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Abstract

We propose a new technique for making mix nets
robust, calledrandomized partial checking(RPC).
The basic idea is that rather than providing a proof
of completely correct operation, each server pro-
vides strong evidence of its correct operation by
revealing a pseudo-randomly selected subset of its
input/output relations.

Randomized partial checking is exceptionally effi-
cient compared to previous proposals for providing
robustness; the evidence provided at each layer is
shorter than the output of that layer, and produc-
ing the evidence is easier than doing the mixing.
It works with mix nets based on any encryption
scheme (i.e., on public-key alone, and on hybrid
schemes using public-key/symmetric-key combina-
tions). It also works both with Chaumian mix
nets where the messages are successively encrypted
with each servers’ key, and with mix nets based on
a single public key with randomized re-encryption
at each layer.

Randomized partial checking is particularly well
suited for voting systems, as it ensures voter pri-
vacy and provides assurance of correct operation.
Voter privacy is ensured (either probabilistically or
cryptographically) with appropriate design and pa-
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rameter selection. Unlike previous work, our work
provides voter privacy as a global property of the
mix net rather than as a property ensured by a sin-
gle honest server. RPC-based mix nets also pro-
vide very high assurance of a correct election result,
since a corrupt server is very likely to be caught if
it attempts to tamper with even a couple of ballots.

Keywords: mix network, mix net, shuffle net-
work, electronic voting, randomized partial check-
ing, public verifiability.

1 Introduction

Chaum [7] introduced the notion of amix netas a
tool for achieving anonymity in email and in elec-
tronic elections. A mix net consists of a sequence
of servers, calledmixes. Each server receives a
batch of input messages and produces as output the
batch in permuted (mixed) order. Such mix nets
are sometimes calledmix cascadesor shuffle net-
works. When used for voting, the input messages
are the ballots of the voters. An observer should
not be able to tell how the inputs correspond to the
outputs; this property provides voter privacy in an
electronic election. In Chaum’s original proposal,
before a message is sent through the mix net it is
first successively encrypted with the public keys of
the mixes it will traverse in reverse order; each mix
then decrypts each message before sending it on to
the next mix.

When a mix net is used to provide voter privacy in
an election, it is desirable that it berobust—i.e., that
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each mix should also output a proof that it has oper-
ated correctly. The concern is that otherwise a cor-
rupt server could replace a ballot with another one,
appropriately encrypted, without anybody noticing.

Abstractly, a robust mix net should:

1. operate correctly: the output should corre-
spond to a permutation of the input,

2. provide privacy: an observer should not be
able to determine which input element corre-
sponds to a given output element (and vice
versa) in any way better than guessing, and

3. be robust: provide a proof or at least strong
evidence that it has operated correctly. In ad-
dition, it is beneficial if any interested party
is able to check the proof or evaluate the evi-
dence; a property calledpublic verifiability.

We review previous work on robust mix nets in Sec-
tion 2; numerous techniques have been proposed
for achieving robust mix nets.

1.1 Randomized Partial Checking

We introduce a novel robustness technique, which
we call Randomized Partial Checking, and show
how it can be applied to obtain a highly efficient
robust and private mix net, which we call anRPC
mix net. We also show how an RPC mix net is well
suited for use in electronic elections.

In an RPC mix net, the inputs are mixed as usual
by a sequence of servers. The servers then produce
strong evidenceof their correct operation, rather
than aproof of their correct operation. The strong
evidence takes the form of a partial revelation of
their input/output relation. For example, a server
with n inputs might reveal, for each ofn=2 ran-
domly selected inputs (or some other sufficiently
large fraction), which is the corresponding output.
(Of course, the server should have little or no con-
trol over which inputs are selected.) This procedure

allows for a probabilistic verification of the correct
operation of each server.

With an RPC mix net, privacy is a somewhat more
delicate affair, as servers will be routinely disclos-
ing information about their input/output relations in
order to provide evidence of correct operation. We
shall see how privacy can be ensured nonetheless
as a global property of the RPC mix net. In one
version of our proposal, adjacent servers are paired,
such that if one server reveals information about a
link, the paired server does not reveal information
about that same link. See Figure 1 for an illustra-
tion.

S1 S2 S3 S4

Figure 1: This figure shows a particular permuta-
tion for a mix net, partially revealed. The bold
lines show input/output correspondences that are
revealed; the dashed lines show correspondences
that would be hidden. Server S1 is paired with S2,
and server S3 is paired with S4; no input/output cor-
respondence is revealed across a pair. Thus, to a ca-
sual observer, only the correspondences relating to
the bold lines can be inferred.

Another advantage of RPC mix nets is that they are
very versatile – they can be used with almost any
encryption scheme, whether with or without shar-
ing of the secret keys among the mix servers.

1.2 Privacy in RPC mix nets

Privacy in an RPC mix net is a different and some-
what more subtle issue than it is for a traditional
mix net. In a traditional mix net, privacy is obtained
whenever any one server is honest (i.e., whenever



any one server keeps its input/output relation totally
secret). In an RPC mix net, however, every server
intentionally reveals a portion of its input/output re-
lation. Therefore, privacy becomes a global prop-
erty of the mix net rather than the result of any sin-
gle honest server.

Our basic strategy for ensuring privacy is such that
after the servers reveal partial information, there is
still no way to connect any input with a particu-
lar output, even if some of the servers are corrupt.
Using this approach, an RPC mix net guarantees
privacy against any minority of cheating servers.
While different privacy guarantees can be made, we
consider a construction in which each element is
”hidden among” at least half of all the candidate el-
ements.

