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Abstrat

We present a new protool for eÆient distributed omputation modulo a shared seret. We

further present a protool to distributively generate a random shared prime or safe prime that

is muh more eÆient than previously known methods. This allows to distributively ompute

shared RSA keys, where the modulus is the produt of two safe primes, muh more eÆiently

than was previously known.

Keywords. RSA, safe primes, threshold ryptography, distributed primality test.

1 Introdution

Many distributed protools, e.g., [FFS88, FH94, GJKR96℄, require that an RSA modulus N = pq

is generated during system initialization, together with a publi exponent e and shares of the

orresponding private exponent. Moreover, many protools, e.g., [Sho00, CS99, GHR99, ACJT00,

CL01℄, even require that N is the produt of \safe" primes, i.e., p = 2p

0

+1 and q = 2q

0

+1, where

p

0

and q

0

are themselves prime. While the requirement for safe primes an sometimes be avoided

(e.g., [DK01, FS01℄), this typially omes at the ost of extra ommuniation, omputation, and/or

non-standard intratability assumptions.

While the initialization of the system with an RSA modulus N an be aomplished using a

\trusted dealer," it would be preferable not to rely on this.

Given a distributed protool to generate a random (safe) prime, seurely shared among the

players, it is not too diÆult to solve the above problem. One an of ourse use general multi-party

omputation tehniques of Ben-Or, Goldwasser and Wigderson [BGW88℄ to generate a random,

shared (safe) prime. Indeed, that would work as follows: one starts with a standard algorithm

for generating a random (safe) prime, and onverts this algorithm into a orresponding Boolean

or arithmeti iruit, and then for eah gate in this iruit, the players perform a distributed

multipliation modulo a small prime t. This protool is not very pratial, espeially as the players

need to perform a distributed omputation for every gate in the iruit, and so unlike in the non-

distributed prime generation algorithm, they annot use muh more eÆient algorithms for working

with large integers.
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In this paper, we present new protools that allow one to perform arithmeti modulo a seret,

shared modulus in a way that is muh more eÆient than an be done using the general tehniques

of Ben-Or et al. More spei�ally, we develop a new protool to eÆiently ompute shares of ,

where  � ab (mod p), given shares of a, b, and p. The shares of a, b, , and p are integers modulo

Q, where Q is a prime whose bit-length is roughly twie that of p, and the ost of this protool is

essentially the ost of performing a small, onstant number of distributed multipliations moduloQ.

Atually, this is the amortized ost of multipliation modulo p assuming many suh multipliations

are performed for a �xed p. This protool, together with several other new supporting protools,

gives us a protool to generate a random, shared prime, or safe prime, that is muh more eÆient

than the generially derived protool disussed above. In partiular, we obtain a protool for

jointly generating an RSA modulus that is the produt of safe primes that is muh more eÆient

in pratie than any generi iruit-based protool (whih are the only previously known protools

for this problem), even using the most eÆient iruits for integer multipliation, division, et.

Our protools work in the so-alled \honest-but-urious" model. That is, we assume that all

players follow the protool honestly, but we guarantee that even if a minority of players \pool"

their information they annot learn anything that they were not \supposed" to. Even though we

make this restrition, fairly standard tehniques an be used to make our protools robust, while

maintaining their pratiality. In fat, using \optimisti" tehniques for robustness, we an obtain

a fully robust protool for distributively generating an RSA modulus that is not signi�antly less

eÆient than our honest-but-urious solution | this is the subjet of on-going work.

Related Work. Boneh and Franklin [BF97℄ present a protool for jointly generating an RSA

modulus N = pq along with a a publi exponent and shares of the orresponding private key. Like

us, they also work in the honest-but-urious adversary model. Unlike ours, their protool is not

based on a sub-protool for generating a random, shared prime. While our protool for this task is

asymptotially more eÆient than the protool of Boneh and Franklin (when the number of players

is small), we do not laim that our protool is in pratie more eÆient than theirs for typial

parameter hoies. The relative performane of these protools in suh a pratial setting depends

on a myriad of implementation details.

Unlike our tehniques, those of Boneh and Franklin do not give rise to a protool for jointly

generating an RSA modulus N = pq, where p and q are safe primes. Indeed, prior to our work,

the only know method for solving this problem was to apply the muh less eÆient general iruit

tehnique of [BGW88℄.

As our protools rely mainly on distributed multipliation over a prime �eld, rather than over

the integers, one an easily make them robust using traditional tehniques for veri�able seret

sharing modulo a prime, avoiding the somewhat less eÆient tehniques by Frankel et al. [FMY87℄

for robust distributed multipliation over the integers. Moreover, using the optimisti approah

mentioned above, even further improvements are possible, so that we an get robustness essentially

\for free".

2 Model

We onsider k players P

1

; : : : ; P

k

that are mutually onneted by seure and authenti hannels.

Our protools are seure against a stati and honest-but-urious behaving adversary, ontrolling

up to � = b

k�1

2

. That is, all players follow the protool honestly but the dishonest players may

pool their data and try to derive additional information. We �nally assume that no party stops

partiipating prematurely (we use k-out-of-k seret sharing shemes).
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However, these assumptions an be relaxed: First, it's possible to fore the partiipants to

behave honestly by having them to ommit to their inputs, to generate their individual random

strings jointly, and to prove (using zero-knowledge proofs) that they followed the protools orretly.

Seond, the k-out-of-k seret sharing shemes an easily be onverted into k-out-of-l ones by the

`share bak-up' method introdued by Rabin [Rab98℄. We do not pursue these possibilities here.

We prove seurity in the model by Canetti [Can00℄. Here, we desribe a simpli�ed version of it

for a stati adversary in the honest-but-urious model. Suh an adversary �rst hooses the players

he wants to orrupt and then gets to see their inputs, their internal state and all the messages they

reeive. A protool � is proved seure by speifying the funtionality f the protool should provide

in an ideal world where all the parties send their inputs to a trusted third party T who then returns

to them the outputs they are to obtain aording to f . Let �

i

(x

1

; : : : ; x

k

; �) denote the output of

party P

i

when running protool � on input x

i

in the presene of adversary A, where � is a seurity

parameter. As A behaves honest-but-urious, the output �

i

(x

1

; : : : ; x

k

; �) does not depend on A.

De�nition 1. A protool is said to be statistially seure if for any honest-but-urious behaving

adversary A there exists a probabilisti polynomial-time simulator S suh that the two ensembles

of random variables

fA(z); �

1

(x

1

; : : : ; x

k

; �); : : : ; �

k

(x

1

; : : : ; x

k

; �)g

�2N;z;x

1

;::: ;x

k

2f0;1g

�

and

fS(z); f

1

(x

1

; : : : ; x

k

; �); : : : ; f

k

(x

1

; : : : ; x

k

; �)g

�2N;z;x

1

;::: ;x

k

2f0;1g

�

are statistially indistinguishable.

