
EÆ
ient Computation Modulo a Shared Se
ret with

Appli
ation to the Generation of Shared Safe-Prime Produ
ts

Joy Algesheimer Jan Camenis
h Vi
tor Shoup

IBM Resear
h

Zuri
h Resear
h Laboratory

CH{8803 R�us
hlikon

fjmu|j
a|shog�zuri
h.ibm.
om

Mar
h 6, 2002

Abstra
t

We present a new proto
ol for eÆ
ient distributed 
omputation modulo a shared se
ret. We

further present a proto
ol to distributively generate a random shared prime or safe prime that

is mu
h more eÆ
ient than previously known methods. This allows to distributively 
ompute

shared RSA keys, where the modulus is the produ
t of two safe primes, mu
h more eÆ
iently

than was previously known.

Keywords. RSA, safe primes, threshold 
ryptography, distributed primality test.

1 Introdu
tion

Many distributed proto
ols, e.g., [FFS88, FH94, GJKR96℄, require that an RSA modulus N = pq

is generated during system initialization, together with a publi
 exponent e and shares of the


orresponding private exponent. Moreover, many proto
ols, e.g., [Sho00, CS99, GHR99, ACJT00,

CL01℄, even require that N is the produ
t of \safe" primes, i.e., p = 2p

0

+1 and q = 2q

0

+1, where

p

0

and q

0

are themselves prime. While the requirement for safe primes 
an sometimes be avoided

(e.g., [DK01, FS01℄), this typi
ally 
omes at the 
ost of extra 
ommuni
ation, 
omputation, and/or

non-standard intra
tability assumptions.

While the initialization of the system with an RSA modulus N 
an be a

omplished using a

\trusted dealer," it would be preferable not to rely on this.

Given a distributed proto
ol to generate a random (safe) prime, se
urely shared among the

players, it is not too diÆ
ult to solve the above problem. One 
an of 
ourse use general multi-party


omputation te
hniques of Ben-Or, Goldwasser and Wigderson [BGW88℄ to generate a random,

shared (safe) prime. Indeed, that would work as follows: one starts with a standard algorithm

for generating a random (safe) prime, and 
onverts this algorithm into a 
orresponding Boolean

or arithmeti
 
ir
uit, and then for ea
h gate in this 
ir
uit, the players perform a distributed

multipli
ation modulo a small prime t. This proto
ol is not very pra
ti
al, espe
ially as the players

need to perform a distributed 
omputation for every gate in the 
ir
uit, and so unlike in the non-

distributed prime generation algorithm, they 
annot use mu
h more eÆ
ient algorithms for working

with large integers.

1



In this paper, we present new proto
ols that allow one to perform arithmeti
 modulo a se
ret,

shared modulus in a way that is mu
h more eÆ
ient than 
an be done using the general te
hniques

of Ben-Or et al. More spe
i�
ally, we develop a new proto
ol to eÆ
iently 
ompute shares of 
,

where 
 � ab (mod p), given shares of a, b, and p. The shares of a, b, 
, and p are integers modulo

Q, where Q is a prime whose bit-length is roughly twi
e that of p, and the 
ost of this proto
ol is

essentially the 
ost of performing a small, 
onstant number of distributed multipli
ations moduloQ.

A
tually, this is the amortized 
ost of multipli
ation modulo p assuming many su
h multipli
ations

are performed for a �xed p. This proto
ol, together with several other new supporting proto
ols,

gives us a proto
ol to generate a random, shared prime, or safe prime, that is mu
h more eÆ
ient

than the generi
ally derived proto
ol dis
ussed above. In parti
ular, we obtain a proto
ol for

jointly generating an RSA modulus that is the produ
t of safe primes that is mu
h more eÆ
ient

in pra
ti
e than any generi
 
ir
uit-based proto
ol (whi
h are the only previously known proto
ols

for this problem), even using the most eÆ
ient 
ir
uits for integer multipli
ation, division, et
.

Our proto
ols work in the so-
alled \honest-but-
urious" model. That is, we assume that all

players follow the proto
ol honestly, but we guarantee that even if a minority of players \pool"

their information they 
annot learn anything that they were not \supposed" to. Even though we

make this restri
tion, fairly standard te
hniques 
an be used to make our proto
ols robust, while

maintaining their pra
ti
ality. In fa
t, using \optimisti
" te
hniques for robustness, we 
an obtain

a fully robust proto
ol for distributively generating an RSA modulus that is not signi�
antly less

eÆ
ient than our honest-but-
urious solution | this is the subje
t of on-going work.

Related Work. Boneh and Franklin [BF97℄ present a proto
ol for jointly generating an RSA

modulus N = pq along with a a publi
 exponent and shares of the 
orresponding private key. Like

us, they also work in the honest-but-
urious adversary model. Unlike ours, their proto
ol is not

based on a sub-proto
ol for generating a random, shared prime. While our proto
ol for this task is

asymptoti
ally more eÆ
ient than the proto
ol of Boneh and Franklin (when the number of players

is small), we do not 
laim that our proto
ol is in pra
ti
e more eÆ
ient than theirs for typi
al

parameter 
hoi
es. The relative performan
e of these proto
ols in su
h a pra
ti
al setting depends

on a myriad of implementation details.

Unlike our te
hniques, those of Boneh and Franklin do not give rise to a proto
ol for jointly

generating an RSA modulus N = pq, where p and q are safe primes. Indeed, prior to our work,

the only know method for solving this problem was to apply the mu
h less eÆ
ient general 
ir
uit

te
hnique of [BGW88℄.

As our proto
ols rely mainly on distributed multipli
ation over a prime �eld, rather than over

the integers, one 
an easily make them robust using traditional te
hniques for veri�able se
ret

sharing modulo a prime, avoiding the somewhat less eÆ
ient te
hniques by Frankel et al. [FMY87℄

for robust distributed multipli
ation over the integers. Moreover, using the optimisti
 approa
h

mentioned above, even further improvements are possible, so that we 
an get robustness essentially

\for free".

2 Model

We 
onsider k players P

1

; : : : ; P

k

that are mutually 
onne
ted by se
ure and authenti
 
hannels.

Our proto
ols are se
ure against a stati
 and honest-but-
urious behaving adversary, 
ontrolling

up to � = b

k�1

2


. That is, all players follow the proto
ol honestly but the dishonest players may

pool their data and try to derive additional information. We �nally assume that no party stops

parti
ipating prematurely (we use k-out-of-k se
ret sharing s
hemes).

2



However, these assumptions 
an be relaxed: First, it's possible to for
e the parti
ipants to

behave honestly by having them to 
ommit to their inputs, to generate their individual random

strings jointly, and to prove (using zero-knowledge proofs) that they followed the proto
ols 
orre
tly.

Se
ond, the k-out-of-k se
ret sharing s
hemes 
an easily be 
onverted into k-out-of-l ones by the

`share ba
k-up' method introdu
ed by Rabin [Rab98℄. We do not pursue these possibilities here.

We prove se
urity in the model by Canetti [Can00℄. Here, we des
ribe a simpli�ed version of it

for a stati
 adversary in the honest-but-
urious model. Su
h an adversary �rst 
hooses the players

he wants to 
orrupt and then gets to see their inputs, their internal state and all the messages they

re
eive. A proto
ol � is proved se
ure by spe
ifying the fun
tionality f the proto
ol should provide

in an ideal world where all the parties send their inputs to a trusted third party T who then returns

to them the outputs they are to obtain a

ording to f . Let �

i

(x

1

; : : : ; x

k

; �) denote the output of

party P

i

when running proto
ol � on input x

i

in the presen
e of adversary A, where � is a se
urity

parameter. As A behaves honest-but-
urious, the output �

i

(x

1

; : : : ; x

k

; �) does not depend on A.

