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Abstrat

We desribe a ryptanalytial tehnique for distinguishing some stream iphers from a truly

random proess. Roughly, the iphers to whih this method applies onsist of a \non-linear

proess" (say, akin to a round funtion in blok iphers), and a \linear proess" suh as an

LFSR (or even �xed tables). The output of the ipher an be the linear sum of both proesses.

To attak suh iphers, we look for any property of the \non-linear proess" that an be distin-

guished from random. In addition, we look for a linear ombination of the linear proess that

vanishes. We then onsider the same linear ombination applied to the ipher's output, and try

to �nd traes of the distinguishing property.

In this report we analyze two spei� \distinguishing properties". One is a linear approxima-

tion of the non-linear proess, whih we demonstrate on the stream ipher SNOW. This attak

needs roughly 2

95

words of output, with work-load of about 2

100

. The other is a \low-di�usion"

attak, that we apply to the ipher Sream-0. The latter attak needs only about 2

43

bytes of

output, using roughly 2

50

spae and 2

80

time.

Key words: Hypothesis testing, Linear ryptanalysis, Linear masking, Low-Di�usion attaks,

Stream iphers.

1 Introdution

A stream ipher (or pseudorandom generator) is an algorithm that takes a short random string, and

expands it into a muh longer string, that still \looks random" to adversaries with limited resoures.

The short input string is alled the seed (or key) of the ipher, and the long output string is alled

the output stream (or key-stream). Although one ould get a pseudorandom generator simply by

iterating a blok ipher (say, in ounter mode), it is believed that one ould get higher speeds by

using a \speial purpose" stream ipher.

One approah for designing suh fast iphers, is to use some \non-linear proess" that may

resemble blok ipher design, and to hide this proess using linear masking. A plausible rationale

behind this design, is that the non-linear proess behaves roughly like a blok ipher, so we expet

its state at two \far away" points in time to be essentially unorrelated. For lose points, on the

other hand, it an be argued they are masked by independent parts of the linear proess, and so

again they should not be orrelated.

Some examples of iphers that use this approah inlude SEAL [18℄ and Sream [11℄, where the

non-linear proess is very muh like a blok ipher, and the output from eah step is obtained by

adding together the urrent state of the non-linear proess and some entries from �xed (or slowly
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modi�ed) seret tables. Other examples are PANAMA [3℄ and MUGI [21℄, where the linear proess

(alled bu�er) is an LFSR (Linear Feedbak Shift Register), whih is used as input to the non-linear

proess, rather than to hide the output. Yet another example is SNOW [4℄, where the linear LFSR

is used both as input to the non-linear �nite state mahine, and also to hide its output.

In this work we desribe a tehnique that an be used to distinguish suh iphers from ran-

dom. The basi idea is very simple. We �rst onentrate on the non-linear proess, looking for a

harateristi that an be distinguished from random. For example, a linear approximation that

has notieable bias. We then look at the linear proess, and �nd some linear ombination of it

that vanishes. If we now take the same linear ombination of the output stream, then the linear

proess would vanish, and we are left with a sum of linear approximations, whih is itself a linear

approximation. As we show below, this tehnique is not limited to linear approximations. In some

sense, it an be used with \any distinguishing harateristi" of the non-linear proess. In this

report we analyze in details two types of \distinguishing harateristis", and show some examples

of its use for spei� iphers.

Perhaps the most obvious use of this tehnique, is to devise linear attaks (and indeed, many

suh attaks are known in the literature). This is also the easiest ase to analyze. In Setion 4

we haraterize the statistial distane between the ipher and random as a funtion of the bias of

the original approximation of the non-linear proess, and the weight distribution of a linear ode

related to the linear proess of the ipher.

Another type of attaks uses the low di�usion in the non-linear proess. Namely, some in-

put/output bits of this proess depend only on very few other input/output bits. For this type

of attaks, we again analyze the statistial distane, as a funtion of the number of bits in the

low-di�usion harateristi. This analysis is harder than for the linear attaks. Indeed, here we do

not have a omplete haraterization of the possible attaks of this sort, but only an analysis for

the most basi suh attak.

We demonstrate the usefulness of our tehnique by analyzing two spei� iphers. One is the

ipher SNOW [4℄, for whih we demonstrate a linear attak, and the other is the variant Sream-0

of the stream ipher Sream [11℄, for whih we demonstrate a low-di�usion attak.

1.1 Relation to prior work

Linear analyses of various types are the most ommon tool for ryptanalyzing stream iphers. Muh

work was done on LFSR-based iphers, trying to disover the state of the LFSRs using orrelation

attaks (starting from Meier and Sta�elbah [17℄, see also, e.g., [14, 13℄). Goli� [8, 9℄ devised

linear models (quite similar to our model of linear attaks) that an be applied in priniple to any

stream ipher. He then used them to analyze many types of iphers (inluding, for example, a

linear distinguisher for RC4 [10℄). Some examples of linear distinguishers for LFSR based iphers,

very similar to our analysis of SNOW, are [1, 5℄, among others. Few works used also di�erent

ryptanalytial tools. Among them are the distinguishers for SEAL [12, 6℄ and for RC4 [7℄.

The main ontribution of the urrent work is in presenting a simple framework for distinguishing

attaks. This framework an be applied to many iphers, and for those iphers it inorporates linear

analysis as a speial ase, but an be used to devise many other attaks, suh as our \low-di�usion

attaks". (Also, the attaks on SEAL due to [12℄ and [6℄ an be viewed as speial ases of this

framework.) For linear attaks, we believe that our expliit haraterization of the statistial

distane (Theorem 6) is new and useful. In addition to the ryptanalytial tehnique, the expliit

formulation of attaks on stream iphers, as done in Setion 3, is a further ontribution of this

work.
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Organization. In Setion 2 we briey review some bakground material on statistial distane

and hypothesis testing. In Setion 3 we formally de�ne the framework in whih our tehniques

apply. In Setion 4 we desribe how these tehniques apply to linear attaks, and in Setion 5 we

show how they apply to low-di�usion attaks.

2 Elements of statistial hypothesis testing

If D is a distribution over some �nite domain X and x is an element of X, then by D(x) we denote

probability mass of x aording to D. For notational onveniene, we sometimes denote the same

probability mass by Pr

D

[x℄. Similarly, if S � X then D(S) = Pr

D

[S℄ =

P

x2S

D(x).

De�nition 1 (Statistial distane) Let D

1

;D

2

be two distributions over some �nite domain X.

The statistial distane between D

1

;D

2

, is de�ned as

jD

1

�D

2

j

def

=

X

x2X

jD

1

(x)�D

2

(x)j = 2 �max

S�X

D

1

(S)�D

2

(S)

(We note that the statistial distane is always between 0 and 2.) In our analysis, we often view

the statistial distane jD

1

�D

2

j as (a saling of) the expeted value of jD

1

(x) �D

2

(x)j, where x

is hosen aording to the uniform distribution. Namely, we an write

jD

1

�D

2

j = jXj �

X

x

1

jXj

� jD

1

(x)�D

2

(x)j = jXj � E

x

[ jD

1

(x)�D

2

(x)j ℄

Below are two useful fats about this measure:

� Denote by D

N

the distribution whih is obtained by piking independentlyN elements x

1

; :::; x

n

2

X aording to D. If jD

1

�D

2

j = �, then to get jD

N

1

�D

N

2

j = 1, the number N needs to be between


(1=�) and O(1=�

2

). (A proof an be found, for example, in [20, Lemma 3.1.15℄.) In this work

we sometimes make the heuristi assumption that the distributions that we onsider are \smooth

enough", so that we really need to set N � 1=�

2

.

� If D

1

; :::;D

N

are distributions over n-bit strings, we denote by

P

D

i

the distribution over the

sum (exlusive-or),

P

N

i=1

x

i

, where eah x

i

is hosen aording to D

i

, independently of all the

other x

j

's. Denote by U the uniform distribution over f0; 1g

n

. If for all i, jU � D

i

j = �

i

, then

jU �

P

D

i

j �

Q

i

�

i

. (We inlude a proof of this simple \xor lemma" in Setion 2.1 below.) In the

analysis in this paper, we sometimes assume that the distributions D

i

are \smooth enough", so

that we an use the approximation jU �

P

D

i

j �

Q

i

�

i

.

Hypothesis testing. We provide a brief overview of (binary) hypothesis testing. This material

is overed in many statistis and engineering textbooks (e.g., [16, Ch.5℄). In a binary hypothesis

testing problem, there are two distributions D

1

;D

2

, de�ned over the same domain X. We are given

an element x 2 X, whih was drawn aording to either D

1

or D

2

, and we need to guess whih is

the ase. A deision rule for suh hypothesis testing problem is a funtion DR : X ! f1; 2g, that

tells us what should be our guess for eah element x 2 X. Perhaps the simplest notion of suess

for a deision rule DR, is the statistial advantage that it gives (over a random oin-toss), in the

ase that the distributions D

1

;D

2

are equally likely a-priori. Namely,

adv(DR) =

1

2

�

Pr

D

1

[DR(x) = 1℄ + Pr

D

2

[DR(x) = 2℄

�

�

1

2
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Proposition 2 For any hypothesis-testing problem hD

1

;D

2

i, the deision rule with the largest ad-

vantage is the maximum-likelihood rule,

ML(x) =

(

1 if D

1

(x) > D

2

(x)

2 otherwise

The advantage of the ML deision rule equals a quarter of the statistial distane, adv(ML) =

1

4

jD

1

�D

2

j.

