A Parallelizable Design Principle for Cryptographic Hash Functions*

Palash Sarkar' Paul J. Schellenberg
Cryptology Research Group Centre for Applied Cryptographic Research
Applied Statistics Unit Department of Combinatorics and Optimization
Indian Statistical Institute University of Waterloo
203, B.T. Road 200 University Avenue West,
Kolkata 700108 Waterloo, Ontario
West Bengal, India Canada N2L 3G1
palash@isical.ac.in pjschell@math.uwaterloo.ca
Contents
1 Introduction 2
2 Basics 4
2.1 Hash Functions e e 4
2.2 Processor Tree L e e e e e 6
2.3 Parameters and Notation e 7
3 Parallel Hashing Algorithm 8
3.1 Formatting Subroutines 9
3.2 Simulating Trees L 11
4 Parallel Hash Function Definitions 12
4.1 Definition of hr, L e e e e e e 12
4.2 Definition of h* L e e e e e 13
4.3 Specifying Parallelism o 13
5 Correctness and Complexity of PHA 14
5.1 Amount of Padding 14
5.2 Number of Parallel Rounds 14
5.3 Invocations of the Compression Function, 15
5.4 Speed-Up over MD Algorithm 16
5.5 Correctness of the Formatting Subroutines 16

*An earlier abridged version of the paper appeared in the Proceedings of Indocrypt 2001, LNCS 2247, pages 40-49.
tPart of the work was done while the author was visiting the Centre for Applied Cryptographic Research, University
of Waterloo.

6 Security Reductions for h; and h* 20

6.1 Collision Resistance of Ay, e 21

6.2 Collision Resistance of h* L L 21

7 Construction of h*™ 22

8 Preimage Resistance 25

9 Concluding Remarks 25
Abstract

We describe a parallel design principle for hash functions. Given a secure hash function
h : {0,1}" — {0,1}™ with n > 2m, and a binary tree of 2! processors we show how to
construct a secure hash function h* which can hash messages of lengths less than 2"~ and a

secure hash function h* which can hash messages of arbitrary length. The number of parallel
rounds required to hash a message of length L is {mJ + t. Further, our algorithm is
incrementally parallelizable in the following sense : given a digest produced using a binary tree
of 2t processors, we show that the same digest can also be produced using a binary tree of 2

(0 <t <t) processors.

Keywords : hash function, Merkle-Damgard construction, collision resistance, preimage resis-
tance, parallel algorithm, binary tree.

1 Introduction

Hash functions are extensively used in cryptographic protocols. One of the main uses of hash
functions is in digital signature protocols, where the message digest produced by the hash function
is signed. Due to the central importance of hash functions in cryptography, there has been a lot of
work in this area. See [11] for a survey.

For a hash function A : {0,1}" — {0,1}™ to be used in cryptographic protocols, it must satisfy
certain well known necessary properties. In a recent paper [13], Stinson provides a comprehensive
discussion of these properties and also relations among them. Depending on a particular application,
a secure hash function must satisfy some or all of the following properties.

(a) Preimage Resistance : Finding a preimage of a given message digest must be computa-
tionally infeasible. In other words, given z € {0,1}™ it should be computationally infeasible
to find z € {0,1}" such that h(z) = z. This property was first defined by Diffie and Hellman
in their seminal paper on modern cryptology [7].

(b) Second Preimage Resistance : Finding a second preimage of a digest given one preimage
of the same digest must be computationally infeasible. In other words, given z € {0,1}"™ and
z € {0,1}™ such that h(z) = z, it should be computationally infeasible to find y € {0,1}"
such that = # y and h(y) = z. The notion of second preimage resistance was introduced by
Merkle in [8].

(c) Collision Resistance : Finding a collision must be computationally infeasible. In other
words, it should be computationally infeasible to find z,y € {0,1}" such that z # y but
h(z) = h(y). This property was first formally defined by Damgard in [6].

It is clear that if it is possible to find a second preimage, then it is possible to find collisions.
Hence it is usually sufficient to study collision resistance. However, as pointed out in [13], there is
no satisfactory reduction from collision resistance to preimage resistance or vice versa. Hence the
goal of a practical hash function should be to achieve both preimage and collision resistance.

It is possible to construct hash functions where one can prove that finding collisions is equivalent
to solving certain known hard problems (see for example [4]). However, from a practical point of
view such hash functions are unacceptably slow. Hence practical hash functions are constructed
from simple arithmetic/logical operations so that they are very fast. The trade-off is that for such
hash functions it is not possible to relate the difficulty of finding collisions to known hard problems.

Research in design of hash functions have evolved certain principles for designing “secure” and
practical hash functions. One of the important papers in this area is by Damgard [5]. An important
point made in [5] is that it is easier to design a “secure” hash function with a short fixed domain
than a hash function with a very large (or infinite) domain. However, for a hash function to be
useful it must be possible to hash arbitrary long messages. Hence one must look for techniques
that can extend the domain of a hash function while preserving the relevant security properties.

An important construction for securely extending the domain of a secure hash function has been
described by Merkle [8] and Damgard [5]. The construction is called the Merkle-Damgard (MD)
construction. The MD construction is a sequential construction and provides a basic guideline for
designing practical hash functions.

In this paper we develop an alternative design principle for securely extending the domain of a
secure hash function. Our design principle is based on a binary tree of processors and allows for
parallelism in the computation of the hash function. We show that given a secure hash function
h :{0,1}"* — {0,1}™ with n > 2m and a binary tree of 2! processors, it is possible to construct
a secure hash function h* which can hash messages of lengths less than 2"~ and a secure hash
function h*® which can hash arbitrary length messages. Since we require n > 2m and practical
hash functions have m > 128, the function h* is adequate for any conceivable application and
the construction of h* is of theoretical interest only. The number of parallel rounds required to

compute the digest of a message of length L is [%J +t.

2t(n—m

Our design principle allows for incremental parallelism in the following sense. If a message
digest can be produced using a binary tree of 2! processors, then the same message digest can be
produced using a binary tree of 2t processors for 0 < ¢/ < t with a proportional loss in speed of
computation. In the extreme case of ¢’ = 0 this means that using a single processor it is possible to
produce a digest which has been produced using a binary tree of 2! processors for any ¢ > 0. We
stress that this is an extremely important point for practical application of our design principle. In
a multi-user setting where different users have different resource capabilities, it is important that
a digest produced by one user can be produced by any other user irrespective of the amount of
resources available to him.

Related Work : The concept of tree hashing has appeared before in the literature. Damgard [5]
showed that for a message of length n, it is possible to compute the digest in O(logn) steps using
O(n) processors. Note that the number of processors is proportional to the length of the message.
Hence the result yields an impractical algorithm. Tree hashing has also been considered in relation
to universal one-way hash functions [10, 1]. However, these papers also assume a model where the
number of processors grows with the length of the message.

Our model improves upon the previous work on tree hashing in the following two ways.

1. In our model, the number of processors is fixed while the length of the message can be very

long.

2. A digest which can be produced by a binary tree with a certain number of processors can
also be produced by a binary tree with lesser number of processors and in the extreme case
by a single processor.

Parallelism in the design of hash functions have also been considered from a different direction.
In our approach we assume the existence of a base hash function with a small domain and present a
method to obtain a hash function with a very large domain. In the literature, the base hash function
is called the compression function or round function and the method to extend the domain is called
the composition method. Practical hash functions such as SHA or RIPEMD, use a specific round
function and the Merkle-Damgard method to extend the domain. In [3], a detailed study has been
made of the possible parallelism available in the round function of SHA and other practical hash
functions. Note that our work is complementary to this effort in the sense that we exploit the
parallelism that is obtainable in the composition scheme as opposed to the parallelism in the round
function.

In another relevant paper, Schnorr and Vaudenay [12], design a hash function based on the fast
Fourier transform (FFT) network and multipermutations. They present two hash functions based
on this approach. The first hash function uses a compression function based on the FFT algorithm
and multipermutations while the composition scheme is sequential. In the second algorithm, the
compression function and the composition schemes are merged together to obtain a fast hash
algorithm. This approach differs from our work in the following way. In our work we describe a
parallel composition scheme which can be used with any compression function (whose input length
is at least twice as large as the length of its output). As examples our parallel composition schemes
can be used with the round function of SHA as well as the FFT based compression function of [12].
On the other hand, the approach in [12] is to construct a specific hash function. Thus we describe
a design principle whereas [12] describes a particular hash function.

