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Abstrat. Several reently proposed iphers are built with layers of small S-boxes,

interonneted by linear key-dependent layers. Their seurity relies on the fat, that

the lassial methods of ryptanalysis (e.g. linear or di�erential attaks) are based on

probabilisti harateristis, whih makes their seurity grow exponentially with the

number of rounds N

r

.

In this paper we study the seurity of suh iphers under an additional hypothesis:

the S-box an be desribed by an overde�ned system of algebrai equations (true with

probability 1). We show that this hypothesis is true for both Serpent (due to a small size

of S-boxes) and Rijndael (due to unexpeted algebrai properties). We study general

methods known for solving overde�ned systems of equations, suh as XL from Euro-

rypt'00, and show their ineÆieny. Then we introdue a new method alled XSL that

uses the sparsity of the equations and their spei� struture.

The XSL attak has a parameter P , and in theory we show that P should be a onstant.

The XSL attak would then be polynomial in N

r

, with a huge onstant that is double-

exponential in the size of the S-box. We demonstrated by omputer simulations that

the XSL attak works well enough on a toy ipher. It seems however that P will rather

inrease very slowly with N

r

. More simulations are needed for bigger iphers.

Our optimisti evaluation shows that the XSL attak might be able to break Rijndael

256 bits and Serpent for key lengths 192 and 256 bits. However if only P is inreased

by 2 (respetively 4) the XSL attak on Rijndael (respetively Serpent) would beome

slower than the exhaustive searh. At any rate, it seems that the seurity of these

iphers does not grow exponentially with the number of rounds.

KeyWords: blok iphers, AES, Rijndael, Square, Serpent, Camellia, multivariate quadrati

equations, MQ problem, overde�ned systems of multivariate equations, XL algorithm, Gr�obner

bases, sparse multivariate polynomials.

Note: This paper is kept on e-print as an arhive of the early work, was written between

November 2001 and Mai 2002, and is kept unhanged sine, exept orreting some small

errors and typos. This paper ontains a general desription of the so alled �rst and seond

XSL attak on blok iphers. A di�erent version, so alled ompat version of the �rst XSL

attak, is published in Asiarypt 2002. When studying suh attaks, intuition is very triky,

and though Coppersmith and Moh one laimed that they know that suh attaks will not

work, so far we did not see any serious argument against XSL.

Attaks in 2

100

on 128-bit AES: This attak, is a simple adaptation of the seond XSL

attak, exatly as desribed here, proposed by Murphy and Robshaw. For eah S-box of AES,

we deompose it as the modi�ed inverse in GF (256) and a multivariate aÆne funtion. Then

we reate 16 variables for this S-box: if x; y are the input and the output of the modi�ed

inverse, we will onsider x; x

2

; x

4

; x

8

; x

16

; x

32

; x

64

; x

128

; y; y

2

; y

4

; y

8

; y

16

; y

32

; y

64

; y

128

as sepa-

rate variables (and rename them). Then, given all these new variables, the S-boxes will give

quadrati equations in these new variables, and all the remaining AES will be desribed in

terms of linear equations. We an then apply the seond XSL attak, with s = 8, r = 24 and

t = 41. The exat omplexity of this attak remains an open problem.



1 Introdution

On Otober 2nd, 2000, NIST has seleted Rijndael as the Advaned Enryption Standard,

destined for massive world-wide usage. Serpent was seond in the number of votes [1℄.

In the famous paper from 1949, Claude E. Shannon states that breaking a good ipher should

require "as muh work as solving a system of simultaneous equations in a large number of

unknowns of a omplex type", see [24℄. This seemed very easy to ahieve so far, as solving

systems of equations an beome intratable very easily. For example in [8℄ Ferguson, Shroep-

pel and Whiting show how to represent Rijndael with one big equation to solve. The equation

is so big: 2

50

terms for a 128-bit ipher, that it has ertainly no onsequenes whatsoever on

the seurity of Rijndael. Similarly, though every ipher an obviously be desribed in terms

of a system of multivariate equations over GF (2), it does not mean that it an be broken. In

the last ten years however surprising attaks have appeared in publi key ryptography: the

ryptanalysis of Matsumoto-Imai ryptosystem [16℄ by Patarin and the attak on the basi

version of HFE ryptosystem by Courtois [6℄. In these attaks the seurity ollapses suddenly

after disovery (either theoretial or experimental) of the existene of additionalmultivariate

equations, that are not obvious and have not been antiipated by the designers of the original

ryptosystems. In this paper, the same thing will happen to some blok iphers.

In this paper we redue the ryptanalysis of Rijndael and Serpent to solving a system of Mul-

tivariate Quadrati equations (a.k.a. MQ problem). MQ is not a ontrived problem as in [8℄

and is already known in ryptography. Several publi key ryptosystems are based on hardness

of MQ, the best of them being probably HFE published at Eurorypt 1996 [18℄. At Crypto'99

and in Eurorypt'00, Shamir et al. showed that though MQ is NP-hard, its omplexity drops

substantially when the MQ beomes overde�ned (more equations than unknowns), see [21,

22℄

1

. In this paper we show that if the MQ is sparse and have a regular struture, it beomes

still muh easier. It turns out that, the systems of quadrati equations obtained for Rijndael

and Serpent, will be both overde�ned and sparse.

Sine the pioneering work of Luby-Rako� [12℄, there were many developments on the seurity

of top-level shemes of blok iphers. The state of art in both seurity proofs and generi

attaks for Feistel iphers an be found in [14℄ and [17℄. However Rijndael is not a Feistel

ipher and a more powerful theory has been developed by Vaudenay [25℄: it allows to make

seurity proofs against a large lass of attaks inluding linear and di�erential ryptanalysis,

for an arbitrary type of ipher. From this theory Moriai and Vaudenay have developed at

Asiarypt'00 seurity proofs for idealized versions of several AES andidates [26℄. The outome

for Rijndael was somewhat strange: they needed 384 rounds of Rijndael in order to make sure

it was seure. Similar results were obtained for Serpent. Therefore it is not ompletely unsound

to believe that some attaks might exist for Rijndael and Serpent, for whih the seurity would

grow slowly with the number of rounds. In this paper we present suh an attak.

The paper is organized as follows: �rst we desribe a general lass of iphers that inludes

Rijndael and Serpent. Then we explore algebrai properties of the Rijndael S-box and show

that it gives an overde�ned system of equations. Suh equations will also exist for Serpent for

a very di�erent reason. Consequently we write the ryptanalysis of Rijndael and Serpent (and

other similar iphers) as solving an overde�ned system of quadrati equations. The general XL

attak known for this problem fails and we will present the new attak alled XSL that uses the

sparsity of the equations (and their struture). It omes in two versions: �rst is very general,

does not use the key shedule, and is studied approximatively in order to investigate the

asymptoti behaviour of XSL. The seond version does use the key shedule and is designed

for onrete ryptanalysis of Rijndael and Serpent, with all the preision neessary. In the

Appendix C we present our simulations done on the XSL attak. Finally from the simulation
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Remark: The opposite, underde�ned ase of MQ has been studied in [5℄.



results and our estimations we will try to apply the XSL attak to Rijndael and Serpent. It

will also imply many interesting onlusions about the design of blok iphers.

2 Substitution-AÆne Ciphers, Rijndael and Serpent

A natural way to onstrut ipher is to follow the Shannon's paradigm of mixing onfusion

layers with di�usion layers [24℄. For example SP-networks [7, 10℄ are ombinations of layers of

S-boxes with permutations of bits. More generally we may allow linear or aÆne funtions of

bits, not only permutations of wires. We all it a SA-ipher.

At Eurorypt'00 Shamir and Biryukov studied top-level strutural attaks against the SA-

iphers, i.e. the attaks do not depend on partiular S-boxes used [20℄. In our attaks we will

use some speial properties of the S-boxes.

In this paper we will speify a restrited lass of SA-iphers alled XSL-iphers. Though our

attaks are designed for XSL-iphers, it is obvious that they an be easily extended to all

SA-iphers, and even to other blok iphers (inluding Feistel iphers), provided that they

use "bad" S-boxes and have a regular struture.

2.1 XSL-iphers

By de�nition, an XSL-ipher is a omposition of N

r

similar rounds:

X The �rst round i = 1 starts with a XOR with the session key K

i�1

.

S Then we apply a layer of B bijetive S-boxes in parallel, eah on s bits,

L Then we apply a linear di�usion layer,

X Then we XOR with another session key K

i

.

Then if i = N

r

we �nish, otherwise we inrement i and go bak to step S.

We denote the key bits used in an XSL-ipher by the variables K

i j

with i = 0::N

r

and

j = 1::s �B. There are N

r

+ 1 session keys, K

0

is the �rst and K

N

r

is the last. The number

of key bits before expansion is H

K

, the number of key bits after expansion is Ek, and the

number of bits that are linearly independent among those is L

k

. If we pik some L

k

key

variables K

i j

to form a basis, we will denote by [K

i j

℄ a linear expression of (any) key bit as

a linear ombination of the K

i j

that are in the basis.

We all X

i j

the j-th bit of the input of i� th round funtion of a XSL-ipher, i.e. taken after

the XOR with the session key. We denote by Y

i j

the j-th bit of the input of the linear part

of i� th round funtion of a XSL-ipher, i.e. taken after the appliation of the orresponding

S-box to the s orresponding X

i j

.

Similarly we denote by Z

i j

the j-th bit of the output of the round funtion (before the XOR

with the next session key). In onsequene we denote the plaintext by Z

0

and the iphertext

by X

N

r

+1

, however these are onstants, not variables.

With these notations X

i+1 j

= Z

i j

�K

i j

for all i = 0::N

r

.

2.2 The Top-level Struture of Rijndael

Rijndael spei�ed in [4℄, is a speial type of XSL-ipher with s = 8, B = 4 � Nb. We don't

give a full desription of it, but will reall all the essential fats when neessary. Rijndael

has N

r

= 10::14 rounds. The data in Rijndael is represented as retangular "states" that are

omposed of Nb olumns, eah having the size of 4 S-boxes (4 � s = 32 bits). We have either

Nb = 4, 6 or 8, whih gives blok sizes of respetively Nb � 32 = 128, 192 and 256 bits. The

enryption in Rijndael is performed as follows:

X We XOR the session key K

i�1

.



S Then we have B = Nb � 4 S-boxes on s = 8 bits eah.

L Then we have a permutation of bytes alled ShiftRow, followed by a linear transformation

GF (256)

4

! GF (256)

4

alled MixColumn applied in parallel for eah of Nb olumns.

If i = N

r

(in the last round) the MixColumn is omitted.

X Then we XOR with another session key K

i

and either �nish, either go to S and ontinue

with another round...

The (unexpanded) key length is H

k

= Nk � 32 bits with Nk = 4, 6 or 8, whih is expanded

to Ek = (N

r

+ 1) � s �B = (N

r

+ 1) �Nb � 32 bits.

2.3 The Top-level Struture of Serpent

Serpent desribed in [1℄ is an XSL-ipher with s = 4, B = 32, N

r

= 32. The blok size is

always 128 bits. The key length an be H

k

= 128, 192 or 256 bits, and is also expanded to

Ek = (N

r

+ 1) � s �B = 1056 bits.