It an be shown that seurity is preserved under non-onurrent, modular omposition of pro-

tools [Can00℄.

3 Preliminaries

3.1 Notation

Let a be a real number. We denote by ba the largest integer b � a, by dae the smallest integer

b � a, and by da the largest integer b � a + 1=2. We denote by trun(a) the integer b suh that

b = dae if a < 0 and b = ba if a � 0; that is, trun(a) rounds a towards 0.

Let Q be a positive integer. All modular arithmeti is done entered around 0; to remind the

reader of this, we use `rem' as the operator for modular redution rather than `mod', i.e.,  remQ

is � d=QQ.

De�ne Z

Q

as the set fx 2 Z j � Q=2 < x � Q=2g (we should emphasize that Z

Q

is properly

view as a set of integers rather than a ring). We denote an additive sharing of a value a 2 Z

Q

over Z

Q

by hai

Q

1

; : : : ; hai

Q

k

2 Z

Q

, i.e., a =

P

k

j=1

hai

Q

j

remQ and by [a℄

Q

1

; : : : ; [a℄

Q

k

2 Z

Q

we denote

a polynomial sharing (also alled Shamir-sharing [Sha79℄), i.e., a =

P

�

i=1

�

j

[a℄

Q

j

remQ, where �

j

are the Lagrange oeÆients. The latter only works if Q > k and if Q is prime.

For a 2 Z we denote by hai

I

1

; : : : ; hai

I

k

2 Z an additive sharing of a over the integers, i.e.,

a =

P

k

j=1

hai

I

j

.

We denote protools as follows: the term a := PROTOCOLNAME(b) means that the player in

onsideration runs the protool PROTOCOLNAME with loal input b and gets loal output a as

the result of the protool. Finally, lg(x) denotes the logarithm of x to the base 2.
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3.2 Known Primitives

We reall the known seure multi-party protools for eÆient distributed omputation with shared

serets that we will use to ompose our protools, and we state the number of bit-operations

for whih we assume lgQ = �(n) and that the bit-omplexity of a multipliation two n-bit in-

tegers is O(n

2

) (whih is a reasonable estimate for realisti values of n, e.g., n = 1024). The

round-omplexity of all primitives is O(1) and their ommuniation is O(kn) bits (we onsider

ommuniation omplexity to be the number of bits eah player sends on average).

Additive sharing over Z

Q

: To share a seret a 2 Z

Q

player P

j

hooses hai

Q

i

2

R

Z

Q

for i 6= j, sets

hai

Q

j

:= a�

P

k

i=1;i 6=j

hai

Q

i

remQ, and sends hai

Q

i

to player P

i

. This takes O(kn) bit operations.

Polynomial sharing over Z

Q

: To share a seret a 2 Z

Q

player P

j

hooses oeÆients a

l

2

R

Z

Q

for

l = 1; : : : ; � , where � = b(k � 1)=2, and sets [a℄

Q

i

:= a +

P

�

l=1

a

l

i

l

remQ, and sends [a℄

Q

i

to

player P

i

. This takes O(nk

2

lg k) bit operations.

Additive sharing over Z:To share a seret a 2 [�A;A℄ player P

j

hooses hai

I

i

2

R

[�A2

�

; A2

�

℄ for

i 6= j, where � is a seurity parameter, and sets hai

I

j

:= a �

P

k

i=1;i 6=j

hai

I

i

, and sends hai

I

i

to

player P

i

. Note that for any set of k � 1 players, the distribution of shares of di�erent serets

are statistially indistinguishable for suitably large � (e.g., � = 128). This takes O(k(� + lgA))

bit operations.

Distributed omputation over Z

Q

: Addition and multipliation modulo Q of a onstant and a poly-

nomially shared seret is done by having all players loally add or multiply the onstant to their

shares. Hene [a℄

Q

j

+  remQ is a polynomial share of a+  remQ and  � hai

Q

j

remQ is a polyno-

mial share of a remQ. These operations take O(n) and O(n

2

) bit operations, respetively.

Addition of two shared serets is ahieved by having the players loally add their shares. Thus

[a℄

Q

j

+ [b℄

Q

j

remQ is a polynomial share of a+ b remQ and takes O(lgQ) bit operations.

Multipliation modulo Q of two polynomially shared serets is done by jointly exeuting a mul-

tipliation protool due to Ben-Or, Goldwasser and Wigderson [BGW88℄ or by a more eÆient

variant due to Gennaro, Rabin and Rabin [GRR98℄ whih requires O(n

2

k + nk

2

lg k) bit opera-

tions for eah player. We denote this protool by MUL([a℄

Q

j

; [b℄

Q

j

).

Joint random sharing over Z

Q

: To generate shares of a seret hosen jointly at random from Z

Q

,

eah player hooses a random number r

i

2

R

Z

Q

and shares it aording to the required type of

seret sharing sheme and sends the shares to the respetive players. Eah player adds up all the

shares gotten to obtain a share of a random value. We denote this protool by JRS(Z

Q

) in ase

the players get additive shares and by JRP(Z

Q

) if they get polynomial shares. The protools

require O(nk) and O(nk

2

lg k) bit operations per player, respetively.

Joint random sharing of 0: In protools it is often needed to re-randomized shares obtained from

some omputation by adding random shares of 0. Suh shares an be obtained for any sharing

sheme by having eah player share 0 aording to the required type of seret sharing sheme

and sending them to the respetive players. Eah player adds up all the shares gotten to obtain

a share of 0. We denote this protool by JRSZ(Z

Q

) in ase the players get additive shares over

Z

Q

and JRPZ(Z

Q

) if they get polynomial shares over Z

Q

. The protools require O(nk) and

O(nk

2

lg k) bit operations per player, respetively. In ase we want to have additive shares over

the integers, it is required to give the range (e.g., [�A;A℄) from whih the players hoose the

shares they send to the other players. We denote this protool by JRIZ([�A;A℄) and it requires

O(k(�+ lgA)) bit operations per player.

