
A Parallelizable Design Priniple for Cryptographi Hash Funtions

�

Palash Sarkar

y

Cryptology Researh Group

Applied Statistis Unit

Indian Statistial Institute

203, B.T. Road

Kolkata 700108

West Bengal, India

palash�isial.a.in

Paul J. Shellenberg

Centre for Applied Cryptographi Researh

Department of Combinatoris and Optimization

University of Waterloo

200 University Avenue West

Waterloo, Ontario

Canada N2L 3G1

pjshell�math.uwaterloo.a

Contents

1 Introdution 2

2 Basis 4

2.1 Hash Funtions . 4

2.2 Proessor Tree . 6

2.3 Parameters and Notation . 7

3 Parallel Hashing Algorithm 8

3.1 Formatting Subroutines . 9

3.2 Simulating Trees . 11

4 Parallel Hash Funtion De�nitions 12

4.1 De�nition of h

L

. 12

4.2 De�nition of h

�

. 13

4.3 Speifying Parallelism . 13

5 Corretness and Complexity of PHA 14

5.1 Amount of Padding . 14

5.2 Number of Parallel Rounds . 14

5.3 Invoations of the Compression Funtion . 15

5.4 Speed-Up over MD Algorithm . 16

5.5 Corretness of the Formatting Subroutines . 16

�

An earlier abridged version of the paper appeared in the Proeedings of Indorypt 2001, LNCS 2247, pages 40-49.

y

Part of the work was done while the author was visiting the Centre for Applied Cryptographi Researh, University

of Waterloo.

1

6 Seurity Redutions for h

L

and h

�

20

6.1 Collision Resistane of h

L

. 21

6.2 Collision Resistane of h

�

. 21

7 Constrution of h

1

22

8 Preimage Resistane 25

9 Conluding Remarks 25

Abstrat

We desribe a parallel design priniple for hash funtions. Given a seure hash funtion

h : f0; 1g

n

! f0; 1g

m

with n � 2m, and a binary tree of 2

t

proessors we show how to

onstrut a seure hash funtion h

�

whih an hash messages of lengths less than 2

n�m

and a

seure hash funtion h

1

whih an hash messages of arbitrary length. The number of parallel

rounds required to hash a message of length L is

j

L

2

t

(n�m)

k

+ t. Further, our algorithm is

inrementally parallelizable in the following sense : given a digest produed using a binary tree

of 2

t

proessors, we show that the same digest an also be produed using a binary tree of 2

t

0

(0 � t

0

� t) proessors.

Keywords : hash funtion, Merkle-Damg�ard onstrution, ollision resistane, preimage resis-

tane, parallel algorithm, binary tree.

1 Introdution

Hash funtions are extensively used in ryptographi protools. One of the main uses of hash

funtions is in digital signature protools, where the message digest produed by the hash funtion

is signed. Due to the entral importane of hash funtions in ryptography, there has been a lot of

work in this area. See [11℄ for a survey.

For a hash funtion h : f0; 1g

n

! f0; 1g

m

to be used in ryptographi protools, it must satisfy

ertain well known neessary properties. In a reent paper [13℄, Stinson provides a omprehensive

disussion of these properties and also relations among them. Depending on a partiular appliation,

a seure hash funtion must satisfy some or all of the following properties.

(a) Preimage Resistane : Finding a preimage of a given message digest must be omputa-

tionally infeasible. In other words, given z 2 f0; 1g

m

it should be omputationally infeasible

to �nd x 2 f0; 1g

n

suh that h(x) = z. This property was �rst de�ned by DiÆe and Hellman

in their seminal paper on modern ryptology [7℄.

(b) Seond Preimage Resistane : Finding a seond preimage of a digest given one preimage

of the same digest must be omputationally infeasible. In other words, given x 2 f0; 1g

n

and

z 2 f0; 1g

m

suh that h(x) = z, it should be omputationally infeasible to �nd y 2 f0; 1g

n

suh that x 6= y and h(y) = z. The notion of seond preimage resistane was introdued by

Merkle in [8℄.

() Collision Resistane : Finding a ollision must be omputationally infeasible. In other

words, it should be omputationally infeasible to �nd x; y 2 f0; 1g

n

suh that x 6= y but

h(x) = h(y). This property was �rst formally de�ned by Damg�ard in [6℄.

2

It is lear that if it is possible to �nd a seond preimage, then it is possible to �nd ollisions.

Hene it is usually suÆient to study ollision resistane. However, as pointed out in [13℄, there is

no satisfatory redution from ollision resistane to preimage resistane or vie versa. Hene the

goal of a pratial hash funtion should be to ahieve both preimage and ollision resistane.

It is possible to onstrut hash funtions where one an prove that �nding ollisions is equivalent

to solving ertain known hard problems (see for example [4℄). However, from a pratial point of

view suh hash funtions are unaeptably slow. Hene pratial hash funtions are onstruted

from simple arithmeti/logial operations so that they are very fast. The trade-o� is that for suh

hash funtions it is not possible to relate the diÆulty of �nding ollisions to known hard problems.

Researh in design of hash funtions have evolved ertain priniples for designing \seure" and

pratial hash funtions. One of the important papers in this area is by Damg�ard [5℄. An important

point made in [5℄ is that it is easier to design a \seure" hash funtion with a short �xed domain

than a hash funtion with a very large (or in�nite) domain. However, for a hash funtion to be

useful it must be possible to hash arbitrary long messages. Hene one must look for tehniques

that an extend the domain of a hash funtion while preserving the relevant seurity properties.

An important onstrution for seurely extending the domain of a seure hash funtion has been

desribed by Merkle [8℄ and Damg�ard [5℄. The onstrution is alled the Merkle-Damg�ard (MD)

onstrution. The MD onstrution is a sequential onstrution and provides a basi guideline for

designing pratial hash funtions.

In this paper we develop an alternative design priniple for seurely extending the domain of a

seure hash funtion. Our design priniple is based on a binary tree of proessors and allows for

parallelism in the omputation of the hash funtion. We show that given a seure hash funtion

h : f0; 1g

n

! f0; 1g

m

with n � 2m and a binary tree of 2

t

proessors, it is possible to onstrut

a seure hash funtion h

�

whih an hash messages of lengths less than 2

n�m

and a seure hash

funtion h

1

whih an hash arbitrary length messages. Sine we require n � 2m and pratial

hash funtions have m � 128, the funtion h

�

is adequate for any oneivable appliation and

the onstrution of h

1

is of theoretial interest only. The number of parallel rounds required to

ompute the digest of a message of length L is

j

L

2

t

(n�m)

k

+ t.

Our design priniple allows for inremental parallelism in the following sense. If a message

digest an be produed using a binary tree of 2

t

proessors, then the same message digest an be

produed using a binary tree of 2

t

0

proessors for 0 � t

0

� t with a proportional loss in speed of

omputation. In the extreme ase of t

0

= 0 this means that using a single proessor it is possible to

produe a digest whih has been produed using a binary tree of 2

t

proessors for any t � 0. We

stress that this is an extremely important point for pratial appliation of our design priniple. In

a multi-user setting where di�erent users have di�erent resoure apabilities, it is important that

a digest produed by one user an be produed by any other user irrespetive of the amount of

resoures available to him.

Related Work : The onept of tree hashing has appeared before in the literature. Damg�ard [5℄

showed that for a message of length n, it is possible to ompute the digest in O(logn) steps using

O(n) proessors. Note that the number of proessors is proportional to the length of the message.

Hene the result yields an impratial algorithm. Tree hashing has also been onsidered in relation

to universal one-way hash funtions [10, 1℄. However, these papers also assume a model where the

number of proessors grows with the length of the message.

Our model improves upon the previous work on tree hashing in the following two ways.

1. In our model, the number of proessors is �xed while the length of the message an be very

3

long.

2. A digest whih an be produed by a binary tree with a ertain number of proessors an

also be produed by a binary tree with lesser number of proessors and in the extreme ase

by a single proessor.

Parallelism in the design of hash funtions have also been onsidered from a di�erent diretion.

In our approah we assume the existene of a base hash funtion with a small domain and present a

method to obtain a hash funtion with a very large domain. In the literature, the base hash funtion

is alled the ompression funtion or round funtion and the method to extend the domain is alled

the omposition method. Pratial hash funtions suh as SHA or RIPEMD, use a spei� round

funtion and the Merkle-Damg�ard method to extend the domain. In [3℄, a detailed study has been

made of the possible parallelism available in the round funtion of SHA and other pratial hash

funtions. Note that our work is omplementary to this e�ort in the sense that we exploit the

parallelism that is obtainable in the omposition sheme as opposed to the parallelism in the round

funtion.

In another relevant paper, Shnorr and Vaudenay [12℄, design a hash funtion based on the fast

Fourier transform (FFT) network and multipermutations. They present two hash funtions based

on this approah. The �rst hash funtion uses a ompression funtion based on the FFT algorithm

and multipermutations while the omposition sheme is sequential. In the seond algorithm, the

ompression funtion and the omposition shemes are merged together to obtain a fast hash

algorithm. This approah di�ers from our work in the following way. In our work we desribe a

parallel omposition sheme whih an be used with any ompression funtion (whose input length

is at least twie as large as the length of its output). As examples our parallel omposition shemes

an be used with the round funtion of SHA as well as the FFT based ompression funtion of [12℄.

On the other hand, the approah in [12℄ is to onstrut a spei� hash funtion. Thus we desribe

a design priniple whereas [12℄ desribes a partiular hash funtion.