De�nition 1. A proto
ol is said to be statisti
ally se
ure if for any honest-but-
urious behaving

adversary A there exists a probabilisti
 polynomial-time simulator S su
h that the two ensembles

of random variables

fA(z); �

1

(x

1

; : : : ; x

k

; �); : : : ; �

k

(x

1

; : : : ; x

k

; �)g

�2N;z;x

1

;::: ;x

k

2f0;1g

�

and

fS(z); f

1

(x

1

; : : : ; x

k

; �); : : : ; f

k

(x

1

; : : : ; x

k

; �)g

�2N;z;x

1

;::: ;x

k

2f0;1g

�

are statisti
ally indistinguishable.

It 
an be shown that se
urity is preserved under non-
on
urrent, modular 
omposition of pro-

to
ols [Can00℄.

3 Preliminaries

3.1 Notation

Let a be a real number. We denote by ba
 the largest integer b � a, by dae the smallest integer

b � a, and by da
 the largest integer b � a + 1=2. We denote by trun
(a) the integer b su
h that

b = dae if a < 0 and b = ba
 if a � 0; that is, trun
(a) rounds a towards 0.

Let Q be a positive integer. All modular arithmeti
 is done 
entered around 0; to remind the

reader of this, we use `rem' as the operator for modular redu
tion rather than `mod', i.e., 
 remQ

is 
� d
=Q
Q.

De�ne Z

Q

as the set fx 2 Z j � Q=2 < x � Q=2g (we should emphasize that Z

Q

is properly

view as a set of integers rather than a ring). We denote an additive sharing of a value a 2 Z

Q

over Z

Q

by hai

Q

1

; : : : ; hai

Q

k

2 Z

Q

, i.e., a =

P

k

j=1

hai

Q

j

remQ and by [a℄

Q

1

; : : : ; [a℄

Q

k

2 Z

Q

we denote

a polynomial sharing (also 
alled Shamir-sharing [Sha79℄), i.e., a =

P

�

i=1

�

j

[a℄

Q

j

remQ, where �

j

are the Lagrange 
oeÆ
ients. The latter only works if Q > k and if Q is prime.

For a 2 Z we denote by hai

I

1

; : : : ; hai

I

k

2 Z an additive sharing of a over the integers, i.e.,

a =

P

k

j=1

hai

I

j

.

We denote proto
ols as follows: the term a := PROTOCOLNAME(b) means that the player in


onsideration runs the proto
ol PROTOCOLNAME with lo
al input b and gets lo
al output a as

the result of the proto
ol. Finally, lg(x) denotes the logarithm of x to the base 2.

3



3.2 Known Primitives

We re
all the known se
ure multi-party proto
ols for eÆ
ient distributed 
omputation with shared

se
rets that we will use to 
ompose our proto
ols, and we state the number of bit-operations

for whi
h we assume lgQ = �(n) and that the bit-
omplexity of a multipli
ation two n-bit in-

tegers is O(n

2

) (whi
h is a reasonable estimate for realisti
 values of n, e.g., n = 1024). The

round-
omplexity of all primitives is O(1) and their 
ommuni
ation is O(kn) bits (we 
onsider


ommuni
ation 
omplexity to be the number of bits ea
h player sends on average).

Additive sharing over Z

Q

: To share a se
ret a 2 Z

Q

player P

j


hooses hai

Q

i

2

R

Z

Q

for i 6= j, sets

hai

Q

j

:= a�

P

k

i=1;i 6=j

hai

Q

i

remQ, and sends hai

Q

i

to player P

i

. This takes O(kn) bit operations.

Polynomial sharing over Z

Q

: To share a se
ret a 2 Z

Q

player P

j


hooses 
oeÆ
ients a

l

2

R

Z

Q

for

l = 1; : : : ; � , where � = b(k � 1)=2
, and sets [a℄

Q

i

:= a +

P

�

l=1

a

l

i

l

remQ, and sends [a℄

Q

i

to

player P

i

. This takes O(nk

2

lg k) bit operations.

Additive sharing over Z:To share a se
ret a 2 [�A;A℄ player P

j


hooses hai

I

i

2

R

[�A2

�

; A2

�

℄ for

i 6= j, where � is a se
urity parameter, and sets hai

I

j

:= a �

P

k

i=1;i 6=j

hai

I

i

, and sends hai

I

i

to

player P

i

. Note that for any set of k � 1 players, the distribution of shares of di�erent se
rets

are statisti
ally indistinguishable for suitably large � (e.g., � = 128). This takes O(k(� + lgA))

bit operations.

Distributed 
omputation over Z

Q

: Addition and multipli
ation modulo Q of a 
onstant and a poly-

nomially shared se
ret is done by having all players lo
ally add or multiply the 
onstant to their

shares. Hen
e [a℄

Q

j

+ 
 remQ is a polynomial share of a+ 
 remQ and 
 � hai

Q

j

remQ is a polyno-

mial share of a
 remQ. These operations take O(n) and O(n

2

) bit operations, respe
tively.

Addition of two shared se
rets is a
hieved by having the players lo
ally add their shares. Thus

[a℄

Q

j

+ [b℄

Q

j

remQ is a polynomial share of a+ b remQ and takes O(lgQ) bit operations.

Multipli
ation modulo Q of two polynomially shared se
rets is done by jointly exe
uting a mul-

tipli
ation proto
ol due to Ben-Or, Goldwasser and Wigderson [BGW88℄ or by a more eÆ
ient

variant due to Gennaro, Rabin and Rabin [GRR98℄ whi
h requires O(n

2

k + nk

2

lg k) bit opera-

tions for ea
h player. We denote this proto
ol by MUL([a℄

Q

j

; [b℄

Q

j

).

Joint random sharing over Z

Q

: To generate shares of a se
ret 
hosen jointly at random from Z

Q

,

ea
h player 
hooses a random number r

i

2

R

Z

Q

and shares it a

ording to the required type of

se
ret sharing s
heme and sends the shares to the respe
tive players. Ea
h player adds up all the

shares gotten to obtain a share of a random value. We denote this proto
ol by JRS(Z

Q

) in 
ase

the players get additive shares and by JRP(Z

Q

) if they get polynomial shares. The proto
ols

require O(nk) and O(nk

2

lg k) bit operations per player, respe
tively.

Joint random sharing of 0: In proto
ols it is often needed to re-randomized shares obtained from

some 
omputation by adding random shares of 0. Su
h shares 
an be obtained for any sharing

s
heme by having ea
h player share 0 a

ording to the required type of se
ret sharing s
heme

and sending them to the respe
tive players. Ea
h player adds up all the shares gotten to obtain

a share of 0. We denote this proto
ol by JRSZ(Z

Q

) in 
ase the players get additive shares over

Z

Q

and JRPZ(Z

Q

) if they get polynomial shares over Z

Q

. The proto
ols require O(nk) and

O(nk

2

lg k) bit operations per player, respe
tively. In 
ase we want to have additive shares over

the integers, it is required to give the range (e.g., [�A;A℄) from whi
h the players 
hoose the

shares they send to the other players. We denote this proto
ol by JRIZ([�A;A℄) and it requires

O(k(�+ lgA)) bit operations per player.

Computing shares of the inverse of a shared se
ret: This proto
ol works only for polynomial shar-

ings over Z

Q

. Let a be the shared invertible element. Then, a proto
ol due to Bar-Ilan and

4



Beaver [BB89℄ 
omputes shares of a

�1

remQ given shares [a℄

Q

j

. The proto
ol, denoted by

INV([a℄

Q

j

), is as follows: �rst run [r℄

Q

j

:= JRP(Z

Q

), then 
ompute [u℄

Q

j

:= MUL([a℄

Q

j

; [r℄

Q

j

),

reveal [u℄

Q

j

, and re
onstru
t u. If u � 0 (mod Q), the players start over. Otherwise, they ea
h

lo
ally 
ompute their share of a

�1

remQ as (u

�1

remQ) � [r℄

Q

j

remQ. This proto
ol requires an

expe
ted number of O(n

2

k + nk

2

lg k) bit operations per player.