3 S-boxes and Overde�ned Algebrai Equations

The only non-linear part of XSL-iphers are the S-boxes. Let F : GF (2)

s

! GF (2)

s

be suh

an S-box F : x = (x

1

::x

s

) 7! y = (y

1

::y

s

). In Rijndael and Serpent, like for all other "good"

blok iphers, the S-boxes are build with "good" boolean funtions. There are many riteria

on boolean funtions that are more or less applied in ryptography. One of them is that eah

y

i

should have a high algebrai degree when expressed as a multivariate polynomial in the x

i

.

However all this does not assure that there is no "impliit" multivariate equations of the form

P (x

1

; : : : ; x

s

; y

1

; : : : ; y

s

) that are of low algebrai degree. We will show that for Rijndael, and

for Serpent, for very di�erent reasons, a great number of suh equations exist.

Suh "impliit" equations has already been used to ryptanalyse the Matsumoto-Imai ryp-

tosystem in [16℄ and the HFE ryptosystem in [6℄, but apparently it is the �rst time they will

be used in ryptanalysis of blok iphers.

For a spei� degree of the equations d (usually d = 2) we are interested in the atual number

r of suh equations P (x

1

; : : : ; x

s

; y

1

; : : : ; y

s

). Unlike for "expliit" equations y

i

= f(x

1

; ::; x

s

),

this number r an be bigger than s. We are also interested in the number of monomials that

appear in these equations denoted by t, and ounted inluding the onstant term. In general

t �

�

s

d

�

. If t�

�

s

d

�

, we say that the equations are sparse.

If r = s, suh equations are (approximatively) suÆient to fully desribe the S-box: for eah

y there will be on average 1 solution x. Thus when r � s, we will say that the system is

overde�ned.

3.1 The quality of S-boxes and Random S-boxes

When r is lose to t, we may eliminate most of the terms by linear elimination, and obtain

simpler equations that are sparse and maybe even linear. For this reason it is possible to

mesure the quality of our system of equations by the ratio t=r � 1. If t=r is lose to 1, the

S-box is onsidered as "bad". From this point of view, both overde�ned systems (big r) and

sparse systems (small t) will be "bad". Otherwise, if the system is not overde�ned and not

sparse, t=r � O(s

d�1

), and suh an S-box will be "good" (unless s is very small).We will see

that the atual ontribution of the S-boxes to the omplexity of the attaks desribed in this

paper is approximatively � = (t=s)

dt=re

. It is possible to show that for a random S-box, the

smallest value of � that an be ahieved will be double-exponential in s, however this an

still be relatively small if s is very small, e.g. 4 bits. For di�erent reasons, for both Rijndael

and Serpent S-boxes, we will �nd overde�ned systems of equations with quite a small � .



3.2 Overde�ned Equations on the Serpent S-box

We show that 4-bit S-boxes always do give an overde�ned system of multivariate equa-

tions. For this we write a 16 � 37 matrix ontaining in eah row the values of the t = 37

monomials f1; x

1

; ::; x

4

; y

1

; ::; y

4

; x

1

x

2

; ::; x

1

y

1

; ::; y

3

y

4

g for eah of the 2

s

= 16 possible entries

x = (x

1

; ::; x

4

). The rank of this matrix is at most 16, therefore whatever is the S-box, there

will be at least r � 37� 16 = 21 quadrati equations. This is a very overde�ned system sine

21�4. We have t=r � 1:75 and � = (t=s)

dt=re

� 86 � 2

6

.

We note that a smaller t=r would be ahieved with ubi equations on this S-box, but � would

be muh bigger then. It is also possible to onsider bi-aÆne equations. In this ase we have

t = 25 and r � 25� 16 = 9 whih is still overde�ned, however it gives a larger � � 244 � 2

8

.

3.3 Overde�ned Equations on the Rijndael S-box

For Rijndael we have s = 8. It is quite big ompared to Serpent: there are (2

8

)! � 2

1684

bijetive S-boxes on 8 bits, ompared with only (2

4

)! � 2

44

for s = 4. For this reason we

don't expet any useful properties to happen by hane. For example it is easy to see that

with the method desribed above in 3.2 a random S-box on 8 bits will give r = 0 beause

2

s

= 256 is bigger than the number 137 of possible quadrati terms. Still the Rijndael S-

box has been hosen for optimality results with regard to linear, di�erential and high-order

di�erential attaks, and is urrently the unique S-box known that ahieves all these optima,

see [2, 15℄ for details. This uniqueness implies many very speial properties.

Rijndael S-box is a omposition of the "pathed" inverse in GF(256) with 0 mapped on

itself, with a multivariate aÆne transformation GF (2)

8

! GF (2)

8

. Following [4℄ we all these

funtions respetively g and f and we all S = f Æ g. Let x be an input value and y = g(x)

the orresponding output value. We also note z = S(x) = f(g(x)) = f(y). Aording to the

de�nition of the S-box:

8x 6= 0 1 = xy

This equation gives in turn 8 multivariate bi-linear equations in 8 variables and this leads to 8

bi-aÆne equations between the x

i

and the z

j

. As we explain more in details in the Appendix

A, 7 of these equations are true with probability 1, and the 8th is true with probability

255=256. The existene of these equations for g and S is obvious. Surprisingly, muh more

suh equations exist. For example we have:

x = y � x

2

Sine x 7! x

2

is linear, if written as a set of 8 multivariate funtions, the above equation

gives 8 bi-aÆne equations between the x

i

and the y

j

, and in turn between the x

i

and the

z

j

. Moreover this equation in GF(256) is symmetri with respet to the exhange of x and y.

Thus we get 16 bi-aÆne equations true with probability 1 between the x

i

and the z

j

.

From the above we have 23 quadrati equations between x

i

and the z

j

that are true with

probability 1. We have expliitly omputed these equations (see Appendix A), have veri�ed

that they are all linearly independent, and have also veri�ed that there are no more suh

equations (however there would be more if we allowed additional terms, see Appendix A.1).

The terms present in these equations are t = 81: these are f1; x

1

; ::; x

8

; z

1

; ::; z

8

; x

1

z

1

; ::; x

8

z

8

g,

there is no terms in x

i

x

j

or z

i

z

j

. Here we get t=r � 3:52 and � � 2

13:4

(more than for

Serpent).

Additional equations for Rijndael We observe that in Rijndael S-box, if x is always di�er-

ent than 0, there 24 linearly independent quadrati equations. For one S-box, the probability

of this 24th equation to be true is 255=256. We are interested in probability that it is true



for all S-boxes in the exeution of Rijndael (i.e. we have x 6= 0 everywhere). As it has been

already pointed out by the authors of [8℄, this probability is quite big. It is about

2

:

(255=256)

4�Nb�N

r

+4�(1+1

Nk>6

)�N

r

This gives between 1=2 for the smallest Rijndael 128 bits and about 1=9 for the biggest 256-bit

version. Therefore if an attak works better with 24 equations, it will usually be worthwhile

to use them all and repeat the whole attak 2-9 times. For this reason, if an attak uses only

one (or two) exeutions of the ipher we will assume r = 24, otherwise we have r = 23.

4 The MQ attak on Blok Ciphers

It is obvious that for any SA-ipher suh that S-boxes an be desribed in terms of some

algebrai equations, the ryptanalysis of the ipher an be written as a problem of solving a

system of suh equations. If these equations are Multivariate Quadrati, we all this attak

"MQ attak". It is the ase for Rijndael and Serpent, as shown above in 3.3 and 3.2.

4.1 The Attak Senarios

There are many ways in whih the MQ attak an be applied. The system of equations should

be written in suh a way that they should have exatly one solution. For this it is suÆient in

pratie to build a system having one solution on average. Then if there are a few solutions,

prior to the solving stage, we would guess and �x a few bits.

First (general) attak ignoring the key shedule This attak is designed for any XSL-

ipher, whatever is the key shedule. Sine there are (N

r

+1) keys K

i

that are of the same size

as a plaintext, and we want enough onstraints to determine them (about) uniquely, we will

need (N

r

+1) known plaintexts. A better version will use a set of hosen plaintexts that di�er

by only a few bits in one single S-box. Thus we will have many ommon variables between

systems of equations written for di�erent plaintext/iphertext pairs.

This attak senario will be used in Setion 6. For simpli�ation we will study only the known

plaintext version. It is easy to see that the hosen-plaintext version amounts to the same

attak with the number of rounds N

r

dereased by approximatively 1 or 2.

Seond (spei�) attak using the key shedule Another attak we are going to use

will require only one known plaintext. However if the key is longer than the blok size, we

may require another plaintext. This attak is less general and will rely on the fat that the

key shedule in Rijndael and Serpent is very similar to the ipher itself: it uses a ombination

of aÆne transformations and (the same) S-boxes.

Stronger attak senarios If suh attaks as MQ are possible, i.e. there are eÆient meth-

ods to solve quadrati equations, then they allow to attak blok iphers in very strong

senarios. For example it is possible to design iphertext-only attaks. For this we only need

to haraterize the redundany of the plaintext in terms of quadrati equations, and this an

be done either with partial knowledge of iphertexts, or with related iphertexts.

2

This formula is exat if Nk = Nb



4.2 The Diret MQ Attak on Rijndael and Serpent

For example in the seond senario, the problem of reovering the key of the 128-bit Rijndael,

will be written as a system of 8000 quadrati equations with 1600 variables. These equations

are written in details in Appendix B. In the remaining part of the paper we will study solving

suh systems of equations. The results for Rijndael are given in Setions 5.2 and 8.1.

Similarly, the 128-bit Serpent would give a system of (N

r

+ 1) � B � r +N

r

� B � r = 43680

equations with (N

r

+ 1) � s �B + (N

r

� 1) � s �B = 8192 variables.

5 Generi Methods for Solving Multivariate Quadrati Equations

MQ is a known and rather natural NP-hard problem. Several publi key ryptosystems are

based on MQ, for example HFE [18℄. Still, little is known about the atual hardness of it.

From the redution above it is lear that if this problem was very easy for 1600 variables, then

Rijndael would be broken. With urrent attaks, fatoring a 1600-bit RSA modulus provides

a seurity level slightly lower than 2

128

[23℄. Therefore if Rijndael is seure, MQ should be at

least as hard as fatoring.

5.1 Solving MQ with the XL Algorithm

At Crypto'99, Shamir and Kipnis make an important disovery about the MQ problem [21℄:

Solving it should be muh easier for overde�ned systems

3

. This idea has been developed and

onsolidated in a paper published at Eurorypt'00 [22℄. An algorithm alled XL is developed

for this problem. It seems that for a random system of quadrati equations over GF (2) (or

one that looks random) that has a unique solution, the XL method should always work (but

maybe not for some very speial systems). In [13℄ T.T. Moh states that "From the theory

of Hilbert-Serre, we may dedue that the XL program will work for many interesting ases

for D large enough". From [22℄ it seems also that XL ould be subexponential, however

very little is known about the atual behaviour of suh algorithms for very big systems of

equations. Therefore all the omplexity estimations we are going to derive in this paper should

be onsidered as approximative. In the Appendix D.2 we reall the XL algorithm and all the

basi fats about it from [22℄.