Parallelism in the design of hash funtions has also been onsidered in the ontext of inremental

hashing [2℄. The inremental hash funtion desribed in [2℄ is omputed by ombining a set of

elements of a group using the group law. Sine the group operation is assoiative, this ombining

operation an be parallelized. However, [2℄ does not develop this theme any further.

2 Basis

This setion onsists of three parts. The �rst part formally desribes ollision resistant hash fun-

tions and related problems. The seond part desribes the proessor tree model used in the paper.

In the third part, we de�ne ertain parameters whih will be required in the rest of the paper.

Throughout the paper we will denote the empty string by � and the length of a binary string y by

jyj. Further, the onatenation of two strings y

1

and y

2

will be denoted by y

1

jjy

2

.

2.1 Hash Funtions

An (n;m) hash funtion h is a funtion h : f0; 1g

n

! f0; 1g

m

. Throughout this paper we require

that n � 2m. We are basially interested in ollision resistant hash funtions. As mentioned in

Setion 1, this means that it should be omputationally infeasible to obtain two di�erent messages

whose hash values are the same. Desribing this formally requires the onsideration of a family of

hash funtions. The following de�nition of ollision resistant hash funtion is based on [11℄.

4

De�nition 1 Let fH

s

g

s2S

be a family of funtions indexed by the set S where eah H

s

is an

(l(n); n) funtion. Here l(n) is a funtion suh that l(n) > n. We say that fH

s

g

s2S

is ollision

resistant if the following ondition holds.

Let A be a randomized Las Vegas algorithm that takes as input an s 2 S, runs for time at most t

and either returns \?" or �nds x; x

0

suh that x 6= x

0

and H

s

(x) = H

s

(x

0

). For eah suh algorithm

A with t bounded above by a polynomial in size of s, we should have

Prob

s2S

[A(s) 6= \?"℄ � �:

In pratie, it is usual to de�ne a single hash funtion like SHA or RIPEMD instead of a keyed

family of hash funtions. In suh a situation, it is not possible to apply De�nition 1 to these

hash funtions. In fat, it seems almost impossible to provide a meaningful de�nition of ollision

resistane for a single hash funtion.

In this paper, we are interested in obtaining a design priniple for pratial hash funtions. We

will assume the existene of some ollision resistant (n;m) hash funtion h, alled the ompression

funtion. The funtion h an only be applied to inputs of length n. We would like to remove this

restrition and de�ne a hash funtion H whih an be applied to strings of extremely large lengths.

We would like the extension of h to H to be \seure" in the following sense: If h is ollision

resistant, then H is also ollision resistant. The last statement is formalized in terms of a Turing

redution between two suitably de�ned problems (see below). The advantage of this method is that

we only prove a redution and at no point are we required to use De�nition 1. This approah has

been previously used in the study of hash funtions [13℄.

We now turn to the task of de�ning our approah to reduibilities between di�erent problems

related to the property of ollision resistane. Consider the following problem as de�ned in [13℄.

Problem : Collision Col(n;m)

Instane : An (n;m) hash funtion h.

Find : x; x

0

2 f0; 1g

n

suh that x 6= x

0

and h(x) = h(x

0

).

By an (�; p) (randomized) algorithm for Collision we mean an algorithm whih invokes the hash

funtion h at most p times and solves Collision with probability of suess at least �.

The hash funtion h has a �nite domain. We would like to extend it to an in�nite domain.

Our �rst step in doing this is the following. Given h and a positive integer L � 1, we onstrut

an (L;m) hash funtion h

L

. The next step, in general, is to onstrut a hash funtion h

1

:

[

L�1

f0; 1g

L

! f0; 1g

m

. However, instead of doing this, we �rst onstrut a hash funtion h

�

:

[

N

L=1

f0; 1g

L

! f0; 1g

m

, where N = 2

n�m

� 1. Sine we assume n � 2m, we have n �m � m.

Pratial message digests are at least 128 bits long meaning that m = 128. Hene our onstrution

of h

�

an handle any message with length less than 2

128

. This is suÆient for any oneivable

appliation. The onstrution of h

1

presents ertain tehnial diÆulties. We overome these

diÆulties and desribe the onstrution of h

1

in Setion 7.

We would like to relate the diÆulty of �nding ollisions for h

L

; h

�

and h

1

to that of �nding a

ollision for h. Thus we onsider the following problems.

Problem : Fixed length ollision FLC(n;m;L)

Instane : An (n;m) hash funtion h and an integer L � 1.

Find : x; x

0

2 f0; 1g

L

suh that x 6= x

0

and h

L

(x) = h

L

(x

0

).

5

Problem : Variable length ollision V LC(n;m;L)

Instane : An (n;m) hash funtion h and an integer L with 1 � L < 2

n�m

.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

suh that x 6= x

0

and h

�

(x) = h

�

(x

0

).

Problem : Arbitrary length ollision ALC(n;m;L)

Instane : An (n;m) hash funtion h and an integer L � 1.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

suh that x 6= x

0

and h

1

(x) = h

1

(x

0

).

By an (�; p; L) (randomized) algorithm A for Fixed length ollision we will mean an algorithm that

requires at most p invoations of the funtion h and solves Fixed length ollision with probability of

suess at least �. The algorithm A will be given an orale for the funtion h and p is the number

of times A queries the orale for h in attempting to �nd a ollision for h

L

. Similar de�nitions are

true for Variable length ollision and Arbitrary length ollision.

Later we show Turing redutions from Collision to Fixed length ollision, Variable length ollision

and Arbitrary Length Collision. Informally this means that given orale aess to an algorithm for

solving FLC(n;m;L) for h

L

or V LC(n;m;L) for h

�

or ALC(n;m;L) for h

1

it is possible to

onstrut an algorithm to solve Col(n;m) for h. These will show that our onstrutions preserve

the intratibility of �nding ollisions.

2.2 Proessor Tree

Our onstrution is a parallel algorithm requiring more than one proessor. The number of proes-

sors is 2

t

, for some t > 0. Let the proessors be P

0

; : : : ; P

2

t

�1

. For i = 0; : : : ; 2

t�1

�1, proessor P

i

is onneted to proessors P

2i

and P

2i+1

by ars pointing towards it. In partiular, the ars oming

into proessor P

0

are from proessor P

1

and proessor P

0

itself. The proessors P

2

t�1 ; : : : ; P

2

t

�1

are the leaf proessors and the proessors P

0

; : : : ; P

2

t�1

�1

are the internal proessors. We all the

resulting tree T

t

the proessor tree of height t (see Figure 1 for the proessor tree with t = 3). For

1 � i � t, there are 2

i�1

proessors at level i. Further, proessor P

0

is onsidered to be at level 0.

We introdue the following notation whih will be useful later.

I

t

= fi : 0 � i � 2

t�1

� 1g; L

t

= fi : 2

t�1

� i � 2

t

� 1g; P

t

= fi : 0 � i � 2

t

� 1g;

When t is lear from the ontext, we will usually write T , I, L and P instead of T

t

, I

t

, L

t

and P

t

respetively.

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

��

�

�

��

A

A

AK

A

A

AK

�

�

�7

S

S

So

6

-

Figure 1: Proessor Tree with t = 3.

Eah of the proessors gets an input whih is a binary string. The ation of the proessor is to

apply the hash funtion h on the input if the length of the input is n; otherwise, it simply returns

6

the input -

P

i

(y) =

(

h(y) if jyj = n;

y otherwise.

(1)

For i 2 P, we have two sets of bu�ers u

i

and z

i

. We will identify these bu�ers with the binary

strings they ontain. The bu�ers are used by the proessors in the following way. There is a

formatting proessor P

F

whih reads the message x, breaks it into proper length substrings, and

writes to the bu�ers u

i

. For i 2 I, the input bu�ers of P

i

are z

2i

; z

2i+1

and u

i

and the input to P

i

is formed by onatenating the ontents of these bu�ers. For i 2 L, the input bu�er of P

i

is u

i

.

The output bu�er of P

i

is z

i

for i 2 P.

Algorithm PHA goes through several parallel rounds. The ontents of the bu�ers u

i

and z

i

are updated in eah round. To avoid read/write onits we will assume the following sequene of

operations in eah parallel round.

1. The formatting proessor P

F

writes into the bu�ers u

i

, for i 2 P .

2. Eah proessor P

i

reads its respetive input bu�ers.

3. Eah proessor P

i

performs the omputation in (1).

4. Eah proessor P

i

writes into its output bu�er z

i

.

Steps (2) to (4) are performed by the proessors P

0

; : : : ; P

2

t

�1

in parallel after Step (1) is ompleted

by proessor P

F

.

2.3 Parameters and Notation

Here we de�ne ertain parameters whih are going to be used throughout the paper.

1. Compression funtion: An (n;m) funtion h with n � 2m.

2. Height of the binary tree: t.

3. Message: a binary string x of length L � 1.

4. Start-up length (SUL): 2

t

n.

5. Maximum Flushing length (MFL): (2

t�1

+2

t�2

+� � �+2

1

+2

0

)(n�2m) = (2

t

�1)(n�2m).

6. SUL + MFL: Æ(t) = 2

t

n+ (2

t

� 1)(n� 2m) = 2

t

(2n� 2m)� (n� 2m).

7. Steady-state length (SSL): �(t) = 2

t�1

n+ 2

t�1

(n� 2m) = 2

t�1

(2n� 2m).

8. Parameters q

t

, b

t

and r

t

:

De�nition 2 (a) If L > Æ(t), then q

t

and r

t

are de�ned by the following equation: L�Æ(t) =

q

t

�(t)+r

t

, where r

t

is the unique integer from the set f1; : : : ; �(t)g. De�ne b

t

=

l

r

t

2n�2m

m

.

