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Abstract

For some classes of Boolean functions we study charecteristics
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.

1 Introduction

It is common that in work that concern design and analysis of Boolean functions,

the probability properties of the functions { balance, probability of coinciding

with an a�ne function, balance of a directional derivative (the propagation

criteria) { are investigated under the assumption that function's arguments are

independent binary random variables with the uniform probability distribution

([2], [3], [4], [7], [8], [9]). This paper brings attention to the case when the

arguments' distributions di�er from the uniform distribution.

The necessity of such an investigation can be explained by adducing the

task of combining pseudorandom binary sequences. Let x

1t

; : : : ; x

nt

be n binary

pseudorandom sequences generated by one of the simple methods. In order to

construct a pseudorandom sequence that is closer to the sequence of independent

binary random variables with the uniform probability distribution, the parallel

combining of the sequences is used:

y

t

= f(x

1t

; : : : ; x

nt

);

where f(x

1

; : : : ; x

n

) is a Boolean function. When choosing a suitable function

f(x

1

; : : : ; x

n

) the following reasons are taken into account. It is known ([5],

Chapter 6.3) that if the sequences x

it

are generated by linear feedback shift
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registers (LFSR) the linear complexity of the output sequence y

t

(the length of

the shortest LFSR that generates this sequence) is equal to

L(y

t

) = f

�

(L(x

1t

); : : : ; L(x

nt

));

where L(x

it

) is the linear complexity of the sequence x

it

and f

�

(x) is the alge-

braic normal form of the function f(x) evaluated over the reals with respective

replacement of the operations to the real multiplication and addition. The func-

tion f(x

1

; : : : ; x

n

) is chosen to maximize L(y

t

). The good probability properties

of the function are of importance too: f(x) should be balanced and correlation

immune. Let us consider the balance of a Boolean function. It implies that if the

function's arguments are independent and uniformly distributed binary random

variables then the function's value is also uniformly distributed. But it seems

reasonable to suppose that the probability distributions of the input sequences

di�er from the uniform distribution due to weakness of the modelling. Therefore

it is desirable to know how much the distribution of the output sequence di�er

from the uniform distribution in its turn.

We will consider Boolean functions f(x); x = (x

1

; : : : ; x

n

) 2 B

n

; B =

f0; 1g; and will suppose that x

1

; : : : ; x

n

are independent binary random vari-

ables with probability distributions Pfx

i

= 1g =

1

2

� �

i

; i = 1; n.

We assume that we know the value that is not exceeded by the deviations

from the uniform distribution of the probability distributions of the function's

arguments:

j�

i

j � �; i = 1; n:

Under these conditions we will investigate characteristics of a general form

�

F

(f(); �) = max

j�

i

j��;i=1;n

j

1

2

� Pfy = 1gj; (1)

where y = F (x). We will study �

F

(f(); �) with F () equal to:

1. F (x) = f(x),

2. F (x) = f(x) � (a; x),

3. F (x) = f(x) � f(x� a),

where a = (a

1

; : : : ; a

n

) 2 B

n

; (a; x) = a

1

x

1

� : : :� a

n

x

n

.

In the following we will denote by �

f

(�), �

(a)

f

(�), D

(a)

f

(�) the characteristics

�

F

(f(); �) for the choices 1, 2, 3 of F () respectively.

At �rst we will study the characteristic �

f

(�) { the maximumdeviation from

the uniform distribution of the probability distribution of the function's value,

when the distributions of the function's arguments deviate from the uniform

distribution for not more than �. Since �

(a)

f

(�) = �

g

(�) and D

(a)

f

(�) = �

d

f;a

(�),

where g(x) = f(x) � (a; x) and d

f;a

(x) = f(x) � f(x � a), their properties will

be derived as an application of the properties of �

f

(�).

In conclusion we will pay attention to the behaviour of �

f

(�) when � !

1

2

and will show that it is determined by the minimum sensitivity of f(x).
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2 Preliminaries

We will de�ne the algebraic normal form, the Walsh-Hadamard transform, the

classes of balanced and correlation immune Boolean functions, bent functions,

and adduce their well known properties (see e.g. [2], [4], [8], [9]).

The algebraic normal form of a Boolean function f(x) is its representation

as a polynomial modulo 2. The (nonlinearity) order of f(x) is de�ned as the

degree of this polynomial.

The Walsh-Hadamard transform of a real valued function f(x) is a function

F (w) =

X

x2B

n

f(x)(�1)

(x;w)

; w 2 B

n

: (2)

Often instead of a Boolean function f(x), the function

^

f (x) = (�1)

f(x)

=

1 � 2f(x) is considered that takes values from f�1; 1g. The Walsh-Hadamard

transforms of f(x) and

^

f (x) are related as follows:

^

F (w) = �2F (w) + 2

n

�(w); �(w) =

(

1; w = 0;

0; w 6= 0:

(3)

The values of the Walsh Hadamard transform satisfy the inversion formula:

X

w2B

n

(�1)

(x;w)

^

F (w) =

^

f (x)2

n

;

particularly,

X

w2B

n

^

F (w) =

^

f(0)2

n

; (4)

and Parseval's equation:

X

w2B

n

^

F

2

(w) = 2

2n

: (5)

^

F

2

(w) values are called the Walsh-Hadamard spectrum of the function f(x).

