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Abstra
t. Several re
ently proposed 
iphers are built with layers of small S-boxes,

inter
onne
ted by linear key-dependent layers. Their se
urity relies on the fa
t, that

the 
lassi
al methods of 
ryptanalysis (e.g. linear or di�erential atta
ks) are based on

probabilisti
 
hara
teristi
s, whi
h makes their se
urity grow exponentially with the

number of rounds N

r

.

In this paper we study the se
urity of su
h 
iphers under an additional hypothesis:

the S-box 
an be des
ribed by an overde�ned system of algebrai
 equations (true with

probability 1). We show that this hypothesis is true for both Serpent (due to a small size

of S-boxes) and Rijndael (due to unexpe
ted algebrai
 properties). We study general

methods known for solving overde�ned systems of equations, su
h as XL from Euro-


rypt'00, and show their ineÆ
ien
y. Then we introdu
e a new method 
alled XSL that

uses the sparsity of the equations and their spe
i�
 stru
ture.

The XSL atta
k has a parameter P , and in theory we show that P should be a 
onstant.

The XSL atta
k would then be polynomial in N

r

, with a huge 
onstant that is double-

exponential in the size of the S-box. We demonstrated by 
omputer simulations that

the XSL atta
k works well enough on a toy 
ipher. It seems however that P will rather

in
rease very slowly with N

r

. More simulations are needed for bigger 
iphers.

Our optimisti
 evaluation shows that the XSL atta
k might be able to break Rijndael

256 bits and Serpent for key lengths 192 and 256 bits. However if only P is in
reased

by 2 (respe
tively 4) the XSL atta
k on Rijndael (respe
tively Serpent) would be
ome

slower than the exhaustive sear
h. At any rate, it seems that the se
urity of these


iphers does not grow exponentially with the number of rounds.

KeyWords: blo
k 
iphers, AES, Rijndael, Square, Serpent, Camellia, multivariate quadrati


equations, MQ problem, overde�ned systems of multivariate equations, XL algorithm, Gr�obner

bases, sparse multivariate polynomials.

Note: This paper is kept on e-print as an ar
hive of the early work, was written between

November 2001 and Mai 2002, and is kept un
hanged sin
e, ex
ept 
orre
ting some small

errors and typos. This paper 
ontains a general des
ription of the so 
alled �rst and se
ond

XSL atta
k on blo
k 
iphers. A di�erent version, so 
alled 
ompa
t version of the �rst XSL

atta
k, is published in Asia
rypt 2002. When studying su
h atta
ks, intuition is very tri
ky,

and though Coppersmith and Moh on
e 
laimed that they know that su
h atta
ks will not

work, so far we did not see any serious argument against XSL.

Atta
ks in 2

100

on 128-bit AES: This atta
k, is a simple adaptation of the se
ond XSL

atta
k, exa
tly as des
ribed here, proposed by Murphy and Robshaw. For ea
h S-box of AES,

we de
ompose it as the modi�ed inverse in GF (256) and a multivariate aÆne fun
tion. Then

we 
reate 16 variables for this S-box: if x; y are the input and the output of the modi�ed

inverse, we will 
onsider x; x

2

; x

4

; x

8

; x

16

; x

32

; x

64

; x

128

; y; y

2

; y

4

; y

8

; y

16

; y

32

; y

64

; y

128

as sepa-

rate variables (and rename them). Then, given all these new variables, the S-boxes will give

quadrati
 equations in these new variables, and all the remaining AES will be des
ribed in

terms of linear equations. We 
an then apply the se
ond XSL atta
k, with s = 8, r = 24 and

t = 41. The exa
t 
omplexity of this atta
k remains an open problem.



1 Introdu
tion

On O
tober 2nd, 2000, NIST has sele
ted Rijndael as the Advan
ed En
ryption Standard,

destined for massive world-wide usage. Serpent was se
ond in the number of votes [1℄.

In the famous paper from 1949, Claude E. Shannon states that breaking a good 
ipher should

require "as mu
h work as solving a system of simultaneous equations in a large number of

unknowns of a 
omplex type", see [24℄. This seemed very easy to a
hieve so far, as solving

systems of equations 
an be
ome intra
table very easily. For example in [8℄ Ferguson, Shroep-

pel and Whiting show how to represent Rijndael with one big equation to solve. The equation

is so big: 2

50

terms for a 128-bit 
ipher, that it has 
ertainly no 
onsequen
es whatsoever on

the se
urity of Rijndael. Similarly, though every 
ipher 
an obviously be des
ribed in terms

of a system of multivariate equations over GF (2), it does not mean that it 
an be broken. In

the last ten years however surprising atta
ks have appeared in publi
 key 
ryptography: the


ryptanalysis of Matsumoto-Imai 
ryptosystem [16℄ by Patarin and the atta
k on the basi


version of HFE 
ryptosystem by Courtois [6℄. In these atta
ks the se
urity 
ollapses suddenly

after dis
overy (either theoreti
al or experimental) of the existen
e of additionalmultivariate

equations, that are not obvious and have not been anti
ipated by the designers of the original


ryptosystems. In this paper, the same thing will happen to some blo
k 
iphers.

In this paper we redu
e the 
ryptanalysis of Rijndael and Serpent to solving a system of Mul-

tivariate Quadrati
 equations (a.k.a. MQ problem). MQ is not a 
ontrived problem as in [8℄

and is already known in 
ryptography. Several publi
 key 
ryptosystems are based on hardness

of MQ, the best of them being probably HFE published at Euro
rypt 1996 [18℄. At Crypto'99

and in Euro
rypt'00, Shamir et al. showed that though MQ is NP-hard, its 
omplexity drops

substantially when the MQ be
omes overde�ned (more equations than unknowns), see [21,

22℄

1

. In this paper we show that if the MQ is sparse and have a regular stru
ture, it be
omes

still mu
h easier. It turns out that, the systems of quadrati
 equations obtained for Rijndael

and Serpent, will be both overde�ned and sparse.

Sin
e the pioneering work of Luby-Ra
ko� [12℄, there were many developments on the se
urity

of top-level s
hemes of blo
k 
iphers. The state of art in both se
urity proofs and generi


atta
ks for Feistel 
iphers 
an be found in [14℄ and [17℄. However Rijndael is not a Feistel


ipher and a more powerful theory has been developed by Vaudenay [25℄: it allows to make

se
urity proofs against a large 
lass of atta
ks in
luding linear and di�erential 
ryptanalysis,

for an arbitrary type of 
ipher. From this theory Moriai and Vaudenay have developed at

Asia
rypt'00 se
urity proofs for idealized versions of several AES 
andidates [26℄. The out
ome

for Rijndael was somewhat strange: they needed 384 rounds of Rijndael in order to make sure

it was se
ure. Similar results were obtained for Serpent. Therefore it is not 
ompletely unsound

to believe that some atta
ks might exist for Rijndael and Serpent, for whi
h the se
urity would

grow slowly with the number of rounds. In this paper we present su
h an atta
k.

The paper is organized as follows: �rst we des
ribe a general 
lass of 
iphers that in
ludes

Rijndael and Serpent. Then we explore algebrai
 properties of the Rijndael S-box and show

that it gives an overde�ned system of equations. Su
h equations will also exist for Serpent for

a very di�erent reason. Consequently we write the 
ryptanalysis of Rijndael and Serpent (and

other similar 
iphers) as solving an overde�ned system of quadrati
 equations. The general XL

atta
k known for this problem fails and we will present the new atta
k 
alled XSL that uses the

sparsity of the equations (and their stru
ture). It 
omes in two versions: �rst is very general,

does not use the key s
hedule, and is studied approximatively in order to investigate the

asymptoti
 behaviour of XSL. The se
ond version does use the key s
hedule and is designed

for 
on
rete 
ryptanalysis of Rijndael and Serpent, with all the pre
ision ne
essary. In the

Appendix C we present our simulations done on the XSL atta
k. Finally from the simulation

1

Remark: The opposite, underde�ned 
ase of MQ has been studied in [5℄.



results and our estimations we will try to apply the XSL atta
k to Rijndael and Serpent. It

will also imply many interesting 
on
lusions about the design of blo
k 
iphers.

2 Substitution-AÆne Ciphers, Rijndael and Serpent

A natural way to 
onstru
t 
ipher is to follow the Shannon's paradigm of mixing 
onfusion

layers with di�usion layers [24℄. For example SP-networks [7, 10℄ are 
ombinations of layers of

S-boxes with permutations of bits. More generally we may allow linear or aÆne fun
tions of

bits, not only permutations of wires. We 
all it a SA-
ipher.

At Euro
rypt'00 Shamir and Biryukov studied top-level stru
tural atta
ks against the SA-


iphers, i.e. the atta
ks do not depend on parti
ular S-boxes used [20℄. In our atta
ks we will

use some spe
ial properties of the S-boxes.

In this paper we will spe
ify a restri
ted 
lass of SA-
iphers 
alled XSL-
iphers. Though our

atta
ks are designed for XSL-
iphers, it is obvious that they 
an be easily extended to all

SA-
iphers, and even to other blo
k 
iphers (in
luding Feistel 
iphers), provided that they

use "bad" S-boxes and have a regular stru
ture.

2.1 XSL-
iphers

By de�nition, an XSL-
ipher is a 
omposition of N

r

similar rounds:

X The �rst round i = 1 starts with a XOR with the session key K

i�1

.

S Then we apply a layer of B bije
tive S-boxes in parallel, ea
h on s bits,

L Then we apply a linear di�usion layer,

X Then we XOR with another session key K

i

.

Then if i = N

r

we �nish, otherwise we in
rement i and go ba
k to step S.

We denote the key bits used in an XSL-
ipher by the variables K

i j

with i = 0::N

r

and

j = 1::s �B. There are N

r

+ 1 session keys, K

0

is the �rst and K

N

r

is the last. The number

of key bits before expansion is H

K

, the number of key bits after expansion is Ek, and the

number of bits that are linearly independent among those is L

k

. If we pi
k some L

k

key

variables K

i j

to form a basis, we will denote by [K

i j

℄ a linear expression of (any) key bit as

a linear 
ombination of the K

i j

that are in the basis.

We 
all X

i j

the j-th bit of the input of i� th round fun
tion of a XSL-
ipher, i.e. taken after

the XOR with the session key. We denote by Y

i j

the j-th bit of the input of the linear part

of i� th round fun
tion of a XSL-
ipher, i.e. taken after the appli
ation of the 
orresponding

S-box to the s 
orresponding X

i j

.

Similarly we denote by Z

i j

the j-th bit of the output of the round fun
tion (before the XOR

with the next session key). In 
onsequen
e we denote the plaintext by Z

0

and the 
iphertext

by X

N

r

+1

, however these are 
onstants, not variables.

With these notations X

i+1 j

= Z

i j

�K

i j

for all i = 0::N

r

.

2.2 The Top-level Stru
ture of Rijndael

Rijndael spe
i�ed in [4℄, is a spe
ial type of XSL-
ipher with s = 8, B = 4 � Nb. We don't

give a full des
ription of it, but will re
all all the essential fa
ts when ne
essary. Rijndael

has N

r

= 10::14 rounds. The data in Rijndael is represented as re
tangular "states" that are


omposed of Nb 
olumns, ea
h having the size of 4 S-boxes (4 � s = 32 bits). We have either

Nb = 4, 6 or 8, whi
h gives blo
k sizes of respe
tively Nb � 32 = 128, 192 and 256 bits. The

en
ryption in Rijndael is performed as follows:

X We XOR the session key K

i�1

.



S Then we have B = Nb � 4 S-boxes on s = 8 bits ea
h.

L Then we have a permutation of bytes 
alled ShiftRow, followed by a linear transformation

GF (256)

4

! GF (256)

4


alled MixColumn applied in parallel for ea
h of Nb 
olumns.

If i = N

r

(in the last round) the MixColumn is omitted.

X Then we XOR with another session key K

i

and either �nish, either go to S and 
ontinue

with another round...

The (unexpanded) key length is H

k

= Nk � 32 bits with Nk = 4, 6 or 8, whi
h is expanded

to Ek = (N

r

+ 1) � s �B = (N

r

+ 1) �Nb � 32 bits.