(b) If L = Æ(t), then q

t

= b

t

= r

t

= 0.

Note that 0 � b

t

� 2

t�1

.

9. Number of Parallel Rounds R

t

: We de�ne R

t

= q

t

+t+2. Later we will show in Theorem 6

that algorithm PHA exeutes R

t

parallel rounds. We will usually write R instead of R

t

.

7

3 Parallel Hashing Algorithm

We �rst desribe a parallel hashing algorithm whih is the basi building blok used for the on-

strution of hash funtions. The main algorithm uses other algorithms as subroutines whih are

desribed later. Before presenting the atual algorithm we present the basi idea behind the algo-

rithm.

Let x be a message of length L and T be the binary tree of proessors of height t as desribed in

Setion 2.2. There are also two sets of 2

t

bu�ers z

0

; : : : ; z

2

t

�1

and u

0

; : : : ; u

2

t

�1

. Eah of the bu�ers

z

i

an store m-bit strings. For i 2 I, the bu�er u

i

stores either an (n� 2m)-bit string or the empty

string and for i 2 L, the bu�er u

i

stores either an n-bit string or the empty string. Eah bu�er z

i

stores the output of proessor P

i

. The bu�ers u

i

are obtained as pre�xes from the message x.

The algorithm onsists of a ertain number of parallel rounds where in eah parallel round

all the 2

t

proessors operate in parallel. Further, in eah of the parallel rounds the message x is

shortened by removing a pre�x from it. This pre�x is divided into substrings and opied to the

bu�ers u

i

.

Intially all the bu�ers z

i

are empty. Thus the �rst step of the algorithm is to initialise the

z

i

's whih is done in the following manner. Eah proessor P

i

is given an n-bit string u

i

as input.

Proessor P

i

hashes u

i

to produe the digest z

i

. This step is alled Start-Up.

The algorithm then enters the Steady-State. In the Steady-State eah proessor P

i

, i 2 I, gets

an (n� 2m)-bit input u

i

. Also P

i

reads the bu�ers z

2i

and z

2i+1

. Proessor P

i

then forms an input

of length n by onatenating z

2i

; z

2i+1

and u

i

. This n-bit string is hashed to obtain the new value

of the bu�er z

i

. Eah proessor P

i

, i 2 L, gets an n-bit input whih is hashed to obtain the new

value of the bu�er z

i

. The Steady-State lasts for q rounds (see De�nition 2 above). It is lear that

after a ertain stage it will not be possible to provide inputs to all the proessors.

After the Steady-State ends we have a single round alled the End-Game. This round starts

the mopping up operation. In this round, some of the leaf level proessors get n-bit strings as

input while all other proessors get the empty string as input. In this round, eah of the internal

proessors still gets an (n� 2m)-bit input.

After the End-Game, there are (t � 1) rounds whih ush the proessor tree. The ushing

proeeds in a bottom-up fashion starting from level (t� 1) and ending at level 1. In the s

th

stage

of the ushing operation, all proessors at levels greater than s get empty strings as inputs. Some

of the proessors at level s get an (n� 2m)-bit string as input. The rest of the proessors at level s

get the empty string as input. All proessors at levels � s� 1 get an (n� 2m)-bit string as input.

This stage is alled the Flusing stage.

At the end of the Flushing stage, the following two situations an our. Either x is the empty

string or it is an (n � 2m)-bit string. If x is empty, then z

0

is returned as output. On the other

hand, if x is an (n� 2m)-bit string, then z

0

and z

1

are both m-bit strings. In this ase, proessor

P

0

applies the funtion h to the n-bit string z

0

jjz

1

jjx to obtain the �nal message digest.

We now present the formal desription of the algorithm.

Parallel Hashing Algorithm (PHA(x,t))

Inputs:

(1) message x of length L � Æ(t).

(2) t is the height of the proessor tree.

Output: message digest h

L

(x) of length m.

De�ne: q = q

t

, r = r

t

and b = b

t

.

8

1. if L > Æ(t), then

2. x := xjj0

b(2n�2m)�r

(ensures that the length of the message beomes Æ(t) + q�(t) + b(2n� 2m).)

3. endif.

4. For i 2 P, initialise bu�ers z

i

and u

i

to empty strings.

5. Do FormatStartUp.

6. Do ParallelProess.

7. for i = 1; 2; : : : ; q do

8. Do FormatSteadyState.

9. Do ParallelProess.

10. endfor

11. Do FormatEndGame.

12. Do ParallelProess.

13. for s = t� 1; t� 2; : : : 2; 1 do

14. Do FormatFlushing(s).

15. Do ParallelProess.

16. endfor

17. if x 6= � then z

0

:= P

0

(z

0

jjz

1

jjx).

18. return z

0

.

19. end algorithm PHA

We now desribe the di�erent subroutines used by PHA. We assume that the message x is

globally manipulated by the di�erent formatting algorithms and the input t of PHA is available to

all the subroutines. Further, we assume that the parameter b is available to the subroutines FEG

and FF.

ParallelProess (PP)

Ation: Read bu�ers u

i

and z

i

, and update bu�ers z

i

, i 2 P .

1. for i 2 P do in parallel

2. If i 2 I, then z

i

:= P

i

(z

2i

jjz

2i+1

jju

i

).

3. If i 2 L, then z

i

:= P

i

(u

i

).

4. endfor

5. end algorithm PP

3.1 Formatting Subroutines

There are four formatting subroutines whih are invoked by PHA. Eah of the formatting subrou-

tines modi�es the message x by removing pre�xes whih are written to the bu�ers u

i

for i 2 P .

The message x is available as either an array or a �le. We assume that the message is read sequen-

tially bit by bit. The formatting algorithms opy a pre�x of the message into a bu�er and suitably

advane the �le (or array) pointer. All the formatting subroutines are exeuted on the formatting

proessor P

F

.

FormatStartUp (FSU)

Ation: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 P do

2. Write x = vjjy, where jvj = n.

9

3. u

i

:= v.

4. x := y.

5. endfor

6. end algorithm FSU

FormatSteadyState (FSS)

Ation: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 I do

2. Write x = vjjy, where jvj = n� 2m.

3. u

i

:= v.

4. x := y.

5. endfor

6. for i 2 L do

7. Write x = vjjy, where jvj = n.

8. u

i

:= v.

9. x := y.

10. endfor

11. end algorithm FSS

FormatEndGame (FEG)

Ation: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. for i 2 I do

2. Write x = vjjy where jvj = n� 2m.

3. u

i

:= v.

4. x := y.

5. endfor

6. for i = 2

t�1

; 2

t�1

+ 1; : : : ; 2

t�1

+ b� 1 do

7. Write x = vjjy where jvj = n.

8. u

i

:= v.

9. x := y.

10. endfor

11. for i = 2

t�1

+ b; 2

t�1

+ b+ 1; : : : ; 2

t

� 1 do

12. u

i

:= �.

13. endfor

14. end algorithm (FEG)

FormatFlushing(s) (FF(s))

Input: Integer s.

Ation: For i 2 P , write a pre�x of message x to bu�er u

i

and update the message x.

1. k

s

= b

b+2

t�s�1

�1

2

t�s

:

2. for i = 0; 1; 2; : : : ; 2

s�1

+ k

s

� 1 do

3. Write x = vjjy where jvj = n� 2m.

4. u

i

:= v.

4. x := y.

5. endfor

10

6. for i = 2

s�1

+ k

s

; 2

s�1

+ k

s

+ 1; : : : ; 2

t

� 1,

7. u

i

:= �.

8. endfor

9. end algorithm FF

An example of the working of algorithm PHA is shown in Figure 2.

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

- -

-

-

u

2

u

3

u

1

u

0

6 6 6 6

u

4

u

5

u

6

u

7

Start-Up

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

��

�

�

��

A

A

AK

A

A

AK

�

�

�7

S

S

So

6

�

- -

-

-

u

2

u

3

u

1

u

0

6 6 6 6

u

4

u

5

u

6

u

7

z

4

z

6

z

5

z

7

z

2

z

3

z

1

z

0

Steady State

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

��

�

�

��

A

A

AK

A

A

AK

�

�

�7

S

S

So

6

�

- -

-

-

u

2

u

3

u

1

u

0

6 6 6

u

4

u

5

u

6

z

4

z

6

z

5

z

7

z

2

z

3

z

1

z

0

End Game

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

��

�

�

��

A

A

AK

�

�

�7

S

S

So

6

�

-

-

-

u

2

u

1

u

0

z

4

z

6

z

5

z

2

z

3

z

1

z

0

Flushing s = 2

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

�

�

�7

S

S

So

6

�

-

-

u

1

u

0

z

2

z

3

z

1

z

0

Flushing s = 1

f f f f

f f

f

f

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

6

�-

u

0

z

1

z

0

H

H

H

H
--

H

H

H

H
--

digest

Last Round

Figure 2: Algorithm PHA with t = 3, q = 1 and b = 3.

Remark : 1. The assignments x := y is an assignment of the relevant �le or array pointer and

an be done in onstant time.

2. If n = 2m, then u

i

= � in all the rounds and for all i 2 I.

3.2 Simulating Trees

One potential problem in the use of PHA to generate a message digest is the fat that the veri�er

might not have aess to a binary tree of proessors or (s)he might have aess to a binary tree of

a lesser height. In suh a situation, it will not be possible to verify the message digest. We show

how this problem an be solved by allowing a smaller tree of proessors to simulate a larger tree of

proessors. A more detailed disussion of this issue is given in Setion 4.3.

