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Abstra
t

We des
ribe a parallel design prin
iple for hash fun
tions. Given a se
ure hash fun
tion

h : f0; 1g

n

! f0; 1g

m

with n � 2m, and a binary tree of 2

t

pro
essors we show how to


onstru
t a se
ure hash fun
tion h

�

whi
h 
an hash messages of lengths less than 2

n�m

and a

se
ure hash fun
tion h

1

whi
h 
an hash messages of arbitrary length. The number of parallel

rounds required to hash a message of length L is

j

L

2

t

(n�m)

k

+ t. Further, our algorithm is

in
rementally parallelizable in the following sense : given a digest produ
ed using a binary tree

of 2

t

pro
essors, we show that the same digest 
an also be produ
ed using a binary tree of 2

t

0

(0 � t

0

� t) pro
essors.

Keywords : hash fun
tion, Merkle-Damg�ard 
onstru
tion, 
ollision resistan
e, preimage resis-

tan
e, parallel algorithm, binary tree.

1 Introdu
tion

Hash fun
tions are extensively used in 
ryptographi
 proto
ols. One of the main uses of hash

fun
tions is in digital signature proto
ols, where the message digest produ
ed by the hash fun
tion

is signed. Due to the 
entral importan
e of hash fun
tions in 
ryptography, there has been a lot of

work in this area. See [11℄ for a survey.

For a hash fun
tion h : f0; 1g

n

! f0; 1g

m

to be used in 
ryptographi
 proto
ols, it must satisfy


ertain well known ne
essary properties. In a re
ent paper [13℄, Stinson provides a 
omprehensive

dis
ussion of these properties and also relations among them. Depending on a parti
ular appli
ation,

a se
ure hash fun
tion must satisfy some or all of the following properties.

(a) Preimage Resistan
e : Finding a preimage of a given message digest must be 
omputa-

tionally infeasible. In other words, given z 2 f0; 1g

m

it should be 
omputationally infeasible

to �nd x 2 f0; 1g

n

su
h that h(x) = z. This property was �rst de�ned by DiÆe and Hellman

in their seminal paper on modern 
ryptology [7℄.

(b) Se
ond Preimage Resistan
e : Finding a se
ond preimage of a digest given one preimage

of the same digest must be 
omputationally infeasible. In other words, given x 2 f0; 1g

n

and

z 2 f0; 1g

m

su
h that h(x) = z, it should be 
omputationally infeasible to �nd y 2 f0; 1g

n

su
h that x 6= y and h(y) = z. The notion of se
ond preimage resistan
e was introdu
ed by

Merkle in [8℄.

(
) Collision Resistan
e : Finding a 
ollision must be 
omputationally infeasible. In other

words, it should be 
omputationally infeasible to �nd x; y 2 f0; 1g

n

su
h that x 6= y but

h(x) = h(y). This property was �rst formally de�ned by Damg�ard in [6℄.
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It is 
lear that if it is possible to �nd a se
ond preimage, then it is possible to �nd 
ollisions.

Hen
e it is usually suÆ
ient to study 
ollision resistan
e. However, as pointed out in [13℄, there is

no satisfa
tory redu
tion from 
ollision resistan
e to preimage resistan
e or vi
e versa. Hen
e the

goal of a pra
ti
al hash fun
tion should be to a
hieve both preimage and 
ollision resistan
e.

It is possible to 
onstru
t hash fun
tions where one 
an prove that �nding 
ollisions is equivalent

to solving 
ertain known hard problems (see for example [4℄). However, from a pra
ti
al point of

view su
h hash fun
tions are una

eptably slow. Hen
e pra
ti
al hash fun
tions are 
onstru
ted

from simple arithmeti
/logi
al operations so that they are very fast. The trade-o� is that for su
h

hash fun
tions it is not possible to relate the diÆ
ulty of �nding 
ollisions to known hard problems.

Resear
h in design of hash fun
tions have evolved 
ertain prin
iples for designing \se
ure" and

pra
ti
al hash fun
tions. One of the important papers in this area is by Damg�ard [5℄. An important

point made in [5℄ is that it is easier to design a \se
ure" hash fun
tion with a short �xed domain

than a hash fun
tion with a very large (or in�nite) domain. However, for a hash fun
tion to be

useful it must be possible to hash arbitrary long messages. Hen
e one must look for te
hniques

that 
an extend the domain of a hash fun
tion while preserving the relevant se
urity properties.

An important 
onstru
tion for se
urely extending the domain of a se
ure hash fun
tion has been

des
ribed by Merkle [8℄ and Damg�ard [5℄. The 
onstru
tion is 
alled the Merkle-Damg�ard (MD)


onstru
tion. The MD 
onstru
tion is a sequential 
onstru
tion and provides a basi
 guideline for

designing pra
ti
al hash fun
tions.

In this paper we develop an alternative design prin
iple for se
urely extending the domain of a

se
ure hash fun
tion. Our design prin
iple is based on a binary tree of pro
essors and allows for

parallelism in the 
omputation of the hash fun
tion. We show that given a se
ure hash fun
tion

h : f0; 1g

n

! f0; 1g

m

with n � 2m and a binary tree of 2

t

pro
essors, it is possible to 
onstru
t

a se
ure hash fun
tion h

�

whi
h 
an hash messages of lengths less than 2

n�m

and a se
ure hash

fun
tion h

1

whi
h 
an hash arbitrary length messages. Sin
e we require n � 2m and pra
ti
al

hash fun
tions have m � 128, the fun
tion h

�

is adequate for any 
on
eivable appli
ation and

the 
onstru
tion of h

1

is of theoreti
al interest only. The number of parallel rounds required to


ompute the digest of a message of length L is

j

L

2

t

(n�m)

k

+ t.

Our design prin
iple allows for in
remental parallelism in the following sense. If a message

digest 
an be produ
ed using a binary tree of 2

t

pro
essors, then the same message digest 
an be

produ
ed using a binary tree of 2

t

0

pro
essors for 0 � t

0

� t with a proportional loss in speed of


omputation. In the extreme 
ase of t

0

= 0 this means that using a single pro
essor it is possible to

produ
e a digest whi
h has been produ
ed using a binary tree of 2

t

pro
essors for any t � 0. We

stress that this is an extremely important point for pra
ti
al appli
ation of our design prin
iple. In

a multi-user setting where di�erent users have di�erent resour
e 
apabilities, it is important that

a digest produ
ed by one user 
an be produ
ed by any other user irrespe
tive of the amount of

resour
es available to him.

Related Work : The 
on
ept of tree hashing has appeared before in the literature. Damg�ard [5℄

showed that for a message of length n, it is possible to 
ompute the digest in O(logn) steps using

O(n) pro
essors. Note that the number of pro
essors is proportional to the length of the message.

Hen
e the result yields an impra
ti
al algorithm. Tree hashing has also been 
onsidered in relation

to universal one-way hash fun
tions [10, 1℄. However, these papers also assume a model where the

number of pro
essors grows with the length of the message.

Our model improves upon the previous work on tree hashing in the following two ways.

1. In our model, the number of pro
essors is �xed while the length of the message 
an be very

3



long.

2. A digest whi
h 
an be produ
ed by a binary tree with a 
ertain number of pro
essors 
an

also be produ
ed by a binary tree with lesser number of pro
essors and in the extreme 
ase

by a single pro
essor.

Parallelism in the design of hash fun
tions have also been 
onsidered from a di�erent dire
tion.

In our approa
h we assume the existen
e of a base hash fun
tion with a small domain and present a

method to obtain a hash fun
tion with a very large domain. In the literature, the base hash fun
tion

is 
alled the 
ompression fun
tion or round fun
tion and the method to extend the domain is 
alled

the 
omposition method. Pra
ti
al hash fun
tions su
h as SHA or RIPEMD, use a spe
i�
 round

fun
tion and the Merkle-Damg�ard method to extend the domain. In [3℄, a detailed study has been

made of the possible parallelism available in the round fun
tion of SHA and other pra
ti
al hash

fun
tions. Note that our work is 
omplementary to this e�ort in the sense that we exploit the

parallelism that is obtainable in the 
omposition s
heme as opposed to the parallelism in the round

fun
tion.

In another relevant paper, S
hnorr and Vaudenay [12℄, design a hash fun
tion based on the fast

Fourier transform (FFT) network and multipermutations. They present two hash fun
tions based

on this approa
h. The �rst hash fun
tion uses a 
ompression fun
tion based on the FFT algorithm

and multipermutations while the 
omposition s
heme is sequential. In the se
ond algorithm, the


ompression fun
tion and the 
omposition s
hemes are merged together to obtain a fast hash

algorithm. This approa
h di�ers from our work in the following way. In our work we des
ribe a

parallel 
omposition s
heme whi
h 
an be used with any 
ompression fun
tion (whose input length

is at least twi
e as large as the length of its output). As examples our parallel 
omposition s
hemes


an be used with the round fun
tion of SHA as well as the FFT based 
ompression fun
tion of [12℄.

On the other hand, the approa
h in [12℄ is to 
onstru
t a spe
i�
 hash fun
tion. Thus we des
ribe

a design prin
iple whereas [12℄ des
ribes a parti
ular hash fun
tion.

Parallelism in the design of hash fun
tions has also been 
onsidered in the 
ontext of in
remental

hashing [2℄. The in
remental hash fun
tion des
ribed in [2℄ is 
omputed by 
ombining a set of

elements of a group using the group law. Sin
e the group operation is asso
iative, this 
ombining

operation 
an be parallelized. However, [2℄ does not develop this theme any further.