Joint random invertible element sharing: This proto
ol denoted JRP-INV(Z

Q

) is due to Bar-Ilan

and Beaver [BB89℄. The players generate shares of random elements [r℄

Q

j

:= JRP(Z

Q

) and

[s℄

Q

j

:= JRP(Z

Q

), jointly 
ompute [u℄

Q

j

:= MUL([s℄

Q

j

; [r℄

Q

j

), reveal [u℄

Q

j

and then re
onstru
t u.

If u is non-zero, they ea
h take [r℄

Q

j

as their share of a random invertible element. Otherwise,

they repeat the proto
ol. The proto
ol requires an expe
ted number of O(nk

2

lg k + n

2

k) bit

operations per player.

4 Conversions Between Di�erent Sharings

In our proto
ols, we work with all three se
ret sharing s
hemes introdu
ed in the previous se
tion.

For this we need methods to 
onvert shares from one sharing s
heme into shares of another one. This

se
tion reviews the known methods for su
h transformations and provides a method to transform

additive shares over Z

Q

into additive shares over the integers. The latter is apparently new. The

se
tion also provides a method to obtain shares of the bits of a shared se
ret.

4.1 Converting Between Integer Shares and Z

Q

Shares

It is well known how to 
onvert additive shares modulo Q into polynomial shares modulo Q and

vi
e versa: If the players hold additive (or polynomial) shares of a value a they re-share those with

a polynomial (additive) sharing and send the shares to the respe
tive players, whi
h add up (or

interpolate) the re
eived shares to obtain a polynomial (or additive) share of a. We denote the �rst

transformation by SQ2PQ(�) and the latter by PQ2SQ(�).

Conversions between shares over the integers into shares over Z

Q

naturally requires that Q=2 is

bigger than the absolute shared value. If this is the 
ase, an additive sharing h
i

I

1

; : : : ; h
i

I

k

over the

integers of a se
ret 
 with �2

n�1

< 
 < 2

n�1

< Q=2 
an be 
onverted in an additive sharing over

Z

Q

(and thus also a polynomial sharing) by redu
ing the shares modulo Q, i.e., h
i

Q

i

:= h
i

I

i

remQ.

We denote this transformation by SI2SQ(�).

Obtaining additive shares over the integers from additive shares over Z

Q

is not so straightfor-

ward. The main problem is that if one 
onsiders the additive shares over Z

Q

as additive shares

over the integers then one is o� by an unknown multiple Q, the multiple being the quotient of the

sum of these shares and Q. However, if the shared se
ret is suÆ
iently smaller than Q (i.e., � bits

smaller, where � is a se
urity parameter), then the players 
an reveal the high-order bits of their

shares without revealing anything about the se
ret. Knowledge of these high-order bits is suÆ
ient

to 
ompute the quotient. This observation leads to the following proto
ol.

Let h
i

Q

j

2 Z

Q

be the share of party P

j

and let �2

n�1

< 
 =

P

i

h
i

Q

i

remQ < 2

n�1

. If

Q > 2

�+n+lg k+4

holds, where � is a se
urity parameter, the parties 
an use the following proto
ol

to se
urely 
ompute additive shares of 
 over the integers.

Proto
ol SQ2SI(h
i

Q

j

):

Let t = �+ n+ 2. Party P

j

exe
utes the following steps.

5



1. Reveal a

j

:= trun
(

h
i

Q

j

2

t

) to all other parties.

2. Compute l :=

l

2

t

P

i

a

i

Q

k

.

3. Run h0i

I

j

:= JRIZ([�Q2

�

; Q2

�

℄).

4. If j � jlj set the output to h
i

I

j

:= h
i

Q

j

�Q+ h0i

I

j

if l > 0 and to h
i

I

j

:= h
i

Q

j

+Q + h0i

I

j

if

l < 0.

If j > jlj set the output to h
i

I

j

= h
i

Q

j

+ h0i

I

j

.

Theorem 1. Let h
i

Q

1

; : : : ; h
i

Q

k

be a random additive sharing of �2

n�1

� 
 < 2

n�1

. If lgQ >

�+ n+ lg k + 4, where � is a se
urity parameter, then the proto
ol SQ2SI(h
i

Q

j

) se
urely 
omputes

additive shares of 
 over the integers.

Proof. We have to provide a simulator that intera
ts with the ideal world trusted party T and

produ
es an output indistinguishable from that of the adversary. The trusted party T gets as input

the shares h
i

Q

1

; : : : ; h
i

Q

k

, 
omputes 
 and re-shares 
 over the integers by 
hoosing integer shares

of 0 the same way as it would be done if the parties ran the proto
ol h0i

I

i

:= JRIZ([�Q2

�

; Q2

�

℄).

Then T sets h
i

I

1

:= h0i

I

1

+ 
 and h
i

I

i

:= h0i

I

i

for i 6= 1, and then sends h
i

I

i

to player P

i

. Note

that the players' outputs are additive shares of 
 with the right distribution (i.e., the distribution

of any subset of k � 1 shares is statisti
ally 
lose to the distribution of the 
orresponding subset if

another value 


0

was shared).

A simulator is as follows: it forwards the inputs h
i

Q

i

of the 
orrupted players to T and obtains

the shares h
i

I

i

for these players from T . It extends the set of shares h
i

Q

i

of the 
orrupted players

into a full (and random) sharing of any valid 


0

(e.g., 0). Let r

1

; : : : ; r

n

be the thereby obtained

shares. The simulator then 
omputes a

i

= trun
(

r

i

2

t

) and lets the adversary know the a

i

's that the


orrupted players would re
eive in the proto
ol. Then the simulator 
omputes l =

l

2

t

P

i

a

i

Q

k

and,

for every i where Party P

i

is 
orrupted, it sets

h0i

I

i

:=

8

>

<

>

:

h
i

I

i

� h
i

Q

i

+Q if l > 0; i � jlj

h
i

I

i

� h
i

Q

i

�Q if l < 0; i � jlj

h
i

I

i

� h
i

Q

i

otherwise:

The simulator �nally runs the simulator for JRIZ([�Q2

�

; Q2

�

℄) su
h that these shares h0i

I

i

are the

outputs of the 
orrupted players. Finally the simulator stops outputting whatever the adversary

outputs.

It remains to show that for this simulator the distributions of the players' and the simula-

tors outputs are statisti
ally indistinguishable from the views and outputs of the players and the

adversary when running proto
ol SQ2SI(h
i

Q

j

).

Let us �rst prove that the players' outputs of proto
ol SQ2SI(h
i

Q

j

) are indeed shares of 
. Let

^

l =

lP

i

h
i

Q

i

Q

k

. Thus 
 =

P

i

h
i

Q

i

�

^

lQ ful�lls j
j < 2

n�1

by assumption. De�ne b

i

= h
i

Q

i

�a

i

2

t

. Note

that jb

i

j < 2

t

. We have to show that l =

^

l. As

P

i

a

i

2

t

= 
 +

^

lQ �

P

i

b

i

we have l =

l

2

t

P

i

a

i

Q

k

=

l




Q

+

^

l �

P

i

b

i

Q

k

. Be
ause

^

l is an integer, we have l =

^

l if j




Q

j < 1=4 and j

P

i

b

i

Q

j < 1=4, that is, if

n < lgQ � 2 and 2 + t + lg k = � + n + lg k + 4 < lgQ holds. As h
i

Q

i

2 Z

Q

we have jlj < k and

6



thus 
 =

P

i

h
i

Q

i

� lQ =

P

i

h
i

I

i

. Furthermore it is easy to see that the distribution of the shares

output is statisti
ally 
lose to the ones produ
ed by T .

Let us now show that the distribution of the a

i

's for di�erent shared values 
 are statisti
ally

indistinguishable. We 
onsider the probability that the a

i

's take di�erent values if a di�erent value

of 
 was shared. W.l.o.g., we 
an assume that h
i

Q

1

; : : : ; h
i

Q

k�1

are random elements from Z

Q

and

that h
i

Q

k

= 
 �

P

k�1

i=1

h
i

Q

i

remQ. Clearly, the values a

1

= trun
(

h
i

Q

1

2

t

); : : : ; a

k�1

= trun
(

h
i

Q

k�1

2

t

)

do not depend on the shared value. It remains to 
onsider a

k

. We have h
i

Q

k

remQ = a

k

2

t

+ b

k

with b

k

< 2

t

. First note that C = �

P

k�1

i=1

h
i

i

remQ is uniformly distributed over Z

Q

and that

Q > 2

t

. If C > Q � 2

n

or if C rem2

t

> 2

t

� 2

n

then a

k

takes a value that depends on 
.