Computing shares of the inverse of a shared seret: This protool works only for polynomial shar-

ings over Z

Q

. Let a be the shared invertible element. Then, a protool due to Bar-Ilan and
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Beaver [BB89℄ omputes shares of a

�1

remQ given shares [a℄

Q

j

. The protool, denoted by

INV([a℄

Q

j

), is as follows: �rst run [r℄

Q

j

:= JRP(Z

Q

), then ompute [u℄

Q

j

:= MUL([a℄

Q

j

; [r℄

Q

j

),

reveal [u℄

Q

j

, and reonstrut u. If u � 0 (mod Q), the players start over. Otherwise, they eah

loally ompute their share of a

�1

remQ as (u

�1

remQ) � [r℄

Q

j

remQ. This protool requires an

expeted number of O(n

2

k + nk

2

lg k) bit operations per player.

Joint random invertible element sharing: This protool denoted JRP-INV(Z

Q

) is due to Bar-Ilan

and Beaver [BB89℄. The players generate shares of random elements [r℄

Q

j

:= JRP(Z

Q

) and

[s℄

Q

j

:= JRP(Z

Q

), jointly ompute [u℄

Q

j

:= MUL([s℄

Q

j

; [r℄

Q

j

), reveal [u℄

Q

j

and then reonstrut u.

If u is non-zero, they eah take [r℄

Q

j

as their share of a random invertible element. Otherwise,

they repeat the protool. The protool requires an expeted number of O(nk

2

lg k + n

2

k) bit

operations per player.

4 Conversions Between Di�erent Sharings

In our protools, we work with all three seret sharing shemes introdued in the previous setion.

For this we need methods to onvert shares from one sharing sheme into shares of another one. This

setion reviews the known methods for suh transformations and provides a method to transform

additive shares over Z

Q

into additive shares over the integers. The latter is apparently new. The

setion also provides a method to obtain shares of the bits of a shared seret.

4.1 Converting Between Integer Shares and Z

Q

Shares

It is well known how to onvert additive shares modulo Q into polynomial shares modulo Q and

vie versa: If the players hold additive (or polynomial) shares of a value a they re-share those with

a polynomial (additive) sharing and send the shares to the respetive players, whih add up (or

interpolate) the reeived shares to obtain a polynomial (or additive) share of a. We denote the �rst

transformation by SQ2PQ(�) and the latter by PQ2SQ(�).

Conversions between shares over the integers into shares over Z

Q

naturally requires that Q=2 is

bigger than the absolute shared value. If this is the ase, an additive sharing hi

I

1

; : : : ; hi

I

k

over the

integers of a seret  with �2

n�1

<  < 2

n�1

< Q=2 an be onverted in an additive sharing over

Z

Q

(and thus also a polynomial sharing) by reduing the shares modulo Q, i.e., hi

Q

i

:= hi

I

i

remQ.

We denote this transformation by SI2SQ(�).

Obtaining additive shares over the integers from additive shares over Z

Q

is not so straightfor-

ward. The main problem is that if one onsiders the additive shares over Z

Q

as additive shares

over the integers then one is o� by an unknown multiple Q, the multiple being the quotient of the

sum of these shares and Q. However, if the shared seret is suÆiently smaller than Q (i.e., � bits

smaller, where � is a seurity parameter), then the players an reveal the high-order bits of their

shares without revealing anything about the seret. Knowledge of these high-order bits is suÆient

to ompute the quotient. This observation leads to the following protool.

Let hi

Q

j

2 Z

Q

be the share of party P

j

and let �2

n�1

<  =

P

i

hi

Q

i

remQ < 2

n�1

. If

Q > 2

�+n+lg k+4

holds, where � is a seurity parameter, the parties an use the following protool

to seurely ompute additive shares of  over the integers.

Protool SQ2SI(hi

Q

j

):

Let t = �+ n+ 2. Party P

j

exeutes the following steps.
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1. Reveal a

j

:= trun(

hi

Q

j

2

t

) to all other parties.

2. Compute l :=

l

2

t

P

i

a

i

Q

k

.

3. Run h0i

I

j

:= JRIZ([�Q2

�

; Q2

�

℄).

4. If j � jlj set the output to hi

I

j

:= hi

Q

j

�Q+ h0i

I

j

if l > 0 and to hi

I

j

:= hi

Q

j

+Q + h0i

I

j

if

l < 0.

If j > jlj set the output to hi

I

j

= hi

Q

j

+ h0i

I

j

.

Theorem 1. Let hi

Q

1

; : : : ; hi

Q

k

be a random additive sharing of �2

n�1

�  < 2

n�1

. If lgQ >

�+ n+ lg k + 4, where � is a seurity parameter, then the protool SQ2SI(hi

Q

j

) seurely omputes

additive shares of  over the integers.

Proof. We have to provide a simulator that interats with the ideal world trusted party T and

produes an output indistinguishable from that of the adversary. The trusted party T gets as input

the shares hi

Q

1

; : : : ; hi

Q

k

, omputes  and re-shares  over the integers by hoosing integer shares

of 0 the same way as it would be done if the parties ran the protool h0i

I

i

:= JRIZ([�Q2

�

; Q2

�

℄).

Then T sets hi

I

1

:= h0i

I

1

+  and hi

I

i

:= h0i

I

i

for i 6= 1, and then sends hi

I

i

to player P

i

. Note

that the players' outputs are additive shares of  with the right distribution (i.e., the distribution

of any subset of k � 1 shares is statistially lose to the distribution of the orresponding subset if

another value 

0

was shared).

A simulator is as follows: it forwards the inputs hi

Q

i

of the orrupted players to T and obtains

the shares hi

I

i

for these players from T . It extends the set of shares hi

Q

i

of the orrupted players

into a full (and random) sharing of any valid 

0

(e.g., 0). Let r

1

; : : : ; r

n

be the thereby obtained

shares. The simulator then omputes a

i

= trun(

r

i

2

t

) and lets the adversary know the a

i

's that the

orrupted players would reeive in the protool. Then the simulator omputes l =

l

2

t

P

i

a

i

Q

k

and,

for every i where Party P

i

is orrupted, it sets

h0i

I

i

:=

8

>

<

>

:

hi

I

i

� hi

Q

i

+Q if l > 0; i � jlj

hi

I

i

� hi

Q

i

�Q if l < 0; i � jlj

hi

I

i

� hi

Q

i

otherwise:

The simulator �nally runs the simulator for JRIZ([�Q2

�

; Q2

�

℄) suh that these shares h0i

I

i

are the

outputs of the orrupted players. Finally the simulator stops outputting whatever the adversary

outputs.

It remains to show that for this simulator the distributions of the players' and the simula-

tors outputs are statistially indistinguishable from the views and outputs of the players and the

adversary when running protool SQ2SI(hi

Q

j

).

