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Abstra
t

In a proxy signature s
heme, a potential signer delegates his signing 
apability to

a proxy entity, who signs a message on behalf of the original signer. All the proposals

of proxy signature s
hemes made until now have been based on S
hnorr's signature

s
heme. Threshold versions of these s
hemes have also been proposed, in whi
h the

power of the proxy signer is distributed among a group of players, in su
h a way that

any subset with a minimum number (threshold) of players 
an sign a message on behalf

of the original signer.

We 
onsider a model that is fully distributed, be
ause we want to distribute not

only the power of the proxy signer, but also the original signer ability to delegate his

signing 
apability. Furthermore, we 
onsider general stru
tures, instead of only the

threshold ones, for both the tolerated subsets of dishonest players and the subsets of

honest players authorized to exe
ute a valid instan
e of the proto
ol, and in both the

original and the proxy signer entities. We �nd suÆ
ient 
ombinatorial 
onditions that

these stru
tures must satisfy in order to design a fully distributed, se
ure and robust

proxy signature s
heme for this general s
enario.

We propose su
h a s
heme for this setting. It is based on the results of [8℄ and [15℄,

and inherits the se
urity of these two works.

Keywords. Proxy signature s
hemes, distributed 
ryptographi
 proto
ols, se
ret

sharing s
hemes.
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1 Introdu
tion

Sometimes a person or a 
ompany that has the 
apability and the ne
essity of signing a

do
ument does not have enough time to do so. Or perhaps this person, A, is keen to

delegate his signing 
apability to another person, B, so B would sign do
uments on behalf

of A if A had some (te
hni
al, logisti
al) problem.

In a more 
on
rete (or pra
ti
al) situation, we 
an imagine a 
ompany with many depart-

ments. One of them, A (�nan
es, business 
onne
tions, loans in a bank, for example) must

sign do
uments regularly, but A has a lot of things to do in addition to signing, and besides

A wants its do
uments to be signed even if it is not able to do so be
ause of some problem.

A solution for this 
ompany 
ould be to have a department B, the proxy department, whose

only job would be to sign do
uments on behalf of the other departments of the 
ompany.

This is the s
enario for a proxy signature s
heme: a potential signer A delegates his

signing 
apability to a proxy signer, B (in some way, A tells B what kind of messages B


an sign), and B signs a message on behalf of the original signer, A. The re
eiver of the

message veri�es the signature of B and the delegation of A together.

Proxy signature s
hemes must have some se
urity properties; we list them in Se
tion 2.

A

ording to these properties, the most 
omplete proxy signature s
hemes proposed until

now are that of Lee, Kim and Kim [8℄ and that of Kim, Park and Won [7℄. These s
hemes,

as well as the previous proposals [9, 16℄ of proxy signature s
hemes, are based on S
hnorr's

signature s
heme [12℄, whi
h is also revisited in Se
tion 2.

In [15℄, Stinson and Strobl propose a distributed version of S
hnorr's signature s
heme,

whi
h is as se
ure as the non-distributed one; that is, existentially unforgeable under adap-

tively 
hosen message atta
ks (as Point
heval and Stern proved in [11℄). This distributed

s
heme is based on the joint generation of a random se
ret value. Distributed proto
ols

provide more se
urity and reliability than individual ones, be
ause they tolerate some 
oali-

tions of parti
ipants to be 
orrupted or non-working at the moment of the exe
ution of the

proto
ol. In Se
tion 3 we propose a general framework for distributed proto
ols; that is,

we 
onsider general stru
tures (families of subsets of players) that determine both whi
h

subsets of players 
an perform some spe
i�
 a
tions and whi
h subsets of dishonest players

the system will be able to tolerate. The threshold 
ase, in whi
h these subsets are de�ned

a

ording to their 
ardinality, is a parti
ular 
ase. We adapt to this general framework the

veri�able se
ret sharing s
heme of Pedersen [10℄, the joint generation of a random se
ret

value of Gennaro et al. [5℄ and the threshold S
hnorr's signature s
heme of Stinson and

Strobl [15℄.