2 Basi
s

This se
tion 
onsists of three parts. The �rst part formally des
ribes 
ollision resistant hash fun
-

tions and related problems. The se
ond part des
ribes the pro
essor tree model used in the paper.

In the third part, we de�ne 
ertain parameters whi
h will be required in the rest of the paper.

Throughout the paper we will denote the empty string by � and the length of a binary string y by

jyj. Further, the 
on
atenation of two strings y

1

and y

2

will be denoted by y

1

jjy

2

.

2.1 Hash Fun
tions

An (n;m) hash fun
tion h is a fun
tion h : f0; 1g

n

! f0; 1g

m

. Throughout this paper we require

that n � 2m. We are basi
ally interested in 
ollision resistant hash fun
tions. As mentioned in

Se
tion 1, this means that it should be 
omputationally infeasible to obtain two di�erent messages

whose hash values are the same. Des
ribing this formally requires the 
onsideration of a family of

hash fun
tions. The following de�nition of 
ollision resistant hash fun
tion is based on [11℄.

4



De�nition 1 Let fH

s

g

s2S

be a family of fun
tions indexed by the set S where ea
h H

s

is an

(l(n); n) fun
tion. Here l(n) is a fun
tion su
h that l(n) > n. We say that fH

s

g

s2S

is 
ollision

resistant if the following 
ondition holds.

Let A be a randomized Las Vegas algorithm that takes as input an s 2 S, runs for time at most t

and either returns \?" or �nds x; x

0

su
h that x 6= x

0

and H

s

(x) = H

s

(x

0

). For ea
h su
h algorithm

A with t bounded above by a polynomial in size of s, we should have

Prob

s2S

[A(s) 6= \?"℄ � �:

In pra
ti
e, it is usual to de�ne a single hash fun
tion like SHA or RIPEMD instead of a keyed

family of hash fun
tions. In su
h a situation, it is not possible to apply De�nition 1 to these

hash fun
tions. In fa
t, it seems almost impossible to provide a meaningful de�nition of 
ollision

resistan
e for a single hash fun
tion.

In this paper, we are interested in obtaining a design prin
iple for pra
ti
al hash fun
tions. We

will assume the existen
e of some 
ollision resistant (n;m) hash fun
tion h, 
alled the 
ompression

fun
tion. The fun
tion h 
an only be applied to inputs of length n. We would like to remove this

restri
tion and de�ne a hash fun
tion H whi
h 
an be applied to strings of extremely large lengths.

We would like the extension of h to H to be \se
ure" in the following sense: If h is 
ollision

resistant, then H is also 
ollision resistant. The last statement is formalized in terms of a Turing

redu
tion between two suitably de�ned problems (see below). The advantage of this method is that

we only prove a redu
tion and at no point are we required to use De�nition 1. This approa
h has

been previously used in the study of hash fun
tions [13℄.

We now turn to the task of de�ning our approa
h to redu
ibilities between di�erent problems

related to the property of 
ollision resistan
e. Consider the following problem as de�ned in [13℄.

Problem : Collision Col(n;m)

Instan
e : An (n;m) hash fun
tion h.

Find : x; x

0

2 f0; 1g

n

su
h that x 6= x

0

and h(x) = h(x

0

).

By an (�; p) (randomized) algorithm for Collision we mean an algorithm whi
h invokes the hash

fun
tion h at most p times and solves Collision with probability of su

ess at least �.

The hash fun
tion h has a �nite domain. We would like to extend it to an in�nite domain.

Our �rst step in doing this is the following. Given h and a positive integer L � 1, we 
onstru
t

an (L;m) hash fun
tion h

L

. The next step, in general, is to 
onstru
t a hash fun
tion h

1

:

[

L�1

f0; 1g

L

! f0; 1g

m

. However, instead of doing this, we �rst 
onstru
t a hash fun
tion h

�

:

[

N

L=1

f0; 1g

L

! f0; 1g

m

, where N = 2

n�m

� 1. Sin
e we assume n � 2m, we have n �m � m.

Pra
ti
al message digests are at least 128 bits long meaning that m = 128. Hen
e our 
onstru
tion

of h

�


an handle any message with length less than 2

128

. This is suÆ
ient for any 
on
eivable

appli
ation. The 
onstru
tion of h

1

presents 
ertain te
hni
al diÆ
ulties. We over
ome these

diÆ
ulties and des
ribe the 
onstru
tion of h

1

in Se
tion 7.

We would like to relate the diÆ
ulty of �nding 
ollisions for h

L

; h

�

and h

1

to that of �nding a


ollision for h. Thus we 
onsider the following problems.

Problem : Fixed length 
ollision FLC(n;m;L)

Instan
e : An (n;m) hash fun
tion h and an integer L � 1.

Find : x; x

0

2 f0; 1g

L

su
h that x 6= x

0

and h

L

(x) = h

L

(x

0

).
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Problem : Variable length 
ollision V LC(n;m;L)

Instan
e : An (n;m) hash fun
tion h and an integer L with 1 � L < 2

n�m

.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

su
h that x 6= x

0

and h

�

(x) = h

�

(x

0

).

Problem : Arbitrary length 
ollision ALC(n;m;L)

Instan
e : An (n;m) hash fun
tion h and an integer L � 1.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

su
h that x 6= x

0

and h

1

(x) = h

1

(x

0

).

By an (�; p; L) (randomized) algorithm A for Fixed length 
ollision we will mean an algorithm that

requires at most p invo
ations of the fun
tion h and solves Fixed length 
ollision with probability of

su

ess at least �. The algorithm A will be given an ora
le for the fun
tion h and p is the number

of times A queries the ora
le for h in attempting to �nd a 
ollision for h

L

. Similar de�nitions are

true for Variable length 
ollision and Arbitrary length 
ollision.

Later we show Turing redu
tions from Collision to Fixed length 
ollision, Variable length 
ollision

and Arbitrary Length Collision. Informally this means that given ora
le a

ess to an algorithm for

solving FLC(n;m;L) for h

L

or V LC(n;m;L) for h

�

or ALC(n;m;L) for h

1

it is possible to


onstru
t an algorithm to solve Col(n;m) for h. These will show that our 
onstru
tions preserve

the intra
tibility of �nding 
ollisions.

2.2 Pro
essor Tree

Our 
onstru
tion is a parallel algorithm requiring more than one pro
essor. The number of pro
es-

sors is 2

t

, for some t > 0. Let the pro
essors be P

0

; : : : ; P

2

t

�1

. For i = 0; : : : ; 2

t�1

�1, pro
essor P

i

is 
onne
ted to pro
essors P

2i

and P

2i+1

by ar
s pointing towards it. In parti
ular, the ar
s 
oming

into pro
essor P

0

are from pro
essor P

1

and pro
essor P

0

itself. The pro
essors P

2

t�1 ; : : : ; P

2

t

�1

are the leaf pro
essors and the pro
essors P

0

; : : : ; P

2

t�1

�1

are the internal pro
essors. We 
all the

resulting tree T

t

the pro
essor tree of height t (see Figure 1 for the pro
essor tree with t = 3). For

1 � i � t, there are 2

i�1

pro
essors at level i. Further, pro
essor P

0

is 
onsidered to be at level 0.

We introdu
e the following notation whi
h will be useful later.

I

t

= fi : 0 � i � 2

t�1

� 1g; L

t

= fi : 2

t�1

� i � 2

t

� 1g; P

t

= fi : 0 � i � 2

t

� 1g;

When t is 
lear from the 
ontext, we will usually write T , I, L and P instead of T

t

, I

t

, L

t

and P

t

respe
tively.

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

��

�

�

��

A

A

AK

A

A

AK

�

�

�7

S

S

So

6

-

Figure 1: Pro
essor Tree with t = 3.

Ea
h of the pro
essors gets an input whi
h is a binary string. The a
tion of the pro
essor is to

apply the hash fun
tion h on the input if the length of the input is n; otherwise, it simply returns

6



the input -

P

i

(y) =

(

h(y) if jyj = n;

y otherwise.

(1)

For i 2 P, we have two sets of bu�ers u

i

and z

i

. We will identify these bu�ers with the binary

strings they 
ontain. The bu�ers are used by the pro
essors in the following way. There is a

formatting pro
essor P

F

whi
h reads the message x, breaks it into proper length substrings, and

writes to the bu�ers u

i

. For i 2 I, the input bu�ers of P

i

are z

2i

; z

2i+1

and u

i

and the input to P

i

is formed by 
on
atenating the 
ontents of these bu�ers. For i 2 L, the input bu�er of P

i

is u

i

.

The output bu�er of P

i

is z

i

for i 2 P.

Algorithm PHA goes through several parallel rounds. The 
ontents of the bu�ers u

i

and z

i

are updated in ea
h round. To avoid read/write 
on
i
ts we will assume the following sequen
e of

operations in ea
h parallel round.

1. The formatting pro
essor P

F

writes into the bu�ers u

i

, for i 2 P .

2. Ea
h pro
essor P

i

reads its respe
tive input bu�ers.

3. Ea
h pro
essor P

i

performs the 
omputation in (1).

4. Ea
h pro
essor P

i

writes into its output bu�er z

i

.

Steps (2) to (4) are performed by the pro
essors P

0

; : : : ; P

2

t

�1

in parallel after Step (1) is 
ompleted

by pro
essor P

F

.

2.3 Parameters and Notation

Here we de�ne 
ertain parameters whi
h are going to be used throughout the paper.