Let us �rst prove that the players' outputs of protool SQ2SI(hi

Q

j

) are indeed shares of . Let

^

l =

lP

i

hi

Q

i

Q

k

. Thus  =

P

i

hi

Q

i

�

^

lQ ful�lls jj < 2

n�1

by assumption. De�ne b

i

= hi

Q

i

�a

i

2

t

. Note

that jb

i

j < 2

t

. We have to show that l =

^

l. As

P

i

a

i

2

t

=  +

^

lQ �

P

i

b

i

we have l =

l

2

t

P

i

a

i

Q

k

=

l



Q

+

^

l �

P

i

b

i

Q

k

. Beause

^

l is an integer, we have l =

^

l if j



Q

j < 1=4 and j

P

i

b

i

Q

j < 1=4, that is, if

n < lgQ � 2 and 2 + t + lg k = � + n + lg k + 4 < lgQ holds. As hi

Q

i

2 Z

Q

we have jlj < k and
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thus  =

P

i

hi

Q

i

� lQ =

P

i

hi

I

i

. Furthermore it is easy to see that the distribution of the shares

output is statistially lose to the ones produed by T .

Let us now show that the distribution of the a

i

's for di�erent shared values  are statistially

indistinguishable. We onsider the probability that the a

i

's take di�erent values if a di�erent value

of  was shared. W.l.o.g., we an assume that hi

Q

1

; : : : ; hi

Q

k�1

are random elements from Z

Q

and

that hi

Q

k

=  �

P

k�1

i=1

hi

Q

i

remQ. Clearly, the values a

1

= trun(

hi

Q

1

2

t

); : : : ; a

k�1

= trun(

hi

Q

k�1

2

t

)

do not depend on the shared value. It remains to onsider a

k

. We have hi

Q

k

remQ = a

k

2

t

+ b

k

with b

k

< 2

t

. First note that C = �

P

k�1

i=1

hi

i

remQ is uniformly distributed over Z

Q

and that

Q > 2

t

. If C > Q � 2

n

or if C rem2

t

> 2

t

� 2

n

then a

k

takes a value that depends on .

These onditions are ful�lled with probability at most

2

n

+2

n

2

t

+2

n

<

2

n+1

2

t

= 2

�t+n+1

. Therefore, the

statistial di�erene between the distribution of the a

i

's for di�erent shared values must smaller

than 2 � 2

�t+n+1

= 2

�t+n+2

= 2

��

.

As the JRIZ([�Q2

�

; Q2

�

℄) protool is seure, the distributions of the outputs in the real world

and the outputs of the ideal world with our simulator are statistially indistinguishable.

Combining the above protools, we an move from polynomial shares over Z

Q

to additive shares

over the integers and vie versa. The bit-omplexities for these onversions are O(nk

2

lg k + n

2

k)

and O(nk

2

lg k), respetively. For both, the ommuniation-omplexity is O(kn) bits and the

round-omplexity is O(1).

Moreover, it follows that we an also move from polynomial shares over Z

Q

to polynomial shares

over Z

Q

0

provided Q and Q

0

are suÆiently large w.r.t. the seurity parameter and the shared value.

4.2 Computing Shares of the Binary Representation of a Shared Seret

To do a distributed exponentiation with a shared exponent b it is useful when the players are given

shares of the bits b. In the following we assume (w.l.o.g.) that the players hold additive shares of

the exponent b over the integers. The idea of the following protool to obtain shares of the bits is

that eah player distributes polynomial shares modulo

e

Q of the bits of her or his additive share.

Then the players perform a (general) multi-party omputation to add these bits to obtain shares

of the bits of b. This multi-party omputation, however, is rather simple. In fat, we need to

implement a iruit of size O(kn) and depth O(lg k+lgn) (.f., [CLR92℄). Eah gate in this iruit

requires O(1) invoations of the multipliation protool MUL(�; �) over Z

~

Q

, where

~

Q an be small.

Protool I2Q-BIT(hbi

I

j

):

Let n to be (an upper-bound on) the number of bits of b. Party P

j

runs the following steps.

1. Re-share eah bit of the share hbi

I

j

with a polynomial sharing over

e

Q and send eah share to

the respetive player. Let [b

i;l

℄

e

Q

j

denote the share held by party P

j

of the i-th bit of party

P

l

's additive share of b.

2. The player use the omputation tehniques of Ben-Or, Goldwasser and Wigderson [BGW88℄

on a iruit for adding the k n-bit numbers. This takes O(lg k + lgn) steps.

Let [u

i

℄

e

Q

j

, i = 1; : : : ; n be the shares of the bits of the result. (Reall that it is ensured b has

n-bits.)

3. For i = 1; : : : ; n� 1 do (in parallel)

(a) Exeute [0℄

e

Q

j

:= JRPZ(Z

e

Q

) and set [b

i

℄

e

Q

j

:= [0℄

e

Q

j

+ [u

i

℄

e

Q

j

rem

e

Q.
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4. Output ([b

1

℄

e

Q

j

; : : : ; [b

n

℄

e

Q

j

).

Proving the seurity of this protool is straightforward given the seurity of its sub-protools

and the omposition theorem.

EÆieny analysis: omputing shares of the bits of b requires O(nk

3

lg k lg

e

Q+ nk

2

(lg

e

Q)

2

) bit

operations per player. This protool requires only a relatively small

e

Q, e.g., � + 5 + lg k bits. If

shares of the bits modulo a larger prime Q are required, is more eÆient to ompute shares modulo

a small

e

Q using the above protool and then onvert these shares into ones modulo Q. The number

of bit operations for this is O(nk

3

lg k + 

2

nk

2

+ n

2

k

2

lg k), where lgQ = �(n) and lg

e

Q = �(),

as opposed to O(n

2

k

3

lg k + n

3

k

2

) when using the bigger Q only. This optimization may be quite

important in pratie as  may be muh smaller than n (e.g.,  = 100 and n = 2000). The

ommuniation-omplexity for both variants is O(n

2

k + nk lgQ) bits. and their round-omplexity

is O(lg k + lgn).

4.3 Approximate Trunation

This paragraph presents a trunation protool, that on input polynomial shares of a and a parameter

n outputs polynomial shares of b suh that jb� a=2

n

j � k + 1.

Protool TRUNC(a; n) :

Party P

j

exeutes the following steps.

1. Get additive shares of a over the integers: hai

I

j

:= SQ2SI(PQ2SQ([a℄

Q

j

)).

2. Loally ompute hbi

I

j

:= trun(

hai

I

j

2

n

)

3. Get polynomial shares of b over Z

Q

: [b℄

Q

j

:= SQ2PQ(SI2SQ(hbi

I

j

))

It is easy to see that the protool is seure and orret, if lgQ > � + n + lg k + 4 holds,

where � is a seurity parameter (.f. requirements of the SQ2SI(�) protool). Its bit-omplexity is

O(nk

2

lg k + n

2

k), its ommuniation-omplexity is O(kn) bits, and its round-omplexity is O(1)

rounds.