5.2 First Attempt to Cryptanalyse Rijndael with XL

For the 128-bit Rijndael with 128-bit key, following Setion 4.2 (or the Theorem B.3.1 in

Appendix B.3), we get a system of m = 8000 equations with n = 1600 variables. Following

the omplexity evaluation of XL from [22℄, (explained also in Appendix D.2), it would lead

to a working XL algorithm with the parameter D being about D � n=

p

m � 18. Thus the

omplexity of the diret XL attak is about

�

n

D

�

!

� 2

330

:

This attak fails beause for a random system of quadrati R = 8000 equations with n = 1600

variables, we have about T = n

2

=2 � 2

20

terms. This gives R=T � 2

�7:3

that is very small

and the XL algorithm has to do extensive work in order to ahieve R

0

=T

0

� 1. It is easy to

see that in our system T � (8 � 32 + 8 � 32 + 8 + 32 + 8) � (N

r

� 4 �Nb) and this gives only

R=T � 2

�3:5

, see Appendix B.6. Therefore there must be a muh better attak.

In the next Setion 6.2 we will write suh a system of quadrati equations in a di�erent way

in order to ahieve an even higher value of R=T .

3

In this paper we will show that if the MQ is sparse, it is still muh easier.



6 The (First) XSL Attak

Instead of the general tehnique XL from [22℄, we will now design a ustom-made algorithm

that will take advantage of the spei� struture of the equations and of their sparsity. We

will all this attak XSL attak whih stands for: "eXtended Sparse Linearization" or "mul-

tiply(X) by Seleted monomials and Linearize".

Starting from the initial equations for eah S-box of the ipher with r equations and t terms, we

will write a set of quadrati equations that will ompletely de�ne the seret key of the ipher.

In the XL algorithm, we would multiply eah of these equations by all possible monomials of

some degree D � 2, see Setion D.2 or [22℄. Instead we will only multiply them by arefully

seleted monomials. It seems that the best thing to do is to use produts of monomials that

already appear in other equations. In [22℄, when R � T , we have as many equations as the

number of terms that appear in these equations and the big system is expeted to be solved

by adding a new variable for eah term, and solving a linear system (doing this is known as

linearization).

6.1 The Working ondition of the XSL attak or the "T

0

Method"

There is no need to have R muh bigger than T . In the original paper about XL [22℄, the

system was solved when T � Free was a small number. Still it is easy to see that both XL

and XSL algorithms work also when T � Free is very big (!). To see this, let for example let

x

1

be a variable, and let T

0

be the number of terms that an be multiplied by x

1

and still

belong to the set of T terms. Now we assume that Free � T � T

0

+ C with a small C. We

apply the following algorithm alled "T

0

method", see Appendix E to see how this works on

an expliit example.

1. By one single gaussian elimination we bring the system to a form in whih eah term is a

known linear ombination of the terms in T

0

.

2. We do the same pre-omputation two times, for example with T

0

de�ned for x

1

and

separately for x

2

.

3. In eah of the two systems, we have a subsystem of C equations that ontain only terms

of T

0

. These new equations are probably not of the same kind that the initial equa-

tions generated in XL-like attaks: only ombining all the equations one an obtain some

information about the solution, parts of the system usually have many solutions.

4. In eah of the two subsystems of exeeding C equations, we multiply eah equation by

x

1

and respetively x

2

. Then we substitute the expressions from point 1 in these to get

some other equations that ontain only terms of T

0

, but for the other variable. These

equations are expeted to be new and di�erent

4

. First beause the equations from point

2 are believed to ontain "some information" about the solution that is not in any small

subset of R equations, and moreover if we are overGF (2) we will interat with the equation

of the �eld GF(2) that is not neessarily done elsewhere.

5. Thus, if at the beginning Free >= C + T � T

0

we an "grow" the number of equations.

At this moment we expet to have up to 2C additional equations, less in pratie.

6. We expet that the number of new equations grows exponentially

5

.

7. If the initial system has a unique solution we expet that by we will end up with Free = T .

4

We have done several omputer simulations, and as expeted this heuristi works with good prob-

ability. New linearly independent equations are obtained in this way. See also Appendix E for an

expliit example.

5

Even if it grows by 1 eah time, the attak will work as predited.



8. For eah equation ontaining only terms in T', the ost to ompute a derived additional

equation will be about T

02

. Sine there are T

0

equations missing, we expet to do about

T

03

additional operations in the attak, whih an probably be redued to T

0!

and thus

will be smaller than T

!

.

9. If the whole attak fails one should try with another ouple of variables instead of x

1

and

x

2

, or use three variables from the start (and three systems). We onjeture that three

variables should always be suÆient. The number of possibilities grows very fast with

the number of variables, a new equation obtained with one variable an be immediately

transformed and expanded with all the other variables.

For example, in our attak on Rijndael 128 bits given in Setion 8.1, we will obtain T � 2

96

and T

0

� 2

90

. The XSL attak is expeted to work as long as Free > T � T

0

� 99:4% T .

6.2 The Core of the First XSL Attak

Let A be an S-box of a XSL-ipher, alled "ative S-box". For this S-box A we may write r

equations of the form:

0 =

X

�

ijk

X

i j

Y

i k

+

X

�

ij

X

i j

+

X



ij

Y

i j

+ Æ:

The number of monomials that appear in these equations is small, only t (most of them of

the form X

i j

Y

i k

). For this reason (unlike as in Appendix B) we kept both the variables X

i j

and Y

i k

.

We are going to multiply these equations by one of t monomials existing for some other S-

boxes (alled "passive" S-boxes). Let S be the total number of S-boxes in our attak. Sine

we are going to use the most general attak senario desribed in 4.1 that ignores the key

shedule of the ipher, we onsider N

r

+ 1 exeutions of the ipher and S will be equal to

B �N

r

� (N

r

+ 1).

The ritial parameter of our attak will be P 2 IN. In the attak we will multiply eah

equation of eah "ative" S-box by all possible terms for all subsets of (P �1) other "passive"

S-boxes. The XSL attak is designed in suh a way that, for a big P we will obtain something

very similar to the general XL attak. However due to the speial struture of the equations,

a muh smaller P should be suÆient.

The total number of equations generated by this method will be about:

R � r � S � t

P�1

�

�

S � 1

P � 1

�

The total number of terms in these equations will be about:

T � t

P

�

�

S

P

�

6.3 Eliminating Obvious Linear Dependenies

It is possible to see that all the set of equations we wrote in Setion 6.2 above are not linearly

independent. First let us assume P = 2. Let Eq

1

: : : Eq

r

and Eq

0

1

: : : Eq

0

r

be the equations

that exist respetively for two S-boxes A and A'. Let T

1

: : : T

t

be the terms that appear

in the Eq

i

. Instead of writing produts: T

1

Eq

0

1

; : : : ; T

t

Eq

0

1

we may equivalently write the

following: T

1

Eq

0

1

; : : : ; T

t�r

Eq

0

1

and then omplete by Eq

1

Eq

0

1

; : : : ; Eq

r

Eq

0

1

. But if we apply

this transformation for all the equations we have written in the previous setion, we see that

the eah of the Eq

i

Eq

0

j

ours twie. From this example we see that for any P , one should

rather generate the equations of Setion 6.2 in the following way: On one hand we restrit to

multiplying an "ative" equation only by one of the monomials T

1

::T

t�r

for some "passive"



S-box of our system, and on the other hand we also add the equations ontaining produts of

several "ative" S-boxes. Then it seems that there are no other obvious linear dependenies.

The number of equations in the �rst part of XSL is therefore less than expeted:

R �

X

i=1::P

�

S

i

�

r

i

�

�

S � i

P � i

�

(t� r)

P�i

=

�

S

P

�

�

t

P

� (t� r)

P

�

As before, the total number of terms in these equations is about T � t

P

�

�

S

P

�

.

Remark on R=T

From this we see already that when P grows we will have R=T ! 1. Moreover, we have

T

0

� t

0

t

P�1

�

�

S � 1

P � 1

�

with t

0

< t being the number of terms that an be multiplied by x

1

, for example t

0

= 25 for

Rijndael. In order to solve suh a system of equations, following Setion 6.1, we need to have

T � R < T

0

, i.e.

�

S

P

�

(t� r)

P

=

S

P

�

S � 1

P � 1

�

(t� r)

P

< t

0

t

P�1

�

S � 1

P � 1

�

It boils down to

S

P

(t� r)

P

< t

0

t

P�1

and already from this we may see that we will have

T � R < T

0

for a suÆiently large P . Moreover, R is not all the equations we will use.

6.4 The Equations on the Di�usion Layers

We do not yet have a system having one and unique solution and we need some additional

equations. We will onstrut these equations in suh a way that they an be multiplied by

many terms, and still they will be written with the same T monomials.

We will eliminate all the key variables and write additional equations of the form:

X

i j

�

X

�

j

Y

i�1 j

= X

0

i j

�

X

�

j

Y

0

i�1 j

= X

00

i j

�

X

�

j

Y

00

i�1 j

= : : :

We have N

r

�(N

r

+1)�(sB) suh equations. Eah of these equations, alled "ative equation",

will be multiplied by produts of terms for some (P � 1) "passive" S-boxes. Here we need to

exlude the terms for a few neighbouring S-boxes (i.e. that have ommon variables with the

ative equation), though some of suh terms still an be inluded and will not add any new

terms to the T previously desribed. The number of new equations is about:

R

0

� N

r

� (N

r

+ 1) � (sB) � t

P�1

�

�

S

P � 1

�

= S � s � t

P�1

�

�

S

P � 1

�

Again, as in Setion 6.3, it is possible to see that one should generate only a part of these

equations, the remaining have to be linearly dependent. Thus we will put rather:

R

0

� S � s � (t� r)

P�1

�

�

S

P � 1

�

6.5 The Expeted Complexity of the XSL Attak(s)

The goal of the attak is to obtain T �R�R

0

> T

0

. This gives

S

P

�

S � 1

P � 1

�

(t� r)

P

� S � s � (t� r)

P�1

�

�

S

P � 1

�

< t

0

t

P�1

�

S � 1

P � 1

�

S

P

(t� r)

P

<

S

2

S � P + 1

� s � (t� r)

P�1

+ t

0

t

P�1

We will assume that P � S (S is usually quite big S � BN

2

r

) and thus S � P + 1 � S.



S

P

�

1�

r

t

�

P

< S

s

t

+

t

0

t

�

1�

r

t

�

P

<

Ps

t

+

Pt

0

St

We see that this ondition an always be satis�ed, and with P that is not too big: the left side

dereases exponentially with P , the right side inreases. If we onsider that

�

1�

r

t

�

t

r

� 1=e

we get the following approximation:

e

�P

r

t

<

Ps

t

+

Pt

0

St

P >

t

r

�

�ln

�

Ps

t

+

Pt

0

St

��

(#)

When r = 0 we will say that P =1 in the XSL attak: it annot work then.

If T

!

is the omplexity of the Gaussian redution (see F for details) then the omplexity of

the XSL attak is about:

WF = T

!

� t

!P

�

S

P

�

!