From (5) it follows that 0 �

^

F

2

(w) � 2

2n

.

Let us by

^

F (w),

^

G(w),

^

H(w) denote the Walsh-Hadamard transforms of the

functions

^

f (x), ĝ(x),

^

h(x) respectively.

� If g(x) = f(x) � 1 then

^

G(w) = �

^

F (w): (6)

� If g(x) = f(x) � (a; x); a 2 B

n

; then

^

G(w) =

^

F (w � a): (7)
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� If g(x) = f(x � a); a 2 B

n

; then

^

G(w) = (�1)

(a;w)

^

F (w): (8)

� If g(x) = f(xA), where A is a nonsingular matrix, then

^

G(w) =

^

F (w(A

�1

)

T

) (9)

(A

T

denotes the transpose of A).

� If h(x) = f(x) � g(x) then

^

H(w) =

1

2

n

X

v2B

n

^

F (v)

^

G(v � w): (10)

If f(x) = l

a;a

0

(x) = (a; x) � a

0

; a 2 B

n

; a

0

2 B, i.e. f(x) is an a�ne

function, then

^

F (w) =

(

(�1)

a

0

2

n

; w = a;

0; otherwise:

(11)

By W (x) we denote the Hamming weight of a Boolean vector x (the number of

ones in the vector), and let W (f) =

P

x2B

n

f(x) for a real valued function f(x).

Take notice that it follows from (2) and (3) that

^

F (0) = 2

n

� 2W (f) = W (

^

f ): (12)

A Boolean function f(x) is called balanced if

W (f) = 2

n�1

(W (

^

f ) = 0); (13)

i.e. f(x) takes the value 1 for the half of all n-tuples of its arguments. It follows

from (12) and (13) that f(x) is balanced if and only if

^

F (0) = 0: (14)

Balance of a Boolean function provides the uniform probability distribution of

the function's value if the function's arguments are independent and uniformly

distributed binary random variables.

A Boolean function f(x) is called k-th order correlation immune, 1 � k �

n � 1, if

^

F (w) = 0; 1 � W (w) � k: (15)

There are only two functions that are balanced and have the highest (equal

to n� 1) order of correlation immunity, namely:

f(x) = x

1

� x

2

� : : :� x

n

� a

0

; a

0

2 B: (16)
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If a Boolean function is k-th order correlation immune then there is no sta-

tistical dependency between its value and any of its m; 1 � m � k, arguments.

A Boolean function f(x) is called bent if

j

^

F (w)j = 2

n

2

; 8w 2 B

n

: (17)

The important property of bent-functions f(x) is that their nonlinearity

N (f) = min

a2B

n

;a

0

2B

d(f; l

a;a

0

), where d(f; g) =W (f�g) is the Hamming distance

between f(x) and g(x), reaches the maximum value (N (f) = 2

n�1

� 2

n

2

�1

).

We de�ne by d

f;a

(x) = f(x) � f(x � a) the directional derivative of f(x) in

direction a.

All bent functions f(x) satisfy the propagation criterion of the highest degree

n, which means balance of d

f;a

(x) for all vectors a 2 B

n

; a 6= 0.

On the other hand, it is clear that bent functions are never balanced or

correlation immune. Bent functions exist only for even n.

Also for a Boolean vector w we will denote by i(w); 1 � i � W (w); the

index of the i-th non-zero component of w.

3 The basic results

Hereafter we will suppose that x

1

; : : : ; x

n

are independent binary random vari-

ables with probability distributions Pfx

i

= 1g =

1

2

��

i

; Pfx

i

= 0g =

1

2

+�

i

; i =

1; n.

The results reported in the paper are based on the following theorem that

relates the probability distribution of a Boolean function's value with the prob-

ability distributions of its arguments.

Theorem 3.1. For an arbitrary Boolean function f(x)

1

2

� Pfy = 1g =

1

2

n+1

^

F (0) +

1

2

n+1

n

X

s=1

2

s

X

w2B

n

;W (w)=s

^

F (w)�

1(w)

: : : �

s(w)

;

(18)

where y = f(x).
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Proof.

1

2

� Pfy = 1g =

1

2

�

X

�2B

n

;f(�)=1

Pfx

1

= �

1

; : : : ; x

n

= �

n

g =

=

1

2

�

X

�2B

n

;f(�)=1

Pfx

1

= �

1

g : : :Pfx

n

= �

n

g =

=

1

2

�

X

�2B

n

;f(�)=1

(

1

2

+ (�1)

�

1

�

1

) : : : (

1

2

+ (�1)

�

n

�

n

) =

=

1

2

�

1

2

n

W (f) �

X

�2B

n

;f(�)=1

n

X

s=1

1

2

n�s

X

w2B

n

;W (w)=s

(�1)

(�;w)

�

1(w)

: : : �

s(w)

=

=

1

2

�

1

2

n

W (f) �

n

X

s=1

1

2

n�s

X

w2B

n

;W (w)=s

X

�2B

n

;f(�)=1

(�1)

(�;w)

�

1(w)

: : : �

s(w)

;

(19)

where � = (�

1

; : : : ; �

n

). Using (19), (2), (3), and (12) we get (18).

Corollary 3.1.