1.3 Robustness

Robustness of a mix net can be obtained in serveral
different ways, namely cut-and-choose [17, 2];
repetition robustness [11, 12, 15]; standard zero-
knowledge proofs in sorting networks [3, 13]; use
of multiple participants per layer [8, 18]; error de-
tecting techniques [14]; and techniques based on
secret sharing [10, 16]. (We explain the relations
between these in Section 2.)

In most of these schemes, a detected cheating at-
tempt results in the emulation of of the cheater
(such as in [14]) or the restarting of the protocol
after a replacement of the cheater (such as in [17]).
In some schemes, such as [8, 18], the outputs of the
cheaters are simply ignored by the honest majority,
and the execution continues without any interrup-
tion. (These schemes, though, tolerate a substan-
tially lower fraction of cheaters.) In our scheme,
either of the two first approaches can be taken upon
detection of a cheater, although the best approach
may depend on the type of encryption used. In
particular, if an encryption scheme allowing re-
encryption (such as ElGamal) is employed, then ei-
ther approach may be taken, while emulation is the
better approach in hybrid schemes, and in schemes
of the Chaumian type. This is so since the operation

performed by the servers on their input elements
is deterministic (if we do not take the permutation
aspect into consideration.) For the same reason,
schemes of this latter type requires us to perform
the correctness check in phase with the mixing, as
opposed to after all mixing has been performed.
For simplicity, we focus on schemes based on re-
encryption in the following, but note that given
appropriate attention to the recovery from cheat-
ing, our techniques apply straighforwardly to other
types of encryption as well.

If no servers are caught cheating, it is still possible
that some undetected cheating has occurred. For
example, a corrupt server may have deleted one of
its correct output messages and replaced it with an
arbitrary incorrect one. We shall see, however, that
it is very unlikely that a meaningful amount of un-
detected cheating has occurred, where cheating is
meaningfulif and only if it changes the outcome of
the election. Thus, our solution is geared in par-
ticular towards use in election schemes or similar
applications. To quantify the likelyhood that cheat-
ing occured unnoticed, we introduce the notion of
boundary checks, and employ them to assess when
the output can be relied on. Inextremelyclose
races, our techniques may have to be augmented
by additional or alternative robustness techniques,
while even inreasonablyclose races, it will suffice.
For example, we show that our techniques would
more than suffice to prove robustness in an election
such as the recent Florida state presidential elec-
tion.

1.4 Application to Electronic Voting

RPC mix nets are well suited to voting, since any-
one can calculate strong upper bounds on the prob-
ability that an adversary could have successfully
tampered with enough ballots to change the elec-
tion outcome. If this probability is negligible (as it
almost certainly would be in practice), the observed
result of the election is endorsed as “official”. Oth-
erwise, we may fall back to an alternative and po-
tentially more costly scheme to count the cast votes.



Thus, our scheme is optimistic in a slightly differ-
ent sense than schemes that simply assume, in the
absence of detection, that there are no cheaters.

1.5 Outline of this paper

Section 2 reviews previous work on robust mix
nets. Section 3 then provides a common fram-
work and common notation for discussing mix nets.
Section 4 describes our main idea—that each mix
server should reveal a randomly selected portion of
its input/output relations. Section 5 then sketches
how one can use RPC nets to implement electronic
voting in a practical and trustworthy manner. Sec-
tion 6 shows how RPC mix nets achieve public ver-
ifiability in the sense that any voter or other inter-
ested party can check that the probability that the
election outcome is correct is extremely high.

2 Previous Work on Robust Mix Nets

In the first proposal for a robust mix net, due to
Ogata, Kurosawa, Sako, and Takatani in 1997 [17],
robustness was achieved by means ofcut-and-
choosemethods. Similar techniques were later also
employed in [2]. The primary drawback of this ap-
proach is its inefficiency, both in terms of compu-
tation and communication. While the schemes of-
fer public verifiability, efficiency constraints make
this feature difficult to obtain in a practical sense for
large-scale elections.

An alternative technique employed by Abe [3] and
similarly by Jakobsson and Juels [13] relies on
more efficient zero-knowledge proofs of ciphertext
equivalence. The resulting mix net construction
mimics a sorting network in its architecture, but
uses local random permutations instead of local
sorting in its nodes. While it offers public veri-
fiability at reasonable cost, its asymptotic behav-
ior makes it useful primarly for batches of small
or moderate sizes; it becomes impractical for large
elections.

More recently, techniques developed independently
by Furukawa and Sako [10] and by Neff [16]
employ what may loosely be regarded as secret-
sharing mechanisms to detect corruptions of data.
Both of these techniques are publicly verifiable,
and have costs linear in the number of inputs (and
servers). While they offer features well suited for
use in large-scale elections, our proposed technique
achieves further efficiency and versatility.

Researchers have also considered a weakening of
the requirement for public verifiability in mix nets,
instead relying on a trust assumption that a certain
number of servers are honest. An early technique
in this vein, introduced by Jakobsson [11], is that
of repetition robustness. Repetition robustness in-
volves processing and comparison of several ran-
domized instances of input items. The same tech-
nique is also employed in [12, 15]. Repetition ro-
bustness is primarily useful for very large batches.

Another approach for achieving robustness is to
simply let each layer of the mixing be processed
by asetof servers (instead of only one), basing the
correctness of the result on the honesty of a ma-
jority in each layer. This technique was suggested
by Desmedt and Kurosawa [8] for asymmetric ci-
phertexts, and later also used for hybrid encryption
[18]. Diverging from the other proposals, mix nets
of this type are resilient against corruption of less
than a square root of the number of servers, instead
of against a minority as is standard. On the other
hand, the very straightforward structure makes this
type of mix net trivial to analyse and understand.