� (tS)

!P

�

�

t �B �N

2

r

�

!P

�

�

t=s � Bs �N

2

r

�

!P

�

� (t=s)

!P

� (B � s �N

2

r

)

!P

� (t=s)

!P

� (Blok size)

!P

� (Number of rounds)

2!P

Now let us apply the estimation (#). It is easy that the value

�

�ln

�

Ps

t

+

Pt

0

St

��

is bounded

by a onstant that does not depend on blok size and number of rounds of the ipher. Moreover

in pratie (for example in our later attaks) we will have the value

�

�ln

�

Ps

t

+

Pt

0

St

��

lose

to 1. Therefore it is interesting to evaluate the expeted omplexity of the XSL attak when

P = dt=re. It gives the following estimation of the omplexity of the XSL attak on blok

iphers.

WF � (t=s)

!

d

t

r

e

+o(1)

�(B �s�N

2

r

)

!

d

t

r

e

+o(1)

� �

!

�

�

(Blok size) � (Number of rounds)

2

�

!

d

t

r

e

WF = �

!

� (Blok size)

O(

t

r

)

(Number of rounds)

O(

t

r

)

This is polynomial in the blok size and the number of rounds. The onstant part depends

on � that depends only on the parameters of the S-box used in the ipher, and is in general

double-exponential in s, see Setion 3.1. For a given ipher the onstant part �

!

in the

omplexity of XSL will be �xed (but usually very big).

6.6 The Atual Complexity of the XSL Attaks

From the simulations that have been done for XL in [22℄ and for XSL in Appendix C we

believe that XL and XSL attaks will always work for some D (respetively P) and we expet

that the XSL attak should give muh better results than XL.

In the above derivation we assumed that all the equations in R+R

0

are linearly independent

and this implies that for some �xed P the attak will always work for any number of rounds.

From our simulations desribed in Appendix C it seems that P will rather inrease (but

slowly) with the number of rounds.

If P were onstant, for a �xed S-box that have many overde�ned equations, the XSL attak will

be polynomial in the number of rounds. Even if P grows slowly, and XSL is subexponential,

it would be already an important breakthrough, as the lassial attaks on blok iphers

suh as linear or di�erential ryptanalysis grow exponentially in the number of rounds (and

so does the number of required plaintexts).



In fat it is easy to ome to onlusion that the problem to break Rijndael is probably

subexponential when the number of rounds grows. Indeed, in this paper we show how to

write Rijndael as an overde�ned system of quadrati equations, with size that is linear in N

r

,

see Appendix B. The problem of solving suh a system of quadrati equations over GF(2)

is already believed subexponential (but impratial to solve) with the simple algorithm XL

from [22℄. See Setion B.5 for more omments on this. Finally, our equations from Appendix

B are also overde�ned and sparse, and this makes thing worse.

7 The Seond XSL Attak

The seond attak uses the key shedule. Unlike the very general �rst XSL attak that we

studied asymptotially, the seond attak is designed to obtain onrete attaks on Rijndael

and Serpent.

Let � be the number of plaintexts needed in order to ompletely determine the key used in

the ipher. For Rijndael and Serpent we have � = 1 or 2. As before, we will write a system

of equations in whih a separate variable exists for eah input and output bit, of eah of the

S-boxes, but here it will also inlude the S-boxes that are in the key shedule. We

will have:

S = � �B �N

r

+D +E;

with D being the number of S-boxes in the key shedule and with E = 0 or 1 being the

number of additional "arti�ial" S-boxes explained later.

First we will write the equations exatly as desribed in Setions 6.2 and 6.3. The number of

equations in the �rst part of the attak is again equal to:

R �

�

S

P

�

�

t

P

� (t� r)

P

�

However here the values of S and the de�nition of the S-boxes that enter in S has hanged,

for example the key variables an now be inluded in t for some of the S-boxes (!). We also

have the same formula for T : T � t

P

�

�

S

P

�

.

7.1 The Equations on the Di�usion Layers

The number of key variables used in this attak will be alled S

k

. We require that:

{ The key variables must ontain eah input bit and eah output bit of eah of D S-boxes

in the key shedule. This gives S

k

= 2 � s � D with D = (L

k

� H

k

)=s for Rijndael and

D = (N

r

+ 1) �B for Serpent.

� If this is suÆient to linearly span all the key variables, we have S

k

= 2 � s � D. In

this ase E = 0, i.e. there are no "arti�ial" S-boxes. This is the ase in Serpent.

� Otherwise, let E = 1 and let e be the number of the K

i j

that need to be added to

the above 2 � s � D variables, in order to linearly span all the the key variables. By

inspetion we verify that in Rijndael we have e = 8 � s+ 8 � s � 1

Nk 6=4

.

Here E = 1 and we onstrut an "arti�ial S-box" in the following way: its equations

will be an empty set, i.e. r = 0 for this S-box, and its terms will be all the e additional

variables. Having one S-box that has a bit di�erent parameters will not hange a lot

the omplexity of our attaks. For example suh an arti�ial S-box is used in our

simulations in Appendix C.

Thus for Serpent we have S

k

= 2 � s �D and for Rijndael S

k

= 2 � s �D+8 � s+8 � s � 1

Nk 6=4

.

We will (as before) denote by [K

i j

℄ the expression of K

i j

as a linear ombination of the S

k

"true" key variables. We add the following equations:



X

i+1 j

=

X

�

j

Y

i j

� [K

i j

℄ for all i = 0::N

r

: (1)

Again eah of these equations will be multiplied by produts of terms of (P � 1) "passive" S-

boxes (as before hosen out of S without a few "neighbouring"). We obtain a set of equations

that use only the T previously desribed terms

6

. The number of new equations is about:

7

R

0

� � � s �B � (N

r

+ 1) � (t� r)

P�1

�

�

S

P � 1

�

7.2 Additional Equations on the Key Shedule

In order to omplete the desription of the ipher by the equations, and thus get a system

having a unique solution we need some more equations. What is missing are the linear equa-

tions on the key shedule that ome from the fat that our S

k

key variables are not all linearly

independent. These equations are again multiplied by produts of terms of (P � 1) "passive"

S-boxes. In the ase of Rijndael it gives about (again we replaed t by t� r):

R

00

� (S

k

� L

k

) � (t� r)

P�1

�

�

S

P � 1

�

For Serpent we have:

R

00

� (s �D �H

k

) � (t� r)

P�1

�

�

S

P � 1

�

7.3 The Complexity of the Seond XSL Attak

The attak will work when P is (at least) suh that:

R+R

0

+R

00

T � T

0

> 1 (�):

For this P , the omplexity of the attak is equal to (see also Appendix F): T

!

= t

P!

�

�

S

P

�

!

.

We will not ompute the asymptoti omplexity of this attak: it is expeted to be very similar

to the �rst XSL attak. Instead we will apply it to onrete iphers, ompute the smallest P

value for whih the above inequality (�) beomes true, assume that the attak works for this

P , and ompute the onrete omplexity of the attak.

8 The Consequenes of the XSL Attaks

8.1 Appliation to Rijndael

For the basi 128-bit Rijndael, we applied the seond XSL attak and only for P = 8 we were

able to get

R+R

0

+R

00

T�T

0

= 1:005. The resulting omplexity is muh more than the exhaustive

searh:

T

!

� 2

230

From Setion 6.5 it seems that P will not depend on the blok and key sizes of the ipher

(only the parameters of the S-boxes used). Thus, even if XSL does not break the Rijndael 128

bits, the omplexity should not be muh higher and break the version with 256-bit key. The

detailed omputation shows that for � = 2 and P = 8 we obtain

R+R

0

+R

00

T�T

0

= 1:006 and the

omplexity evaluation gives:

T

!

� 2

255

6

Unlike the �rst XSL attak, here the set of S S-boxes have been onstruted in suh a way that

all the K

i j

belong to the set of terms of some S-box.

7

As in Setion 6.4 (and following the ideas from Setion 6.3) we have replaed t by t� r in order to

avoid to generate too many equations that annot possibly be linearly independent.



More interesting results an be obtained with ubi equations. Our simulations show that

with ubi equations and the Rijndael S-box we have t = 697, r = 471 and t

0

= 242. Then for

� = 2 and P = 5 we obtain

R+R

0

+R

00

T�T

0

= 1:0005 and the omplexity is about:

T

!

� 2

203

Even if we assume that the Gaussian redution is ubi, we still get 2

250

, whih is less than

the exhaustive searh. We obtain also that for P = 6 and P = 7 the omplexity is respetively

2

240

and 2

278

.

8.2 Appliation to Serpent

For Serpent we obtain exatly the same results for the key length 128, 192 and 256 bits (the

XSL attaks works by thresholds). Thus for P = 4 we get

R+R

0

+R

00

T�T

0

equal respetively to

1:0007, 1:0004 and 1:0001. The omplexity of the attak is about:

T

!

� 2

143

It seems that the XSL attak will break Serpent for key lengths 192 and 256 bits. Moreover,

this will hold also if the Gaussian redution is ubi and gives still only 2

175

. We obtain also

that for P = 5; 6; 7; 8 the omplexity is respetively 2

176

; 2

208

; 2

240

and 2

272

.

8.3 How Realisti is the XSL Attak ?

Though XSL attaks ertainly will work for some P , we onsidered the minimum value P

for whih

R+R

0

+R

00

T�T

0

� 1. A small hange (e.g. inrease by 1 or 2) in P leads to an important

overload in the omplexity. The ondition

R+R

0

+R

00

T�T

0

� 1 is neessary, but not suÆient. In

order to test the atual behaviour of the XSL attaks, in Appendix C we give the desription

and results we obtained running the XSL attak on a "toy ipher". These simulations show

that P will probably inrease, but very slowly, with the number of rounds.

8.4 Consequenes for the Design of Blok Ciphers

There are two omplementary approahes in the blok ipher design that ould be seen in the

AES ontest. Either a ipher is designed with a very small number of rounds that are very

omplex (for example in DFC), or it has a large number of rounds that are very simple (for

example in Serpent).

In [26℄ the authors warn that: "an attak against Serpent may hold for any set of (random)

S-boxes". It seems that we have found suh an attak. We laim therefore that using many

layers of very simple S-boxes is not a very good idea, and is suseptible to attaks with a

omplexity growing slowly in the number of rounds (with a huge onstant). Still, a orret

hoie of parameters will prevent the attaks.

For di�erent reasons, the XSL attak is also appliable to all iphers in whih the only non-

linear part is the inverse funtion in GF (2

s

), with a small s. Therefore iphers suh as Rijndael

and Camellia should either use s that is suÆiently large, for example s = 16, or onsider

di�erent S-boxes. This last possibility should give new optimal designs of S-boxes, not only

lose to optimal in terms of linear and di�erential attaks, but also inorporating our new

riterion, i.e. having a big value of � , for example � > 2

20

.

Even if the attaks of the present paper have not yet been tested on really big examples, they

are an important threat for iphers suh as Rijndael, Serpent and Camellia. We propose that

all blok iphers should apply the following riterion (due originally to Shannon [24℄):

The attaker should not be able to write a system of algebrai equations of simple type and

of any reasonable size, that ompletely haraterizes the seret key.