In Se
tion 4, we 
onstru
t a fully distributed and se
ure proxy signature s
heme, in the

sense that we distribute not only the proxy signer (that is, B), but also the original signer, A,

who delegates his signing 
apability. This s
heme runs in the general framework introdu
ed

in Se
tion 3. If the stru
tures satisfy some 
ombinatorial 
onditions that we state, the

s
heme is robust and unforgeable in the random ora
le model under 
hosen message atta
ks,

be
ause it inherits its se
urity from the se
urity of the distributed S
hnorr's signature s
heme

of [15℄ and the proxy signature s
heme of [8℄. The distribution of the original signer, the

level of se
urity of the s
heme, and the fa
t that we 
onsider a s
enario whi
h is more general

than the threshold one, make our proposal more 
omplete than the previous threshold proxy

signature s
hemes ([7, 16, 6℄).

Finally, in Se
tion 5 we 
on
lude by summing up our 
ontribution and dis
ussing some

problems that remain open in the area of proxy signatures.
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2 Proxy Signatures

The 
on
ept of proxy signature was introdu
ed by Mambo, Usuda and Okamoto in [9℄. They


lassi�ed these signatures a

ording to the delegation type and the prote
tion of the proxy

signer. Kim et al. [7℄ in
luded warrant information in these s
hemes; that is, the signer A

sends to the proxy B a signed message in whi
h A expli
itly delegates its signing 
apability

to B, allowing B to sign some kind of messages (spe
i�ed in the warrant information) on

behalf of A.

The idea of these proxy signature s
hemes is the following: A sends a message and

its signature to a proxy signer, B, who uses this information to 
onstru
t a proxy key,

whi
h B will use to sign messages on behalf of A. This proxy key must 
ontain some

authenti
 information about the proxy signer, if we want these s
hemes to satisfy the se
urity

requirements of proxy signatures listed in the work of Mambo et al. [9℄:

(i) Strong unforgeability: only a designated proxy signer 
an 
reate a valid proxy

signature for the original signer (even the original signer 
annot do it).

(ii) Veri�ability: a veri�er of a proxy signature will be 
onvin
ed in any way of the

original signer's agreement on the signed message.

(iii) Strong identi�ability: a proxy signature determines the identity of the 
orrespond-

ing proxy signer.

(iv) Strong undeniability: after 
reating a valid proxy signature for an original signer,

the proxy signer 
annot repudiate this signature against anyone.

In [8℄ Lee, Kim and Kim brie
y modify the proposal of [7℄: now the proxy signer B and

the original signer A play asymmetri
 roles in the generation of a proxy signature, and so

the warrant information must not 
ontain an expli
it delegation of A's signing 
apability.

Besides, A does not need to designate a spe
i�
 proxy signer. In [8℄, the authors add a

new se
urity requirement to proxy signature s
hemes (whi
h their s
heme, as well as that

proposed in [7℄, satis�es):

(v) Prevention of misuse: the proxy signer 
annot use the proxy key for other purposes

than generating a valid proxy signature. That is, he 
annot sign, with the proxy key,

messages that have not been authorized by the original signer.

All the proposals of proxy signature s
hemes, like [8℄ and [7℄, are based on S
hnorr's

signature s
heme ([12℄).

2.1 S
hnorr's Signature S
heme

In [12℄, S
hnorr introdu
ed the following signature s
heme.

Let p and q be large primes with qjp � 1. Let g be a generator of a multipli
ative

subgroup of Z

�

p

with order q. H() denotes a 
ollision resistant hash fun
tion. (This will be

the mathemati
al s
enario in the rest of the paper.)

