

+

X

r+s=t

e

r

f

s

(where the last equality holds sin
e

P

r

e

r

=

P

s

f

s

= 0). Therefore we have

jU � D

3

j =

X

t

�

�

�

D

3

(t)� 2

�k

�

�

�

=

X

t

�

�

�

�

�

X

r+s=t

e

r

f

s

�

�

�

�

�

�

X

t

X

r+s=t

je

r

f

s

j =

X

r;s

je

r

f

s

j =

X

r

je

r

j

!

X

s

jf

s

j

!

= �

1

�

2

Corollary 4 If D

i

; i = 1:::N are distributions with jU � D

i

j = �

i

, then jU �

P

i

D

i

j �

Q

i

�

i

.

3 Formal framework

We
onsider
iphers that are built around two repeating fun
tions (pro
esses). One is a non-linear

fun
tion NF (x) and the other is a linear fun
tion LF (w). The non-linear fun
tion NF is usually

a permutation on n-bit blo
ks (typi
ally, n � 100). The linear fun
tion LF is either an LFSR, or

just �xed tables of size between a few hundred and a few thousand bits. The state of su
h a
ipher

onsists of the \non-linear state" x and the \linear state" w. In ea
h step, we apply the fun
tion

NF to x and the fun
tion LF to w, and we may also \mix" these states by xor-ing some bits of

w into x and vi
e versa. The output of the
urrent state is also
omputed as an xor of bits from

x and w. To simplify the presentation of this report, we
on
entrate on a spe
ial
ase, similar to

S
ream.

1

A pi
torial de
ription of this
ase is shown in Figure 1. In ea
h step i we do the following:

1. Set w

i

:= LF (w

i�1

)

2. Set y

i

:= L1(w

i

); z

i

= L2(w

i

) // L1; L2 are some linear fun
tions

3. Set x

i

:= NF (x

i�1

+ y

i

) + z

i

// `+' denotes ex
lusive-or

4. Output x

i

1

We show how our te
hniques
an handle other variants when we des
ribe the atta
k on SNOW, but we do not

attempt to
hara
terize all the variants where su
h te
hniques apply.

4

'

&

$

%

nonlinear

fun
tion

'

&

$

%

nonlinear

fun
tion

'

&

$

%

nonlinear

fun
tion

j j jj j j

linear pro
ess

y1 y2 z2 y3 z3z1

Figure 1: A style of
ipher to whi
h our te
hniques apply

3.1 The linear pro
ess

The only property of the linear pro
ess that we
are about, is that the string y

1

z

1

y

2

z

2

: : :
an be

modeled as a random element in some known linear subspa
e of f0; 1g

?

. Perhaps the most popular

linear pro
ess is to view the \linear state" w as the
ontents of an LFSR. The linear modi�
ation

fun
tion LF
lo
ks the LFSR some �xed number of times (e.g., 32 times), and the fun
tions L1; L2

just pi
k some bits from the LFSR. If we denote the LFSR polynomial by p, then the relevant linear

subspa
e is the subspa
e orthogonal to p � Z

2

[x℄.

A di�erent approa
h is taken in S
ream. There, the \linear state" resides in some tables, that

are \almost �xed". In parti
ular, in S
ream, ea
h entry in these tables is used 16 times before it is

modi�ed (via the non-linear fun
tion NF). For our purposes, we model this s
heme by assuming

that whenever an entry is modi�ed, it is a
tually being repla
ed by a new random value. The

masking s
heme in S
ream
an be thought of as a \two-dimensional" s
heme, where there are two

tables, whi
h are used in lexi
ographi
al order.

2

Namely, we have a \row table" R[�℄ and a \
olumn

table" C[�℄, ea
h with 16 entries of 2n-bit string. The steps of the
ipher are partitioned into bat
hes

of 256 steps ea
h. At the beginning of a bat
h, all the entries in the tables are \
hosen at random".

Then, in step i = j + 16k in a bat
h, we set (y

i

jz

i

) := R[j℄ + C[k℄.

3.2 Atta
ks on stream
iphers

We
onsider an atta
ker that just wat
hes the output stream and tries to distinguish it from a truly

random stream. The relevant parameters in an atta
k are the amount of text that the atta
ker must

see before it
an reliably distinguish the
ipher from random, and the time and spa
e
omplexity

of the distinguishing pro
edure. The atta
ks that we analyze in this report exploit the fa
t that

for a (small) subset of the bits of x and NF (x), the joint distribution of these bits di�ers from

the uniform distribution by some noti
eable amount. Intuitively, su
h atta
ks never try to exploit

orrelations between \far away" points in time. The only
orrelations that are
onsidered, are the

ones between the input and output of a single appli
ation of the non-linear fun
tion.

3

Formally, we view the non-linear pro
ess not as one
ontinuous pro
ess, but rather as a sequen
e

of un
orrelated steps. That is, for the purpose of the atta
k, one
an view the non-linear state x at

the beginning of ea
h step as a new random value, independent of anything else. Under this view,

2

The s
heme in S
ream is a
tually slightly di�erent than the one des
ribed here, but this di�eren
e does not e�e
t

the analysis in any signi�
ant way.

3

When only a part of x is used as output, we may be for
ed to look at a few
onse
utive appli
ations of NF . This

is the
ase in SNOW, for example.

5

the atta
ker sees a
olle
tion of pairs hx

j

+ y

j

; NF (x

j

) + z

j

i, where the x

j

's are
hosen uniformly

at random and independently of ea
h other, and the y

j

; z

j

's are taken from the linear pro
ess.

One example of atta
ks that �ts in this model are linear atta
ks. In linear
ryptanalysis, the

atta
ker exploits the fa
t that a one-bit linear
ombination of hx;NF (x)i is more likely to be

zero than one (or vi
e versa). In these atta
k, it is always assumed that the bias in one step is

independent of the bias in all the other steps. Somewhat surprisingly, di�erential
ryptanalysis too

�ts into this framework (under our atta
k model). Sin
e the atta
ker in our model is not given

hosen-input
apabilities, it exploits di�erential properties of the round fun
tion by waiting for the

di�eren
e x

i

+x

j

= � to happen \by
han
e", and then using the fa
t that NF (x

i

)+NF (x

j

) = �

0

is more likely than you would expe
t from a random pro
ess. It is
lear that this atta
k too is just

as e�e
tive against pairs of un
orrelated steps, as when given the output from the real
ipher.

We are now ready to de�ne formally what we mean by \an atta
k on the
ipher". The atta
ks

that we
onsider, observe some (linear
ombinations of) input and output bits from ea
h step of the

ipher, and try to de
ide if these indeed
ome from the
ipher, or from a random sour
e. This
an

be framed as a hypothesis testing problem. A

ording to one hypothesis (Random), the observed

bits in ea
h step are random and independent. A

ording to the other (Cipher), they are generated

by the
ipher.

De�nition 5 (Atta
ks on stream
iphers with linear masking) An atta
k is spe
i�ed by a

linear fun
tion `, and by a de
ision rule for the following hypothesis-testing problem: The two

distributions that we want to distinguish are

Cipher. The Cipher distribution is D

= h` (x

j

+ y

j

; NF (x

j

) + z

j

)i

j=1;2;:::

, where the y

j

z

j

's are

hosen at random from the appropriate linear subspa
e (de�ned by the linear pro
ess of the

ipher), and the x

j

's are random and independent.

Random. Using the same notations, the \random pro
ess" distribution is D

r

def

=

D

`(x

j

; x

0

j

)

E

j=1;2;:::

,

where the x

j

's and x

0

j

's are random and independent.

We
all the fun
tion `, the distinguishing
hara
teristi
 used by atta
k.

The amount of text needed for the atta
k is the smallest number of steps for whi
h the de
ision

rule has a
onstant advantage (e.g., advantage of 1/4) in distinguishing the
ipher from random.

Other relevant parameters of the atta
k are the time and spa
e
omplexity of the de
ision rule.

An obvious lower bound on the amount of text is provided by the statisti
al distan
e between the

Cipher and Random distributions after N steps.

4 Linear atta
ks

A linear atta
k [15℄ exploits the fa
t that some linear
ombination of the input and output bits

of the non-linear fun
tion is more likely to be zero than one (or vi
e versa). Namely, we have a

(non-trivial) linear fun
tion ` : f0; 1g

2n

! f0; 1g, su
h that for a randomly sele
ted n bit string x,

Pr[`(x;NF (x)) = 0℄ = (1+ �)=2. The fun
tion ` is
alled a linear approximation (or
hara
teristi
)

of the non-linear fun
tion, and the quantity � is
alled the bias of the approximation.