While asymmetric mix networks are well suited
for short plaintexts, they have problems handling
longer plaintexts. These are either in the form of ef-
ficiency problems (with very large moduli) or with
keeping plaintexts parts together after when pass-
ing them thorugh a mix network in a “chopped-
up” manner (this, in turn, may result in lower ef-
ficiency.) Therefore, hybrid mixes have to be em-
ployed for longer plaintexts (note that these should
all be of the same size after having been padded).
As mentioned above, one approach, used by Abe
[18], is to replicate servers. Another technique, in-
troduced by Jakobsson and Juels [14], involves use



of cryptographically-based error detection to iden-
tify cheating. This approach has the advantage of
permitting symmetric and asymmetric encryption
to be interleaved, leading to efficient processing of
long input items. The underlying trust assumption
is that a majority of servers is honest. This mix net
is quite fast for a small number of inputs, although
in this case is not quite as fast as [12, 15] if the
inputs are short. Additionally, it only works as a
decryption mix net, not a re-encryption mix net.

3 Notation

We now provide notation describing the operation
of a simple mix net without robustness against
server faults.

A voting scheme can employ either of two basic
flavors of mix net.

The first of these is known as are-encryption mix
net. In this type of mix net, both inputs and outputs
are ciphertexts under the public key of some (se-
mantically secure) cryptosystem that admits for re-
encryption without knowledge of the corresponding
private key; El Gamal is a common choice. The ac-
tion of each server in the net is to re-encrypt inputs
and then permute them.

The second type of mix net is known as adecryp-
tion mix net. This is the basic mix scheme formu-
lated by Chaum. Inputs to the mix net are cipher-
texts constructed through successive encryption un-
der the public keys of individual servers. To process
inputs, each server decrypts the layer corresponding
to its own public key in each ciphertext and then
permutes the resulting items.

Our RPC scheme is applicable to either type of mix
net. Let us now introduce general notation that is
applicable to either kind of mix net.

We assume that there is a sequence ofn ciphertexts
corresponding to input messagesM

1

, M
2

, . . . ,M
n

to the mix net, each such ciphertext submitted by

a distinct partyV
i

. In the application to electronic
voting, M

i

is the ballot of voterV
i

. These inputs
aresecret; inputM

i

is known only to partyV
i

.

The output of the mix net is a sequenceZ
1

, Z
2

,
. . . ,Z

n

. When the mix net operates correctly, this
sequence is a permutation of the input sequence.

We assume that there are one or morepublic param-
eters(e.g., public keys) of the mix net, denoted col-
lectively asPK, known to all voters. There are also
one or moresecret parameters(e.g., secret keys),
denoted collectively asSK, which may be shared
among the servers, or alternatively by some other
set of authorities.

S1 S2 S3 S4

E

E

E

E

E

E

E

E

D

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Figure 2: Generalized mix net, shown for n=8, t=4.
Then inputsM

1

,M
2

,. . . ,M
n

are first privately en-
crypted by their providers using encryption func-
tion E. The t mix serversS

1

, S
2

, . . . , S
t

then
each privately transform and permute their inputs,
and provide the result to the next server. The final
decryption operationD yields a permuted version
Z

1

,Z
2

, . . . ,Z
n

of the original input sequence. This
final stage may be integrated in the previous trans-
forms.

The general operation of a mix net is depicted in
Figure 2. There is an initial encryption of each in-
put message by its provider. The resulting sequence
of ciphertexts is then provided to the first mix server
S

1

of a sequence oft mix serversS
1

, S
2

, . . . , S
t

.
Each mix server cryptographically transforms each
input, permutes the results, and provides the result
as input to the next server. A final decryption oper-
ation produces the sequenceZ

1

, Z
2

, . . . ,Z
n

which
is a permutation of the original input sequence of
messages.

We assume the existence of a publicbulletin board



where messages (digitally signed by their poster)
can be posted by anyone, and read by anyone. This
board is written inappend-onlymode; nothing can
be deleted or modified once posted. The original
encrypted input sequence to the first mix server, the
output sequence of each mix server, and the final
decrypted message sequence will all be posted on
the bulletin board.

We denote the initial encrypted version of message
M

i

asC
i;0

. That is,

C

i;0

= E

PK

(M

i

) :

The sequenceC
1;0

, C
2;0

, . . . , C
n;0

is input to the
first server.

The encryption functionE must benon-malleable
or plaintext aware[9, 4, 6]. Thus, it may consist
of a ciphertext in an underlying cryptosystem such
as El Gamal, coupled with a proof of knowledge of
the corresponding plaintext [19, 11]. The reason for
this is to prevent attacks in which one (potentially
corrupt) voter posts a re-encryption of the ballot of
some other voter.1

Server S
j

, for 1 � j � t, cryptographically
transformseach inputC

i;j�1

using a cryptographic
transformation functionX

j

. Here X

j

may de-
pend on secret key informationSK

j

known only
to serverS

j

, as well as on the public parameters
PK. The transformationX

j

may also be random-
ized. Each serverS

j

also permutes its inputs based
on a secret permutation�

j

of f1; 2; : : : ; ng, so that

C

i;j

= X

j

(C

�

j

(i);j�1

) : (1)

In the case of a re-encryption mix, a final decryp-
tion operationD may be applied to the output of the
final mix server:

Z

i

= D

SK

(C

i;t

) :

1For example, suppose that a corrupt voter suspects an-
other, target voter of having submitted an unusual write-invote
like “Julius Caesar”. The corrupt voter could re-encrypt and
re-post the vote of the target voter. If “Julius Caesar” appears
twice in the finally tally, then the suspicions of the corruptvoter
would be confirmed. Similar attacks can also, as is well known,
be employed for vote buying or coercion.