A signer A has a private key x

A

2 Z

�

q

and the 
orresponding publi
 key y

A

= g

x

A

. To

sign a message M , A a
ts as follows:

1. 
hoose a random k 2 Z

�

q

2. 
ompute r = g

k

mod p and s = k + x

A

H(M; r) mod q

3. de�ne the signature on M to be the pair (r; s)

The validity of the signature is veri�ed by the re
ipient by 
he
king that g

s

= ry

H(M;r)

A

.

In [11℄, Point
heval and Stern proved that, in the random ora
le model, existential

forgery under adaptively 
hosen message atta
k of S
hnorr's s
heme is equivalent to the

dis
rete logarithm problem in the group generated by the element g.
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2.2 The proposal of Lee, Kim and Kim

The following proxy signature s
heme has been introdu
ed in [8℄. It is based on the proposal

of Kim et al. [7℄, with the di�eren
e that the warrant information signed by the original

signer must not expli
itly in
lude either his identity or the identity of the proxy signer. This

is possible be
ause the original signer and the proxy signer do not play the same role in the

generation of a proxy signature, and so the veri�er 
an identify both of them.

Original signer A has the key pair (x

A

; y

A

), with y

A

= g

x

A

, whereas the (future) proxy

signer B also has his user key pair (x

B

; y

B

), with y

B

= g

x

B

.

Generation of the proxy key: the original signer A uses S
hnorr's s
heme to sign

warrant information M

!

, whi
h should spe
ify whi
h messages A will allow the proxy to

sign on his behalf.

That is, A 
hooses at random k

A

2 Z

�

q

, and 
omputes r

A

= g

k

A

and s

A

= k

A

+

x

A

H(M

!

; r

A

) mod q. Signer A sends (M

!

; r

A

; s

A

) to a proxy signer B se
retly (in fa
t,

only the value s

A

must remain se
ret, the values M

!

and r

A

should be broad
ast). Then B

veri�es the validity of the S
hnorr's signature:

g

s

A

= r

A

y

H(M

!

;r

A

)

A

If the veri�
ation is 
orre
t, B 
omputes his proxy key pair (x

P

; y

P

) as

x

P

= x

B

+ s

A

; y

P

= g

x

P

(= y

B

r

A

y

H(M

!

;r

A

)

A

)

Proxy signature generation: in order to 
reate a proxy signature on a message M


onforming to the warrant informationM

!

, proxy signer B uses S
hnorr's signature s
heme

with keys (x

P

; y

P

) and obtains a signature (r

P

; s

P

) for the message M . The valid proxy

signature will be the tuple

(M; r

P

; s

P

;M

!

; r

A

)

Veri�
ation: a re
ipient 
an verify the validity of the proxy signature by 
he
king that

M 
onforms to M

!

and the veri�
ation equality of S
hnorr's signature s
heme with publi


key y

H(M

!

;r

A

)

A

r

A

y

B

(= y

P

); that is

g

s

P

= r

P

(y

B

r

A

y

H(M

!

;r

A

)

A

)

H(M;r

P

)

This proxy signature s
heme satis�es the se
urity requirements (i), ..., (v) listed above

(see [8℄ for the details). Note also that other signature s
hemes 
an be used in the proxy

signature generation, with keys (x

P

; y

P

), provided that these s
hemes use keys of the form

(x; y), with y = g

x

; for example, ElGamal signature s
heme or DSS.

3 Some Distributed Proto
ols in a General Framework

In [15℄, Stinson and Strobl propose a distributed version of S
hnorr's signature s
heme,

whi
h is proved to be as se
ure as the original signature s
heme. This proposal is based on

veri�able se
ret sharing s
hemes and on the joint generation of a random se
ret value.

We will 
onsider a framework whi
h is more general than the threshold one. That is,

those subsets of players authorized to perform some spe
i�
 a
tions, su
h as the re
overy of

a se
ret or the signature of a message, as well as those subsets of dishonest players that the

system is able to tolerate, will not be ne
essarily de�ned a

ording to their 
ardinality.