These 
onditions are ful�lled with probability at most

2

n

+2

n

2

t

+2

n

<

2

n+1

2

t

= 2

�t+n+1

. Therefore, the

statisti
al di�eren
e between the distribution of the a

i

's for di�erent shared values must smaller

than 2 � 2

�t+n+1

= 2

�t+n+2

= 2

��

.

As the JRIZ([�Q2

�

; Q2

�

℄) proto
ol is se
ure, the distributions of the outputs in the real world

and the outputs of the ideal world with our simulator are statisti
ally indistinguishable.

Combining the above proto
ols, we 
an move from polynomial shares over Z

Q

to additive shares

over the integers and vi
e versa. The bit-
omplexities for these 
onversions are O(nk

2

lg k + n

2

k)

and O(nk

2

lg k), respe
tively. For both, the 
ommuni
ation-
omplexity is O(kn) bits and the

round-
omplexity is O(1).

Moreover, it follows that we 
an also move from polynomial shares over Z

Q

to polynomial shares

over Z

Q

0

provided Q and Q

0

are suÆ
iently large w.r.t. the se
urity parameter and the shared value.

4.2 Computing Shares of the Binary Representation of a Shared Se
ret

To do a distributed exponentiation with a shared exponent b it is useful when the players are given

shares of the bits b. In the following we assume (w.l.o.g.) that the players hold additive shares of

the exponent b over the integers. The idea of the following proto
ol to obtain shares of the bits is

that ea
h player distributes polynomial shares modulo

e

Q of the bits of her or his additive share.

Then the players perform a (general) multi-party 
omputation to add these bits to obtain shares

of the bits of b. This multi-party 
omputation, however, is rather simple. In fa
t, we need to

implement a 
ir
uit of size O(kn) and depth O(lg k+lgn) (
.f., [CLR92℄). Ea
h gate in this 
ir
uit

requires O(1) invo
ations of the multipli
ation proto
ol MUL(�; �) over Z

~

Q

, where

~

Q 
an be small.

Proto
ol I2Q-BIT(hbi

I

j

):

Let n to be (an upper-bound on) the number of bits of b. Party P

j

runs the following steps.

1. Re-share ea
h bit of the share hbi

I

j

with a polynomial sharing over

e

Q and send ea
h share to

the respe
tive player. Let [b

i;l

℄

e

Q

j

denote the share held by party P

j

of the i-th bit of party

P

l

's additive share of b.

2. The player use the 
omputation te
hniques of Ben-Or, Goldwasser and Wigderson [BGW88℄

on a 
ir
uit for adding the k n-bit numbers. This takes O(lg k + lgn) steps.

Let [u

i

℄

e

Q

j

, i = 1; : : : ; n be the shares of the bits of the result. (Re
all that it is ensured b has

n-bits.)

3. For i = 1; : : : ; n� 1 do (in parallel)

(a) Exe
ute [0℄

e

Q

j

:= JRPZ(Z

e

Q

) and set [b

i

℄

e

Q

j

:= [0℄

e

Q

j

+ [u

i

℄

e

Q

j

rem

e

Q.

7



4. Output ([b

1

℄

e

Q

j

; : : : ; [b

n

℄

e

Q

j

).

Proving the se
urity of this proto
ol is straightforward given the se
urity of its sub-proto
ols

and the 
omposition theorem.

EÆ
ien
y analysis: 
omputing shares of the bits of b requires O(nk

3

lg k lg

e

Q+ nk

2

(lg

e

Q)

2

) bit

operations per player. This proto
ol requires only a relatively small

e

Q, e.g., � + 5 + lg k bits. If

shares of the bits modulo a larger prime Q are required, is more eÆ
ient to 
ompute shares modulo

a small

e

Q using the above proto
ol and then 
onvert these shares into ones modulo Q. The number

of bit operations for this is O(
nk

3

lg k + 


2

nk

2

+ n

2

k

2

lg k), where lgQ = �(n) and lg

e

Q = �(
),

as opposed to O(n

2

k

3

lg k + n

3

k

2

) when using the bigger Q only. This optimization may be quite

important in pra
ti
e as 
 may be mu
h smaller than n (e.g., 
 = 100 and n = 2000). The


ommuni
ation-
omplexity for both variants is O(n

2

k + nk lgQ) bits. and their round-
omplexity

is O(lg k + lgn).

4.3 Approximate Trun
ation

This paragraph presents a trun
ation proto
ol, that on input polynomial shares of a and a parameter

n outputs polynomial shares of b su
h that jb� a=2

n

j � k + 1.

Proto
ol TRUNC(a; n) :

Party P

j

exe
utes the following steps.

1. Get additive shares of a over the integers: hai

I

j

:= SQ2SI(PQ2SQ([a℄

Q

j

)).

2. Lo
ally 
ompute hbi

I

j

:= trun
(

hai

I

j

2

n

)

3. Get polynomial shares of b over Z

Q

: [b℄

Q

j

:= SQ2PQ(SI2SQ(hbi

I

j

))

It is easy to see that the proto
ol is se
ure and 
orre
t, if lgQ > � + n + lg k + 4 holds,

where � is a se
urity parameter (
.f. requirements of the SQ2SI(�) proto
ol). Its bit-
omplexity is

O(nk

2

lg k + n

2

k), its 
ommuni
ation-
omplexity is O(kn) bits, and its round-
omplexity is O(1)

rounds.

5 Distributed Computation Modulo a Shared Integer

This se
tion provides eÆ
ient proto
ols for distributed 
omputation modulo a shared, se
ret mod-

ulus p. All 
omputations will be done using shares modulo a prime Q whose bit-length is roughly

twi
e that of p. The main building blo
k is an eÆ
ient proto
ol for redu
ing a shared se
ret modulo

p. This immediately gives us distributed modular addition and multipli
ation. The se
tion further

provides a proto
ol for eÆ
ient modular exponentiation where the exponent is a shared se
ret as

well. As our modular redu
tion proto
ol does not 
ompute the smallest residue in absolute value

but only one that is bounded by a small multiple of the modulus, the usual approa
h for 
ompar-

ing two shared se
rets no longer works and therefore a new proto
ol for 
omparing su
h `almost

redu
ed' shared se
rets modulo p is also presented.

The idea of our proto
ol for modular redu
tion is based on 
lassi
al algorithmi
 te
hniques

(
.f. [AHU74℄). Re
all that 
 rem p = 
 � d




p


p. Thus the problem redu
es to the problem of

distributively 
omputing d




p


.

By interpreting an integer as the mantissa of a 
oating point number with a publi
 exponent,

we 
an interpret shares of this integer as shares of the 
orresponding 
oating point number. To

8



multiply two su
h 
oating point numbers we distributively multiply the mantissas and lo
ally

add the exponents. To keep the shared numbers small, we `round' the produ
t by 
onverting

the polynomial shares of the produ
t mantissa modulo Q to additive shares over the integers, by

having ea
h party lo
ally right-shift its additive share by � bits and add � to the exponent, and by


onverting ba
k to polynomial shares modulo Q. This rounding te
hnique introdu
es an relative

error of O(k2

�

=m).

So we split the problem of distributively 
omputing d




p


 into the problem of distributively


omputing a 
oating point approximation of 1=p, and of distributively 
omputing d




p


 using the

pre
omputed shares of 1=p. The �rst problem 
an be solved using Newton iteration and is des
ribed

in the next subse
tion. In Se
tion 5.2 we show how to 
ompute a 
lose approximation to d




p


 if we

are given additive shares of a good approximation to




p

over the integers by having ea
h parti
ipant

lo
ally trun
ate its share. The resulting (shared) integer s satis�es js� d




p


j � k + 1. It turns out

that this is a

urate enough to 
ompute a value 
ongruent to 
 modulo p that is suÆ
iently small

to allow for on-going 
omputations modulo p (Se
tion 5.3).