�

f

(�) =

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

F (w)(2�)

W (w)

�

�

�

�

�

: (20)

Proof. From (18) it follows that

1

2

�Pfy = 1g depends linearly on every �

i

; i =

1; n. Hence the expression j

1

2

� Pfy = 1gj reaches its maximum value on every

�

i

at one of the ends of the interval [��; �], i.e.

�

f

(�) = max

j�

i

j=�;i=1;n

�

�

�

�

1

2

� Pfy = 1g

�

�

�

�

;

which implies that if we let �

i

= (�1)

u

i

�; u

i

2 B, we can reduce maximization

on �

i

; i = 1; n; to maximization on a Boolean vector of signs u 2 B

n

. Further,

�

1(w)

: : : �

s(w)

= (�1)

(u;w)

�

s

, and thus we have (20).

The following technical lemma will be helpful in the further reasonings.

Lemma 3.1. For any s; 0 � s � n,

X

w2B

n

;W (w)=s

(�1)

(u;w)

^

F (w) = 0; 8u 2 B

n

;

if and only if

^

F (w) = 0; 8w : W (w) = s:
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Proof. For s = 0 the statement of the lemma is trivial. Let 1 � s � n. Since

su�ciency is evident we have to prove only the necessity part of the statement.

For l such that n � l + 1 � s we de�ne

S

(s)

l;n

(�

l

; : : : ; �

n

) =

X

l�i

1

<:::<i

s

�n

(�1)

�

i

1

�:::��

i

s

^

F (e

i

1

;::: ;i

s

);

where �

i

2 B; i = 1; n, e

i

1

;::: ;i

s

is the vector whose components with indexes

i

1

; : : : ; i

s

are equal to 1, and the other are equal to 0.

Since by assumption,

S

(s)

1;n

(u

1

; : : : ; u

n

) = 0; 8u

i

2 B; i = 1; n;

we have

S

(s)

1;n

(0; u

2

; : : : ; u

n

) + S

(s)

1;n

(1; u

2

; : : : ; u

n

) = 0:

On the other hand,

S

(s)

1;n

(0; u

2

; : : : ; u

n

) + S

(s)

1;n

(1; u

2

; : : : ; u

n

) = S

(s)

2;n

(u

2

; : : : ; u

n

);

and consequently we have

S

(s)

2;n

(u

2

; : : : ; u

n

) = 0:

Continuing this way, we achieve:

S

(s)

n�s+1;n

(u

n�s+1

; : : : ; u

n

) = (�1)

u

n�s+1

�:::�u

n

^

F (e

n�s+1;::: ;n

) = 0;

i.e.

^

F (e

n�s+1;::: ;n

) = 0:

For reasons of symmetry, we have

^

F (w) = 0; 8w : W (w) = s:

The next important theorem states that the higher is the correlation order

of a Boolean function the better is the function from the viewpoint of order of

smallness of �

f

(�).

Theorem 3.2. �

f

(�) = o(�

k

) if and only if f(x) is a balanced and k-th order

correlation immune function.

Proof. First, we will prove that

�

f

(�) = o(�

k

),

X

w2B

n

;W (w)=s

(�1)

(u;w)

^

F (w) = 0; 8u 2 B

n

; s = 0; k: (21)

The su�ciency is evident and follows from (20). We will prove the necessity

part of this statement. Let s be such that

^

F (w) = 0; 8w :W (w) < s; and there
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exists w

0

; W (w

0

) = s; such that

^

F (w

0

) 6= 0. If s > k then the right side of (21)

holds true. Suppose that s � k and for a certain u

0

2 B

n

�

�

�

�

�

�

X

w2B

n

;W (w)=s

(�1)

(u

0

;w)

^

F (w)

�

�

�

�

�

�

= C > 0;

then by choosing small enough �

0

we can write for all � : 0 � � � �

0

�

f

(�) �

1

2

n+1

(C(2�)

s

+ A(u

0

; �)) ;

where

jA(u

0

; �)j <

1

2

C(2�)

s

:

Hence

�

f

(�) �

1

2

n+2

C(2�)

s

;

but this contadicts the assumption that �

f

(�) = o(�

k

); k � s. The contradiction

leads to:

X

w2B

n

;W (w)=s

(�1)

(u;w)

^

F (w) = 0; 8u 2 B

n

; 8s : s � k:

And then we obtain from Lemma 3.1:

^

F (w) = 0; 8w : W (w) � k;

which means that f(x) is balanced and k-th order correlation immune.

Note that a particular case of Theorem 3.2 is the following statement:

�

f

(�) = o(1), f(x) is balanced (22)

Lemma 3.2.

1. 0 � �

f

(�) �

1

2

; 8� : 0 � � �

1

2

:

2. f(x) is balanced , �

f

(0) = 0.

3. �

f

(

1

2

) =

1

2

.

4. If �

1

< �

2

then �

f

(�

1

) � �

f

(�

2

).

5. If �

f

(�) = 0 then � = 0.
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Proof. Statements 1 and 4 follow directly from the de�nition of �

f

(�).

Statements 2 and 3 follow from (20) by substituting � = 0 and � =

1

2

into

(20) and by (14), (4) and (8).

Suppose that there exists �

0

; 0 < �

0

<=

1

2

; such that �

f

(�

0

) = 0. Hence

from property 4 we have: �

f

(�) = 0; 8� : 0 � � � �

0

. This means �

f

(�) =

o(�

k

); 8k � 0; and hence Theorem 3.1 demands f(x) to be n-th order correlation

immune, which is impossible. Thus we have: �

f

(�) = 0 implies � = 0.