So we will adapt to this general framework the previous (threshold) proposals for veri�-

able se
ret sharing [10℄, the joint generation of a random se
ret [5℄ and threshold S
hnorr's

signature s
heme [15℄.
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3.1 Veri�able Se
ret Sharing

In a se
ret sharing s
heme, a dealer distributes shares of a se
ret value among a set of

players P = f1; : : : ; ng in su
h a way that only authorized subsets of players (those in

the so-
alled a

ess stru
ture, denoted by � � 2

P

) 
an re
over the se
ret value from their

shares, whereas non-authorized subsets do not obtain any information about the se
ret

(un
onditional se
urity). The stru
ture � must be monotone in
reasing, that is, if A

1

2 �

and A

1

� A

2

, then A

2

2 �.

Se
ret sharing s
hemes were introdu
ed independently by Shamir [13℄ and Blakley [1℄ in

1979. Shamir proposed a well-known threshold s
heme, in whi
h the authorized subsets are

those with more than t members (t is the threshold). Other works propose s
hemes realizing

more general a

ess stru
tures; for example, ve
tor spa
e se
ret sharing s
hemes [2℄ are often

used. An a

ess stru
ture � 
an be realized by su
h a s
heme if, for some positive integer

t and some ve
tor spa
e E = K

t

over a �nite �eld K (in our 
ontext, it will be K = Z

q

),

there exists a fun
tion

 : P [ fDg �! E

su
h that A 2 � if and only if the ve
tor  (D) 
an be expressed as a linear 
ombination of

the ve
tors in the set  (A) = f (i)ji 2 Ag. If � 
an be de�ned in this way, we say that � is

a ve
tor spa
e a

ess stru
ture; then we 
an 
onstru
t a se
ret sharing s
heme for � with set

of se
rets Z

q

: given a se
ret value k 2 Z

q

, the dealer takes a random element v 2 E = (Z

q

)

t

,

su
h that v �  (D) = k. The share of a parti
ipant i 2 P is s

i

= v �  (i) 2 Z

q

. Let A be an

authorized subset, A 2 �; then,  (D) =

P

i2A




A

i

 (i), for some 


A

i

2 Z

q

. In order to re
over

the se
ret, the players of A 
ompute

X

i2A




A

i

s

i

=

X

i2A




A

i

v �  (i) = v �

X

i2A




A

i

 (i) = v �  (D) = k mod q

Shamir threshold se
ret sharing s
heme with threshold t is a parti
ular 
ase of ve
tor

spa
e s
hemes, taking  (D) = (1; 0; : : : ; 0) and  (i) = (1; i; i

2

; : : : ; i

t�1

).

Linear se
ret sharing s
hemes 
an be seen as ve
tor spa
e se
ret sharing s
hemes in

whi
h ea
h player 
an have asso
iated more than one ve
tor. They were introdu
ed by

Simmons, Ja
kson and Martin [14℄, who proved that any a

ess stru
ture 
an be realized by

a linear se
ret sharing s
heme, although in general the 
onstru
tion they proposed results

in an ineÆ
ient se
ret sharing s
heme. These s
hemes have been 
onsidered under other

names su
h as geometri
 se
ret sharing s
hemes or monotone span programs. In our work,

we will 
onsider any possible a

ess stru
ture, so we will know that there exists a linear

se
ret sharing s
heme realizing this stru
ture. However, we will suppose for simpli
ity that

this s
heme is a ve
tor spa
e one.

A variation of these s
hemes are veri�able se
ret sharing s
hemes, whi
h prevent the

dealer and the players from 
heating; ea
h parti
ipant 
an 
he
k if his share is 
onsistent

with the shared se
ret. The two most used veri�able se
ret sharing s
hemes are the proposals

of Pedersen [10℄ and Feldman [3℄. Here we present a modi�
ation of the (threshold) veri�able

se
ret sharing s
heme proposed in [10℄. We 
onsider any a

ess stru
ture �. Furthermore,

we must take into a

ount whi
h subsets of dishonest players 
an be tolerated by the system.