2.3 The Top-level Stru
ture of Serpent

Serpent des
ribed in [1℄ is an XSL-
ipher with s = 4, B = 32, N

r

= 32. The blo
k size is

always 128 bits. The key length 
an be H

k

= 128, 192 or 256 bits, and is also expanded to

Ek = (N

r

+ 1) � s �B = 1056 bits.

3 S-boxes and Overde�ned Algebrai
 Equations

The only non-linear part of XSL-
iphers are the S-boxes. Let F : GF (2)

s

! GF (2)

s

be su
h

an S-box F : x = (x

1

::x

s

) 7! y = (y

1

::y

s

). In Rijndael and Serpent, like for all other "good"

blo
k 
iphers, the S-boxes are build with "good" boolean fun
tions. There are many 
riteria

on boolean fun
tions that are more or less applied in 
ryptography. One of them is that ea
h

y

i

should have a high algebrai
 degree when expressed as a multivariate polynomial in the x

i

.

However all this does not assure that there is no "impli
it" multivariate equations of the form

P (x

1

; : : : ; x

s

; y

1

; : : : ; y

s

) that are of low algebrai
 degree. We will show that for Rijndael, and

for Serpent, for very di�erent reasons, a great number of su
h equations exist.

Su
h "impli
it" equations has already been used to 
ryptanalyse the Matsumoto-Imai 
ryp-

tosystem in [16℄ and the HFE 
ryptosystem in [6℄, but apparently it is the �rst time they will

be used in 
ryptanalysis of blo
k 
iphers.

For a spe
i�
 degree of the equations d (usually d = 2) we are interested in the a
tual number

r of su
h equations P (x

1

; : : : ; x

s

; y

1

; : : : ; y

s

). Unlike for "expli
it" equations y

i

= f(x

1

; ::; x

s

),

this number r 
an be bigger than s. We are also interested in the number of monomials that

appear in these equations denoted by t, and 
ounted in
luding the 
onstant term. In general

t �

�

s

d

�

. If t�

�

s

d

�

, we say that the equations are sparse.

If r = s, su
h equations are (approximatively) suÆ
ient to fully des
ribe the S-box: for ea
h

y there will be on average 1 solution x. Thus when r � s, we will say that the system is

overde�ned.

3.1 The quality of S-boxes and Random S-boxes

When r is 
lose to t, we may eliminate most of the terms by linear elimination, and obtain

simpler equations that are sparse and maybe even linear. For this reason it is possible to

mesure the quality of our system of equations by the ratio t=r � 1. If t=r is 
lose to 1, the

S-box is 
onsidered as "bad". From this point of view, both overde�ned systems (big r) and

sparse systems (small t) will be "bad". Otherwise, if the system is not overde�ned and not

sparse, t=r � O(s

d�1

), and su
h an S-box will be "good" (unless s is very small).We will see

that the a
tual 
ontribution of the S-boxes to the 
omplexity of the atta
ks des
ribed in this

paper is approximatively � = (t=s)

dt=re

. It is possible to show that for a random S-box, the

smallest value of � that 
an be a
hieved will be double-exponential in s, however this 
an

still be relatively small if s is very small, e.g. 4 bits. For di�erent reasons, for both Rijndael

and Serpent S-boxes, we will �nd overde�ned systems of equations with quite a small � .



3.2 Overde�ned Equations on the Serpent S-box

We show that 4-bit S-boxes always do give an overde�ned system of multivariate equa-

tions. For this we write a 16 � 37 matrix 
ontaining in ea
h row the values of the t = 37

monomials f1; x

1

; ::; x

4

; y

1

; ::; y

4

; x

1

x

2

; ::; x

1

y

1

; ::; y

3

y

4

g for ea
h of the 2

s

= 16 possible entries

x = (x

1

; ::; x

4

). The rank of this matrix is at most 16, therefore whatever is the S-box, there

will be at least r � 37� 16 = 21 quadrati
 equations. This is a very overde�ned system sin
e

21�4. We have t=r � 1:75 and � = (t=s)

dt=re

� 86 � 2

6

.

We note that a smaller t=r would be a
hieved with 
ubi
 equations on this S-box, but � would

be mu
h bigger then. It is also possible to 
onsider bi-aÆne equations. In this 
ase we have

t = 25 and r � 25� 16 = 9 whi
h is still overde�ned, however it gives a larger � � 244 � 2

8

.

3.3 Overde�ned Equations on the Rijndael S-box

For Rijndael we have s = 8. It is quite big 
ompared to Serpent: there are (2

8

)! � 2

1684

bije
tive S-boxes on 8 bits, 
ompared with only (2

4

)! � 2

44

for s = 4. For this reason we

don't expe
t any useful properties to happen by 
han
e. For example it is easy to see that

with the method des
ribed above in 3.2 a random S-box on 8 bits will give r = 0 be
ause

2

s

= 256 is bigger than the number 137 of possible quadrati
 terms. Still the Rijndael S-

box has been 
hosen for optimality results with regard to linear, di�erential and high-order

di�erential atta
ks, and is 
urrently the unique S-box known that a
hieves all these optima,

see [2, 15℄ for details. This uniqueness implies many very spe
ial properties.

Rijndael S-box is a 
omposition of the "pat
hed" inverse in GF(256) with 0 mapped on

itself, with a multivariate aÆne transformation GF (2)

8

! GF (2)

8

. Following [4℄ we 
all these

fun
tions respe
tively g and f and we 
all S = f Æ g. Let x be an input value and y = g(x)

the 
orresponding output value. We also note z = S(x) = f(g(x)) = f(y). A

ording to the

de�nition of the S-box:

8x 6= 0 1 = xy

This equation gives in turn 8 multivariate bi-linear equations in 8 variables and this leads to 8

bi-aÆne equations between the x

i

and the z

j

. As we explain more in details in the Appendix

A, 7 of these equations are true with probability 1, and the 8th is true with probability

255=256. The existen
e of these equations for g and S is obvious. Surprisingly, mu
h more

su
h equations exist. For example we have:

x = y � x

2

Sin
e x 7! x

2

is linear, if written as a set of 8 multivariate fun
tions, the above equation

gives 8 bi-aÆne equations between the x

i

and the y

j

, and in turn between the x

i

and the

z

j

. Moreover this equation in GF(256) is symmetri
 with respe
t to the ex
hange of x and y.

Thus we get 16 bi-aÆne equations true with probability 1 between the x

i

and the z

j

.

From the above we have 23 quadrati
 equations between x

i

and the z

j

that are true with

probability 1. We have expli
itly 
omputed these equations (see Appendix A), have veri�ed

that they are all linearly independent, and have also veri�ed that there are no more su
h

equations (however there would be more if we allowed additional terms, see Appendix A.1).

The terms present in these equations are t = 81: these are f1; x

1

; ::; x

8

; z

1

; ::; z

8

; x

1

z

1

; ::; x

8

z

8

g,

there is no terms in x

i

x

j

or z

i

z

j

. Here we get t=r � 3:52 and � � 2

13:4

(more than for

Serpent).

Additional equations for Rijndael We observe that in Rijndael S-box, if x is always di�er-

ent than 0, there 24 linearly independent quadrati
 equations. For one S-box, the probability

of this 24th equation to be true is 255=256. We are interested in probability that it is true



for all S-boxes in the exe
ution of Rijndael (i.e. we have x 6= 0 everywhere). As it has been

already pointed out by the authors of [8℄, this probability is quite big. It is about

2

:

(255=256)

4�Nb�N

r

+4�(1+1

Nk>6

)�N

r

This gives between 1=2 for the smallest Rijndael 128 bits and about 1=9 for the biggest 256-bit

version. Therefore if an atta
k works better with 24 equations, it will usually be worthwhile

to use them all and repeat the whole atta
k 2-9 times. For this reason, if an atta
k uses only

one (or two) exe
utions of the 
ipher we will assume r = 24, otherwise we have r = 23.

4 The MQ atta
k on Blo
k Ciphers

It is obvious that for any SA-
ipher su
h that S-boxes 
an be des
ribed in terms of some

algebrai
 equations, the 
ryptanalysis of the 
ipher 
an be written as a problem of solving a

system of su
h equations. If these equations are Multivariate Quadrati
, we 
all this atta
k

"MQ atta
k". It is the 
ase for Rijndael and Serpent, as shown above in 3.3 and 3.2.

4.1 The Atta
k S
enarios

There are many ways in whi
h the MQ atta
k 
an be applied. The system of equations should

be written in su
h a way that they should have exa
tly one solution. For this it is suÆ
ient in

pra
ti
e to build a system having one solution on average. Then if there are a few solutions,

prior to the solving stage, we would guess and �x a few bits.

First (general) atta
k ignoring the key s
hedule This atta
k is designed for any XSL-


ipher, whatever is the key s
hedule. Sin
e there are (N

r

+1) keys K

i

that are of the same size

as a plaintext, and we want enough 
onstraints to determine them (about) uniquely, we will

need (N

r

+1) known plaintexts. A better version will use a set of 
hosen plaintexts that di�er

by only a few bits in one single S-box. Thus we will have many 
ommon variables between

systems of equations written for di�erent plaintext/
iphertext pairs.

This atta
k s
enario will be used in Se
tion 6. For simpli�
ation we will study only the known

plaintext version. It is easy to see that the 
hosen-plaintext version amounts to the same

atta
k with the number of rounds N

r

de
reased by approximatively 1 or 2.

Se
ond (spe
i�
) atta
k using the key s
hedule Another atta
k we are going to use

will require only one known plaintext. However if the key is longer than the blo
k size, we

may require another plaintext. This atta
k is less general and will rely on the fa
t that the

key s
hedule in Rijndael and Serpent is very similar to the 
ipher itself: it uses a 
ombination

of aÆne transformations and (the same) S-boxes.

Stronger atta
k s
enarios If su
h atta
ks as MQ are possible, i.e. there are eÆ
ient meth-

ods to solve quadrati
 equations, then they allow to atta
k blo
k 
iphers in very strong

s
enarios. For example it is possible to design 
iphertext-only atta
ks. For this we only need

to 
hara
terize the redundan
y of the plaintext in terms of quadrati
 equations, and this 
an

be done either with partial knowledge of 
iphertexts, or with related 
iphertexts.

2

This formula is exa
t if Nk = Nb



4.2 The Dire
t MQ Atta
k on Rijndael and Serpent

For example in the se
ond s
enario, the problem of re
overing the key of the 128-bit Rijndael,

will be written as a system of 8000 quadrati
 equations with 1600 variables. These equations

are written in details in Appendix B. In the remaining part of the paper we will study solving

su
h systems of equations. The results for Rijndael are given in Se
tions 5.2 and 8.1.

Similarly, the 128-bit Serpent would give a system of (N

r

+ 1) � B � r +N

r

� B � r = 43680

equations with (N

r

+ 1) � s �B + (N

r

� 1) � s �B = 8192 variables.

5 Generi
 Methods for Solving Multivariate Quadrati
 Equations

MQ is a known and rather natural NP-hard problem. Several publi
 key 
ryptosystems are

based on MQ, for example HFE [18℄. Still, little is known about the a
tual hardness of it.

From the redu
tion above it is 
lear that if this problem was very easy for 1600 variables, then

Rijndael would be broken. With 
urrent atta
ks, fa
toring a 1600-bit RSA modulus provides

a se
urity level slightly lower than 2

128

[23℄. Therefore if Rijndael is se
ure, MQ should be at

least as hard as fa
toring.

5.1 Solving MQ with the XL Algorithm

At Crypto'99, Shamir and Kipnis make an important dis
overy about the MQ problem [21℄:

Solving it should be mu
h easier for overde�ned systems

3

. This idea has been developed and


onsolidated in a paper published at Euro
rypt'00 [22℄. An algorithm 
alled XL is developed

for this problem. It seems that for a random system of quadrati
 equations over GF (2) (or

one that looks random) that has a unique solution, the XL method should always work (but

maybe not for some very spe
ial systems). In [13℄ T.T. Moh states that "From the theory

of Hilbert-Serre, we may dedu
e that the XL program will work for many interesting 
ases

for D large enough". From [22℄ it seems also that XL 
ould be subexponential, however

very little is known about the a
tual behaviour of su
h algorithms for very big systems of

equations. Therefore all the 
omplexity estimations we are going to derive in this paper should

be 
onsidered as approximative. In the Appendix D.2 we re
all the XL algorithm and all the

basi
 fa
ts about it from [22℄.