An immediate way to ahieve this is to use at least a few (relatively) big randomly generated

S-boxes. In the future the XSL attak should be taken into aount in the design of new kinds

of S-boxes.



9 Conlusion

In this paper we point out an unexpeted property of Rijndael and Serpent: they an be

desribed as a system of overde�ned and sparse quadrati equations over GF (2). It was

known from Eurorypt'00 that solving suh systems is easier if they are overde�ned, and

the problem has been onjetured to be subexponential for small �elds suh as GF (2). From

this argument we obtain that the seurity of Rijndael and Serpent probably does not grow

exponentially with the number of rounds.

A diret appliation of the XL attak from Eurorypt'00 is extremely ineÆient. Knowing that

the equations are not only overde�ned, but also sparse and strutured, we have introdued

a new method alled XSL. If the XSL attak works as well predited, it seems that it ould

even be polynomial in the number of rounds of the ipher. It seems also to break Rijndael

256 bits and Serpent for key lengths 192 and 256 bits. In order to prevent suh attaks, we

propose that at least a few S-boxes in a ipher should not be desribed by a small system of

overde�ned multivariate equations.
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A More on Algebrai Properties of the Rijndael S-box

Rijndael handles most of its omputations in GF (256) that is represented, on one hand by

polynomials b

7

X

7

+ : : :+b

1

X+b

0

in GF (2)[X ℄=X

8

+X

4

+X

3

+X+1, and on the other hand

by bytes written in hexadeimal notation orresponding to the number b

7

2

7

+ : : :+ b

1

2

1

+ b

0

.

For example "03" is the polynomial X+1 in GF (2)[X ℄=X

8

+X

4

+X

3

+X + 1.

Rijndael S-box is a omposition of the "pathed" inverse in GF(256) with 0 mapped on

itself, with a multivariate aÆne transformation GF (2)

8

! GF (2)

8

. Following [4℄ we all these

funtions respetively g and f and we all S = f Æ g.

We note x an input value and y = g(x) the orresponding output value. We will also note

z = S(x) = f(g(x)) = f(y).

A more elegant way of representing g is to write it as the power funtion.. It is easy to see

that we have g : x 7! x

254

mod X

8

+X

4

+X

3

+X + 1, as 254 � �1 mod

�

2

8

� 1

�

. In this

representation we don't need to handle a speial ase of 0. The multivariate aÆne funtion

f : GF (2)

8

! GF (2)

8

an also be written as a linearized polynomial f : GF (2

8

)! GF (2

8

):

z = f(y) = "63"+"05"y+"09"y

2

+"f9"y

4

+"25"y

8

+"f4"y

16

+"01"y

32

+"b5"y

64

+"8f"y

128

The omposition S = f Æ g gives the following sparse polynomial:

z = S(x) = f(g(x)) = f(y) = f(x

254

)

z = S(x) =

"63"+"8f"x

127

+"b5"x

191

+"01"x

123

+"f4"x

239

+"25"x

247

+"f9"x

251

+"09"x

253

+"05"x

254

From the de�nition of S, we have:

8x 6= 0 1 = xy

This equation gives in turn 8 bi-linear equations in 8 variables. We will not write these

equations between the x

i

and the y

j

, but instead we will write diretly the resulting equations

between the inputs and outputs of the whole S-box:
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We observe that the �rst 7 equations have no onstant parts and therefore are also true for

x = 0. Therefore we obtained here 7 equations that are true with probability 1, plus one

additional equation that is true if and only if x 6= 0, i.e. with probability 255=256.

The existene of these (quadrati) equations for g and S is obvious. Surprisingly, we will show

that muh more suh equations exist. (It leads to systems of equations that have muh more

equations than unknowns, and allows interesting attaks on Rijndael.)

We observe that we have:

8x 6= 0 x = x

2

� y

This equation happens to be true also for x = 0. Wa have therefore:

8x 2 GF (256)

8

>

>

<

>

>

:

x = x

2

� y

x

2

= x

4

� y

2

.

.

.

x

128

= x � y

128

Eah of equation is the square of the previous one, and sine the square is linear as a multi-

variate funtion, eah these 8 equations will generate the same set (more preisely the same

modulo a linear ombination) of 8 multivariate equations on the x

i

and the y

j

.

We hoose therefore one of these equations, for example the last. It is symmetri with respet

to the exhange of x and y and we obtain the following 2 equations:

�

x

128

= xy

128

y

128

= yx

128

We have two equations in GF(256) are true with probability 1. Sine x 7! x

128

is linear,

if written as a set of 8 multivariate linear funtions, eah of above 2 equations will give 8

quadrati equations with 8 variables. We ompute diretly the resulting equations on the

whole S-box:
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In all, for eah Rijndael S-box we have 23 bi-aÆne equations between the x

i

and the z

j

. We

have veri�ed that all these equations are linearly independent and that there are no more

suh equations.

Moreover, if x is always di�erent than 0, we will have all the 24 linearly independent equations

that will be satis�ed.

A.1 Remarks

Fully quadrati equations. It is possible to see that if we onsider fully quadrati equations,

not only bi-aÆne, for eah S-box of Rijndael there are r = 39 quadrati equations with t = 137.

The additional 16 equations ome from the following two equations:

�

x

4

y = x

3

y

4

x = y

3

However when using r = 39 and t = 137 we always obtained worse results in the XSL attak

than with r = 23 and t = 81. This is due to the fat that it gives � = 2

16:4

instead of 2

13:4

.

About the inverse-based S-boxes in general Similarly, it is easy to see that if the S-box

on s bits is an aÆne transformation of the inverse funtion in GF (2

s

), then it will give 3s� 1

bi-aÆne equations true with probability 1, and one additional equation true with probability

1�

1

2

s

. We onjeture that there is no more suh equations.

Up till now, it seemed a very good idea to use suh S-boxes in pratial iphers. This was due

to the fat that the inverse funtion (and its aÆne equivalents) has many optimality results

with regard to linear, di�erential and high-order di�erential attaks, see [2, 15℄.

We have done omputer simulations for many permutations inluding all the possible powers



in GF (2

s

). They showed that the inverse (and its equivalents) is the worse in terms of the

number of suh bi-aÆne equations. It is an open problem to �nd any other non-linear funtion

GF (2

s

)! GF (2

s

) that admits so many equations, for some s > 0. Therefore though in many

ases the iphers are probably still very seure, we do not advoate to use suh S-boxes.

Related work: The equations we have found for the Rijndael S-box are exatly of the same

type and of very similar origin, as the equations that Jaques Patarin have disovered in

1988 on the Matsumoto-Imai ryptosystem [16℄. The existene of suh equations on Rijndael

S-boxes have been �rst disovered (but not published) by Niolas Courtois, Louis Goubin and

Jaques Patarin, as soon as Rijndael have been proposed as AES in 2000.



B The Diret MQ Attak on Rijndael

It is interesting to know how to desribe Rijndael as a system of quadrati equations with

a minimum number of variables and maximum number of equations. We are in the seond

attak senario with one or a few known plaintexts, as in Setion 4.1.

B.1 Minimizing the Number of Variables for Rijndael

For eah round i, we know that there are r �4�Nb quadrati equations between the (Z

i�1 j

+

K

i�1 j

) and the (Z

i k

). They are of the following form:

0 =

X

�

ijk

Z

i�1 j

Z

i k

+

X

�

ijk

[K

i�1 j

℄Z

i k

+

X

�

ij

Z

i j

+

X

�

ij

[K

i j

℄ + :

Exeption is made for the �rst round, for whih the Z

0

being known, they are of the form:

0 =

X

�

ij

[K

0 i

℄Z

1 j

+

X

�

i

Z

1 i

+

X



i

[K

0 i

℄ + Æ:

Finally, for the last round, the X

N

r

k

will be expressed as a sum of the known iphertext

Z

N

r

+1 k

and [K

N

r

k

℄, giving the equations of the form:

0 =

X

�

ij

Z

N

r

�1 i

[K

N

r

j

℄ +

X

�

ij

[K

N

r

�1 i

℄[K

N

r

j

℄ +

X

�

i

Z

N

r

�1 i

+

+

X

�

i

[K

N

r

�1 i

℄ +

X



i

[K

N

r

i

℄ + Æ:

In all we will get 4 � r � N

r

� Nb quadrati equations over GF (2). The number of variables

Z

i j

is only 4 � s � (N

r

� 1) �Nb.

B.2 Using the Key Shedule

In the ipher we have:

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

: (2)

In order to de�ne what are the [K

i j

℄ we need to hoose a basis for the K

i j

. From the key

shedule [4℄ it is obvious that one may take as "true key variables" all the Nk variables from

the �rst round, then all the �rst olumns of eah onseutive key states, and if Nk = 8, also

the 5th olumns. By inspetion we see that the number of "true key variables" is:

L

k

=

8

<

:

32 �

�

Nk +

�

N

r

�Nb+Nb�Nk

Nk

��

if Nk 6= 8

32 �

�

Nk +

�

N

r

�Nb+Nb�Nk

4

��

if Nk = 8

For example, for 128-bit Rijndael with H

k

= 128 we have L

k

= 32 � (4+10) = 448 "true" key

variables.

Additional equations. We all "redundant true variables" all the L

k

�H

k

additional vari-

ables that are determined by some initial subset of H

k

variables. From the key shedule we

see that for eah of these L

k

� H

k

"redundant true variables" we may write r = 23 (or 24)

quadrati equations. Eah of the "redundant true" key state olumns is a XOR of one the

previous olumns, a parallel appliation of 4 S-boxes to another olumn, and of a onstant.

Thus these equations are of the form:

X

�

ijkl

[K

i j

℄[K

k l

℄ +

X

�

ij

[K

i j

℄ + : (3)

The number of these equations is:

r �

L

k

�H

k

s



B.3 Putting all the Equations Together

Theorem B.3.1 (Redution Rijndael ! MQ). The problem of reovering the seret key

of Rijndael given about one pair plaintext/iphertext an be written as an overde�ned system

of

m = 4 � r �Nb �N

r

+ r(L

k

�H

k

)=s

sparse quadrati equations with the number of unknowns being:

n = 4 � s � (N

r

� 1) �Nb+ L

k

:

B.4 Examples

We will use fully quadrati equations obtained in Setion A.1. We have r = 39 and t = 137,

however sine this attak will only require 1 or 2 known plaintexts, we may assume r = 40

(exatly as in Setion 3.3).

Thus for the 128-bit Rijndael with 128-bit key, we an write the problem of reovering the

key as a system of 8000 quadrati equations with 1600 variables.

For the 256-bit Rijndael with 256-bit key, we get a system of 22400 quadrati equations with

4480 variables.

B.5 Theoretial Consequenes for Rijndael and AES

The above redution has already some very important onsequenes for Rijndael and AES. We

onsider the seurity of some generalized version of Rijndael in whih the number of rounds

N

r

inreases and all the other parameters are �xed.

On one hand, in all general attaks previously known against suh iphers, for example in linear

or di�erential attaks, the seurity grows exponentially with N

r

. There are also ombinatorial

attaks suh as square attak, but these will simply not work if N

r

is suÆiently large.