Parallelism in the design of hash functions has also been considered in the context of incremental
hashing [2]. The incremental hash function described in [2] is computed by combining a set of
elements of a group using the group law. Since the group operation is associative, this combining
operation can be parallelized. However, [2] does not develop this theme any further.

2 Basics

This section consists of three parts. The first part formally describes collision resistant hash func-
tions and related problems. The second part describes the processor tree model used in the paper.
In the third part, we define certain parameters which will be required in the rest of the paper.
Throughout the paper we will denote the empty string by A and the length of a binary string y by
ly|. Further, the concatenation of two strings y1 and yo will be denoted by y1||yo.

2.1 Hash Functions

An (n,m) hash function h is a function h : {0,1}" — {0,1}™. Throughout this paper we require
that n > 2m. We are basically interested in collision resistant hash functions. As mentioned in
Section 1, this means that it should be computationally infeasible to obtain two different messages
whose hash values are the same. Describing this formally requires the consideration of a family of
hash functions. The following definition of collision resistant hash function is based on [11].

Definition 1 Let {H}ses be a family of functions indexed by the set S where each Hg is an
(I(n),n) function. Here l(n) is a function such that l(n) > n. We say that {Hs}scs is collision
resistant if the following condition holds.

Let A be a randomized Las Vegas algorithm that takes as input an s € S, runs for time at most t
and either returns “2” or finds z,x' such that x # x' and Hs(x) = Hs(z"). For each such algorithm
A with t bounded above by a polynomial in size of s, we should have

Probses[A(s) # “?7] <.

In practice, it is usual to define a single hash function like SHA or RIPEMD instead of a keyed

family of hash functions. In such a situation, it is not possible to apply Definition 1 to these

hash functions. In fact, it seems almost impossible to provide a meaningful definition of collision
resistance for a single hash function.

In this paper, we are interested in obtaining a design principle for practical hash functions. We
will assume the existence of some collision resistant (n,m) hash function h, called the compression
function. The function A can only be applied to inputs of length n. We would like to remove this
restriction and define a hash function H which can be applied to strings of extremely large lengths.
We would like the extension of A to H to be “secure” in the following sense: If h is collision
resistant, then H is also collision resistant. The last statement is formalized in terms of a Turing
reduction between two suitably defined problems (see below). The advantage of this method is that
we only prove a reduction and at no point are we required to use Definition 1. This approach has
been previously used in the study of hash functions [13].

We now turn to the task of defining our approach to reducibilities between different problems
related to the property of collision resistance. Consider the following problem as defined in [13].

Problem : Collision Col(n,m)
Instance : An (n,m) hash function h.
Find : z,2' €{0,1}" such that z # 2’ and h(z) = h(z').

By an (e,p) (randomized) algorithm for Collision we mean an algorithm which invokes the hash
function h at most p times and solves Collision with probability of success at least e.

The hash function A has a finite domain. We would like to extend it to an infinite domain.
Our first step in doing this is the following. Given h and a positive integer L > 1, we construct
an (L,m) hash function hy. The next step, in general, is to construct a hash function h* :
Ur>1{0,1}Y — {0,1}™. However, instead of doing this, we first construct a hash function h* :
UN_{0,1} — {0,1}, where N = 2"~™ — 1. Since we assume n > 2m, we have n —m > m.
Practical message digests are at least 128 bits long meaning that m = 128. Hence our construction
of h* can handle any message with length less than 2'?8. This is sufficient for any conceivable
application. The construction of h* presents certain technical difficulties. We overcome these
difficulties and describe the construction of A>° in Section 7.

We would like to relate the difficulty of finding collisions for Az, h* and h* to that of finding a
collision for A. Thus we consider the following problems.

Problem : Fixed length collision FLC(n,m, L)
Instance : An (n,m) hash function A and an integer L > 1.
Find : z,7" €{0,1}F such that z # 2’ and hy(z) = hr(z').

Problem : Variable length collision V.LC'(n, m, L)
Instance : An (n,m) hash function h and an integer L with 1 < L < 2",
Find : x,2' € UL ,{0,1}* such that = # 2’ and h*(z) = h*(2').

Problem : Arbitrary length collision ALC(n,m, L)
Instance : An (n,m) hash function A and an integer L > 1.
Find : x,2' € UL ,{0,1} such that = # 2’ and h™®(z) = h>®(').

By an (¢,p, L) (randomized) algorithm A for Fixed length collision we will mean an algorithm that
requires at most p invocations of the function h and solves Fixed length collision with probability of
success at least e. The algorithm 4 will be given an oracle for the function s and p is the number
of times A queries the oracle for h in attempting to find a collision for h;,. Similar definitions are
true for Variable length collision and Arbitrary length collision.

Later we show Turing reductions from Collision to Fixed length collision, Variable length collision
and Arbitrary Length Collision. Informally this means that given oracle access to an algorithm for
solving FLC(n,m, L) for h; or VLC(n,m,L) for h* or ALC(n,m,L) for h® it is possible to
construct an algorithm to solve Col(n,m) for h. These will show that our constructions preserve
the intractibility of finding collisions.

2.2 Processor Tree

Our construction is a parallel algorithm requiring more than one processor. The number of proces-
sors is 2¢, for some t > 0. Let the processors be Py, ..., Py_q. Fori =0,...,2!~! —1, processor P;
is connected to processors P»; and P»; 41 by arcs pointing towards it. In particular, the arcs coming
into processor Py are from processor P; and processor Py itself. The processors Pyi-1,..., Py
are the leaf processors and the processors Py, ..., Py-1_; are the internal processors. We call the
resulting tree Ty the processor tree of height t (see Figure 1 for the processor tree with ¢ = 3). For
1 < i < t, there are 2'~! processors at level 4. Further, processor Py is considered to be at level 0.
We introduce the following notation which will be useful later.

Ty={i:0<i<2t s Ly ={i: 21 <i<2l -1}, Py ={i:0<i <2 —1};

When ¢ is clear from the context, we will usually write 7, Z, £ and P instead of Ty, Z;, £L; and P,
respectively.

Py
Py

o) P;

Py OFs oFs OPr

Figure 1: Processor Tree with ¢ = 3.

Each of the processors gets an input which is a binary string. The action of the processor is to
apply the hash function h on the input if the length of the input is n; otherwise, it simply returns

the input -

h if ly| = n;
Pi(y) = { y(y) otlﬂrwise. (1)
For i € P, we have two sets of buffers u; and z;. We will identify these buffers with the binary
strings they contain. The buffers are used by the processors in the following way. There is a
formatting processor Pr which reads the message x, breaks it into proper length substrings, and
writes to the buffers u;. For i € Z, the input buffers of P; are z9;, 29,11 and u; and the input to P,
is formed by concatenating the contents of these buffers. For ¢ € L, the input buffer of F; is u;.
The output buffer of P; is z; for ¢ € P.

Algorithm PHA goes through several parallel rounds. The contents of the buffers u; and z;
are updated in each round. To avoid read/write conflicts we will assume the following sequence of
operations in each parallel round.

The formatting processor Pp writes into the buffers u;, for 2 € P.
Each processor P; reads its respective input buffers.

Each processor P; performs the computation in (1).

Each processor P; writes into its output buffer z;.

- w =

Steps (2) to (4) are performed by the processors Py,. .., Pyt_1 in parallel after Step (1) is completed
by processor Pg.

2.3 Parameters and Notation

Here we define certain parameters which are going to be used throughout the paper.

1. Compression function: An (n,m) function A with n > 2m.

2. Height of the binary tree: t.

3. Message: a binary string z of length L > 1.

4. Start-up length (SUL): 2!n.

5. Maximum Flushing length (MFL): (2714272 4... 421 4+ 20) (n—2m) = (2! = 1) (n—2m).
6. SUL + MFL: §(¢) = 2'n + (2! — 1)(n — 2m) = 2/(2n — 2m) — (n — 2m).