2.1 Proof of the xor-lemma for statistial distane

Lemma 3 Let D

1

;D

2

be two distributions over f0; 1g

k

, let D

3

= D

1

+ D

2

, and denote by U the

uniform distribution over f0; 1g

k

, and �

i

= jU � D

i

j. Then �

3

� �

1

�

2

.

Proof: For eah r; s 2 f0; 1g

k

, denote e

r

= D

1

(r) � 2

�k

and f

s

= D

2

(s) � 2

�k

. By de�nition of

statistial distane, we have �

1

= jU �D

1

j =

P

r

je

r

j and similarly �

2

=

P

s

jf

s

j. For eah t 2 f0; 1g

k

,

we then have

D

3

(t) =

X

r+s=t

(2

�k

+ e

r

)(2

�k

+ f

s

)

= 2

k

� 2

�2k

+

X

r+s=t

2

�k

(e

r

+ f

s

) +

X

r+s=t

e

r

f

s

= 2

�k

+

X

r+s=t

e

r

f

s

(where the last equality holds sine

P

r

e

r

=

P

s

f

s

= 0). Therefore we have

jU � D

3

j =

X

t

�

�

�

D

3

(t)� 2

�k

�

�

�

=

X

t

�

�

�

�

�

X

r+s=t

e

r

f

s

�

�

�

�

�

�

X

t

X

r+s=t

je

r

f

s

j =

X

r;s

je

r

f

s

j =

 

X

r

je

r

j

! 

X

s

jf

s

j

!

= �

1

�

2

Corollary 4 If D

i

; i = 1:::N are distributions with jU � D

i

j = �

i

, then jU �

P

i

D

i

j �

Q

i

�

i

.

3 Formal framework

We onsider iphers that are built around two repeating funtions (proesses). One is a non-linear

funtion NF (x) and the other is a linear funtion LF (w). The non-linear funtion NF is usually

a permutation on n-bit bloks (typially, n � 100). The linear funtion LF is either an LFSR, or

just �xed tables of size between a few hundred and a few thousand bits. The state of suh a ipher

onsists of the \non-linear state" x and the \linear state" w. In eah step, we apply the funtion

NF to x and the funtion LF to w, and we may also \mix" these states by xor-ing some bits of

w into x and vie versa. The output of the urrent state is also omputed as an xor of bits from

x and w. To simplify the presentation of this report, we onentrate on a speial ase, similar to

Sream.

1

A pitorial deription of this ase is shown in Figure 1. In eah step i we do the following:

1. Set w

i

:= LF (w

i�1

)

2. Set y

i

:= L1(w

i

); z

i

= L2(w

i

) // L1; L2 are some linear funtions

3. Set x

i

:= NF (x

i�1

+ y

i

) + z

i

// `+' denotes exlusive-or

4. Output x

i

1

We show how our tehniques an handle other variants when we desribe the attak on SNOW, but we do not

attempt to haraterize all the variants where suh tehniques apply.
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Figure 1: A style of ipher to whih our tehniques apply

3.1 The linear proess

The only property of the linear proess that we are about, is that the string y

1

z

1

y

2

z

2

: : : an be

modeled as a random element in some known linear subspae of f0; 1g

?

. Perhaps the most popular

linear proess is to view the \linear state" w as the ontents of an LFSR. The linear modi�ation

funtion LF loks the LFSR some �xed number of times (e.g., 32 times), and the funtions L1; L2

just pik some bits from the LFSR. If we denote the LFSR polynomial by p, then the relevant linear

subspae is the subspae orthogonal to p � Z

2

[x℄.

A di�erent approah is taken in Sream. There, the \linear state" resides in some tables, that

are \almost �xed". In partiular, in Sream, eah entry in these tables is used 16 times before it is

modi�ed (via the non-linear funtion NF ). For our purposes, we model this sheme by assuming

that whenever an entry is modi�ed, it is atually being replaed by a new random value. The

masking sheme in Sream an be thought of as a \two-dimensional" sheme, where there are two

tables, whih are used in lexiographial order.

2

Namely, we have a \row table" R[�℄ and a \olumn

table" C[�℄, eah with 16 entries of 2n-bit string. The steps of the ipher are partitioned into bathes

of 256 steps eah. At the beginning of a bath, all the entries in the tables are \hosen at random".

Then, in step i = j + 16k in a bath, we set (y

i

jz

i

) := R[j℄ + C[k℄.

3.2 Attaks on stream iphers

We onsider an attaker that just wathes the output stream and tries to distinguish it from a truly

random stream. The relevant parameters in an attak are the amount of text that the attaker must

see before it an reliably distinguish the ipher from random, and the time and spae omplexity

of the distinguishing proedure. The attaks that we analyze in this report exploit the fat that

for a (small) subset of the bits of x and NF (x), the joint distribution of these bits di�ers from

the uniform distribution by some notieable amount. Intuitively, suh attaks never try to exploit

orrelations between \far away" points in time. The only orrelations that are onsidered, are the

ones between the input and output of a single appliation of the non-linear funtion.

3

Formally, we view the non-linear proess not as one ontinuous proess, but rather as a sequene

of unorrelated steps. That is, for the purpose of the attak, one an view the non-linear state x at

the beginning of eah step as a new random value, independent of anything else. Under this view,

2

The sheme in Sream is atually slightly di�erent than the one desribed here, but this di�erene does not e�et

the analysis in any signi�ant way.

3

When only a part of x is used as output, we may be fored to look at a few onseutive appliations of NF . This

is the ase in SNOW, for example.
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the attaker sees a olletion of pairs hx

j

+ y

j

; NF (x

j

) + z

j

i, where the x

j

's are hosen uniformly

at random and independently of eah other, and the y

j

; z

j

's are taken from the linear proess.

One example of attaks that �ts in this model are linear attaks. In linear ryptanalysis, the

attaker exploits the fat that a one-bit linear ombination of hx;NF (x)i is more likely to be

zero than one (or vie versa). In these attak, it is always assumed that the bias in one step is

independent of the bias in all the other steps. Somewhat surprisingly, di�erential ryptanalysis too

�ts into this framework (under our attak model). Sine the attaker in our model is not given

hosen-input apabilities, it exploits di�erential properties of the round funtion by waiting for the

di�erene x

i

+x

j

= � to happen \by hane", and then using the fat that NF (x

i

)+NF (x

j

) = �

0

is more likely than you would expet from a random proess. It is lear that this attak too is just

as e�etive against pairs of unorrelated steps, as when given the output from the real ipher.

We are now ready to de�ne formally what we mean by \an attak on the ipher". The attaks

that we onsider, observe some (linear ombinations of) input and output bits from eah step of the

ipher, and try to deide if these indeed ome from the ipher, or from a random soure. This an

be framed as a hypothesis testing problem. Aording to one hypothesis (Random), the observed

bits in eah step are random and independent. Aording to the other (Cipher), they are generated

by the ipher.

De�nition 5 (Attaks on stream iphers with linear masking) An attak is spei�ed by a

linear funtion `, and by a deision rule for the following hypothesis-testing problem: The two

distributions that we want to distinguish are

Cipher. The Cipher distribution is D



= h` (x

j

+ y

j

; NF (x

j

) + z

j

)i

j=1;2;:::

, where the y

j

z

j

's are

hosen at random from the appropriate linear subspae (de�ned by the linear proess of the

ipher), and the x

j

's are random and independent.

Random. Using the same notations, the \random proess" distribution is D

r

def

=

D

`(x

j

; x

0

j

)

E

j=1;2;:::

,

where the x

j

's and x

0

j

's are random and independent.

We all the funtion `, the distinguishing harateristi used by attak.

The amount of text needed for the attak is the smallest number of steps for whih the deision

rule has a onstant advantage (e.g., advantage of 1/4) in distinguishing the ipher from random.

Other relevant parameters of the attak are the time and spae omplexity of the deision rule.

An obvious lower bound on the amount of text is provided by the statistial distane between the

Cipher and Random distributions after N steps.

4 Linear attaks

A linear attak [15℄ exploits the fat that some linear ombination of the input and output bits

of the non-linear funtion is more likely to be zero than one (or vie versa). Namely, we have a

(non-trivial) linear funtion ` : f0; 1g

2n

! f0; 1g, suh that for a randomly seleted n bit string x,

Pr[`(x;NF (x)) = 0℄ = (1+ �)=2. The funtion ` is alled a linear approximation (or harateristi)

of the non-linear funtion, and the quantity � is alled the bias of the approximation.