Equality (20) allows us to calculate �

f

(�) in practice by looking through all

the 2

n

values of the vector u. Let us consider some examples.

Example 3.1. An a�ne function:

f(x) = (a; x)� a

0

; a 2 B

n

; a

0

2 B:

Using (11) we have

�

f

(�) =

1

2

n+1

max

u2B

n

�

�

�

(�1)

(u;a)

(�1)

a

0

2

n

(2�)

W (a)

�

�

�

=

1

2

(2�)

W (a)

: (23)

Example 3.2. The combining function of the Ge�e generator ([5], Chapter

6.3):

f(x

1

; x

2

; x

3

) = x

1

x

2

� x

1

x

3

� x

3

:

Performing the fast Walsh-Hadamard transform (see e.g. [10]) we have

^

F (0; 0; 0) =

^

F (0; 1; 1) =

^

F (1; 0; 0) =

^

F (1; 1; 1) = 0;

^

F (0; 0; 1) =

^

F (0; 1; 0) =

^

F (1; 0; 1) = 4;

^

F(1; 1; 0) = �4:

Substituting these values of

^

F (w); w 2 B

3

; into (20), we have:

�

f

(�) =

=

1

16

max

u

1

2B;u

2

2B;u

3

2B

j((�1)

u

2

+ (�1)

u

3

)8�+ ((�1)

u

1

�u

3

� (�1)

u

1

�u

2

)16�

2

j =

= �:

Example 3.3. The majority function ([1]):

f(x) =

(

1; W (x) > k;

0; W (x) � k;

where x 2 B

2k+1

; k � 0. It is known ([1]) that for the majority function

^

F (w) =

8

<

:

0; W (w) = 2s;

(�1)

s

2

(

2s

s

)(

2k�2s

k�s

)

(

k

s

)

; W (w) = 2s + 1;
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for s = 0; k. It leads to the relation

�

f

(�) =

�

2k

k

�

(2k + 1)

2

2k

�+ o(�

2

);

and hence

�

f

(�)

�

!M (k) > 1; �! 0;

and M (k) increases when k increases.

Let us investigate now the general properties of �

f

(�).

Corollary 3.2.

�

f

(�) �

1

2

n+1

X

w2B

n

j

^

F (w)j(2�)

W (w)

=

1

2

n+1

n

X

s=0

X

w2B

n

;W (w)=s

j

^

F (w)j(2�)

s

:

(24)

Proof. Follows directly from (20).

Inequality (24) provides an upper estimate of �

f

(�) for an arbitrary Boolean

function f(x). Hereafter we will derive upper estimates of �

f

(�) for Boolean

functions from certain classes of Boolean functions using (24) and known re-

strictions on j

^

F (w)j for these classes of functions.

Consider the behaviour of �

f

(�) under some simple transformations of f(x).

Lemma 3.3. If g(x) = f(x) � 1 then �

g

(�) = �

f

(�).

Proof. Follows from (6).

Lemma 3.4. If g(x) = f(x � a); a 2 B

n

; then �

g

(�) = �

f

(�).

Proof. From (8) we have

^

G(w) = (�1)

(a;w)

^

F (w). Substituting this into (20) we

have:

�

g

(�) =

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

(�1)

(a;w)

^

F (w)(2�)

W (w)

�

�

�

�

�

=

=

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u�a;w)

^

F (w)(2�)

W (w)

�

�

�

�

�

=

=

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

F (w)(2�)

W (w)

�

�

�

�

�

=

= �

f

(�):

Lemma 3.5. If �

f

(�) = o(�

k

) and g(x) = f(x) � (a; x); a 2 B

n

; W (a) = r �

k; then �

g

(�) = o(�

k�r

):

10



Proof. Theorem 3.2 implies that f(x) is balanced and k-th order correlation

immune. Hence

^

F (w) = 0; 8w : W (w) � k. From (7) we have

^

G(w) =

^

F (w� a). Further, W (w� a) � W (w)+W (a) = W (w)+ r. Hence

^

G(w) = 0 if

W (w) � k�r. This means that g(x) is balanced and (k�r)-th order correlation

immune, which implies that �

g

(�) = o(�

k�r

).

Lemma 3.6. If �

f

(�) = o(�

k

) and g(x) = f(xA) with A being a non-singular

(n � n)-matrix, for which W (a

0

i

) � r � k; i = 1; n; where a

0

i

is the i-th column

of the matrix A

�1

, then �

g

(�) = o(�

l

); l =

�

k

r

�

([�] denotes the integer part of

�).

Proof. From (9) we have

^

G(w) =

^

F (w(A

�1

)

T

). We denote

v = w(A

�1

)

T

=

W (w)

M

i=1

(a

0

i(w)

)

T

:

If W (a

0

i

) � r; i = 1; n; then W (v) � W (w)r. And for all w : W (w) � l; we

have W (v) � lr =

�

k

r

�

r � k. Hence

^

G(w) =

^

F (v) = 0; 8w : W (w) � l, which

implies �

g

(�) = o(�

l

).