7. Steady-state length (SSL): \(t) = 2!='n 4+ 2!=1(n — 2m) = 2!=1(2n — 2m).

8. Parameters qi, by and ry:

Definition 2 (a) If L > §(t), then q; and ry are defined by the following equation: L—0(t) =
q@iA(t)+1r¢, where ry is the unique integer from the set {1,...,A(t)}. Define b, = [2n2t2m-|'

(b) If L =6(t), then qo = by =1, = 0.
Note that 0 < b, < 2t-1,

9. Number of Parallel Rounds R;: We define R; = ¢;+t+2. Later we will show in Theorem 6
that algorithm PHA executes R; parallel rounds. We will usually write R instead of R;.

3 Parallel Hashing Algorithm

We first describe a parallel hashing algorithm which is the basic building block used for the con-
struction of hash functions. The main algorithm uses other algorithms as subroutines which are
described later. Before presenting the actual algorithm we present the basic idea behind the algo-
rithm.

Let = be a message of length L and T be the binary tree of processors of height ¢ as described in
Section 2.2. There are also two sets of 2! buffers zg, ..., 29t_; and ug, ..., ust_1. Bach of the buffers
z; can store m-bit strings. For i € Z, the buffer u; stores either an (n — 2m)-bit string or the empty
string and for ¢ € L, the buffer u; stores either an n-bit string or the empty string. Each buffer z;
stores the output of processor P;. The buffers u; are obtained as prefixes from the message z.

The algorithm consists of a certain number of parallel rounds where in each parallel round
all the 2! processors operate in parallel. Further, in each of the parallel rounds the message z is
shortened by removing a prefix from it. This prefix is divided into substrings and copied to the
buffers wu;.

Intially all the buffers z; are empty. Thus the first step of the algorithm is to initialise the
z;’s which is done in the following manner. Each processor P; is given an n-bit string u; as input.
Processor P; hashes u; to produce the digest z;. This step is called Start-Up.

The algorithm then enters the Steady-State. In the Steady-State each processor P;, i € Z, gets
an (n — 2m)-bit input u;. Also P; reads the buffers z9; and 29;11. Processor P; then forms an input
of length n by concatenating zo;, 29,11 and wu;. This n-bit string is hashed to obtain the new value
of the buffer z;. Each processor P;, i € L, gets an n-bit input which is hashed to obtain the new
value of the buffer z;. The Steady-State lasts for ¢ rounds (see Definition 2 above). It is clear that
after a certain stage it will not be possible to provide inputs to all the processors.

After the Steady-State ends we have a single round called the End-Game. This round starts
the mopping up operation. In this round, some of the leaf level processors get m-bit strings as
input while all other processors get the empty string as input. In this round, each of the internal
processors still gets an (n — 2m)-bit input.

After the End-Game, there are (¢t — 1) rounds which flush the processor tree. The flushing
proceeds in a bottom-up fashion starting from level (¢ — 1) and ending at level 1. In the sth stage
of the flushing operation, all processors at levels greater than s get empty strings as inputs. Some
of the processors at level s get an (n — 2m)-bit string as input. The rest of the processors at level s
get the empty string as input. All processors at levels < s — 1 get an (n — 2m)-bit string as input.
This stage is called the Flusing stage.

At the end of the Flushing stage, the following two situations can occur. Either x is the empty
string or it is an (n — 2m)-bit string. If z is empty, then zj is returned as output. On the other
hand, if x is an (n — 2m)-bit string, then 2y and z; are both m-bit strings. In this case, processor
Py applies the function h to the n-bit string zp||z1 ||z to obtain the final message digest.

We now present the formal description of the algorithm.

Parallel Hashing Algorithm (PHA (z,t))
Inputs:

(1) message z of length L > §(¢).

(2) t is the height of the processor tree.
Output: message digest hr(z) of length m.
Define: ¢ = q;, r = r; and b = b,.

if L > 6(t), then
I = x||0b(2nf2m)77‘

(ensures that the length of the message becomes §(t) + g\(¢) + b(2n — 2m).)

N =

3. endif.

4. For i € P, initialise buffers z; and u; to empty strings.
5. Do FormatStartUp.

6. Do ParallelProcess.

7. fori=1,2,...,qdo

8 Do FormatSteadyState.

9. Do ParallelProcess.

10. endfor
11. Do FormatEndGame.

12. Do ParallelProcess.

13. fors=t—1,t—2,...2,1 do

14. Do FormatFlushing(s).
15. Do ParallelProcess.
16. endfor

17. if x # X then 2y := Py(20]|21]|z).
18. return zj.
19. end algorithm PHA

We now describe the different subroutines used by PHA. We assume that the message z is
globally manipulated by the different formatting algorithms and the input ¢ of PHA is available to
all the subroutines. Further, we assume that the parameter b is available to the subroutines FEG
and FF.

ParallelProcess (PP)
Action: Read buffers u; and z;, and update buffers z;, i € P.

for i € P do in parallel
If i € 7, then z; := P;(22;||22i41]|us)-
If i € £, then z; := P;(uy).

endfor

end algorithm PP

ANl

3.1 Formatting Subroutines

There are four formatting subroutines which are invoked by PHA. Each of the formatting subrou-
tines modifies the message = by removing prefixes which are written to the buffers u; for i € P.
The message z is available as either an array or a file. We assume that the message is read sequen-
tially bit by bit. The formatting algorithms copy a prefix of the message into a buffer and suitably
advance the file (or array) pointer. All the formatting subroutines are executed on the formatting
processor Prp.

FormatStartUp (FSU)
Action: For i € P, write a prefix of message x to buffer u; and update the message x.

1. foriePdo
2. Write z = v||y, where |v| = n.

Ui t= 0.
x =Y.

endfor

end algorithm FSU

S Ot w

FormatSteadyState (FSS)
Action: For 7 € P, write a prefix of message x to buffer u; and update the message x.

1. forieZdo

2. Write = vl|y, where |v| =n — 2m.
3. U; 1= V.

4. T i=1y.

5. endfor

6. forie L do

7. Write z = v||y, where |v| = n.

8. U; 1= V.

9. T i=1y.

10. endfor

11. end algorithm FSS

FormatEndGame (FEG)
Action: For 1 € P, write a prefix of message x to buffer u; and update the message x.

1. forieZdo

2. Write z = v||y where |v| =n — 2m.
3. U; = V.

4. T =y.

5. endfor

6. fori=2"12"1 41,21 4+p—-1do
7. Write z = v||y where |v| = n.

8. U; = V.

9. T i=y.

10. endfor

11. fori=214+p2"1+b+1,...,2t — 1 do
13. endfor

14. end algorithm (FEG)

FormatFlushing(s) (FF(s))
Input: Integer s.
Action: For i € P, write a prefix of message x to buffer u; and update the message x.

t—s—1__

2. fori=0,1,2,...,2° "+ k;,—1do

3. Write z = v||y where |v| =n — 2m.
4. Ui ‘= 0.

4. T =y.

9.

endfor

10

for i =251 + kg, 257 4 kg +1,...,20 — 1,
U; i = A

endfor

end algorithm FF

© o N

An example of the working of algorithm PHA is shown in Figure 2.
u—O>OP0
U’—1>OP1
u—?sopg U_3>OP3
Py oPFs oFs oF;
?Uzl ?’U@ ?Uﬁ uy

Start-Up

P F P

Ug 20 ug 20 Ug 20
21 21 2] dlgest
u u
P Py Py
z z3 z z3

u 0 Py O oPs ob obs
Z4 z5 Zf
Py OPs 3P oPr oPr OoPs oFs oPr oPy oPs oFs oPr
Flushing s = 2 Flushing s =1 Last Round

Figure 2: Algorithm PHA witht =3, ¢ =1 and b= 3.

Remark : 1. The assignments x := y is an assignment of the relevant file or array pointer and
can be done in constant time.
2. If n = 2m, then u; = X in all the rounds and for all s € 7.

3.2 Simulating Trees

One potential problem in the use of PHA to generate a message digest is the fact that the verifier
might not have access to a binary tree of processors or (s)he might have access to a binary tree of
a lesser height. In such a situation, it will not be possible to verify the message digest. We show
how this problem can be solved by allowing a smaller tree of processors to simulate a larger tree of
processors. A more detailed discussion of this issue is given in Section 4.3.