Those subsets form the adversary stru
ture A � 2

P

, whi
h must be monotone de
reasing: if

B

1

2 A is tolerated and B

2

� B

1

, then B

2

2 A is also tolerated.

The situation is modelized by an a
tive adversary who 
an 
orrupt, at the beginning of

the proto
ol, all players of some subset R 2 A. During the exe
ution of the proto
ol, the

adversary 
ontrols the behavior of these players, de
iding at ea
h moment whi
h players of

R follow the proto
ol 
orre
tly and whi
h ones lie, but the adversary 
annot 
hange the

subset R in A that he has 
hosen at the beginning (we say that it is a stati
 adversary). An

obvious requirement is that the adversary 
annot obtain the se
ret from the shares of the

parti
ipants that he has 
orrupted, so the 
ondition � \ A = ; must be satis�ed.

In the threshold 
ase, the stru
tures � = fA 2 2

P

: jAj � tg and A = fB 2 2

P

: jBj <

tg have been usually 
onsidered. We are going to 
onsider any possible stru
tures � and A
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satisfying �\A = ;, and so we will use general linear se
ret sharing s
hemes (for simpli
ity,

ve
tor spa
e ones) instead of threshold se
ret sharing s
hemes.

As before, q and p are large primes su
h that qjp � 1. Let g and h be generators of a

multipli
ative subgroup of Z

�

p

with order q. The set of players is P = f1; : : : ; ng, and the

a

ess stru
ture � � 2

P

is de�ned by the fun
tion  : P [ fDg �! (Z

q

)

t

. If the dealer

wants to share the se
ret k 2 Z

q

, in a veri�able way, he does the following:

1. Choose two random ve
tors in (Z

q

)

t

:

v = (v

(1)

; : : : ; v

(t)

) ; w = (w

(1)

; : : : ; w

(t)

)

su
h that v �  (D) = k.

2. Compute (s

i

; s

0

i

) = (v � (i);w � (i)) 2 (Z

q

)

2

and send the pair (s

i

; s

0

i

) to player i, for

1 � i � n.

3. Broad
ast the publi
 
ommitments C

m

= g

v

(m)

h

w

(m)

2 Z

�

p

, for 1 � m � t.

Ea
h player i veri�es that

g

s

i

h

s

0

i

=

t

Y

m=1

(C

m

)

 (i)

(m)

(1)

where  (i)

(m)

denotes the m-th 
omponent of ve
tor  (i). If this equality does not hold,

player i broad
asts a 
omplaint against the dealer.

For ea
h 
omplaint from a player i, the dealer broad
asts the values (s

i

; s

0

i

) = (v � (i);w �

 (i)) satisfying equation (1). The dealer is reje
ted if he re
eives 
omplaints from players of

a subset that is not in the adversary stru
ture A, or if he answers a 
omplaint with values

that do not satisfy equation (1). Otherwise, the dealer is a

epted.

This veri�able se
ret sharing s
heme is 
omputationally se
ure, assuming that the dis-


rete logarithm problem in the group generated by g is hard (the proof is almost the same

as that in [10℄ for the threshold 
ase).

3.2 Robust Joint Generation of a Random Se
ret Value

In this work, and roughly speaking, a distributed proto
ol is said to be robust if it always

produ
es a 
orre
t output, even in the presen
e of some tolerated subset of dishonest players.

In [5℄ Gennaro, Jare
ki, Kraw
zyk and Rabin use Pedersen's veri�able se
ret sharing

s
heme to design a proto
ol in whi
h players in a set P = f1; : : : ; ng jointly generate a

publi
 key y = g

x

and shares of the 
orresponding se
ret key x, in su
h a way that t or more

players 
an re
over this se
ret key (threshold a

ess stru
ture). The idea is the following:

ea
h player i plays the role of a dealer and shares a random value k

i

among the players. The

se
ret key x will be the sum of some of these values.