1. Compression fun
tion: An (n;m) fun
tion h with n � 2m.

2. Height of the binary tree: t.

3. Message: a binary string x of length L � 1.

4. Start-up length (SUL): 2

t

n.

5. Maximum Flushing length (MFL): (2

t�1

+2

t�2

+� � �+2

1

+2

0

)(n�2m) = (2

t

�1)(n�2m).

6. SUL + MFL: Æ(t) = 2

t

n+ (2

t

� 1)(n� 2m) = 2

t

(2n� 2m)� (n� 2m).

7. Steady-state length (SSL): �(t) = 2

t�1

n+ 2

t�1

(n� 2m) = 2

t�1

(2n� 2m).

8. Parameters q

t

, b

t

and r

t

:

De�nition 2 (a) If L > Æ(t), then q

t

and r

t

are de�ned by the following equation: L�Æ(t) =

q

t

�(t)+r

t

, where r

t

is the unique integer from the set f1; : : : ; �(t)g. De�ne b

t

=

l

r

t

2n�2m

m

.

(b) If L = Æ(t), then q

t

= b

t

= r

t

= 0.

Note that 0 � b

t

� 2

t�1

.

9. Number of Parallel Rounds R

t

: We de�ne R

t

= q

t

+t+2. Later we will show in Theorem 6

that algorithm PHA exe
utes R

t

parallel rounds. We will usually write R instead of R

t

.
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3 Parallel Hashing Algorithm

We �rst des
ribe a parallel hashing algorithm whi
h is the basi
 building blo
k used for the 
on-

stru
tion of hash fun
tions. The main algorithm uses other algorithms as subroutines whi
h are

des
ribed later. Before presenting the a
tual algorithm we present the basi
 idea behind the algo-

rithm.

Let x be a message of length L and T be the binary tree of pro
essors of height t as des
ribed in

Se
tion 2.2. There are also two sets of 2

t

bu�ers z

0

; : : : ; z

2

t

�1

and u

0

; : : : ; u

2

t

�1

. Ea
h of the bu�ers

z

i


an store m-bit strings. For i 2 I, the bu�er u

i

stores either an (n� 2m)-bit string or the empty

string and for i 2 L, the bu�er u

i

stores either an n-bit string or the empty string. Ea
h bu�er z

i

stores the output of pro
essor P

i

. The bu�ers u

i

are obtained as pre�xes from the message x.

The algorithm 
onsists of a 
ertain number of parallel rounds where in ea
h parallel round

all the 2

t

pro
essors operate in parallel. Further, in ea
h of the parallel rounds the message x is

shortened by removing a pre�x from it. This pre�x is divided into substrings and 
opied to the

bu�ers u

i

.

Intially all the bu�ers z

i

are empty. Thus the �rst step of the algorithm is to initialise the

z

i

's whi
h is done in the following manner. Ea
h pro
essor P

i

is given an n-bit string u

i

as input.

Pro
essor P

i

hashes u

i

to produ
e the digest z

i

. This step is 
alled Start-Up.

The algorithm then enters the Steady-State. In the Steady-State ea
h pro
essor P

i

, i 2 I, gets

an (n� 2m)-bit input u

i

. Also P

i

reads the bu�ers z

2i

and z

2i+1

. Pro
essor P

i

then forms an input

of length n by 
on
atenating z

2i

; z

2i+1

and u

i

. This n-bit string is hashed to obtain the new value

of the bu�er z

i

. Ea
h pro
essor P

i

, i 2 L, gets an n-bit input whi
h is hashed to obtain the new

value of the bu�er z

i

. The Steady-State lasts for q rounds (see De�nition 2 above). It is 
lear that

after a 
ertain stage it will not be possible to provide inputs to all the pro
essors.

After the Steady-State ends we have a single round 
alled the End-Game. This round starts

the mopping up operation. In this round, some of the leaf level pro
essors get n-bit strings as

input while all other pro
essors get the empty string as input. In this round, ea
h of the internal

pro
essors still gets an (n� 2m)-bit input.

After the End-Game, there are (t � 1) rounds whi
h 
ush the pro
essor tree. The 
ushing

pro
eeds in a bottom-up fashion starting from level (t� 1) and ending at level 1. In the s

th

stage

of the 
ushing operation, all pro
essors at levels greater than s get empty strings as inputs. Some

of the pro
essors at level s get an (n� 2m)-bit string as input. The rest of the pro
essors at level s

get the empty string as input. All pro
essors at levels � s� 1 get an (n� 2m)-bit string as input.

This stage is 
alled the Flusing stage.

At the end of the Flushing stage, the following two situations 
an o

ur. Either x is the empty

string or it is an (n � 2m)-bit string. If x is empty, then z

0

is returned as output. On the other

hand, if x is an (n� 2m)-bit string, then z

0

and z

1

are both m-bit strings. In this 
ase, pro
essor

P

0

applies the fun
tion h to the n-bit string z

0

jjz

1

jjx to obtain the �nal message digest.

We now present the formal des
ription of the algorithm.

Parallel Hashing Algorithm (PHA(x,t))

Inputs:

(1) message x of length L � Æ(t).

(2) t is the height of the pro
essor tree.

Output: message digest h

L

(x) of length m.

De�ne: q = q

t

, r = r

t

and b = b

t

.
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1. if L > Æ(t), then

2. x := xjj0

b(2n�2m)�r

(ensures that the length of the message be
omes Æ(t) + q�(t) + b(2n� 2m).)

3. endif.

4. For i 2 P, initialise bu�ers z

i

and u

i

to empty strings.

5. Do FormatStartUp.

6. Do ParallelPro
ess.

7. for i = 1; 2; : : : ; q do

8. Do FormatSteadyState.

9. Do ParallelPro
ess.

10. endfor

11. Do FormatEndGame.

12. Do ParallelPro
ess.

13. for s = t� 1; t� 2; : : : 2; 1 do

14. Do FormatFlushing(s).

15. Do ParallelPro
ess.

16. endfor

17. if x 6= � then z

0

:= P

0

(z

0

jjz

1

jjx).

18. return z

0

.

19. end algorithm PHA

We now des
ribe the di�erent subroutines used by PHA. We assume that the message x is

globally manipulated by the di�erent formatting algorithms and the input t of PHA is available to

all the subroutines. Further, we assume that the parameter b is available to the subroutines FEG

and FF.

ParallelPro
ess (PP)

A
tion: Read bu�ers u

i

and z

i

, and update bu�ers z

i

, i 2 P .

1. for i 2 P do in parallel

2. If i 2 I, then z

i

:= P

i

(z

2i

jjz

2i+1

jju

i

).

3. If i 2 L, then z

i

:= P

i

(u

i

).

4. endfor

5. end algorithm PP

3.1 Formatting Subroutines

There are four formatting subroutines whi
h are invoked by PHA. Ea
h of the formatting subrou-

tines modi�es the message x by removing pre�xes whi
h are written to the bu�ers u

i

for i 2 P .

The message x is available as either an array or a �le. We assume that the message is read sequen-

tially bit by bit. The formatting algorithms 
opy a pre�x of the message into a bu�er and suitably

advan
e the �le (or array) pointer. All the formatting subroutines are exe
uted on the formatting

pro
essor P

F

.

FormatStartUp (FSU)

A
tion: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 P do

2. Write x = vjjy, where jvj = n.

9



3. u

i

:= v.

4. x := y.

5. endfor

6. end algorithm FSU

FormatSteadyState (FSS)

A
tion: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 I do

2. Write x = vjjy, where jvj = n� 2m.

3. u

i

:= v.

4. x := y.

5. endfor

6. for i 2 L do

7. Write x = vjjy, where jvj = n.

8. u

i

:= v.

9. x := y.

10. endfor

11. end algorithm FSS

FormatEndGame (FEG)

A
tion: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 I do

2. Write x = vjjy where jvj = n� 2m.

3. u

i

:= v.

4. x := y.

5. endfor

6. for i = 2

t�1

; 2

t�1

+ 1; : : : ; 2

t�1

+ b� 1 do

7. Write x = vjjy where jvj = n.

8. u

i

:= v.

9. x := y.

10. endfor

11. for i = 2

t�1

+ b; 2

t�1

+ b+ 1; : : : ; 2

t

� 1 do

12. u

i

:= �.

13. endfor

14. end algorithm (FEG)

FormatFlushing(s) (FF(s))

Input: Integer s.

A
tion: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. k

s

= b

b+2

t�s�1

�1

2

t�s


:

2. for i = 0; 1; 2; : : : ; 2

s�1

+ k

s

� 1 do

3. Write x = vjjy where jvj = n� 2m.

4. u

i

:= v.

4. x := y.

5. endfor

10



6. for i = 2

s�1

+ k

s

; 2

s�1

+ k

s

+ 1; : : : ; 2

t

� 1,

7. u

i

:= �.

8. endfor

9. end algorithm FF

An example of the working of algorithm PHA is shown in Figure 2.
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Figure 2: Algorithm PHA with t = 3, q = 1 and b = 3.

Remark : 1. The assignments x := y is an assignment of the relevant �le or array pointer and


an be done in 
onstant time.

2. If n = 2m, then u

i

= � in all the rounds and for all i 2 I.

3.2 Simulating Trees

One potential problem in the use of PHA to generate a message digest is the fa
t that the veri�er

might not have a

ess to a binary tree of pro
essors or (s)he might have a

ess to a binary tree of

a lesser height. In su
h a situation, it will not be possible to verify the message digest. We show

how this problem 
an be solved by allowing a smaller tree of pro
essors to simulate a larger tree of

pro
essors. A more detailed dis
ussion of this issue is given in Se
tion 4.3.