5.1 Computation of Shares of an Approximation to 1=p

Assume ea
h party is given polynomial shares [p℄

Q

i

of p, with 2

n�1

< p < 2

n

. This se
tion provides

a proto
ol that allows the parties to 
ompute polynomial shares of an integer 0 < ~p < 2

t+2

su
h

~p 2

�n�t

= 1=p+ � where j�j < (k + 1)2

�n�t+4

.

As already mentioned we employ Newton iteration for this task with the fun
tion f(x) = 1=x�

p=2

n

whi
h leads to the iteration formula x

i+1

:= x

i

(2 � x

i

p=2

n

) that has quadrati
 
onvergen
e.

Using 3=2 as a start value gives us an initial error of j2

n

=p � 3=2j < 1=2 and hen
e we need to do

about lg t iterations to get a t-bit approximation ~x to 2

n

=p. We set ~p = 2

t

~x, whi
h is an integer.

Proto
ol APPINV([p℄

Q

j

) :

Party P

j

exe
utes the following steps.

1. Set [u

0

℄

Q

j

:= u

0

= 3 � 2

t�1

remQ.

2. For i = 0 to dlg(t� 3� lg(k + 1))e � 1 run

(a) Distributively 
ompute [z

i+1

℄

Q

j

:= MUL([p℄

Q

j

; [u

i

℄

Q

j

).

(b) [w

i+1

℄

Q

j

:= TRUNC([z

i+1

℄

Q

j

; n).

(
) Compute [v

i+1

℄

Q

j

:= 2

t+1

� [u

i

℄

Q

j

�MUL([w

i+1

℄

Q

j

; [u

i

℄

Q

j

).

(d) [u

i+1

℄

Q

j

:= TRUNC([v

i+1

℄

Q

j

; t).

3. Run [0℄

Q

j

:= JRPZ(Z

Q

).

4. Output [~p℄

Q

j

:= [u

i+1

℄

Q

j

+ [0℄

Q

j

remQ.

Theorem 2. Let � be a se
urity parameter and let Q > 2

�+t+�+6+lg k

, where � = max(n; t). Then,

for any t > 5+lg(k+1) and any p satisfying 2

n�1

< p < 2

n

for some n, the proto
ol APPINV([p℄

Q

j

)

se
urely 
omputes shares of an integer ~p, su
h that

�

�

�

2

n

p

�

~p

2

t

�

�

�

<

k + 1

2

t�4

;

with 0 < ~p < 2

t+2

. That is, ~p=2

t+n

is an approximation to 1=p with relative error

k+1

2

t�4

.

9



Proof. We need show that the proto
ol a
tually 
omputes an approximation to 1=p. Then se
urity

from the se
urity of the sub-proto
ols for multipli
ation and transformation of the shares.

Consider how u

i+1

is 
omputed from u

i

in the proto
ol. Be
ause of the lo
al trun
ation, we have

2u

i

�pu

2

i

2

�n�t

�(k+1)(1+u

i

=2

t

) � u

i+1

� 2u

i

�pu

2

i

2

�n�t

+(k+1)(1+u

i

=2

t

). As we will see u

i

=2

t

<

3 holds. Thus j

2

n

p

�

u

i+1

2

t

j <

2

n

p

� 2

u

i

2

t

+

p

2

n

(

u

i

2

t

)

2

+

(k+1)

2

t

(1+u

i

=2

t

) =

p

2

n

(

2

n

p

�

u

i

2

t

)

2

+

(k+1)

2

t

(1+u

i

=2

t

).

From this it follows that

�

�

2

n

p

�

u

i+1

2

t

�

�

< �

2

i

+

k+1

2

t�2

=: �

i+1

. As 2

n�1

< p < 2

n

and u

0

= 2

t�1

we have

�

0

< 1=2 and by requiring k < 2

t�5

� 1 we get e

1

< 1=2 and �

i

= 2

2

�i

+

k+1

2

t�3

< 1=2. In parti
ular,

we have �

i

=

k+1

2

t�4

for i = dlg(t� 3� lg(k + 1))e.

Consider the size of the integers u

i

that are shared during the proto
ol. As �

i

< 1=2 and

1 < 2

n

=p < 2 we have 0 < u

i

=2

t

< 2 + 1=2 and hen
e 0 < u

i

< 2

t+2

for all i and hen
e

0 < z

i

< 2

n+t+2

. Similarly, one 
an show that 0 < v

i

< 2

2t+2

.

The lower-bound on Q follows from the fa
t that the SQ2SI(�) algorithm must work on the v

i

's

and the z

i

's.

Let us dis
uss the 
hoi
e of t: in order for the b most signi�
ant bits of 1=p and ~p=2

t+n

to be

equal, t must be 
hosen bigger than b + 5 + lg (k + 1). The 
ost of the proto
ol is dominated by

the MUL(�; �) proto
ol and is O(lg t(n

2

k + nk

2

lg k)) bit-operations per player. Its 
ommuni
ation-


omplexity O(kn lg t) bits and its round-
omplexity is O(lg t).

5.2 Redu
tion of a Shared Integer Modulo a Shared p

Assume the players hold polynomial shares modulo Q of the three integers �2

w

< 
 < 2

w

, 0 < ~p <

2

t+2

, and 2

n�1

< p < 2

n

, where ~p 2

�n�t

is an approximation of 1=p as 
omputed by the proto
ol in

the previous paragraph. Using the following proto
ol, the players 
an 
ompute shares of an integer

d su
h that d � 
 (mod p) and lg jdj < lg(k + 1) + w � t+ 5.

As already mentioned this proto
ol 
omputes d as 
�d
~p2

�n�t


p. For distributively 
omputing

the produ
t 
~p the size of Q would need to be about w + t bits. However, as the ` � n least

signi�
ant bits of 
 do not matter in the 
omputation of the quotient, we 
an �rst 
ut these ` bits

o�, obtaining ~
, and then 
ompute d as 
 � d~
~p2

�n�t+`


p whi
h requires the size of Q to be only

about w + t� ` bits.

Proto
ol MOD([
℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

exe
utes the following steps.

1. [~
℄

Q

j

:= TRUNC([
℄

Q

j

; `).

2. Compute [q̂℄

Q

j

:= MUL([~
℄

Q

j

; [~p℄

Q

j

).

3. [q℄

Q

j

:= TRUNC([q̂℄

Q

j

; n+ t� `).

4. Compute [d℄

Q

j

:= [
℄

Q

j

�MUL([p℄

Q

j

; [q℄

Q

j

).

Theorem 3. Given shares of three integers �2

w

< 
 < 2

w

, 0 < ~p < 2

t+2

, and 0 < p < 2

n

, the

above proto
ol se
urely 
omputes shares of d = (
 rem p)+ip with jij � (k+1)(1+2

w+4�n�t

+2

`�n+2

),

where k is the number of players and given that Q > max (2

�+6+w�`+t+2 lg(k+1)

; 2

�+w+4+lg(k+1)

).

Proof. Due to the lo
al rounding in the TRUNC(�; �) proto
ol in Step 1, we have 
 � (k + 1)2

`

�

~
2

`

� 
 + (k + 1)2

`

. Due to the lo
al rounding in the TRUNC(�; �) proto
ol in Step 3, we have

trun
(~
~p2

�n�t+`

)� k � q � trun
(~
~p2

�n�t+`

) + k. As ~p2

�(n+t)

is only an approximation to 1=p, we

10



have trun
(




p

�


(k+1)

2

n�4+t

�

~p(k+1)

2

n+t�`

)� k � q � trun
(




p

+


(k+1)

2

n�4+t

+

~p(k+1)

2

n+t�`

) + k and, as �2

w

< 
 < 2

w

and

0 < ~p < 2

t+2

, we get d




p


�(k+1)(1+2

w+4�n�t

+2

`�n+2

) � q � d




p


+(k+1)(1+2

w+4�n�t

+2

`�n+2

).