When trying to exploit one suh linear approximation, the attaker observes for eah step j

of the ipher, a bit �

j

= `(x

j

+ y

j

; NF (x

j

) + z

j

). Note that �

j

by itself is likely to be unbiased,

but the �'s are orrelated. In partiular, sine the y; z's ome from a linear subspae, it is possible
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to �nd some linear ombination of steps for whih they vanish. Let J be a set of steps suh that

P

j2J

y

j

=

P

j2J

z

j

= 0. Then we have

X

j2J

�

j

=

X

j2J

`(x

j

; NF (x

j

)) +

X

j2J

`(y

j

; z

j

) =

X

j2J

`(x

j

; NF (x

j

))

(where the equalities follow sine ` is linear). Therefore, the bit �

J

=

P

j2J

�

j

has bias of �

jJj

. If

the attaker an observe \suÆiently many" suh sets J , it an reliably distinguish the ipher from

random.

This setion is organized as follows: We �rst bound the e�etiveness of linear attaks in terms

of the bias � and the weight distribution of some linear subspae. As we explain below, this

bound suggests that looking at sets of steps as above is essentially \the only way to exploit linear

orrelations". Then we show how to devise a linear attak on SNOW, and analyze its e�etiveness.

4.1 The statistial distane

Reall that we model an attak in whih the attaker observes a single bit per step, namely �

j

=

`(x

j

+ y

j

; NF (x

j

) + z

j

). Below we denote �

j

= `(x

j

; NF (x

j

)) and �

j

= `(y

j

; z

j

). We an re-write

the Cipher and Random distributions as

Cipher. D



def

= h�

j

+ �

j

i

j=1;2;:::

, where the �

j

's are independent but biased, Pr[�

j

= 0℄ = (1 + �)=2,

and the string �

1

�

2

: : : is hosen at random from the appropriate linear subspae (i.e., the

image under ` of the linear subspae of the y

j

z

j

's).

Random. D

r

def

= h�

j

i

j=1;2;:::

, where the �

j

's are independent and unbiased.

Below we analyze the statistial distane between the Cipher and Random distributions, after ob-

serving N bits �

1

: : : �

N

. Denote the linear subspae of the �'s by L � f0; 1g

N

, and let L

?

� f0; 1g

N

be the orthogonal subspae. The weight distribution of the spae L

?

plays an important role in

our analysis. For r 2 f0; 1; : : : ; Ng, let A

N

(r) be the set of strings ~� 2 L

?

of Hamming weight r,

and let A

N

(r) denote the ardinality of A

N

(r). We prove the following theorem:

Theorem 6 The statistial distane between the Cipher and Random distributions from above, is

bounded by

q

P

N

r=1

A

N

(r)�

2r

.

Proof: Reall that the statistial distane jCipher�Randomj (for N observed bits) an be expressed

in terms of the expeted value of jPr

Cipher

[~�℄� Pr

Random

[~�℄j, where ~� is hosen uniformly at random

from f0; 1g

N

. Fix a string ~� 2 f0; 1g

N

, and we want to analyze the probability Pr

Cipher

[~�℄. That

probability is

Pr

Cipher

[~�℄ =

X

~�2L

1

jLj

�

N

Y

j=1

�

1

2

+

�

2

� sign(�

i

+ �

i

)

�

where the sign indiator is taken to be (+1) if �

i

= �

i

, and (�1) otherwise. In other words,

sign(x)

def

= (�1)

x

. We an break the expression above into a power series in �. In this power series,

the onstant term is 2

�N

, and the series looks as follows Pr

Cipher

[~�℄ = 2

�N

�

1 +

P

N

r=1

�

r

oef

r

�

,

where the oeÆients oef

r

are de�ned as

oef

r

def

=

X

~�2L

1

jLj

�

X

fj

1

:::j

r

g

r

Y

t=1

sign(�

j

t

+ �

j

t

) =

X

fj

1

:::j

r

g

1

jLj

�

X

~�2L

sign

 

r

X

t=1

�

j

t

+ �

j

t

!

7



The summation over fj

1

:::j

r

g in the expression above ranges over all ordered sets of ardinality r

in [1; N ℄ (i.e., 1 � j

1

< j

2

� � � < j

r

� N .) Consider one suh r-set J = fj

1

:::j

r

g, and we analyze its

ontribution to the total sum. Let �(J) be the harateristi vetor of this set. That is, �(J) is an

N -bit string, whih is 1 in bit positions fj

1

:::j

r

g, and 0 everywhere else.

Proposition 7 Let J = fj

1

:::j

r

g be a set of ardinality r. If �(J) =2 L

?

, then the total ontribution

to oef

r

due to the set J is zero. If �(J) 2 L

?

then the total ontribution to oef

r

due to the set J

is sign

�

P

j2J

�

j

�

.

Proof: If ~� = �(J) is not in L

?

, then for exatly half of the strings ~� 2 L it holds that

P

j2J

�

j

=

h~�; ~�i = 0. Thus, for exatly half of the strings ~� 2 L we have sign (

P

r

t=1

�

j

t

+ �

j

t

) = +1, and for

the other half we have sign (

P

r

t=1

�

j

t

+ �

j

t

) = �1, so

P

~�2L

sign (

P

r

t=1

�

j

t

+ �

j

t

) = 0. If �(J) 2 L

?

,

then for all ~� 2 L we have

P

r

t=1

�

j

t

= 0, and therefore sign (

P

r

t=1

�

j

t

+ �

j

t

) = sign (

P

r

t=1

�

j

t

). Thus,

we get

1

jLj

�

P

~�2L

sign (

P

r

t=1

�

j

t

+ �

j

t

) = sign (

P

r

t=1

�

j

t

). 2

We now view the terms in the power series above as random variables. For any set J with

�(J) 2 L

?

, denote �

J

(~�)

def

= sign

�

P

j2J

�

j

�

, and we view the �

J

'es as random variables, whih

are de�ned over the hoie of ~� uniformly at random in f0; 1g

N

. Then, we de�ne the normalized

probability di�erene

�(~�)

def

= 2

N

�

�

Pr

Cipher

[~�℄� Pr

Random

[~�℄

�

=

N

X

r=1

�

r

X

�(J)2A

N

(r)

�

J

(~�)

Again, we stress that we view �(~�) as a random variable over the uniform hoie of ~� 2 f0; 1g

N

.

It is easy to see that for any non-empty J , we have E[�

J

℄ = 0 and VAR[�

J

℄ = 1. Also, if J

1

6= J

2

,

then �

J

1

; �

J

2

are independent. Therefore, the variable � has zero mean, and its variane equals

the weighted sum of the �

J

varianes. Namely, VAR[�℄ =

P

N

r=1

A

N

(r)�

2r

. We an now write the

statistial distane between the Cipher and Random distributions as

jCipher � Randomj =

X

~�

�

�

�

�

Pr

Cipher

[~�℄� Pr

Random

[~�℄

�

�

�

�

=

X

~�

2

�N

j�(~�)j = E

~�

[j�j℄

By the onvexity of the squaring funtion, E[j�j℄ �

p

VAR[�℄, and therefore

jCipher � Randomj = E

~�

[j�j℄ �

q

VAR[�℄ =

v

u

u

t

N

X

r=1

A

N

(r)�

2r

(1)

2

Remark. Heuristially, this bound is nearly tight. In the proof we analyzed the random variable

� and used the bound E[j��E[�℄j℄ �

p

VAR[�℄. One an argue heuristially that as long as the

statistial distane is suÆiently small, \� should behave muh like a Gaussian random variable".

If it were a Gaussian, we would have E[j�j℄ =

p

VAR[�℄ �

p

2=�. Thus, we expet the bound from

Theorem 6 to be tight up to a onstant fator

p

2=� � 0:8.

4.2 Interpretations of Theorem 6

There are a few ways to view Theorem 6. The obvious way is to use it in order to argue that a

ertain ipher is resilient to linear attaks. For example, in [11℄ we use Theorem 6 to dedue a

lower-bound on the amount of text needed for any linear attak on Sream-0.
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Also, one ould notie that the form of Theorem 6 exatly mathes the ommon pratie (and

intuition) of devising linear attaks. Namely, we always look at sets where the linear proess van-

ishes, and view eah suh set J as providing \statistial evidene of weight �

2jJj

" for distinguishing

the ipher from random. Linear attaks work by olleting enough of these sets, until the weights

sum up of to one. One an therefore view Theorem 6 as asserting that this is indeed the best you

an do.

Finally, we ould think of devising linear attaks, using the heuristi argument about this bound

being tight. However, the way Theorem 6 is stated above, it usually does not imply eÆient attaks.

For example, when the linear spae L has relatively small dimension (as is usually the ase with

LFSR-based iphers, where the dimension of L is at most a few hundreds), the statistial distane

is likely to approah one for relatively small N . But it is likely that most of the \mass" in the power

series in Eq. (1) omes from terms with a large power of � (and therefore very small \weight").