5.2 First Attempt to Cryptanalyse Rijndael with XL

For the 128-bit Rijndael with 128-bit key, following Se
tion 4.2 (or the Theorem B.3.1 in

Appendix B.3), we get a system of m = 8000 equations with n = 1600 variables. Following

the 
omplexity evaluation of XL from [22℄, (explained also in Appendix D.2), it would lead

to a working XL algorithm with the parameter D being about D � n=

p

m � 18. Thus the


omplexity of the dire
t XL atta
k is about

�

n

D

�

!

� 2

330

:

This atta
k fails be
ause for a random system of quadrati
 R = 8000 equations with n = 1600

variables, we have about T = n

2

=2 � 2

20

terms. This gives R=T � 2

�7:3

that is very small

and the XL algorithm has to do extensive work in order to a
hieve R

0

=T

0

� 1. It is easy to

see that in our system T � (8 � 32 + 8 � 32 + 8 + 32 + 8) � (N

r

� 4 �Nb) and this gives only

R=T � 2

�3:5

, see Appendix B.6. Therefore there must be a mu
h better atta
k.

In the next Se
tion 6.2 we will write su
h a system of quadrati
 equations in a di�erent way

in order to a
hieve an even higher value of R=T .

3

In this paper we will show that if the MQ is sparse, it is still mu
h easier.



6 The (First) XSL Atta
k

Instead of the general te
hnique XL from [22℄, we will now design a 
ustom-made algorithm

that will take advantage of the spe
i�
 stru
ture of the equations and of their sparsity. We

will 
all this atta
k XSL atta
k whi
h stands for: "eXtended Sparse Linearization" or "mul-

tiply(X) by Sele
ted monomials and Linearize".

Starting from the initial equations for ea
h S-box of the 
ipher with r equations and t terms, we

will write a set of quadrati
 equations that will 
ompletely de�ne the se
ret key of the 
ipher.

In the XL algorithm, we would multiply ea
h of these equations by all possible monomials of

some degree D � 2, see Se
tion D.2 or [22℄. Instead we will only multiply them by 
arefully

sele
ted monomials. It seems that the best thing to do is to use produ
ts of monomials that

already appear in other equations. In [22℄, when R � T , we have as many equations as the

number of terms that appear in these equations and the big system is expe
ted to be solved

by adding a new variable for ea
h term, and solving a linear system (doing this is known as

linearization).

6.1 The Working 
ondition of the XSL atta
k or the "T

0

Method"

There is no need to have R mu
h bigger than T . In the original paper about XL [22℄, the

system was solved when T � Free was a small number. Still it is easy to see that both XL

and XSL algorithms work also when T � Free is very big (!). To see this, let for example let

x

1

be a variable, and let T

0

be the number of terms that 
an be multiplied by x

1

and still

belong to the set of T terms. Now we assume that Free � T � T

0

+ C with a small C. We

apply the following algorithm 
alled "T

0

method", see Appendix E to see how this works on

an expli
it example.

1. By one single gaussian elimination we bring the system to a form in whi
h ea
h term is a

known linear 
ombination of the terms in T

0

.

2. We do the same pre-
omputation two times, for example with T

0

de�ned for x

1

and

separately for x

2

.

3. In ea
h of the two systems, we have a subsystem of C equations that 
ontain only terms

of T

0

. These new equations are probably not of the same kind that the initial equa-

tions generated in XL-like atta
ks: only 
ombining all the equations one 
an obtain some

information about the solution, parts of the system usually have many solutions.

4. In ea
h of the two subsystems of ex
eeding C equations, we multiply ea
h equation by

x

1

and respe
tively x

2

. Then we substitute the expressions from point 1 in these to get

some other equations that 
ontain only terms of T

0

, but for the other variable. These

equations are expe
ted to be new and di�erent

4

. First be
ause the equations from point

2 are believed to 
ontain "some information" about the solution that is not in any small

subset of R equations, and moreover if we are overGF (2) we will intera
t with the equation

of the �eld GF(2) that is not ne
essarily done elsewhere.

5. Thus, if at the beginning Free >= C + T � T

0

we 
an "grow" the number of equations.

At this moment we expe
t to have up to 2C additional equations, less in pra
ti
e.

6. We expe
t that the number of new equations grows exponentially

5

.

7. If the initial system has a unique solution we expe
t that by we will end up with Free = T .

4

We have done several 
omputer simulations, and as expe
ted this heuristi
 works with good prob-

ability. New linearly independent equations are obtained in this way. See also Appendix E for an

expli
it example.

5

Even if it grows by 1 ea
h time, the atta
k will work as predi
ted.



8. For ea
h equation 
ontaining only terms in T', the 
ost to 
ompute a derived additional

equation will be about T

02

. Sin
e there are T

0

equations missing, we expe
t to do about

T

03

additional operations in the atta
k, whi
h 
an probably be redu
ed to T

0!

and thus

will be smaller than T

!

.

9. If the whole atta
k fails one should try with another 
ouple of variables instead of x

1

and

x

2

, or use three variables from the start (and three systems). We 
onje
ture that three

variables should always be suÆ
ient. The number of possibilities grows very fast with

the number of variables, a new equation obtained with one variable 
an be immediately

transformed and expanded with all the other variables.

For example, in our atta
k on Rijndael 128 bits given in Se
tion 8.1, we will obtain T � 2

96

and T

0

� 2

90

. The XSL atta
k is expe
ted to work as long as Free > T � T

0

� 99:4% T .

6.2 The Core of the First XSL Atta
k

Let A be an S-box of a XSL-
ipher, 
alled "a
tive S-box". For this S-box A we may write r

equations of the form:

0 =

X

�

ijk

X

i j

Y

i k

+

X

�

ij

X

i j

+

X




ij

Y

i j

+ Æ:

The number of monomials that appear in these equations is small, only t (most of them of

the form X

i j

Y

i k

). For this reason (unlike as in Appendix B) we kept both the variables X

i j

and Y

i k

.

We are going to multiply these equations by one of t monomials existing for some other S-

boxes (
alled "passive" S-boxes). Let S be the total number of S-boxes in our atta
k. Sin
e

we are going to use the most general atta
k s
enario des
ribed in 4.1 that ignores the key

s
hedule of the 
ipher, we 
onsider N

r

+ 1 exe
utions of the 
ipher and S will be equal to

B �N

r

� (N

r

+ 1).

The 
riti
al parameter of our atta
k will be P 2 IN. In the atta
k we will multiply ea
h

equation of ea
h "a
tive" S-box by all possible terms for all subsets of (P �1) other "passive"

S-boxes. The XSL atta
k is designed in su
h a way that, for a big P we will obtain something

very similar to the general XL atta
k. However due to the spe
ial stru
ture of the equations,

a mu
h smaller P should be suÆ
ient.

The total number of equations generated by this method will be about:

R � r � S � t

P�1

�

�

S � 1

P � 1

�

The total number of terms in these equations will be about:

T � t

P

�

�

S

P

�

6.3 Eliminating Obvious Linear Dependen
ies

It is possible to see that all the set of equations we wrote in Se
tion 6.2 above are not linearly

independent. First let us assume P = 2. Let Eq

1

: : : Eq

r

and Eq

0

1

: : : Eq

0

r

be the equations

that exist respe
tively for two S-boxes A and A'. Let T

1

: : : T

t

be the terms that appear

in the Eq

i

. Instead of writing produ
ts: T

1

Eq

0

1

; : : : ; T

t

Eq

0

1

we may equivalently write the

following: T

1

Eq

0

1

; : : : ; T

t�r

Eq

0

1

and then 
omplete by Eq

1

Eq

0

1

; : : : ; Eq

r

Eq

0

1

. But if we apply

this transformation for all the equations we have written in the previous se
tion, we see that

the ea
h of the Eq

i

Eq

0

j

o

urs twi
e. From this example we see that for any P , one should

rather generate the equations of Se
tion 6.2 in the following way: On one hand we restri
t to

multiplying an "a
tive" equation only by one of the monomials T

1

::T

t�r

for some "passive"



S-box of our system, and on the other hand we also add the equations 
ontaining produ
ts of

several "a
tive" S-boxes. Then it seems that there are no other obvious linear dependen
ies.

The number of equations in the �rst part of XSL is therefore less than expe
ted:

R �

X

i=1::P

�

S

i

�

r

i

�

�

S � i

P � i

�

(t� r)

P�i

=

�

S

P

�

�

t

P

� (t� r)

P

�

As before, the total number of terms in these equations is about T � t

P

�

�

S

P

�

.

Remark on R=T

From this we see already that when P grows we will have R=T ! 1. Moreover, we have

T

0

� t

0

t

P�1

�

�

S � 1

P � 1

�

with t

0

< t being the number of terms that 
an be multiplied by x

1

, for example t

0

= 25 for

Rijndael. In order to solve su
h a system of equations, following Se
tion 6.1, we need to have

T � R < T

0

, i.e.

�

S

P

�

(t� r)

P

=

S

P

�

S � 1

P � 1

�

(t� r)

P

< t

0

t

P�1

�

S � 1

P � 1

�

It boils down to

S

P

(t� r)

P

< t

0

t

P�1

and already from this we may see that we will have

T � R < T

0

for a suÆ
iently large P . Moreover, R is not all the equations we will use.

6.4 The Equations on the Di�usion Layers

We do not yet have a system having one and unique solution and we need some additional

equations. We will 
onstru
t these equations in su
h a way that they 
an be multiplied by

many terms, and still they will be written with the same T monomials.

We will eliminate all the key variables and write additional equations of the form:

X

i j

�

X

�

j

Y

i�1 j

= X

0

i j

�

X

�

j

Y

0

i�1 j

= X

00

i j

�

X

�

j

Y

00

i�1 j

= : : :

We have N

r

�(N

r

+1)�(sB) su
h equations. Ea
h of these equations, 
alled "a
tive equation",

will be multiplied by produ
ts of terms for some (P � 1) "passive" S-boxes. Here we need to

ex
lude the terms for a few neighbouring S-boxes (i.e. that have 
ommon variables with the

a
tive equation), though some of su
h terms still 
an be in
luded and will not add any new

terms to the T previously des
ribed. The number of new equations is about:

R

0

� N

r

� (N

r

+ 1) � (sB) � t

P�1

�

�

S

P � 1

�

= S � s � t

P�1

�

�

S

P � 1

�

Again, as in Se
tion 6.3, it is possible to see that one should generate only a part of these

equations, the remaining have to be linearly dependent. Thus we will put rather:

R

0

� S � s � (t� r)

P�1

�

�

S

P � 1

�

6.5 The Expe
ted Complexity of the XSL Atta
k(s)

The goal of the atta
k is to obtain T �R�R

0

> T

0

. This gives

S

P

�

S � 1

P � 1

�

(t� r)

P

� S � s � (t� r)

P�1

�

�

S

P � 1

�

< t

0

t

P�1

�

S � 1

P � 1

�

S

P

(t� r)

P

<

S

2

S � P + 1

� s � (t� r)

P�1

+ t

0

t

P�1

We will assume that P � S (S is usually quite big S � BN

2

r

) and thus S � P + 1 � S.



S

P

�

1�

r

t

�

P

< S

s

t

+

t

0

t

�

1�

r

t

�

P

<

Ps

t

+

Pt

0

St

We see that this 
ondition 
an always be satis�ed, and with P that is not too big: the left side

de
reases exponentially with P , the right side in
reases. If we 
onsider that

�

1�

r

t

�

t

r

� 1=e

we get the following approximation:

e

�P

r

t

<

Ps

t

+

Pt

0

St

P >

t

r

�

�ln

�

Ps

t

+

Pt

0

St

��

(#)

When r = 0 we will say that P =1 in the XSL atta
k: it 
annot work then.