Thus d = (
 rem p) + ip with jij < (k + 1)(1 + 2

w+4�n�t

+ 2

`�n+2

).

The bound on Q follows from the requirements of the SQ2SI(�) in the TRUNC(�; �) proto
ol.

The 
ost of the MOD(�; �; �) proto
ol is dominated by the MUL(�; �) proto
ol and is O(n

2

k +

nk

2

lg k) bit operations per players. The 
ommuni
ation-
omplexity of the proto
ol is O(kn) bits

and its round-
omplexity is O(1).

5.3 Computing with a Shared Modulus p

Now, we are ready to dis
uss \on-going" distributed 
omputation modulo a shared integer. In

parti
ular, we dis
uss how the parameters for the MOD(�; �; �) and APPINV(�)� proto
ols must be

set su
h that su
h 
omputation is possible. Assume that the players hold polynomial shares modulo

a prime Q of the integers 0 < ~p < 2

t+2

, and 2

n�1

< p < 2

n

, where ~p 2

�t�n

is an approximation of

1=p as 
omputed above. Let

t = dn+ 10 + 2 lg(3(k + 1))e; v = n+ lg(3(k + 1)) + 1; and Q > 2

�+2n+36+6 lg(k+1)

:

Then, given polynomial shares modulo a prime Q of an integer �2

2v

< 
 < 2

2v

, the players 
an


ompute shares of an integer �2

v

< d < 2

v

as [d℄

Q

j

:= MOD([
℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

). In parti
ular, given

polynomial shares modulo a prime Q of the integers �2

v

< a; b < 2

v

the players 
an 
ompute

shares of an integer �2

v

< d

0

< 2

v

as [d

0

℄

Q

j

:= MOD(MUL([a℄

Q

j

; [b℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

). Thus d and d

0


an

be used as inputs to further modular multipli
ation 
omputations.

Exponentiation with a Shared Exponent: Assume the players want to 
ompute shares of


 � a

b

(mod p), where a, b, p, ~p are shared se
rets and ~p is an approximation to 2

n+t

=p . This


an be done by distributively running the square and multiply algorithm where the fa
t that a

b

i

=

(a�1)b

i

+1 if b

i

2 f0; 1g 
omes in handy. We assume that the players hold shares ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

)

of the bits of b, where b

1

is the low-order bit of b (as 
omputed, say, by proto
ol I2Q-BIT(�)).

Assuming that jaj < 2

v

then the following proto
ol se
urely 
omputes shares of 
 su
h j
j < 2

v

and 
 � a

b

(mod p).

Proto
ol EXPMOD([a℄

Q

j

; ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

exe
utes the following steps.

1. Compute [


n

℄

Q

j

:= MUL([a℄

Q

j

� 1 remQ; [b

n

℄

Q

j

) + 1 remQ.

2. For i = n� 1; : : : ; 1 do

(a) [d

i

℄

Q

j

:= MUL([a℄

Q

j

� 1 remQ; [b

i

℄

Q

j

) + 1 remQ.

(b) [


i

℄

Q

j

:= MOD(MUL(MOD(MUL([


i+1

℄

Q

j

; [


i+1

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

); [d

i

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

).

3. Output [
℄

Q

j

:= [


1

℄

Q

j

.

EÆ
ien
y analysis: This proto
ol does about 3n invo
ations of MUL(�; �) and about 2n of

MOD(�; �; �) and hen
e requires O(n

3

k + n

2

k

2

lg k)) bit operations per player. The 
ommuni
ation


omplexity O(n

2

k) bits and it has O(n) rounds.

11



Set membership: Assume the players want to establish whether a � b (mod p) holds for three

shared se
rets a, b and p (where p is not ne
essarily a prime). This 
an in prin
iple be done

by 
omputing shares of 
 := a � b rem p, (re-)sharing 
 modulo Q, multiplying it with a jointly

generated random invertible element from Z

Q

, revealing the result, and see if it is 0 modulo Q

(provided Q > p). However, be
ause of the properties of MOD(�; �; �), we 
an only 
ompute shares

of 
 = (a� b rem p) + ip with jij < 3(k + 1) and therefore the test does not quite work. But as i is

relatively small, it is possible to distributively 
ompute the integer s :=

Q

3(k+1)�1

l=�3(k+1)+1

(
� lp) whi
h

will be zero if 
 � 0 (mod p) and non-zero otherwise. This also holds for s modulo Q be
ause Q - s

if Q > p6(k + 1) as then Q > j(
� ip)j holds for all i 2 [�3(k + 1); 3(k + 1)℄.

The proto
ol below is a generalization of what we just des
ribed in that it allows the players to


he
k whether a equals one of b

1

; : : : b

m

modulo p. Here, �rst an s

i

is 
omputed for ea
h b

i

similarly

as the s above for b and then it is tested whether

Q

i

s

i

� 0 (mod Q).

Assuming that a; b

1

; : : : ; b

m

are less than 2

v

in absolute value, then the following proto
ol

se
urely tests if a � b

i

(mod p) for some i.

Proto
ol SETMEM([a℄

Q

j

; f[b

1

℄

Q

j

; : : : ; [b

m

℄

Q

j

g; [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

runs the following steps.

1. For all i = 1; : : : ;m 
ompute [


i

℄

Q

j

:= MOD([a℄

Q

j

� [b

i

℄

Q

j

remQ; [p℄

Q

j

; [~p℄

Q

j

) (in parallel).

2. For all i = 1; : : : ;m do (in parallel)

(a) Set [u

(i;�3(k+1)+1)

℄

Q

j

:= [


i

℄

Q

j

� (3(k + 1)� 1)[p℄

Q

j

remQ.

(b) For l = �3(k + 1) + 2; : : : ; 3(k + 1)� 1 do

i. Compute [u

(i;l)

℄

Q

j

:= MUL([u

(i;l�1)

℄

Q

j

; ([


i

℄

Q

j

� l[p℄

Q

j

remQ)).

3. Let [~u

1

℄

Q

j

:= [u

(1;3(k+1)+1)

℄

Q

j

.

4. For i = 2; : : : ;m do

(a) Compute [~u

i

℄

Q

j

:= MUL([~u

i�1

℄

Q

j

; [u

(i;3(k+1)+1)

℄

Q

j

).

5. Perform [r℄

Q

j

:= JRP-INV(Z

Q

), 
ompute [z℄

Q

j

:= MUL([~u

m

℄

Q

j

; [r℄

Q

j

) and send [z℄

Q

j

to all other

players.

6. Re
onstru
t z and output su

ess if z � 0 remQ and failure otherwise.

Se
urity of this proto
ol follows from the se
urity of its sub-proto
ols, and the fa
t that if z is

non-zero, then it is a random element from Z

Q

and hen
e no information about a or any of the b

i

's

is revealed other than that a is di�erent from all the b

i

's modulo p.

Note that this proto
ol in
ludes as a spe
ial 
ase the 
omparison of two almost redu
ed residues.

It requires O(mk(n

2

k + nk

2

lg k)) bit operations per player. The 
ommuni
ation-
omplexity

O(mnk

2

) bits and it takes is O(k + n) rounds. However, it is trivial to get the number of rounds

down to O(lg k + lgn) by using a \tree multipli
ation method" in step 2b and 4.

We note that an alternative to the above proto
ol would be to use the te
hniques of Ben-Or

et al. [BGW88℄ on a 
ir
uit to fully redu
e a and b modulo p. As a and b are \almost redu
ed"

modulo p, this 
ir
uit is small.

12



6 Generation of Shared Random Primes and Safe Primes

In this se
tion we dis
uss how to use the proto
ols introdu
ed so far to generate a shared random

prime and a random safe prime. On
e we know how to do this, we 
an of 
ourse also generate a

shared RSA modulus being the produ
t of two primes or of two safe primes. As mentioned earlier,

the former proto
ol may be more eÆ
ient than the one of Boneh and Franklin, at least for very

large n, and the latter is far more eÆ
ient than any previously known proto
ol for this problem.