Let t,t' be two non-negative integers with ¢ > ¢'. Let T (resp. T') be a tree of height ¢ (resp. t')
consisting of 2¢ (resp. 2!') processors Py, ..., Py_1 (resp. Pj,... , Py, _,) connected in the manner
described in Section 2.2. Let y = PHA(z,t) be produced by the processor tree 7. We describe an
algorithm SimPar(z, t,¢") which also produces y using the processor tree 7.

SimPar(z,t,t')

11

Input:
(1) message z of length L > §(t).
(2) t is the height of the original processor tree.
(3) ' is the height of the available processor tree.
Output: message digest hy(r) = PHA(z,t) of length m.
The algorithm is identical to PHA(z,t) with the following changes.

1. Change Lines 6,9 and 12 to “Do SPP(¢,t')”.
2. Change Line 15 to “Do SPP(s,t')”.

end algorithm SimPar

The subroutine SPP() performs the task of simulating the processor tree 7 using the tree 7.
For the first ¢ + 2 rounds the entire tree 7 needs to be simulated. However, for the next ¢t — 1
rounds we need to simulate 7 only upto height s. We define the subroutine SPP() to do these two
tasks.

Algorithm SPP(s,t')

if s <t, then s =t
for j =0to 25" —1do
i = j2
for £ =0 to 2! — 1 do in parallel
use processor P, to execute the task of processor Pjy.
endfor
endfor
end Algorithm SPP.

O NSO WD

Proposition 3 The number of parallel rounds required by SPP(s,t') is equal to one if s <t and
is equal to 2571 if s > ¢,

Remark : If there is only one processor (i.e., 7' consists only of Pj), then the number of rounds
required by SPP(s,0) is 2°.

4 Parallel Hash Function Definitions

The compression function is an (n, m) function A, with n > 2m. If z is a binary string with |z| < n,
then we apply the hash function h to the string :v||0”*|"’3| to get the message digest. Thus effectively
h is a map from U?_,{0,1}’ to {0,1}™. The description of hz and h* is described below.

4.1 Definition of h;

Let L > 1 be a positive integer and assume that a binary tree of 27 processors is available. Then
the (L, m) function hy, is defined as follows.

PHA (z, T) if L>0(T);
hi(z) = PHA(z, 1) if 0<t<Tandd(t)<L<dt+1); @)
L PHA(z[|0°"2m~L 1) if §(0) < L < 6(1) = 3n — 2m;
h(z) if 1<L<n=540).

12

When t < T, we use only 2! of the 27 processors available. Is is possible to significantly reduce
the number of rounds by using more processors? The following lemma, answers this question.

Lemma 4 Any algorithm which provides input to a processor at level T in tree T requires at least
T + 1 rounds to compute the message digest; the computation of hr(z) described above requires at
most

T 4+ 1 rounds when t <T — 1 and
T 4+ 2 rounds when t =T — 1.

Proof. If we provide input to any processor of 7 at level T', then it requires at least 7'+ 1 rounds
for the effects of this input to reach processor Py at level zero. Thus, at least T'4+ 1 rounds are
required to compute the message digest.

From the definitions of §(¢) and A(¢), we see that §(t + 1) = 6(¢) + 2A(t). Therefore, if 6(¢) <
L < §(t+1), then L = 6(t) +q\(t) +b(2n —2m) where 0 < ¢ < 1 and 0 < b < 2=, If |z| = L, then
PHA(z,t) requires at most ¢ + 3 rounds to compute a message digest (see Subsection 5.1 below).

Ift<T—1,thent+3<T+2;ift=T —1, then t+ 3 =T + 2. This establishes the result. m

4.2 Definition of h*

Given h : UM ,{0,1}* — {0,1}™ and a positive integer L > 1, Equation (2) defines the (L,m)
function hr,. We now extend this to h* : UY_;{0,1} — {0,1}™, where N = 2"™ — 1. For
0 <7< 2%—1, let bing(i) be the s-bit binary expansion of i. We treat bin,(i) as a binary string of
length s. Then h*(z) is defined as follows.

B (@) = b ((bina- (2] (e () - 3)

In other words, we first compute hr,(z) (where || = L) to obtain an m-bit message digest w.
Let v = bing,_m(|z]). Then v is a bit string of length n —m. We apply h to the string v||w to get
the final message digest.

Remark : 1. We do not actually require the length of the message to be < 2"~™. The construction
can easily be modified to accomodate strings having length < 2¢ for some constant c. Since we are
assuming n > 2m and m > 128 for practical hash functions, choosing ¢ = n — m is convenient and
sufficient for practical purposes.

2. In Section 7, we present the construction for arbitrary length strings.

4.3 Specifying Parallelism

We consider the following problem. Suppose a set of users agree to choose h*() as a hash function
standard. The message digest produced on a message clearly depends on the height of the binary
tree used to generate the message digest. Suppose a user generates the digest using a binary tree
of height . Then any other user who needs to regenerate the digest has to have access to a binary
tree of height ¢ or should be able to simulate the binary tree of height ¢. It is quite possible that
the user has access to only one processor. In this case also the user should be able to generate the
message digest. This can be ensured in either one of the following two ways.

(1) The height T of the processor tree is fixed and is part of the hash function specification. Then
any user who needs to generate y =PHA (z,T') and has access to a processor tree of height ¢, with

13

t < T uses SimPar(z,T,t) to generate y. If ¢ > T, then the user can run PHA(z,T) by not using
processors at level greater than T

(2) The height of the processor tree is not part of the hash function specification. In this case the
actual height of the processor tree is output with the message digest, i.e. the output on input z
is (¢, PHA(z,t)). Any other user who wishes to regenerate the digest and has access to a tree of
height ¢’ runs SimPar(z,t,t') if ¢ > ¢’ or runs PHA(z,t) if ¢t < ¢'.

Depending on the situation at hand either one of the above two strategies may be adopted. We
would like to highlight another aspect of Strategy 2. Suppose User 1 has only a single processor
and wishes to compute the digest on a message . User 1 also knows that the digest will be
recomputed by User 2 who has access to a processor tree of 2! (+ > 0) processors. User 1 then
invokes SimPar(z,t,0) to compute y =PHA(z,¢). Thus User 2 can directly use his processor tree
of 2! processors to invoke PHA (z,t) and recompute y. In this manner the total time required to
compute both the digests is minimized.

Fundamentally our design principle follows the simple basic rule : Users with more resources
can speed up computation of the digest, without affecting the efficiency of users with lesser resources
to compute the same digest.

5 Correctness and Complexity of PHA

In this section we prove several properties of algorithm PHA.

5.1 Amount of Padding

The following result shows that the maximum amount of padding added to a message depends only
on the parameters n and m. In particular, the maximum amount of padding is independent of the
number of processors and the length of the message.

Proposition 5 The mazimum amount of padding added to any message is less than 2n — 2m.

Proof. The only place where padding is done is at line 2 of algorithm PHA. The amount of padding
is b(2n — 2m) — r. Since b = [L -| < 55— + 1, we have b(2n — 2m) — r < 2n — 2m. |

2n—2m 2n—2m

Remark : The maximum amount of padding required by PHA is 2(n —m) — 1 and that required
by the MD algorithm is n —m — 1.

5.2 Number of Parallel Rounds

Algorithm PHA executes the following sequence of parallel rounds.

Lines 5-6 of PHA execute one parallel round.

Lines 7-10 of PHA execute ¢ parallel rounds.

Lines 11-12 of PHA execute one parallel round.

Lines 13-16 of PHA execute ¢t — 1 parallel rounds.

We consider Line 17 of PHA to be a special parallel round.

U o=

From this we get the following result.

14

Theorem 6 Algorithm PHA(x,t) ezecutes R=q+t+2 < [%J + t parallel rounds. Conse-
quently, Algorithm SimPar(z,t,t') executes (q+ 3)2=Y + ¢ — 1 parallel rounds.