5 Distributed Computation Modulo a Shared Integer

This setion provides eÆient protools for distributed omputation modulo a shared, seret mod-

ulus p. All omputations will be done using shares modulo a prime Q whose bit-length is roughly

twie that of p. The main building blok is an eÆient protool for reduing a shared seret modulo

p. This immediately gives us distributed modular addition and multipliation. The setion further

provides a protool for eÆient modular exponentiation where the exponent is a shared seret as

well. As our modular redution protool does not ompute the smallest residue in absolute value

but only one that is bounded by a small multiple of the modulus, the usual approah for ompar-

ing two shared serets no longer works and therefore a new protool for omparing suh `almost

redued' shared serets modulo p is also presented.

The idea of our protool for modular redution is based on lassial algorithmi tehniques

(.f. [AHU74℄). Reall that  rem p =  � d



p

p. Thus the problem redues to the problem of

distributively omputing d



p

.

By interpreting an integer as the mantissa of a oating point number with a publi exponent,

we an interpret shares of this integer as shares of the orresponding oating point number. To
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multiply two suh oating point numbers we distributively multiply the mantissas and loally

add the exponents. To keep the shared numbers small, we `round' the produt by onverting

the polynomial shares of the produt mantissa modulo Q to additive shares over the integers, by

having eah party loally right-shift its additive share by � bits and add � to the exponent, and by

onverting bak to polynomial shares modulo Q. This rounding tehnique introdues an relative

error of O(k2

�

=m).

So we split the problem of distributively omputing d



p

 into the problem of distributively

omputing a oating point approximation of 1=p, and of distributively omputing d



p

 using the

preomputed shares of 1=p. The �rst problem an be solved using Newton iteration and is desribed

in the next subsetion. In Setion 5.2 we show how to ompute a lose approximation to d



p

 if we

are given additive shares of a good approximation to



p

over the integers by having eah partiipant

loally trunate its share. The resulting (shared) integer s satis�es js� d



p

j � k + 1. It turns out

that this is aurate enough to ompute a value ongruent to  modulo p that is suÆiently small

to allow for on-going omputations modulo p (Setion 5.3).

5.1 Computation of Shares of an Approximation to 1=p

Assume eah party is given polynomial shares [p℄

Q

i

of p, with 2

n�1

< p < 2

n

. This setion provides

a protool that allows the parties to ompute polynomial shares of an integer 0 < ~p < 2

t+2

suh

~p 2

�n�t

= 1=p+ � where j�j < (k + 1)2

�n�t+4

.

As already mentioned we employ Newton iteration for this task with the funtion f(x) = 1=x�

p=2

n

whih leads to the iteration formula x

i+1

:= x

i

(2 � x

i

p=2

n

) that has quadrati onvergene.

Using 3=2 as a start value gives us an initial error of j2

n

=p � 3=2j < 1=2 and hene we need to do

about lg t iterations to get a t-bit approximation ~x to 2

n

=p. We set ~p = 2

t

~x, whih is an integer.

Protool APPINV([p℄

Q

j

) :

Party P

j

exeutes the following steps.

1. Set [u

0

℄

Q

j

:= u

0

= 3 � 2

t�1

remQ.

2. For i = 0 to dlg(t� 3� lg(k + 1))e � 1 run

(a) Distributively ompute [z

i+1

℄

Q

j

:= MUL([p℄

Q

j

; [u

i

℄

Q

j

).

(b) [w

i+1

℄

Q

j

:= TRUNC([z

i+1

℄

Q

j

; n).

() Compute [v

i+1

℄

Q

j

:= 2

t+1

� [u

i

℄

Q

j

�MUL([w

i+1

℄

Q

j

; [u

i

℄

Q

j

).

(d) [u

i+1

℄

Q

j

:= TRUNC([v

i+1

℄

Q

j

; t).

3. Run [0℄

Q

j

:= JRPZ(Z

Q

).

4. Output [~p℄

Q

j

:= [u

i+1

℄

Q

j

+ [0℄

Q

j

remQ.

Theorem 2. Let � be a seurity parameter and let Q > 2

�+t+�+6+lg k

, where � = max(n; t). Then,

for any t > 5+lg(k+1) and any p satisfying 2

n�1

< p < 2

n

for some n, the protool APPINV([p℄

Q

j

)

seurely omputes shares of an integer ~p, suh that

�

�

�

2

n

p

�

~p

2

t

�

�

�

<

k + 1

2

t�4

;

with 0 < ~p < 2

t+2

. That is, ~p=2

t+n

is an approximation to 1=p with relative error

k+1

2

t�4

.

9



Proof. We need show that the protool atually omputes an approximation to 1=p. Then seurity

from the seurity of the sub-protools for multipliation and transformation of the shares.

Consider how u

i+1

is omputed from u

i

in the protool. Beause of the loal trunation, we have

2u

i

�pu

2

i

2

�n�t

�(k+1)(1+u

i

=2

t

) � u

i+1

� 2u

i

�pu

2

i

2

�n�t

+(k+1)(1+u

i

=2

t

). As we will see u

i

=2

t

<

3 holds. Thus j

2

n

p

�

u

i+1

2

t

j <

2

n

p

� 2

u

i

2

t

+

p

2

n

(

u

i

2

t

)

2

+

(k+1)

2

t

(1+u

i

=2

t

) =

p

2

n

(

2

n

p

�

u

i

2

t

)

2

+

(k+1)

2

t

(1+u

i

=2

t

).

From this it follows that

�

�

2

n

p

�

u

i+1

2

t

�

�

< �

2

i

+

k+1

2

t�2

=: �

i+1

. As 2

n�1

< p < 2

n

and u

0

= 2

t�1

we have

�

0

< 1=2 and by requiring k < 2

t�5

� 1 we get e

1

< 1=2 and �

i

= 2

2

�i

+

k+1

2

t�3

< 1=2. In partiular,

we have �

i

=

k+1

2

t�4

for i = dlg(t� 3� lg(k + 1))e.

Consider the size of the integers u

i

that are shared during the protool. As �

i

< 1=2 and

1 < 2

n

=p < 2 we have 0 < u

i

=2

t

< 2 + 1=2 and hene 0 < u

i

< 2

t+2

for all i and hene

0 < z

i

< 2

n+t+2

. Similarly, one an show that 0 < v

i

< 2

2t+2

.

The lower-bound on Q follows from the fat that the SQ2SI(�) algorithm must work on the v

i

's

and the z

i

's.