We explain here the more general version 
onsidering any a

ess stru
ture � � 2

P

(real-

izable, for simpli
ity, by a ve
tor spa
e s
heme de�ned by a fun
tion  ) and any adversary

stru
ture A satisfying some se
urity and robustness 
onditions. If we want this proto
ol

to be robust, we must make sure that, when we dete
t a dishonest subset of players in A

and reje
t them from the proto
ol, an authorized subset in � still remains among the non-

reje
ted players; this authorized subset of honest players 
an go on exe
uting the proto
ol.

That is, for any subset R 2 A, it must be P � R 2 �, or equivalently, A




� �, where

A




= fP �R : R 2 Ag.

Combining this 
ondition with the unforgeability 
ondition �\A = ;, we have in parti
-

ular that the stru
tures A and � must satisfy the following 
ondition: for all subset R 2 A

it is ne
essary P �R =2 A. We say that su
h a monotone de
reasing stru
ture A is Q

2

in P .

Note that in the threshold 
ase, this Q

2


ondition is equivalent to n � 2t+ 1.

The proto
ol is as follows:
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1. Ea
h player i exe
utes Pedersen's veri�able se
ret sharing s
heme playing the role

of a dealer. That is, he 
hooses two random ve
tors v

i

= (v

(1)

i

; : : : ; v

(t)

i

) and w

i

=

(w

(1)

i

; : : : ; w

(t)

i

), in (Z

q

)

t

, where v

i

�  (D) = k

i

is the random se
ret distributed by

player i, and sends to player j the pair (s

ij

; s

0

ij

) = (v

i

�  (j);w

i

�  (j)), for 1 � j � n.

The publi
 
ommitments are C

im

= g

v

(m)

i

h

w

(m)

i

, for 1 � m � t.

2. At step 1, players who 
heat are dete
ted and reje
ted. We de�ne F

0

= fij player i

is not reje
ted at step 1g. Sin
e A




� �, we have that F

0

2 �. Furthermore, for all

players i 2 F

0

that pass this phase, there are valid shares s

ij


orresponding to players

j that form an authorized subset. Ea
h player j 2 P 
omputes his share of the total

se
ret as x

j

=

P

i2F

0

s

ij

(the total se
ret will be x =

P

i2F

0

k

i

2 Z

q

).

3. Now they want to 
ompute the value y = g

x

=

Q

i2F

0

g

k

i

2 Z

�

p

. They use Feldman's

veri�able se
ret sharing s
heme (see [3℄ for the original threshold version):

3.1. Ea
h player i 2 F

0

broad
asts A

im

= g

v

(m)

i

, for 1 � m � t.

3.2. Ea
h player j veri�es the values broad
ast by all the other players in F

0

. That

is, for ea
h i 2 F

0

, player j 
he
ks that

g

s

ij

=

t

Y

m=1

(A

im

)

 (j)

(m)

(2)

If this veri�
ation is false, player j 
omplains against i broad
asting the pair

(s

ij

; s

0

ij

) that satis�es veri�
ation at step 1 (Pedersen's s
heme, equation (1) in

Se
tion 3.1), but does not satisfy equation (2).

3.3. For players i who re
eived some valid 
omplaint at step 3.2, the other players

j run the re
onstru
tion phase of Pedersen's s
heme to re
over a ve
tor ~v

i

=

(~v

(1)

i

; : : : ; ~v

(t)

i

) su
h that ~v

i

�  (j) = s

ij

, for all these players j (depending on the


ase, they will re
over exa
tly ~v

i

= v

i

, but this is not ne
essary). They 
an also

re
over the value k

i

; this 
an be done be
ause there are valid shares s

ij

satisfying

equation (1) at step 1 (Pedersen's s
heme), 
orresponding to players j that form

an authorized subset. All players in F

0


an 
ompute, therefore, the 
orre
t value

g

k

i

. From the ve
tor ~v

i

, the 
orre
t 
ommitment values A

im

= g

~v

(m)

i


an also be


omputed.