Proof. Clearly the number of parallel rounds is g + ¢ + 2. From Definition 2, we have ¢ = [L;(—igt)J

if A(t) JL = 6(t); and g = | 5578 | — 13 A(#)|L - (). Hence,

L— 6(t)J
O
L A(Y)
| L—=2"(2n—2m) — (n —2m)
] 20=1(2n, — 2m)
L —2'(2n —2m)
<
- | 271 (2n —2m)
_ #J P
 [2t(n —m) '
Therefore, ¢+t +2 < {mJ +t. [|

5.3 Invocations of the Compression Function

Let 9 (L) be the number of invocations of h made by PHA(z,t) on a message of length L. The
parameters ¢;, r; and b; depend on the length L of the message. We write ¢;(L), r:(L) and b.(L)
to denote the dependence of the parameters ¢; and b; on length L. Note that due to the padding
done in line 2 of algorithm PHA we have 9 (L) = (L + b;(L)(2n — 2m) — ry(L)). We now have the
following result.

Proposition 7 (L) = (q:(L) + 2)2! + 2b,(L) — 1.

Proof. We first note that ¢ = ¢ = ¢:(L) and b = b = b:(L). In each of the first ¢;(L) + 1 rounds
h is invoked 2 times. In round ¢;(L) + 2, the number of invocations of h is 2/~! + b;(L). In rounds
q:(L) + 3 to q;(L) +t + 1, the total number of invocations of h is /7" (2571 + k). Lastly, in round
qi(L) + t + 2, there is one invocation of h. Using Corollary 10 below, we have 22;11 ks =b— 1.
Adding the above number of invocations we get the final result. [

We compare the number of invocations of h by PHA to that made by the MD algorithm. We
do this for message lengths which do not require padding by PHA. It turns out that these message
lengths also do not require padding by the MD algorithm.

Let the length of the message be L = §(t) + qi(L)A(¢) + b (L)(2n — 2m). Then PHA makes
(L) = (q:(L) + 2)2! + 2b;(L) — 1 invocations of h.

Here we use the description of the MD algorithm given in [9]. For the MD algorithm the first
invocation uses n bits and each of the subsequent invocations uses n — m bits. Hence the total

number of invocations of A is
L-n _, N 2(2n — 2m) + ¢2"1(2n — 2m) + b(2n — 2m) — (n —2m) —n _ H(L).

n—m n—m

1+

Thus we get the following result.

Theorem 8 The number (L) of invocations of h made by PHA(z,t) on a message x of length
L =06(t) +q(L)X(t) + b:(L)(2n — 2m) is equal to the number of invocations of h made by the MD
algorithm on a message of the same length L.

15

5.4 Speed-Up over MD Algorithm

The time taken by the MD algorithm is proportional to the number of invocations of h whereas the
time required by PHA is proportional to the number of parallel rounds which is equal to q;(L)+t+2.
Further, both PHA and the MD algorithm must format the message. Hence if we ignore the time
required to format the message, then the speed-up factor SF of PHA over MD is computed as
follows.

sf _ V() _ (g+2)2+2b—1 ot <q+2>+2b—1 z2,5< 1 >

t
R R R R 1+m

The parameter ¢ = ¢; is defined in equation (4). Using the values of §(¢) and A(¢) we observe that

q+2~ ﬁ Hence SF~ 2! <@)

The parameter ¢ is the height of the binary tree and is fixed for a particular implementation.
Hence tA(t) is a constant for a particular implementation of the algorithm. Thus SF— 2! as . — co.
In other words, for long messages, the speed-up factor is roughly equal to the number of processors
used.

5.5 Correctness of the Formatting Subroutines

The formatting subroutines of algorithm PHA divide the message into substrings and provide these
as input to the compression function h. There are two things which require to be proved.

1. The formatting subroutines ensure that each bit of the message is provided as input to exactly
one invocation of the compression function A.

2. The final output of algorithm PHA is an m-bit string.

The rest of the section is devoted to proving these two properties.

Each of the first (R — 1) parallel rounds in PHA(z,t) consists of a formatting phase and a
hashing phase. In the formatting phase, the formatting processor Pr runs a formatting subroutine
and in the hashing phase the processors P; (i € P) are operated in parallel. Denote by z; ; the
state of the buffer z; at the end of round j, where 1 € P and 1 < j < R. Clearly, the state of
the buffer z; at the start of round j (2 < j < R) is 2; ;1. Further, let u;; be the string written
to buffer u; in round j by the processor Pr. For i € Z, the input to processor P; in round j is
22 j—1||22i41,j—1||wi,j. For i € L, the input to processor P; in round j is the string u; ;.

The following lemma, and corollary are required to prove Proposition 11.

Lemma 9 For any nonnegative integer b, 3 ;> [("";#J =b.

Proof. We prove this result by induction on b. Clearly the result holds for b = 0.

Induction Hypothesis: For b a positive integer, assume that 3,5, [HQ;#J =b-—1.

It can be shown that
{m—*lJ +1 when n|m,

ER .

{—J otherwise.

n

16

In addition, 2¢|(b + 2=1) if and only if b = 2°~'¢c where c is an odd integer. Combining these facts
with the induction hypothesis, we get that

b+2 1 b+21 -1
Z{T| AP {27| =

i>1 i>1

Thus, by induction, we conclude that the result holds for all nonnegative integers b. |

Corollary 10 For t a given positive integer and b an integer in the range 0 < b < 2171 et
t—s—1 . . —

ks = L%i_s_lj as defined in algorithm FF(s). Then 2211 ks =3 g>1 ks =b—1.

Proposition 11 Let z be a message of length L = 6(t)+gA(t)+b(2n—2m), where q is a nonnegative
integer and b is an integer in the range 0 < b < 2!=1. The formatting subroutines ensure that each
bit of the message x is provided as input to some processor P; exactly once; furthermore, the
substring x presented to processor Py in step 17 of PHA is the empty string when |z| = 0(t) and
is an (n — 2m)-bit string when |z| > §(t). The total time required by the formatting subroutines to
format the message x over all the R rounds is proportional to

(a) |z| + (t — 1)2! — 2b + 2 steps when |z| > §(t) or
(b) |z| + (t — 1)28 + 1 steps when |z| = §(¢).

Proof. Each formatting algorithm defines u; = A or else defines u; to be a prefix of x; namely,

z =ly
U; =0
r =Y

In step 17, the substring z itself is presented to processor Py. Hence, each bit of the message x is
presented as input to some processor P; exactly once. We now determine the length of the substring
x presented to processor Fy in step 17, i.e., in round R.

First assume that L > §(¢) and hence b > 0. Formatting algorithm FSU provides a prefix
of length n to each processor P;. This accounts for 2'n bits of x. Algorithm FSS provides an
(n — 2m)-bit prefix to processor P;, i € Z, and an n-bit prefix to processor P;, i € L. This
accounts for 20°1(2n — 2m) = A(t) bits of z. Since FSS is invoked ¢ times, this accounts for
gA(t) bits of z. Formatting algorithm FEG provides each internal processor P;, i € Z, with an
(n — 2m)-bit prefix of z, each leaf processor P;, 201 < i < 201 + b — 1, with an n-bit prefix of
z, and all the other leaf processors with an empty string. This accounts for 2!=!(n — 2m) + bn
bits of z. For s = ¢t — 1,t —2,...,2,1, formatting algorithm FF(s) presents each processor P;,
0<i<2 ! 4+k;—1, where ks = LHQ’;#J, with an (n — 2m)-bit prefix of z and all the other
processors P; with u; = X. This accounts for (2°~! + k¢)(n — 2m) bits of 2. The total number of
bits presented to all the processors in the first B — 1 rounds is

2n 4 g\(t) + bn + 287 (n — 2m) + (257! 4 kg)(n — 2m)

-

[y

S

1 1
= 2'n+q\(t) +bn+ Z 25" Y(n — 2m) + Z ks(n — 2m)
s=t s=t—1
1
= 2n+qA(t) +bn+ (2" = 1)(n —2m) + (b— 1)(n — 2m) (since » ky=0b—1)
s=t—1
= 0(t) + g\(t) + b(2n — 2m) — (n — 2m).

17

Hence, the substring x presented to processor Py in step 17 of PHA is of length (n —2m) as claimed.

In the special case when z is of length L = §(¢), b = ¢ = 0. This in turn implies that ks = 0 for
s=t—1,t—2,...,2,1. Hence, the total number of bits presented to the processors P; is just d(¢),
and the substring z presented to processor Py in step 17 of PHA is the empty string.