Lemma 3.7. If �

f

(�) = o(�

k

) and g(x) = f(s(x)), where s() : x 2 B

n

! y 2

B

n

such that y

i

= x

�(i)

; i = 1; n, and �() being a permutation on f1; : : : ; ng,

then �

g

(�) = o(�

k

).

Proof. This lemma follows from Lemma 3.6 if we notice that for an arbitrary

mapping s(x) that permutes coordinates of x, s(x) = xA with a non-singular

matrix A such that W (a

i

) = 1; i = 1; n, where a

i

denotes i-th column of

A, and for the mapping that performs the invert permutation of coordinates

s

�1

(x) = xA

�1

. Hence W (a

0

i

) = 1; i = 1; n, i.e. under the conditions of

Lemma 3.6 r = 1 and hence l = k.

4 Balanced and correlation immune functions

We showed that �

f

(�) = o(�

k

) for balanced and k-th order correlation immune

functions. Let us investigate �

f

(�) if � is �xed.

The next lemma provides a common for all balanced and k-th order corre-

lation immune functions of n arguments upper estimate of �

f

(�).

Lemma 4.1. If f(x) is balanced and k-th order correlation immune then

�

f

(�) �

1

2

n

X

s=k+1

�

n

s

�

(2�)

s

: (25)

Proof. Follows from (24), (14), and (15).

11



Lemma 4.2. If f(x) is balanced and k-th order correlation immune then

0 � � � ��

f

) �

f

(�) � �; (26)

where

��

f

=

1

2

 

n

X

s=k+1

�

n

s

�

!

�

1

k

: (27)

Proof. It follows from (25) that

�

f

(�) �

1

2

n

X

s=k+1

�

n

s

�

(2�)

k+1

: (28)

Solving the inequality

1

2

n

X

s=k+1

�

n

s

�

(2�)

k+1

� �;

we have

� � ��

f

:

Corollary 4.1. If f(x) is balanced and (n � 1)-th order correlation immune

(i.e. a function of the form (16)), then

0 � � �

1

2

) �

f

(�) � �;

Proof. Follows from (26) and (27), since ��

f

=

1

2

if k = n � 1.

From (27) we have that when k { the order of correlation immunity { in-

creases (n is �xed), the value of ��

f

also increases. That means expansion of the

set of such � for which it is assured that the property �

f

(�) � � is valid. When

k = n�1 this set coincides with the set of all � �

1

2

(this follows from Corollary

4.1).

Let us consider now the behaviour of �

f

(�) in the case when we step from a

function with a less number of arguments to a function with a greater number

of arguments preserving certain their properties.

Lemma 4.3. Let f

(n

0

)

(x); f

(n

0

+1)

(x); f

(n

0

+2)

(x); : : : be a sequence of balanced

and (n� r)-th order correlation immune functions of n = n

0

; n

0

+ 1; n

0

+ 2; : : :

arguments respectivly. Then for any �xed r; r � n

0

� 1, and � <

1

2

;

�

f

(n)
(�)! 0; n!1:

12



Proof. From (28) we have

�

f

(n)
(�) �

1

2

r�1

X

l=0

�

n

n� l

�

(2�)

n�r+1

:

Since

�

n

n�l

�

=

1

l!

n(n � 1) : : : (n � l + 1) is a polynomial on n of degree l, then

Q

r�1

(n) =

1

2

r�1

P

l=0

�

n

n�l

�

is a polynomial on n of degree r � 1. Thus we have

�

f

(n)
(�) � Q

r�1

(n)(2�)

n�r+1

! 0; n!1:

5 Bent functions

The following lemma provides a common for all bent functions of n arguments

upper estimate of �

f

(�).

Lemma 5.1. If f(x) is a bent function then

�

f

(�) �

1

2

�

1 + 2�

p

2

�

n

�

1

2

n

2

n

X

s=

n

2

+1

�

n

s

�

(2�)

s

: (29)

Proof. Substituting (17) into (24) we have

�

f

(�) �

2

n

2

2

(n+1)

�

�

�

�

�

�

X

w2B

n

;

^

F (w)>0

(2�)

W (w)

�

X

w2B

n

;

^

F (w)<0

(2�)

W (w)

�

�

�

�

�

�

:

Let a = jw :

^

F (w) > 0j; b = jw :

^

F (w) < 0j, then a+ b = 2

n

and 2

n

2

(a � b) =

�2

n

, and hence a = 2

n�1

� 2

n

2

�1

; b = 2

n

� a. Let us consider the case when

a = 2

n�1

+ 2

n

2

�1

.

Since

n

2

�1

P

s=0

�

n

s

�

=

n

P

s=

n

2

+1

�

n

s

�

and

n

P

s=0

�

n

s

�

= 2

n

, we have

n

2

X

s=0

�

n

s

�

= 2

n�1

+

1

2

�

n

n

2

�

:

Using the inequality

�

n

n

2

�

� 2

n

2

we have

n

2

X

s=0

�

n

s

�

� 2

n�1

+ 2

n

2

�1

;

which implies

jw :W (w) �

n

2

j � jw :

^

F (w) > 0j;

13



therefore

�

�

�

�

�

�

X

w2B

n

;

^

F (w)>0

(2�)

W (w)

�

X

w2B

n

;

^

F (w)<0

(2�)

W (w)

�

�

�

�

�

�

�

�

X

w2B

n

;W (w)�

n

2

(2�)

W (w)

�

X

w2B

n

;W (w)>

n

2

(2�)

W (w)

=

=

X

w2B

n

(2�)

W (w)

� 2

X

w2B

n

;W (w)>

n

2

(2�)

W (w)

=

= (1 + 2�)

n

� 2

n

X

s=

n

2

+1

�

n

s

�

(2�)

s

:

The case when a = 2

n�1

� 2

n

2

�1

is treated in a similar way.