Let t; t

0

be two non-negative integers with t > t

0

. Let T (resp. T

0

) be a tree of height t (resp. t

0

)


onsisting of 2

t

(resp. 2

t

0

) pro
essors P

0

; : : : ; P

2

t

�1

(resp. P

0

0

; : : : ; P

0

2

t

0

�1

) 
onne
ted in the manner

des
ribed in Se
tion 2.2. Let y = PHA(x; t) be produ
ed by the pro
essor tree T . We des
ribe an

algorithm SimPar(x; t; t

0

) whi
h also produ
es y using the pro
essor tree T

0

.

SimPar(x; t; t

0

)
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Input:

(1) message x of length L � Æ(t).

(2) t is the height of the original pro
essor tree.

(3) t

0

is the height of the available pro
essor tree.

Output: message digest h

L

(x) = PHA(x; t) of length m.

The algorithm is identi
al to PHA(x; t) with the following 
hanges.

1. Change Lines 6,9 and 12 to \Do SPP(t; t

0

)".

2. Change Line 15 to \Do SPP(s; t

0

)".

end algorithm SimPar

The subroutine SPP() performs the task of simulating the pro
essor tree T using the tree T

0

.

For the �rst q + 2 rounds the entire tree T needs to be simulated. However, for the next t � 1

rounds we need to simulate T only upto height s. We de�ne the subroutine SPP() to do these two

tasks.

Algorithm SPP(s; t

0

)

1. if s < t

0

, then s = t

0

.

2. for j = 0 to 2

s�t

0

� 1 do

3. i = j2

t

0

4. for ` = 0 to 2

t

0

� 1 do in parallel

5. use pro
essor P

0

`

to exe
ute the task of pro
essor P

i+`

.

6. endfor

7. endfor

8. end Algorithm SPP.

Proposition 3 The number of parallel rounds required by SPP(s; t

0

) is equal to one if s � t

0

and

is equal to 2

s�t

0

if s > t

0

.

Remark : If there is only one pro
essor (i.e., T

0


onsists only of P

0

0

), then the number of rounds

required by SPP(s; 0) is 2

s

.

4 Parallel Hash Fun
tion De�nitions

The 
ompression fun
tion is an (n;m) fun
tion h, with n � 2m. If x is a binary string with jxj < n,

then we apply the hash fun
tion h to the string xjj0

n�jxj

to get the message digest. Thus e�e
tively

h is a map from [

n

i=1

f0; 1g

i

to f0; 1g

m

. The des
ription of h

L

and h

�

is des
ribed below.

4.1 De�nition of h

L

Let L � 1 be a positive integer and assume that a binary tree of 2

T

pro
essors is available. Then

the (L;m) fun
tion h

L

is de�ned as follows.

h

L

(x) =

8

>

>

>

<

>

>

>

:

PHA(x; T ) if L � Æ(T );

PHA(x; t) if 0 < t < T and Æ(t) � L < Æ(t+ 1);

PHA(xjj0

3n�2m�L

; 1) if Æ(0) < L < Æ(1) = 3n� 2m;

h(x) if 1 � L � n = Æ(0):

(2)
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When t < T , we use only 2

t

of the 2

T

pro
essors available. Is is possible to signi�
antly redu
e

the number of rounds by using more pro
essors? The following lemma answers this question.

Lemma 4 Any algorithm whi
h provides input to a pro
essor at level T in tree T requires at least

T + 1 rounds to 
ompute the message digest; the 
omputation of h

L

(x) des
ribed above requires at

most

(

T + 1 rounds when t < T � 1 and

T + 2 rounds when t = T � 1:

Proof. If we provide input to any pro
essor of T at level T , then it requires at least T + 1 rounds

for the e�e
ts of this input to rea
h pro
essor P

0

at level zero. Thus, at least T + 1 rounds are

required to 
ompute the message digest.

From the de�nitions of Æ(t) and �(t), we see that Æ(t + 1) = Æ(t) + 2�(t): Therefore, if Æ(t) �

L < Æ(t+1), then L = Æ(t)+q�(t)+ b(2n�2m) where 0 � q � 1 and 0 � b � 2

t�1

. If jxj = L, then

PHA(x; t) requires at most t+ 3 rounds to 
ompute a message digest (see Subse
tion 5.1 below).

If t < T � 1, then t+ 3 < T + 2; if t = T � 1, then t+ 3 = T + 2. This establishes the result.

4.2 De�nition of h

�

Given h : [

n

i=1

f0; 1g

i

! f0; 1g

m

and a positive integer L � 1, Equation (2) de�nes the (L;m)

fun
tion h

L

. We now extend this to h

�

: [

N

L=1

f0; 1g

L

! f0; 1g

m

, where N = 2

n�m

� 1. For

0 � i � 2

s

� 1, let bin

s

(i) be the s-bit binary expansion of i. We treat bin

s

(i) as a binary string of

length s. Then h

�

(x) is de�ned as follows.

h

�

(x) = h

�

(bin

n�m

(jxj))jj(h

jxj

(x))

�

: (3)

In other words, we �rst 
ompute h

L

(x) (where jxj = L) to obtain an m-bit message digest w.

Let v = bin

n�m

(jxj). Then v is a bit string of length n�m. We apply h to the string vjjw to get

the �nal message digest.

Remark : 1. We do not a
tually require the length of the message to be< 2

n�m

. The 
onstru
tion


an easily be modi�ed to a

omodate strings having length < 2




for some 
onstant 
. Sin
e we are

assuming n � 2m and m � 128 for pra
ti
al hash fun
tions, 
hoosing 
 = n�m is 
onvenient and

suÆ
ient for pra
ti
al purposes.

2. In Se
tion 7, we present the 
onstru
tion for arbitrary length strings.

4.3 Spe
ifying Parallelism

We 
onsider the following problem. Suppose a set of users agree to 
hoose h

�

() as a hash fun
tion

standard. The message digest produ
ed on a message 
learly depends on the height of the binary

tree used to generate the message digest. Suppose a user generates the digest using a binary tree

of height t. Then any other user who needs to regenerate the digest has to have a

ess to a binary

tree of height t or should be able to simulate the binary tree of height t. It is quite possible that

the user has a

ess to only one pro
essor. In this 
ase also the user should be able to generate the

message digest. This 
an be ensured in either one of the following two ways.

(1) The height T of the pro
essor tree is �xed and is part of the hash fun
tion spe
i�
ation. Then

any user who needs to generate y =PHA(x; T ) and has a

ess to a pro
essor tree of height t, with

13



t < T uses SimPar(x; T; t) to generate y. If t � T , then the user 
an run PHA(x; T ) by not using

pro
essors at level greater than T .

(2) The height of the pro
essor tree is not part of the hash fun
tion spe
i�
ation. In this 
ase the

a
tual height of the pro
essor tree is output with the message digest, i.e. the output on input x

is (t;PHA(x; t)). Any other user who wishes to regenerate the digest and has a

ess to a tree of

height t

0

runs SimPar(x; t; t

0

) if t > t

0

or runs PHA(x; t) if t � t

0

.

Depending on the situation at hand either one of the above two strategies may be adopted. We

would like to highlight another aspe
t of Strategy 2. Suppose User 1 has only a single pro
essor

and wishes to 
ompute the digest on a message x. User 1 also knows that the digest will be

re
omputed by User 2 who has a

ess to a pro
essor tree of 2

t

(t > 0) pro
essors. User 1 then

invokes SimPar(x; t; 0) to 
ompute y =PHA(x; t). Thus User 2 
an dire
tly use his pro
essor tree

of 2

t

pro
essors to invoke PHA(x; t) and re
ompute y. In this manner the total time required to


ompute both the digests is minimized.

Fundamentally our design prin
iple follows the simple basi
 rule : Users with more resour
es


an speed up 
omputation of the digest, without a�e
ting the eÆ
ien
y of users with lesser resour
es

to 
ompute the same digest.

5 Corre
tness and Complexity of PHA

In this se
tion we prove several properties of algorithm PHA.

5.1 Amount of Padding

The following result shows that the maximum amount of padding added to a message depends only

on the parameters n and m. In parti
ular, the maximum amount of padding is independent of the

number of pro
essors and the length of the message.

Proposition 5 The maximum amount of padding added to any message is less than 2n� 2m.

Proof. The only pla
e where padding is done is at line 2 of algorithm PHA. The amount of padding

is b(2n� 2m)� r. Sin
e b =

l

r

2n�2m

m

<

r

2n�2m

+ 1, we have b(2n� 2m)� r < 2n� 2m.

Remark : The maximum amount of padding required by PHA is 2(n�m)� 1 and that required

by the MD algorithm is n�m� 1.

5.2 Number of Parallel Rounds

Algorithm PHA exe
utes the following sequen
e of parallel rounds.

1. Lines 5-6 of PHA exe
ute one parallel round.

2. Lines 7-10 of PHA exe
ute q parallel rounds.

3. Lines 11-12 of PHA exe
ute one parallel round.

4. Lines 13-16 of PHA exe
ute t� 1 parallel rounds.

5. We 
onsider Line 17 of PHA to be a spe
ial parallel round.

From this we get the following result.
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Theorem 6 Algorithm PHA(x; t) exe
utes R = q + t+ 2 �

j

L

2

t

(n�m)

k

+ t parallel rounds. Conse-

quently, Algorithm SimPar(x; t; t

0

) exe
utes (q + 3)2

t�t

0

+ t

0

� 1 parallel rounds.