When trying to exploit one su
h linear approximation, the atta
ker observes for ea
h step j

of the
ipher, a bit �

j

= `(x

j

+ y

j

; NF (x

j

) + z

j

). Note that �

j

by itself is likely to be unbiased,

but the �'s are
orrelated. In parti
ular, sin
e the y; z's
ome from a linear subspa
e, it is possible

6

to �nd some linear
ombination of steps for whi
h they vanish. Let J be a set of steps su
h that

P

j2J

y

j

=

P

j2J

z

j

= 0. Then we have

X

j2J

�

j

=

X

j2J

`(x

j

; NF (x

j

)) +

X

j2J

`(y

j

; z

j

) =

X

j2J

`(x

j

; NF (x

j

))

(where the equalities follow sin
e ` is linear). Therefore, the bit �

J

=

P

j2J

�

j

has bias of �

jJj

. If

the atta
ker
an observe \suÆ
iently many" su
h sets J , it
an reliably distinguish the
ipher from

random.

This se
tion is organized as follows: We �rst bound the e�e
tiveness of linear atta
ks in terms

of the bias � and the weight distribution of some linear subspa
e. As we explain below, this

bound suggests that looking at sets of steps as above is essentially \the only way to exploit linear

orrelations". Then we show how to devise a linear atta
k on SNOW, and analyze its e�e
tiveness.

4.1 The statisti
al distan
e

Re
all that we model an atta
k in whi
h the atta
ker observes a single bit per step, namely �

j

=

`(x

j

+ y

j

; NF (x

j

) + z

j

). Below we denote �

j

= `(x

j

; NF (x

j

)) and �

j

= `(y

j

; z

j

). We
an re-write

the Cipher and Random distributions as

Cipher. D

def

= h�

j

+ �

j

i

j=1;2;:::

, where the �

j

's are independent but biased, Pr[�

j

= 0℄ = (1 + �)=2,

and the string �

1

�

2

: : : is
hosen at random from the appropriate linear subspa
e (i.e., the

image under ` of the linear subspa
e of the y

j

z

j

's).

Random. D

r

def

= h�

j

i

j=1;2;:::

, where the �

j

's are independent and unbiased.

Below we analyze the statisti
al distan
e between the Cipher and Random distributions, after ob-

serving N bits �

1

: : : �

N

. Denote the linear subspa
e of the �'s by L � f0; 1g

N

, and let L

?

� f0; 1g

N

be the orthogonal subspa
e. The weight distribution of the spa
e L

?

plays an important role in

our analysis. For r 2 f0; 1; : : : ; Ng, let A

N

(r) be the set of strings ~� 2 L

?

of Hamming weight r,

and let A

N

(r) denote the
ardinality of A

N

(r). We prove the following theorem:

Theorem 6 The statisti
al distan
e between the Cipher and Random distributions from above, is

bounded by

q

P

N

r=1

A

N

(r)�

2r

.

Proof: Re
all that the statisti
al distan
e jCipher�Randomj (for N observed bits)
an be expressed

in terms of the expe
ted value of jPr

Cipher

[~�℄� Pr

Random

[~�℄j, where ~� is
hosen uniformly at random

from f0; 1g

N

. Fix a string ~� 2 f0; 1g

N

, and we want to analyze the probability Pr

Cipher

[~�℄. That

probability is

Pr

Cipher

[~�℄ =

X

~�2L

1

jLj

�

N

Y

j=1

�

1

2

+

�

2

� sign(�

i

+ �

i

)

�

where the sign indi
ator is taken to be (+1) if �

i

= �

i

, and (�1) otherwise. In other words,

sign(x)

def

= (�1)

x

. We
an break the expression above into a power series in �. In this power series,

the
onstant term is 2

�N

, and the series looks as follows Pr

Cipher

[~�℄ = 2

�N

�

1 +

P

N

r=1

�

r

oef

r

�

,

where the
oeÆ
ients
oef

r

are de�ned as

oef

r

def

=

X

~�2L

1

jLj

�

X

fj

1

:::j

r

g

r

Y

t=1

sign(�

j

t

+ �

j

t

) =

X

fj

1

:::j

r

g

1

jLj

�

X

~�2L

sign

r

X

t=1

�

j

t

+ �

j

t

!

7

The summation over fj

1

:::j

r

g in the expression above ranges over all ordered sets of
ardinality r

in [1; N ℄ (i.e., 1 � j

1

< j

2

� � � < j

r

� N .) Consider one su
h r-set J = fj

1

:::j

r

g, and we analyze its

ontribution to the total sum. Let �(J) be the
hara
teristi
 ve
tor of this set. That is, �(J) is an

N -bit string, whi
h is 1 in bit positions fj

1

:::j

r

g, and 0 everywhere else.

Proposition 7 Let J = fj

1

:::j

r

g be a set of
ardinality r. If �(J) =2 L

?

, then the total
ontribution

to
oef

r

due to the set J is zero. If �(J) 2 L

?

then the total
ontribution to
oef

r

due to the set J

is sign

�

P

j2J

�

j

�

.

Proof: If ~� = �(J) is not in L

?

, then for exa
tly half of the strings ~� 2 L it holds that

P

j2J

�

j

=

h~�; ~�i = 0. Thus, for exa
tly half of the strings ~� 2 L we have sign (

P

r

t=1

�

j

t

+ �

j

t

) = +1, and for

the other half we have sign (

P

r

t=1

�

j

t

+ �

j

t

) = �1, so

P

~�2L

sign (

P

r

t=1

�

j

t

+ �

j

t

) = 0. If �(J) 2 L

?

,

then for all ~� 2 L we have

P

r

t=1

�

j

t

= 0, and therefore sign (

P

r

t=1

�

j

t

+ �

j

t

) = sign (

P

r

t=1

�

j

t

). Thus,

we get

1

jLj

�

P

~�2L

sign (

P

r

t=1

�

j

t

+ �

j

t

) = sign (

P

r

t=1

�

j

t

). 2

We now view the terms in the power series above as random variables. For any set J with

�(J) 2 L

?

, denote �

J

(~�)

def

= sign

�

P

j2J

�

j

�

, and we view the �

J

'es as random variables, whi
h

are de�ned over the
hoi
e of ~� uniformly at random in f0; 1g

N

. Then, we de�ne the normalized

probability di�eren
e

�(~�)

def

= 2

N

�

�

Pr

Cipher

[~�℄� Pr

Random

[~�℄

�

=

N

X

r=1

�

r

X

�(J)2A

N

(r)

�

J

(~�)

Again, we stress that we view �(~�) as a random variable over the uniform
hoi
e of ~� 2 f0; 1g

N

.

It is easy to see that for any non-empty J , we have E[�

J

℄ = 0 and VAR[�

J

℄ = 1. Also, if J

1

6= J

2

,

then �

J

1

; �

J

2

are independent. Therefore, the variable � has zero mean, and its varian
e equals

the weighted sum of the �

J

varian
es. Namely, VAR[�℄ =

P

N

r=1

A

N

(r)�

2r

. We
an now write the

statisti
al distan
e between the Cipher and Random distributions as

jCipher � Randomj =

X

~�

�

�

�

�

Pr

Cipher

[~�℄� Pr

Random

[~�℄

�

�

�

�

=

X

~�

2

�N

j�(~�)j = E

~�

[j�j℄

By the
onvexity of the squaring fun
tion, E[j�j℄ �

p

VAR[�℄, and therefore

jCipher � Randomj = E

~�

[j�j℄ �

q

VAR[�℄ =

v

u

u

t

N

X

r=1

A

N

(r)�

2r

(1)

2

Remark. Heuristi
ally, this bound is nearly tight. In the proof we analyzed the random variable

� and used the bound E[j��E[�℄j℄ �

p

VAR[�℄. One
an argue heuristi
ally that as long as the

statisti
al distan
e is suÆ
iently small, \� should behave mu
h like a Gaussian random variable".

If it were a Gaussian, we would have E[j�j℄ =

p

VAR[�℄ �

p

2=�. Thus, we expe
t the bound from

Theorem 6 to be tight up to a
onstant fa
tor

p

2=� � 0:8.

4.2 Interpretations of Theorem 6

There are a few ways to view Theorem 6. The obvious way is to use it in order to argue that a

ertain
ipher is resilient to linear atta
ks. For example, in [11℄ we use Theorem 6 to dedu
e a

lower-bound on the amount of text needed for any linear atta
k on S
ream-0.

8

Also, one
ould noti
e that the form of Theorem 6 exa
tly mat
hes the
ommon pra
ti
e (and

intuition) of devising linear atta
ks. Namely, we always look at sets where the linear pro
ess van-

ishes, and view ea
h su
h set J as providing \statisti
al eviden
e of weight �

2jJj

" for distinguishing

the
ipher from random. Linear atta
ks work by
olle
ting enough of these sets, until the weights

sum up of to one. One
an therefore view Theorem 6 as asserting that this is indeed the best you

an do.