Here we will formulate an analogue to Lemma 4.3 for bent functions.

Lemma 5.2. Let f

(n

0

)

(x); f

(n

0

+2)

(x); f

(n

0

+4)

(x); : : : be a sequence of bent func-

tions of n = n

0

; n

0

+ 2; n

0

+ 4; : : : arguments respectively (n

0

is even). Then,

provided that � <

p

2�1

2

, we have

�

f

(n)
(�)! 0; n!1:

Proof. Follows from (29).

6 Second order functions

It is known that any Boolean function of the second order, i.e. a function of the

form

f(x) =

M

1�i<j�n

b

ij

x

i

x

j

�

n

M

i=1

b

i

x

i

� b

0

; (30)

where b

ij

2 B; 1 � i < j � n; b

i

2 B; i = 0; n; can be reduced by an invertible

a�ne transformation of coordinates to the form

f(x) = s(x) � (c; x)� c

0

; (31)

where

s(x) =

h

M

i=1

x

2i�1

x

2i

; 1 � h �

h

n

2

i

; (32)

c = (c

1

; : : : ; c

n

); c

i

= 0; i = 1; 2h:

14



It is shown in [8] that

^

S(w) =

(

2

n�h

; w

i

= 0; i = 2h+ 1; n;

0; otherwise;

where

^

S(w) is the Walsh-Hadamard transform of ŝ(x). Hence by (6) and (7) we

obtain for the Walsh-Hadamard transform of

^

f(x) if f(x) is of the form (31):

^

F (w) =

(

(�1)

c

0

2

n�h

; w

i

= c

i

; i = 2h+ 1; n;

0; otherwise:

(33)

That allows us to estimate �

f

(�).

Lemma 6.1. If f(x) is of the form (31) then

�

f

(�) �

1

2

�

1 + 2�

p

2

�

2h

(2�)

r

; (34)

where r = W (c).

Proof. We substitute (33) into (24) and get

�

f

(�) �

1

2

n+1

2h

X

s=0

(2�)

s+r

�

2h

s

�

2

n�h

;

and hence (34) follows.

Since an invertible a�ne transformation of coordinates keeps constant the

set of the Walsh-Hadamard spectrum values (see (9)), for second order functions

we have

j

^

F (w)j = 2

n�h

; if j

^

F (w)j 6= 0; (35)

which allows us to estimate �

f

(�) for an arbitrary second order Boolean func-

tion.

Lemma 6.2. If f(x) is a second order function then

�

f

(�) �

1

2

h+1

(1 + 2�)

n

�

1

2

h

n

X

s=n�h+1

(2�)

s

:

Proof. The lemma can be proved in the way that is similar to the proof of

Lemma 5.1, taking into account (35) and the fact: jw : j

^

F (w)j = 2

n�h

j =

2

2h

.

Let us obtain for second order functions an analogue of Lemmas 4.3 and 5.2.

15



Lemma 6.3. Let f

(n

0

)

(x); f

(n

0

+1)

(x); f

(n

0

+2)

(x); : : : be a sequence of second

order functions of n = n

0

; n

0

+ 1; n

0

+ 2; : : : arguments respectively. Let h

n

be

the value of h evaluated for f

(n)

(x). If � <

p

2�1

2

and 9H :

n

2

� h

n

� H, then

�

f

(n)
(�)! 0; n!1:

Proof.

�

f

(n)
(�) �

1

2

h

n

+1

(1 + 2�)

n

�

1

2

h

n

n

X

s=n�h

n

+1

(2�)

s

� 2

H�1

�

1 + 2�

p

2

�

n

! 0;

if � <

p

2�1

2

.

7 Characteristics �

(a)

f

(�) and D

(a)

f

(�)

7.1 �

(a)

f

(�)

As we de�ned earlier,

�

(a)

f

(�) =

1

2

n+1

max

j�

i

j��;i=1;n

j

1

2

� Pff(x)� (a; x) = 1gj:

Note that from (22) and (7) we have

�

(a)

f

(0) = 0, g(x) is balanced ,

^

F (x� a) = 0;

where g(x) = f(x) � (a; x); a 2 B

n

. Moreover,

�

(a)

f�a

0

(0) =

�

�

�

�

1

2

�

1

2

n

d(f; l

a;a

0

)

�

�

�

�

;

where a

0

2 B. Since (by Lemma 3.3) �

(a)

f

(�) = �

(a)

f�a

0

(�) and d(f; l

a;a

0

) =

2

n�1

+ s implies d(f; l

a;a

0

�1

) = 2

n�1

� s, we have

max

a2B

n

�

(a)

f

(0) = max

a2B

n

;a

0

2B

�

�

�

�

1

2

�

1

2

n

d(f; l

a;a

0

)

�

�

�

�

=

= max

a2B

n

;a

0

2B

�

1

2

�

1

2

n

d(f; l

a;a

0

)

�

=

1

2

�

1

2

n

min

a2B

n

;a

0

2B

d(f; l

a;a

0

) =

=

1

2

�

1

2

n

N (f);

or conversely:

N (f) = 2

n�1

� 2

n

max

a2B

n

�

(a)

f

(0):

16



Lemma 7.1.