Proof. Clearly the number of parallel rounds is q+ t+2. From De�nition 2, we have q =

j

L�Æ(t)

�(t)

k

if �(t) 6 jL� Æ(t); and q =

j

L�Æ(t)

�(t)

k

� 1 if �(t)jL� Æ(t). Hen
e,

q �

�

L� Æ(t)

�(t)

�

=

$

L� 2

t

(2n� 2m)� (n� 2m)

2

t�1

(2n� 2m)

%

�

$

L� 2

t

(2n� 2m)

2

t�1

(2n� 2m)

%

=

�

L

2

t

(n�m)

�

� 2:

Therefore, q + t+ 2 �

j

L

2

t

(n�m)

k

+ t:

5.3 Invo
ations of the Compression Fun
tion

Let  (L) be the number of invo
ations of h made by PHA(x; t) on a message of length L. The

parameters q

t

, r

t

and b

t

depend on the length L of the message. We write q

t

(L), r

t

(L) and b

t

(L)

to denote the dependen
e of the parameters q

t

and b

t

on length L. Note that due to the padding

done in line 2 of algorithm PHA we have  (L) =  (L+ b

t

(L)(2n� 2m)� r

t

(L)). We now have the

following result.

Proposition 7  (L) = (q

t

(L) + 2)2

t

+ 2b

t

(L)� 1.

Proof. We �rst note that q = q

t

= q

t

(L) and b = b

t

= b

t

(L). In ea
h of the �rst q

t

(L) + 1 rounds

h is invoked 2

t

times. In round q

t

(L) + 2, the number of invo
ations of h is 2

t�1

+ b

t

(L). In rounds

q

t

(L)+ 3 to q

t

(L) + t+1, the total number of invo
ations of h is

P

t�1

s=1

(2

s�1

+ k

s

). Lastly, in round

q

t

(L) + t + 2, there is one invo
ation of h. Using Corollary 10 below, we have

P

t�1

s=1

k

s

= b � 1.

Adding the above number of invo
ations we get the �nal result.

We 
ompare the number of invo
ations of h by PHA to that made by the MD algorithm. We

do this for message lengths whi
h do not require padding by PHA. It turns out that these message

lengths also do not require padding by the MD algorithm.

Let the length of the message be L = Æ(t) + q

t

(L)�(t) + b

t

(L)(2n � 2m). Then PHA makes

 (L) = (q

t

(L) + 2)2

t

+ 2b

t

(L)� 1 invo
ations of h.

Here we use the des
ription of the MD algorithm given in [9℄. For the MD algorithm the �rst

invo
ation uses n bits and ea
h of the subsequent invo
ations uses n � m bits. Hen
e the total

number of invo
ations of h is

1 +

L� n

n�m

= 1 +

2

t

(2n� 2m) + q2

t�1

(2n� 2m) + b(2n� 2m)� (n� 2m)� n

n�m

=  (L):

Thus we get the following result.

Theorem 8 The number  (L) of invo
ations of h made by PHA(x; t) on a message x of length

L = Æ(t) + q

t

(L)�(t) + b

t

(L)(2n� 2m) is equal to the number of invo
ations of h made by the MD

algorithm on a message of the same length L.
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5.4 Speed-Up over MD Algorithm

The time taken by the MD algorithm is proportional to the number of invo
ations of h whereas the

time required by PHA is proportional to the number of parallel rounds whi
h is equal to q

t

(L)+t+2.

Further, both PHA and the MD algorithm must format the message. Hen
e if we ignore the time

required to format the message, then the speed-up fa
tor SF of PHA over MD is 
omputed as

follows.

SF =

 (L)

R

=

(q + 2)2

t

+ 2b� 1

R

= 2

t

�

q + 2

R

�

+

2b� 1

R

� 2

t

 

1

1 +

t

q+2

!

:

The parameter q = q

t

is de�ned in equation (4). Using the values of Æ(t) and �(t) we observe that

q + 2 �

L

�(t)

. Hen
e SF� 2

t

�

1

1+

t�(t)

L

�

.

The parameter t is the height of the binary tree and is �xed for a parti
ular implementation.

Hen
e t�(t) is a 
onstant for a parti
ular implementation of the algorithm. Thus SF! 2

t

as L!1.

In other words, for long messages, the speed-up fa
tor is roughly equal to the number of pro
essors

used.

5.5 Corre
tness of the Formatting Subroutines

The formatting subroutines of algorithm PHA divide the message into substrings and provide these

as input to the 
ompression fun
tion h. There are two things whi
h require to be proved.

1. The formatting subroutines ensure that ea
h bit of the message is provided as input to exa
tly

one invo
ation of the 
ompression fun
tion h.

2. The �nal output of algorithm PHA is an m-bit string.

The rest of the se
tion is devoted to proving these two properties.

Ea
h of the �rst (R � 1) parallel rounds in PHA(x; t) 
onsists of a formatting phase and a

hashing phase. In the formatting phase, the formatting pro
essor P

F

runs a formatting subroutine

and in the hashing phase the pro
essors P

i

(i 2 P) are operated in parallel. Denote by z

i;j

the

state of the bu�er z

i

at the end of round j, where i 2 P and 1 � j � R. Clearly, the state of

the bu�er z

i

at the start of round j (2 � j � R) is z

i;j�1

. Further, let u

i;j

be the string written

to bu�er u

i

in round j by the pro
essor P

F

. For i 2 I, the input to pro
essor P

i

in round j is

z

2i;j�1

jjz

2i+1;j�1

jju

i;j

. For i 2 L, the input to pro
essor P

i

in round j is the string u

i;j

.

The following lemma and 
orollary are required to prove Proposition 11.

Lemma 9 For any nonnegative integer b,

P

i�1

j

b+2

i�1

2

i

k

= b.

Proof. We prove this result by indu
tion on b. Clearly the result holds for b = 0.

Indu
tion Hypothesis: For b a positive integer, assume that

P

i�1

j

b+2

i�1

�1

2

i

k

= b� 1.

It 
an be shown that

�

m

n

�

=

8

>

>

<

>

>

:

j

m�1

n

k

+ 1 when njm;

j

m�1

n

k

otherwise:
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In addition, 2

i

j(b+ 2

i�1

) if and only if b = 2

i�1


 where 
 is an odd integer. Combining these fa
ts

with the indu
tion hypothesis, we get that

X

i�1

$

b+ 2

i�1

2

i

%

= 1 +

X

i�1

$

b+ 2

i�1

� 1

2

i

%

= b:

Thus, by indu
tion, we 
on
lude that the result holds for all nonnegative integers b.

Corollary 10 For t a given positive integer and b an integer in the range 0 � b � 2

t�1

, let

k

s

= b

b+2

t�s�1

�1

2

t�s


 as de�ned in algorithm FF(s). Then

P

t�1

s=1

k

s

=

P

s�1

k

s

= b� 1.

Proposition 11 Let x be a message of length L = Æ(t)+q�(t)+b(2n�2m), where q is a nonnegative

integer and b is an integer in the range 0 � b � 2

t�1

. The formatting subroutines ensure that ea
h

bit of the message x is provided as input to some pro
essor P

i

exa
tly on
e; furthermore, the

substring x presented to pro
essor P

0

in step 17 of PHA is the empty string when jxj = Æ(t) and

is an (n� 2m)-bit string when jxj > Æ(t). The total time required by the formatting subroutines to

format the message x over all the R rounds is proportional to

(a) jxj+ (t� 1)2

t

� 2b+ 2 steps when jxj > Æ(t) or

(b) jxj+ (t� 1)2

t

+ 1 steps when jxj = Æ(t).

Proof. Ea
h formatting algorithm de�nes u

i

= � or else de�nes u

i

to be a pre�x of x; namely,

x = vjjy

u

i

= v

x = y

In step 17, the substring x itself is presented to pro
essor P

0

. Hen
e, ea
h bit of the message x is

presented as input to some pro
essor P

i

exa
tly on
e. We now determine the length of the substring

x presented to pro
essor P

0

in step 17, i.e., in round R.

First assume that L > Æ(t) and hen
e b > 0. Formatting algorithm FSU provides a pre�x

of length n to ea
h pro
essor P

i

. This a

ounts for 2

t

n bits of x. Algorithm FSS provides an

(n � 2m)-bit pre�x to pro
essor P

i

, i 2 I, and an n-bit pre�x to pro
essor P

i

, i 2 L. This

a

ounts for 2

t�1

(2n � 2m) = �(t) bits of x. Sin
e FSS is invoked q times, this a

ounts for

q�(t) bits of x. Formatting algorithm FEG provides ea
h internal pro
essor P

i

, i 2 I, with an

(n � 2m)-bit pre�x of x, ea
h leaf pro
essor P

i

, 2

t�1

� i � 2

t�1

+ b � 1, with an n-bit pre�x of

x, and all the other leaf pro
essors with an empty string. This a

ounts for 2

t�1

(n � 2m) + bn

bits of x. For s = t � 1; t � 2; : : : ; 2; 1, formatting algorithm FF(s) presents ea
h pro
essor P

i

,

0 � i < 2

s�1

+ k

s

� 1, where k

s

= b

b+2

t�s�1

�1

2

t�s


, with an (n� 2m)-bit pre�x of x and all the other

pro
essors P

i

with u

i

= �. This a

ounts for (2

s�1

+ k

s

)(n � 2m) bits of x. The total number of

bits presented to all the pro
essors in the �rst R� 1 rounds is

2

t

n+ q�(t) + bn+ 2

t�1

(n� 2m) +

1

X

s=t�1

(2

s�1

+ k

s

)(n� 2m)

= 2

t

n+ q�(t) + bn+

1

X

s=t

2

s�1

(n� 2m) +

1

X

s=t�1

k

s

(n� 2m)

= 2

t

n+ q�(t) + bn+ (2

t

� 1)(n� 2m) + (b� 1)(n� 2m) (sin
e

1

X

s=t�1

k

s

= b� 1)

= Æ(t) + q�(t) + b(2n� 2m)� (n� 2m):
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Hen
e, the substring x presented to pro
essor P

0

in step 17 of PHA is of length (n�2m) as 
laimed.