Then the publi
 key y = g

x


an be obtained by any parti
ipant in the following way:

y =

Y

i2F

0

g

k

i

=

Y

i2F

0

g

v

i

� (D)

=

Y

i2F

0

t

Y

m=1

g

v

(m)

i

 (D)

(m)

=

Y

i2F

0

t

Y

m=1

(A

im

)

 (D)

(m)

After the exe
ution of this proto
ol, we have the publi
 key y = g

x

, where x =

P

i2F

0

k

i

is the 
orresponding se
ret key, and x

j

=

P

i2F

0

s

ij

= (

P

i2F

0

v

i

) �  (j) = v �  (j) is the

share of player j 
orresponding to the se
ret x, where v = (v

(1)

; : : : ; v

(t)

), with v

(m)

=

P

i2F

0

v

(m)

i

. Besides, the �nal 
ommitment values A

m

= g

v

(m)


an be easily 
omputed as

A

m

=

Q

i2F

0

A

im

, for 1 � m � t.

We note all these fa
ts (parameters and outputs of the proto
ol) with the following

expression:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! ((x; y); fA

m

g

1�m�t

; F

0

)

The se
urity and robustness of this proto
ol 
an be proved analogously to the proof in [5℄

(whi
h 
orresponds to the threshold 
ase n � 2t+ 1).
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3.3 Stinson and Strobl Distributed S
hnorr's Signature S
heme

Now we will explain the proposal of Stinson and Strobl [15℄ for distributing S
hnorr's sig-

nature s
heme. They 
onsider threshold stru
tures; that is, the system 
an tolerate the

presen
e of less than t dishonest players, whereas any subset of at least t honest players


an 
ompute a valid signature. But they remark that the proto
ol 
an be adapted to run

with other stru
tures, using a general linear (veri�able) se
ret sharing s
heme instead of the

threshold se
ret sharing s
heme (and its veri�able variants) of Shamir.

We now explain the s
heme in [15℄ adapted to the 
ase of any a

ess stru
ture � and

adversary stru
ture A, su
h that � \ A = ; and A




� � (the justi�
ation for these 
om-

binatorial requirements is the same as in Se
tion 3.2). We assume again that � is a ve
tor

spa
e a

ess stru
ture de�ned by a fun
tion  . The proto
ol has three parts.

Key generation: players in P = f1; : : : ; ng use the proto
ol explained in Se
tion 3.2

to jointly generate shares of a se
ret key and the 
orresponding publi
 key. The output will

be:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! ((x; y); fA

m

g

1�m�t

; F

0

)

Signature generation: let H be a 
ollision-free hash fun
tion, and M the message to

be signed. If an authorized subset F

1

2 �, F

1

� F

0

wants to sign M , they do the following:

1. Players in F

1

run again the joint generation proto
ol of Se
tion 3.2, with output

(k

1

; : : : ; k

n

)

(P;�;A)

 ! ((k; r); fC

m

g

1�m�f

; F

2

)

where k is a random se
ret shared value in Z

q

and r = g

k

is publi
, and F

2

� F

1

.

2. Ea
h player i 2 F

2

broad
asts




i

= k

i

+H(M; r)x

i

3. Ea
h player j 2 F

2

veri�es, for all i 2 F

2

, that

g




i

=

t

Y

m=1

(C

m

)

 (i)

(m)

[(A

m

)

 (i)

(m)

℄

H(M;r)

De�ne F

3

= fij player i is not dete
ted to be 
heating at step 3g.

4. Ea
h player i 2 F

3


omputes s = k + H(M; r)x mod q, in the following way: sin
e

A




� �, we have that F

3

2 �, so there exist publi
 
oeÆ
ients f�

F

3

j

g

j2F

3

in Z

q

su
h

that

P

j2F

3

�

F

3

j

 (j) =  (D). Then, ea
h player i 2 F

3


omputes

s =

X

j2F

3

�

F

3

j




j

The signature for the message M is the pair (r; s).