If T

!

is the 
omplexity of the Gaussian redu
tion (see F for details) then the 
omplexity of

the XSL atta
k is about:

WF = T

!

� t

!P

�

S

P

�

!

� (tS)

!P

�

�

t �B �N

2

r

�

!P

�

�

t=s � Bs �N

2

r

�

!P

�

� (t=s)

!P

� (B � s �N

2

r

)

!P

� (t=s)

!P

� (Blo
k size)

!P

� (Number of rounds)

2!P

Now let us apply the estimation (#). It is easy that the value

�

�ln

�

Ps

t

+

Pt

0

St

��

is bounded

by a 
onstant that does not depend on blo
k size and number of rounds of the 
ipher. Moreover

in pra
ti
e (for example in our later atta
ks) we will have the value

�

�ln

�

Ps

t

+

Pt

0

St

��


lose

to 1. Therefore it is interesting to evaluate the expe
ted 
omplexity of the XSL atta
k when

P = dt=re. It gives the following estimation of the 
omplexity of the XSL atta
k on blo
k


iphers.

WF � (t=s)

!

d

t

r

e

+o(1)

�(B �s�N

2

r

)

!

d

t

r

e

+o(1)

� �

!

�

�

(Blo
k size) � (Number of rounds)

2

�

!

d

t

r

e

WF = �

!

� (Blo
k size)

O(

t

r

)

(Number of rounds)

O(

t

r

)

This is polynomial in the blo
k size and the number of rounds. The 
onstant part depends

on � that depends only on the parameters of the S-box used in the 
ipher, and is in general

double-exponential in s, see Se
tion 3.1. For a given 
ipher the 
onstant part �

!

in the


omplexity of XSL will be �xed (but usually very big).

6.6 The A
tual Complexity of the XSL Atta
ks

From the simulations that have been done for XL in [22℄ and for XSL in Appendix C we

believe that XL and XSL atta
ks will always work for some D (respe
tively P) and we expe
t

that the XSL atta
k should give mu
h better results than XL.

In the above derivation we assumed that all the equations in R+R

0

are linearly independent

and this implies that for some �xed P the atta
k will always work for any number of rounds.

From our simulations des
ribed in Appendix C it seems that P will rather in
rease (but

slowly) with the number of rounds.

If P were 
onstant, for a �xed S-box that have many overde�ned equations, the XSL atta
k will

be polynomial in the number of rounds. Even if P grows slowly, and XSL is subexponential,

it would be already an important breakthrough, as the 
lassi
al atta
ks on blo
k 
iphers

su
h as linear or di�erential 
ryptanalysis grow exponentially in the number of rounds (and

so does the number of required plaintexts).



In fa
t it is easy to 
ome to 
on
lusion that the problem to break Rijndael is probably

subexponential when the number of rounds grows. Indeed, in this paper we show how to

write Rijndael as an overde�ned system of quadrati
 equations, with size that is linear in N

r

,

see Appendix B. The problem of solving su
h a system of quadrati
 equations over GF(2)

is already believed subexponential (but impra
ti
al to solve) with the simple algorithm XL

from [22℄. See Se
tion B.5 for more 
omments on this. Finally, our equations from Appendix

B are also overde�ned and sparse, and this makes thing worse.

7 The Se
ond XSL Atta
k

The se
ond atta
k uses the key s
hedule. Unlike the very general �rst XSL atta
k that we

studied asymptoti
ally, the se
ond atta
k is designed to obtain 
on
rete atta
ks on Rijndael

and Serpent.

Let � be the number of plaintexts needed in order to 
ompletely determine the key used in

the 
ipher. For Rijndael and Serpent we have � = 1 or 2. As before, we will write a system

of equations in whi
h a separate variable exists for ea
h input and output bit, of ea
h of the

S-boxes, but here it will also in
lude the S-boxes that are in the key s
hedule. We

will have:

S = � �B �N

r

+D +E;

with D being the number of S-boxes in the key s
hedule and with E = 0 or 1 being the

number of additional "arti�
ial" S-boxes explained later.

First we will write the equations exa
tly as des
ribed in Se
tions 6.2 and 6.3. The number of

equations in the �rst part of the atta
k is again equal to:

R �

�

S

P

�

�

t

P

� (t� r)

P

�

However here the values of S and the de�nition of the S-boxes that enter in S has 
hanged,

for example the key variables 
an now be in
luded in t for some of the S-boxes (!). We also

have the same formula for T : T � t

P

�

�

S

P

�

.

7.1 The Equations on the Di�usion Layers

The number of key variables used in this atta
k will be 
alled S

k

. We require that:

{ The key variables must 
ontain ea
h input bit and ea
h output bit of ea
h of D S-boxes

in the key s
hedule. This gives S

k

= 2 � s � D with D = (L

k

� H

k

)=s for Rijndael and

D = (N

r

+ 1) �B for Serpent.

� If this is suÆ
ient to linearly span all the key variables, we have S

k

= 2 � s � D. In

this 
ase E = 0, i.e. there are no "arti�
ial" S-boxes. This is the 
ase in Serpent.

� Otherwise, let E = 1 and let e be the number of the K

i j

that need to be added to

the above 2 � s � D variables, in order to linearly span all the the key variables. By

inspe
tion we verify that in Rijndael we have e = 8 � s+ 8 � s � 1

Nk 6=4

.

Here E = 1 and we 
onstru
t an "arti�
ial S-box" in the following way: its equations

will be an empty set, i.e. r = 0 for this S-box, and its terms will be all the e additional

variables. Having one S-box that has a bit di�erent parameters will not 
hange a lot

the 
omplexity of our atta
ks. For example su
h an arti�
ial S-box is used in our

simulations in Appendix C.

Thus for Serpent we have S

k

= 2 � s �D and for Rijndael S

k

= 2 � s �D+8 � s+8 � s � 1

Nk 6=4

.

We will (as before) denote by [K

i j

℄ the expression of K

i j

as a linear 
ombination of the S

k

"true" key variables. We add the following equations:



X

i+1 j

=

X

�

j

Y

i j

� [K

i j

℄ for all i = 0::N

r

: (1)

Again ea
h of these equations will be multiplied by produ
ts of terms of (P � 1) "passive" S-

boxes (as before 
hosen out of S without a few "neighbouring"). We obtain a set of equations

that use only the T previously des
ribed terms

6

. The number of new equations is about:

7

R

0

� � � s �B � (N

r

+ 1) � (t� r)

P�1

�

�

S

P � 1

�

7.2 Additional Equations on the Key S
hedule

In order to 
omplete the des
ription of the 
ipher by the equations, and thus get a system

having a unique solution we need some more equations. What is missing are the linear equa-

tions on the key s
hedule that 
ome from the fa
t that our S

k

key variables are not all linearly

independent. These equations are again multiplied by produ
ts of terms of (P � 1) "passive"

S-boxes. In the 
ase of Rijndael it gives about (again we repla
ed t by t� r):

R

00

� (S

k

� L

k

) � (t� r)

P�1

�

�

S

P � 1

�

For Serpent we have:

R

00

� (s �D �H

k

) � (t� r)

P�1

�

�

S

P � 1

�

7.3 The Complexity of the Se
ond XSL Atta
k

The atta
k will work when P is (at least) su
h that:

R+R

0

+R

00

T � T

0

> 1 (�):

For this P , the 
omplexity of the atta
k is equal to (see also Appendix F): T

!

= t

P!

�

�

S

P

�

!

.

We will not 
ompute the asymptoti
 
omplexity of this atta
k: it is expe
ted to be very similar

to the �rst XSL atta
k. Instead we will apply it to 
on
rete 
iphers, 
ompute the smallest P

value for whi
h the above inequality (�) be
omes true, assume that the atta
k works for this

P , and 
ompute the 
on
rete 
omplexity of the atta
k.

8 The Consequen
es of the XSL Atta
ks

8.1 Appli
ation to Rijndael

For the basi
 128-bit Rijndael, we applied the se
ond XSL atta
k and only for P = 8 we were

able to get

R+R

0

+R

00

T�T

0

= 1:005. The resulting 
omplexity is mu
h more than the exhaustive

sear
h:

T

!

� 2

230

From Se
tion 6.5 it seems that P will not depend on the blo
k and key sizes of the 
ipher

(only the parameters of the S-boxes used). Thus, even if XSL does not break the Rijndael 128

bits, the 
omplexity should not be mu
h higher and break the version with 256-bit key. The

detailed 
omputation shows that for � = 2 and P = 8 we obtain

R+R

0

+R

00

T�T

0

= 1:006 and the


omplexity evaluation gives:

T

!

� 2

255

6

Unlike the �rst XSL atta
k, here the set of S S-boxes have been 
onstru
ted in su
h a way that

all the K

i j

belong to the set of terms of some S-box.

7

As in Se
tion 6.4 (and following the ideas from Se
tion 6.3) we have repla
ed t by t� r in order to

avoid to generate too many equations that 
annot possibly be linearly independent.



More interesting results 
an be obtained with 
ubi
 equations. Our simulations show that

with 
ubi
 equations and the Rijndael S-box we have t = 697, r = 471 and t

0

= 242. Then for

� = 2 and P = 5 we obtain

R+R

0

+R

00

T�T

0

= 1:0005 and the 
omplexity is about:

T

!

� 2

203

Even if we assume that the Gaussian redu
tion is 
ubi
, we still get 2

250

, whi
h is less than

the exhaustive sear
h. We obtain also that for P = 6 and P = 7 the 
omplexity is respe
tively

2

240

and 2

278

.

8.2 Appli
ation to Serpent

For Serpent we obtain exa
tly the same results for the key length 128, 192 and 256 bits (the

XSL atta
ks works by thresholds). Thus for P = 4 we get

R+R

0

+R

00

T�T

0

equal respe
tively to

1:0007, 1:0004 and 1:0001. The 
omplexity of the atta
k is about:

T

!

� 2

143

It seems that the XSL atta
k will break Serpent for key lengths 192 and 256 bits. Moreover,

this will hold also if the Gaussian redu
tion is 
ubi
 and gives still only 2

175

. We obtain also

that for P = 5; 6; 7; 8 the 
omplexity is respe
tively 2

176

; 2

208

; 2

240

and 2

272

.

8.3 How Realisti
 is the XSL Atta
k ?

Though XSL atta
ks 
ertainly will work for some P , we 
onsidered the minimum value P

for whi
h

R+R

0

+R

00

T�T

0

� 1. A small 
hange (e.g. in
rease by 1 or 2) in P leads to an important

overload in the 
omplexity. The 
ondition

R+R

0

+R

00

T�T

0

� 1 is ne
essary, but not suÆ
ient. In

order to test the a
tual behaviour of the XSL atta
ks, in Appendix C we give the des
ription

and results we obtained running the XSL atta
k on a "toy 
ipher". These simulations show

that P will probably in
rease, but very slowly, with the number of rounds.

8.4 Consequen
es for the Design of Blo
k Ciphers

There are two 
omplementary approa
hes in the blo
k 
ipher design that 
ould be seen in the

AES 
ontest. Either a 
ipher is designed with a very small number of rounds that are very


omplex (for example in DFC), or it has a large number of rounds that are very simple (for

example in Serpent).

In [26℄ the authors warn that: "an atta
k against Serpent may hold for any set of (random)

S-boxes". It seems that we have found su
h an atta
k. We 
laim therefore that using many

layers of very simple S-boxes is not a very good idea, and is sus
eptible to atta
ks with a


omplexity growing slowly in the number of rounds (with a huge 
onstant). Still, a 
orre
t


hoi
e of parameters will prevent the atta
ks.

For di�erent reasons, the XSL atta
k is also appli
able to all 
iphers in whi
h the only non-

linear part is the inverse fun
tion in GF (2

s

), with a small s. Therefore 
iphers su
h as Rijndael

and Camellia should either use s that is suÆ
iently large, for example s = 16, or 
onsider

di�erent S-boxes. This last possibility should give new optimal designs of S-boxes, not only


lose to optimal in terms of linear and di�erential atta
ks, but also in
orporating our new


riterion, i.e. having a big value of � , for example � > 2

20

.