Let t; t

0

be two non-negative integers with t > t

0

. Let T (resp. T

0

) be a tree of height t (resp. t

0

)

onsisting of 2

t

(resp. 2

t

0

) proessors P

0

; : : : ; P

2

t

�1

(resp. P

0

0

; : : : ; P

0

2

t

0

�1

) onneted in the manner

desribed in Setion 2.2. Let y = PHA(x; t) be produed by the proessor tree T . We desribe an

algorithm SimPar(x; t; t

0

) whih also produes y using the proessor tree T

0

.

SimPar(x; t; t

0

)

11

Input:

(1) message x of length L � Æ(t).

(2) t is the height of the original proessor tree.

(3) t

0

is the height of the available proessor tree.

Output: message digest h

L

(x) = PHA(x; t) of length m.

The algorithm is idential to PHA(x; t) with the following hanges.

1. Change Lines 6,9 and 12 to \Do SPP(t; t

0

)".

2. Change Line 15 to \Do SPP(s; t

0

)".

end algorithm SimPar

The subroutine SPP() performs the task of simulating the proessor tree T using the tree T

0

.

For the �rst q + 2 rounds the entire tree T needs to be simulated. However, for the next t � 1

rounds we need to simulate T only upto height s. We de�ne the subroutine SPP() to do these two

tasks.

Algorithm SPP(s; t

0

)

1. if s < t

0

, then s = t

0

.

2. for j = 0 to 2

s�t

0

� 1 do

3. i = j2

t

0

4. for ` = 0 to 2

t

0

� 1 do in parallel

5. use proessor P

0

`

to exeute the task of proessor P

i+`

.

6. endfor

7. endfor

8. end Algorithm SPP.

Proposition 3 The number of parallel rounds required by SPP(s; t

0

) is equal to one if s � t

0

and

is equal to 2

s�t

0

if s > t

0

.

Remark : If there is only one proessor (i.e., T

0

onsists only of P

0

0

), then the number of rounds

required by SPP(s; 0) is 2

s

.

4 Parallel Hash Funtion De�nitions

The ompression funtion is an (n;m) funtion h, with n � 2m. If x is a binary string with jxj < n,

then we apply the hash funtion h to the string xjj0

n�jxj

to get the message digest. Thus e�etively

h is a map from [

n

i=1

f0; 1g

i

to f0; 1g

m

. The desription of h

L

and h

�

is desribed below.

4.1 De�nition of h

L

Let L � 1 be a positive integer and assume that a binary tree of 2

T

proessors is available. Then

the (L;m) funtion h

L

is de�ned as follows.

h

L

(x) =

8

>

>

>

<

>

>

>

:

PHA(x; T) if L � Æ(T);

PHA(x; t) if 0 < t < T and Æ(t) � L < Æ(t+ 1);

PHA(xjj0

3n�2m�L

; 1) if Æ(0) < L < Æ(1) = 3n� 2m;

h(x) if 1 � L � n = Æ(0):

(2)

12

When t < T , we use only 2

t

of the 2

T

proessors available. Is is possible to signi�antly redue

the number of rounds by using more proessors? The following lemma answers this question.

Lemma 4 Any algorithm whih provides input to a proessor at level T in tree T requires at least

T + 1 rounds to ompute the message digest; the omputation of h

L

(x) desribed above requires at

most

(

T + 1 rounds when t < T � 1 and

T + 2 rounds when t = T � 1:

Proof. If we provide input to any proessor of T at level T , then it requires at least T + 1 rounds

for the e�ets of this input to reah proessor P

0

at level zero. Thus, at least T + 1 rounds are

required to ompute the message digest.

From the de�nitions of Æ(t) and �(t), we see that Æ(t + 1) = Æ(t) + 2�(t): Therefore, if Æ(t) �

L < Æ(t+1), then L = Æ(t)+q�(t)+ b(2n�2m) where 0 � q � 1 and 0 � b � 2

t�1

. If jxj = L, then

PHA(x; t) requires at most t+ 3 rounds to ompute a message digest (see Subsetion 5.1 below).

If t < T � 1, then t+ 3 < T + 2; if t = T � 1, then t+ 3 = T + 2. This establishes the result.

4.2 De�nition of h

�

Given h : [

n

i=1

f0; 1g

i

! f0; 1g

m

and a positive integer L � 1, Equation (2) de�nes the (L;m)

funtion h

L

. We now extend this to h

�

: [

N

L=1

f0; 1g

L

! f0; 1g

m

, where N = 2

n�m

� 1. For

0 � i � 2

s

� 1, let bin

s

(i) be the s-bit binary expansion of i. We treat bin

s

(i) as a binary string of

length s. Then h

�

(x) is de�ned as follows.

h

�

(x) = h

�

(bin

n�m

(jxj))jj(h

jxj

(x))

�

: (3)

In other words, we �rst ompute h

L

(x) (where jxj = L) to obtain an m-bit message digest w.

Let v = bin

n�m

(jxj). Then v is a bit string of length n�m. We apply h to the string vjjw to get

the �nal message digest.

Remark : 1. We do not atually require the length of the message to be< 2

n�m

. The onstrution

an easily be modi�ed to aomodate strings having length < 2

for some onstant . Sine we are

assuming n � 2m and m � 128 for pratial hash funtions, hoosing = n�m is onvenient and

suÆient for pratial purposes.

2. In Setion 7, we present the onstrution for arbitrary length strings.

4.3 Speifying Parallelism

We onsider the following problem. Suppose a set of users agree to hoose h

�

() as a hash funtion

standard. The message digest produed on a message learly depends on the height of the binary

tree used to generate the message digest. Suppose a user generates the digest using a binary tree

of height t. Then any other user who needs to regenerate the digest has to have aess to a binary

tree of height t or should be able to simulate the binary tree of height t. It is quite possible that

the user has aess to only one proessor. In this ase also the user should be able to generate the

message digest. This an be ensured in either one of the following two ways.

(1) The height T of the proessor tree is �xed and is part of the hash funtion spei�ation. Then

any user who needs to generate y =PHA(x; T) and has aess to a proessor tree of height t, with

13

t < T uses SimPar(x; T; t) to generate y. If t � T , then the user an run PHA(x; T) by not using

proessors at level greater than T .

(2) The height of the proessor tree is not part of the hash funtion spei�ation. In this ase the

atual height of the proessor tree is output with the message digest, i.e. the output on input x

is (t;PHA(x; t)). Any other user who wishes to regenerate the digest and has aess to a tree of

height t

0

runs SimPar(x; t; t

0

) if t > t

0

or runs PHA(x; t) if t � t

0

.

Depending on the situation at hand either one of the above two strategies may be adopted. We

would like to highlight another aspet of Strategy 2. Suppose User 1 has only a single proessor

and wishes to ompute the digest on a message x. User 1 also knows that the digest will be

reomputed by User 2 who has aess to a proessor tree of 2

t

(t > 0) proessors. User 1 then

invokes SimPar(x; t; 0) to ompute y =PHA(x; t). Thus User 2 an diretly use his proessor tree

of 2

t

proessors to invoke PHA(x; t) and reompute y. In this manner the total time required to

ompute both the digests is minimized.

Fundamentally our design priniple follows the simple basi rule : Users with more resoures

an speed up omputation of the digest, without a�eting the eÆieny of users with lesser resoures

to ompute the same digest.

5 Corretness and Complexity of PHA

In this setion we prove several properties of algorithm PHA.

5.1 Amount of Padding

The following result shows that the maximum amount of padding added to a message depends only

on the parameters n and m. In partiular, the maximum amount of padding is independent of the

number of proessors and the length of the message.

Proposition 5 The maximum amount of padding added to any message is less than 2n� 2m.

Proof. The only plae where padding is done is at line 2 of algorithm PHA. The amount of padding

is b(2n� 2m)� r. Sine b =

l

r

2n�2m

m

<

r

2n�2m

+ 1, we have b(2n� 2m)� r < 2n� 2m.

Remark : The maximum amount of padding required by PHA is 2(n�m)� 1 and that required

by the MD algorithm is n�m� 1.

5.2 Number of Parallel Rounds

Algorithm PHA exeutes the following sequene of parallel rounds.

1. Lines 5-6 of PHA exeute one parallel round.

2. Lines 7-10 of PHA exeute q parallel rounds.

3. Lines 11-12 of PHA exeute one parallel round.

4. Lines 13-16 of PHA exeute t� 1 parallel rounds.

5. We onsider Line 17 of PHA to be a speial parallel round.

From this we get the following result.

14

Theorem 6 Algorithm PHA(x; t) exeutes R = q + t+ 2 �

j

L

2

t

(n�m)

k

+ t parallel rounds. Conse-

quently, Algorithm SimPar(x; t; t

0

) exeutes (q + 3)2

t�t

0

+ t

0

� 1 parallel rounds.

Proof. Clearly the number of parallel rounds is q+ t+2. From De�nition 2, we have q =

j

L�Æ(t)

�(t)

k

if �(t) 6 jL� Æ(t); and q =

j

L�Æ(t)

�(t)

k

� 1 if �(t)jL� Æ(t). Hene,

q �

�

L� Æ(t)

�(t)

�

=

$

L� 2

t

(2n� 2m)� (n� 2m)

2

t�1

(2n� 2m)

%

�

$

L� 2

t

(2n� 2m)

2

t�1

(2n� 2m)

%

=

�

L

2

t

(n�m)

�

� 2:

Therefore, q + t+ 2 �

j

L

2

t

(n�m)

k

+ t:

5.3 Invoations of the Compression Funtion

Let (L) be the number of invoations of h made by PHA(x; t) on a message of length L. The

parameters q

t

, r

t

and b

t

depend on the length L of the message. We write q

t

(L), r

t

(L) and b

t

(L)

to denote the dependene of the parameters q

t

and b

t

on length L. Note that due to the padding

done in line 2 of algorithm PHA we have (L) = (L+ b

t

(L)(2n� 2m)� r

t

(L)). We now have the

following result.