Formatting algorithm FEG defines u; = A for 201 +b < i < 2!, and, for 1 < s < t, FF(s)
defines u; = X for 2571 + k, < i < 2t. The number of assignments of the form u; = A is

1 1
P-bt (2 —k)=2""—b(t-1)2 = D 27— Nk,

s=t—1 s=t—1 s=t—1
= 2 -2t — @2t 1) —20+1=(t-1)2" —2b+2.

In the special case when z has length L = §(¢), there are (t — 1)2¢ + 1 assignments of the form
U; = A

Each step of the formatting algorithms consist of moving the leading bit of string x to some
buffer u;, or else assigning u; = A. Therefore, the formatting algorithms require

(a) 0(t) + qA(t) +b(2n —2m) + (t — 1)2! — 2b + 2 steps when L > §(t) or

(b) 6(t) + (t — 1)2" + 1 steps when L = §(¢).
This establishes the result. []

We require the following lemma in the proof of Theorem 13.

Lemma 12 For any integers b and t, b > 0 and t > 1, define ks = L%J for 1 <s <t and
ls = Lb+2t_ =] for 1 < s <t. Then

(a) ks <1ls < ks+1,
(b) 2ks < ls-i—l < 2lsa and
(c) ls =ks+ 1 if and only if 2ls =131 + 1.

Proof. Clearly,

b—1 1 h—1
Z {2t5+2J—{2m J { J Fatd
<

For any nonnegative real number z, 2|z +] < [2z + 1]
get

2|z + 1]. Setting z = (b—1)/2!%,

2ks < ls+1 < 2ls

Now letzzr— L — I+ f where I is an integer and 0 < f < 1. Then
ls=|z+1|=I+f+1]=1+1
If Iy = ks + 1, then
I+l1=ls=ks+1=|o+1/2|+1=|[T+f+1/2] +1=T+1+[f+1/2].
Hence | f + 1/2] = 0 which means 0 < f < 1/2. Then

lsp1=[2c+1]=2I4+2f+1]=2T+1=2];,—1. u

18

Remark : We would like to point out the connection of the values ks and Is respectively to the
inorder successor and predecessor of the processor P;. In round ¢+ 2 +1 = ¢+ 2+t — s, processor
P; outputs an m-bit output if and only if the inorder predecessor (which is at the leaf level) of
P; received an n-bit input in round ¢ + 2. Further, in round ¢ + 2 + [, processor P; invokes the
hash function (equivalently u; q424; is defined) if the inorder successor (again at the leaf level) of
F; received an m-bit input in round ¢ + 2. These considerations also provide the expressions for ks
and /.

At any round r, 1 <r < R, the input to processor P;, ¢ € L, is u;,, and the input to processor
P, i €T, is 29 1||22i41,,—1]|ttir. In Theorem 13 we show that every bit of the string = is acted
upon by hash function h. Furthermore, if z; , # A then either z; ;, is acted upon by A in round r +1
or else z;, is passed on as the output of processor P;/; in round r + 1; that is 2,5, 11 = 2. We
establish these facts by showing that

i € T and |u;,| = n — 2m imply |22;r—1| = |22i41,,—1| = m, and

i € Z and u;, = X imply 29;41,-1 = A

Theorem 13 (Correctness of PHA) Given any message © with |x| > 6(t), algorithm PHA(z,t)
applies hash function h to every bit of x and produces an m-bit message digest.

Proof. Let y = zp,p—1]|21,r—1||uo,r- Then, the output of algorithm PHA is, by definition,

Lo) Py) iyl =m,
0.R Y otherwise.

Therefore, we must show that if |y| # n, then |y| = m.

In round 1, processor Pp writes n-bit strings to each of the buffers u;, i.e., |u;1| =n for i € P.
Hence |z;,1| = m for i € P. Further, it is easy to verify that for 2 < j < ¢+ 1, we have |z j| = m
for 1 € P and

|wij

) n=2m ifiel;
Sl n ifie L.

Forgq+2<j3<R-1,let s=R—j. Thent > s > 1 correspondingtoqg+2<j < R-1.

Define Iy, = {%J We now use induction to show that for these values of 7 and s,

P for 0<i<257' 410, —1,
Fdl T 0 for 2571 40, <i < 2%

Basis Case. For j = ¢+ 2, s =t and [; = b; furthermore, |2; 441| = m for i € P. In round ¢ + 2,
processor Pr executes FEG, and hence,

n—2m for 7 €T,
|uigra] = for 201 <i<2 4 p—1,
0 for 271+ b <i <2,

Therefore,

2 010l = m for 0<i<2'4b-1,
L2 0 for 2014 h < g < 2L

19

Induction Hypothesis: Let j — 1 be any integer in the range ¢+2<j—-1<g¢g+t=R—2, and
let s+1=R—(j—1). Assume that in round j — 1,

i 1| = m for 0<i<2%5+15.1—1,
WU 00 for 25 41 << 2.

Now consider round j. Then s = R — j.
Case 1: 0<i<25 !4k, —1.
Then algorithm FF(s) defines u; ; to be a nonempty (n — 2m)-bit string. Furthermore,

20 4+1<2°+2k; —1<2°+ 13,1 —1 by Lemma 12.

By our induction hypothesis, |22; j_1| = |22i4+1,j—1] = m. Hence, |29; j_1||22i+1,j—1||wi ;| = n. This

implies |z; ;| = m.

Case 2: 2571 4k, <i< 25714, —1.

This case is vacuous whenever Iy = k;,. When Iy = ks + 1, then 2°° ' + &k, =i =21 +1, — 1 and
|uj ;| = 0 from the definition of algorithm FF(s). Then

2 =25 42, —2=25+1,, — 1 (since 2l; =1ly41 + 1 when [, = k, + 1).

Therefore, |z; ;1| = m by our induction hypothesis. Since 2i +1 = 2° 4+ [, our induction
hypothesis implies |Z2i+1,j_1| = 0. Therefore, |z2i,j_1||z2i+1,j_1||uz~,j| = m and Zij = 22i,j—1, &
nonempty m-bit string.

Case 3: 2571 4, <ij <2t

Since 2°7! + kg < 2571 4+ 1y < i, |u; ;] = 0. In addition, 2¢ > 2% 4 2I; > 2% + [s4y. Therefore,
=0 and 2ij = A

|22i,j-1] = |22i41,j-1| = 0. Hence, |29 j 1[|z2i11,5-1/|ui;
Thus we have shown that

m for 0<i<257' 4, —1,
|23, =

0 for 257140, <i< 2

By induction, this holds for all j in the range ¢ +2<j7< R—1and s= R —j.

From the above argument, we see that, for 1 < j < R — 1, |u; ;| = n — 2m if and only if
|2'2i’j_1| = |2'2i+1’j_1| = m. In this case, Zi,j = h(ZQZ"j_1||ZQZ'+1’j_1||Uz"j). As well, it is immediate
that whenever a formatting algorithm defines |u; ;| = n, then z; ; = h(u; ;). Thus the hash function
h processes each of the prefixes u; ;.

When message z has length L > §(t), then b > 0. From the above result, we see that |zo,zr—1| =
|z1,r—1| = m. From Proposition 11, we know that the substring = presented to processor P in step
17 of PHA is of length n — 2m. Therefore, 2o g = h(20,r—1||21,r=1]|Z), an m-bit string, as required.

When message z has length L = §(¢), then b = 0. From the above result, we see that |zo,zr—1| =
m and |z1,p—1| = 0. From Proposition 11, we know that the substring x presented to processor Py
in step 17 of PHA is of length 0. Therefore, 2o, g = z0,r—1, an m-bit string, as required. [|

6 Security Reductions for A; and h*

In this section we show that finding collisions for h; and h* is difficult provided finding collisions
for A is difficult.

20

6.1 Collision Resistance of hy,

We provide a Turing reduction of Col(n,m) to FLC(n,m,L). This will show that if it is compu-
tationally difficult to find collisions for h, then it is also computationally difficult to find collisions
for hL.