Let us disuss the hoie of t: in order for the b most signi�ant bits of 1=p and ~p=2

t+n

to be

equal, t must be hosen bigger than b + 5 + lg (k + 1). The ost of the protool is dominated by

the MUL(�; �) protool and is O(lg t(n

2

k + nk

2

lg k)) bit-operations per player. Its ommuniation-

omplexity O(kn lg t) bits and its round-omplexity is O(lg t).

5.2 Redution of a Shared Integer Modulo a Shared p

Assume the players hold polynomial shares modulo Q of the three integers �2

w

<  < 2

w

, 0 < ~p <

2

t+2

, and 2

n�1

< p < 2

n

, where ~p 2

�n�t

is an approximation of 1=p as omputed by the protool in

the previous paragraph. Using the following protool, the players an ompute shares of an integer

d suh that d �  (mod p) and lg jdj < lg(k + 1) + w � t+ 5.

As already mentioned this protool omputes d as �d~p2

�n�t

p. For distributively omputing

the produt ~p the size of Q would need to be about w + t bits. However, as the ` � n least

signi�ant bits of  do not matter in the omputation of the quotient, we an �rst ut these ` bits

o�, obtaining ~, and then ompute d as  � d~~p2

�n�t+`

p whih requires the size of Q to be only

about w + t� ` bits.

Protool MOD([℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

exeutes the following steps.

1. [~℄

Q

j

:= TRUNC([℄

Q

j

; `).

2. Compute [q̂℄

Q

j

:= MUL([~℄

Q

j

; [~p℄

Q

j

).

3. [q℄

Q

j

:= TRUNC([q̂℄

Q

j

; n+ t� `).

4. Compute [d℄

Q

j

:= [℄

Q

j

�MUL([p℄

Q

j

; [q℄

Q

j

).

Theorem 3. Given shares of three integers �2

w

<  < 2

w

, 0 < ~p < 2

t+2

, and 0 < p < 2

n

, the

above protool seurely omputes shares of d = ( rem p)+ip with jij � (k+1)(1+2

w+4�n�t

+2

`�n+2

),

where k is the number of players and given that Q > max (2

�+6+w�`+t+2 lg(k+1)

; 2

�+w+4+lg(k+1)

).

Proof. Due to the loal rounding in the TRUNC(�; �) protool in Step 1, we have  � (k + 1)2

`

�

~2

`

�  + (k + 1)2

`

. Due to the loal rounding in the TRUNC(�; �) protool in Step 3, we have

trun(~~p2

�n�t+`

)� k � q � trun(~~p2

�n�t+`

) + k. As ~p2

�(n+t)

is only an approximation to 1=p, we
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have trun(



p

�

(k+1)

2

n�4+t

�

~p(k+1)

2

n+t�`

)� k � q � trun(



p

+

(k+1)

2

n�4+t

+

~p(k+1)

2

n+t�`

) + k and, as �2

w

<  < 2

w

and

0 < ~p < 2

t+2

, we get d



p

�(k+1)(1+2

w+4�n�t

+2

`�n+2

) � q � d



p

+(k+1)(1+2

w+4�n�t

+2

`�n+2

).

Thus d = ( rem p) + ip with jij < (k + 1)(1 + 2

w+4�n�t

+ 2

`�n+2

).

The bound on Q follows from the requirements of the SQ2SI(�) in the TRUNC(�; �) protool.

The ost of the MOD(�; �; �) protool is dominated by the MUL(�; �) protool and is O(n

2

k +

nk

2

lg k) bit operations per players. The ommuniation-omplexity of the protool is O(kn) bits

and its round-omplexity is O(1).

5.3 Computing with a Shared Modulus p

Now, we are ready to disuss \on-going" distributed omputation modulo a shared integer. In

partiular, we disuss how the parameters for the MOD(�; �; �) and APPINV(�)� protools must be

set suh that suh omputation is possible. Assume that the players hold polynomial shares modulo

a prime Q of the integers 0 < ~p < 2

t+2

, and 2

n�1

< p < 2

n

, where ~p 2

�t�n

is an approximation of

1=p as omputed above. Let

t = dn+ 10 + 2 lg(3(k + 1))e; v = n+ lg(3(k + 1)) + 1; and Q > 2

�+2n+36+6 lg(k+1)

:

Then, given polynomial shares modulo a prime Q of an integer �2

2v

<  < 2

2v

, the players an

ompute shares of an integer �2

v

< d < 2

v

as [d℄

Q

j

:= MOD([℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

). In partiular, given

polynomial shares modulo a prime Q of the integers �2

v

< a; b < 2

v

the players an ompute

shares of an integer �2

v

< d

0

< 2

v

as [d

0

℄

Q

j

:= MOD(MUL([a℄

Q

j

; [b℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

). Thus d and d

0

an

be used as inputs to further modular multipliation omputations.

Exponentiation with a Shared Exponent: Assume the players want to ompute shares of

 � a

b

(mod p), where a, b, p, ~p are shared serets and ~p is an approximation to 2

n+t

=p . This

an be done by distributively running the square and multiply algorithm where the fat that a

b

i

=

(a�1)b

i

+1 if b

i

2 f0; 1g omes in handy. We assume that the players hold shares ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

)

of the bits of b, where b

1

is the low-order bit of b (as omputed, say, by protool I2Q-BIT(�)).

Assuming that jaj < 2

v

then the following protool seurely omputes shares of  suh jj < 2

v

and  � a

b

(mod p).

Protool EXPMOD([a℄

Q

j

; ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

exeutes the following steps.

1. Compute [

n

℄

Q

j

:= MUL([a℄

Q

j

� 1 remQ; [b

n

℄

Q

j

) + 1 remQ.

2. For i = n� 1; : : : ; 1 do

(a) [d

i

℄

Q

j

:= MUL([a℄

Q

j

� 1 remQ; [b

i

℄

Q

j

) + 1 remQ.

(b) [

i

℄

Q

j

:= MOD(MUL(MOD(MUL([

i+1

℄

Q

j

; [

i+1

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

); [d

i

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

).

3. Output [℄

Q

j

:= [

1

℄

Q

j

.