Proposition 7 (L) = (q

t

(L) + 2)2

t

+ 2b

t

(L)� 1.

Proof. We �rst note that q = q

t

= q

t

(L) and b = b

t

= b

t

(L). In eah of the �rst q

t

(L) + 1 rounds

h is invoked 2

t

times. In round q

t

(L) + 2, the number of invoations of h is 2

t�1

+ b

t

(L). In rounds

q

t

(L)+ 3 to q

t

(L) + t+1, the total number of invoations of h is

P

t�1

s=1

(2

s�1

+ k

s

). Lastly, in round

q

t

(L) + t + 2, there is one invoation of h. Using Corollary 10 below, we have

P

t�1

s=1

k

s

= b � 1.

Adding the above number of invoations we get the �nal result.

We ompare the number of invoations of h by PHA to that made by the MD algorithm. We

do this for message lengths whih do not require padding by PHA. It turns out that these message

lengths also do not require padding by the MD algorithm.

Let the length of the message be L = Æ(t) + q

t

(L)�(t) + b

t

(L)(2n � 2m). Then PHA makes

 (L) = (q

t

(L) + 2)2

t

+ 2b

t

(L)� 1 invoations of h.

Here we use the desription of the MD algorithm given in [9℄. For the MD algorithm the �rst

invoation uses n bits and eah of the subsequent invoations uses n � m bits. Hene the total

number of invoations of h is

1 +

L� n

n�m

= 1 +

2

t

(2n� 2m) + q2

t�1

(2n� 2m) + b(2n� 2m)� (n� 2m)� n

n�m

= (L):

Thus we get the following result.

Theorem 8 The number (L) of invoations of h made by PHA(x; t) on a message x of length

L = Æ(t) + q

t

(L)�(t) + b

t

(L)(2n� 2m) is equal to the number of invoations of h made by the MD

algorithm on a message of the same length L.

15

5.4 Speed-Up over MD Algorithm

The time taken by the MD algorithm is proportional to the number of invoations of h whereas the

time required by PHA is proportional to the number of parallel rounds whih is equal to q

t

(L)+t+2.

Further, both PHA and the MD algorithm must format the message. Hene if we ignore the time

required to format the message, then the speed-up fator SF of PHA over MD is omputed as

follows.

SF =

 (L)

R

=

(q + 2)2

t

+ 2b� 1

R

= 2

t

�

q + 2

R

�

+

2b� 1

R

� 2

t

1

1 +

t

q+2

!

:

The parameter q = q

t

is de�ned in equation (4). Using the values of Æ(t) and �(t) we observe that

q + 2 �

L

�(t)

. Hene SF� 2

t

�

1

1+

t�(t)

L

�

.

The parameter t is the height of the binary tree and is �xed for a partiular implementation.

Hene t�(t) is a onstant for a partiular implementation of the algorithm. Thus SF! 2

t

as L!1.

In other words, for long messages, the speed-up fator is roughly equal to the number of proessors

used.

5.5 Corretness of the Formatting Subroutines

The formatting subroutines of algorithm PHA divide the message into substrings and provide these

as input to the ompression funtion h. There are two things whih require to be proved.

1. The formatting subroutines ensure that eah bit of the message is provided as input to exatly

one invoation of the ompression funtion h.

2. The �nal output of algorithm PHA is an m-bit string.

The rest of the setion is devoted to proving these two properties.

Eah of the �rst (R � 1) parallel rounds in PHA(x; t) onsists of a formatting phase and a

hashing phase. In the formatting phase, the formatting proessor P

F

runs a formatting subroutine

and in the hashing phase the proessors P

i

(i 2 P) are operated in parallel. Denote by z

i;j

the

state of the bu�er z

i

at the end of round j, where i 2 P and 1 � j � R. Clearly, the state of

the bu�er z

i

at the start of round j (2 � j � R) is z

i;j�1

. Further, let u

i;j

be the string written

to bu�er u

i

in round j by the proessor P

F

. For i 2 I, the input to proessor P

i

in round j is

z

2i;j�1

jjz

2i+1;j�1

jju

i;j

. For i 2 L, the input to proessor P

i

in round j is the string u

i;j

.

The following lemma and orollary are required to prove Proposition 11.

Lemma 9 For any nonnegative integer b,

P

i�1

j

b+2

i�1

2

i

k

= b.

Proof. We prove this result by indution on b. Clearly the result holds for b = 0.

Indution Hypothesis: For b a positive integer, assume that

P

i�1

j

b+2

i�1

�1

2

i

k

= b� 1.

It an be shown that

�

m

n

�

=

8

>

>

<

>

>

:

j

m�1

n

k

+ 1 when njm;

j

m�1

n

k

otherwise:

16

In addition, 2

i

j(b+ 2

i�1

) if and only if b = 2

i�1

 where is an odd integer. Combining these fats

with the indution hypothesis, we get that

X

i�1

$

b+ 2

i�1

2

i

%

= 1 +

X

i�1

$

b+ 2

i�1

� 1

2

i

%

= b:

Thus, by indution, we onlude that the result holds for all nonnegative integers b.

Corollary 10 For t a given positive integer and b an integer in the range 0 � b � 2

t�1

, let

k

s

= b

b+2

t�s�1

�1

2

t�s

 as de�ned in algorithm FF(s). Then

P

t�1

s=1

k

s

=

P

s�1

k

s

= b� 1.

Proposition 11 Let x be a message of length L = Æ(t)+q�(t)+b(2n�2m), where q is a nonnegative

integer and b is an integer in the range 0 � b � 2

t�1

. The formatting subroutines ensure that eah

bit of the message x is provided as input to some proessor P

i

exatly one; furthermore, the

substring x presented to proessor P

0

in step 17 of PHA is the empty string when jxj = Æ(t) and

is an (n� 2m)-bit string when jxj > Æ(t). The total time required by the formatting subroutines to

format the message x over all the R rounds is proportional to

(a) jxj+ (t� 1)2

t

� 2b+ 2 steps when jxj > Æ(t) or

(b) jxj+ (t� 1)2

t

+ 1 steps when jxj = Æ(t).

Proof. Eah formatting algorithm de�nes u

i

= � or else de�nes u

i

to be a pre�x of x; namely,

x = vjjy

u

i

= v

x = y

In step 17, the substring x itself is presented to proessor P

0

. Hene, eah bit of the message x is

presented as input to some proessor P

i

exatly one. We now determine the length of the substring

x presented to proessor P

0

in step 17, i.e., in round R.

First assume that L > Æ(t) and hene b > 0. Formatting algorithm FSU provides a pre�x

of length n to eah proessor P

i

. This aounts for 2

t

n bits of x. Algorithm FSS provides an

(n � 2m)-bit pre�x to proessor P

i

, i 2 I, and an n-bit pre�x to proessor P

i

, i 2 L. This

aounts for 2

t�1

(2n � 2m) = �(t) bits of x. Sine FSS is invoked q times, this aounts for

q�(t) bits of x. Formatting algorithm FEG provides eah internal proessor P

i

, i 2 I, with an

(n � 2m)-bit pre�x of x, eah leaf proessor P

i

, 2

t�1

� i � 2

t�1

+ b � 1, with an n-bit pre�x of

x, and all the other leaf proessors with an empty string. This aounts for 2

t�1

(n � 2m) + bn

bits of x. For s = t � 1; t � 2; : : : ; 2; 1, formatting algorithm FF(s) presents eah proessor P

i

,

0 � i < 2

s�1

+ k

s

� 1, where k

s

= b

b+2

t�s�1

�1

2

t�s

, with an (n� 2m)-bit pre�x of x and all the other

proessors P

i

with u

i

= �. This aounts for (2

s�1

+ k

s

)(n � 2m) bits of x. The total number of

bits presented to all the proessors in the �rst R� 1 rounds is

2

t

n+ q�(t) + bn+ 2

t�1

(n� 2m) +

1

X

s=t�1

(2

s�1

+ k

s

)(n� 2m)

= 2

t

n+ q�(t) + bn+

1

X

s=t

2

s�1

(n� 2m) +

1

X

s=t�1

k

s

(n� 2m)

= 2

t

n+ q�(t) + bn+ (2

t

� 1)(n� 2m) + (b� 1)(n� 2m) (sine

1

X

s=t�1

k

s

= b� 1)

= Æ(t) + q�(t) + b(2n� 2m)� (n� 2m):

17

Hene, the substring x presented to proessor P

0

in step 17 of PHA is of length (n�2m) as laimed.

In the speial ase when x is of length L = Æ(t), b = q = 0. This in turn implies that k

s

= 0 for

s = t� 1; t� 2; : : : ; 2; 1. Hene, the total number of bits presented to the proessors P

i

is just Æ(t),

and the substring x presented to proessor P

0

in step 17 of PHA is the empty string.