In the spe
ial 
ase when x is of length L = Æ(t), b = q = 0. This in turn implies that k

s

= 0 for

s = t� 1; t� 2; : : : ; 2; 1. Hen
e, the total number of bits presented to the pro
essors P

i

is just Æ(t),

and the substring x presented to pro
essor P

0

in step 17 of PHA is the empty string.

Formatting algorithm FEG de�nes u

i

= � for 2

t�1

+ b � i < 2

t

, and, for 1 � s < t, FF(s)

de�nes u

i

= � for 2

s�1

+ k

s

� i < 2

t

. The number of assignments of the form u

i

= � is

2

t�1

� b+

1

X

s=t�1

(2

t

� 2

s�1

� k

s

) = 2

t�1

� b+ (t� 1)2

t

�

1

X

s=t�1

2

s�1

�

1

X

s=t�1

k

s

= 2

t�1

+ (t� 1)2

t

� (2

t�1

� 1)� 2b+ 1 = (t� 1)2

t

� 2b+ 2:

In the spe
ial 
ase when x has length L = Æ(t), there are (t � 1)2

t

+ 1 assignments of the form

u

i

= �.

Ea
h step of the formatting algorithms 
onsist of moving the leading bit of string x to some

bu�er u

i

, or else assigning u

i

= �. Therefore, the formatting algorithms require

(a) Æ(t) + q�(t) + b(2n� 2m) + (t� 1)2

t

� 2b+ 2 steps when L > Æ(t) or

(b) Æ(t) + (t� 1)2

t

+ 1 steps when L = Æ(t).

This establishes the result.

We require the following lemma in the proof of Theorem 13.

Lemma 12 For any integers b and t, b � 0 and t � 1, de�ne k

s

= b

b+2

t�s�1

�1

2

t�s


 for 1 � s < t and

l

s

= b

b+2

t�s

�1

2

t�s


 for 1 � s � t. Then

(a) k

s

� l

s

� k

s

+ 1;

(b) 2k

s

� l

s+1

� 2l

s

; and

(
) l

s

= k

s

+ 1 if and only if 2l

s

= l

s+1

+ 1:

Proof. Clearly,

k

s

=

�

b� 1

2

t�s

+

1

2

�

�

�

b� 1

2

t�s

+ 1

�

= l

s

�

�

b� 1

2

t�s

+

3

2

�

= k

s

+ 1:

For any nonnegative real number x, 2bx+

1

2


 � b2x+ 1
 � 2bx+ 1
. Setting x = (b� 1)=2

t�s

, we

get

2k

s

� l

s+1

� 2l

s

:

Now let x =

b�1

2

t�s

= I + f where I is an integer and 0 � f < 1. Then

l

s

= bx+ 1
 = bI + f + 1
 = I + 1:

If l

s

= k

s

+ 1, then

I + 1 = l

s

= k

s

+ 1 = bx+ 1=2
 + 1 = bI + f + 1=2
 + 1 = I + 1 + bf + 1=2
:

Hen
e bf + 1=2
 = 0 whi
h means 0 � f < 1=2. Then

l

s+1

= b2x+ 1
 = b2I + 2f + 1
 = 2I + 1 = 2l

s

� 1:
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Remark : We would like to point out the 
onne
tion of the values k

s

and l

s

respe
tively to the

inorder su

essor and prede
essor of the pro
essor P

i

. In round q+ 2+ l = q+2+ t� s, pro
essor

P

i

outputs an m-bit output if and only if the inorder prede
essor (whi
h is at the leaf level) of

P

i

re
eived an n-bit input in round q + 2. Further, in round q + 2 + l, pro
essor P

i

invokes the

hash fun
tion (equivalently u

i;q+2+l

is de�ned) if the inorder su

essor (again at the leaf level) of

P

i

re
eived an n-bit input in round q + 2. These 
onsiderations also provide the expressions for k

s

and l

s

.

At any round r, 1 � r < R, the input to pro
essor P

i

, i 2 L, is u

i;r

, and the input to pro
essor

P

i

, i 2 I, is z

2i;r�1

jjz

2i+1;r�1

jju

i;r

. In Theorem 13 we show that every bit of the string x is a
ted

upon by hash fun
tion h. Furthermore, if z

i;r

6= � then either z

i;r

is a
ted upon by h in round r+1

or else z

i;r

is passed on as the output of pro
essor P

i=2

in round r + 1; that is z

i=2;r+1

= z

i;r

. We

establish these fa
ts by showing that

i 2 I and ju

i;r

j = n� 2m imply jz

2i;r�1

j = jz

2i+1;r�1

j = m, and

i 2 I and u

i;r

= � imply z

2i+1;r�1

= �.

Theorem 13 (Corre
tness of PHA) Given any message x with jxj � Æ(t), algorithm PHA(x; t)

applies hash fun
tion h to every bit of x and produ
es an m-bit message digest.

Proof. Let y = z

0;R�1

jjz

1;R�1

jju

0;R

. Then, the output of algorithm PHA is, by de�nition,

z

0;R

=

(

h(y) if jyj = n;

y otherwise:

Therefore, we must show that if jyj 6= n, then jyj = m.

In round 1, pro
essor P

F

writes n-bit strings to ea
h of the bu�ers u

i

, i.e., ju

i;1

j = n for i 2 P .

Hen
e jz

i;1

j = m for i 2 P . Further, it is easy to verify that for 2 � j � q + 1, we have jz

i;j

j = m

for i 2 P and

ju

i;j

j =

(

n� 2m if i 2 I;

n if i 2 L:

For q + 2 � j � R � 1, let s = R � j. Then t � s � 1 
orresponding to q + 2 � j � R � 1.

De�ne l

s

=

j

b+2

t�s

�1

2

t�s

k

. We now use indu
tion to show that for these values of j and s,

jz

i;j

j =

(

m for 0 � i � 2

s�1

+ l

s

� 1;

0 for 2

s�1

+ l

s

� i < 2

t

:

Basis Case. For j = q + 2, s = t and l

s

= b; furthermore, jz

i;q+1

j = m for i 2 P . In round q + 2,

pro
essor P

F

exe
utes FEG, and hen
e,

ju

i;q+2

j =

8

>

<

>

:

n� 2m for i 2 I;

n for 2

t�1

� i � 2

t�1

+ b� 1;

0 for 2

t�1

+ b � i < 2

t

:

Therefore,

jz

i;q+2

j =

(

m for 0 � i � 2

t�1

+ b� 1;

0 for 2

t�1

+ b � i < 2

t

:
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Indu
tion Hypothesis: Let j � 1 be any integer in the range q+ 2 � j � 1 � q+ t = R� 2, and

let s+ 1 = R� (j � 1). Assume that in round j � 1,

jz

i;j�1

j =

(

m for 0 � i � 2

s

+ l

s+1

� 1;

0 for 2

s

+ l

s+1

� i < 2

t

:

Now 
onsider round j. Then s = R� j.

Case 1: 0 � i � 2

s�1

+ k

s

� 1.

Then algorithm FF(s) de�nes u

i;j

to be a nonempty (n� 2m)-bit string. Furthermore,

2i+ 1 � 2

s

+ 2k

s

� 1 � 2

s

+ l

s+1

� 1 by Lemma 12:

By our indu
tion hypothesis, jz

2i;j�1

j = jz

2i+1;j�1

j = m. Hen
e, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = n. This

implies jz

i;j

j = m.

Case 2: 2

s�1

+ k

s

� i � 2

s�1

+ l

s

� 1.

This 
ase is va
uous whenever l

s

= k

s

. When l

s

= k

s

+ 1, then 2

s�1

+ k

s

= i = 2

s�1

+ l

s

� 1 and

ju

i;j

j = 0 from the de�nition of algorithm FF(s). Then

2i = 2

s

+ 2l

s

� 2 = 2

s

+ l

s+1

� 1 (sin
e 2l

s

= l

s+1

+ 1 when l

s

= k

s

+ 1):

Therefore, jz

2i;j�1

j = m by our indu
tion hypothesis. Sin
e 2i + 1 = 2

s

+ l

s+1

, our indu
tion

hypothesis implies jz

2i+1;j�1

j = 0. Therefore, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = m and z

i;j

= z

2i;j�1

, a

nonempty m-bit string.

Case 3: 2

s�1

+ l

s

� i < 2

t

.

Sin
e 2

s�1

+ k

s

� 2

s�1

+ l

s

� i, ju

i;j

j = 0. In addition, 2i � 2

s

+ 2l

s

� 2

s

+ l

s+1

. Therefore,

jz

2i;j�1

j = jz

2i+1;j�1

j = 0. Hen
e, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = 0 and z

i;j

= �.

Thus we have shown that

jz

i;j

j =

(

m for 0 � i � 2

s�1

+ l

s

� 1;

0 for 2

s�1

+ l

s

� i < 2

t

:

By indu
tion, this holds for all j in the range q + 2 � j � R� 1 and s = R� j.