Therefore, if we want to use a small N , we would need to ollet very many samples, and this

attak is likely to be more expensive than an exhaustive searh for the key.

Alternatively, one an try and use an eÆient sub-optimal deision rule. For a given bound

on the work-load W and the amount of text N , we only onsider the �rst few terms in the power

series. That is, we observe the N bits ~� = �

1

: : : �

N

, but only onsider the W smallest sets J for

whih ~�(J) 2 L

?

. For eah suh set J , the sum of steps

P

j2J

�

j

has bias �

jJj

, and these an be

used to distinguish the ipher from random. If we take all the sets of size at most R, we expet

the advantage of suh a deision rule to be roughly

1

4

q

P

R

r=1

A

N

(r)�

2r

. The simplest form of this

attak (whih is almost always the most useful), is to onsider only the minimum-weight terms. If

the minimum-weight of L

?

is r

0

, then we need to make N big enough so that

1

4

p

A

N

(r

0

) = �

�r

0

.

4.3 The attak on SNOW

The stream ipher SNOW was submitted to NESSIE in 2000, by Ekdahl and Johansson. A detailed

desription of SNOW is available from [4℄. Here we outline a linear attak on SNOW along the

lines above, that an reliably distinguish it from random after observing roughly 2

95

steps of the

ipher, with work-load of roughly 2

100

.

SNOW onsists of a non-linear proess (alled there a Finite-State Mahine, or FSM), and a

linear proess whih is implemented by an LFSR. The LFSR of SNOW onsists of sixteen 32-bit

words, and the LFSR polynomial, de�ned over GF (2

32

), is p(z) = z

16

+ z

13

+ z

7

+ �, where � is

a primitive element of GF (2

32

). (The orthogonal subspae L

?

is therefore the spae of (bitwise

reversal of) polynomials over Z

2

of degree � N , whih are divisible by the LFSR polynomial p.)

At a given step j, we denote the ontent of the LFSR by L

j

[0::15℄, so we have L

j+1

[i℄ = L

j

[i� 1℄

for i > 0 and L

j+1

[0℄ = � � (L

j

[15℄ + L

j

[12℄ + L

j

[6℄).

The \FSM state" of SNOW in step j onsists of only two 32-bit words, denoted R1

j

; R2

j

. The

FSM update funtion modi�es these two values, using one word from the LFSR, and also outputs

one word. The output word is then added to another word from the LFSR, to form the step output.

We denote the \input word" from the LFSR to the FSM update funtion by f

j

, and the \output

word" from the FSM by F

j

. The FSM uses a \32 � 32 S-box" S[�℄ (whih is built internally as an

SP-network, from four idential 8�8 boxes and some bit permutation). A omplete step of SNOW

is desribed in Figure 2. In this �gure, we deviate from the notations in the rest of the paper, and

denote exlusive-or by � and integer addition mod 2

32

by +. We also denote 32-bit yli rotation

to the left by �<.

To devise an attak we need to �nd a good linear approximation of the non-linear FSM proess,

and low-weight ombinations of steps where the L

j

[�℄ values vanish (i.e., low-weight polynomials

9



1. f

j

:= L

j

[0℄

2. F

j

:= (f

j

+R1

j

)�R2

j

3. output F

j

� L

j

[15℄

4. R1

j+1

:= R1

j

� ((R2

j

+ F

j

)�< 7)

5. R2

j+1

:= S[R1

j

℄

6. update the LFSR

Figure 2: One step of SNOW: � is xor and + is addition mod 2

32

.

whih are divisible by the LFSR polynomial p). The best linear approximation that we found for the

FSM proess, uses six bits from two onseutive inputs and outputs, f

j

; f

j+1

; F

j

; F

j+1

. Spei�ally,

for eah step j, the bit

�

j

def

= (f

j

)

15

+ (f

j

)

16

+ (f

j+1

)

22

+ (f

j+1

)

23

+ (F

j

)

15

+ (F

j+1

)

23

is biased. (Of these six bits, the bits (f

j

)

15

; (F

j

)

15

and (F

j+1

)

22

are meant to approximate arry

bits.) We measured the bias experimentally, and it appears to be at least 2

�8:3

.

At �rst glane, one may hope to �nd weight-4 polynomials that are divisible by the LFSR

polynomial p. After all, p itself has only four non-zero terms. Unfortunately, one of these terms is

the element � 2 GF (2

32

), whereas we need a low-weight polynomial with 0-1 oeÆients. What

we an show, however, is the existene of 0-1 polynomials of weight-six that are divisible by p.

Proposition 8 The polynomial q(z) = z

16�2

32

�7

+ z

13�2

32

�7

+ z

7�2

32

�7

+ z

9

+ z

6

+ 1 is divisible

by the LFSR polynomial p(z) = z

16

+ z

13

+ z

7

+ �.

Proof: Sine � 2 GF (2

32

), then the polynomial t+� divides t

2

32

+t. That is, there is a polynomial

r(�) (with oeÆients in GF (2

32

)) suh that r(t) � (t + �) = t

2

32

+ t, as formal polynomials over

GF (2

32

). It follows that for any polynomial t(z) over GF (2

32

), we have r(t(z)) � (t(z) + �) =

t(z)

2

32

+t(z), again, as formal polynomials over GF (2

32

). Spei�ally, if we take t(z) = z

16

+z

13

+z

7

,

we get

r(t(z)) � (z

16

+ z

13

+ z

7

+ �) = z

16�2

32

+ z

13�2

32

+ z

7�2

32

+ z

16

+ z

13

+ z

7

so the polynomial on the right hand side is divisible by p(z). Sine p(z) is o-prime with the

polynomial z, we an divide the right-hand-side polynomial by z

7

and still get a polynomial divisible

by p(z). 2

Corollary 9 For all m;n, the polynomial

q

m;n

(z)

def

= q(z)

2

m

� z

n

= z

16�2

32+m

�7�2

m

+n

+ z

13�2

32+m

�7�2

m

+n

+ z

7�2

32+m

�7�2

m

+n

+ z

9�2

m

+n

+ z

6�2

m

+n

+ z

n

is divisible by p(z).

If we take, say, m = 0; 1; : : : 58 and n = 0; 1; : : : 2

94

, we get about 2

100

di�erent 0-1 polynomials,

all with weight 6 and degree less than N = 2

95

, and all divisible by p(z). Eah suh polynomial

yields a sequene of six steps, J

m;n

, suh that the sum of the L

j

[�℄ values in these steps vanishes.

Spei�ally, the polynomial q

m;n

(z) orresponds to the sequene of steps

J

m;n

= f N � n� 16 � 2

32+m

+ 7 � 2

m

; N � n� 9 � 2

m

;

N � n� 13 � 2

32+m

+ 7 � 2

m

; N � n� 6 � 2

m

;

N � n� 7 � 2

32+m

+ 7 � 2

m

; N � n g

10



with the property that for all m;n,

P

j2J

m;n

L

j

[0::15℄ =

P

j2J

m;n

L

j+1

[0::15℄ = [0; 0; : : : ; 0℄.

Therefore, if we denote the output word of SNOW at step j by S

j

, then for all m;n we have,

�

m;n

def

=

X

j2J

m;n

(S

j

)

15

+ (S

j+1

)

23

=

X

j2J

m;n

�

j

and therefore eah �

m;n

has bias of 2

�8:3�6

= 2

�49:8

. Sine we have roughly 2

100

of them, we an

reliably distinguish them from random.

5 Low-di�usion attaks

In low-di�usion attaks, the attaker looks for a small set of (linear ombinations of) input and

output bits of the non-linear funtion NF , whose values ompletely determine the values of some

other (linear ombinations of) input and output bits. The attaker tries to guess the �rst set of

bits, omputes the values of the other bits, and uses the omputed value to verify the guess against

the ipher's output. The omplexity of suh attaks is exponential in the number of bits that the

attaker needs to guess.

We introdue some notations in order to put suh attaks in the ontext of our framework. To

simplify the notations, we assume that the guessed bits are always input bits, and the determined

bits are always output bits. (Eliminating this assumption is usually quite straightforward.) As

usual, let NF : f0; 1g

n

! f0; 1g

n

be the non-linear funtion. The attak exploits the fat that

some input bits `

in

(x) are related to some output bits `

out

(NF (x)) via a known deterministi

funtion f . That is, we have

`

out

(NF (x)) = f(`

in

(x))

Here, `

in

; `

out

are linear funtions, and f is an arbitrary funtion, all known to the attaker. We

denote the output size of `

in

; `

out

by m;m

0

, respetively. That is, `

in

: f0; 1g

n

! f0; 1g

m

, `

out

:

f0; 1g

n

! f0; 1g

m

0

, and f : f0; 1g

m

! f0; 1g

m

0

.