Formatting algorithm FEG de�nes u

i

= � for 2

t�1

+ b � i < 2

t

, and, for 1 � s < t, FF(s)

de�nes u

i

= � for 2

s�1

+ k

s

� i < 2

t

. The number of assignments of the form u

i

= � is

2

t�1

� b+

1

X

s=t�1

(2

t

� 2

s�1

� k

s

) = 2

t�1

� b+ (t� 1)2

t

�

1

X

s=t�1

2

s�1

�

1

X

s=t�1

k

s

= 2

t�1

+ (t� 1)2

t

� (2

t�1

� 1)� 2b+ 1 = (t� 1)2

t

� 2b+ 2:

In the speial ase when x has length L = Æ(t), there are (t � 1)2

t

+ 1 assignments of the form

u

i

= �.

Eah step of the formatting algorithms onsist of moving the leading bit of string x to some

bu�er u

i

, or else assigning u

i

= �. Therefore, the formatting algorithms require

(a) Æ(t) + q�(t) + b(2n� 2m) + (t� 1)2

t

� 2b+ 2 steps when L > Æ(t) or

(b) Æ(t) + (t� 1)2

t

+ 1 steps when L = Æ(t).

This establishes the result.

We require the following lemma in the proof of Theorem 13.

Lemma 12 For any integers b and t, b � 0 and t � 1, de�ne k

s

= b

b+2

t�s�1

�1

2

t�s

 for 1 � s < t and

l

s

= b

b+2

t�s

�1

2

t�s

 for 1 � s � t. Then

(a) k

s

� l

s

� k

s

+ 1;

(b) 2k

s

� l

s+1

� 2l

s

; and

() l

s

= k

s

+ 1 if and only if 2l

s

= l

s+1

+ 1:

Proof. Clearly,

k

s

=

�

b� 1

2

t�s

+

1

2

�

�

�

b� 1

2

t�s

+ 1

�

= l

s

�

�

b� 1

2

t�s

+

3

2

�

= k

s

+ 1:

For any nonnegative real number x, 2bx+

1

2

 � b2x+ 1 � 2bx+ 1. Setting x = (b� 1)=2

t�s

, we

get

2k

s

� l

s+1

� 2l

s

:

Now let x =

b�1

2

t�s

= I + f where I is an integer and 0 � f < 1. Then

l

s

= bx+ 1 = bI + f + 1 = I + 1:

If l

s

= k

s

+ 1, then

I + 1 = l

s

= k

s

+ 1 = bx+ 1=2 + 1 = bI + f + 1=2 + 1 = I + 1 + bf + 1=2:

Hene bf + 1=2 = 0 whih means 0 � f < 1=2. Then

l

s+1

= b2x+ 1 = b2I + 2f + 1 = 2I + 1 = 2l

s

� 1:

18

Remark : We would like to point out the onnetion of the values k

s

and l

s

respetively to the

inorder suessor and predeessor of the proessor P

i

. In round q+ 2+ l = q+2+ t� s, proessor

P

i

outputs an m-bit output if and only if the inorder predeessor (whih is at the leaf level) of

P

i

reeived an n-bit input in round q + 2. Further, in round q + 2 + l, proessor P

i

invokes the

hash funtion (equivalently u

i;q+2+l

is de�ned) if the inorder suessor (again at the leaf level) of

P

i

reeived an n-bit input in round q + 2. These onsiderations also provide the expressions for k

s

and l

s

.

At any round r, 1 � r < R, the input to proessor P

i

, i 2 L, is u

i;r

, and the input to proessor

P

i

, i 2 I, is z

2i;r�1

jjz

2i+1;r�1

jju

i;r

. In Theorem 13 we show that every bit of the string x is ated

upon by hash funtion h. Furthermore, if z

i;r

6= � then either z

i;r

is ated upon by h in round r+1

or else z

i;r

is passed on as the output of proessor P

i=2

in round r + 1; that is z

i=2;r+1

= z

i;r

. We

establish these fats by showing that

i 2 I and ju

i;r

j = n� 2m imply jz

2i;r�1

j = jz

2i+1;r�1

j = m, and

i 2 I and u

i;r

= � imply z

2i+1;r�1

= �.

Theorem 13 (Corretness of PHA) Given any message x with jxj � Æ(t), algorithm PHA(x; t)

applies hash funtion h to every bit of x and produes an m-bit message digest.

Proof. Let y = z

0;R�1

jjz

1;R�1

jju

0;R

. Then, the output of algorithm PHA is, by de�nition,

z

0;R

=

(

h(y) if jyj = n;

y otherwise:

Therefore, we must show that if jyj 6= n, then jyj = m.

In round 1, proessor P

F

writes n-bit strings to eah of the bu�ers u

i

, i.e., ju

i;1

j = n for i 2 P .

Hene jz

i;1

j = m for i 2 P . Further, it is easy to verify that for 2 � j � q + 1, we have jz

i;j

j = m

for i 2 P and

ju

i;j

j =

(

n� 2m if i 2 I;

n if i 2 L:

For q + 2 � j � R � 1, let s = R � j. Then t � s � 1 orresponding to q + 2 � j � R � 1.

De�ne l

s

=

j

b+2

t�s

�1

2

t�s

k

. We now use indution to show that for these values of j and s,

jz

i;j

j =

(

m for 0 � i � 2

s�1

+ l

s

� 1;

0 for 2

s�1

+ l

s

� i < 2

t

:

Basis Case. For j = q + 2, s = t and l

s

= b; furthermore, jz

i;q+1

j = m for i 2 P . In round q + 2,

proessor P

F

exeutes FEG, and hene,

ju

i;q+2

j =

8

>

<

>

:

n� 2m for i 2 I;

n for 2

t�1

� i � 2

t�1

+ b� 1;

0 for 2

t�1

+ b � i < 2

t

:

Therefore,

jz

i;q+2

j =

(

m for 0 � i � 2

t�1

+ b� 1;

0 for 2

t�1

+ b � i < 2

t

:

19

Indution Hypothesis: Let j � 1 be any integer in the range q+ 2 � j � 1 � q+ t = R� 2, and

let s+ 1 = R� (j � 1). Assume that in round j � 1,

jz

i;j�1

j =

(

m for 0 � i � 2

s

+ l

s+1

� 1;

0 for 2

s

+ l

s+1

� i < 2

t

:

Now onsider round j. Then s = R� j.

Case 1: 0 � i � 2

s�1

+ k

s

� 1.

Then algorithm FF(s) de�nes u

i;j

to be a nonempty (n� 2m)-bit string. Furthermore,

2i+ 1 � 2

s

+ 2k

s

� 1 � 2

s

+ l

s+1

� 1 by Lemma 12:

By our indution hypothesis, jz

2i;j�1

j = jz

2i+1;j�1

j = m. Hene, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = n. This

implies jz

i;j

j = m.

Case 2: 2

s�1

+ k

s

� i � 2

s�1

+ l

s

� 1.

This ase is vauous whenever l

s

= k

s

. When l

s

= k

s

+ 1, then 2

s�1

+ k

s

= i = 2

s�1

+ l

s

� 1 and

ju

i;j

j = 0 from the de�nition of algorithm FF(s). Then

2i = 2

s

+ 2l

s

� 2 = 2

s

+ l

s+1

� 1 (sine 2l

s

= l

s+1

+ 1 when l

s

= k

s

+ 1):

Therefore, jz

2i;j�1

j = m by our indution hypothesis. Sine 2i + 1 = 2

s

+ l

s+1

, our indution

hypothesis implies jz

2i+1;j�1

j = 0. Therefore, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = m and z

i;j

= z

2i;j�1

, a

nonempty m-bit string.

Case 3: 2

s�1

+ l

s

� i < 2

t

.

Sine 2

s�1

+ k

s

� 2

s�1

+ l

s

� i, ju

i;j

j = 0. In addition, 2i � 2

s

+ 2l

s

� 2

s

+ l

s+1

. Therefore,

jz

2i;j�1

j = jz

2i+1;j�1

j = 0. Hene, jz

2i;j�1

jjz

2i+1;j�1

jju

i;j

j = 0 and z

i;j

= �.

Thus we have shown that

jz

i;j

j =

(

m for 0 � i � 2

s�1

+ l

s

� 1;

0 for 2

s�1

+ l

s

� i < 2

t

:

By indution, this holds for all j in the range q + 2 � j � R� 1 and s = R� j.

From the above argument, we see that, for 1 � j � R � 1, ju

i;j

j = n � 2m if and only if

jz

2i;j�1

j = jz

2i+1;j�1

j = m. In this ase, z

i;j

= h(z

2i;j�1

jjz

2i+1;j�1

jju

i;j

). As well, it is immediate

that whenever a formatting algorithm de�nes ju

i;j

j = n, then z

i;j

= h(u

i;j

). Thus the hash funtion

h proesses eah of the pre�xes u

i;j

.

When message x has length L > Æ(t), then b > 0. From the above result, we see that jz

0;R�1

j =

jz

1;R�1

j = m. From Proposition 11, we know that the substring x presented to proessor P

0

in step

17 of PHA is of length n� 2m. Therefore, z

0;R

= h(z

0;R�1

jjz

1;R�1

jjx), an m-bit string, as required.

When message x has length L = Æ(t), then b = 0. From the above result, we see that jz

0;R�1

j =

m and jz

1;R�1

j = 0. From Proposition 11, we know that the substring x presented to proessor P

0

in step 17 of PHA is of length 0. Therefore, z

0;R

= z

0;R�1

, an m-bit string, as required.

6 Seurity Redutions for h

L

and h

�

In this setion we show that �nding ollisions for h

L

and h

�

is diÆult provided �nding ollisions

for h is diÆult.

20

6.1 Collision Resistane of h

L

We provide a Turing redution of Col(n;m) to FLC(n;m;L). This will show that if it is ompu-

tationally diÆult to �nd ollisions for h, then it is also omputationally diÆult to �nd ollisions

for h

L

.