From the above argument, we see that, for 1 � j � R � 1, ju

i;j

j = n � 2m if and only if

jz

2i;j�1

j = jz

2i+1;j�1

j = m. In this 
ase, z

i;j

= h(z

2i;j�1

jjz

2i+1;j�1

jju

i;j

). As well, it is immediate

that whenever a formatting algorithm de�nes ju

i;j

j = n, then z

i;j

= h(u

i;j

). Thus the hash fun
tion

h pro
esses ea
h of the pre�xes u

i;j

.

When message x has length L > Æ(t), then b > 0. From the above result, we see that jz

0;R�1

j =

jz

1;R�1

j = m. From Proposition 11, we know that the substring x presented to pro
essor P

0

in step

17 of PHA is of length n� 2m. Therefore, z

0;R

= h(z

0;R�1

jjz

1;R�1

jjx), an m-bit string, as required.

When message x has length L = Æ(t), then b = 0. From the above result, we see that jz

0;R�1

j =

m and jz

1;R�1

j = 0. From Proposition 11, we know that the substring x presented to pro
essor P

0

in step 17 of PHA is of length 0. Therefore, z

0;R

= z

0;R�1

, an m-bit string, as required.

6 Se
urity Redu
tions for h

L

and h

�

In this se
tion we show that �nding 
ollisions for h

L

and h

�

is diÆ
ult provided �nding 
ollisions

for h is diÆ
ult.
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6.1 Collision Resistan
e of h

L

We provide a Turing redu
tion of Col(n;m) to FLC(n;m;L). This will show that if it is 
ompu-

tationally diÆ
ult to �nd 
ollisions for h, then it is also 
omputationally diÆ
ult to �nd 
ollisions

for h

L

.

Theorem 14 Let t � 0, h be an (n;m) hash fun
tion and for L � 1 let h

L

be the fun
tion de�ned

by equation (2). If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash fun
tion

h

L

, then there is an (�; p+ 2 (L)) algorithm B to solve Col(n;m) for the hash fun
tion h.

Proof. The algorithm B does the following. It �rst runs A to obtain two strings x and x

0

su
h that

x 6= x

0

, jxj = jx

0

j = L, and with probability at least �, h

L

(x) = h

L

(x

0

). Then B runs PHA on both

x and x

0

and stores all the intermediate states of the bu�ers z

i

and u

i

. Let z

ij

and z

0

ij

be the states

of bu�er z

i

at the end of round j 
orresponding to the messages x and x

0

respe
tively. Similarly,

let u

ij

and u

0

ij

be the strings written to bu�er u

i

in round j 
orresponding to the messages x and

x

0

respe
tively.

For message x and round number j, de�ne ZList(x; j) and UList(x; j) to be the following two

lists: ZList(x; j) = hz

0;j

; : : : ; z

2

t

�1;j

i; UList(x; j) = hu

0;j

; : : : ; u

2

t

�1;j

i.

Note that the message x is equal to the 
on
atenation of the strings in the lists

UList(x; 1); : : : ;UList(x;R). Next we prove the following 
laim by ba
kward indu
tion on round

number j � R.

Claim : If h

L

(x) = h

L

(x

0

) and there is no 
ollision for the fun
tion h in rounds j; : : : ; R, then

UList(x; j) = UList(x

0

; j) and ZList(x; j � 1) = ZList(x

0

; j � 1).

Proof of Claim : The base 
ase is j = R. Note that h

L

(x) = h

L

(x

0

) implies z

0;R

= z

0

0;R

. There

are two 
ases to 
onsider for round R a

ording as b = 0 or b > 0. If b = 0, then the fun
tion h

has not been invoked in round R and it is easy to see that ZList(x;R � 1) = ZList(x

0

; R � 1) and

UList(x;R) = UList(x

0

; R). If b > 0, then the fun
tion h has been invoked in round R and either we

have a 
ollision for h in round R or ZList(x;R�1) = ZList(x

0

; R�1) and UList(x;R) = UList(x

0

; R).

Now suppose j < R. By the indu
tion hypothesis for j + 1 we know that UList(x; j + 1) =

UList(x

0

; j+1) and ZList(x; j) = ZList(x

0

; j). The 
ondition ZList(x; j) = ZList(x

0

; j) states that for

messages x and x

0

the outputs of all the pro
essors are equal at the end of round j. The a
tion of

any pro
essor in round j is to either 
opy its input to output or invoke the hash fun
tion h on its

input. The inputs to the pro
essors are the elements of the lists ZList(x; j � 1) and UList(x; j) for

message x (respe
tively, ZList(x

0

; j� 1) and UList(x

0

; j) for message x). Thus if there is no 
ollision

for h in round j, we must have UList(x; j) = UList(x

0

; j) and ZList(x; j � 1) = ZList(x

0

; j � 1). This


ompletes the indu
tive step and the proof of the 
laim.

From this 
laim it follows that if h

L

(x) = h

L

(x

0

) and there is no 
ollision for the fun
tion h

in any of the rounds, then x = x

0

. Sin
e algorithm A su

eeds with probability at least �, we


on
lude that there is a 
ollision for the fun
tion h also with probability at least �. The number of

invo
ations of h made by algorithm B is equal to the number of invo
ations of h made by algorithm

A plus twi
e the number of invo
ations of h made by algorithm PHA(x; t). Hen
e the number of

invo
ations made by algorithm B is equal to p+ 2 (L).

6.2 Collision Resistan
e of h

�

The se
urity of h

�

is easily derived from the se
urity of h

L

. The details are given below.
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Theorem 15 Let h be an (n;m) hash fun
tion and h

�

be the fun
tion de�ned by Equation 3. If

there is an (�; p; L) algorithm A to solve V LC(n;m;L) for the hash fun
tion h

�

, then there is an

(�; p+ 2 + 2 (L)) algorithm B to solve Col(n;m) for the hash fun
tion h.

Proof. The algorithm B does the following. It �rst runs A to obtain two messages x and x

0

. Then

with probability at least �, we have h

�

(x) = h

�

(x

0

) and x 6= x

0

. Algorithm B then runs h

�

on both

x and x

0

to obtain h

�

(x) = y and h

�

(x

0

) = y

0

storing all the intermediate values that are generated.

Let w = h

jxj

(x), w

0

= h

jx

0

j

(x

0

), v = bin

n�m

(jxj) and v

0

= bin

n�m

(jx

0

j). There are two 
ases.

Case 1 : jxj 6= jx

0

j. In this 
ase v 6= v

0

and hen
e vjjw 6= v

0

jjw

0

. However, h(vjjw) = y = y

0

=

h(v

0

jjw

0

) with probability at least �. Thus in this 
ase we 
an �nd a 
ollision for h with probability

at least �.

Case 2 : jxj = jx

0

j = L. In this 
ase v = v

0

. If w 6= w

0

, then we have a 
ollision for h. If

w = w

0

then we have a 
ollision for h

L

. We 
an now argue as in the proof of Theorem 14 that with

probability at least � we obtain a 
ollision for h.

The 
omputation of h

�

requires 1 +  (L) invo
ations of the hash fun
tion h. This shows that

the number of invo
ations of h made by B is at most p+ 2 + 2 (L).

7 Constru
tion of h

1

In this se
tion we des
ribe the 
onstru
tion and the se
urity redu
tion for the fun
tion h

1

:

[

L�1

f0; 1g

L

! f0; 1g

m

. De�ne Æ

1

(t) = Æ(t) � 1 and �

1

(t) = �(t) � 1. As in De�nition 2, for

L � Æ

1

(t), we de�ne the parameters q; r and b as follows.

De�nition 16 1. If L > Æ

1

(t), then q and r are de�ned by the following equation:

L� Æ

1

(t) = q�

1

(t) + r; (4)

where r is the unique integer from the set f1; : : : ; �

1

(t)g. De�ne b = d

r

2n�2m

e.

2. If L = Æ

1

(t), then q = b = r = 0.

Algorithm PHA 
omputes the fun
tion h

L

. We �rst de�ne a modi�
ation of PHA. More spe
if-

i
ally, we de�ne the modi�
ations required in the formatting subroutines. We will 
all the resulting

algorithm the modi�ed PHA algorithm.

Modi�
ation to FSU: Repla
e Step 1 of FSU by the following sequen
e of operations:

Write x = vjjy where jvj = n� 1.

u

0

= vjj0, x = y.

for i = 1; 2; : : : ; 2

t

� 1 do

Modi�
ation to FSS: Repla
e Step 1 of FSS by the following sequen
e of operations:

Write x = vjjy where jvj = n� 2m� 1.

u

0

= vjj1, x = y.

for i = 1; 2; : : : ; 2

t

� 1 do

Informally, during start up we are providing P

0

with an input whose last bit is 0 and during

steady state we are providing P

0

with an input whose last bit is 1.

Let the (L;m) fun
tion 
omputed by modi�ed PHA be g

L

. We now des
ribe the 
onstru
tion

of the fun
tion h

1

.
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The parameter b is at most 2

t�1

and 
an be represented in binary by a t-bit string. Note that

the length of the binary representation of b depends only on t and is independent of the message

length L. We denote the t-bit binary representation of b by bin(b). Let �(t) = dlog(Æ

1

(t) + 1)e. Let

tbin(L) be a binary string of length �(t), su
h that tbin(L) is the �(t)-bit binary representation of

L if L < Æ

1

(t), else tbin(L) is the �(t)-bit binary representation of Æ

1

(t).

The output of the fun
tion h

1

is de�ned by the following algorithm.

Algorithm ArbLength

input : message x of length L.

output : m-bit message digest h

1

(x).