EÆieny analysis: This protool does about 3n invoations of MUL(�; �) and about 2n of

MOD(�; �; �) and hene requires O(n

3

k + n

2

k

2

lg k)) bit operations per player. The ommuniation

omplexity O(n

2

k) bits and it has O(n) rounds.
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Set membership: Assume the players want to establish whether a � b (mod p) holds for three

shared serets a, b and p (where p is not neessarily a prime). This an in priniple be done

by omputing shares of  := a � b rem p, (re-)sharing  modulo Q, multiplying it with a jointly

generated random invertible element from Z

Q

, revealing the result, and see if it is 0 modulo Q

(provided Q > p). However, beause of the properties of MOD(�; �; �), we an only ompute shares

of  = (a� b rem p) + ip with jij < 3(k + 1) and therefore the test does not quite work. But as i is

relatively small, it is possible to distributively ompute the integer s :=

Q

3(k+1)�1

l=�3(k+1)+1

(� lp) whih

will be zero if  � 0 (mod p) and non-zero otherwise. This also holds for s modulo Q beause Q - s

if Q > p6(k + 1) as then Q > j(� ip)j holds for all i 2 [�3(k + 1); 3(k + 1)℄.

The protool below is a generalization of what we just desribed in that it allows the players to

hek whether a equals one of b

1

; : : : b

m

modulo p. Here, �rst an s

i

is omputed for eah b

i

similarly

as the s above for b and then it is tested whether

Q

i

s

i

� 0 (mod Q).

Assuming that a; b

1

; : : : ; b

m

are less than 2

v

in absolute value, then the following protool

seurely tests if a � b

i

(mod p) for some i.

Protool SETMEM([a℄

Q

j

; f[b

1

℄

Q

j

; : : : ; [b

m

℄

Q

j

g; [p℄

Q

j

; [~p℄

Q

j

):

Player P

j

runs the following steps.

1. For all i = 1; : : : ;m ompute [

i

℄

Q

j

:= MOD([a℄

Q

j

� [b

i

℄

Q

j

remQ; [p℄

Q

j

; [~p℄

Q

j

) (in parallel).

2. For all i = 1; : : : ;m do (in parallel)

(a) Set [u

(i;�3(k+1)+1)

℄

Q

j

:= [

i

℄

Q

j

� (3(k + 1)� 1)[p℄

Q

j

remQ.

(b) For l = �3(k + 1) + 2; : : : ; 3(k + 1)� 1 do

i. Compute [u

(i;l)

℄

Q

j

:= MUL([u

(i;l�1)

℄

Q

j

; ([

i

℄

Q

j

� l[p℄

Q

j

remQ)).

3. Let [~u

1

℄

Q

j

:= [u

(1;3(k+1)+1)

℄

Q

j

.

4. For i = 2; : : : ;m do

(a) Compute [~u

i

℄

Q

j

:= MUL([~u

i�1

℄

Q

j

; [u

(i;3(k+1)+1)

℄

Q

j

).

5. Perform [r℄

Q

j

:= JRP-INV(Z

Q

), ompute [z℄

Q

j

:= MUL([~u

m

℄

Q

j

; [r℄

Q

j

) and send [z℄

Q

j

to all other

players.

6. Reonstrut z and output suess if z � 0 remQ and failure otherwise.

Seurity of this protool follows from the seurity of its sub-protools, and the fat that if z is

non-zero, then it is a random element from Z

Q

and hene no information about a or any of the b

i

's

is revealed other than that a is di�erent from all the b

i

's modulo p.

Note that this protool inludes as a speial ase the omparison of two almost redued residues.

It requires O(mk(n

2

k + nk

2

lg k)) bit operations per player. The ommuniation-omplexity

O(mnk

2

) bits and it takes is O(k + n) rounds. However, it is trivial to get the number of rounds

down to O(lg k + lgn) by using a \tree multipliation method" in step 2b and 4.

We note that an alternative to the above protool would be to use the tehniques of Ben-Or

et al. [BGW88℄ on a iruit to fully redue a and b modulo p. As a and b are \almost redued"

modulo p, this iruit is small.
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6 Generation of Shared Random Primes and Safe Primes

In this setion we disuss how to use the protools introdued so far to generate a shared random

prime and a random safe prime. One we know how to do this, we an of ourse also generate a

shared RSA modulus being the produt of two primes or of two safe primes. As mentioned earlier,

the former protool may be more eÆient than the one of Boneh and Franklin, at least for very

large n, and the latter is far more eÆient than any previously known protool for this problem.

We onlude the setion with an eÆieny disussion and a omparison of our protools and the

one by Boneh and Franklin for generating a shared prime produt.

Our strategy for generating a random shared prime is the same as the one usually applied in the

non-distributed ase: hoose a random number, do trial division, and then run suÆiently many

rounds of some primality test, e.g., the Miller-Rabin test. In the following we desribe how eah of

these steps an be distributed.

6.1 Generating a Shared Candidate p

The �rst task for the player is to generate a random n-bit number. In priniple, this ould be

done be having eah player hoose a random n-bit number and then ompute shares of the xor

of those strings in a similar way as in the protool we desribed in Setion 4.2. However, this

would mean to already invest signi�ant omputation on andidates that with high probability

fail the trial division step. A more eÆient way to generate the andidates due to Boneh and

Franklin [BF97℄ is as follows. Every party exept the �rst one hooses a random (n� lg k � 1)-bit

number p

i

� 0 (mod 4); the �rst one hooses a (n� lg k � 1)-bit number ~p

1

� 3 (mod 4) and sets

p

1

:= 2

n�1

+ ~p

1

. Thus p :=

P

i

p

i

will be a n-bit number and hpi

I

i

:= p

i

. Of ourse, the distribution

of p is not uniform but one an show that the distribution of p has at least (n � lg k � 1)-bits

of entropy [BF97℄. By restriting p � 3 (mod 4), we loose only about half the primes. This will

be suÆient for most appliations (otherwise one ould still resort to the omputationally more

involved method skethed before).

We note that the restrition of p � 3 (mod 4) ould be dropped when resorting to the Solovay-

Strassen test. This, however, requires a protool to ompute shares of the Jaobi symbol of a shared

seret; suh a protool is provided in the full version of this paper.

6.2 Trial Division on p

Before doing the ostly primality hek the players an do a heaper trial division. For all primes

e smaller than some bound B, the players do the following steps (in parallel):

Protool Trial Division:

Player P

j

runs the following steps.

1. Re-share hpi

I

j

rem e as polynomial shares over Z

e

and send eah share to the respetive player.

2. Sum up the shares gotten from the other players and obtain the share [p rem e℄

e

j

.

3. Run [r℄

e

j

:= JRP-INV(Z

e

), then [z℄

e

j

:= MUL([r℄

e

j

; [p rem e℄

e

j

) and reveal [z℄

e

j

to all other players.