Even if the atta
ks of the present paper have not yet been tested on really big examples, they

are an important threat for 
iphers su
h as Rijndael, Serpent and Camellia. We propose that

all blo
k 
iphers should apply the following 
riterion (due originally to Shannon [24℄):

The atta
ker should not be able to write a system of algebrai
 equations of simple type and

of any reasonable size, that 
ompletely 
hara
terizes the se
ret key.

An immediate way to a
hieve this is to use at least a few (relatively) big randomly generated

S-boxes. In the future the XSL atta
k should be taken into a

ount in the design of new kinds

of S-boxes.



9 Con
lusion

In this paper we point out an unexpe
ted property of Rijndael and Serpent: they 
an be

des
ribed as a system of overde�ned and sparse quadrati
 equations over GF (2). It was

known from Euro
rypt'00 that solving su
h systems is easier if they are overde�ned, and

the problem has been 
onje
tured to be subexponential for small �elds su
h as GF (2). From

this argument we obtain that the se
urity of Rijndael and Serpent probably does not grow

exponentially with the number of rounds.

A dire
t appli
ation of the XL atta
k from Euro
rypt'00 is extremely ineÆ
ient. Knowing that

the equations are not only overde�ned, but also sparse and stru
tured, we have introdu
ed

a new method 
alled XSL. If the XSL atta
k works as well predi
ted, it seems that it 
ould

even be polynomial in the number of rounds of the 
ipher. It seems also to break Rijndael

256 bits and Serpent for key lengths 192 and 256 bits. In order to prevent su
h atta
ks, we

propose that at least a few S-boxes in a 
ipher should not be des
ribed by a small system of

overde�ned multivariate equations.
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A More on Algebrai
 Properties of the Rijndael S-box

Rijndael handles most of its 
omputations in GF (256) that is represented, on one hand by

polynomials b

7

X

7

+ : : :+b

1

X+b

0

in GF (2)[X ℄=X

8

+X

4

+X

3

+X+1, and on the other hand

by bytes written in hexade
imal notation 
orresponding to the number b

7

2

7

+ : : :+ b

1

2

1

+ b

0

.

For example "03" is the polynomial X+1 in GF (2)[X ℄=X

8

+X

4

+X

3

+X + 1.

Rijndael S-box is a 
omposition of the "pat
hed" inverse in GF(256) with 0 mapped on

itself, with a multivariate aÆne transformation GF (2)

8

! GF (2)

8

. Following [4℄ we 
all these

fun
tions respe
tively g and f and we 
all S = f Æ g.

We note x an input value and y = g(x) the 
orresponding output value. We will also note

z = S(x) = f(g(x)) = f(y).

A more elegant way of representing g is to write it as the power fun
tion.. It is easy to see

that we have g : x 7! x

254

mod X

8

+X

4

+X

3

+X + 1, as 254 � �1 mod

�

2

8

� 1

�

. In this

representation we don't need to handle a spe
ial 
ase of 0. The multivariate aÆne fun
tion

f : GF (2)

8

! GF (2)

8


an also be written as a linearized polynomial f : GF (2

8

)! GF (2

8

):

z = f(y) = "63"+"05"y+"09"y

2

+"f9"y

4

+"25"y

8

+"f4"y

16

+"01"y

32

+"b5"y

64

+"8f"y

128

The 
omposition S = f Æ g gives the following sparse polynomial:

z = S(x) = f(g(x)) = f(y) = f(x

254

)

z = S(x) =

"63"+"8f"x

127

+"b5"x

191

+"01"x

123

+"f4"x

239

+"25"x

247

+"f9"x

251

+"09"x

253

+"05"x

254

From the de�nition of S, we have:

8x 6= 0 1 = xy

This equation gives in turn 8 bi-linear equations in 8 variables. We will not write these

equations between the x

i

and the y

j

, but instead we will write dire
tly the resulting equations

between the inputs and outputs of the whole S-box:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
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>
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<
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 = z

0

x

4

+ z

0

x

5

+ z

0

x

1

+ x

0

z

6

+ x

0

z

4

+ x

0

z

1

+ x

2

z

7

+ x

2

z

4

+ x

2

z

2

+ x

3

z
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+ x

3

z
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+ x

3

z

1

+

x

4

z
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z
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+ x
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z
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z
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1
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We observe that the �rst 7 equations have no 
onstant parts and therefore are also true for

x = 0. Therefore we obtained here 7 equations that are true with probability 1, plus one

additional equation that is true if and only if x 6= 0, i.e. with probability 255=256.

The existen
e of these (quadrati
) equations for g and S is obvious. Surprisingly, we will show

that mu
h more su
h equations exist. (It leads to systems of equations that have mu
h more

equations than unknowns, and allows interesting atta
ks on Rijndael.)

We observe that we have:

8x 6= 0 x = x

2

� y

This equation happens to be true also for x = 0. Wa have therefore:

8x 2 GF (256)

8

>

>

<

>

>

:

x = x

2

� y

x

2

= x

4

� y

2

.

.

.

x

128

= x � y

128

Ea
h of equation is the square of the previous one, and sin
e the square is linear as a multi-

variate fun
tion, ea
h these 8 equations will generate the same set (more pre
isely the same

modulo a linear 
ombination) of 8 multivariate equations on the x

i

and the y

j

.

We 
hoose therefore one of these equations, for example the last. It is symmetri
 with respe
t

to the ex
hange of x and y and we obtain the following 2 equations:

�

x

128

= xy

128

y

128

= yx

128

We have two equations in GF(256) are true with probability 1. Sin
e x 7! x

128

is linear,

if written as a set of 8 multivariate linear fun
tions, ea
h of above 2 equations will give 8

quadrati
 equations with 8 variables. We 
ompute dire
tly the resulting equations on the

whole S-box:
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In all, for ea
h Rijndael S-box we have 23 bi-aÆne equations between the x

i

and the z

j

. We

have veri�ed that all these equations are linearly independent and that there are no more

su
h equations.

Moreover, if x is always di�erent than 0, we will have all the 24 linearly independent equations

that will be satis�ed.

A.1 Remarks

Fully quadrati
 equations. It is possible to see that if we 
onsider fully quadrati
 equations,

not only bi-aÆne, for ea
h S-box of Rijndael there are r = 39 quadrati
 equations with t = 137.

The additional 16 equations 
ome from the following two equations:

�

x

4

y = x

3

y

4

x = y

3

However when using r = 39 and t = 137 we always obtained worse results in the XSL atta
k

than with r = 23 and t = 81. This is due to the fa
t that it gives � = 2

16:4

instead of 2

13:4

.

About the inverse-based S-boxes in general Similarly, it is easy to see that if the S-box

on s bits is an aÆne transformation of the inverse fun
tion in GF (2

s

), then it will give 3s� 1

bi-aÆne equations true with probability 1, and one additional equation true with probability

1�

1

2

s

. We 
onje
ture that there is no more su
h equations.

Up till now, it seemed a very good idea to use su
h S-boxes in pra
ti
al 
iphers. This was due

to the fa
t that the inverse fun
tion (and its aÆne equivalents) has many optimality results

with regard to linear, di�erential and high-order di�erential atta
ks, see [2, 15℄.

We have done 
omputer simulations for many permutations in
luding all the possible powers



in GF (2

s

). They showed that the inverse (and its equivalents) is the worse in terms of the

number of su
h bi-aÆne equations. It is an open problem to �nd any other non-linear fun
tion

GF (2

s

)! GF (2

s

) that admits so many equations, for some s > 0. Therefore though in many


ases the 
iphers are probably still very se
ure, we do not advo
ate to use su
h S-boxes.

Related work: The equations we have found for the Rijndael S-box are exa
tly of the same

type and of very similar origin, as the equations that Ja
ques Patarin have dis
overed in

1988 on the Matsumoto-Imai 
ryptosystem [16℄. The existen
e of su
h equations on Rijndael

S-boxes have been �rst dis
overed (but not published) by Ni
olas Courtois, Louis Goubin and

Ja
ques Patarin, as soon as Rijndael have been proposed as AES in 2000.



B The Dire
t MQ Atta
k on Rijndael

It is interesting to know how to des
ribe Rijndael as a system of quadrati
 equations with

a minimum number of variables and maximum number of equations. We are in the se
ond

atta
k s
enario with one or a few known plaintexts, as in Se
tion 4.1.

B.1 Minimizing the Number of Variables for Rijndael

For ea
h round i, we know that there are r �4�Nb quadrati
 equations between the (Z

i�1 j

+

K

i�1 j

) and the (Z

i k

). They are of the following form:

0 =

X

�

ijk

Z

i�1 j

Z

i k

+

X

�

ijk

[K

i�1 j

℄Z

i k

+

X

�

ij

Z

i j

+

X

�

ij

[K

i j

℄ + 
:

Ex
eption is made for the �rst round, for whi
h the Z

0

being known, they are of the form:

0 =

X

�

ij

[K

0 i

℄Z

1 j

+

X

�

i

Z

1 i

+

X




i

[K

0 i

℄ + Æ:

Finally, for the last round, the X

N

r

k

will be expressed as a sum of the known 
iphertext

Z

N

r

+1 k

and [K

N

r

k

℄, giving the equations of the form:

0 =

X

�

ij

Z

N

r

�1 i

[K

N

r

j

℄ +

X

�

ij

[K

N

r

�1 i

℄[K

N

r

j

℄ +

X

�

i

Z

N

r

�1 i

+

+

X

�

i

[K

N

r

�1 i

℄ +

X




i

[K

N

r

i

℄ + Æ:

In all we will get 4 � r � N

r

� Nb quadrati
 equations over GF (2). The number of variables

Z

i j

is only 4 � s � (N

r

� 1) �Nb.

B.2 Using the Key S
hedule

In the 
ipher we have:

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

: (2)

In order to de�ne what are the [K

i j

℄ we need to 
hoose a basis for the K

i j

. From the key

s
hedule [4℄ it is obvious that one may take as "true key variables" all the Nk variables from

the �rst round, then all the �rst 
olumns of ea
h 
onse
utive key states, and if Nk = 8, also

the 5th 
olumns. By inspe
tion we see that the number of "true key variables" is:

L

k

=

8

<

:

32 �

�

Nk +

�

N

r

�Nb+Nb�Nk

Nk

��

if Nk 6= 8

32 �

�

Nk +

�

N

r

�Nb+Nb�Nk

4

��

if Nk = 8

For example, for 128-bit Rijndael with H

k

= 128 we have L

k

= 32 � (4+10) = 448 "true" key

variables.

Additional equations. We 
all "redundant true variables" all the L

k

�H

k

additional vari-

ables that are determined by some initial subset of H

k

variables. From the key s
hedule we

see that for ea
h of these L

k

� H

k

"redundant true variables" we may write r = 23 (or 24)

quadrati
 equations. Ea
h of the "redundant true" key state 
olumns is a XOR of one the

previous 
olumns, a parallel appli
ation of 4 S-boxes to another 
olumn, and of a 
onstant.

Thus these equations are of the form:

X

�

ijkl

[K

i j

℄[K

k l

℄ +

X

�

ij

[K

i j

℄ + 
: (3)

The number of these equations is:

r �

L

k

�H

k

s



B.3 Putting all the Equations Together

Theorem B.3.1 (Redu
tion Rijndael ! MQ). The problem of re
overing the se
ret key

of Rijndael given about one pair plaintext/
iphertext 
an be written as an overde�ned system

of

m = 4 � r �Nb �N

r

+ r(L

k

�H

k

)=s

sparse quadrati
 equations with the number of unknowns being:

n = 4 � s � (N

r

� 1) �Nb+ L

k

:

B.4 Examples

We will use fully quadrati
 equations obtained in Se
tion A.1. We have r = 39 and t = 137,

however sin
e this atta
k will only require 1 or 2 known plaintexts, we may assume r = 40

(exa
tly as in Se
tion 3.3).