�

(a)

f

(�) =

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

F (w � a)(2�)

W (w)

�

�

�

�

�

:

Proof. Follows from (7) and (20).

By Lemma 3.5 we have showed already that if f(x) is a balanced and k-th

order correlation immune function and W (a) = r � k; a 2 B

n

, then

�

(a)

f

(�) = o(�

k�r

);

i.e. g(x) is balanced and (k � r)-th order correlation immune, and hence

�

(a)

f

(�) �

n

X

s=k�r+1

�

n

s

�

(2�)

s

:

For bent functions, since jF (x � a)j = jF (x)j = 2

n

2

, we have for �

(a)

f

(�)

the same upper estimate as for �

f

(�):

�

(a)

f

(�) �

1

2

�

1 + 2�

p

2

�

n

�

1

2

n

2

n

X

s=

n

2

+1

�

n

s

�

(2�)

s

:

Also we have

�

(a)

f

(�) �

1

2

�

1 + 2�

p

2

�

2h

(2�)

r

for functions of the form (31), where r =

n

P

i=2h+1

(a

i

� c

i

), and

�

(a)

f

(�) �

1

2

h+1

(1 + 2�)

n

�

1

2

h

n

X

s=n�h+1

(2�)

s

for second order functions.

7.2 D

(a)

f

(�)

By de�nition,

D

(a)

f

(�) = max

j�

i

j��; i=1;n

j

1

2

� Pfd

f;a

(x) = 1gj:

Lemma 7.2.

D

(a)

f

(�) =

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

H(w)(2�)

W (w)

�

�

�

�

�

;

17



where

^

H(w) =

1

2

n

X

v2B

n

(�1)

(a;v)

^

F (v)

^

F (v �w) (36)

is the Walsh-Hadamard transform of

^

d

f;a

(x).

Proof. Follows from (20), (8) and (10).

The auto-correlation function of a Boolean function f(x) is de�ned ([7]) as

r̂

f

(a) =W (

^

d

f;a

):

From (36) and (12) it follows that

r̂

f

(a) =

1

2

n

X

v2B

n

(�1)

(a;v)

^

F

2

(v);

which is known as the Wiener-Khintchin theorem. Hence

D

(a)

f

(0) =

1

2

n+1

jr̂

f

(a)j:

In [7] the extended propagation criterion was de�ned. A Boolean function

is said to satisfy the extended propagation criterion of degree m and order k

(EPC(m,k)) if knowledge of k bits of x gives no information on d

f;a

(x); 8a : 1 �

W (a) � m.

The propagation criterion of degree m is a particular case of the above

de�nition, namely, it is equal to EPC(m,0).

It was shown also in [7] that f(x) satis�es EPC(m,k) if and only if the

direction derivative d

f;a

(x) is balanced and k-th order correlation immune for

all a : 1 � W (a) � m. This result leads to the following property of D

(a)

f

(�).

Lemma 7.3. D

(a)

f

(�) = o(�

k

); 8a : 1 � W (a) � m; if and only if f(x) satis�es

EPC(m,k).

In addition, for a function that satis�es EPC(m,k) we have

D

(a)

f

(�) �

1

2

n

X

s=k+1

�

n

s

�

(2�)

s

;

for all a : 1 � W (a) � m.

Since bent functions satisfy EPC(m,0) for all m = 1; n, then

D

(a)

f

(�) = o(1); 8a 6= 0;

for a bent function f(x).
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Let us consider a second order function (30), which can be written in the

form f(x) = xCx

T

� (b; x)� b

0

, where C = fc

ij

g; c

ij

2 B; is an (n�n)-matrix,

b = (b

1

; : : : ; b

n

) 2 B

n

; b

0

2 B. Since

f(x � a) = (x� a)C(x� a)

T

� (b; x� a)� b

0

= f(x) � (c; x)� c

0

;

where c = a(C �C

T

); c

0

2 B, by (23) we have:

D

(a)

f

(x) =

1

2

(2�)

W (c)

:

8 The behaviour of �

f

(�) when �!

1

2

Earlier, by Theorem 3.2, we have showed what functions are better from the

viewpoint of order of smallness of �

f

(�). Now we concern the case when �!

1

2

.

This means the situation when the probability distributions of the function's

arguments can vary almost arbitrarily. We know (Lemma 3.2) that �

f

(

1

2

) =

1

2

,

but for di�erent functions the speed with which �

f

(�) tends to

1

2

can vary. We

will show what it depends on.

We de�ne the sensitivity of a Boolean function ([1]) on a Boolean vector

x 2 B

n

as

S

f

(x) =

n

X

i=1

d

f;e

i

(x):

Also we de�ne the minimum sensitivity of a Boolean function as

S

min

(f) = min

x2B

n

S

f

(x):

Note that

0 � S

min

(f) � n:

Theorem 8.1.

1

2

��

f

(

1

2

� �) = S

min

(f)� + o(�): (37)

Proof.