Finally, we
ould think of devising linear atta
ks, using the heuristi
 argument about this bound

being tight. However, the way Theorem 6 is stated above, it usually does not imply eÆ
ient atta
ks.

For example, when the linear spa
e L has relatively small dimension (as is usually the
ase with

LFSR-based
iphers, where the dimension of L is at most a few hundreds), the statisti
al distan
e

is likely to approa
h one for relatively small N . But it is likely that most of the \mass" in the power

series in Eq. (1)
omes from terms with a large power of � (and therefore very small \weight").

Therefore, if we want to use a small N , we would need to
olle
t very many samples, and this

atta
k is likely to be more expensive than an exhaustive sear
h for the key.

Alternatively, one
an try and use an eÆ
ient sub-optimal de
ision rule. For a given bound

on the work-load W and the amount of text N , we only
onsider the �rst few terms in the power

series. That is, we observe the N bits ~� = �

1

: : : �

N

, but only
onsider the W smallest sets J for

whi
h ~�(J) 2 L

?

. For ea
h su
h set J , the sum of steps

P

j2J

�

j

has bias �

jJj

, and these
an be

used to distinguish the
ipher from random. If we take all the sets of size at most R, we expe
t

the advantage of su
h a de
ision rule to be roughly

1

4

q

P

R

r=1

A

N

(r)�

2r

. The simplest form of this

atta
k (whi
h is almost always the most useful), is to
onsider only the minimum-weight terms. If

the minimum-weight of L

?

is r

0

, then we need to make N big enough so that

1

4

p

A

N

(r

0

) = �

�r

0

.

4.3 The atta
k on SNOW

The stream
ipher SNOW was submitted to NESSIE in 2000, by Ekdahl and Johansson. A detailed

des
ription of SNOW is available from [4℄. Here we outline a linear atta
k on SNOW along the

lines above, that
an reliably distinguish it from random after observing roughly 2

95

steps of the

ipher, with work-load of roughly 2

100

.

SNOW
onsists of a non-linear pro
ess (
alled there a Finite-State Ma
hine, or FSM), and a

linear pro
ess whi
h is implemented by an LFSR. The LFSR of SNOW
onsists of sixteen 32-bit

words, and the LFSR polynomial, de�ned over GF (2

32

), is p(z) = z

16

+ z

13

+ z

7

+ �, where � is

a primitive element of GF (2

32

). (The orthogonal subspa
e L

?

is therefore the spa
e of (bitwise

reversal of) polynomials over Z

2

of degree � N , whi
h are divisible by the LFSR polynomial p.)

At a given step j, we denote the
ontent of the LFSR by L

j

[0::15℄, so we have L

j+1

[i℄ = L

j

[i� 1℄

for i > 0 and L

j+1

[0℄ = � � (L

j

[15℄ + L

j

[12℄ + L

j

[6℄).

The \FSM state" of SNOW in step j
onsists of only two 32-bit words, denoted R1

j

; R2

j

. The

FSM update fun
tion modi�es these two values, using one word from the LFSR, and also outputs

one word. The output word is then added to another word from the LFSR, to form the step output.

We denote the \input word" from the LFSR to the FSM update fun
tion by f

j

, and the \output

word" from the FSM by F

j

. The FSM uses a \32 � 32 S-box" S[�℄ (whi
h is built internally as an

SP-network, from four identi
al 8�8 boxes and some bit permutation). A
omplete step of SNOW

is des
ribed in Figure 2. In this �gure, we deviate from the notations in the rest of the paper, and

denote ex
lusive-or by � and integer addition mod 2

32

by +. We also denote 32-bit
y
li
 rotation

to the left by �<.

To devise an atta
k we need to �nd a good linear approximation of the non-linear FSM pro
ess,

and low-weight
ombinations of steps where the L

j

[�℄ values vanish (i.e., low-weight polynomials

9

1. f

j

:= L

j

[0℄

2. F

j

:= (f

j

+R1

j

)�R2

j

3. output F

j

� L

j

[15℄

4. R1

j+1

:= R1

j

� ((R2

j

+ F

j

)�< 7)

5. R2

j+1

:= S[R1

j

℄

6. update the LFSR

Figure 2: One step of SNOW: � is xor and + is addition mod 2

32

.

whi
h are divisible by the LFSR polynomial p). The best linear approximation that we found for the

FSM pro
ess, uses six bits from two
onse
utive inputs and outputs, f

j

; f

j+1

; F

j

; F

j+1

. Spe
i�
ally,

for ea
h step j, the bit

�

j

def

= (f

j

)

15

+ (f

j

)

16

+ (f

j+1

)

22

+ (f

j+1

)

23

+ (F

j

)

15

+ (F

j+1

)

23

is biased. (Of these six bits, the bits (f

j

)

15

; (F

j

)

15

and (F

j+1

)

22

are meant to approximate
arry

bits.) We measured the bias experimentally, and it appears to be at least 2

�8:3

.

At �rst glan
e, one may hope to �nd weight-4 polynomials that are divisible by the LFSR

polynomial p. After all, p itself has only four non-zero terms. Unfortunately, one of these terms is

the element � 2 GF (2

32

), whereas we need a low-weight polynomial with 0-1
oeÆ
ients. What

we
an show, however, is the existen
e of 0-1 polynomials of weight-six that are divisible by p.

Proposition 8 The polynomial q(z) = z

16�2

32

�7

+ z

13�2

32

�7

+ z

7�2

32

�7

+ z

9

+ z

6

+ 1 is divisible

by the LFSR polynomial p(z) = z

16

+ z

13

+ z

7

+ �.

Proof: Sin
e � 2 GF (2

32

), then the polynomial t+� divides t

2

32

+t. That is, there is a polynomial

r(�) (with
oeÆ
ients in GF (2

32

)) su
h that r(t) � (t + �) = t

2

32

+ t, as formal polynomials over

GF (2

32

). It follows that for any polynomial t(z) over GF (2

32

), we have r(t(z)) � (t(z) + �) =

t(z)

2

32

+t(z), again, as formal polynomials over GF (2

32

). Spe
i�
ally, if we take t(z) = z

16

+z

13

+z

7

,

we get

r(t(z)) � (z

16

+ z

13

+ z

7

+ �) = z

16�2

32

+ z

13�2

32

+ z

7�2

32

+ z

16

+ z

13

+ z

7

so the polynomial on the right hand side is divisible by p(z). Sin
e p(z) is
o-prime with the

polynomial z, we
an divide the right-hand-side polynomial by z

7

and still get a polynomial divisible

by p(z). 2

Corollary 9 For all m;n, the polynomial

q

m;n

(z)

def

= q(z)

2

m

� z

n

= z

16�2

32+m

�7�2

m

+n

+ z

13�2

32+m

�7�2

m

+n

+ z

7�2

32+m

�7�2

m

+n

+ z

9�2

m

+n

+ z

6�2

m

+n

+ z

n

is divisible by p(z).

If we take, say, m = 0; 1; : : : 58 and n = 0; 1; : : : 2

94

, we get about 2

100

di�erent 0-1 polynomials,

all with weight 6 and degree less than N = 2

95

, and all divisible by p(z). Ea
h su
h polynomial

yields a sequen
e of six steps, J

m;n

, su
h that the sum of the L

j

[�℄ values in these steps vanishes.

Spe
i�
ally, the polynomial q

m;n

(z)
orresponds to the sequen
e of steps

J

m;n

= f N � n� 16 � 2

32+m

+ 7 � 2

m

; N � n� 9 � 2

m

;

N � n� 13 � 2

32+m

+ 7 � 2

m

; N � n� 6 � 2

m

;

N � n� 7 � 2

32+m

+ 7 � 2

m

; N � n g

10

with the property that for all m;n,

P

j2J

m;n

L

j

[0::15℄ =

P

j2J

m;n

L

j+1

[0::15℄ = [0; 0; : : : ; 0℄.

Therefore, if we denote the output word of SNOW at step j by S

j

, then for all m;n we have,

�

m;n

def

=

X

j2J

m;n

(S

j

)

15

+ (S

j+1

)

23

=

X

j2J

m;n

�

j

and therefore ea
h �

m;n

has bias of 2

�8:3�6

= 2

�49:8

. Sin
e we have roughly 2

100

of them, we
an

reliably distinguish them from random.

5 Low-di�usion atta
ks

In low-di�usion atta
ks, the atta
ker looks for a small set of (linear
ombinations of) input and

output bits of the non-linear fun
tion NF , whose values
ompletely determine the values of some

other (linear
ombinations of) input and output bits. The atta
ker tries to guess the �rst set of

bits,
omputes the values of the other bits, and uses the
omputed value to verify the guess against

the
ipher's output. The
omplexity of su
h atta
ks is exponential in the number of bits that the

atta
ker needs to guess.