Thus for the 128-bit Rijndael with 128-bit key, we 
an write the problem of re
overing the

key as a system of 8000 quadrati
 equations with 1600 variables.

For the 256-bit Rijndael with 256-bit key, we get a system of 22400 quadrati
 equations with

4480 variables.

B.5 Theoreti
al Consequen
es for Rijndael and AES

The above redu
tion has already some very important 
onsequen
es for Rijndael and AES. We


onsider the se
urity of some generalized version of Rijndael in whi
h the number of rounds

N

r

in
reases and all the other parameters are �xed.

On one hand, in all general atta
ks previously known against su
h 
iphers, for example in linear

or di�erential atta
ks, the se
urity grows exponentially with N

r

. There are also 
ombinatorial

atta
ks su
h as square atta
k, but these will simply not work if N

r

is suÆ
iently large.

On the other hand, we observe that the number of variables (and the number of equations)

in the redu
tion is linear in the number of rounds N

r

. Therefore, if the MQ problem is

subexponential, whi
h is our view of the results given in the XL paper [22℄, to break Rijndael

will also be subexponential

8

, i.e. the se
urity will not grow exponentially with the number of

rounds N

r

.

Remark: It is important to see that the result would not be the same if the redu
tion were

for example quadrati
 in Nr. In this 
ase XL 
ould be subexponential, for example in n

p

n

but the Rijndael 
ould still be fully exponential, for example in (N

2

r

)

N

r

.

Remark 2: It seems that the same remark will hold for any blo
k 
ipher 
omposed with

rounds of �xed type: obviously ea
h of them 
an always be written as a set of quadrati


equations. However in this 
ase, the size of the system (even for one round) will be so huge

that there will be no hope for any pra
ti
al atta
ks.

B.6 Pra
ti
al Consequen
es for Rijndael and AES

In Se
tion 5.2 we tried to apply the XL algorithm, exa
tly as des
ribed in Appendix D.2 or

in the paper [22℄. It fails and there is no eÆ
ient algorithms known to solve su
h general

systems of equations as above. However the systems obtained as des
ribed above are sparse.

We 
onsider for example the MQ problem we wrote for 128-bit Rijndael. For a general system

of quadrati
 R = 8000 equations with n = 1600 variables, we have about T = n

2

=2 � 2

20

8

This is not 
ertain, it is possible that XL is subexponential only on average, and AES gives some

very spe
ial systems. Still it seems very likely to be true.



terms. This gives R=T � 2

�7:3

that is very small and the XL algorithm has to do extensive

work in order to a
hieve R

0

=T

0

� 1, see Appendix D.2. In the MQ system we wrote above, it is

easy to see that the number of terms is only about T � (8�32+8�32+8+32+8)�(N

r

�4�Nb).

This gives only R=T � 2

�3:5

and suggests that for this system theremust be a better method

than XL. In Se
tion 6.2 we will write su
h a system of quadrati
 equations in a di�erent way

in order to a
hieve an even higher value of R=T . For this there will be one variable for ea
h

input and ea
h output bit of an S-box, whi
h on one side leads to more equations and more

(redundant) variables, but on the other side the system be
omes more sparse.



C Simulations on XSL

The XSL atta
k is heuristi
 and in order to verify if it works as expe
ted, one should do


omputer simulations. It is impossible to do it dire
tly on Rijndael or Serpent, the systems

are too big. Even if we restri
t to Rijndael or Serpent to one round, the system will still be

very big. Therefore we did some simulations on a smaller "toy 
iphers". The goal is not prove

that the XSL atta
k works for Rijndael but to see whether it behaves as predi
ted on small

examples.

To know what is the exa
t 
omplexity of the XSL atta
k for this or other 
on
rete 
ipher, is

a di�erent (and more 
omplex) question that requires even more simulations. Moreover there

are many possible variants of XSL that might give very di�erent results.

C.1 Simulations on a Toy Cipher

We build a toy 
ipher in the following way:

1. It is very similar to Serpent, ex
ept that the key s
hedule will just use permutations of

bits, as in DES.

2. We will use mainly the notations from Se
tion 2.1.

3. The size of the 
ipher will be small so that the atta
ks will be pra
ti
al.

4. The S-box is the following permutation on s = 3 bits that has been 
hosen as a random

non-linear permutation: f7; 6; 0; 4; 2; 5; 1; 3g.

5. It gives r = 14 fully quadrati
 equations with t = 22 terms, i.e. equations of the type:

X

�

ij

x

i

x

j

+

X

�

ij

y

i

y

j

+

X




ij

x

i

y

j

+

X

Æ

i

x

i

+

X

�

i

y

i

+ � = 0

6. These equations are:
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 = x

1

x

2

+ y

1

+ x

3

+ x

2

+ x

1

+ 1

0 = x

1

x

3

+ y

2

+ x

2

+ 1

0 = x

1

y

1

+ y

2

+ x

2

+ 1

0 = x

1

y

2

+ y

2

+ y

1

+ x

3

0 = x

2

x

3

+ y

3

+ y

2

+ y

1

+ x

2

+ x

1

+ 1

0 = x

2

y

1

+ y

3

+ y

2

+ y

1

+ x

2

+ x

1

+ 1

0 = x

2

y

2

+ x

1

y

3

+ x

1

0 = x

2

y

3

+ x

1

y

3

+ y

1

+ x

3

+ x

2

+ 1

0 = x

3

y

1

+ x

1

y

3

+ y

3

+ y

1

0 = x

3

y

2

+ y

3

+ y

1

+ x

3

+ x

1

0 = x

3

y

3

+ x

1

y

3

+ y

2

+ x

2

+ x

1

+ 1

0 = y

1

y

2

+ y

3

+ x

1

0 = y

1

y

3

+ y

3

+ y

2

+ x

2

+ x

1

+ 1

0 = y

2

y

3

+ y

3

+ y

2

+ y

1

+ x

3

+ x

1

7. The number of rounds is N

r

.

8. Let B be the number of S-boxes in ea
h round. There are B � s bits in ea
h round, for


onvenien
e there are numbered here 0::Bs� 1.

9. We will use a key of the same length: H

k

= B � s bits, so that one known plaintext will be

(on average) suÆ
ient to determine the key K

0

= (K

0 1

; : : : ;K

0 Bs

) and therefore � = 1.

10. Ea
h round i 
onsists of the XOR with the derived key K

i�1

, a parallel appli
ation of the

B S-boxes, and then of a permutation of wires is applied.

For the last round an additional derived key K

N

r

is XORed.

11. Thus the linear equations from the key s
hedule will be (following the notations of Se
tion

2.1) as follows:

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

: (4)



12. As in Se
tion 2.1, we denote the plaintext by Z

0

and the 
iphertext by X

N

r

+1

: they are


onsidered as abbreviations for 
onstants, not as variables.

13. The permutation of wires is de�ned as j 7! (j + 4 mod Bs), in other words the following

equations are true:

Y

i (j�4 mod Bs)

= Z

i j

for all i = 1::N

r

: (5)

14. The derived key K

i

is obtained from K

0

by a permutation of wires:

[K

i j

℄

def

= K

0 (j+i mod Bs)

:

15. There is no S-boxes in the key s
hedule, D = 0.

16. On this 
ipher (that resembles Serpent) we will apply a spe
i�
 version of the se
ond XSL

atta
k des
ribed in Se
tion 7.

17. We use the optimisti
 evaluation of P equal to P = d22=14e = 2.

18. Sin
e D = 0, following Se
tion 7.1 we will use one "arti�
ial" S-box that 
ontains all the

key variables, and thus E = 1.

19. As in Se
tion 7 we have S = � �B �N

r

+D +E = B �N

r

+ 1.

20. The equations 
ounted in R are: the initial (S � E) � r equations multiplied by another

equation form a di�erent S-box, plus ea
h of these equations multiplied by one of some t

terms for some other "passive" S-box, plus ea
h of these equations multiplied by one of

H

k

key variables. Following Se
tion 6.3, we will repla
e t by (t� r) in our 
omputations.

Thus we obtain:

R = r(S �E) � r(S �E � 1)=2 + r(S �E) � (t� r) � (S �E � 1) + r(S �E) �H

k

:

In pra
ti
e we observed that for an unknown reason, if the (t � r) terms are 
hosen in

a 
ertain way, the rank obtained will slightly de
rease. Therefore, in order to obtain the

best results we in
luded al the possible equations (multiplying by all possible t terms) and

only at a later stage we redu
e their number by taking a random subspa
e of the spa
e

generated by these equations.

21. The equations on the di�usion part will be written on the basis of the equations from (4)

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

in whi
h for i = 0 the value Z

i j

will be repla
ed

by the appropriate plaintext bit, and for i 6= 0 we repla
e it by Y

i (j�4 mod Bs)

= Z

i j

from (5). There are (N

r

+ 1) �B � s su
h equations.

22. The equations 
ounted in R

0

are: The equations above themselves, plus ea
h of these

equations multiplied by the H

k

variables that is already present in the equation, plus

ea
h of them multiplied by one non-
ontant term for some S-box, with ex
lusion of some

terms for the S-boxes that are 
onne
ted with the 
urrent equation (but some produ
ts

are still OK and does not in
rease the number of terms T in the atta
k). In the table

below we will give the exa
t number R

0

examining all the possibilities one by one, here

we give only an approximation:

R

0

� (N

r

+ 1) �B � s+ (N

r

+ 1) �B � s+ (N

r

+ 1) �B � s(S �E) � (t� r):

Here again, following Se
tion 6.3 and Se
tion 6.4, we repla
ed t by (t� r) in our 
ompu-

tations. In pra
ti
e we generated all the equations. It is however important to 
ompute

the values R and R' as explained above in order to see if the number Free of linearly

independent equations is well (or not) approximated by R+R

0

. We will se that the answer

is yes, and it suggests that the estimations of the 
omplexity of the XSL atta
k given in

Se
tion 6.5 are 
lose to reality.



23. The number of terms that appear in our equations in
lude all the t(S � E) +H

k

initial

terms and all produ
ts of terms from di�erent S-boxes. This gives:

T = t(S �E) +H

k

+ t

2

�

S �E

2

�

+ t(S �E) �H

k

;

24. As we explained in Se
tion 6.3 we will never a
hieve

Free

T

> 1. Following Se
tion 6.1, our

goal is to a
hieve

Free

T�T

0

> 1.

25. Anyone 
an verify our simulations with any 
omputer algebra system 
apable of reading

and simple gaussian elimination on multivariate equations. We generated two 
on
rete

examples of the equations we used in the simulations for N

r

= 2 and N

r

= 10. They 
an

be downloaded at: http://www.minrank.org/example xsl 2 2.zip

and http://www.minrank.org/example xsl 2 10.zip.

These two examples also 
ontain detailed 
omments

9

and an exhaustive list of all terms

with indi
ation whi
h of them are in T

0

.

In the tables below we present the results of the simulations.