1

2

��

f

(

1

2

� �) =

=

1

2

�

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

F (w)(1 � 2�)

W (w)

�

�

�

�

�

=

=

1

2

�

1

2

n+1

max

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

^

F (w) (1� 2W (w)�+ o(�))

�

�

�

�

�

=

=

1

2

�

1

2

n+1

max

u2B

n

�

�

�

�

�

^

f (u)2

n

� 2�

X

w2B

n

(�1)

(u;w)

W (w)

^

F (w) + o(�)

�

�

�

�

�

=

=

1

2

n

min

u2B

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

W (w)

^

F (w)

�

�

�

�

�

�+ o(�):
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Since it is shown in [1] that

S

f

(u) =

1

2

n

�

�

�

�

�

X

w2B

n

(�1)

(u;w)

W (w)

^

F (w)

�

�

�

�

�

we obtain (37).

Theorem 8.1 implies that if the minimum sensitivity of f(x) is equal to 0 then

�

f

(�) tends to

1

2

very fast while � tends to

1

2

.

Lemma 8.1. If f(x) = l

a;a

0

(x); a 2 B

n

; a

0

2 B; then S

min

(f) = W (a).

Proof. Since d

l

a;a

0

;e

i

(x) = a

i

;

S

min

(f) = min

x2B

n

n

X

i=1

a

i

=W (a):

Lemma 8.2. S

min

(f) = n if and only if f(x) is of the form (16).

Proof. If f(x) is of the form (16) then by Lemma 8.1 we have S

min

(f) = n.

If S

min

(f) = n then

S

f

(x) = n; 8x 2 B

n

;

hence

n

X

i=1

d

f;e

i

(x) = n; 8x 2 B

n

;

and consequently

d

f;e

i

(x) = 1; 8x 2 B

n

; i = 1; n;

which leads to

f(x

1

; : : : ; x

n

) = g

i

(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

)� x

i

; i = 1; n;

which implies

f(x

1

; : : : ; x

n

) = x

1

� : : :� x

n

� a

0

; a

0

2 B:

It is worth noting that the best functions from the viewpoint of maximum

of S

min

(f) are the best functions from the viewpoint of order of smallness of

�

f

(�).

Lemma 8.3. If there is no terms of the �rst order in the algebraic normal form

of f(x) then S

min

(f) = 0.
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Proof. Under these conditions the algebraic normal form of d

f;e

i

(x) has no con-

stant term. Hence d

f;e

i

(0) = 0; i = 1; n, and

S

min

(f) = S

f

(0) =

n

X

i=1

d

f;e

i

(0) = 0:

Lemma 8.4. If f(x) = g(x)� l

a;a

0

(x); a 2 B

n

; a

0

2 B, with g(x) such that it

has no terms of the �rst order in its algebraic normal form, then S

min

(f) > 0

if and only if the system

d

g;e

i

(x) = a

i

; i = 1; n;

has no solutions.

Proof. Note that d

f;e

i

(x) = d

g;e

i

(x)�a

i

. Then we have the following reasonings.

S

min

(f) = 0 if and only if

there exists x

0

2 B

n

such that S

f

(x

0

) = 0 if and only if

d

f;e

i

(x

0

) = 0; i = 1; n; if and only if

d

g;e

i

(x

0

)� a

i

= 0; i = 1; n,

which implies the statement of the lemma.

Let us continue with the examples of f(x) considered above.

Example 8.1. The combining function of the Ge�e generator.

S

min

(f) =

=

1

8

min

u

1

2B;u

2

2B;u

3

2B

�

�

((�1)

u

2

+ (�1)

u

3

)4 + ((�1)

u

1

�u

2

+ (�1)

u

1

�u

3

)8

�

�

=

= 1:

Example 8.2. The majority function. Let u

0

= (1; 1; : : : ; 1), then

S

f

(u

0

) =

=

1

2

n

�

�

�

�

�

�

k

X

s=0

X

w2B

n

;W (w)=2s+1

(�1)

n

L

i=1

w

i

2(�1)

s

�

2s

s

��

2k�2s

k�s

�

�

k

s

� (2s + 1)

�

�

�

�

�

�

=

=

1

2

n�1

�

�

�

�

�

k

X

s=0

(�1)

s

�

2s

s

��

2k�2s

k�s

�

�

k

s

� (2s + 1)

�

2k + 1

2s+ 1

�

�

�

�

�

�

=

=

1

2

n�1

�

2k

k

�

(2k + 1)

�

�

�

�

�

k

X

s=0

(�1)

s

�

k

s

�

�

�

�

�

�

= 0:

Hence S

min

(f) = 0.
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9 Conclusion

In this paper we supposed that the probability distributions of a Boolean func-

tion's arguments deviate from the uniform distribution and these deviations do

not exceed �. Under these conditions we presented new characteristics �

F

(f(); �)

of the probability properties of Boolean functions.

The relation between the probability distribution of a Boolean function's

value and the probability distributions of its arguments was established, and by

use of this the explicit formula for evaluating of �

F

(f(); �) was obtained.

We presented two approaches to determine what functions are better than

others { for small �, and for large �. We paid special attention to the classes of

balanced and correlation immune functions, bent functions, and second order

functions, for which upper estimates of �

F

(f(); �) were found and statements

on behaviour of sequences f

(n)

(x) of functions of n arguments with n!1 were

made.

The main results of this paper were reported in [6].
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