We introdu
e some notations in order to put su
h atta
ks in the
ontext of our framework. To

simplify the notations, we assume that the guessed bits are always input bits, and the determined

bits are always output bits. (Eliminating this assumption is usually quite straightforward.) As

usual, let NF : f0; 1g

n

! f0; 1g

n

be the non-linear fun
tion. The atta
k exploits the fa
t that

some input bits `

in

(x) are related to some output bits `

out

(NF (x)) via a known deterministi

fun
tion f . That is, we have

`

out

(NF (x)) = f(`

in

(x))

Here, `

in

; `

out

are linear fun
tions, and f is an arbitrary fun
tion, all known to the atta
ker. We

denote the output size of `

in

; `

out

by m;m

0

, respe
tively. That is, `

in

: f0; 1g

n

! f0; 1g

m

, `

out

:

f0; 1g

n

! f0; 1g

m

0

, and f : f0; 1g

m

! f0; 1g

m

0

.

In ea
h step j, the atta
ker observes the bits `

in

(x

j

+ y

j

) and `

out

(NF (x

j

) + z

j

) (where y

j

; z

j

are from the linear pro
ess, as in Se
tion 3.1). Below we denote u

j

= `

in

(x

j

), u

0

j

= `

out

(NF (x

j

)),

v

j

= `

in

(y

j

), v

0

j

= `

out

(z

j

), and w

j

= u

j

+ v

j

, w

0

j

= u

0

j

+ v

0

j

. We
an re-write the Cipher and Random

distributions for this
ase as

Cipher. D

def

=

D

(w

j

= u

j

+ v

j

; w

0

j

= u

0

j

+ v

0

j

)

E

j=1;2;:::

, where the u

j

's are uniform and independent,

u

0

j

= f(u

j

), and the string v

1

v

0

1

v

2

v

0

2

: : : is
hosen at random from the appropriate linear

subspa
e (i.e., the image under `

in

; `

out

of the linear subspa
e of the y; z's).

Random. D

r

def

=

D

(w

j

; w

0

j

)

E

j=1;2;:::

, all uniform and independent.

It is not hard to see that there may be enough information there to distinguish these two

distributions after only a moderate number of steps of the
ipher. Suppose that the dimension of

the linear subspa
e of the v

j

's and v

0

j

's is a, and the atta
ker observes N steps su
h that m

0

N > a.

Then, the atta
ker
an (in prin
iple) go over all the 2

a

possibilities for the v

j

's and v

0

j

's. For ea
h

guess, the atta
ker
an
ompute the u

j

's and u

0

j

's, and verify the guess by
he
king that u

0

j

= f(u

j

)

for all j. This way, the atta
ker guesses a bits and gets m

0

N bits of
onsisten
y
he
ks. Sin
e

m

0

N > a we expe
t only the \right guess" to pass the
onsisten
y
he
ks.

This atta
k, however, is
learly not eÆ
ient. To devise an eÆ
ient atta
k, we
an again
on-

entrate on sets of steps where the linear pro
ess vanishes: Suppose that we have a set of steps J ,

11

su
h that

P

j2J

[v

j

; v

0

j

℄ = [0; 0℄. Then we get

X

j2J

(w

j

; w

0

j

) =

X

j2J

(u

j

; u

0

j

) =

X

j2J

(u

j

; f(u

j

))

and the distribution over su
h pairs may di�er from the uniform distribution by a noti
eable amount.

The distan
e between this distribution and the uniform one, depends on the spe
i�
 fun
tion f ,

and on the
ardinality of the set J .

4

Below we analyze in details perhaps the simplest
ases, where

f is a random fun
tion. Later we explain how this analysis
an be extended for other settings, and

in parti
ular for the
ase of the fun
tions in S
ream.

5.1 Analysis for random fun
tions

For a given fun
tion, f : f0; 1g

m

! f0; 1g

m

0

, and an integer n, we denote

D

n

f

def

=

*

d =

n

X

j=1

u

j

; d

0

=

n

X

j=1

f(u

j

)

+

where the u

j

's are uniform in f0; 1g

m

and independent. We assume that the atta
ker knows f ,

and it sees many instan
es of hd; d

0

i. The atta
ker needs to de
ide if these instan
es
ome from D

n

f

or from the uniform distribution on f0; 1g

m+m

0

. Below we denote the uniform distribution by R.

If the fun
tion f \does not have any
lear stru
ture", it makes sense to analyze it as if it was a

random fun
tion. Here we prove the following:

Theorem 10 Let n;m;m

0

be integers with n

2

� 2

m

.

5

For a uniformly sele
ted fun
tion f :

f0; 1g

m

! f0; 1g

m

0

, E

f

[jD

n

f

�Rj℄ �
(n) � 2

m

0

�(n�1)m

2

, where

(n) =

8

<

:

p

(2n)! = (n! 2

n

) if n is odd

(1 + o(1))

r

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

if n is even

Proof: Fix n;m;m

0

. For the rest of the proof, these integers will always be impli
it (for example,

we write D

f

instead of D

n

f

, et
.). Re
all that we denote the probability mass of (d; d

0

) a

ording to

D

f

by D

f

(d; d

0

). We
an express the expe
ted value of jD

f

�Rj, where f is
hosen at random, as:

E

f

[jD

f

�Rj℄ (2)

= E

f

2

4

X

d;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

3

5

= 2

m

0

X

d

E

f;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

In the last term, we view the D

f

(d; d

0

)'s as random variables over the
hoi
e of f; d

0

, and we have

2

m

su
h variables, one for ea
h d. Some properties of these random variables are summarized in

the following proposition (whi
h is proved later).

4

When jJ j = 2, this is just a di�erential atta
k, whi
h uses the fa
t that for some values of � = u

1

+ u

2

, a

orresponding �

0

= f(u

1

) + f(u

2

) is more likely than in the random pro
ess.

5

It
an be shown that the same bounds hold also for larger n's, but assuming n

2

� 2

m

makes some proofs a bit

easier.

12

Proposition 11 For any �xed d, E

f;d

0

[D

f

(d; d

0

)℄ = 2

�m�m

0

. Also, for odd n and any �xed d,

VAR

f;d

0

[D

f

(d; d

0

)℄ � 2

�m(n+1)�m

0

�

(2n)!

n!2

n

, and for even n and �xed d, VAR

f;d

0

[D

f

(d; d

0

)℄ �

8

>

>

<

>

>

:

2

�mn�m

0

�

�

n!

(n=2)! 2

n=2

�

2

+ o(1)

�

(2n)!

n! 2

n

�

�

for d = 0

2

�m(n+1)�m

0

(1 + o(1))

�

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

�

for d 6= 0

We
an now
ontinue Eq. (2) as follows:

E

f

[jD

f

�Rj℄ = 2

m

0

X

d

E

f;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

= 2

m

0

X

d

E

f;d

0

�

�

�

�

�

D

f

(d; d

0

)�E

f;d

0

[D

f

(d; d

0

)℄

�

�

�

�

�

(a)

� 2

m

0

X

d

q

VAR

f;d

0

[D

f

(d; d

0

)℄ (3)

where (a) follows sin
e for any random variable X, E[jX � E[X℄j℄ �

p

VAR[X℄. Plugging the

varian
e bounds from Proposition 11
ompletes the proof of Theorem 10. 2

How tight is this bound? Here too we
an argue heuristi
ally that the random variables in

the proof \should behave like Gaussian random variables", and again we expe
t the ratio between

E[jX � E[X℄j℄ and

p

VAR[X℄ to be roughly

p

2=�. Therefore, we expe
t the
onstant
(n) to be

repla
ed by

p

2=� �
(n) � 0:8
(n). Indeed we ran some experiments to measure the statisti
al

distan
e jD

n

f

� Rj, for random fun
tions with n = 4 and a few values of m;m

0

. (Note that

(4) = (1+o(1))

p

96 � 9:8 and

p

2=� �
(4) � 7:8). These experiments are des
ribed in Appendix A.

The results
on�rm that the distan
e between these distributions is just under 7:8 � 2

(m

0

�3m)=2

.