In eah step j, the attaker observes the bits `

in

(x

j

+ y

j

) and `

out

(NF (x

j

) + z

j

) (where y

j

; z

j

are from the linear proess, as in Setion 3.1). Below we denote u

j

= `

in

(x

j

), u

0

j

= `

out

(NF (x

j

)),

v

j

= `

in

(y

j

), v

0

j

= `

out

(z

j

), and w

j

= u

j

+ v

j

, w

0

j

= u

0

j

+ v

0

j

. We an re-write the Cipher and Random

distributions for this ase as

Cipher. D



def

=

D

(w

j

= u

j

+ v

j

; w

0

j

= u

0

j

+ v

0

j

)

E

j=1;2;:::

, where the u

j

's are uniform and independent,

u

0

j

= f(u

j

), and the string v

1

v

0

1

v

2

v

0

2

: : : is hosen at random from the appropriate linear

subspae (i.e., the image under `

in

; `

out

of the linear subspae of the y; z's).

Random. D

r

def

=

D

(w

j

; w

0

j

)

E

j=1;2;:::

, all uniform and independent.

It is not hard to see that there may be enough information there to distinguish these two

distributions after only a moderate number of steps of the ipher. Suppose that the dimension of

the linear subspae of the v

j

's and v

0

j

's is a, and the attaker observes N steps suh that m

0

N > a.

Then, the attaker an (in priniple) go over all the 2

a

possibilities for the v

j

's and v

0

j

's. For eah

guess, the attaker an ompute the u

j

's and u

0

j

's, and verify the guess by heking that u

0

j

= f(u

j

)

for all j. This way, the attaker guesses a bits and gets m

0

N bits of onsisteny heks. Sine

m

0

N > a we expet only the \right guess" to pass the onsisteny heks.

This attak, however, is learly not eÆient. To devise an eÆient attak, we an again on-

entrate on sets of steps where the linear proess vanishes: Suppose that we have a set of steps J ,
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suh that

P

j2J

[v

j

; v

0

j

℄ = [0; 0℄. Then we get

X

j2J

(w

j

; w

0

j

) =

X

j2J

(u

j

; u

0

j

) =

X

j2J

(u

j

; f(u

j

))

and the distribution over suh pairs may di�er from the uniform distribution by a notieable amount.

The distane between this distribution and the uniform one, depends on the spei� funtion f ,

and on the ardinality of the set J .

4

Below we analyze in details perhaps the simplest ases, where

f is a random funtion. Later we explain how this analysis an be extended for other settings, and

in partiular for the ase of the funtions in Sream.

5.1 Analysis for random funtions

For a given funtion, f : f0; 1g

m

! f0; 1g

m

0

, and an integer n, we denote

D

n

f

def

=

*

d =

n

X

j=1

u

j

; d

0

=

n

X

j=1

f(u

j

)

+

where the u

j

's are uniform in f0; 1g

m

and independent. We assume that the attaker knows f ,

and it sees many instanes of hd; d

0

i. The attaker needs to deide if these instanes ome from D

n

f

or from the uniform distribution on f0; 1g

m+m

0

. Below we denote the uniform distribution by R.

If the funtion f \does not have any lear struture", it makes sense to analyze it as if it was a

random funtion. Here we prove the following:

Theorem 10 Let n;m;m

0

be integers with n

2

� 2

m

.

5

For a uniformly seleted funtion f :

f0; 1g

m

! f0; 1g

m

0

, E

f

[jD

n

f

�Rj℄ � (n) � 2

m

0

�(n�1)m

2

, where

(n) =

8

<

:

p

(2n)! = (n! 2

n

) if n is odd

(1 + o(1))

r

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

if n is even

Proof: Fix n;m;m

0

. For the rest of the proof, these integers will always be impliit (for example,

we write D

f

instead of D

n

f

, et.). Reall that we denote the probability mass of (d; d

0

) aording to

D

f

by D

f

(d; d

0

). We an express the expeted value of jD

f

�Rj, where f is hosen at random, as:

E

f

[jD

f

�Rj℄ (2)

= E

f

2

4

X

d;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

3

5

= 2

m

0

X

d

E

f;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

In the last term, we view the D

f

(d; d

0

)'s as random variables over the hoie of f; d

0

, and we have

2

m

suh variables, one for eah d. Some properties of these random variables are summarized in

the following proposition (whih is proved later).

4

When jJ j = 2, this is just a di�erential attak, whih uses the fat that for some values of � = u

1

+ u

2

, a

orresponding �

0

= f(u

1

) + f(u

2

) is more likely than in the random proess.

5

It an be shown that the same bounds hold also for larger n's, but assuming n

2

� 2

m

makes some proofs a bit

easier.
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Proposition 11 For any �xed d, E

f;d

0

[D

f

(d; d

0

)℄ = 2

�m�m

0

. Also, for odd n and any �xed d,

VAR

f;d

0

[D

f

(d; d

0

)℄ � 2

�m(n+1)�m

0

�

(2n)!

n!2

n

, and for even n and �xed d, VAR

f;d

0

[D

f

(d; d

0

)℄ �

8

>

>

<

>

>

:

2

�mn�m

0

�

�

n!

(n=2)! 2

n=2

�

2

+ o(1)

�

(2n)!

n! 2

n

�

�

for d = 0

2

�m(n+1)�m

0

(1 + o(1))

�

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

�

for d 6= 0

We an now ontinue Eq. (2) as follows:

E

f

[jD

f

�Rj℄ = 2

m

0

X

d

E

f;d

0

h

�

�

�

D

f

(d; d

0

)� 2

�m�m

0

�

�

�

i

= 2

m

0

X

d

E

f;d

0

�

�

�

�

�

D

f

(d; d

0

)�E

f;d

0

[D

f

(d; d

0

)℄

�

�

�

�

�

(a)

� 2

m

0

X

d

q

VAR

f;d

0

[D

f

(d; d

0

)℄ (3)

where (a) follows sine for any random variable X, E[jX � E[X℄j℄ �

p

VAR[X℄. Plugging the

variane bounds from Proposition 11 ompletes the proof of Theorem 10. 2

How tight is this bound? Here too we an argue heuristially that the random variables in

the proof \should behave like Gaussian random variables", and again we expet the ratio between

E[jX � E[X℄j℄ and

p

VAR[X℄ to be roughly

p

2=�. Therefore, we expet the onstant (n) to be

replaed by

p

2=� � (n) � 0:8(n). Indeed we ran some experiments to measure the statistial

distane jD

n

f

� Rj, for random funtions with n = 4 and a few values of m;m

0

. (Note that

(4) = (1+o(1))

p

96 � 9:8 and

p

2=� �(4) � 7:8). These experiments are desribed in Appendix A.

The results on�rm that the distane between these distributions is just under 7:8 � 2

(m

0

�3m)=2

.

Proof: (of Proposition 11) We reall that for a given f; d; d

0

, the term D

f

(d; d

0

) is de�ned

as D

f

(d; d

0

) = Pr

~u

[

P

u

i

= d;

P

f(u

i

) = d

0

℄, where the probability is taken over the hoie of

~u = u

1

: : : u

n

, uniformly at random in f0; 1g

mn

. Analyzing the expeted value of D

f

(d; d

0

) is

straightforward. For any �xed d, we have

E

f;d

0

[D

f

(d; d

0

)℄ = E

f;d

0

�

Pr

~u

h

X

u

i

= d;

X

f(u

i

) = d

0

i

�

= Pr

f;d

0

;~u

h

X

u

i

= d;

X

f(u

i

) = d

0

i

= Pr

~u

[

X

u

i

= d℄ � Pr

d

0

:::

[d

0

=

X

f(u

i

) j � � �℄ = 2

�m

� 2

�m

0

To analyze the variane, we need to introdue some more notations. For a vetor ~u = u

1

: : : u

n

of

m-bit strings, denote by [~u℄

2

the set of strings that appear in ~u odd number of times, and notie

that

P

n

i=1

u

i

=

P

u2[~u℄

2

u and also

P

n

i=1

f(u

i

) =

P

u2[~u℄

2

f(u). (In partiular, it follows that when

[~u℄

2

= ;, then

P

u

i

= 0 and

P

f(u

i

) = 0 for all f .) With these notations, we an express the

seond moment as

E

f;d

0

[D

f

(d; d

0

)

2

℄

= Pr

f;d

0

;~u;~v

h

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

= Pr

f;d

0

;~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

+ Pr

f;d

0

;~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

13



where the last term in this equation is bounded by

Pr

f;d

0

;~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

= Pr

~u;~v

h

[~u℄

2

6= [~v℄

2

;

X

u

i

=

X

v

i

= d

i

� Pr

f:::

�

X

f(u

i

) =

X

f(v

i

)

�

�

�

�

[~u℄

2

6= [~v℄

2

; � � �

�

� Pr

d

0

:::

�

d

0

=

X

f(u

i

)

�

�

�

�

� � �

�

� 2

�2m

� 2

�m

0

� 2

�m

0

Therefore, for any �xed d, the variane is bounded by

VAR

f;d

0

[D

f

(d; d

0

)℄ = E

f;d

0

[D

f

(d; d

0

)

2

℄�E

f;d

0

[D

f

(d; d

0

)℄

2

(4)

�

�

Pr

f;d

0

;~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

=

X

v

i

= d;

X

f(u

i

) =

X

f(v

i

) = d

0

i

+ 2

�2m�2m

0

�

� 2

�2m�2m

0

(a)

= Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

� Pr

d

0

:::

h

d

0

=

X

f(u

i

)

i

= 2

�m

0

� Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

where Equality (a) holds beause [~u℄

2

= [~v℄

2

implies both

P

u

i

=

P

v

i

and

P

f(u

i

) =

P

f(v

i

).