On the other hand, we observe that the number of variables (and the number of equations)

in the redution is linear in the number of rounds N

r

. Therefore, if the MQ problem is

subexponential, whih is our view of the results given in the XL paper [22℄, to break Rijndael

will also be subexponential

8

, i.e. the seurity will not grow exponentially with the number of

rounds N

r

.

Remark: It is important to see that the result would not be the same if the redution were

for example quadrati in Nr. In this ase XL ould be subexponential, for example in n

p

n

but the Rijndael ould still be fully exponential, for example in (N

2

r

)

N

r

.

Remark 2: It seems that the same remark will hold for any blok ipher omposed with

rounds of �xed type: obviously eah of them an always be written as a set of quadrati

equations. However in this ase, the size of the system (even for one round) will be so huge

that there will be no hope for any pratial attaks.

B.6 Pratial Consequenes for Rijndael and AES

In Setion 5.2 we tried to apply the XL algorithm, exatly as desribed in Appendix D.2 or

in the paper [22℄. It fails and there is no eÆient algorithms known to solve suh general

systems of equations as above. However the systems obtained as desribed above are sparse.

We onsider for example the MQ problem we wrote for 128-bit Rijndael. For a general system

of quadrati R = 8000 equations with n = 1600 variables, we have about T = n

2

=2 � 2

20

8

This is not ertain, it is possible that XL is subexponential only on average, and AES gives some

very speial systems. Still it seems very likely to be true.



terms. This gives R=T � 2

�7:3

that is very small and the XL algorithm has to do extensive

work in order to ahieve R

0

=T

0

� 1, see Appendix D.2. In the MQ system we wrote above, it is

easy to see that the number of terms is only about T � (8�32+8�32+8+32+8)�(N

r

�4�Nb).

This gives only R=T � 2

�3:5

and suggests that for this system theremust be a better method

than XL. In Setion 6.2 we will write suh a system of quadrati equations in a di�erent way

in order to ahieve an even higher value of R=T . For this there will be one variable for eah

input and eah output bit of an S-box, whih on one side leads to more equations and more

(redundant) variables, but on the other side the system beomes more sparse.



C Simulations on XSL

The XSL attak is heuristi and in order to verify if it works as expeted, one should do

omputer simulations. It is impossible to do it diretly on Rijndael or Serpent, the systems

are too big. Even if we restrit to Rijndael or Serpent to one round, the system will still be

very big. Therefore we did some simulations on a smaller "toy iphers". The goal is not prove

that the XSL attak works for Rijndael but to see whether it behaves as predited on small

examples.

To know what is the exat omplexity of the XSL attak for this or other onrete ipher, is

a di�erent (and more omplex) question that requires even more simulations. Moreover there

are many possible variants of XSL that might give very di�erent results.

C.1 Simulations on a Toy Cipher

We build a toy ipher in the following way:

1. It is very similar to Serpent, exept that the key shedule will just use permutations of

bits, as in DES.

2. We will use mainly the notations from Setion 2.1.

3. The size of the ipher will be small so that the attaks will be pratial.

4. The S-box is the following permutation on s = 3 bits that has been hosen as a random

non-linear permutation: f7; 6; 0; 4; 2; 5; 1; 3g.

5. It gives r = 14 fully quadrati equations with t = 22 terms, i.e. equations of the type:

X

�

ij

x

i

x

j

+

X

�

ij

y

i

y

j

+

X



ij

x

i

y

j

+

X

Æ

i

x

i

+

X

�

i

y

i

+ � = 0

6. These equations are:
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 = x

1

x

2

+ y

1

+ x

3

+ x

2

+ x

1

+ 1

0 = x

1

x

3

+ y

2

+ x

2

+ 1

0 = x

1

y

1

+ y

2

+ x

2

+ 1

0 = x

1

y

2

+ y

2

+ y

1

+ x

3

0 = x

2

x

3

+ y

3

+ y

2

+ y

1

+ x

2

+ x

1

+ 1

0 = x

2

y

1

+ y

3

+ y

2

+ y

1

+ x

2

+ x

1

+ 1

0 = x

2

y

2

+ x

1

y

3

+ x

1

0 = x

2

y

3

+ x

1

y

3

+ y

1

+ x

3

+ x

2

+ 1

0 = x

3

y

1

+ x

1

y

3

+ y

3

+ y

1

0 = x

3

y

2

+ y

3

+ y

1

+ x

3

+ x

1

0 = x

3

y

3

+ x

1

y

3

+ y

2

+ x

2

+ x

1

+ 1

0 = y

1

y

2

+ y

3

+ x

1

0 = y

1

y

3

+ y

3

+ y

2

+ x

2

+ x

1

+ 1

0 = y

2

y

3

+ y

3

+ y

2

+ y

1

+ x

3

+ x

1

7. The number of rounds is N

r

.

8. Let B be the number of S-boxes in eah round. There are B � s bits in eah round, for

onveniene there are numbered here 0::Bs� 1.

9. We will use a key of the same length: H

k

= B � s bits, so that one known plaintext will be

(on average) suÆient to determine the key K

0

= (K

0 1

; : : : ;K

0 Bs

) and therefore � = 1.

10. Eah round i onsists of the XOR with the derived key K

i�1

, a parallel appliation of the

B S-boxes, and then of a permutation of wires is applied.

For the last round an additional derived key K

N

r

is XORed.

11. Thus the linear equations from the key shedule will be (following the notations of Setion

2.1) as follows:

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

: (4)



12. As in Setion 2.1, we denote the plaintext by Z

0

and the iphertext by X

N

r

+1

: they are

onsidered as abbreviations for onstants, not as variables.

13. The permutation of wires is de�ned as j 7! (j + 4 mod Bs), in other words the following

equations are true:

Y

i (j�4 mod Bs)

= Z

i j

for all i = 1::N

r

: (5)

14. The derived key K

i

is obtained from K

0

by a permutation of wires:

[K

i j

℄

def

= K

0 (j+i mod Bs)

:

15. There is no S-boxes in the key shedule, D = 0.

16. On this ipher (that resembles Serpent) we will apply a spei� version of the seond XSL

attak desribed in Setion 7.

17. We use the optimisti evaluation of P equal to P = d22=14e = 2.

18. Sine D = 0, following Setion 7.1 we will use one "arti�ial" S-box that ontains all the

key variables, and thus E = 1.

19. As in Setion 7 we have S = � �B �N

r

+D +E = B �N

r

+ 1.

20. The equations ounted in R are: the initial (S � E) � r equations multiplied by another

equation form a di�erent S-box, plus eah of these equations multiplied by one of some t

terms for some other "passive" S-box, plus eah of these equations multiplied by one of

H

k

key variables. Following Setion 6.3, we will replae t by (t� r) in our omputations.

Thus we obtain:

R = r(S �E) � r(S �E � 1)=2 + r(S �E) � (t� r) � (S �E � 1) + r(S �E) �H

k

:

In pratie we observed that for an unknown reason, if the (t � r) terms are hosen in

a ertain way, the rank obtained will slightly derease. Therefore, in order to obtain the

best results we inluded al the possible equations (multiplying by all possible t terms) and

only at a later stage we redue their number by taking a random subspae of the spae

generated by these equations.

21. The equations on the di�usion part will be written on the basis of the equations from (4)

X

i+1 j

= Z

i j

� [K

i j

℄ for all i = 0::N

r

in whih for i = 0 the value Z

i j

will be replaed

by the appropriate plaintext bit, and for i 6= 0 we replae it by Y

i (j�4 mod Bs)

= Z

i j

from (5). There are (N

r

+ 1) �B � s suh equations.

22. The equations ounted in R

0

are: The equations above themselves, plus eah of these

equations multiplied by the H

k

variables that is already present in the equation, plus

eah of them multiplied by one non-ontant term for some S-box, with exlusion of some

terms for the S-boxes that are onneted with the urrent equation (but some produts

are still OK and does not inrease the number of terms T in the attak). In the table

below we will give the exat number R

0

examining all the possibilities one by one, here

we give only an approximation:

R

0

� (N

r

+ 1) �B � s+ (N

r

+ 1) �B � s+ (N

r

+ 1) �B � s(S �E) � (t� r):

Here again, following Setion 6.3 and Setion 6.4, we replaed t by (t� r) in our ompu-

tations. In pratie we generated all the equations. It is however important to ompute

the values R and R' as explained above in order to see if the number Free of linearly

independent equations is well (or not) approximated by R+R

0

. We will se that the answer

is yes, and it suggests that the estimations of the omplexity of the XSL attak given in

Setion 6.5 are lose to reality.



23. The number of terms that appear in our equations inlude all the t(S � E) +H

k

initial

terms and all produts of terms from di�erent S-boxes. This gives:

T = t(S �E) +H

k

+ t

2

�

S �E

2

�

+ t(S �E) �H

k

;

24. As we explained in Setion 6.3 we will never ahieve

Free

T

> 1. Following Setion 6.1, our

goal is to ahieve

Free

T�T

0

> 1.

25. Anyone an verify our simulations with any omputer algebra system apable of reading

and simple gaussian elimination on multivariate equations. We generated two onrete

examples of the equations we used in the simulations for N

r

= 2 and N

r

= 10. They an

be downloaded at: http://www.minrank.org/example xsl 2 2.zip

and http://www.minrank.org/example xsl 2 10.zip.

These two examples also ontain detailed omments

9

and an exhaustive list of all terms

with indiation whih of them are in T

0

.

In the tables below we present the results of the simulations.

S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 2 6 1 6 1 3 588 284 742 336 727 0:9798 1:7906

3 14 22 2 6 2 6 1 5 2856 616 3241 840 3187 0:9833 1:3274

3 14 22 2 6 3 6 1 7 6804 1140 7504 1344 7329 0:9767 1:1273

3 14 22 2 6 4 6 1 9 12432 1856 13531 1848 13170 0:9732 1:1881

3 14 22 2 6 5 6 1 11 19740 2764 21322 2352 20711 0:9713 1:0918

3 14 22 2 6 6 6 1 13 28728 3864 30877 2856 29952 0:9700 1:0689

3 14 22 2 6 7 6 1 15 39396 5156 42196 3360 40893 0:9691 1:0530

3 14 22 2 6 8 6 1 17 51744 6640 55279 3864 53534 0:9684 1:0412

3 14 22 2 6 9 6 1 19 65772 8316 70126 4368 67875 0:9679 1:0322

3 14 22 2 6 10 6 1 21 81480 10184 86737 4872 83914 0:9675 1:0250

3 14 22 2 6 11 6 1 23 98868 12244 105112 5376 101654 0:9671 1:0192

3 14 22 2 6 12 6 1 25 117936 14496 125251 5880 121098 0:9668 1:0145

3 14 22 2 6 13 6 1 27 138684 16940 147154 6384 142235 0:9666 1:0104

3 14 22 2 6 14 6 1 29 161112 19576 170821 6888 165080 0:9664 1:0070

3 14 22 2 6 15 6 1 31 185220 22404 196252 7392 189621 0:9662 1:0040

3 14 22 2 6 16 6 1 33 211008 25424 223447 7896 215862 0:9661 1:0014

3 14 22 2 6 17 6 1 35 238476 28636 252406 8400 243803 0:9659 0:9992

3 14 22 2 6 18 6 1 37 267624 32040 283129 8904 273444 0:9658 0:9972

3 14 22 2 6 19 6 1 39 298452 35636 315616 9408 304785 0:9657 0:9954

3 14 22 2 6 20 6 1 41 330960 39424 349867 9912 337826 0:9656 0:9937

3 14 22 2 6 21 6 1 43 365148 43404 385882 10416 372567 0:9655 0:9923

3 14 22 2 6 22 6 1 45 401016 47576 423661 10920 409008 0:9654 0:9910

3 14 22 2 6 23 6 1 47 438564 51940 463204 11424 447149 0:9653 0:9897

3 14 22 2 6 24 6 1 49 477792 56496 504511 11928 486990 0:9653 0:9886

3 14 22 2 6 25 6 1 51 518700 61244 547582 12432 528531 0:9652 0:9876

We see that that when B = 2, the XSL attak works for up to 16 rounds.