Theorem 14 Let t > 0, h be an (n,m) hash function and for L > 1 let hy, be the function defined
by equation (2). If there is an (e,p, L) algorithm A to solve FLC(n,m,L) for the hash function
hr,, then there is an (e,p + 2¢(L)) algorithm B to solve Col(n,m) for the hash function h.

Proof. The algorithm B does the following. It first runs A to obtain two strings and z’ such that
xz # ', |z| = |2'| = L, and with probability at least €, hr,(z) = hr(z’). Then B runs PHA on both
2 and 2’ and stores all the intermediate states of the buffers z; and u;. Let z;; and zZ{j be the states
of buffer z; at the end of round j corresponding to the messages x and z’ respectively. Similarly,
let u;; and u;j be the strings written to buffer u; in round j corresponding to the messages and
x' respectively.

For message x and round number j, define ZList(z,) and UList(z,j) to be the following two
lists: ZList(z,7) = (20,5, ..., 22t 1,5); UList(z, j) = (uoj, ..., w91 5).

Note that the message x is equal to the concatenation of the strings in the lists
UList(x,1),...,UList(z, R). Next we prove the following claim by backward induction on round
number 5 < R.

Claim : If hr(z) = hr(z') and there is no collision for the function A in rounds j,..., R, then
UList(z, j) = UList(z', j) and ZList(z,j — 1) = ZList(z', 5 — 1).

Proof of Claim : The base case is j = R. Note that hr(z) = hr(z') implies 20 r = 2 p. There
are two cases to consider for round R according as b = 0 or b > 0. If b = 0, then the function h
has not been invoked in round R and it is easy to see that ZList(z, R — 1) = ZList(z', R — 1) and
UList(xz, R) = UList(z’, R). If b > 0, then the function h has been invoked in round R and either we
have a collision for h in round R or ZList(z, R—1) = ZList(z', R—1) and UList(z, R) = UList(z', R).

Now suppose j < R. By the induction hypothesis for j + 1 we know that UList(z,j + 1) =
UList(z’, 5 +1) and ZList(z, j) = ZList(z', 7). The condition ZList(x,j) = ZList(z', j) states that for
messages = and z’ the outputs of all the processors are equal at the end of round j. The action of
any processor in round j is to either copy its input to output or invoke the hash function h on its
input. The inputs to the processors are the elements of the lists ZList(z,7 — 1) and UList(z, j) for
message z (respectively, ZList(z', 7 — 1) and UList(z', j) for message). Thus if there is no collision
for h in round j, we must have UList(z,) = UList(z’, j) and ZList(z,j — 1) = ZList(z’, 5 — 1). This
completes the inductive step and the proof of the claim.

From this claim it follows that if hz(z) = hr(z’) and there is no collision for the function h
in any of the rounds, then z = z’. Since algorithm A succeeds with probability at least e, we
conclude that there is a collision for the function A also with probability at least e. The number of
invocations of h made by algorithm B is equal to the number of invocations of h made by algorithm
A plus twice the number of invocations of h made by algorithm PHA(x,t). Hence the number of
invocations made by algorithm B is equal to p + 2¢(L). [

6.2 Collision Resistance of h*

The security of h* is easily derived from the security of h;,. The details are given below.

21

Theorem 15 Let h be an (n,m) hash function and h* be the function defined by Equation 3. If
there is an (e,p, L) algorithm A to solve VLC(n,m, L) for the hash function h*, then there is an
(e,p+ 24 2¢(L)) algorithm B to solve Col(n,m) for the hash function h.

Proof. The algorithm B does the following. It first runs A4 to obtain two messages = and z'. Then
with probability at least €, we have h*(z) = h*(z') and xz # z’. Algorithm B then runs A* on both
z and z’ to obtain h*(z) = y and h*(z') = ¢ storing all the intermediate values that are generated.
Let w = hpy|(7), w' = hyg|(2'), v = bing_pm(|2]) and v' = bin, _n(]2’[). There are two cases.

Case 1 : |z| # |2/|. In this case v # v’ and hence v||lw # v'||w’. However, h(v||w) =y =4y =
h(v'||w") with probability at least e. Thus in this case we can find a collision for 4 with probability
at least e.

Case 2 : |z| = |2/| = L. In this case v = v'. If w # w', then we have a collision for h. If
w = w' then we have a collision for h7,. We can now argue as in the proof of Theorem 14 that with
probability at least € we obtain a collision for h.

The computation of h* requires 1 4 (L) invocations of the hash function h. This shows that
the number of invocations of A made by B is at most p + 2 + 2¢(L). [|

7 Construction of A®

In this section we describe the construction and the security reduction for the function A :
Ur>1{0,1}Y — {0,1}™. Define 0;(t) = §(t) — 1 and A () = A(t) — 1. As in Definition 2, for
L > §1(t), we define the parameters ¢,r and b as follows.

Definition 16 1. If L > 61(t), then q and r are defined by the following equation:
L—01(t) = qhi(t) +r, (4)

where r is the unique integer from the set {1,...,A1(t)}. Define b = [5"5—].

2n—2m

2. If L =61(t), theng=b=1r=0.

Algorithm PHA computes the function hz,. We first define a modification of PHA. More specif-
ically, we define the modifications required in the formatting subroutines. We will call the resulting
algorithm the modified PHA algorithm.

Modification to FSU: Replace Step 1 of FSU by the following sequence of operations:

Write = v||y where |v| =n — 1.

uy =v|[0, z =y.

fori=1,2,...,2' =1 do
Modification to FSS: Replace Step 1 of F'SS by the following sequence of operations:

Write = v||y where |v| =n —2m — 1.

uy =vl|l, z =y.

fori=1,2,...,2' =1 do

Informally, during start up we are providing Py with an input whose last bit is 0 and during
steady state we are providing Py with an input whose last bit is 1.

Let the (L, m) function computed by modified PHA be g;,. We now describe the construction
of the function h*.

22

The parameter b is at most 2= and can be represented in binary by a t-bit string. Note that
the length of the binary representation of b depends only on ¢ and is independent of the message
length L. We denote the ¢-bit binary representation of b by bin(b). Let u(t) = [log(d1(t) + 1)]. Let
tbin(L) be a binary string of length u(t), such that thin(L) is the p(t)-bit binary representation of
L if L < §1(t), else thin(L) is the pu(t)-bit binary representation of d1(t).

The output of the function A* is defined by the following algorithm.

Algorithm ArbLength
input : message = of length L.
output : m-bit message digest h>°(z).

1. If L < §1(¢), then find the unique ¢; such that d;(¢1) < L < 61(¢; +1). Then perform Step 2
with ¢ replaced by ;.

2. If L > 01(t), then apply modified PHA to x to obtain an m-bit message digest w = gr,(z).
3. Let wy = hyyqt(w]|bin(b)).

4. Let wa = hpyy () (w1][tbin(L)).

5. output ws.

Remark : It is reasonable to assume that both ¢, u(¢) < n—m. Then we could let bin(b) and tbin(L)
be (n —m)-bit strings. In this situtation, Steps 3 and 4 above can be replaced by w; = h(w||bin(b))
and we = h(w ||thin(L)) respectively.

We now turn to the security reduction for A°°. First we note the fact that the security of gz, is
preserved in a manner similar to that of Aj,.

Theorem 17 Let h be an (n,m) hash function and for L > n let g1, be the function defined by the
modified PHA algorithm. If there is an (e,p, L) algorithm A to solve FLC(n,m,L) for the hash
function gr,, then there is an (e,p + 2141(L)) algorithm B to solve Col(n,m) for the hash function
h, where 11 (L) is the number of invocations of h made by gr,.

Theorem 18 Let h be an (n,m) hash function and for L > n let h®™ be the function defined
by algorithm ArbLength. If there is an (e,p, L) algorithm A to solve ALC(n,m,L) for the hash
function h*°, then there is an (e,p + 219(L)) algorithm B to solve Col(n,m) for the hash function
h, where ¥o(L) = 11 (L) + ¥ (t + m) + ¥ (u(t) + m) is the number of invocations of h made by h™.

Proof. Algorithm B runs algorithm A to obtain two strings z and z’ such that with probability
at least € we have h*°(z) = h*°(z') and z # z’. Let L = |z| and L' = |2/|. Further, we will denote
the parameters for the message x by unprimed symbols and the parameters for the message z’ by
primed symbols. First assume that L = L'. Then tbin(L) = tbin(L') and bin(b) = bin(b'). We can
now use Theorem 17 to obtain a collision for h with probability at least e. Thus for the rest of the
proof we will assume L # L'. There are two cases to consider.