Bounding the last term, Pr

~u;~v

[[~u℄

2

= [~v℄

2

;

P

u

i

= d℄, is where we need to distinguish between odd

and even n and between d = 0 and d 6= 0. In the ase analysis below, we make use of the following

proposition, whih is proved later.

Proposition 12 (i) For two vetors ~u;~v, we have [~u℄

2

= [~v℄

2

if and only if [~uj~v℄

2

= ; (where ~uj~v

is the onatenation of the two vetors).

(ii) If n is odd, then for any n-vetor ~u, [~u℄

2

6= ;. If n is even, then when we pik a random n-vetor

~u we have,

B(m;n) �

 

1�

n

2

2

m+3

!

� Pr

~u

[[~u℄

2

= ;℄ � B(m;n);

where

B(m;n)

def

=

n!

(n=2)! 2

n=2

� 2

�nm=2

(iii) When n is odd and ~u = (u

1

: : : u

n

), ~v = (v

1

: : : v

n

) are hosen at random, we have for any �xed

d,

Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

�

= 2

�m

(iv) When n is even and ~u = (u

1

: : : u

n

), ~v = (v

1

: : : v

n

) are hosen at random, we have

Pr

~u;~v

�

X

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

�

 

1�

n

2

2

m+3

!

�

�

1�

1

2

m

� n

�

and moreover, for any �xed d 6= 0,

Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

=

Pr

~u;~v

�

P

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

2

m

� 1

14



Using Proposition 12, we now analyze three ases: when n is odd, when n is even and d = 0, and

when n is even and d 6= 0.

Case 1: Odd n. This is the simplest ase. Here, for every �xed d, we bound

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

(a)

= Pr

~u;~v

[[~uj~v℄

2

= ;℄ � Pr

~u;~v

�

X

v

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

�

(b)

� B(m; 2n) � 2

�m

= 2

�m(n+1)

�

�

(2n)!

n! 2

n

�

(5)

where equality (a) follows from part (i) of Proposition 12, and inequality (b) follows from the bounds

in parts (ii) and (iii).

Case 2: Even n and d = 0. Here we have

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= 0

i

(6)

= Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄ + Pr

~u;~v

[[~u℄

2

= [~v℄

2

6= ;℄ � Pr

~u;~v

�

X

u

i

= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄ + Pr

~u;~v

[[~u℄

2

= [~v℄

2

℄ � Pr

~u;~v

�

X

u

i

= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

(a)

� 2

�mn

�

n!

(n=2)! 2

n=2

�

2

+ 2

�mn

�

(2n)!

n! 2

n

�

�

 

1�

 

1�

n

2

2

m+3

!

�

1�

1

2

m

� n

�

!

= 2

�mn

 

�

n!

(n=2)! 2

n=2

�

2

+

�

(2n)!

n! 2

n

�

� o(1)

!

Inequality (a) follows from the bounds in parts (ii) and (iv) of Proposition 12.

Case 3: Even n and d 6= 0. For any �xed d 6= 0, we have

Pr

~u;~v

h

[~u℄

2

= [~v℄

2

;

X

u

i

= d

i

(a)

= Pr

~u;~v

h

[~u℄

2

= [~v℄

2

6= ;;

X

u

i

= d

i

(7)

= Pr

~u;~v

[[~u℄

2

= [~v℄

2

6= ;℄ � Pr

~u;~v

�

X

u

i

= d

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

(b)

=

�

Pr

~u;~v

[[~u℄

2

= [~v℄

2

℄ � Pr

~u;~v

[[~u℄

2

= [~v℄

2

= ;℄

�

�

Pr

~u;~v

�

P

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

2

m

� 1

()

�

 

2

�mn

(2n)!

n! 2

n

�

�

2

�mn=2

n!

(n=2)! 2

n=2

�

�

1�

n

2

2

m+3

�

�

2

!

�

1

2

m

� 1

= 2

�m(n+1)

 

(2n)!

n! 2

n

�

�

n!

(n=2)! 2

n=2

�

2

!

(1 + o(1))

Equality (a) holds beause

P

u

i

= d 6= 0 implies [~u℄

2

6= ;. Inequality (b) follows from part (iv) of

Proposition 12, and inequality () follows from the bounds in part (ii).

Plugging the bounds from Equations (5), (6) and (7) into Eq. (4) ompletes the proof of Proposi-

tion 11. 2
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Proof:(of Proposition 12) Part (i) is obvious. To prove the bounds in part (ii), we ount the

number of vetors with [~u℄

2

= ; as follows: First we partition the n entries in ~u into pairs, then we

pik a sequene of n=2 strings, and �nally we assign eah string to one pair. Hene the number of

suh vetors is at most

�

n

2

��

n�2

2

�

� � �

�

4

2

�

(n=2)!

�

2

mn=2

(n=2)!

� (n=2)! = 2

mn=2

n!

(n=2)! 2

n=2

On the other hand, as long as the sequene of strings that we pik in this proess does not ontain

dupliates, whih happen with probability at least 1 �

�

(n=2)

2

�

=2

m

, then eah of the hoies above

yields a di�erent vetor ~u, hene the lower bound.

(iii) When n is odd, the sum

P

u

i

is independent of the event [~u℄

2

= [~v℄

2

. Indeed, for any �xed

d1; d2, denote � = d1 + d2, and onsider the mapping

 (~u) =  (u

1

: : : u

n

) = (u

1

+� : : : u

n

+�)

The mapping  is a permutation over f0; 1g

mn

, that preserves the relation [~u℄

2

= [~v℄

2

, and it

satis�es

P

 (u)

i

= d2 if and only if

P

u

i

= d1.

(iv) The \moreover" part is proved similarly to (iii) above. For any �xed non-zero d1; d2, denote

� =

d2

d1

(where the operations are in GF (2

n

)), and onsider the mapping

�(~u) =  (u

1

: : : u

n

) = (u

1

�� : : : u

n

��)

(again, everything in GF (2

n

)). As before, the mapping � is a permutation over f0; 1g

mn

, that

preserves the relation [~u℄

2

= [~v℄

2

, and it satis�es

P

�(u)

i

= d2 if and only if

P

u

i

= d1. It follows

that onditioned on

P

u

i

6= 0, the sum

P

u

i

is independent of the event [~u℄

2

= [~v℄

2

. We note also

that onditioned on

P

u

i

6= 0, the events [~u℄

2

= [~v℄

2

and [~u℄

2

= [~v℄

2

6= ; oinide.

Proving the bound on Pr[

P

u

i

6= 0j[~u℄

2

= [~v℄

2

6= ;℄ is a bit harder. Denote by S the spae of

pairs of vetors ~w = (~uj~v), with [~u℄

2

= [~v℄

2

6= ;, restrited so that eah string that appears in ~w,

appears in it exatly twie. In terms of the proess for seleting suh ~w's, as desribed in part (ii)

above, this means that there are no dupliates in the sequene of strings that we selet. As before,

the spae S aptures at least a fration 1 �

n

2

2

m+3

of the entire spae of [~u℄

2

= [~v℄

2

6= ;. Consider

now the following random proess, for piking an element out of S:

1. Pik a uniformly seleted element ~w = (~u;~v) 2 S.

2. Pik a pair of indexes (i; j), so that w

i

= w

j

and the index i is in the ~u part and the index

j is in the ~v part. (At least one suh pair must exist, sine [~u℄

2

= [~v℄

2

6= ;. If there is more

than one, then just pik the �rst one.)

3. Pik at random a string that does not appear anywhere else in ~w, and replae entries i; j in

~w by this string.

4. Return the modi�ed vetor ~w

0

.

It is easy to see that this proedure returns a uniformly seleted element in S. On the other hand,

sine the string in step 3 is hosen at random from a set of 2

m

�n+1 strings, then the probability

16



of

P

u

i

= 0 is at most 1=(2

m

� n+ 1). We therefore onlude that

Pr

�

X

u

i

6= 0

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

�

(~u;~v) 2 S

�

�

�

�

[~u℄

2

= [~v℄

2

6= ;

�

� Pr

�

X

u

i

6= 0

�

�

�

�

(~u;~v) 2 S

�

�

 

1�

n

2

2

m+3

!

�

1�

1

2

m

� n

�

2

5.2 Variations and extensions

Here we briey disuss a few possible extensions to the analysis from above.