S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 2 6 1 6 1 3 588 284 742 336 727 0:9798 1:7906

3 14 22 2 6 2 6 1 5 2856 616 3241 840 3187 0:9833 1:3274

3 14 22 2 6 3 6 1 7 6804 1140 7504 1344 7329 0:9767 1:1273

3 14 22 2 6 4 6 1 9 12432 1856 13531 1848 13170 0:9732 1:1881

3 14 22 2 6 5 6 1 11 19740 2764 21322 2352 20711 0:9713 1:0918

3 14 22 2 6 6 6 1 13 28728 3864 30877 2856 29952 0:9700 1:0689

3 14 22 2 6 7 6 1 15 39396 5156 42196 3360 40893 0:9691 1:0530

3 14 22 2 6 8 6 1 17 51744 6640 55279 3864 53534 0:9684 1:0412

3 14 22 2 6 9 6 1 19 65772 8316 70126 4368 67875 0:9679 1:0322

3 14 22 2 6 10 6 1 21 81480 10184 86737 4872 83914 0:9675 1:0250

3 14 22 2 6 11 6 1 23 98868 12244 105112 5376 101654 0:9671 1:0192

3 14 22 2 6 12 6 1 25 117936 14496 125251 5880 121098 0:9668 1:0145

3 14 22 2 6 13 6 1 27 138684 16940 147154 6384 142235 0:9666 1:0104

3 14 22 2 6 14 6 1 29 161112 19576 170821 6888 165080 0:9664 1:0070

3 14 22 2 6 15 6 1 31 185220 22404 196252 7392 189621 0:9662 1:0040

3 14 22 2 6 16 6 1 33 211008 25424 223447 7896 215862 0:9661 1:0014

3 14 22 2 6 17 6 1 35 238476 28636 252406 8400 243803 0:9659 0:9992

3 14 22 2 6 18 6 1 37 267624 32040 283129 8904 273444 0:9658 0:9972

3 14 22 2 6 19 6 1 39 298452 35636 315616 9408 304785 0:9657 0:9954

3 14 22 2 6 20 6 1 41 330960 39424 349867 9912 337826 0:9656 0:9937

3 14 22 2 6 21 6 1 43 365148 43404 385882 10416 372567 0:9655 0:9923

3 14 22 2 6 22 6 1 45 401016 47576 423661 10920 409008 0:9654 0:9910

3 14 22 2 6 23 6 1 47 438564 51940 463204 11424 447149 0:9653 0:9897

3 14 22 2 6 24 6 1 49 477792 56496 504511 11928 486990 0:9653 0:9886

3 14 22 2 6 25 6 1 51 518700 61244 547582 12432 528531 0:9652 0:9876

We see that that when B = 2, the XSL atta
k works for up to 16 rounds.

9
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Fig. 1. The value

Free

T�T

0

as a fun
tion of the number of rounds N

r

.

Here is another series of simulations with B = 4 and B = 8.

S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 4 12 1 12 1 5 3192 952 3751 912 3693 0:9845 1:3008

3 14 22 4 12 2 12 1 9 13104 2384 14545 1920 14184 0:9752 1:1235

3 14 22 4 12 3 12 1 13 29736 4584 32395 2928 31470 0:9714 1:0680

3 14 22 4 12 4 12 1 17 53088 7552 57301 3936 55556 0:9695 1:0411

3 14 22 4 12 5 12 1 21 83160 11288 89263 4944 86442 0:9684 1:0252

3 14 22 4 12 6 12 1 25 119952 15792 128281 5952 124128 0:9676 1:0147

3 14 22 4 12 7 12 1 29 163464 21064 174355 6960 168614 0:9670 1:0073

3 14 22 4 12 8 12 1 33 213696 27104 227485 7968 219900 0:9667 1:0017

3 14 22 4 12 9 12 1 37 270648 33912 287671 8976 277986 0:9663 0:9975

3 14 22 4 12 10 12 1 41 334320 41488 354913 9984 342872 0:9661 0:9940

3 14 22 4 12 11 12 1 45 404712 49832 429211 10992 414558 0:9659 0:9912

3 14 22 4 12 12 12 1 49 481824 58944 510565 12000 493044 0:9657 0:9889



S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 8 24 1 12 1 9 14448 3440 16573 2064 16212 0:9782 1:1174

3 14 22 8 24 2 12 1 17 55776 9376 61345 4080 59600 0:9716 1:0408

3 14 22 8 24 3 12 1 25 123984 18384 134431 6096 130188 0:9691 1:0110

3 14 22 8 24 4 12 1 33 316736 30464 235561 8112 227796 0:9678 1:0023

C.2 Con
lusion

Apparently both

Free

T

and

Free

T�T

0

either 
onverge to a �xed value, or they de
rease very slowly.

If they 
onverge, both limits are identi
al, be
ause it 
an be shown that

T�T

0

T

! 1. Surpris-

ingly it seems that this limit is the same for B = 2, B = 4 and B = 8.

We see that for B = 2 the XSL atta
k will work for up to 16 rounds. Only for 17 rounds we

have

Free

T�T

0

< 1. A similar behaviour is observed when B = 4 and when B = 8.

When

Free

T�T

0

< 1, there are probably some ways to improve the atta
k. Ultimately, sin
e we

observe that

Free

T

seems to 
onverge to a limit that is below 1, and sin
e

T

0

T

! 0, starting

from some number of rounds it will be ne
essary to in
rease P to make the atta
k work.

More simulations and/or a better theory to understand the behaviour of the XSL atta
k for

bigger 
iphers and for more rounds.



D The XL Algorithm

In order to make this paper self-suÆ
ient we des
ribe the XL algorithm for the 
ase of GF (2).

We also re
all the simpli�ed analysis of the 
omplexity of XL from [22℄, that seems approx-

imatively 
orre
t. For experimental results on XL one should refer to se
tion D.7 or to the

original paper [22℄.

D.1 Solving MQ with the XL Algorithm

The origin of the XL algorithm was the relinearization algorithm presented by Shamir and

Kipnis at Crypto'99. From the relinearization algorithm, it seemed obvious that if the system

of equations is overde�ned, then the problem is mu
h easier. In a paper published at Euro-


rypt'00 [22℄, authors propose a new algorithm 
alled XL, that 
an be seen as an improved

version of relinearization.

D.2 How XL Works

We 
onsider the problem of solving m quadrati
 equations with n variables that are in GF (2).

In general, the number of quadrati
 terms in these equations is about t � n

2

=2 (but it 
an be

less).

Let D = 2; 3; : : : be a parameter of the XL algorithm. What the algorithm basi
ally does,

is to multiply ea
h possible equation 1:::m by all possible produ
ts of D � 2 variables. Thus

we get about: R �

�

n

D�2

�

m new equations. The total number of terms that appear in these

equations is about T =

�

n

D

�

. We expe
t that most of the equations are linearly independent.

Then, we pi
k a suÆ
iently big D su
h that

R =

�

n

D � 2

�

m �

�

n

D

�

= T:

Obviously the number of linearly independent equations 
annot ex
eed the number of terms

T . We expe
t that if the system has a unique solution (see Se
tion D.4), then there is su
h a

D for whi
h R � T , and su
h that also the number Free of linearly independent equations

in R will be very 
lose to T . Then if the rank de�
it T � Free is not too big, we expe
t that

the system will be solved. It is easy when T � Free is a very small number, but still possible

when T �Free is quite big. For example let T

0

be the number of terms out of T that 
ontain

only the �rst 40 variables. If Free > T � T

0

+ 40, then we are able to obtain (by progressive

elimination of terms) to obtain a system of 40 equations with 40 variables that 
an be solved

by the exhaustive sear
h. Then we �x these 40 variables and we should obtain T �Free mu
h

smaller in the new system, and it will probably not be ne
essary to repeat the above "tri
k"

with some other 40 variables.

We expe
t that the D value for whi
h XL works is equal or very 
lose to the theoreti
al value

D for whi
h R � T . Thus the XL algorithm is expe
ted to su

eed when:

R � T ) m �

�

n

D

�

=

�

n

D � 2

�

� n

2

=D

2

:

This gives

D �

n

p

m

and the 
omplexity of the atta
k is about

T

!

�

�

n

D

�

!

�

�

n

n=

p

m

�

!



with ! � 3 being the exponent of the Gaussian redu
tion. It is un
lear what value ! will be

realisti
 in our atta
ks, see Se
tion F.

From the above formula it seems that XL is subexponential, however very little is known

about the a
tual behaviour of XL for very big systems of equations.

D.3 Remarks by T.T. Moh on XL

In [13℄ T.T. Moh states that "From the theory of Hilbert-Serre, we may dedu
e that the XL

program will work for many interesting 
ases for D large enough".

In Se
tion 4 of [13℄ the author shows a very spe
ial example on whi
h XL fails, however he

did not fully understand the power of XL, for example with FXL, or an appropriate �nal step

with T

0

su
h as des
ribed above in Se
tion D.2, or the version des
ribed in Se
tion 6.1.

In Se
tion 3 the author makes a serious mistake. He assumes D � n in a formula in whi
h

D = O(

n

p

m

). He shows that Free=R �

(n+D)(n+D�1)

D(D�1)m

= w and obviously w !

1

m

when

D ! 1. However D is never as big as n, if we assume that we have D �

n

p

m

as in the

previous se
tion, we get w � 1. The 
on
lusion of T.T. Moh is in
orre
t.

D.4 Uni
ity of the Solution

In the paper [22℄, authors made many 
omputer simulations on XL algorithm in the �eld

GF (127). In some 
ases XL failed, and this is apparently due to the fa
t that the system had

many solutions, not in the base �eld GF (127), but is some algebrai
 extension. Indeed su
h

manipulations on the equations that are done in XL (des
ribed above): multiplying equations

by monomials and 
ombining them, 
onserve all the solutions in the algebrai
 
losure of

GF (127). This is not a problem for small �elds, for example GF(2). When multiplying su
h

equations by monomials of a small degree, we will make expli
it usage of the equation of the

�eld x

2

i

= x

i

for ea
h of the variable x

i

, and always write x

i

instead of x

2

i

. Su
h repeated

intera
tion with the equation of the �eld will eliminate all the solutions with variables being

not in GF (2).

Another problem with XL is that if there are many solutions, there is no simple algebrai


equation that would englobe all of them, and the algorithm has to fail.

Conversely it seems that for a system of quadrati
 equations over a small �eld GF (2)(and

also other GF (q) with q small), that has only one solution in the base �eld GF (2), the XL

method will always work, ex
ept maybe for some very spe
ial systems.

D.5 XL and Sparsity

It is obvious that if in the initial system t < n

2

=2, i.e. not all possible n

2

=2 quadrati
 terms

are present, XL will work better. After multiplying ea
h of the equations

�

n

D�2

�

by one of the

terms, it may happen that not all the possible

�

n

D

�

terms will be obtained. In this 
ase we

might obtain a stri
tly smaller D, for whi
h the number of linearly independent equations

will be big enough. Sin
e the algorithm is exponential in D, lowering it even by one, will

yield a dramati
 improvement in the 
omplexity. This improvement will be even better if the

terms have some spe
i�
 stru
ture that will allow us to multiply them by only some sele
ted

monomials. This should be done in su
h a way that, as mu
h as possible di�erent produ
ts

of some monomial with some of the initial terms (i.e. present in the initial equations), should

lead to identi
al terms of degree D. Thus we will generate many equations while maintaining

the total number of terms small. The XSL atta
k we introdu
e in Se
tion 6, has been designed

in su
h a way.



D.6 Does XL Always Work ?

It is important to understand that the XL algorithm will not always work. Following the

XL 
omplexity evaluation, an overde�ned system of equations (big m=n) leads to a dramati


improvement in XL 
omplexity 
ompared to other systems with the same number of variables

(the 
ase of underde�ned MQ is studied in [5℄). Still it is easy to produ
e overde�ned systems

on whi
h it fails. For example if we mix two systems of equations with separate sets of variables,

one of whi
h is very mu
h overde�ned, and the other of whi
h is not, we will still obtain a

largely overde�ned system of equations. However applying XL will only �nd solutions to one

of the systems, and never to the other.

Bad things may also happen when variables are linearly dependent. For example 
onsider

a system of m = 100 equations with n = 100 variables over GF (2). If we apply XL to

this system we have: D � n=

p

m � 10 and the 
omplexity of the XL atta
k is very big:

about

�

n

D

�

2:376

� 2

104

. Now we add just 10 additional variables that are linear 
ombinations

of the existing variables. It allows to write 10 new linear equations and to derive 10 � n =

10�100 new quadrati
 equations. Everything seems 
orre
t: all these equations will be linearly

independent. Now we have a new system of m

0

= 1110 quadrati
 equations with n

0

= 110

variables. If we naively apply XL, we get D

0

� n

0

=

p

m

0

� 4 and the 
omplexity of the XL

atta
k would be only:

�

n

0

D

0

�

2:376

� 2

53

. It is less than before, though our system is just the

expansion of the previous system. In reality, the XL algorithm will 
ertainly fail for this se
ond

(very spe
ial) system. The exa
t analysis of the 
omplexity of XL for systems having dependent

variables is not as simple anymore. For example in the relinearization te
hnique from [21, 22℄,

when some variables are produ
ts of some other variables, less linearly independent equations

than expe
ted are obtained, see [22℄. The relinearization algorithm still works, but not as well

as XL: it seems that adding new variables that are de�ned as 
ombinations of the previous

variables is a bad idea. It will 
reate more than expe
ted linear dependen
ies at some further

stage, see [22℄.