9
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Fig. 1. The value

Free

T�T

0

as a funtion of the number of rounds N

r

.

Here is another series of simulations with B = 4 and B = 8.

S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 4 12 1 12 1 5 3192 952 3751 912 3693 0:9845 1:3008

3 14 22 4 12 2 12 1 9 13104 2384 14545 1920 14184 0:9752 1:1235

3 14 22 4 12 3 12 1 13 29736 4584 32395 2928 31470 0:9714 1:0680

3 14 22 4 12 4 12 1 17 53088 7552 57301 3936 55556 0:9695 1:0411

3 14 22 4 12 5 12 1 21 83160 11288 89263 4944 86442 0:9684 1:0252

3 14 22 4 12 6 12 1 25 119952 15792 128281 5952 124128 0:9676 1:0147

3 14 22 4 12 7 12 1 29 163464 21064 174355 6960 168614 0:9670 1:0073

3 14 22 4 12 8 12 1 33 213696 27104 227485 7968 219900 0:9667 1:0017

3 14 22 4 12 9 12 1 37 270648 33912 287671 8976 277986 0:9663 0:9975

3 14 22 4 12 10 12 1 41 334320 41488 354913 9984 342872 0:9661 0:9940

3 14 22 4 12 11 12 1 45 404712 49832 429211 10992 414558 0:9659 0:9912

3 14 22 4 12 12 12 1 49 481824 58944 510565 12000 493044 0:9657 0:9889



S-box Bs H

k

The results

s r t B [bits℄ N

r

[bits℄ � S R R

0

T T

0

Free

Free

T

Free

T�T

0

3 14 22 8 24 1 12 1 9 14448 3440 16573 2064 16212 0:9782 1:1174

3 14 22 8 24 2 12 1 17 55776 9376 61345 4080 59600 0:9716 1:0408

3 14 22 8 24 3 12 1 25 123984 18384 134431 6096 130188 0:9691 1:0110

3 14 22 8 24 4 12 1 33 316736 30464 235561 8112 227796 0:9678 1:0023

C.2 Conlusion

Apparently both

Free

T

and

Free

T�T

0

either onverge to a �xed value, or they derease very slowly.

If they onverge, both limits are idential, beause it an be shown that

T�T

0

T

! 1. Surpris-

ingly it seems that this limit is the same for B = 2, B = 4 and B = 8.

We see that for B = 2 the XSL attak will work for up to 16 rounds. Only for 17 rounds we

have

Free

T�T

0

< 1. A similar behaviour is observed when B = 4 and when B = 8.

When

Free

T�T

0

< 1, there are probably some ways to improve the attak. Ultimately, sine we

observe that

Free

T

seems to onverge to a limit that is below 1, and sine

T

0

T

! 0, starting

from some number of rounds it will be neessary to inrease P to make the attak work.

More simulations and/or a better theory to understand the behaviour of the XSL attak for

bigger iphers and for more rounds.



D The XL Algorithm

In order to make this paper self-suÆient we desribe the XL algorithm for the ase of GF (2).

We also reall the simpli�ed analysis of the omplexity of XL from [22℄, that seems approx-

imatively orret. For experimental results on XL one should refer to setion D.7 or to the

original paper [22℄.

D.1 Solving MQ with the XL Algorithm

The origin of the XL algorithm was the relinearization algorithm presented by Shamir and

Kipnis at Crypto'99. From the relinearization algorithm, it seemed obvious that if the system

of equations is overde�ned, then the problem is muh easier. In a paper published at Euro-

rypt'00 [22℄, authors propose a new algorithm alled XL, that an be seen as an improved

version of relinearization.

D.2 How XL Works

We onsider the problem of solving m quadrati equations with n variables that are in GF (2).

In general, the number of quadrati terms in these equations is about t � n

2

=2 (but it an be

less).

Let D = 2; 3; : : : be a parameter of the XL algorithm. What the algorithm basially does,

is to multiply eah possible equation 1:::m by all possible produts of D � 2 variables. Thus

we get about: R �

�

n

D�2

�

m new equations. The total number of terms that appear in these

equations is about T =

�

n

D

�

. We expet that most of the equations are linearly independent.

Then, we pik a suÆiently big D suh that

R =

�

n

D � 2

�

m �

�

n

D

�

= T:

Obviously the number of linearly independent equations annot exeed the number of terms

T . We expet that if the system has a unique solution (see Setion D.4), then there is suh a

D for whih R � T , and suh that also the number Free of linearly independent equations

in R will be very lose to T . Then if the rank de�it T � Free is not too big, we expet that

the system will be solved. It is easy when T � Free is a very small number, but still possible

when T �Free is quite big. For example let T

0

be the number of terms out of T that ontain

only the �rst 40 variables. If Free > T � T

0

+ 40, then we are able to obtain (by progressive

elimination of terms) to obtain a system of 40 equations with 40 variables that an be solved

by the exhaustive searh. Then we �x these 40 variables and we should obtain T �Free muh

smaller in the new system, and it will probably not be neessary to repeat the above "trik"

with some other 40 variables.

We expet that the D value for whih XL works is equal or very lose to the theoretial value

D for whih R � T . Thus the XL algorithm is expeted to sueed when:

R � T ) m �

�

n

D

�

=

�

n

D � 2

�

� n

2

=D

2

:

This gives

D �

n

p

m

and the omplexity of the attak is about

T

!

�

�

n

D

�

!

�

�

n

n=

p

m

�

!



with ! � 3 being the exponent of the Gaussian redution. It is unlear what value ! will be

realisti in our attaks, see Setion F.

From the above formula it seems that XL is subexponential, however very little is known

about the atual behaviour of XL for very big systems of equations.

D.3 Remarks by T.T. Moh on XL

In [13℄ T.T. Moh states that "From the theory of Hilbert-Serre, we may dedue that the XL

program will work for many interesting ases for D large enough".

In Setion 4 of [13℄ the author shows a very speial example on whih XL fails, however he

did not fully understand the power of XL, for example with FXL, or an appropriate �nal step

with T

0

suh as desribed above in Setion D.2, or the version desribed in Setion 6.1.

In Setion 3 the author makes a serious mistake. He assumes D � n in a formula in whih

D = O(

n

p

m

). He shows that Free=R �

(n+D)(n+D�1)

D(D�1)m

= w and obviously w !

1

m

when

D ! 1. However D is never as big as n, if we assume that we have D �

n

p

m

as in the

previous setion, we get w � 1. The onlusion of T.T. Moh is inorret.

D.4 Uniity of the Solution

In the paper [22℄, authors made many omputer simulations on XL algorithm in the �eld

GF (127). In some ases XL failed, and this is apparently due to the fat that the system had

many solutions, not in the base �eld GF (127), but is some algebrai extension. Indeed suh

manipulations on the equations that are done in XL (desribed above): multiplying equations

by monomials and ombining them, onserve all the solutions in the algebrai losure of

GF (127). This is not a problem for small �elds, for example GF(2). When multiplying suh

equations by monomials of a small degree, we will make expliit usage of the equation of the

�eld x

2

i

= x

i

for eah of the variable x

i

, and always write x

i

instead of x

2

i

. Suh repeated

interation with the equation of the �eld will eliminate all the solutions with variables being

not in GF (2).

Another problem with XL is that if there are many solutions, there is no simple algebrai

equation that would englobe all of them, and the algorithm has to fail.

Conversely it seems that for a system of quadrati equations over a small �eld GF (2)(and

also other GF (q) with q small), that has only one solution in the base �eld GF (2), the XL

method will always work, exept maybe for some very speial systems.

D.5 XL and Sparsity

It is obvious that if in the initial system t < n

2

=2, i.e. not all possible n

2

=2 quadrati terms

are present, XL will work better. After multiplying eah of the equations

�

n

D�2

�

by one of the

terms, it may happen that not all the possible

�

n

D

�

terms will be obtained. In this ase we

might obtain a stritly smaller D, for whih the number of linearly independent equations

will be big enough. Sine the algorithm is exponential in D, lowering it even by one, will

yield a dramati improvement in the omplexity. This improvement will be even better if the

terms have some spei� struture that will allow us to multiply them by only some seleted

monomials. This should be done in suh a way that, as muh as possible di�erent produts

of some monomial with some of the initial terms (i.e. present in the initial equations), should

lead to idential terms of degree D. Thus we will generate many equations while maintaining

the total number of terms small. The XSL attak we introdue in Setion 6, has been designed

in suh a way.



D.6 Does XL Always Work ?

It is important to understand that the XL algorithm will not always work. Following the

XL omplexity evaluation, an overde�ned system of equations (big m=n) leads to a dramati

improvement in XL omplexity ompared to other systems with the same number of variables

(the ase of underde�ned MQ is studied in [5℄). Still it is easy to produe overde�ned systems

on whih it fails. For example if we mix two systems of equations with separate sets of variables,

one of whih is very muh overde�ned, and the other of whih is not, we will still obtain a

largely overde�ned system of equations. However applying XL will only �nd solutions to one

of the systems, and never to the other.

Bad things may also happen when variables are linearly dependent. For example onsider

a system of m = 100 equations with n = 100 variables over GF (2). If we apply XL to

this system we have: D � n=

p

m � 10 and the omplexity of the XL attak is very big:

about

�

n

D

�

2:376

� 2

104

. Now we add just 10 additional variables that are linear ombinations

of the existing variables. It allows to write 10 new linear equations and to derive 10 � n =

10�100 new quadrati equations. Everything seems orret: all these equations will be linearly

independent. Now we have a new system of m

0

= 1110 quadrati equations with n

0

= 110

variables. If we naively apply XL, we get D

0

� n

0

=

p

m

0

� 4 and the omplexity of the XL

attak would be only:

�

n

0

D

0

�

2:376

� 2

53

. It is less than before, though our system is just the

expansion of the previous system. In reality, the XL algorithm will ertainly fail for this seond

(very speial) system. The exat analysis of the omplexity of XL for systems having dependent

variables is not as simple anymore. For example in the relinearization tehnique from [21, 22℄,

when some variables are produts of some other variables, less linearly independent equations

than expeted are obtained, see [22℄. The relinearization algorithm still works, but not as well

as XL: it seems that adding new variables that are de�ned as ombinations of the previous

variables is a bad idea. It will reate more than expeted linear dependenies at some further

stage, see [22℄.