4. Reonstrut z. If z � 0 rem e then e divides p.

Note that the above protool does not work for e � k, beause in suh ases the �eld F

e

does

not ontain enough points to do Shamir sharing among k players. To overome this, the player

13



an resort to an extension �eld of F

e

(.f. [BF97℄). Also note that our proposal for trial division

determines exatly whether e divides p or not whereas the proposal by Boneh and Franklin [BF97℄

has some probability of error whih weakens the e�et of the trial division somewhat. This trial

division osts O((B= lgB)(k

2

lgB + k(lgB)

2

)) bit-operations and the omputation omplexity is

O(1) rounds and O(Bk) bits..

6.3 Distributed Miller-Rabin Test

As p � 3 (mod 4), the Miller-Rabin test redues to hoosing a random base g from Z

p

and testing

whether g

p�1

2

� �1 rem p. The following protool implements this test for a shared seret p. One

diÆulty here is that the players annot hoose the base randomly from Z

p

diretly as p is not

known: They have to hoose an integer g from an interval that is suÆiently larger than p (e.g.,

from f0; 1g

2n

), suh that g mod p will be distributed statistially lose to the original distribution.

Protool Miller-Rabin:

Player P

j

runs the following step

1. If 2 � j � k loally ompute hbi

I

j

:= hpi

I

j

=2. If j = 1 loally ompute hbi

I

1

:= (hpi

I

1

� 1)=2.

2. Run ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

) := I2Q-BIT(hbi

I

j

).

3. Compute [p℄

Q

j

:= SQ2PQ(SI2SQ(hpi

I

j

)) and [~p℄

Q

j

:= APPINV([p℄

Q

j

).

4. Repeat the following step � times (in parallel).

(a) Choose hri

I

j

2

R

f0; 1g

2n

.

(b) Run [r℄

Q

j

:= SQ2PQ(SI2SQ(hri

I

j

)) and [g℄

Q

j

:= MOD([r℄

Q

j

; [p℄

Q

j

; [~p℄

Q

j

).

() Run [u℄

Q

j

:= EXPMOD([g℄

Q

j

; ([b

1

℄

Q

j

; : : : ; [b

n

℄

Q

j

); [p℄

Q

j

; [~p℄

Q

j

).

(d) It the result of SETMEM([u℄

Q

j

; f�1; 1g; [p℄

Q

j

; [~p℄

Q

j

) is failure then stop and output failure.

5. Output suess.

If p is a prime then the parties delare suess. Otherwise, they delare that p is a omposite

with probability at least 1=2 (over the random hoies of g).

Note that in the implementation of I2Q-BIT(�) we work with a prime

e

Q whose bit-length is

 = O(�+lg k), where � is the seurity parameter (.f. Setion 4.2). So, the ost of one Miller-Rabin

test is O(nk

3

lg k + nk

2



2

+ n

2

k

2

lg k+ �(n

3

k + n

2

k

2

lg k)) bit-operation and the ommuniation-

omplexity O(n

2

k�) bits and it takes O(n+ lg k) rounds.

6.4 Generation of a Shared Safe Prime

In this setion we reommend a protool for eÆient generation of a safe prime, p = 2p

0

+1 with p

and p

0

prime. It follows the single party protool proposed by Cramer and Shoup [CS00℄.

1. The players generate a random number p

0

as in Setion 6.1.

2. If j = 1 ompute hpi

I

j

:= 2hp

0

i

I

j

+ 1. If j 6= 1 ompute hpi

I

j

:= 2hp

0

i

I

j

.

3. Run the trial division as desribed in Setion 6.2 on p and p

0

. If either of them appears to be

divisible by a small prime, go to step 1.
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4. Run the Miller-Rabin test (Setion 6.3) on p

0

with � = 1 and g = 2. If it fails, go to step 1.

5. Run the Miller-Rabin test (Setion 6.3) on p with � = 1 and g = 2. If it fails, go to step 1.

6. Run the Miller-Rabin test (Setion 6.3) on p

0

with random g and suÆiently large � to ensure

a small error probability (e.g., 2

�80

).

As the andidates p

0

are not random (n�1)-bit numbers, some are must be taken in hoosing the

parameter � in step 6. We do not address these details here. Assuming lg k � n, B = O(n), and that

safe primes are suÆiently dense (as is widely onjetured and supported by empirial evidene),

the expeted bit-omplexity of this protool is O(n

3

=(lg n)

2

(k

3

lg k+k

2



2

+nk

2

lg k+n

2

k)), where

 � 128 is a seurity parameter smaller than n. Assuming that one tests about n

2

=(lg n)

2

andidates

in parallel, the round-omplexity is O(n), the ommuniation-omplexity and O(n

4

=(lg n)

2

k) bits.

6.5 Generation of RSA Moduli, EÆieny Analysis and Comparison

It should now be lear how to generate a modulus N being a prime or a safe prime produt. Many

appliations require also that the players generate shares of the private exponent. This is muh less

omputationally involved than distributively generating the modulus N . In partiular, Boneh and

Franklin [BF97℄ as well as Catalano et al. [CGH00℄ present eÆient protools to aomplish this,

given additive shares over the integers of the fators of N . Our tehniques an in fat be used to

improve the latter protool as well.

Let us ompare the omputational ost of our method of generating a shared prime produt

to the one by Boneh and Franklin. (We do not onsider the improvement on the latter protool

desribed by Malkin, Wu, and Boneh [WB99℄, as most of them apply to our protool as well.)

We �rst summarize the latter approah. Boneh and Franklin propose to �rst hoose random n-

bit strings and to do a distributed trial division of them. When two strings are found that pass

this trial division, they are multiplied to obtain N . Then, loal trial division is done on N , and

�nally a speial primality test on N is applied that heks whether N is the produt of two primes.

Thus, from a bird's eyes view, one �nds that with this method, one has the test about (n= lg n)

2

andidates as opposed to about n= lg n with our method.

A more areful analysis assuming lg k � n shows that the expeted bit-omplexity of their

protool is O((n= lg n)

2

(n

3

+n

2

k+nk

2

lg k) whereas it is O(n

2

= lgn(k

3

lg k+k

2



2

+nk

2

lg k+n

2

k))

for ours, where  � 128 is a seurity parameter smaller than n. For this analysis we assumed

that the bound B for trial division is about O(n). For small number of players k these �gures

beome O(n

5

=(lg n)

2

) and O(n

4

= lgn). Round and ommuniation omplexities are O(1) rounds

and O(kn

3

=(lg n)

2

) bits for theirs and O(n) rounds and O(kn

3

= lgn) bits for ours. We note that, in

pratie, the round-omplexities and ommuniation omplexities are not relevant as for this kind

of appliation one would run many instanes of the protool in parallel and thereby keep the party

with the least omputational power onstantly busy.
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