Using di�erent f 's for di�erent steps. Instead of using the same f everywhere, we may have

di�erent f 's for di�erent steps. I.e., in step j we have `

out

(NF (x

j

)) = f

j

(`

in

(x

j

)), and we assume

that the f

j

's are random and independent. The distribution that we want to analyze is therefore

hd =

P

u

j

; d

0

=

P

f

j

(u

j

)i. The analysis from above still works for the most part (as long as `

in

; `

out

are the same in all the steps). The main di�erene is that the fator (n) is replaed by a smaller

one (all it 

0

(n)).

For example, if we use n independent funtions, we get 

0

(n) = 1, sine all the symmetries in

the proof of Proposition 11 disappear. Another example (whih is used in the attak on Sream-0)

is when we have just two independent funtions, f

1

= f

3

= � � � and f

2

= f

4

= � � �. In this ase (and

when n is divisible by four), we get 

0

(n) = (1 + o(1))

r

�

n!

(n=2)! 2

n=2

�

2

�

�

(n=2)!

(n=4)! 2

n=4

�

4

.

When f is a sum of a few funtions. An important speial ase, is when f is a sum of

a few funtions. For example, in the funtions that are used in the attak on Sream-0, the

m-bit input to f an be broken into three disjoint parts, eah with m=3 bits, so that f(x) =

f

1

(x

1

) + f

2

(x

2

) + f

3

(x

3

). (Here we have jx

1

j = jx

2

j = jx

3

j = m=3 and x = x

1

x

2

x

3

.) If f

1

; f

2

; f

3

themselves do not have any lear struture, then we an apply the analysis from above to eah of

them. That analysis tells us that eah of the distributions D

i

def

= (

P

j

u

i

j

;

P

j

f

i

(u

i

j

)) is likely to be

roughly (n) � 2

(m

0

�(n�1)m=3)=2

away from the uniform distribution.

It is not hard to see that the distributionD

n

f

that we want to analyze an be ast as D

1

+D

2

+D

3

,

so we expet to get jD

n

f

� Rj �

Q

jD

i

� Rj �

�

(n) � 2

(m

0

�(n�1)m=3)=2

�

3

= (n)

3

2

(3m

0

�(n�1)m)=2

.

More generally, suppose we an write f as a sum of r funtions over disjoint arguments of the same

length. Namely, f(x) =

P

r

i=1

f

i

(x

i

), where jx

1

j = ::: = jx

r

j = m=r and x = x

1

:::x

r

. Repeating the

argument from above, we get that the expeted distane jD

n

f

� Rj is about (n)

r

2

(rm

0

�(n�1)m)=2

(assuming that this is still smaller than one). As before, one ould use the \Gaussian heuristis"

to argue that for the \atual distane" we should replae (n)

r

by ((n) �

p

2=�)

r

. (And if we have

di�erent funtions for di�erent steps, as above, then we would get (

0

(n) �

p

2=�)

r

.)

Linear masking over di�erent groups. Another variation is when we do linear masking over

di�erent groups. For example, instead of xor-ing the masks, we add them modulo some prime q, or

modulo a power of two. Again, the analysis stays more or less the same, but the onstants hange.

If we work modulo a prime q > n, we get a onstant of 

0

(n) =

p

n!, sine the only symmetry that
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is left is between all the orderings of fu

1

; : : : ; u

n

g. When we work modulo a power of two, the

onstant will be somewhere between 

0

(n) and (n), probably loser to the former.

5.3 EÆieny onsiderations

The analysis from above says nothing about the omputational ost of distinguishing between D

n

f

and R. It should be noted that in a \real life" attak, the attaker may have aess to many

di�erent relations (with di�erent values of m;m

0

), all for the same non-linear funtion NF . To

minimize the amount of needed text, the attaker may hoose to work with the relation for whih the

quantity (n� 1)m�m

0

is minimized. However, the hoie of relations is limited by the attaker's

omputational resoures. Indeed, for large values of m;m

0

, omputing the maximum-likelihood

deision rule may be prohibitively expensive in terms of spae and time. Below we review some

strategies for omputing the maximum-likelihood deision rule.

Using one big table. Perhaps the simplest strategy, is for the attaker to prepare o�-line a table

of all possible pairs hd; d

0

i with d 2 f0; 1g

m

, d

0

2 f0; 1g

m

0

. For eah pair hd; d

0

i the table ontains

the probability of this pair under the distribution D

n

f

(or perhaps just one bit that says whether

this probability is more than 2

�m�m

0

).

Given suh a table, the on-line part of the attak is trivial: for eah set of steps J , ompute

(d; d

0

) =

P

j2J

(w

j

; w

0

j

), and look into the table to see if this pair is more likely to ome from D

n

f

or from R. After observing roughly 2

(n�1)m�m

0

=(n)

2

suh sets J , a simple majority vote an be

used to determine if this is the ipher or a random proess. Thus, the on-line phase is linear in the

amount of text that has to be observed, and the spae requirement is 2

m+m

0

.

As for the o�-line part (in whih the table is omputed), the naive way is to go over all possible

values of u

1

: : : u

n

2 f0; 1g

m

, for eah value omputing d =

P

u

i

and d

0

=

P

f(u

i

) and inreasing the

orresponding entry hd; d

0

i by one. This takes 2

mn

time. However, in the (typial) ase where m

0

�

(n� 1)m, one an use a muh better strategy, whose running time is only O(log n(m+m

0

)2

m+m

0

).

First, we represent the funtion f by a 2

m

� 2

m

0

table, with F [x; y℄ = 1 if f(x) = y, and

F [x; y℄ = 0 otherwise. Then, we ompute the onvolution of F with itself,

6

E[s; t℄

def

= (F ? F )[s; t℄ =

X

x+x

0

=s

X

y+y

0

=t

F [x; y℄ � F [x

0

; y

0

℄ = jfx : f(x) + f(x+ s) = tgj

(Note that E represents the distribution D

2

f

.) One an use the Walsh-Hadamard transform to

perform this step in time O((m + m

0

)2

m+m

0

) (see, e.g., [19℄). Then, we again use the Walsh-

Hadamard transform to ompute the onvolution of E with itself,

D[d; d

0

℄

def

= (E ? E)[d; d

0

℄ =

X

s+s

0

=d

X

t+t

0

=d

0

E(s; t) � E(s

0

; t

0

)

=

�

�

fhx; s; zi : f(x) + f(x+ s) + f(z) + f(z + s+ d) = d

0

g

�

�

=

�

�

fhx; y; zi : f(x) + f(y) + f(z) + f(x+ y + z + d) = d

0

g

�

�

thus getting the distribution D

4

f

, et. After logn suh steps, we get the distribution of D

n

f

.

6

Reall that the onvolution operator is de�ned on one-dimensional vetors, not on matries. Indeed, in this

expression we view the table F as a one-dimensional vetor, whose indexes are m+m

0

-bits long.
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When f is a sum of funtions. We an get additional exibility when f is a sum of funtions

on disjoint arguments, f(x) = f

1

(x

1

) + � � � + f

r

(x

r

) (with x = x

1

: : : x

r

). In this ase, one an

use the proedure from above to ompute the tables D

i

[d; d

0

℄ for the individual f

i

's. If all the

x

i

's are of the same size, then eah of the D

i

's takes up 2

m

0

+(m=r)

spae, and an be omputed

in time O(logn(m

0

+ (m=r))2

m

0

+(m=r)

). Then, the \global" D table an again be omputed using

onvolutions. Spei�ally, for any �xed d = d

1

:::d

r

, the 2

m

0

-vetor of entries D[d; �℄ an be omputed

as the onvolutions of the 2

m

0

-vetors D

1

[d

1

; �℄, D

2

[d

2

; �℄, ..., D

r

[d

r

; �℄,

D[d; �℄ = D

1

[d

1

; �℄ ? D

2

[d

2

; �℄ ? � � � ? D

r

[d

r

; �℄

At �rst glane, this does not seem to help muh: Computing eah onvolution takes time O(r �

m

0

2

m

0

), and we need to repeat this for eah d 2 f0; 1g

m

, so the total time is O(rm

0

2

m+m

0

). However,

we an do muh better than that.

Instead of storing the vetors D

i

[d

i

; �℄ themselves, we store their image under the Walsh-

Hadamard transform, �

i

[d

i

; �℄

def

= H(D

i

[d

i

; �℄). Then, to ompute the vetor D[




d

1

:::d

r

�

; �℄, all

we need is to multiply (point-wise) the orresponding �

i

[d

i

; �℄'s, and then apply the inverse Walsh-

Hadamard transform to the result. Thus, one we have the tables D

i

[�; �℄, we need to ompute

r � 2

m=r

\forward transforms" (one for eah vetor D

i

[d

i

; �℄), and 2

m

inverse transforms (one for

eah




d

1

:::d

r

�

. Computing eah transform (or inverse) takes O(m

0

2

m

0

) time. Hene, the total time

(inluding the initial omputation of the D

i

's) is O

�

log n(rm

0

+m)2

m

0

+(m=r)

+m

0

2

m+m

0

�

, and the

total spae that is needed is O(2

m+m

0

).