This decryption operation will be null in the case
of a decryption mix net, since theX

j

transforms
performed all necessary decryptions. In the case
of a re-encryption mix net, one or moredecryption
authoritiesknowingSK perform this final decryp-
tion.

For a Chaumian mix net (i.e. a decryption mix net),
the public keying materialPK includes an individ-
ual public keyPK

j

for each serverS
j

in the under-
lying cryptosystem, e.g., RSA. ServerS

j

then holds
one of the corresponding private keys,SK

j

. Thus,
the encryption schemeE in this case involves suc-
cessive (random-padded) encryption of the message
M

i

underPK
t

; PK

t�1

; : : : ; PK

1

respectively. To
satisfy the need for plaintext awareness inE, we
might employ an encryption scheme like OAEP-
based RSA [5]. In a decryption mix net, we nat-
urally replaceX

j

with a decryptionfunction: each
serverS

j

decrypts a ciphertextC
�

j

(i);j�1

using its
private keySK

j

, thereby stripping away a cipher-
text layer. As the output of serverS

t

is thus a set of
plaintexts, there is no need in a Chaumian mix net
a further decryption operationD.

For a re-encryption mix net, the initial encryption
function may be a suitable plaintext-aware version
of El Gamal, as noted above. (Note that the cor-
responding proofs of knowledge do not have to be
passed through the mix network, but stripped off
after having been checked initially.) Each cryp-
tographic transformX

j

will be a randomized re-
encryption. The final decryption operatorD will be
El Gamal decryption.

3.1 Committing to private permutations

To assist in verification of correct behavior as ex-
plored in the next section, each serverS

j

supple-
ments its list of output values with a commitment
to its private permutation�

j

. So as to enable partial
revelation of�

j

, servers in fact commit to individ-
ual input/output mappings, as we now describe.

To provide rough notation, let�
w

[i℄ denote a com-
mitment to integeri under witnessw. There are



two equivalent ways for a serverS
j

to commit to its
private permutation�

j

. The first is to express�
j

in
terms of mappings of input elements to output ele-
ments, i.e., as a list of commitments to the sequence
f�

j

(1); �

j

(2); : : : ; �

j

(n)g. We denote a commit-

ment of this form by�(In)
j

= f�

w

ji

[�

j

(i)℄g

n

i=1

.
A second way to specify the private permutation
�

j

is in terms of the mappings of output elements
to input elements, i.e., as a commitment to the
sequencef��1

j

(1); �

�1

j

(2); : : : ; �

�1

j

(n)g. We de-

note the commitment to this list by�(Out)

j

=

f�

w

ji

[�

�1

j

(i)℄g

n

i=1

. For either of the two forms of
commitment, we let

i;j

denote theith commitment
of serverS

j

.

In our constructions described in the next section, a
serverS

j

will provide with its output a commitment

to �

j

. The server will employ the form�(In)
j

or

�

(Out)

j

depending on its role in the mix network.

In practice, in the interest of speed, we might in-
stantiate the commitment scheme� by means of a
hash functionh such as SHA-1. To commit to an
integeri, the committer selects a random bitstring
w, and computes�

w

[i℄ = h(w k i), wherek de-
notes bitstring concatenation.2 It may be observed
that this form of commitment is computationally
binding, with security dependent on the collision-
freeness ofh. Provided thatw is long enough, the
commitment is unconditionally hiding with high
probability over the choice of witness. This is be-
cause for a given imageh(w k i) there are likely
to correspond many values ofw0 and i such that
w

0

k i

0 constitutes a valid preimage.

4 Randomized Partial Checking of a Mix
Net

Of course, anyone may check that each server has
produced the same number of outputs as it has in-

2To ensure input of a 512-bits block for the compression
function in the case whereh is chosen to be, e.g., SHA-1, it is
convenient to express the integeri as a string ofdlog

2

ne bits,
andw as a bitstring of length512 � dlog

2

ne.

puts. But a server might have deleted a proper out-
put, and replaced it by a copy of another one, or by
an output that it generated itself. In this latter case,
it would be an appropriately encrypted output.

In our proposal, each server will – during the check-
ing phase – reveal a fractionp > 0 of its in-
put/output correspondences. The subset to be re-
vealed is selected by the other servers, or by using
a random oracle. Thus, only some messages will
have their origins hidden by the first mix server. But
as the messages progress through the net, eventu-
ally every message will have its origin hidden. For
an electronic election, voter privacy then emerges
as a global property of the mix net, not a local prop-
erty of each mix server.

In our formulation of the problem, the penalty for
misbehavior by a server will be very large. We thus
presume that the threat of detection of misbehav-
ior by a server will be enough to ensure that the
server will behave properly. We do not worry about
the possibility that some server will try to block
an election by, say, refusing to carry out its duties.
(Threshold mix nets are designed to counter this
threat; another approach would be to require that
each server escrow shares of its secret key with the
other servers before voting begins.)

Similarly, the chance that a server who attempts to
substitute ballots will be caught will go up expo-
nentially fast with the number of ballots he attempts
to replace. Thus, a server could not reasonably ex-
pect to get away with changing more than a single
ballot, or possibly two. But even when tampering
with a single ballot, his chance of discovery is more
than one-half, for reasonable settings of the system
parameters, and so we presume that he will be de-
terred from even attempting to cheat.