Theorem 14 Let t � 0, h be an (n;m) hash funtion and for L � 1 let h

L

be the funtion de�ned

by equation (2). If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash funtion

h

L

, then there is an (�; p+ 2 (L)) algorithm B to solve Col(n;m) for the hash funtion h.

Proof. The algorithm B does the following. It �rst runs A to obtain two strings x and x

0

suh that

x 6= x

0

, jxj = jx

0

j = L, and with probability at least �, h

L

(x) = h

L

(x

0

). Then B runs PHA on both

x and x

0

and stores all the intermediate states of the bu�ers z

i

and u

i

. Let z

ij

and z

0

ij

be the states

of bu�er z

i

at the end of round j orresponding to the messages x and x

0

respetively. Similarly,

let u

ij

and u

0

ij

be the strings written to bu�er u

i

in round j orresponding to the messages x and

x

0

respetively.

For message x and round number j, de�ne ZList(x; j) and UList(x; j) to be the following two

lists: ZList(x; j) = hz

0;j

; : : : ; z

2

t

�1;j

i; UList(x; j) = hu

0;j

; : : : ; u

2

t

�1;j

i.

Note that the message x is equal to the onatenation of the strings in the lists

UList(x; 1); : : : ;UList(x;R). Next we prove the following laim by bakward indution on round

number j � R.

Claim : If h

L

(x) = h

L

(x

0

) and there is no ollision for the funtion h in rounds j; : : : ; R, then

UList(x; j) = UList(x

0

; j) and ZList(x; j � 1) = ZList(x

0

; j � 1).

Proof of Claim : The base ase is j = R. Note that h

L

(x) = h

L

(x

0

) implies z

0;R

= z

0

0;R

. There

are two ases to onsider for round R aording as b = 0 or b > 0. If b = 0, then the funtion h

has not been invoked in round R and it is easy to see that ZList(x;R � 1) = ZList(x

0

; R � 1) and

UList(x;R) = UList(x

0

; R). If b > 0, then the funtion h has been invoked in round R and either we

have a ollision for h in round R or ZList(x;R�1) = ZList(x

0

; R�1) and UList(x;R) = UList(x

0

; R).

Now suppose j < R. By the indution hypothesis for j + 1 we know that UList(x; j + 1) =

UList(x

0

; j+1) and ZList(x; j) = ZList(x

0

; j). The ondition ZList(x; j) = ZList(x

0

; j) states that for

messages x and x

0

the outputs of all the proessors are equal at the end of round j. The ation of

any proessor in round j is to either opy its input to output or invoke the hash funtion h on its

input. The inputs to the proessors are the elements of the lists ZList(x; j � 1) and UList(x; j) for

message x (respetively, ZList(x

0

; j� 1) and UList(x

0

; j) for message x). Thus if there is no ollision

for h in round j, we must have UList(x; j) = UList(x

0

; j) and ZList(x; j � 1) = ZList(x

0

; j � 1). This

ompletes the indutive step and the proof of the laim.

From this laim it follows that if h

L

(x) = h

L

(x

0

) and there is no ollision for the funtion h

in any of the rounds, then x = x

0

. Sine algorithm A sueeds with probability at least �, we

onlude that there is a ollision for the funtion h also with probability at least �. The number of

invoations of h made by algorithm B is equal to the number of invoations of h made by algorithm

A plus twie the number of invoations of h made by algorithm PHA(x; t). Hene the number of

invoations made by algorithm B is equal to p+ 2 (L).

6.2 Collision Resistane of h

�

The seurity of h

�

is easily derived from the seurity of h

L

. The details are given below.

21

Theorem 15 Let h be an (n;m) hash funtion and h

�

be the funtion de�ned by Equation 3. If

there is an (�; p; L) algorithm A to solve V LC(n;m;L) for the hash funtion h

�

, then there is an

(�; p+ 2 + 2 (L)) algorithm B to solve Col(n;m) for the hash funtion h.

Proof. The algorithm B does the following. It �rst runs A to obtain two messages x and x

0

. Then

with probability at least �, we have h

�

(x) = h

�

(x

0

) and x 6= x

0

. Algorithm B then runs h

�

on both

x and x

0

to obtain h

�

(x) = y and h

�

(x

0

) = y

0

storing all the intermediate values that are generated.

Let w = h

jxj

(x), w

0

= h

jx

0

j

(x

0

), v = bin

n�m

(jxj) and v

0

= bin

n�m

(jx

0

j). There are two ases.

Case 1 : jxj 6= jx

0

j. In this ase v 6= v

0

and hene vjjw 6= v

0

jjw

0

. However, h(vjjw) = y = y

0

=

h(v

0

jjw

0

) with probability at least �. Thus in this ase we an �nd a ollision for h with probability

at least �.

Case 2 : jxj = jx

0

j = L. In this ase v = v

0

. If w 6= w

0

, then we have a ollision for h. If

w = w

0

then we have a ollision for h

L

. We an now argue as in the proof of Theorem 14 that with

probability at least � we obtain a ollision for h.

The omputation of h

�

requires 1 + (L) invoations of the hash funtion h. This shows that

the number of invoations of h made by B is at most p+ 2 + 2 (L).

7 Constrution of h

1

In this setion we desribe the onstrution and the seurity redution for the funtion h

1

:

[

L�1

f0; 1g

L

! f0; 1g

m

. De�ne Æ

1

(t) = Æ(t) � 1 and �

1

(t) = �(t) � 1. As in De�nition 2, for

L � Æ

1

(t), we de�ne the parameters q; r and b as follows.

De�nition 16 1. If L > Æ

1

(t), then q and r are de�ned by the following equation:

L� Æ

1

(t) = q�

1

(t) + r; (4)

where r is the unique integer from the set f1; : : : ; �

1

(t)g. De�ne b = d

r

2n�2m

e.

2. If L = Æ

1

(t), then q = b = r = 0.

Algorithm PHA omputes the funtion h

L

. We �rst de�ne a modi�ation of PHA. More speif-

ially, we de�ne the modi�ations required in the formatting subroutines. We will all the resulting

algorithm the modi�ed PHA algorithm.

Modi�ation to FSU: Replae Step 1 of FSU by the following sequene of operations:

Write x = vjjy where jvj = n� 1.

u

0

= vjj0, x = y.

for i = 1; 2; : : : ; 2

t

� 1 do

Modi�ation to FSS: Replae Step 1 of FSS by the following sequene of operations:

Write x = vjjy where jvj = n� 2m� 1.

u

0

= vjj1, x = y.

for i = 1; 2; : : : ; 2

t

� 1 do

Informally, during start up we are providing P

0

with an input whose last bit is 0 and during

steady state we are providing P

0

with an input whose last bit is 1.

Let the (L;m) funtion omputed by modi�ed PHA be g

L

. We now desribe the onstrution

of the funtion h

1

.

22

The parameter b is at most 2

t�1

and an be represented in binary by a t-bit string. Note that

the length of the binary representation of b depends only on t and is independent of the message

length L. We denote the t-bit binary representation of b by bin(b). Let �(t) = dlog(Æ

1

(t) + 1)e. Let

tbin(L) be a binary string of length �(t), suh that tbin(L) is the �(t)-bit binary representation of

L if L < Æ

1

(t), else tbin(L) is the �(t)-bit binary representation of Æ

1

(t).

The output of the funtion h

1

is de�ned by the following algorithm.

Algorithm ArbLength

input : message x of length L.

output : m-bit message digest h

1

(x).

1. If L < Æ

1

(t), then �nd the unique t

1

suh that Æ

1

(t

1

) � L < Æ

1

(t

1

+ 1). Then perform Step 2

with t replaed by t

1

.

2. If L � Æ

1

(t), then apply modi�ed PHA to x to obtain an m-bit message digest w = g

L

(x).

3. Let w

1

= h

m+t

(wjjbin(b)).

4. Let w

2

= h

m+�(t)

(w

1

jjtbin(L)).

5. output w

2

.

Remark : It is reasonable to assume that both t; �(t) � n�m. Then we ould let bin(b) and tbin(L)

be (n�m)-bit strings. In this situtation, Steps 3 and 4 above an be replaed by w

1

= h(wjjbin(b))

and w

2

= h(w

1

jjtbin(L)) respetively.

We now turn to the seurity redution for h

1

. First we note the fat that the seurity of g

L

is

preserved in a manner similar to that of h

L

.

Theorem 17 Let h be an (n;m) hash funtion and for L � n let g

L

be the funtion de�ned by the

modi�ed PHA algorithm. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash

funtion g

L

, then there is an (�; p + 2

1

(L)) algorithm B to solve Col(n;m) for the hash funtion

h, where

1

(L) is the number of invoations of h made by g

L

.

Theorem 18 Let h be an (n;m) hash funtion and for L � n let h

1

be the funtion de�ned

by algorithm ArbLength. If there is an (�; p; L) algorithm A to solve ALC(n;m;L) for the hash

funtion h

1

, then there is an (�; p+ 2

2

(L)) algorithm B to solve Col(n;m) for the hash funtion

h, where

2

(L) =

1

(L) + (t+m) + (�(t) +m) is the number of invoations of h made by h

1

.

Proof. Algorithm B runs algorithm A to obtain two strings x and x

0

suh that with probability

at least � we have h

1

(x) = h

1

(x

0

) and x 6= x

0

. Let L = jxj and L

0

= jx

0

j. Further, we will denote

the parameters for the message x by unprimed symbols and the parameters for the message x

0

by

primed symbols. First assume that L = L

0

. Then tbin(L) = tbin(L

0

) and bin(b) = bin(b

0

). We an

now use Theorem 17 to obtain a ollision for h with probability at least �. Thus for the rest of the

proof we will assume L 6= L

0

. There are two ases to onsider.