Case 1 : At least one of L or L' is less that d1(¢). In this case tbin(L) # tbin(L'). We have
bty (1] [Ehin (L)) = wy = wh = g 0y (W) [[tbin(L")).

We can argue as in Theorem 14 that either we obtain a collision for h or w; ||thin(L) = w]||tbin(L')
which in turn implies tbin(L) = tbin(L'). Since we know tbin(L) # tbin(L'), it follows that we
must obtain a collision for h.

23

Case 2 : Both L, L' > 6;(t). In this case we have thin(L) = tbin(L'). If wy # w}, then the inputs
to Ny (4)4m in Step 4 of ArbLength are different for z and z'. This will again provide a collision for
h. So suppose wy; = w}. There are two subcases to consider.

Subcase 2a : b # b': In this case bin(b) # bin(b'). We have
hpet(w]|thin(L)) = wy = W) = hyye(w'|[thin(L)).

Again the inputs to h,, s are different and hence we have a collision for h,, ;. As before, this will
necessarily provide a collision for h.

Subcase 2b : b =0": In this case bin(b) = bin(b'). If w # w', then this will provide a collision for
h. So assume that w = w'.

So we are in the situation where g (z) = w = w' = g/ (2'), b = V/ and L # L'. We have
the (padded) message lengths in the following forms: L = d1(¢) + g\1(t) + b(2n — 2m) and L' =
01 (t) + ¢ i(t) + b (2n — 2m). Since b = b and L # L' we have q # ¢'. Assume without loss of
generality ¢’ < q.

The last ¢t + 1 rounds of both PHA and modified PHA are the same. Suppose that none of the
invocations of h in the last ¢ 4+ 1 rounds of modified PHA provides a collision for h. Now using
the fact that b = b’ we can use a backward induction on the round number (as in the proof of
Theorem 14) to obtain z; g+1 = 2, for all 7 € P. Continuing the backward induction we obtain

i,q"+1
Zig—q'+1 = 22,1 for all 7 € P. We now look at the output of processor Py. Let p = g — ¢’. We have

zopr1 = Po(20pll21pllw0pr1),
26,1 = PO(“BJ)-

The string g 41 is obtained from FSS and the string uf)’l is obtained from FSU. By the modifica-
tions made to these algorithms to get modified PHA, we know that ug 1 = v||1 and ug; = '[[0
for some strings v and v’ of lengths n —1 and n —2m — 1 respectively. Hence zq |21 p||v0p+1 7 g ;-
But 2041 = 2y, and so we obtain

Po(20,pl121pl[w0,p+1) = P(20,pl121p][w0,p+1) = 20p+1 = 20,1 = hlug1) = Po(ug,)-

This is a collision for hA.]

We next consider the amount of padding required by algorithm ArbLength. This is determined
by the padding introduced by algorithm modified PHA.

Theorem 19 Algorithm modified PHA pads any message by at least ¢+ 1 bits where q is as defined
in Defintion 16.

Proof. The modification to FSU introduces one bit of padding and the modification to FSS
introduces one bit of padding per round. Since FSS is executed ¢ times a total of ¢ bits of padding
is introduced by FSS. [|

From Definition 16 we have
{L—&(t) L—al(t)J
Au(t) At) 1
Since t, n, m are constants for a particular implementation of modified PHA, the amount of padding

is linear in the length of the message. We note that the Merkle-Damgard construction also uses an
amount of padding which is linear in the length of the message (see [14]). Moreover, the constant of

J§q+1§1+{

24

proportionality is lesser for our construction. However, it is undesirable to have a padding scheme
which grows with the length of the message. The amount of padding required in the construction
of h* is at most 2(n —m) — 1 and hence is independent of the message length. Further, the function
h* can take as input any message of practical length. Thus algorithm ArbLength and the function
h® are mainly of theoretical interest.

8 Preimage Resistance

We have formally considered only one property of hash functions - namely intractibility of finding
collisions. Depending on the application, there are other necessary properties that a hash function
must satisfy. These are Preimage and Second Preimage. It is easy to see that the ability to find a
second preimage implies the ability to find collisions. Hence if a function is collision resistant, it is
automatically second preimage resistant. Thus we do not consider the property of second preimage
resistance. However, we note that in general it is difficult to obtain a composition scheme that
preserves the property of second preimage resistance.

Informally the preimage problem for a hash function A is the following. The adversary is given
a message digest y and has to obtain a message z such that h(z) = y. Suppose that there is a
(probabilistic) algorithm A to solve the preimage problem for any of our extensions Ay, h* or h*.
For the sake of concreteness we only consider hp, the others being similar. We argue that A can
be used to obtain an algorithm B which will solve the preimage for h with the same probability of
success. Given y, algorithm B will first run A to obtain a preimage x for hy. Then B runs PHA
and outputs w = 2o, g—1||21,r—1||ur if b > 0 or w = 2y, gp—2||21,r—2||ur—1 if b = 0. It is now easy to
see that w is a preimage for h (with the probability of success being at least that of A).

9 Concluding Remarks

We have considered the processors to be organised as a binary tree. In fact, the same technique
carries over to k-ary trees, with the condition that n > km. More speed up can be achieved by
moving from binary to k-ary processor trees. However, the formatting processor will progressively
become more complicated and will offset the advantage in speed up. Hence we have not explored
this option further.

To summarize our contribution, in this paper, we have presented an incrementally parallelizable
design principle for hash functions. We believe that our design principle will provide the basic
structure for designing future practical hash functions.

Acknowledgement : We wish to thank Professor Bart Preneel for helpful comments on an
earlier draft of the paper. We would also like to thank an anonymous referee for extensive comments
on an earlier version of the paper. These comments have helped in significantly improving the
presentation and technical quality of the paper.

References

[1] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHF's practical.
Lecture Notes in Computer Science, Proceedings of CRYPTO 1997, pp 470-484.

25

2]

3]

[5]

[6]

[11]

[12]

[13]

[14]

M. Bellare and D. Micciancio. A New Paradigm for Collision-Free Hashing: Incrementality at
Reduced Cost. Lecture Notes in Computer Science, (Advances in Cryptology - EUROCRYPT
1997), pages 163-192.

A. Bosselaers, R. Govaerts and J. Vandewalle, SHA: A Design for Parallel Architectures?
Lecture Notes in Computer Science, (Advances in Cryptology - Eurocrypt’97), pages 348-362.

D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeniable signatures,
unconditionally secure for the signer. Lecture Notes in Computer Science, 576 (1992), 470-484,
(Advances in Cryptology - CRYPTO’91).

I. B. Damgard. A design principle for hash functions. Lecture Notes in Computer Science, 435
(1990), 416-427 (Advances in Cryptology - CRYPTO’89).

I. B. Damgard. Collision Free Hash Functions and Public Key Signature Schemes. Lecture
Notes in Computer Science, (Advances in Cryptology EUROCRYPT 1987), pages 203-216.

W. Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, volume IT-22, number 6, pages 644-654, year 1976.

R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer Science, 435
(1990), 428-226 (Advances in Cryptology - CRYPTO’89).

I. Mironov. Hash functions: from Merkle-Damgard to Shoup. Lecture Notes in Computer
Science, 2045 (2001), 166-181 (Advances in Cryptology - EUROCRYPT’01).

M. Naor and M. Yung. Universal one-way hash functions and their cryptographic aplications.
Proceedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

B. Preneel. The state of cryptographic hash functions. Lecture Notes in Computer Science,
1561 (1999), 158-182 (Lectures on Data Security: Modern Cryptology in Theory and Practice).

C. Schnorr and S. Vaudenay. Parallel FFT-Hashing. Lecture Notes in Computer Science, Fast
Software Encryption, LNCS 809, pages 149-156, 1994.

D. R. Stinson. Some observations on the theory of cryptographic hash functions. TACR preprint
server, http://eprint.iacr.org/2001/020/.

D. R. Stinson. Cryptography: Theory and Practice, CRC Press, 1995.

26