4.1 Revealing a particular input/output corre-
spondence

In the verification stages of our protocol, a server
is asked to reveal a collection of input/output cor-
respondences. If the server has committed to in-



put mappings, these correspondences are specified
in terms of the ordering of inputs to the server. Oth-
erwise, they are specified in terms of outputs to the
server.

Suppose that serverS
j

wishes to reveal information
allowing anyone to verify a particular input/output
correspondence. Let us suppose that inputC

k;j�1

maps toC
i;j

. That is, the secret permutation�
j

known only toS
j

mapsi to k (see equation (1)).

The server reveals the triple

(k; i; R

jki

);

whereR
jki

is the information necessary to validate
equation (1). For a decryption mix net, this infor-
mationR

jki

make take the form of random padding
created by the initial provider and used when en-
cryptingC

i;j

to obtainC
k;j�1

. For a re-encryption
mix net, this informationR

jki

takes the form of ran-
dom parameters used to control the re-encryption,
or a proof of knowledge of these.

ServerS
j

additionally reveals its commitment to
the mapping fromC

k;j�1

maps toC
i;j

. That is, if

it provided a commitment to�
j

of the form�

(In)

j

,
then it decommits

k

, i.e., its commitment to�
j

(k).

If the server provided a commitment�(Out)

j

, then it

decommits
i

, i.e., its commitment to��1
j

(i).

4.2 Determining which correspondences to re-
veal

Clearly, a server should not know which in-
put/output correspondences it will have to reveal
until after it has committed its output sequence of
ciphertexts to the bulletin board.

We first focus on the problem of having a random
seed committed to before serverS

j

produces its
output. This seed will then help determine which
input/output correspondences serverS

j

should re-
veal. There are a variety of ways of achieving this
goal; we suggest the following straightforward ap-
proach.

After the close of the election and prior to the open-
ing of input/output relations, servers jointly com-
pute a random seedR. They may accomplish this
by having every serverS

j

publish a commitment
to a valueR

j

selected uniformly at random from
some appropriate set. All servers then decommit
and computeR as a combination of theR

j

values;
for example, they might computeR = �

t

j=1

R

j

.

Let BB here denote the full contents of the bulletin
board after all servers have published their full tran-
scripts, i.e., all inputs, outputs, and commitments
(but for the moment excluding input/output rela-
tions). Note that new public transcripts are con-
stantly added to the bulletin board during the mix
process: thus,BB denotes both the bulletin board
and thisdynamically changingvalue. Servers com-
bine the random valueR with BB through use of an
appropriate hash functionh, computing a random
valueQ = h(R;BB). The purpose of incorporat-
ing BB into the random seedQ in this manner is to
achieve public verifiability for the mix scheme, as
we discuss later.

For each serverS
j

, a seedQ
j

derived fromQ can be
used to determine what challenges the server needs
to answer. Here,Q

j

may be computed straightfor-
wardly using an appropriate hash functionh. We
might, for example, computeQ

j

= h(Q; j).

We next assume the existence of two predicatesP

In

andP
Out

that determine which inputs and which
outputs should have their input/output correspon-
dences revealed. More precisely:

� If P
In

(Q

j

; k) is true, then serverS
j

must re-
veal the input/output pair containingC

k;j�1

as
input.

� If P
Out

(Q

j

; i) is true, then serverS
j

must re-
veal the input/output pair containingC

i;j

as
output.

(A correspondence may be revealed because either
becauseP

In

specifies it, or becauseP
Out

specifies
it.) Any other input/output correspondences should
not be revealed. These predicates may also depend



on other global parameters. For example, there may
be a global selection probabilityp that is intended
to specify the fraction of correspondences to be re-
vealed. For some versions of our scheme it may
be thatP

In

is always false, or thatP
Out

is always
false. (That is, the pairs to be opened may be en-
tirely specified by their input positions, or by their
output positions.)

We next present two variations on the details; the
second scheme is the one we favor.

4.3 Scheme One – Independent Random Selec-
tions

In this scheme, serverS
j

furnishes a commitment

�

(Out)

j

on mappings from outputs to inputs. When
input/output relations are revealed here,P

In

is al-
ways false, andP

Out

is true with probabilityp.
(Imagine, say,p = 1=2.) For example, we might
haveP

Out

(Q

j

; i) true whenever the low-order bit
of h(Q

j

; i) is one, for a specified pseudo-random
hash functionh.

Whent is large enough, with high probability every
path from an initial inputC

k;0

to the corresponding
final outputC

i;t

will be “broken” (contain some un-
revealed link).

Forp = 1=2, if

t � log

2

�

n

�

�

then the chance that there exists some final output
that can be linked to its initial input is less than�.

We note that if a final output can not be linked to its
initial input, then there are at leastn=2 inputs from
which it could have been produced. Thus, the am-
biguity of the input corresponding to a given output
may extend overn=2 elements, rather than the full
n elements. For many practical applications, such
as voting, this should be acceptable.

This scheme works fine, but takes more rounds (a
larger value oft) than we would prefer. For exam-
ple, withn = 4096 and� = 2

�24 we needt � 36

rounds. It might in practice be necessary to use
the available servers in some sort of “round-robin”
fashion to achieve the necessary number of rounds.