There are many questions open about XL and similar methods. In general we tend to believe

that, if su
h methods doesn't not work, there is usually a 
ombinatorial or algebrai
al reason

for this, and sooner or later we will �nd out how to prove that it does not work. Currently

it seems that (at least) these 
onditions should be satis�ed for methods su
h as XL, XSL (or

relinearization) to work:

1. The system should have a unique solution.

2. The variables should be "well mixed".

3. There shouldn't be possible to exhibit a subsystem and a variable 
hange, for whi
h the

subsystem 
ontains less terms than the expe
ted 
ontribution from this subsystem, to the

total number of linearly independent equations.

On the other side, if we are not able to prove that the atta
k fails, one should assume that

it may (or may not) work and should do 
omputer simulations, that would either invalidate

the 
laim, either give a partial 
on�rmation. This is the approa
h of [22℄ and of Se
tion C.

D.7 Simulations on XL

In the paper that des
ribes XL, the authors demonstrate that XL works with a series of


omputer simulations over GF (127) (some more are given in the extended version of the

paper [22℄). Sin
e then, T.T.Moh makes in [13℄ some reserves whether the XL algorithm

a
tually works as expe
ted. See Se
tion D.3 to see why these remarks are unsubstantial. In

this se
tion we present some 
omputer simulations on the XL algorithm over GF (2). No su
h

simulations have been published so far.



In all the simulations that follow we will pi
k a random system of linearly independent

quadrati
 non-homogenous equations y

i

= f

i

(x

1

; : : : ; x

n

) and pi
k a random input x =

(x

1

; : : : ; x

n

). Then we modify the 
onstants in the system, in order to have a system that

gives 0 in x, i.e. we write a system to solve as 8 i l

i

(x

1

; : : : ; x

n

) = 0. If n is not too big, we

also require that the system has a unique solution, whi
h is the 
ase with good probability.

In the following table we �x n and try a random system of m linearly independent equations

with growing m and with a �xed D. We denote by R the number of equations generated, T

is the number of terms T �

n

D

. Free is the number of linearly independent equations and T

0

is the number of terms that 
an be multiplied by one variable, for exemple x

1

. The atta
k is

expe
ted to work when Free=(T � T

0

) > 1, see Se
tions D.2 and 6.1.

n 10 10 10 10 10 10 10 10 10

m 10 11 12 13 14 15 16 17 18

D 3 3 3 3 3 3 3 3 3

R 110 121 132 143 154 165 176 187 198

T 176 176 176 176 176 176 176 176 176

T

0

92 92 92 92 92 92 92 92 92

Free 110 121 132 143 154 165 174 175 175

Free

R

1:000 1:000 1:000 1:000 1:000 1:000 :9886 :9358 :8838

Free

T

:6250 :6875 :7500 :8125 :8750 :9375 :9886 :9943 :9943

Free

T�T

0

1:310 1:441 1:571 1:702 1:833 1:964 2:071 2:083 2:083

n 10 10

m 10 11

D 4 4

R 560 616

T 386 386

T

0

260 260

Free 385 385

Free

R

:6250 :6875

Free

T

:9974 :9974

Free

T�T

0

3:056 3:056

n 20 20 20 20 20 20 20 20 20

m 20 22 24 26 28 30 32 34 36

D 4 4 4 4 4 4 4 4 4

R 4220 4642 5064 5486 5908 6330 6752 7174 7596

T 6196 6196 6196 6196 6196 6196 6196 6196 6196

T

0

2320 2320 2320 2320 2320 2320 2320 2320 2320

Free 4010 4389 4764 5135 5502 5865 6195 6195 6195

Free

R

:9502 :9455 :9408 :9360 :9313 :9265 :9175 :8635 :8156

Free

T

:6472 :7084 :7689 :8288 :8880 :9466 :9998 :9998 :9998

Free

T�T

0

1:035 1:132 1:229 1:325 1:420 1:513 1:598 1:598 1:598

n 20 20

m 20 22

D 5 5

R 27020 29722

T 21700 21700

T

0

10072 10072

Free 21699 21699

Free

R

:8031 :7301

Free

T

1:000 1:000

Free

T�T

0

1:866 1:866



E A Toy Example for the "T

0

method"

This is a 
on
rete working example for the �nal step of the XSL algorithm 
alled the "T

0

method". It 
an also be applied to the XL algorithm.

We have n = 5 variables, and thus T = 16 and T

0

= 10. We start with a random system

having exa
tly one solution, and with Free > T � T

0

and with 2 ex
eeding equations, i.e.

Free = T � T

0

+ 2. Here is a system in whi
h T

0

is de�ned with respe
t to x

1

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

x

3

x

2

= x

1

x

3

+ x

2

x

3

x

4

= x

1

x

4

+ x

1

x

5

+ x

5

x

3

x

5

= x

1

x

5

+ x

4

+ 1

x

2

x

4

= x

1

x

3

+ x

1

x

5

+ 1

x

2

x

5

= x

1

x

3

+ x

1

x

2

+ x

3

+ x

4

x

4

x

5

= x

1

x

2

+ x

1

x

5

+ x

2

+ 1

0 = x

1

x

3

+ x

1

x

4

+ x

1

+ x

5

1 = x

1

x

4

+ x

1

x

5

+ x

1

+ x

5

Here is the same system in whi
h T

0

is de�ned with respe
t to x

2

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

x

1

x

3

= x

3

x

2

+ x

2

x

1

x

4

= x

3

x

2

+ x

2

+ x

1

+ x

5

x

1

x

5

= x

2

x

4

+ x

3

x

2

+ x

2

+ 1

x

3

x

5

= x

2

x

4

+ x

3

x

2

+ x

2

+ 1 + x

4

+ 1

x

3

x

4

= x

2

x

4

+ x

1

+ 1

x

4

x

5

= x

1

x

2

+ x

2

x

4

+ x

3

x

2

0 = x

1

x

2

+ x

2

x

5

+ x

3

x

2

+ x

2

+ x

3

+ x

4

0 = x

2

x

4

We have rank = 8. Now multiply the two ex
eeding equations of the �rst version of the system

by x

1

.

n

0 = x

1

x

3

+ x

1

x

4

+ x

1

+ x

1

x

5

0 = x

1

x

4

We have rank = 10. We get two new linearly independent equations.

We rewrite these equations, using the se
ond system, only with terms that 
an be multiplied

by x

2

. Now we have 4 ex
eeding equations for the se
ond system (two old and two new):

8

>

<

>

:

0 = x

1

x

2

+ x

2

x

5

+ x

3

x

2

+ x

2

+ x

3

+ x

4

0 = x

2

x

4

0 = x

2

x

4

+ x

3

x

2

+ x

5

+ x

2

+ 1

0 = x

3

x

2

+ x

2

+ x

1

+ x

5

We multiply these four equations by x

2

.

8

>

<

>

:

0 = x

1

x

2

+ x

2

x

5

+ x

2

x

4

+ x

2

0 = x

2

x

4

0 = x

2

x

4

+ x

3

x

2

+ x

5

x

2

0 = x

3

x

2

+ x

2

+ x

1

x

2

+ x

2

x

5

We are not lu
ky, the se
ond equation is invariant by this transformation. Still we get three

new linearly independent equations. We have rank = 13.

We rewrite, using the �rst system, the three new equations with terms that 
an be multiplied

by x

1

.

(

1 = x

1

x

5

+ x

2

+ x

3

+ x

4

1 = x

1

x

2

+ x

1

x

3

+ x

1

x

5

+ x

2

+ x

3

+ x

4

0 = x

3

+ x

4

Still rank = 13. Then we multiply the three new equations by x

1

:

(

1 = x

1

x

5

+ x

1

x

2

+ x

1

x

3

+ x

1

x

4

1 = x

1

x

5

+ x

1

x

4

0 = x

3

+ x

4



We have rank = 14. We get one more linearly independent equation. The two other are

redundant. Now we rewrite the �rst equation with terms that 
an be multiplied by x

2

:

0 = x

1

x

2

+ x

2

x

4

+ x

3

x

2

+ x

1

+ x

2

+ x

5

We have still rank = 14. Then we multiply the new equation by x

2

:

0 = x

2

x

4

+ x

3

x

2

+ x

2

x

5

+ x

2

We get another new linearly independent equation. We have rank = 15. The rank is the

maximum that 
an be a
hieved, there are 15 non-zero monomials here, and rank = 16 
an

only be a
hieved for a system that is 
ontradi
tory.



F About the Value of !

F.1 What is the Complexity of Gaussian Redu
tion ?

In pra
ti
e it is usually assumed that ! = 3. We prefer to use a fairly theoreti
al result on

the best known exponent for the Gaussian redu
tion from the paper [3℄, that shows that

! � 2:376. The (negle
ted) 
onstant fa
tor in this algorithm is unknown to the authors of

[3℄, and is expe
ted to be very big. Still, we 
laim that in 
ryptography one should be

optimisti
 on atta
ks, in order not to be surprised by the future improvements. In

this paper we deal with extremely big systems of equations, and therefore even a big 
onstant

will be relatively small. For other reasons, even a 
onstant as big as 20000, 
an 
ertainly be

negle
ted. This is be
ause we need to have a fair measure of 
omplexity 
ompared to the

exhaustive sear
h. In the exhaustive sear
h, the unitary operation is one en
ryption, that will

take for example about 300 CPU 
y
les. For our atta
ks, unitary operation is the addition of

bits modulo 2, and it is possible to do about 64 su
h binary additions modulo 2 in parallel in

one single CPU 
lo
k. Therefore the unit is about 64 � 300 � 20000 times smaller.

F.2 Further Improvements, or Can ! be Even Less in XSL ?

There are some hopes to a
hieve a further improvement in !. On one hand this might 
ome

from new algorithms for Gaussian redu
tion being dis
overed, whi
h seems to stumble on

some diÆ
ult 
omputational problems, see [19, 3℄.

On the other hand, it is very likely that the elimination 
an be done faster in the spe
ial 
ase

of systems generated in the XSL atta
k. Clearly the �nal (big) system is still quite sparse

and have a very regular stru
ture. For example it is possible to 
ompute in 
onstant

time a list of all equations that 
ontain a given term. Therefore it is probably possible to

design a progressive elimination te
hnique. Su
h a te
hnique would, instead of generating a

huge system of equations and eliminating all terms in it, generate the system by parts and

eliminate terms for smaller systems, in su
h a (
lever) way that the terms that have already

been eliminated will not be generated anymore. It 
ould also use spe
ial data stru
ture that

is dynami
ally updated with a reasonable 
ost, in order to be able to always �nd all the

equations that 
ontain a given term in sub-quadrati
 (or maybe even linear) time, i.e. faster

than in the general 
ase.

It is un
lear how mu
h 
an be gained from a 
areful 
ombination of all these ideas. It seems

not 
ompletely unsound to believe that the 
omplexity might be redu
ed even to O(T

2

), i.e.

! might be as low as 2.

Remark: EÆ
ient methods for solving big systems of multivariate quadrati
 equations al-

ready exist and are based on Gr�obner bases. Thus for example in [6℄ it is shown how to �nd

a solution to the HFE Challenge 1 [18℄ in 2

62

using 390 Giga-bytes of disk spa
e. On April

10th 2002, at the 
ryptographi
 seminar at Versailles University, Jean-Charles Faug�ere from

Paris 6 University have presented an implementation of his re
ent Gr�obner bases algorithm

F5/2 that managed to solve the same HFE 
hallenge 1 in 96 hours on an 833 MHz Alpha

workstation with 4 Gigabytes of memory. It seems that the equations dis
overed in [6℄ are

pre
isely the same that allow the F5/2 algorithm to work eÆ
iently. From this, we expe
t

that the F5/2 algorithm will also help to solve the equations obtained in the XSL atta
ks

mu
h faster than expe
ted.