We 
on
lude the se
tion with an eÆ
ien
y dis
ussion and a 
omparison of our proto
ols and the

one by Boneh and Franklin for generating a shared prime produ
t.

Our strategy for generating a random shared prime is the same as the one usually applied in the

non-distributed 
ase: 
hoose a random number, do trial division, and then run suÆ
iently many

rounds of some primality test, e.g., the Miller-Rabin test. In the following we des
ribe how ea
h of

these steps 
an be distributed.

6.1 Generating a Shared Candidate p

The �rst task for the player is to generate a random n-bit number. In prin
iple, this 
ould be

done be having ea
h player 
hoose a random n-bit number and then 
ompute shares of the xor

of those strings in a similar way as in the proto
ol we des
ribed in Se
tion 4.2. However, this

would mean to already invest signi�
ant 
omputation on 
andidates that with high probability

fail the trial division step. A more eÆ
ient way to generate the 
andidates due to Boneh and

Franklin [BF97℄ is as follows. Every party ex
ept the �rst one 
hooses a random (n� lg k � 1)-bit

number p

i

� 0 (mod 4); the �rst one 
hooses a (n� lg k � 1)-bit number ~p

1

� 3 (mod 4) and sets

p

1

:= 2

n�1

+ ~p

1

. Thus p :=

P

i

p

i

will be a n-bit number and hpi

I

i

:= p

i

. Of 
ourse, the distribution

of p is not uniform but one 
an show that the distribution of p has at least (n � lg k � 1)-bits

of entropy [BF97℄. By restri
ting p � 3 (mod 4), we loose only about half the primes. This will

be suÆ
ient for most appli
ations (otherwise one 
ould still resort to the 
omputationally more

involved method sket
hed before).

We note that the restri
tion of p � 3 (mod 4) 
ould be dropped when resorting to the Solovay-

Strassen test. This, however, requires a proto
ol to 
ompute shares of the Ja
obi symbol of a shared

se
ret; su
h a proto
ol is provided in the full version of this paper.

6.2 Trial Division on p

Before doing the 
ostly primality 
he
k the players 
an do a 
heaper trial division. For all primes

e smaller than some bound B, the players do the following steps (in parallel):

Proto
ol Trial Division:

Player P

j

runs the following steps.

1. Re-share hpi

I

j

rem e as polynomial shares over Z

e

and send ea
h share to the respe
tive player.

2. Sum up the shares gotten from the other players and obtain the share [p rem e℄

e

j

.

3. Run [r℄

e

j

:= JRP-INV(Z

e

), then [z℄

e

j

:= MUL([r℄

e

j

; [p rem e℄

e

j

) and reveal [z℄

e

j

to all other players.

4. Re
onstru
t z. If z � 0 rem e then e divides p.

Note that the above proto
ol does not work for e � k, be
ause in su
h 
ases the �eld F

e

does

not 
ontain enough points to do Shamir sharing among k players. To over
ome this, the player

13




an resort to an extension �eld of F

e

(
.f. [BF97℄). Also note that our proposal for trial division

determines exa
tly whether e divides p or not whereas the proposal by Boneh and Franklin [BF97℄

has some probability of error whi
h weakens the e�e
t of the trial division somewhat. This trial

division 
osts O((B= lgB)(k

2

lgB + k(lgB)

2

)) bit-operations and the 
omputation 
omplexity is

O(1) rounds and O(Bk) bits..

6.3 Distributed Miller-Rabin Test

As p � 3 (mod 4), the Miller-Rabin test redu
es to 
hoosing a random base g from Z

p

and testing

whether g

p�1

2

� �1 rem p. The following proto
ol implements this test for a shared se
ret p. One

diÆ
ulty here is that the players 
annot 
hoose the base randomly from Z

p

dire
tly as p is not

known: They have to 
hoose an integer g from an interval that is suÆ
iently larger than p (e.g.,

from f0; 1g

2n

), su
h that g mod p will be distributed statisti
ally 
lose to the original distribution.

Proto
ol Miller-Rabin:

Player P

j

runs the following step

1. If 2 � j � k lo
ally 
ompute hbi

I

j

:= hpi

I

j

=2. If j = 1 lo
ally 
ompute hbi

I

1

:= (hpi

I

1

� 1)=2.

2. Run ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

) := I2Q-BIT(hbi

I

j

).

3. Compute [p℄

Q

j

:= SQ2PQ(SI2SQ(hpi

I

j

)) and [~p℄

Q

j

:= APPINV([p℄

Q

j

).

4. Repeat the following step � times (in parallel).

(a) Choose hri

I

j

2

R

f0; 1g

2n

.

(b) Run [r℄

Q

j

:= SQ2PQ(SI2SQ(hri

I

j

)) and [g℄

Q

j

:= MOD([r℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

).

(
) Run [u℄

Q

j

:= EXPMOD([g℄

Q

j

; ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

).

(d) It the result of SETMEM([u℄

Q

j

; f�1; 1g; [p℄

Q

j

; [~p℄

Q

j

) is failure then stop and output failure.

5. Output su

ess.

If p is a prime then the parties de
lare su

ess. Otherwise, they de
lare that p is a 
omposite

with probability at least 1=2 (over the random 
hoi
es of g).

Note that in the implementation of I2Q-BIT(�) we work with a prime

e

Q whose bit-length is


 = O(�+lg k), where � is the se
urity parameter (
.f. Se
tion 4.2). So, the 
ost of one Miller-Rabin

test is O(nk

3

lg k
 + nk

2




2

+ n

2

k

2

lg k+ �(n

3

k + n

2

k

2

lg k)) bit-operation and the 
ommuni
ation-


omplexity O(n

2

k�) bits and it takes O(n+ lg k) rounds.

6.4 Generation of a Shared Safe Prime

In this se
tion we re
ommend a proto
ol for eÆ
ient generation of a safe prime, p = 2p

0

+1 with p

and p

0

prime. It follows the single party proto
ol proposed by Cramer and Shoup [CS00℄.

1. The players generate a random number p

0

as in Se
tion 6.1.

2. If j = 1 
ompute hpi

I

j

:= 2hp

0

i

I

j

+ 1. If j 6= 1 
ompute hpi

I

j

:= 2hp

0

i

I

j

.

3. Run the trial division as des
ribed in Se
tion 6.2 on p and p

0

. If either of them appears to be

divisible by a small prime, go to step 1.

14



4. Run the Miller-Rabin test (Se
tion 6.3) on p

0

with � = 1 and g = 2. If it fails, go to step 1.

5. Run the Miller-Rabin test (Se
tion 6.3) on p with � = 1 and g = 2. If it fails, go to step 1.

6. Run the Miller-Rabin test (Se
tion 6.3) on p

0

with random g and suÆ
iently large � to ensure

a small error probability (e.g., 2

�80

).

As the 
andidates p

0

are not random (n�1)-bit numbers, some 
are must be taken in 
hoosing the

parameter � in step 6. We do not address these details here. Assuming lg k � n, B = O(n), and that

safe primes are suÆ
iently dense (as is widely 
onje
tured and supported by empiri
al eviden
e),

the expe
ted bit-
omplexity of this proto
ol is O(n

3

=(lg n)

2

(k

3

lg k
+k

2




2

+nk

2

lg k+n

2

k)), where


 � 128 is a se
urity parameter smaller than n. Assuming that one tests about n

2

=(lg n)

2


andidates

in parallel, the round-
omplexity is O(n), the 
ommuni
ation-
omplexity and O(n

4

=(lg n)

2

k) bits.

6.5 Generation of RSA Moduli, EÆ
ien
y Analysis and Comparison

It should now be 
lear how to generate a modulus N being a prime or a safe prime produ
t. Many

appli
ations require also that the players generate shares of the private exponent. This is mu
h less


omputationally involved than distributively generating the modulus N . In parti
ular, Boneh and

Franklin [BF97℄ as well as Catalano et al. [CGH00℄ present eÆ
ient proto
ols to a

omplish this,

given additive shares over the integers of the fa
tors of N . Our te
hniques 
an in fa
t be used to

improve the latter proto
ol as well.