Case 1 : At least one of L or L

0

is less that Æ

1

(t). In this ase tbin(L) 6= tbin(L

0

). We have

h

m+�(t)

(w

1

jjtbin(L)) = w

2

= w

0

2

= h

m+�(t)

(w

0

1

jjtbin(L

0

)):

We an argue as in Theorem 14 that either we obtain a ollision for h or w

1

jjtbin(L) = w

0

1

jjtbin(L

0

)

whih in turn implies tbin(L) = tbin(L

0

). Sine we know tbin(L) 6= tbin(L

0

), it follows that we

must obtain a ollision for h.

23

Case 2 : Both L;L

0

� Æ

1

(t). In this ase we have tbin(L) = tbin(L

0

). If w

1

6= w

0

1

, then the inputs

to h

�(t)+m

in Step 4 of ArbLength are di�erent for x and x

0

. This will again provide a ollision for

h. So suppose w

1

= w

0

1

. There are two subases to onsider.

Subase 2a : b 6= b

0

: In this ase bin(b) 6= bin(b

0

). We have

h

m+t

(wjjtbin(L)) = w

1

= w

0

1

= h

m+t

(w

0

jjtbin(L

0

)):

Again the inputs to h

m+t

are di�erent and hene we have a ollision for h

m+t

. As before, this will

neessarily provide a ollision for h.

Subase 2b : b = b

0

: In this ase bin(b) = bin(b

0

). If w 6= w

0

, then this will provide a ollision for

h. So assume that w = w

0

.

So we are in the situation where g

L

(x) = w = w

0

= g

L

0

(x

0

), b = b

0

and L 6= L

0

. We have

the (padded) message lengths in the following forms: L = Æ

1

(t) + q�

1

(t) + b(2n � 2m) and L

0

=

Æ

1

(t) + q

0

�

1

(t) + b

0

(2n � 2m). Sine b = b

0

and L 6= L

0

we have q 6= q

0

. Assume without loss of

generality q

0

< q.

The last t+ 1 rounds of both PHA and modi�ed PHA are the same. Suppose that none of the

invoations of h in the last t + 1 rounds of modi�ed PHA provides a ollision for h. Now using

the fat that b = b

0

we an use a bakward indution on the round number (as in the proof of

Theorem 14) to obtain z

i;q+1

= z

0

i;q

0

+1

for all i 2 P . Continuing the bakward indution we obtain

z

i;q�q

0

+1

= z

0

i;1

for all i 2 P . We now look at the output of proessor P

0

. Let p = q � q

0

. We have

z

0;p+1

= P

0

(z

0;p

jjz

1;p

jju

0;p+1

);

z

0

0;1

= P

0

(u

0

0;1

):

The string u

0;p+1

is obtained from FSS and the string u

0

0;1

is obtained from FSU. By the modi�a-

tions made to these algorithms to get modi�ed PHA, we know that u

0;p+1

= vjj1 and u

0

0;1

= v

0

jj0

for some strings v and v

0

of lengths n�1 and n�2m�1 respetively. Hene z

0;p

jjz

1;p

jju

0;p+1

6= u

0

0;1

.

But z

0;p+1

= z

0

0;1

and so we obtain

P

0

(z

0;p

jjz

1;p

jju

0;p+1

) = h(z

0;p

jjz

1;p

jju

0;p+1

) = z

0;p+1

= z

0

0;1

= h(u

0

0;1

) = P

0

(u

0

0;1

):

This is a ollision for h.

We next onsider the amount of padding required by algorithm ArbLength. This is determined

by the padding introdued by algorithm modi�ed PHA.

Theorem 19 Algorithm modi�ed PHA pads any message by at least q+1 bits where q is as de�ned

in De�ntion 16.

Proof. The modi�ation to FSU introdues one bit of padding and the modi�ation to FSS

introdues one bit of padding per round. Sine FSS is exeuted q times a total of q bits of padding

is introdued by FSS.

From De�nition 16 we have

�

L� Æ

1

(t)

�

1

(t)

�

� q + 1 � 1 +

�

L� Æ

1

(t)

�

1

(t)

�

:

Sine t; n;m are onstants for a partiular implementation of modi�ed PHA, the amount of padding

is linear in the length of the message. We note that the Merkle-Damg�ard onstrution also uses an

amount of padding whih is linear in the length of the message (see [14℄). Moreover, the onstant of

24

proportionality is lesser for our onstrution. However, it is undesirable to have a padding sheme

whih grows with the length of the message. The amount of padding required in the onstrution

of h

�

is at most 2(n�m)�1 and hene is independent of the message length. Further, the funtion

h

�

an take as input any message of pratial length. Thus algorithm ArbLength and the funtion

h

1

are mainly of theoretial interest.

8 Preimage Resistane

We have formally onsidered only one property of hash funtions - namely intratibility of �nding

ollisions. Depending on the appliation, there are other neessary properties that a hash funtion

must satisfy. These are Preimage and Seond Preimage. It is easy to see that the ability to �nd a

seond preimage implies the ability to �nd ollisions. Hene if a funtion is ollision resistant, it is

automatially seond preimage resistant. Thus we do not onsider the property of seond preimage

resistane. However, we note that in general it is diÆult to obtain a omposition sheme that

preserves the property of seond preimage resistane.

Informally the preimage problem for a hash funtion h is the following. The adversary is given

a message digest y and has to obtain a message x suh that h(x) = y. Suppose that there is a

(probabilisti) algorithm A to solve the preimage problem for any of our extensions h

L

; h

�

or h

1

.

For the sake of onreteness we only onsider h

L

, the others being similar. We argue that A an

be used to obtain an algorithm B whih will solve the preimage for h with the same probability of

suess. Given y, algorithm B will �rst run A to obtain a preimage x for h

L

. Then B runs PHA

and outputs w = z

0;R�1

jjz

1;R�1

jju

R

if b > 0 or w = z

0;R�2

jjz

1;R�2

jju

R�1

if b = 0. It is now easy to

see that w is a preimage for h (with the probability of suess being at least that of A).

9 Conluding Remarks

We have onsidered the proessors to be organised as a binary tree. In fat, the same tehnique

arries over to k-ary trees, with the ondition that n � km. More speed up an be ahieved by

moving from binary to k-ary proessor trees. However, the formatting proessor will progressively

beome more ompliated and will o�set the advantage in speed up. Hene we have not explored

this option further.

To summarize our ontribution, in this paper, we have presented an inrementally parallelizable

design priniple for hash funtions. We believe that our design priniple will provide the basi

struture for designing future pratial hash funtions.

Aknowledgement : We wish to thank Professor Bart Preneel for helpful omments on an

earlier draft of the paper. We would also like to thank an anonymous referee for extensive omments

on an earlier version of the paper. These omments have helped in signi�antly improving the

presentation and tehnial quality of the paper.

Referenes

[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pratial.

Leture Notes in Computer Siene, Proeedings of CRYPTO 1997, pp 470-484.

25

[2℄ M. Bellare and D. Miianio. A New Paradigm for Collision-Free Hashing: Inrementality at

Redued Cost. Leture Notes in Computer Siene, (Advanes in Cryptology - EUROCRYPT

1997), pages 163-192.

[3℄ A. Bosselaers, R. Govaerts and J. Vandewalle, SHA: A Design for Parallel Arhitetures?

Leture Notes in Computer Siene, (Advanes in Cryptology - Eurorypt'97), pages 348-362.

[4℄ D. Chaum, E. van Heijst and B. P�tzmann. Cryptographially strong undeniable signatures,

unonditionally seure for the signer. Leture Notes in Computer Siene, 576 (1992), 470-484,

(Advanes in Cryptology - CRYPTO'91).

[5℄ I. B. Damg�ard. A design priniple for hash funtions. Leture Notes in Computer Siene, 435

(1990), 416-427 (Advanes in Cryptology - CRYPTO'89).

[6℄ I. B. Damg�ard. Collision Free Hash Funtions and Publi Key Signature Shemes. Leture

Notes in Computer Siene, (Advanes in Cryptology EUROCRYPT 1987), pages 203-216.

[7℄ W. DiÆe and Martin E. Hellman. New Diretions in Cryptography. IEEE Transations on

Information Theory, volume IT-22, number 6, pages 644{654, year 1976.

[8℄ R. C. Merkle. One way hash funtions and DES. Leture Notes in Computer Siene, 435

(1990), 428-226 (Advanes in Cryptology - CRYPTO'89).

[9℄ I. Mironov. Hash funtions: from Merkle-Damg�ard to Shoup. Leture Notes in Computer

Siene, 2045 (2001), 166-181 (Advanes in Cryptology - EUROCRYPT'01).

[10℄ M. Naor and M. Yung. Universal one-way hash funtions and their ryptographi apliations.

Proeedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

[11℄ B. Preneel. The state of ryptographi hash funtions. Leture Notes in Computer Siene,

1561 (1999), 158-182 (Letures on Data Seurity: Modern Cryptology in Theory and Pratie).

[12℄ C. Shnorr and S. Vaudenay. Parallel FFT-Hashing. Leture Notes in Computer Siene, Fast

Software Enryption, LNCS 809, pages 149-156, 1994.

[13℄ D. R. Stinson. Some observations on the theory of ryptographi hash funtions. IACR preprint

server, http://eprint.iar.org/2001/020/.

[14℄ D. R. Stinson. Cryptography: Theory and Pratie, CRC Press, 1995.

26