4.4 Scheme Two – Pairwise Dependent Selec-
tions

In scheme two, adjacent servers are “paired”, let-
ting each server be a member of exactly one such
pair (see Figure 1). In particular, we assume an
even numbert of servers, and regard each pair of
adjacent odd and even-numbered servers as a co-
hesive unit. When servers reveal input/output re-
lations, the two servers in a pair each reveal non-
overlapping sets of such relations. For simplicity
of analysis, we assumep = 1=2 here. This is to
say that each server in a pair reveals half of its in-
put/output pairs on average, and the other server
reveals the complementary half, i.e., the relations
not revealed by its twin. (Of course, neither server
would make its revalations until both of them have
committed to their outputs.)

In this scheme, each odd-numbered serverS

j

pub-

lishes a commitment�(In)
j

on the mapping from in-
put elements to output elements; conversely, each
even-numbered serverS

j

publishes a commitment

�

(Out)

j

on the mapping from output elements to in-
put elements.

Let us now specify the process for revealing in-
put/output relations. Suppose that(S

j

; S

j+1

) is a
server pair, wherej is odd. Then

� P

In

(Q

j

; k) is always false.

� P

Out

(Q

j

; i) is true with probability1=2.

� P

In

(Q

j+1

; i) is true if and only ifP
Out

(Q

j

; i)

is false.

� P

Out

(Q

j+1

; l) is always false.

The privacy guarantee of this variant is based on a
simple observation: Provided that a (passive) adver-
sary controls only a minority of the servers, there is



at least one server pair that is entirely honest. Thus,
suppose that the adversary is given complete side
information regarding all input/output correspon-
dences for all servers other than this honest pair.
Then in the view of the adversary, every voter in-
put is mixed uniformly with a known half of the
other inputs. It follows that for any input value, the
adversary3 can at best identify the corresponding
output value with probability2=n. This holds no
matter how many servers there are, i.e., irrespective
of t, so long as at leastt=2 + 1 servers are honest.

In the context of an election, this privacy guaran-
tee is quite satisfactory from a practical perspective.
Stated loosely, it specifies that any ballot is hidden
among those of half of the electorate. Provided we
are willing to accept this guarantee, rather than full
hiding, this proposal presents attractively practical
functionality.

5 Electronic Voting Based on RPC mix
nets

We are now ready to sketch a simple election
scheme using an RPC mix net.

System Setup. Herein, the authorities select mix
servers, publish the public keys of these, certify vot-
ers, and distribute appropriate protocols, which are
assumed to be certified and correct.

Ballot Preparation and Encryption. Each voter
V

i

prepares his plaintext ballotB
i

. He then com-
putes a ciphertextC

i;0

= E

PK

(B

i

). VoterV
i

signs
C

i;0

with his own private signing key and posts it to
the bulletin board.

Each voter prepares his or her ballot by encrypt-
ing the value that encodes the ballot using the pub-
lic key(s) of the authorities. This may be done by

3This assumes ideal cipher characteristics. Under normal
computational hardness assumptions on the underlying cipher,
the adversary has some additional, negligible advantage.

sequential encrypting using the public keys of the
participating servers, starting with the last one in
the mix net – here, the encryption may either be a
plain asymmetric encryption, or a hybrid encryp-
tion. We refer to [14] for a description of hybrid
encryption techniques. Alternatively, the encryp-
tion may be performed using the public key of the
authorities. As noted earlier, the encryption tech-
nique used should be “plaintext-aware.”

Initial Ballot Checking. When the balloting
phase is closed, all servers check the validity of the
posted ciphertexts, elimating by consensus any ci-
phertexts that are ill-formed. They also eliminate
any duplicate ciphertexts (preserving only the first
posted copy). Without loss of generality, we let this
result inn well-formed ciphertexts.

Permutation Commitment. Each serverS
j

se-
lects a permutation�

j

on n elements uniformly at
random. The server publishes to the bulletin board a
commitment to�

j

, either�(In)
j

or �(Out)

j

(depend-
ing on our choice of mix variant and the parity of
j).

Mix Net Processing. At this point, each serverS
j

in turn acceptsn input ciphertextsfC
i;j

g

t�1

j=0

. The
server appliesX to each of them, permutes the re-
sulting ciphertexts according to�

j

, and outputs the
result to the bulletin board, along with a digital sig-
nature thereon.

Correctness Check. The operation of the mix
servers is verified as previously outlined.

If any server is found to have cheated, and the mix-
ing is based on re-encryption, then the corrupted
server is either emulated or replaced. In the latter
case, the protocol is restarted at the beginning of
the mixing stage; in the former at the stage of the
emulated server. If the mixing is based on decryp-
tion, then the cheater is emulated.



If re-encryption mixing is used, then the outputs of
the last mix server are decrypted at the end of the
correctness check, assuming this succeeds. The de-
cryption typically would be performed by a quo-
rum of servers of the authority sharing its secret
key. (Note that these may be different from the mix
servers as long as they collectively trust that a suf-
ficient number of mix servers were honest.) Each
decryption would be associated with a publicly ver-
ifiable proof of correct decryption (which typically
means a proof of correct exponentiation.)

Ballot Decryption. Once the mixing operation is
complete, the holders ofSK (the mix servers or
some other entities) jointly decrypt all output ci-
phertexts, yielding the full list of plaintext ballots,
if applicable.

Boundary Check. The authorities determine the
minimum number of ballots that would have to
change in order to alter the outcome of the election,
given the tally output at the end of the correctness
check stage. They then compute the probability that
this number of ballots could have been altered by
cheaters, without these being detected.

In particular, suppose that alteration of at least�

ballots would have been necessary to affect the
election outcome. That is,� is one-half the dif-
ference in vote count between the winner and the
runner-up, rounded up. The authorities estimate the
probability that an adversary could have manipu-
lated� ballots without detection. (We give a bound
on this probability for our proposal below.)