1. If L < Æ

1

(t), then �nd the unique t

1

su
h that Æ

1

(t

1

) � L < Æ

1

(t

1

+ 1). Then perform Step 2

with t repla
ed by t

1

.

2. If L � Æ

1

(t), then apply modi�ed PHA to x to obtain an m-bit message digest w = g

L

(x).

3. Let w

1

= h

m+t

(wjjbin(b)).

4. Let w

2

= h

m+�(t)

(w

1

jjtbin(L)).

5. output w

2

.

Remark : It is reasonable to assume that both t; �(t) � n�m. Then we 
ould let bin(b) and tbin(L)

be (n�m)-bit strings. In this situtation, Steps 3 and 4 above 
an be repla
ed by w

1

= h(wjjbin(b))

and w

2

= h(w

1

jjtbin(L)) respe
tively.

We now turn to the se
urity redu
tion for h

1

. First we note the fa
t that the se
urity of g

L

is

preserved in a manner similar to that of h

L

.

Theorem 17 Let h be an (n;m) hash fun
tion and for L � n let g

L

be the fun
tion de�ned by the

modi�ed PHA algorithm. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash

fun
tion g

L

, then there is an (�; p + 2 

1

(L)) algorithm B to solve Col(n;m) for the hash fun
tion

h, where  

1

(L) is the number of invo
ations of h made by g

L

.

Theorem 18 Let h be an (n;m) hash fun
tion and for L � n let h

1

be the fun
tion de�ned

by algorithm ArbLength. If there is an (�; p; L) algorithm A to solve ALC(n;m;L) for the hash

fun
tion h

1

, then there is an (�; p+ 2 

2

(L)) algorithm B to solve Col(n;m) for the hash fun
tion

h, where  

2

(L) =  

1

(L) +  (t+m) +  (�(t) +m) is the number of invo
ations of h made by h

1

.

Proof. Algorithm B runs algorithm A to obtain two strings x and x

0

su
h that with probability

at least � we have h

1

(x) = h

1

(x

0

) and x 6= x

0

. Let L = jxj and L

0

= jx

0

j. Further, we will denote

the parameters for the message x by unprimed symbols and the parameters for the message x

0

by

primed symbols. First assume that L = L

0

. Then tbin(L) = tbin(L

0

) and bin(b) = bin(b

0

). We 
an

now use Theorem 17 to obtain a 
ollision for h with probability at least �. Thus for the rest of the

proof we will assume L 6= L

0

. There are two 
ases to 
onsider.

Case 1 : At least one of L or L

0

is less that Æ

1

(t). In this 
ase tbin(L) 6= tbin(L

0

). We have

h

m+�(t)

(w

1

jjtbin(L)) = w

2

= w

0

2

= h

m+�(t)

(w

0

1

jjtbin(L

0

)):

We 
an argue as in Theorem 14 that either we obtain a 
ollision for h or w

1

jjtbin(L) = w

0

1

jjtbin(L

0

)

whi
h in turn implies tbin(L) = tbin(L

0

). Sin
e we know tbin(L) 6= tbin(L

0

), it follows that we

must obtain a 
ollision for h.
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Case 2 : Both L;L

0

� Æ

1

(t). In this 
ase we have tbin(L) = tbin(L

0

). If w

1

6= w

0

1

, then the inputs

to h

�(t)+m

in Step 4 of ArbLength are di�erent for x and x

0

. This will again provide a 
ollision for

h. So suppose w

1

= w

0

1

. There are two sub
ases to 
onsider.

Sub
ase 2a : b 6= b

0

: In this 
ase bin(b) 6= bin(b

0

). We have

h

m+t

(wjjtbin(L)) = w

1

= w

0

1

= h

m+t

(w

0

jjtbin(L

0

)):

Again the inputs to h

m+t

are di�erent and hen
e we have a 
ollision for h

m+t

. As before, this will

ne
essarily provide a 
ollision for h.

Sub
ase 2b : b = b

0

: In this 
ase bin(b) = bin(b

0

). If w 6= w

0

, then this will provide a 
ollision for

h. So assume that w = w

0

.

So we are in the situation where g

L

(x) = w = w

0

= g

L

0

(x

0

), b = b

0

and L 6= L

0

. We have

the (padded) message lengths in the following forms: L = Æ

1

(t) + q�

1

(t) + b(2n � 2m) and L

0

=

Æ

1

(t) + q

0

�

1

(t) + b

0

(2n � 2m). Sin
e b = b

0

and L 6= L

0

we have q 6= q

0

. Assume without loss of

generality q

0

< q.

The last t+ 1 rounds of both PHA and modi�ed PHA are the same. Suppose that none of the

invo
ations of h in the last t + 1 rounds of modi�ed PHA provides a 
ollision for h. Now using

the fa
t that b = b

0

we 
an use a ba
kward indu
tion on the round number (as in the proof of

Theorem 14) to obtain z

i;q+1

= z

0

i;q

0

+1

for all i 2 P . Continuing the ba
kward indu
tion we obtain

z

i;q�q

0

+1

= z

0

i;1

for all i 2 P . We now look at the output of pro
essor P

0

. Let p = q � q

0

. We have

z

0;p+1

= P

0

(z

0;p

jjz

1;p

jju

0;p+1

);

z

0

0;1

= P

0

(u

0

0;1

):

The string u

0;p+1

is obtained from FSS and the string u

0

0;1

is obtained from FSU. By the modi�
a-

tions made to these algorithms to get modi�ed PHA, we know that u

0;p+1

= vjj1 and u

0

0;1

= v

0

jj0

for some strings v and v

0

of lengths n�1 and n�2m�1 respe
tively. Hen
e z

0;p

jjz

1;p

jju

0;p+1

6= u

0

0;1

.

But z

0;p+1

= z

0

0;1

and so we obtain

P

0

(z

0;p

jjz

1;p

jju

0;p+1

) = h(z

0;p

jjz

1;p

jju

0;p+1

) = z

0;p+1

= z

0

0;1

= h(u

0

0;1

) = P

0

(u

0

0;1

):

This is a 
ollision for h.

We next 
onsider the amount of padding required by algorithm ArbLength. This is determined

by the padding introdu
ed by algorithm modi�ed PHA.

Theorem 19 Algorithm modi�ed PHA pads any message by at least q+1 bits where q is as de�ned

in De�ntion 16.

Proof. The modi�
ation to FSU introdu
es one bit of padding and the modi�
ation to FSS

introdu
es one bit of padding per round. Sin
e FSS is exe
uted q times a total of q bits of padding

is introdu
ed by FSS.

From De�nition 16 we have

�

L� Æ

1

(t)

�

1

(t)

�

� q + 1 � 1 +

�

L� Æ

1

(t)

�

1

(t)

�

:

Sin
e t; n;m are 
onstants for a parti
ular implementation of modi�ed PHA, the amount of padding

is linear in the length of the message. We note that the Merkle-Damg�ard 
onstru
tion also uses an

amount of padding whi
h is linear in the length of the message (see [14℄). Moreover, the 
onstant of
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proportionality is lesser for our 
onstru
tion. However, it is undesirable to have a padding s
heme

whi
h grows with the length of the message. The amount of padding required in the 
onstru
tion

of h

�

is at most 2(n�m)�1 and hen
e is independent of the message length. Further, the fun
tion

h

�


an take as input any message of pra
ti
al length. Thus algorithm ArbLength and the fun
tion

h

1

are mainly of theoreti
al interest.

8 Preimage Resistan
e

We have formally 
onsidered only one property of hash fun
tions - namely intra
tibility of �nding


ollisions. Depending on the appli
ation, there are other ne
essary properties that a hash fun
tion

must satisfy. These are Preimage and Se
ond Preimage. It is easy to see that the ability to �nd a

se
ond preimage implies the ability to �nd 
ollisions. Hen
e if a fun
tion is 
ollision resistant, it is

automati
ally se
ond preimage resistant. Thus we do not 
onsider the property of se
ond preimage

resistan
e. However, we note that in general it is diÆ
ult to obtain a 
omposition s
heme that

preserves the property of se
ond preimage resistan
e.

Informally the preimage problem for a hash fun
tion h is the following. The adversary is given

a message digest y and has to obtain a message x su
h that h(x) = y. Suppose that there is a

(probabilisti
) algorithm A to solve the preimage problem for any of our extensions h

L

; h

�

or h

1

.

For the sake of 
on
reteness we only 
onsider h

L

, the others being similar. We argue that A 
an

be used to obtain an algorithm B whi
h will solve the preimage for h with the same probability of

su

ess. Given y, algorithm B will �rst run A to obtain a preimage x for h

L

. Then B runs PHA

and outputs w = z

0;R�1

jjz

1;R�1

jju

R

if b > 0 or w = z

0;R�2

jjz

1;R�2

jju

R�1

if b = 0. It is now easy to

see that w is a preimage for h (with the probability of su

ess being at least that of A).

9 Con
luding Remarks

We have 
onsidered the pro
essors to be organised as a binary tree. In fa
t, the same te
hnique


arries over to k-ary trees, with the 
ondition that n � km. More speed up 
an be a
hieved by

moving from binary to k-ary pro
essor trees. However, the formatting pro
essor will progressively

be
ome more 
ompli
ated and will o�set the advantage in speed up. Hen
e we have not explored

this option further.

To summarize our 
ontribution, in this paper, we have presented an in
rementally parallelizable

design prin
iple for hash fun
tions. We believe that our design prin
iple will provide the basi


stru
ture for designing future pra
ti
al hash fun
tions.
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