If the amount of text that is needed is less than 2

m

, then we an optimize even further. In this

ase the attaker need not store the entire table D in memory. Instead, it is possible to store only

the D

i

tables (or rather, the �

i

[�; �℄ vetors), and ompute the entries of D during the on-line part,

as they are needed. Using this method, the o�-line phase takes O(log n(rm

0

+m)2

m

0

+(m=r)

) time and

O(r2

m

0

+m=r

) spae to ompute and store the vetors �

i

[�; �℄, and the on-line phase takes O(m

0

2

m

0

)

time per sample. Thus the total time omplexity here is O(log n(rm

0

+m)2

m

0

+(m=r)

+ Sm

0

2

m

0

),

where S is the number of samples needed to distinguish D from R.

5.4 An attak on Sream-0

The stream ipher Sream (with its variants Sream-0 and Sream-F) was proposed very reently

by Coppersmith, Halevi and Jutla. A detailed desription of Sream is available in [11℄. Below we

only give a partial desription of Sream-0, whih suÆes for the purpose of our attak.

Sream-0 maintains a 128-bit \non-linear state" x, two 128-bit \olumn masks" 1; 2 (whih

are modi�ed every sixteen steps), and a table of sixteen \row masks" R[0::15℄. It uses a non-linear

funtion NF , somewhat similar to a round of Rijndael. Roughly speaking, the steps of Sream-0

are partitioned to hunks of sixteen steps. A desription of one suh hunk is found in Figure 3.

Here we outline a low-di�usion attak on the variant Sream-0, along the lines above, that

an reliably distinguish it from random after observing merely 2

43

bytes of output, with memory

requirement of about 2

50

and work-load of about 2

80

. This attak is desribed in more details in

the long version of [11℄.

As usual, we need to �nd a \distinguishing harateristi" of the non-linear funtion (in this

ase, a low-di�usion harateristi), and a ombination of steps in whih the linear proess vanishes.

The linear proess onsists of the 

i

's and the R[i℄'s. Sine eah entry R[i℄ is used sixteen times

before it is modi�ed, we an anel it out by adding two steps were the same entry is used. Similarly,

we an anel 

2

by adding two steps within the same \hunk" of sixteen steps. However, sine 1
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1. for i = 0 to 15 do

2. x := NF (x+ 1) + 2

3. output x+R[i℄

4. if i is even, rotate 1 by 64 bits

5. if i is odd, rotate 1 by some other amount

6. end-for

7. modify 1; 2, and one entry of R, using the funtion NF (�)

Figure 3: sixteen steps of Sream-0.

is rotated after eah use, we need to look for two di�erent harateristis of the NF funtion, suh

that the pattern of input bits in one harateristi is a rotated version of the pattern in the other.

The best suh pair of \distinguishing harateristis" that we found for Sream-0, uses a low-

di�usion harateristi for NF in whih the input bits pattern is 2-periodi (and the fat that 1

is rotated every other step by 64 bits). Spei�ally, the four input bytes x

0

, x

5

, x

8

, x

13

, together

with two bytes of linear ombinations of the output NF (x), yield the two input bytes x

2

, x

10

, and

two other bytes of linear ombinations of the output NF (x). In terms of the parameters that we

used above, we have m = 48 input and output bits, whih ompletely determine m

0

= 32 other

input and output bits.

To use this relation, we an observe these ten bytes from eah of four steps, (i.e., j; j + 1; j +

16k; j +1+16k for even j and k < 16). We an then add them up (with the proper rotation of the

input bytes in steps j+1; j+17), to anel both the \row masks" R[i℄ and the \olumn masks" 1; 2.

This gives us the following distributionD = hu

1

+ u

2

+ u

3

+ u

4

; f

1

(u

1

) + f

2

(u

2

) + f

1

(u

3

) + f

2

(u

4

)i,

where the u

i

's are modeled as independent, uniformly seleted, 48-bit strings, and f

1

; f

2

are two

known funtions f

j

: f0; 1g

48

! f0; 1g

32

. (The reason that we have two di�erent funtions is that

the order of the input bytes is di�erent between the even and odd steps.) Moreover, eah of the two

f

j

's an be written as a sum of three funtions over disjoint parts, f

j

(x) = f

1

j

(x

1

)+f

2

j

(x

2

)+f

3

j

(x

3

)

where jx

1

j = jx

2

j = jx

3

j = 16.

This is one of the \extensions" that were disussed in Setion 5.2. Here we have n = 4, m = 48,

m

0

= 32, r = 3, and two di�erent funtions. Therefore, we expet to get statistial distane of



0

(n)

3

� 2

(3m

0

�(n�1)m)=2

, with



0

(n) �

q

2=� �

v

u

u

t

�

n!

(n=2)! 2

n=2

�

2

�

�

(n=2)!

(n=4)! 2

n=4

�

4

Plugging in the parameters, we have 

0

(4) �

p

2=� �

p

8, and the expeted statistial distane is

roughly (16=�)

3=2

� 2

�24

� 2

�20:5

. We therefore expet to be able to reliably distinguish D from

random after about 2

41

samples. Roughly speaking, we an get 8 �

�

14

2

�

� 2

10

samples from 256

steps of Sream-0. (We have 8 hoies for an even step in a hunk of 16 steps, and we an hoose

two suh hunks from a olletion of 14 in whih the three row masks in use remain unhanged.)

So we need about 2

31

� 256 = 2

39

steps, or 2

43

bytes of output.

Also, in Setion 5.3 we show how one ould eÆiently implement the maximum-likelihood

deision rule to distinguishD from R, using Walsh-Hadamard transforms. Plugging the parameters

of the attak on Sream-0 into the general tehniques that are desribed there, we have spae

omplexity of O(r2

m

0

+m=r

), whih is about 2

50

. The time omplexity is O(logn(rm

0

+m)2

m

0

+(m=r)

+

Sm

0

2

m

0

), where in our ase S = 2

41

, so we need roughly 2

80

time.
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6 Conlusions

In this work we desribed a general ryptanalytial tehnique that an be used to attak iphers that

employ a ombination of a \non-linear" proess and a \linear proess". We analyze in details the

e�etiveness of this tehnique for two speial ases. One is when we exploit linear approximations

of the non-linear proess, and the other is when we exploit the low di�usion of (one step of) the

non-linear proess. We also show how these two speial ases are useful in attaking the iphers

SNOW [4℄ and Sream-0 [11℄.

It remains an interesting open problem to extend the analysis that we have here to more general

\distinguishing harateristis" of the non-linear proess. For example, extending the analysis of

the low-di�usion attak from Setion 5.1 to the ase where the funtions f is key-dependent (and

thus not known to the adversary) may yield an e�etive attak on Sream [11℄.

In addition to the ryptanalytial tehnique, we believe that another ontribution of this work

is our formulation of attaks on stream iphers. We believe that expliitly formalizing an attak as

onsidering sequene of unorrelated steps (as opposed to one ontinuous proess) an be used to

shed light on the strength of many iphers.
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A Experimental results

We tested our analysis from Setion 5.1, by hoosing a few random funtions f : f0; 1g

m

! f0; 1g

m

0

(for several settings ofm;m

0

), and evaluating the distane jD

4

f

�Rj. For eah funtion f , we used the

tehniques from Setion 5.3 (based on the Welsh-Hadamard transform) to ompute the statistial

distane. We used the SPIRAL implementation of the Welsh-Hadamard transform, due to Markus

Pueshel, Bryan Singer, and Adrian Sox (see http://www.ee.mu.edu/

�

spiral).
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For eah setting ofm;m

0

, we hose sixteen random funtions, and omputed the average distane

for these funtions. The results are presented below. One an see that the only deviation from the

expeted values in our analysis, is in the ases where m is signi�antly smaller than m

0

. In these

ases, the distane is less than what we expet from the analysis. We speulate that the reason

for this deviation, is that for suh settings the variables in the proof are \not as smooth", and

therefore, there is a larger gap between the quantities E[jX �E[X℄j℄ and

p

VAR[X℄.

m=6, m'=6: average distane is 1.174e-01 = 7.514 * 2^{(m'-3m)/2}

m=8, m'=8: average distane is 3.022e-02 = 7.736 * 2^{(m'-3m)/2}

m=10, m'=10: average distane is 7.569e-03 = 7.750 * 2^{(m'-3m)/2}

m=6, m'=12: average distane is 5.700e-01 = 4.560 * 2^{(m'-3m)/2}

m=8, m'=12: average distane is 8.417e-02 = 5.387 * 2^{(m'-3m)/2}

m=10, m'=12: average distane is 1.310e-02 = 6.706 * 2^{(m'-3m)/2}

m=12, m'=6: average distane is 2.380e-04 = 7.799 * 2^{(m'-3m)/2}

m=12, m'=8: average distane is 4.767e-04 = 7.811 * 2^{(m'-3m)/2}

m=12, m'=10: average distane is 9.520e-04 = 7.799 * 2^{(m'-3m)/2}
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