Proof: (of Proposition 11) We re
all that for a given f; d; d

0

, the term D

f

(d; d

0

) is de�ned

as D

f

(d; d

0

) = Pr

~u

[

P

u

i

= d;

P

f(u

i

) = d

0

℄, where the probability is taken over the
hoi
e of

~u = u

1

: : : u

n

, uniformly at random in f0; 1g

mn

. Analyzing the expe
ted value of D

f

(d; d

0

) is

straightforward. For any �xed d, we have

E

f;d

0

[D

f

(d; d

0

)℄ = E

f;d

0

�

Pr

~u

h

X

u

i

= d;

X

f(u

i

) = d

0

i

�

= Pr

f;d

0

;~u

h

X

u

i

= d;

X

f(u

i

) = d

0

i

= Pr

~u

[

X

u

i

= d℄ � Pr

d

0

:::

[d

0

=

X

f(u

i

) j � � �℄ = 2

�m

� 2

�m

0

To analyze the varian
e, we need to introdu
e some more notations. For a ve
tor ~u = u

1

: : : u

n

of

m-bit strings, denote by [~u℄

2

the set of strings that appear in ~u odd number of times, and noti
e

that

P

n

i=1

u

i

=

P

u2[~u℄

2

u and also

P

n

i=1

f(u

i

) =

P

u2[~u℄

2

f(u). (In parti
ular, it follows that when

[~u℄

2

= ;, then

P

u

i

= 0 and

P

f(u

i

) = 0 for all f .) With these notations, we
an express the

se
ond moment as

E

f;d

0

[D

f

(d; d

0

)

2

℄

= Pr

f;d

0

;~u;~v

h

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

= Pr

f;d

0

;~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

+ Pr

f;d

0

;~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

13

where the last term in this equation is bounded by

Pr

f;d

0

;~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

= Pr

~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d

i

� Pr

f:::

�

X

f(u

i

) =

X

f(v

i

)

�

�

�

�

[~u℄

2

6= [~v℄

2

; � � �

�

� Pr

d

0

:::

�

d

0

=

X

f(u

i

)

�

�

�

�

� � �

�

� 2

�2m

� 2

�m

0

� 2

�m

0

Therefore, for any �xed d, the varian
e is bounded by

VAR

f;d

0

[D

f

(d; d

0

)℄ = E

f;d

0

[D

f

(d; d

0

)

2

℄�E

f;d

0

[D

f

(d; d

0

)℄

2

(4)

�

�

Pr

f;d

0

;~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

+ 2

�2m�2m

0

�

� 2

�2m�2m

0

(a)

= Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

� Pr

d

0

:::

h

d

0

=

X

f(u

i

)

i

= 2

�m

0

� Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

where Equality (a) holds be
ause [~u℄

2

= [~v℄

2

implies both

P

u

i

=

P

v

i

and

P

f(u

i

) =

P

f(v

i

).

Bounding the last term, Pr

~u;~v

[[~u℄

2

= [~v℄

2

;

P

u

i

= d℄, is where we need to distinguish between odd

and even n and between d = 0 and d 6= 0. In the
ase analysis below, we make use of the following

proposition, whi
h is proved later.

Proposition 12 (i) For two ve
tors ~u;~v, we have [~u℄

2

= [~v℄

2

if and only if [~uj~v℄

2

= ; (where ~uj~v

is the
on
atenation of the two ve
tors).

(ii) If n is odd, then for any n-ve
tor ~u, [~u℄

2

6= ;. If n is even, then when we pi
k a random n-ve
tor

~u we have,

B(m;n) �

1�

n

2

2

m+3

!

� Pr

~u

[[~u℄

2

= ;℄ � B(m;n);

where

B(m;n)

def

=

n!

(n=2)! 2

n=2

� 2

�nm=2

(iii) When n is odd and ~u = (u

1

: : : u

n

), ~v = (v

1

: : : v

n

) are
hosen at random, we have for any �xed

d,

Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

�

= 2

�m

(iv) When n is even and ~u = (u

1

: : : u

n

), ~v = (v

1

: : : v

n

) are
hosen at random, we have

Pr

~u;~v

�

X

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

�

1�

n

2

2

m+3

!

�

�

1�

1

2

m

� n

�

and moreover, for any �xed d 6= 0,

Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

=

Pr

~u;~v

�

P

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

2

m

� 1

14

Using Proposition 12, we now analyze three
ases: when n is odd, when n is even and d = 0, and

when n is even and d 6= 0.

Case 1: Odd n. This is the simplest
ase. Here, for every �xed d, we bound

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

(a)

= Pr

~u;~v

[[~uj~v℄

2

= ;℄ � Pr

~u;~v

�

X

v

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

�

(b)

� B(m; 2n) � 2

�m

= 2

�m(n+1)

�

�

(2n)!

n! 2

n

�

(5)

where equality (a) follows from part (i) of Proposition 12, and inequality (b) follows from the bounds

in parts (ii) and (iii).

Case 2: Even n and d = 0. Here we have

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= 0

i

(6)

= Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄ + Pr

~u;~v

[[~u℄

2

= [~v℄

2

6= ;℄ � Pr

~u;~v

�

X

u

i

= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄ + Pr

~u;~v

[[~u℄

2

= [~v℄

2

℄ � Pr

~u;~v

�

X

u

i

= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

(a)

� 2

�mn

�

n!

(n=2)! 2

n=2

�

2

+ 2

�mn

�

(2n)!

n! 2

n

�

�

1�

1�

n

2

2

m+3

!

�

1�

1

2

m

� n

�

!

= 2

�mn

�

n!

(n=2)! 2

n=2

�

2

+

�

(2n)!

n! 2

n

�

� o(1)

!

Inequality (a) follows from the bounds in parts (ii) and (iv) of Proposition 12.

Case 3: Even n and d 6= 0. For any �xed d 6= 0, we have

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

(a)

= Pr

~u;~v

h

[~u℄

2

= [~v℄

2

6= ;;

X

u

i

= d

i

(7)

= Pr

~u;~v

[[~u℄

2

= [~v℄

2

6= ;℄ � Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

(b)

=

�

Pr

~u;~v

[[~u℄

2

= [~v℄

2

℄ � Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄

�

�

Pr

~u;~v

�

P

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

2

m

� 1

(
)

�

2

�mn

(2n)!

n! 2

n

�

�

2

�mn=2

n!

(n=2)! 2

n=2

�

�

1�

n

2

2

m+3

�

�

2

!

�

1

2

m

� 1

= 2

�m(n+1)

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

!

(1 + o(1))

Equality (a) holds be
ause

P

u

i

= d 6= 0 implies [~u℄

2

6= ;. Inequality (b) follows from part (iv) of

Proposition 12, and inequality (
) follows from the bounds in part (ii).

Plugging the bounds from Equations (5), (6) and (7) into Eq. (4)
ompletes the proof of Proposi-

tion 11. 2

15

Proof:(of Proposition 12) Part (i) is obvious. To prove the bounds in part (ii), we
ount the

number of ve
tors with [~u℄

2

= ; as follows: First we partition the n entries in ~u into pairs, then we

pi
k a sequen
e of n=2 strings, and �nally we assign ea
h string to one pair. Hen
e the number of

su
h ve
tors is at most

�

n

2

��

n�2

2

�

� � �

�

4

2

�

(n=2)!

�

2

mn=2

(n=2)!

� (n=2)! = 2

mn=2

n!

(n=2)! 2

n=2

On the other hand, as long as the sequen
e of strings that we pi
k in this pro
ess does not
ontain

dupli
ates, whi
h happen with probability at least 1 �

�

(n=2)

2

�

=2

m

, then ea
h of the
hoi
es above

yields a di�erent ve
tor ~u, hen
e the lower bound.

(iii) When n is odd, the sum

P

u

i

is independent of the event [~u℄

2

= [~v℄

2

. Indeed, for any �xed

d1; d2, denote � = d1 + d2, and
onsider the mapping

 (~u) = (u

1

: : : u

n

) = (u

1

+� : : : u

n

+�)

The mapping is a permutation over f0; 1g

mn

, that preserves the relation [~u℄

2

= [~v℄

2

, and it

satis�es

P

 (u)

i

= d2 if and only if

P

u

i

= d1.

(iv) The \moreover" part is proved similarly to (iii) above. For any �xed non-zero d1; d2, denote

� =

d2

d1

(where the operations are in GF (2

n

)), and
onsider the mapping

�(~u) = (u

1

: : : u

n

) = (u

1

�� : : : u

n

��)

(again, everything in GF (2

n

)). As before, the mapping � is a permutation over f0; 1g

mn

, that

preserves the relation [~u℄

2

= [~v℄

2

, and it satis�es

P

�(u)

i

= d2 if and only if

P

u

i

= d1. It follows

that
onditioned on

P

u

i

6= 0, the sum

P

u

i

is independent of the event [~u℄

2

= [~v℄

2

. We note also

that
onditioned on

P

u

i

6= 0, the events [~u℄

2

= [~v℄

2

and [~u℄

2

= [~v℄

2

6= ;
oin
ide.