If this estimate represents an acceptable failure
probability (which we expect to be almost always
the case), then the mix servers proceed to the en-
dorsement phase; otherwise they invoke an alter-
native mix net on the same inputs with a stronger
guarantee of correctness.

Endorsement. If both the correctness check and
the boundary check succeeds, then the output is

considered valid. The values needed for publicly
performing the correctness check are published
along with the final tally. (The initial contents of
the bulletin board are assumed to already be pub-
lic.) Everybody can perform the verifications of the
correctness check (including the potential decryp-
tion verifications at its end); and then verify that the
boundary conditions are satisfied.

5.1 Boundary probability

To compute boundary probabilities for our scheme,
let us consider acentralizedadversary, i.e., one that
is capable of coordinating (in a static manner) the
actions of a minority of servers and an arbitrary
number of voters. All other servers and voters are
assumed to be honest. Given no evidence of cheat-
ing, the question we aim to answer is this: What
is the probability that the adversary could have al-
tered votes in such a way that the apparent elec-
tion outcome is not the correct one? For simplicity
of presentation, we focus our analysis here on our
second protocol variant involving “paired” servers,
and assume a re-encryption mix with correct de-
cryption of output ciphertexts. As a further simpli-
fying assumption, we regard the underlying cipher
and commitment schemes as “ideal”, i.e., as provid-
ing information theoretic security. Forp = 1=2, we
make the following claim.

Claim 1 Suppose that the adversary alters ele-
ments in the mix such that the observed election
tally differs by� votes from the correct one. Then
the probability that the adversary goes undetected
is at most1=2�.

Proof: (sketch) Now let us first consider a server
S

j

such thatj is odd, i.e., the first server in a pair.
For such a server, let us define theantecedentof
an output ciphertextC

k;j

to be an input ciphertext
C

i;j�1

with the following properties: (1)C
k;j

rep-
resents a valid re-encryption ofC

i;j�1

and
i

is a
commitment to the value�

j

(i) = k. Observe that
S

j

cannot successfully open the input/output rela-



tionship for a given output ciphertext without a cor-
rect antecedent.

Now consider a serverS
j

such thatj is even, i.e.,
the second server in a pair. For such a server, let us
define thesuccessorof an input ciphertextC

i;j�1

to be an output ciphertextC
k;j

with the following
properties: (1)C

k;j

represents a valid re-encryption
of C

i;j�1

and 

k

is a commitment to the value
�

�1

j

(k) = i. Observe thatS
j

cannot successfully
open the input/output relationship for an input with-
out a correct successor.

We refer to a ciphertext that lacks a correct an-
tecedent or lacks a correct successor as adud.
Based on our definitions of antecedents and succes-
sors, a dud must be an “intermediate” ciphertext,
i.e., the output of an odd-numbered server or, equiv-
alently, the input of an even-numbered one. A given
dud will be detected with probability at least 1/2, as
either its antecedent or successor must be checked.
It may also be seen in our scheme that duds are
checked independently, i.e., as independent events.

Let us consider “paired” servers(S
j

; S

j+1

). Sup-
pose that the input and output ciphertexts to this
pair of servers differ in at leastK

j;j+1

values. More
precisely, suppose that any one-to-one mappingf

from outputs to inputs excludes at leastK

j;j+1

out-
put elements. It may be seen there exists such a
one-to-one mappingf that includes at least one dis-
tinct input/output pair of ciphertexts for every in-
termediate ciphertext that is not a dud. Therefore,
there are at leastK

j;j+1

duds among the intermedi-
ate ciphertexts. It is clear thatK � K

1;2

+K

3;4

+

: : : + K

n�1;n

. (Intuitively, the total number of al-
tered ciphertexts at each server pair cannot exceed
the number of ciphertexts altered across the entire
mix network.) Therefore, there are at least� duds
among the intermediate ciphertexts published by all
server pairs. Since each dud is detected indepen-
dently with probability at least 1/2, the claim fol-
lows. ut

Example: Given an output tally of 46 Republican
votes and 54 Democratic votes in a small election,
authorities would conclude that in the worst case,
an attacker might have swung the election through

manipulation of a minimum of four initially Repub-
lican votes. (This would be possible, for example,
if the true tally were 50 Democratic vs. 50 Republi-
can, for example.) By Claim 1, the probability that
an adversary might have swung the election is at
most1=16.

Example: While the correctness assurance in the
above example is very low, a more realistic ex-
ample gives a substantially lower adversarial suc-
cess probability. Let us consider the recent U.S.
Presidential election in Florida which yielded a
tally with some 2,910,074 votes for Bush and some
2,909,114 votes for Gore [1]. For these tallies to be
produced from ballots in which there was an exact
tie or in which Gore obtained more votes, a min-
imum of 480 votes would have to be manipulated.
By Claim 1, the probability of this would be at most
2

�480, which is truly negligible and far smaller than
the probability of breaking a typically parameter-
ized crypto system.

In typical circumstances, Claim 1 represents an
overestimate of the success probability of such an
attacker. In particular, our computation here as-
sumes that the attacker alters ballots in the opti-
mal way. This is possible for an adversary corrupt-
ing the first few servers if voters register with their
parties – otherwise, the adversary could only guess
what ballots to alter.

6 Public Verifiability

To define the property of public verifiability in
a mix network, we require a stronger adversarial
model than for our definitions of privacy or cor-
rectness. In particular, we must assume an adver-
sary that potentially controlsall servers andall vot-
ers. This is an unrealistically pessimistic assump-
tion, but aims to characterize the security of the mix
scheme in the worst case.