Let us 
ompare the 
omputational 
ost of our method of generating a shared prime produ
t

to the one by Boneh and Franklin. (We do not 
onsider the improvement on the latter proto
ol

des
ribed by Malkin, Wu, and Boneh [WB99℄, as most of them apply to our proto
ol as well.)

We �rst summarize the latter approa
h. Boneh and Franklin propose to �rst 
hoose random n-

bit strings and to do a distributed trial division of them. When two strings are found that pass

this trial division, they are multiplied to obtain N . Then, lo
al trial division is done on N , and

�nally a spe
ial primality test on N is applied that 
he
ks whether N is the produ
t of two primes.

Thus, from a bird's eyes view, one �nds that with this method, one has the test about (n= lg n)

2


andidates as opposed to about n= lg n with our method.

A more 
areful analysis assuming lg k � n shows that the expe
ted bit-
omplexity of their

proto
ol is O((n= lg n)

2

(n

3

+n

2

k+nk

2

lg k) whereas it is O(n

2

= lgn(k

3

lg k
+k

2




2

+nk

2

lg k+n

2

k))

for ours, where 
 � 128 is a se
urity parameter smaller than n. For this analysis we assumed

that the bound B for trial division is about O(n). For small number of players k these �gures

be
ome O(n

5

=(lg n)

2

) and O(n

4

= lgn). Round and 
ommuni
ation 
omplexities are O(1) rounds

and O(kn

3

=(lg n)

2

) bits for theirs and O(n) rounds and O(kn

3

= lgn) bits for ours. We note that, in

pra
ti
e, the round-
omplexities and 
ommuni
ation 
omplexities are not relevant as for this kind

of appli
ation one would run many instan
es of the proto
ol in parallel and thereby keep the party

with the least 
omputational power 
onstantly busy.

A
knowledgements

We are grateful to Matt Franklin for enlightening dis
ussions that led to a substantially more

eÆ
ient test for safe-prime produ
ts.

15



Referen
es

[ACJT00℄ Giuseppe Ateniese, Jan Camenis
h, Mar
 Joye, and Gene Tsudik. A pra
ti
al and

provably se
ure 
oalition-resistant group signature s
heme. In Mihir Bellare, editor, Ad-

van
es in Cryptology | CRYPTO 2000, volume 1880 of LNCS, pages 255{270. Springer

Verlag, 2000.

[AHU74℄ Alfred V. Aho, John E. Hop
roft, and Je�rey D. Ullman. The Design and Analyis of

Computer Algorithms. Addision Wesley, 1974.

[BB89℄ Judit Bar-Ilan and Donald Beaver. Non-
ryptographi
 fault-tolerant 
omputing in a


onstant number of rounds of intera
tion. In 8th ACM SIGACT-SIGOPS Symposium

on Prin
iples of Distributed Computing, pages 201{209, 1989.

[BF97℄ Dan Boneh and Matthew Franklin. EÆ
ient generation of shared RSA keys. In Burt

Kaliski, editor, Advan
es in Cryptology | CRYPTO '97, volume 1296 of LNCS, pages

425{439. Springer Verlag, 1997.

[BGW88℄ Mi
hael Ben-Or, Sha� Goldwasser, and Avi Wigderson. Completeness theorems for

non-
ryptographi
 fault-tolerant distributed 
omputation. In Pro
. 20th Annual ACM

Symposium on Theory of Computing (STOC), pages 1{10, 1988.

[Can00℄ Ran Canetti. Se
urity and 
omposition of multi-party 
ryptographi
 proto
ols. Journal

of Cryptology, 13(1):143{202, 2000.

[CGH00℄ Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over a shared

se
ret modulus. In Bart Preneel, editor, Advan
es in Cryptology | EUROCRYPT 2000,

volume 1807 of LNCS, pages 190{206. Springer Verlag, 2000.

[CL01℄ Jan Camenis
h and Anna Lysyanskaya. EÆ
ient non-transferable anonymous multi-

show 
redential system with optional anonymity revo
ation. In Birgit P�tzmann, editor,

Advan
es in Cryptology | EUROCRYPT 2001, volume 2045 of LNCS, pages 93{118.

Springer Verlag, 2001.

[CLR92℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion to Algo-

rithms. MIT Press, Cambridge, 1992.

[CS99℄ Ronald Cramer and Vi
tor Shoup. Signature s
hemes based on the strong RSA assump-

tion. In Pro
. 6th ACM Conferen
e on Computer and Communi
ations Se
urity, pages

46{52. ACM press, nov 1999.

[CS00℄ Ronald Cramer and Vi
tor Shoup. Signature s
hemes based on the strong RSA assump-

tion. ACM Transa
tions on Information and System Se
urity, 3(3):161{185, 2000.

[DK01℄ Ivan Damg�ard and Ma
iej Koprowski. Pra
ti
al threshold rsa signatures without a

trusted dealer. In Birgit P�tzmann, editor, Advan
es in Cryptology | EUROCRYPT

2001, volume 2045 of LNCS, pages 152{165. Springer Verlag, 2001.

[FFS88℄ Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of

Cryptology, 1:77{94, 1988.

16



[FH94℄ Matthew Franklin and Stuart Haber. Joint en
ryption and message-eÆ
ient se
ure


omputation. In Douglas R. Stinson, editor, Advan
es in Cryptology | CRYPTO '93,

volume 773 of LNCS, pages 266{277. Springer, 1994.

[FMY87℄ Yair Frankel, Phil Ma
Kenzie, and Moti Yung. Robust eÆ
ient distributed rsa key

generation. In Pro
. 30th Annual ACM Symposium on Theory of Computing (STOC),

pages 663{672, 1987.

[FS01℄ Pierre-Alain Fouque and Ja
ques Stern. Fully distributed threshold rsa under standard

assumptions. In Colin Boyd, editor, Advan
es in Cryptology | ASIACRYPT 2001,

volume ??? of LNCS, pages ?{? Springer Verlag, 2001.

[GHR99℄ Rosario Gennaro, Shai Halevi, and Tal Rabin. Se
ure hash-and-sign signatures without

the random ora
le. In Ja
ques Stern, editor, Advan
es in Cryptology | EUROCRYPT

'99, volume 1592 of LNCS, pages 123{139. Springer Verlag, 1999.

[GJKR96℄ Rosario Gennaro, Stanislaw Jare
ki, Hugo Kraw
zyk, and Tal Rabin. Robust and ef-

�
ient sharing of RSA fun
tions. In Neal Koblitz, editor, Advan
es in Cryptology |

CRYPT0 '96, volume 1109 of LNCS, pages 157{172, Berlin, 1996. IACR, Springer Ver-

lag.

[GRR98℄ Rosario Gennaro, Mi
hael O. Rabin, and Tal Rabin. Simpli�ed VSS and fast-tra
k

multiparty 
omputations with appli
ations to threshold 
ryptography. In Pro
. 17th

ACM Symposium on Prin
iples of Distributed Computing (PODC), 1998.

[Rab98℄ Tal Rabin. A simpli�ed approa
h to threshold and proa
tive RSA. In Hugo Kraw
zyk,

editor, Advan
es in Cryptology | CRYPTO '98, volume 1642 of LNCS, pages 89{104,

Berlin, 1998. Springer Verlag.

[Sha79℄ Adi Shamir. How to share a se
ret. Communi
ations of the ACM, 22(11):612{613,

November 1979.

[Sho00℄ Vi
tor Shoup. Pra
ti
al threshold signatures. In Bart Preneel, editor, Advan
es in

Cryptology: EUROCRYPT 2000, volume 1087 of LNCS, pages 207{220. Springer, 2000.

[WB99℄ Mi
hale Malkin Thomas Wu and Dan Boneh. Experimenting with shared generation

of rsa keys. In Pro
eedings of the Internet So
iety's 1999 Symposium on Network and

Distributed System Se
urity (SNDSS), pages 43{56, 1999.

17