Proving the bound on Pr[

P

u

i

6= 0j[~u℄

2

= [~v℄

2

6= ;℄ is a bit harder. Denote by S the spa
e of

pairs of ve
tors ~w = (~uj~v), with [~u℄

2

= [~v℄

2

6= ;, restri
ted so that ea
h string that appears in ~w,

appears in it exa
tly twi
e. In terms of the pro
ess for sele
ting su
h ~w's, as des
ribed in part (ii)

above, this means that there are no dupli
ates in the sequen
e of strings that we sele
t. As before,

the spa
e S
aptures at least a fra
tion 1 �

n

2

2

m+3

of the entire spa
e of [~u℄

2

= [~v℄

2

6= ;. Consider

now the following random pro
ess, for pi
king an element out of S:

1. Pi
k a uniformly sele
ted element ~w = (~u;~v) 2 S.

2. Pi
k a pair of indexes (i; j), so that w

i

= w

j

and the index i is in the ~u part and the index

j is in the ~v part. (At least one su
h pair must exist, sin
e [~u℄

2

= [~v℄

2

6= ;. If there is more

than one, then just pi
k the �rst one.)

3. Pi
k at random a string that does not appear anywhere else in ~w, and repla
e entries i; j in

~w by this string.

4. Return the modi�ed ve
tor ~w

0

.

It is easy to see that this pro
edure returns a uniformly sele
ted element in S. On the other hand,

sin
e the string in step 3 is
hosen at random from a set of 2

m

�n+1 strings, then the probability

16

of

P

u

i

= 0 is at most 1=(2

m

� n+ 1). We therefore
on
lude that

Pr

�

X

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

�

(~u;~v) 2 S

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

�

X

u

i

6= 0

�

�

�

�

(~u;~v) 2 S

�

�

1�

n

2

2

m+3

!

�

1�

1

2

m

� n

�

2

5.2 Variations and extensions

Here we brie
y dis
uss a few possible extensions to the analysis from above.

Using di�erent f 's for di�erent steps. Instead of using the same f everywhere, we may have

di�erent f 's for di�erent steps. I.e., in step j we have `

out

(NF (x

j

)) = f

j

(`

in

(x

j

)), and we assume

that the f

j

's are random and independent. The distribution that we want to analyze is therefore

hd =

P

u

j

; d

0

=

P

f

j

(u

j

)i. The analysis from above still works for the most part (as long as `

in

; `

out

are the same in all the steps). The main di�eren
e is that the fa
tor
(n) is repla
ed by a smaller

one (
all it

0

(n)).

For example, if we use n independent fun
tions, we get

0

(n) = 1, sin
e all the symmetries in

the proof of Proposition 11 disappear. Another example (whi
h is used in the atta
k on S
ream-0)

is when we have just two independent fun
tions, f

1

= f

3

= � � � and f

2

= f

4

= � � �. In this
ase (and

when n is divisible by four), we get

0

(n) = (1 + o(1))

r

�

n!

(n=2)! 2

n=2

�

2

�

�

(n=2)!

(n=4)! 2

n=4

�

4

.

When f is a sum of a few fun
tions. An important spe
ial
ase, is when f is a sum of

a few fun
tions. For example, in the fun
tions that are used in the atta
k on S
ream-0, the

m-bit input to f
an be broken into three disjoint parts, ea
h with m=3 bits, so that f(x) =

f

1

(x

1

) + f

2

(x

2

) + f

3

(x

3

). (Here we have jx

1

j = jx

2

j = jx

3

j = m=3 and x = x

1

x

2

x

3

.) If f

1

; f

2

; f

3

themselves do not have any
lear stru
ture, then we
an apply the analysis from above to ea
h of

them. That analysis tells us that ea
h of the distributions D

i

def

= (

P

j

u

i

j

;

P

j

f

i

(u

i

j

)) is likely to be

roughly
(n) � 2

(m

0

�(n�1)m=3)=2

away from the uniform distribution.

It is not hard to see that the distributionD

n

f

that we want to analyze
an be
ast as D

1

+D

2

+D

3

,

so we expe
t to get jD

n

f

� Rj �

Q

jD

i

� Rj �

�

(n) � 2

(m

0

�(n�1)m=3)=2

�

3

=
(n)

3

2

(3m

0

�(n�1)m)=2

.

More generally, suppose we
an write f as a sum of r fun
tions over disjoint arguments of the same

length. Namely, f(x) =

P

r

i=1

f

i

(x

i

), where jx

1

j = ::: = jx

r

j = m=r and x = x

1

:::x

r

. Repeating the

argument from above, we get that the expe
ted distan
e jD

n

f

� Rj is about
(n)

r

2

(rm

0

�(n�1)m)=2

(assuming that this is still smaller than one). As before, one
ould use the \Gaussian heuristi
s"

to argue that for the \a
tual distan
e" we should repla
e
(n)

r

by (
(n) �

p

2=�)

r

. (And if we have

di�erent fun
tions for di�erent steps, as above, then we would get (

0

(n) �

p

2=�)

r

.)

Linear masking over di�erent groups. Another variation is when we do linear masking over

di�erent groups. For example, instead of xor-ing the masks, we add them modulo some prime q, or

modulo a power of two. Again, the analysis stays more or less the same, but the
onstants
hange.

If we work modulo a prime q > n, we get a
onstant of

0

(n) =

p

n!, sin
e the only symmetry that

17

is left is between all the orderings of fu

1

; : : : ; u

n

g. When we work modulo a power of two, the

onstant will be somewhere between

0

(n) and
(n), probably
loser to the former.

5.3 EÆ
ien
y
onsiderations

The analysis from above says nothing about the
omputational
ost of distinguishing between D

n

f

and R. It should be noted that in a \real life" atta
k, the atta
ker may have a

ess to many

di�erent relations (with di�erent values of m;m

0

), all for the same non-linear fun
tion NF . To

minimize the amount of needed text, the atta
ker may
hoose to work with the relation for whi
h the

quantity (n� 1)m�m

0

is minimized. However, the
hoi
e of relations is limited by the atta
ker's

omputational resour
es. Indeed, for large values of m;m

0

,
omputing the maximum-likelihood

de
ision rule may be prohibitively expensive in terms of spa
e and time. Below we review some

strategies for
omputing the maximum-likelihood de
ision rule.

Using one big table. Perhaps the simplest strategy, is for the atta
ker to prepare o�-line a table

of all possible pairs hd; d

0

i with d 2 f0; 1g

m

, d

0

2 f0; 1g

m

0

. For ea
h pair hd; d

0

i the table
ontains

the probability of this pair under the distribution D

n

f

(or perhaps just one bit that says whether

this probability is more than 2

�m�m

0

).

Given su
h a table, the on-line part of the atta
k is trivial: for ea
h set of steps J ,
ompute

(d; d

0

) =

P

j2J

(w

j

; w

0

j

), and look into the table to see if this pair is more likely to
ome from D

n

f

or from R. After observing roughly 2

(n�1)m�m

0

=
(n)

2

su
h sets J , a simple majority vote
an be

used to determine if this is the
ipher or a random pro
ess. Thus, the on-line phase is linear in the

amount of text that has to be observed, and the spa
e requirement is 2

m+m

0

.

As for the o�-line part (in whi
h the table is
omputed), the naive way is to go over all possible

values of u

1

: : : u

n

2 f0; 1g

m

, for ea
h value
omputing d =

P

u

i

and d

0

=

P

f(u

i

) and in
reasing the

orresponding entry hd; d

0

i by one. This takes 2

mn

time. However, in the (typi
al)
ase where m

0

�

(n� 1)m, one
an use a mu
h better strategy, whose running time is only O(log n(m+m

0

)2

m+m

0

).

First, we represent the fun
tion f by a 2

m

� 2

m

0

table, with F [x; y℄ = 1 if f(x) = y, and

F [x; y℄ = 0 otherwise. Then, we
ompute the
onvolution of F with itself,

6

E[s; t℄

def

= (F ? F)[s; t℄ =

X

x+x

0

=s

X

y+y

0

=t

F [x; y℄ � F [x

0

; y

0

℄ = jfx : f(x) + f(x+ s) = tgj

(Note that E represents the distribution D

2

f

.) One
an use the Walsh-Hadamard transform to

perform this step in time O((m + m

0

)2

m+m

0

) (see, e.g., [19℄). Then, we again use the Walsh-

Hadamard transform to
ompute the
onvolution of E with itself,

D[d; d

0

℄

def

= (E ? E)[d; d

0

℄ =

X

s+s

0

=d

X

t+t

0

=d

0

E(s; t) � E(s

0

; t

0

)

=

�

�

fhx; s; zi : f(x) + f(x+ s) + f(z) + f(z + s+ d) = d

0

g

�

�

=

�

�

fhx; y; zi : f(x) + f(y) + f(z) + f(x+ y + z + d) = d

0

g

�

�

thus getting the distribution D

4

f

, et
. After logn su
h steps, we get the distribution of D

n

f

.