In defining public verifiability, we consider a ver-
ification function, which we denote byver, that is
efficiently computable by any entity, whether or not



the entity participates in the mixing process. Input
to ver includes the contents of the bulletin board
at the conclusion of the mixing process; in partic-
ular, it includes the set of ciphertexts input to the
mix networkC

In

= fC

0;i

g

n

i=1

, the set of output ci-
phertextsC

Out

= fC

t;i

g

n

i=1

, and all commitments,
input/output relationships, and other evidence pub-
lished by all servers. The functionver outputs “cor-
rect” if the output of the mix network is a correct
representation of the input, or appears to be such; it
outputs “incorrect” otherwise.

The standard definition of public verifiability states,
loosely speaking, that a mix network is publicly
verifiable if for some verification functionver, the
adversary cannot feasibly produce input that falsely
yields the output “correct”. In other words, an ad-
versary should not be able to spoof a verification
function ver into accepting a “mismatched” pair
(C

In

; C

Out

), i.e., a pair such that the set of plain-
texts corresponding toC

Out

is not equal to that cor-
responding toC

In

.

Our scheme achieves a somewhat weaker version of
public verifiability. An adversary with full control
of all players in our scheme can, strictly speaking,
cause (with some probability) a verification func-
tion ver to accept a mismatched pair(C

In

; C

Out

).
What such an adversarycannotdo, however, is cre-
ate a sizable discrepancy between inputs and out-
puts to the mix network. More precisely, we show
that in order to alter� posted votes in an election
scheme with high probability, the adversary must
perform computational effort roughly2�. In conse-
quence, our scheme provides public assurance that
no adversary could have feasibly altered, say, 160
votes in the election. (Furthermore, we know that
it is infeasible to modify even a much smaller num-
ber of votes if not all mix servers collude – this pro-
vides further reassurance of the correctness in case
of narrow margins.)

Recall that all the servers have to commit to their
permutations, as well as to their portion of what de-
termines the challenges. This efficiently makes the
protocol deterministic after it has begun, and makes
it impossible for a colluding set of servers to select
permutatations so that only “clean” elements will

be verified.

Furthermore, recall that servers reveal input/output
relations according to a random seedQ. This seed
is computed by applying a hash functionh to the
contents of the bulletin board after all mixing has
taken place (but prior to verification, of course).
Modeling h as a random oracle, we may assume
that for every attempt on the part of the adversary
to produce a transcript that spoofs the verification
function, the adversary must make an oracle call to
determine what challenges the servers respond to.
We consider a verification functionver that checks
all revealed input/output relations in the obvious
manner. Given this model, and assumingp = 1=2,
we make the following claim.

Claim 2 Suppose that an adversary with full con-
trol of all servers and voters wishes to generate a
pair (C

In

; C

Out

) and bulletin board contents, i.e.,
server transcripts, with the following property. The
set of plaintexts corresponding toC

In

differs from
that corresponding toC

Out

by at least�, but ver
outputs “correct”. With q queries to the oracle,
the adversary will be successful with probability at
mostq2��, for a number of queriesq to the random
oracle. ut

Given this claim, we may state as a rough rule of
thumb that the results of an election are publicly
verifiable in a meaningful way if the winner leads
by a margin of at least 160 votes. In this case, an
adversary that performs computation280 (more pre-
cisely, makes280 oracle calls) has success proba-
bility at most2�80. In a practical setting, however,
this security analysis is rather conservative. It may
be relaxed somewhat under assumptions such as the
following.

1. Many voters are honest:If a voter does not
collaborate with the adversary, then her ci-
phertext randomizesQ in a manner previ-
ously unpredictable to the adversary. In con-
sequence, the adversary can only make useful
oracle queries during the interval of time be-
tween the last vote posted by an honest voter



and the time that the tally is output. This
places a practical restriction on the amount of
computing power the adversary can bring to
bear on manipulation of the election since it
forces the adversary to commence the attack
after the ”honest vote(s)” have been colleted,
and thereby prevents a ”pre-computation at-
tack.”

2. The election includes many ballots:A second
practical security against attacks is obtained
by forcing the recomputatation of long hashes
in order to succeed with an attack. Namely, re-
call that the full contents of the bulletin board
must be hashed usingh in order to compute
the seedQ. In a large election, therefore, an
oracle query is an expensive operation. This
restricts (by some medium-sized factor) the
number of oracle queries an adversary with a
given amount of computing power can make.

Of course, if the tally yielded by our scheme in-
volves too small a margin of victory to ensure pub-
lic verifiability, it is always possible to apply a dif-
ferent and more expensive, but publicly verifiable
mix network to the posted votes, e.g., [10, 16].

7 Discussion

The most significant advantage of the mix scheme
we propose here is that the proofs are exceptionally
simple; they merely involve revealing the random-
izing factors for the randomized encryption opera-
tions. No zero-knowledge proofs are required. The
scheme is therefore exceptionally efficient.

With use of a Chaumian mix net, the ballots may
have arbitrary size or content. We may have write-
in votes, or large ballots, without difficulty.

An adversary controlling some minority group of
servers may try to replace� ballots with its own
substitutes. Givenp = 1=2, the chance of the
adversary succeeding without detection is at most
1=2

�. Thus trying to cheat by more than a ballot

or two is risky. A cheating server must either con-
fess to cheating or (equivalently) fail to produce a
required proof. The penalties for cheating would be
so severe as to preclude the attempt.

In summary, we believe that RPC mix nets are
an interesting and practical approach for obtaining
voter anonymity in an electronic voting system.
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