There are many questions open about XL and similar methods. In general we tend to believe

that, if suh methods doesn't not work, there is usually a ombinatorial or algebraial reason

for this, and sooner or later we will �nd out how to prove that it does not work. Currently

it seems that (at least) these onditions should be satis�ed for methods suh as XL, XSL (or

relinearization) to work:

1. The system should have a unique solution.

2. The variables should be "well mixed".

3. There shouldn't be possible to exhibit a subsystem and a variable hange, for whih the

subsystem ontains less terms than the expeted ontribution from this subsystem, to the

total number of linearly independent equations.

On the other side, if we are not able to prove that the attak fails, one should assume that

it may (or may not) work and should do omputer simulations, that would either invalidate

the laim, either give a partial on�rmation. This is the approah of [22℄ and of Setion C.

D.7 Simulations on XL

In the paper that desribes XL, the authors demonstrate that XL works with a series of

omputer simulations over GF (127) (some more are given in the extended version of the

paper [22℄). Sine then, T.T.Moh makes in [13℄ some reserves whether the XL algorithm

atually works as expeted. See Setion D.3 to see why these remarks are unsubstantial. In

this setion we present some omputer simulations on the XL algorithm over GF (2). No suh

simulations have been published so far.



In all the simulations that follow we will pik a random system of linearly independent

quadrati non-homogenous equations y

i

= f

i

(x

1

; : : : ; x

n

) and pik a random input x =

(x

1

; : : : ; x

n

). Then we modify the onstants in the system, in order to have a system that

gives 0 in x, i.e. we write a system to solve as 8 i l

i

(x

1

; : : : ; x

n

) = 0. If n is not too big, we

also require that the system has a unique solution, whih is the ase with good probability.

In the following table we �x n and try a random system of m linearly independent equations

with growing m and with a �xed D. We denote by R the number of equations generated, T

is the number of terms T �

n

D

. Free is the number of linearly independent equations and T

0

is the number of terms that an be multiplied by one variable, for exemple x

1

. The attak is

expeted to work when Free=(T � T

0

) > 1, see Setions D.2 and 6.1.

n 10 10 10 10 10 10 10 10 10

m 10 11 12 13 14 15 16 17 18

D 3 3 3 3 3 3 3 3 3

R 110 121 132 143 154 165 176 187 198

T 176 176 176 176 176 176 176 176 176

T

0

92 92 92 92 92 92 92 92 92

Free 110 121 132 143 154 165 174 175 175

Free

R

1:000 1:000 1:000 1:000 1:000 1:000 :9886 :9358 :8838

Free

T

:6250 :6875 :7500 :8125 :8750 :9375 :9886 :9943 :9943

Free

T�T

0

1:310 1:441 1:571 1:702 1:833 1:964 2:071 2:083 2:083

n 10 10

m 10 11

D 4 4

R 560 616

T 386 386

T

0

260 260

Free 385 385

Free

R

:6250 :6875

Free

T

:9974 :9974

Free

T�T

0

3:056 3:056

n 20 20 20 20 20 20 20 20 20

m 20 22 24 26 28 30 32 34 36

D 4 4 4 4 4 4 4 4 4

R 4220 4642 5064 5486 5908 6330 6752 7174 7596

T 6196 6196 6196 6196 6196 6196 6196 6196 6196

T

0

2320 2320 2320 2320 2320 2320 2320 2320 2320

Free 4010 4389 4764 5135 5502 5865 6195 6195 6195

Free

R

:9502 :9455 :9408 :9360 :9313 :9265 :9175 :8635 :8156

Free

T

:6472 :7084 :7689 :8288 :8880 :9466 :9998 :9998 :9998

Free

T�T

0

1:035 1:132 1:229 1:325 1:420 1:513 1:598 1:598 1:598

n 20 20

m 20 22

D 5 5

R 27020 29722

T 21700 21700

T

0

10072 10072

Free 21699 21699

Free

R

:8031 :7301

Free

T

1:000 1:000

Free

T�T

0

1:866 1:866



E A Toy Example for the "T

0

method"

This is a onrete working example for the �nal step of the XSL algorithm alled the "T

0

method". It an also be applied to the XL algorithm.

We have n = 5 variables, and thus T = 16 and T

0

= 10. We start with a random system

having exatly one solution, and with Free > T � T

0

and with 2 exeeding equations, i.e.

Free = T � T

0

+ 2. Here is a system in whih T

0

is de�ned with respet to x

1

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

x

3

x

2

= x

1

x

3

+ x

2

x

3

x

4

= x

1

x

4

+ x

1

x

5

+ x

5

x

3

x

5

= x

1

x

5

+ x

4

+ 1

x

2

x

4

= x

1

x

3

+ x

1

x

5

+ 1

x

2

x

5

= x

1

x

3

+ x

1

x

2

+ x

3

+ x

4

x

4

x

5

= x

1

x

2

+ x

1

x

5

+ x

2

+ 1

0 = x

1

x

3

+ x

1

x

4

+ x

1

+ x

5

1 = x

1

x

4

+ x

1

x

5

+ x

1

+ x

5

Here is the same system in whih T

0

is de�ned with respet to x

2

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

x

1

x

3

= x

3

x

2

+ x

2

x

1

x

4

= x

3

x

2

+ x

2

+ x

1

+ x

5

x

1

x

5

= x

2

x

4

+ x

3

x

2

+ x

2

+ 1

x

3

x

5

= x

2

x

4

+ x

3

x

2

+ x

2

+ 1 + x

4

+ 1

x

3

x

4

= x

2

x

4

+ x

1

+ 1

x

4

x

5

= x

1

x

2

+ x

2

x

4

+ x

3

x

2

0 = x

1

x

2

+ x

2

x

5

+ x

3

x

2

+ x

2

+ x

3

+ x

4

0 = x

2

x

4

We have rank = 8. Now multiply the two exeeding equations of the �rst version of the system

by x

1

.

n

0 = x

1

x

3

+ x

1

x

4

+ x

1

+ x

1

x

5

0 = x

1

x

4

We have rank = 10. We get two new linearly independent equations.

We rewrite these equations, using the seond system, only with terms that an be multiplied

by x

2

. Now we have 4 exeeding equations for the seond system (two old and two new):

8

>

<

>

:

0 = x

1

x

2

+ x

2

x

5

+ x

3

x

2

+ x

2

+ x

3

+ x

4

0 = x

2

x

4

0 = x

2

x

4

+ x

3

x

2

+ x

5

+ x

2

+ 1

0 = x

3

x

2

+ x

2

+ x

1

+ x

5

We multiply these four equations by x

2

.

8

>

<

>

:

0 = x

1

x

2

+ x

2

x

5

+ x

2

x

4

+ x

2

0 = x

2

x

4

0 = x

2

x

4

+ x

3

x

2

+ x

5

x

2

0 = x

3

x

2

+ x

2

+ x

1

x

2

+ x

2

x

5

We are not luky, the seond equation is invariant by this transformation. Still we get three

new linearly independent equations. We have rank = 13.

We rewrite, using the �rst system, the three new equations with terms that an be multiplied

by x

1

.

(

1 = x

1

x

5

+ x

2

+ x

3

+ x

4

1 = x

1

x

2

+ x

1

x

3

+ x

1

x

5

+ x

2

+ x

3

+ x

4

0 = x

3

+ x

4

Still rank = 13. Then we multiply the three new equations by x

1

:

(

1 = x

1

x

5

+ x

1

x

2

+ x

1

x

3

+ x

1

x

4

1 = x

1

x

5

+ x

1

x

4

0 = x

3

+ x

4



We have rank = 14. We get one more linearly independent equation. The two other are

redundant. Now we rewrite the �rst equation with terms that an be multiplied by x

2

:

0 = x

1

x

2

+ x

2

x

4

+ x

3

x

2

+ x

1

+ x

2

+ x

5

We have still rank = 14. Then we multiply the new equation by x

2

:

0 = x

2

x

4

+ x

3

x

2

+ x

2

x

5

+ x

2

We get another new linearly independent equation. We have rank = 15. The rank is the

maximum that an be ahieved, there are 15 non-zero monomials here, and rank = 16 an

only be ahieved for a system that is ontraditory.



F About the Value of !

F.1 What is the Complexity of Gaussian Redution ?

In pratie it is usually assumed that ! = 3. We prefer to use a fairly theoretial result on

the best known exponent for the Gaussian redution from the paper [3℄, that shows that

! � 2:376. The (negleted) onstant fator in this algorithm is unknown to the authors of

[3℄, and is expeted to be very big. Still, we laim that in ryptography one should be

optimisti on attaks, in order not to be surprised by the future improvements. In

this paper we deal with extremely big systems of equations, and therefore even a big onstant

will be relatively small. For other reasons, even a onstant as big as 20000, an ertainly be

negleted. This is beause we need to have a fair measure of omplexity ompared to the

exhaustive searh. In the exhaustive searh, the unitary operation is one enryption, that will

take for example about 300 CPU yles. For our attaks, unitary operation is the addition of

bits modulo 2, and it is possible to do about 64 suh binary additions modulo 2 in parallel in

one single CPU lok. Therefore the unit is about 64 � 300 � 20000 times smaller.

F.2 Further Improvements, or Can ! be Even Less in XSL ?

There are some hopes to ahieve a further improvement in !. On one hand this might ome

from new algorithms for Gaussian redution being disovered, whih seems to stumble on

some diÆult omputational problems, see [19, 3℄.

On the other hand, it is very likely that the elimination an be done faster in the speial ase

of systems generated in the XSL attak. Clearly the �nal (big) system is still quite sparse

and have a very regular struture. For example it is possible to ompute in onstant

time a list of all equations that ontain a given term. Therefore it is probably possible to

design a progressive elimination tehnique. Suh a tehnique would, instead of generating a

huge system of equations and eliminating all terms in it, generate the system by parts and

eliminate terms for smaller systems, in suh a (lever) way that the terms that have already

been eliminated will not be generated anymore. It ould also use speial data struture that

is dynamially updated with a reasonable ost, in order to be able to always �nd all the

equations that ontain a given term in sub-quadrati (or maybe even linear) time, i.e. faster

than in the general ase.

It is unlear how muh an be gained from a areful ombination of all these ideas. It seems

not ompletely unsound to believe that the omplexity might be redued even to O(T

2

), i.e.

! might be as low as 2.

Remark: EÆient methods for solving big systems of multivariate quadrati equations al-

ready exist and are based on Gr�obner bases. Thus for example in [6℄ it is shown how to �nd

a solution to the HFE Challenge 1 [18℄ in 2

62

using 390 Giga-bytes of disk spae. On April

10th 2002, at the ryptographi seminar at Versailles University, Jean-Charles Faug�ere from

Paris 6 University have presented an implementation of his reent Gr�obner bases algorithm

F5/2 that managed to solve the same HFE hallenge 1 in 96 hours on an 833 MHz Alpha

workstation with 4 Gigabytes of memory. It seems that the equations disovered in [6℄ are

preisely the same that allow the F5/2 algorithm to work eÆiently. From this, we expet

that the F5/2 algorithm will also help to solve the equations obtained in the XSL attaks

muh faster than expeted.