6

Re
all that the
onvolution operator is de�ned on one-dimensional ve
tors, not on matri
es. Indeed, in this

expression we view the table F as a one-dimensional ve
tor, whose indexes are m+m

0

-bits long.

18

When f is a sum of fun
tions. We
an get additional
exibility when f is a sum of fun
tions

on disjoint arguments, f(x) = f

1

(x

1

) + � � � + f

r

(x

r

) (with x = x

1

: : : x

r

). In this
ase, one
an

use the pro
edure from above to
ompute the tables D

i

[d; d

0

℄ for the individual f

i

's. If all the

x

i

's are of the same size, then ea
h of the D

i

's takes up 2

m

0

+(m=r)

spa
e, and
an be
omputed

in time O(logn(m

0

+ (m=r))2

m

0

+(m=r)

). Then, the \global" D table
an again be
omputed using

onvolutions. Spe
i�
ally, for any �xed d = d

1

:::d

r

, the 2

m

0

-ve
tor of entries D[d; �℄
an be
omputed

as the
onvolutions of the 2

m

0

-ve
tors D

1

[d

1

; �℄, D

2

[d

2

; �℄, ..., D

r

[d

r

; �℄,

D[d; �℄ = D

1

[d

1

; �℄ ? D

2

[d

2

; �℄ ? � � � ? D

r

[d

r

; �℄

At �rst glan
e, this does not seem to help mu
h: Computing ea
h
onvolution takes time O(r �

m

0

2

m

0

), and we need to repeat this for ea
h d 2 f0; 1g

m

, so the total time is O(rm

0

2

m+m

0

). However,

we
an do mu
h better than that.

Instead of storing the ve
tors D

i

[d

i

; �℄ themselves, we store their image under the Walsh-

Hadamard transform, �

i

[d

i

; �℄

def

= H(D

i

[d

i

; �℄). Then, to
ompute the ve
tor D[

d

1

:::d

r

�

; �℄, all

we need is to multiply (point-wise) the
orresponding �

i

[d

i

; �℄'s, and then apply the inverse Walsh-

Hadamard transform to the result. Thus, on
e we have the tables D

i

[�; �℄, we need to
ompute

r � 2

m=r

\forward transforms" (one for ea
h ve
tor D

i

[d

i

; �℄), and 2

m

inverse transforms (one for

ea
h

d

1

:::d

r

�

. Computing ea
h transform (or inverse) takes O(m

0

2

m

0

) time. Hen
e, the total time

(in
luding the initial
omputation of the D

i

's) is O

�

log n(rm

0

+m)2

m

0

+(m=r)

+m

0

2

m+m

0

�

, and the

total spa
e that is needed is O(2

m+m

0

).

If the amount of text that is needed is less than 2

m

, then we
an optimize even further. In this

ase the atta
ker need not store the entire table D in memory. Instead, it is possible to store only

the D

i

tables (or rather, the �

i

[�; �℄ ve
tors), and
ompute the entries of D during the on-line part,

as they are needed. Using this method, the o�-line phase takes O(log n(rm

0

+m)2

m

0

+(m=r)

) time and

O(r2

m

0

+m=r

) spa
e to
ompute and store the ve
tors �

i

[�; �℄, and the on-line phase takes O(m

0

2

m

0

)

time per sample. Thus the total time
omplexity here is O(log n(rm

0

+m)2

m

0

+(m=r)

+ Sm

0

2

m

0

),

where S is the number of samples needed to distinguish D from R.

5.4 An atta
k on S
ream-0

The stream
ipher S
ream (with its variants S
ream-0 and S
ream-F) was proposed very re
ently

by Coppersmith, Halevi and Jutla. A detailed des
ription of S
ream is available in [11℄. Below we

only give a partial des
ription of S
ream-0, whi
h suÆ
es for the purpose of our atta
k.

S
ream-0 maintains a 128-bit \non-linear state" x, two 128-bit \
olumn masks"
1;
2 (whi
h

are modi�ed every sixteen steps), and a table of sixteen \row masks" R[0::15℄. It uses a non-linear

fun
tion NF , somewhat similar to a round of Rijndael. Roughly speaking, the steps of S
ream-0

are partitioned to
hunks of sixteen steps. A des
ription of one su
h
hunk is found in Figure 3.

Here we outline a low-di�usion atta
k on the variant S
ream-0, along the lines above, that

an reliably distinguish it from random after observing merely 2

43

bytes of output, with memory

requirement of about 2

50

and work-load of about 2

80

. This atta
k is des
ribed in more details in

the long version of [11℄.

As usual, we need to �nd a \distinguishing
hara
teristi
" of the non-linear fun
tion (in this

ase, a low-di�usion
hara
teristi
), and a
ombination of steps in whi
h the linear pro
ess vanishes.

The linear pro
ess
onsists of the

i

's and the R[i℄'s. Sin
e ea
h entry R[i℄ is used sixteen times

before it is modi�ed, we
an
an
el it out by adding two steps were the same entry is used. Similarly,

we
an
an
el

2

by adding two steps within the same \
hunk" of sixteen steps. However, sin
e
1

19

1. for i = 0 to 15 do

2. x := NF (x+
1) +
2

3. output x+R[i℄

4. if i is even, rotate
1 by 64 bits

5. if i is odd, rotate
1 by some other amount

6. end-for

7. modify
1;
2, and one entry of R, using the fun
tion NF (�)

Figure 3: sixteen steps of S
ream-0.

is rotated after ea
h use, we need to look for two di�erent
hara
teristi
s of the NF fun
tion, su
h

that the pattern of input bits in one
hara
teristi
 is a rotated version of the pattern in the other.

The best su
h pair of \distinguishing
hara
teristi
s" that we found for S
ream-0, uses a low-

di�usion
hara
teristi
 for NF in whi
h the input bits pattern is 2-periodi
 (and the fa
t that
1

is rotated every other step by 64 bits). Spe
i�
ally, the four input bytes x

0

, x

5

, x

8

, x

13

, together

with two bytes of linear
ombinations of the output NF (x), yield the two input bytes x

2

, x

10

, and

two other bytes of linear
ombinations of the output NF (x). In terms of the parameters that we

used above, we have m = 48 input and output bits, whi
h
ompletely determine m

0

= 32 other

input and output bits.

To use this relation, we
an observe these ten bytes from ea
h of four steps, (i.e., j; j + 1; j +

16k; j +1+16k for even j and k < 16). We
an then add them up (with the proper rotation of the

input bytes in steps j+1; j+17), to
an
el both the \row masks" R[i℄ and the \
olumn masks"
1;
2.

This gives us the following distributionD = hu

1

+ u

2

+ u

3

+ u

4

; f

1

(u

1

) + f

2

(u

2

) + f

1

(u

3

) + f

2

(u

4

)i,

where the u

i

's are modeled as independent, uniformly sele
ted, 48-bit strings, and f

1

; f

2

are two

known fun
tions f

j

: f0; 1g

48

! f0; 1g

32

. (The reason that we have two di�erent fun
tions is that

the order of the input bytes is di�erent between the even and odd steps.) Moreover, ea
h of the two

f

j

's
an be written as a sum of three fun
tions over disjoint parts, f

j

(x) = f

1

j

(x

1

)+f

2

j

(x

2

)+f

3

j

(x

3

)

where jx

1

j = jx

2

j = jx

3

j = 16.

This is one of the \extensions" that were dis
ussed in Se
tion 5.2. Here we have n = 4, m = 48,

m

0

= 32, r = 3, and two di�erent fun
tions. Therefore, we expe
t to get statisti
al distan
e of

0

(n)

3

� 2

(3m

0

�(n�1)m)=2

, with

0

(n) �

q

2=� �

v

u

u

t

�

n!

(n=2)! 2

n=2

�

2

�

�

(n=2)!

(n=4)! 2

n=4

�

4

Plugging in the parameters, we have

0

(4) �

p

2=� �

p

8, and the expe
ted statisti
al distan
e is

roughly (16=�)

3=2

� 2

�24

� 2

�20:5

. We therefore expe
t to be able to reliably distinguish D from

random after about 2

41

samples. Roughly speaking, we
an get 8 �

�

14

2

�

� 2

10

samples from 256

steps of S
ream-0. (We have 8
hoi
es for an even step in a
hunk of 16 steps, and we
an
hoose

two su
h
hunks from a
olle
tion of 14 in whi
h the three row masks in use remain un
hanged.)

So we need about 2

31

� 256 = 2

39

steps, or 2

43

bytes of output.

Also, in Se
tion 5.3 we show how one
ould eÆ
iently implement the maximum-likelihood

de
ision rule to distinguishD from R, using Walsh-Hadamard transforms. Plugging the parameters

of the atta
k on S
ream-0 into the general te
hniques that are des
ribed there, we have spa
e

omplexity of O(r2

m

0

+m=r

), whi
h is about 2

50

. The time
omplexity is O(logn(rm

0

+m)2

m

0

+(m=r)

+

Sm

0

2

m

0

), where in our
ase S = 2

41

, so we need roughly 2

80

time.

20

6 Con
lusions

In this work we des
ribed a general
ryptanalyti
al te
hnique that
an be used to atta
k
iphers that

employ a
ombination of a \non-linear" pro
ess and a \linear pro
ess". We analyze in details the

e�e
tiveness of this te
hnique for two spe
ial
ases. One is when we exploit linear approximations

of the non-linear pro
ess, and the other is when we exploit the low di�usion of (one step of) the

non-linear pro
ess. We also show how these two spe
ial
ases are useful in atta
king the
iphers

SNOW [4℄ and S
ream-0 [11℄.

It remains an interesting open problem to extend the analysis that we have here to more general

\distinguishing
hara
teristi
s" of the non-linear pro
ess. For example, extending the analysis of

the low-di�usion atta
k from Se
tion 5.1 to the
ase where the fun
tions f is key-dependent (and

thus not known to the adversary) may yield an e�e
tive atta
k on S
ream [11℄.

In addition to the
ryptanalyti
al te
hnique, we believe that another
ontribution of this work

is our formulation of atta
ks on stream
iphers. We believe that expli
itly formalizing an atta
k as

onsidering sequen
e of un
orrelated steps (as opposed to one
ontinuous pro
ess)
an be used to

shed light on the strength of many
iphers.

Referen
es

[1℄ A. Canteaut and E. Filiol. Ciphertext only re
onstru
tion of stream
iphers based on
ombi-

nation generators. In Fast Software En
ryption, volume 1978 of Le
ture Notes in Computer

S
ien
e, pages 165{180. Springer-Verlag, 2000.

[2℄ D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream
iphers with linear masking.

In CRYPTO'02, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2002. to appear. A

longer version is available on-line from http://eprint.ia
r.org/2002/020/.

[3℄ J. Daemen and C. S. K. Clapp. Fast hashing and stream en
ryption with Panama. In S. Vau-

denay, editor, Fast Software En
ryption: 5th International Workshop, volume 1372 of Le
ture

Notes in Computer S
ien
e, pages 23{25. Springer-Verlag, 1998.

[4℄ P. Ekdahl and T. Johansson. SNOW { a new stream
ipher. Submitted to NESSIE. Available

on-line from http://www.it.lth.se/
ryptology/snow/.

[5℄ P. Ekdahl and T. Johansson. Distinguishing atta
ks on SOBER-t16 and t32. In Fast Software

En
ryption, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2002. to appear.

[6℄ S. Fluhrer. Cryptanalysis of the SEAL 3.0 pseudorandom fun
tion family. In Pro
eedings of

the Fast Software En
ryption Workshop (FSE'01), 2001.

[7℄ S. R. Fluhrer and D. A. M
Graw. Statisti
al analysis of the alleged RC4 keystream generator.

In Pro
eedings of the 7th Annual Workshop on Fast Software En
ryption, (FSE'2000), volume

1978 of Le
ture Notes in Computer S
ien
e, pages 19{30. Springer-Verlag, 2000.

[8℄ J. D. Goli�
. Correlation properties of a general binary
ombiner with memory. Journal of

Cryptology, 9(2):111{126, 1996.

[9℄ J. D. Goli�
. Linear models for keystream generators. IEEE Trans. on Computers, 45(1):41{49,

Jan 1996.

21

[10℄ J. D. Goli�
. Linear statisti
al weakness of alleged RC4 keystream generator. In W. Fumy,

editor, Advan
es in Cryptology { Euro
rypt'97, volume 1233 of Le
ture Notes in Computer

S
ien
e, pages 226{238. Springer-Verlag, 1997.

[11℄ S. Halevi, D. Copersmith, and C. Jutla. S
ream: a software-eÆ
ient stream
ipher. In Fast

Software En
ryption, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2002. to appear.

A longer version is available on-line from http://eprint.ia
r.org/2002/019/.

[12℄ H. Hands
huh and H. Gilbert. �

2

ryptanalysis of the SEAL en
ryption algorithm. In Pro-

eedings of the 4th Workshop on Fast Software En
ryption, volume 1267 of Le
ture Notes in

Computer S
ien
e, pages 1{12. Springer-Verlag, 1997.

[13℄ T. Johansson and F. J�onsson. Fast
orrelation atta
ks based on turbo
ode te
hniques. In

Advan
es in Cryptology { CRYPTO '99, volume 1666 of Le
ture Notes in Computer S
ien
e,

pages 181{197. Springer-Verlag, 1999.

[14℄ T. Johansson and F. J�onsson. Improved fast
orrelation atta
ks on stream
iphers via
on-

volution
odes. In Advan
es in Cryptology { Euro
rypt '99, volume 1592 of Le
ture Notes in

Computer S
ien
e, pages 347{362. Springer-Verlag, 1999.

[15℄ M. Matsui. Linear
ryptanalysis method for DES
ipher. In Advan
es in Cryptology, EURO-

CRYPT'93, volume 765 of Le
ture Notes in Computer S
ien
e, pages 386{397. Springer-Verlag,

1993.

[16℄ R. N. M
Donough and A. D. Whalen. Dete
tion of Signals in Noise. A
ademi
 Press, In
.,

2nd edition, 1995.

[17℄ W. Meier and O. Sta�elba
h. Fast
orrelation atta
ks on stream
iphers. Journal of Cryptology,

1(3):159{176, 1989.

[18℄ P. Rogaway and D. Coppersmith. A software optimized en
ryption algorithm. Journal of

Cryptology, 11(4):273{287, 1998.

[19℄ D. Sundararajan. The Dis
rete Fourier Transform: Theory, Algorithms and Appli
ations.

World S
ienti�
 Pub Co., 2001.

[20℄ S. P. Vadhan. A Study of Statisti
al Zero-Knowledge Proofs. PhD thesis, MIT Department of

Mathemati
s, August 1999.

[21℄ D. Watanabe, S. Furuya, H. Yoshida, and B. Preneel. A new keystream generator MUGI. In

Fast Software En
ryption, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2002. Des
rip-

tion available on-line from http://www.sdl.hita
hi.
o.jp/
rypto/mugi/index-e.html.

A Experimental results

We tested our analysis from Se
tion 5.1, by
hoosing a few random fun
tions f : f0; 1g

m

! f0; 1g

m

0

(for several settings ofm;m

0

), and evaluating the distan
e jD

4

f

�Rj. For ea
h fun
tion f , we used the

te
hniques from Se
tion 5.3 (based on the Welsh-Hadamard transform) to
ompute the statisti
al

distan
e. We used the SPIRAL implementation of the Welsh-Hadamard transform, due to Markus

Pues
hel, Bryan Singer, and Adrian Sox (see http://www.e
e.
mu.edu/

�

spiral).

22

For ea
h setting ofm;m

0

, we
hose sixteen random fun
tions, and
omputed the average distan
e

for these fun
tions. The results are presented below. One
an see that the only deviation from the

expe
ted values in our analysis, is in the
ases where m is signi�
antly smaller than m

0

. In these

ases, the distan
e is less than what we expe
t from the analysis. We spe
ulate that the reason

for this deviation, is that for su
h settings the variables in the proof are \not as smooth", and

therefore, there is a larger gap between the quantities E[jX �E[X℄j℄ and

p

VAR[X℄.

m=6, m'=6: average distan
e is 1.174e-01 = 7.514 * 2^{(m'-3m)/2}

m=8, m'=8: average distan
e is 3.022e-02 = 7.736 * 2^{(m'-3m)/2}

m=10, m'=10: average distan
e is 7.569e-03 = 7.750 * 2^{(m'-3m)/2}

m=6, m'=12: average distan
e is 5.700e-01 = 4.560 * 2^{(m'-3m)/2}

m=8, m'=12: average distan
e is 8.417e-02 = 5.387 * 2^{(m'-3m)/2}

m=10, m'=12: average distan
e is 1.310e-02 = 6.706 * 2^{(m'-3m)/2}

m=12, m'=6: average distan
e is 2.380e-04 = 7.799 * 2^{(m'-3m)/2}

m=12, m'=8: average distan
e is 4.767e-04 = 7.811 * 2^{(m'-3m)/2}

m=12, m'=10: average distan
e is 9.520e-04 = 7.799 * 2^{(m'-3m)/2}

23