Veri�
ation: the veri�
ation phase is the same as in S
hnorr's signature s
heme; that

is, the re
ipient 
annot distinguish if the signature has been generated in a distributed way

or not. The re
ipient 
he
ks that

g

s

= ry

H(M;r)

Notation: we will use the expression

DistS
hnSig(P ;�;A;M; y; fx

i

g

i2P

; fA

m

g

1�m�f

) = (r; s)

to refer to an exe
ution of the signature generation phase, in whi
h players of a set P , with

authorized subsets in the a

ess stru
ture � and tolerated subsets of dishonest players in the

7



adversary stru
ture A, jointly generate a S
hnorr's signature (r; s) on a message M , using

the publi
 key y, shares (x

1

; : : : ; x

n

) of the se
ret key x, and 
ommitment values A

m

= g

v

(m)

for the 
omponents v

(m)

of the ve
tor that in fa
t distributes the shares of x.

Se
urity of the proto
ol. In [15℄, this distributed signature s
heme is proved to be as

se
ure as S
hnorr's signature s
heme. The idea of the proof is the following: they prove that

the proto
ol is simulatable; that is, given an adversary against the s
heme, there exists an

algorithm whi
h outputs values that are 
omputationally indistinguishable from the values

that the adversary views during a real exe
ution of the proto
ol. Then, assuming that this

adversary against the distributed s
heme is su

essful in forging a signature under a 
hosen

message atta
k, both this fa
t and the simulability of the distributed proto
ol 
an be used

to 
onstru
t an adversary against the original S
hnorr's s
heme, whi
h is also su

essful

in forging a signature under a 
hosen message atta
k. But in the random ora
le model,

this is equivalent to solving the dis
rete logarithm problem [11℄, so they 
an 
on
lude that

the distributed version of S
hnorr's signature s
heme has this same level of se
urity, in the

random ora
le model (see [15℄ for the 
omplete proof).

The proto
ol is also robust, if A




� �. This is due to the fa
t that there is always a

subset in � that passes all the veri�
ation tests, and so players of this subset 
an �nish the

proto
ol 
orre
tly.

4 Fully Distributed Proxy Signatures

In this se
tion, we propose a distributed proxy signature s
heme based on the proxy signature

s
heme of Lee et al. [8℄ and on the idea of the distributed S
hnorr's signature s
heme of

Stinson and Strobl [15℄, explained above.

Distributed proto
ols have two main advantages with respe
t to individual ones: an

in
rease of the se
urity, be
ause now more than one party must be 
orrupted in order to

obtain a se
ret key, for example; and an in
rease of the reliability, be
ause the proto
ol 
an

be exe
uted even if some parties are non-working at that moment for some reason.

There are various proposals of distributed (threshold) proxy signature s
hemes. Zhang's

proposal [16℄ is not strongly unforgeable, be
ause the original signer 
an impersonate the

proxy signer. Kim et al. [7℄ also proposed a threshold version of their proxy signature

s
heme. Hwang, Lin and Lu [6℄ adapt the threshold s
heme of Kim et al. to the 
ase in

whi
h the veri�er of the proxy signature must be able to identify whi
h 
on
rete players in

the proxy entity have signed the message. All these s
hemes distribute only the power of the

proxy signer that signs messages on behalf of the original signer. Why not also distribute

the original signer, and in this way in
rease the se
urity and reliability of the full s
heme?

Our proxy signature s
heme is the �rst that is fully distributed, in the sense that we

distribute both the original and the proxy signer. We 
onsider general stru
tures for the

authorized subsets and for the tolerated subsets of dishonest players. Finally, our s
heme

is based on the proxy signature s
heme of Lee et al. [8℄, and so the original signer entity

does not need to in
lude expli
itly his identity, nor the identity of the proxy signer in the

warrant information that it signs.

4.1 The S
enario

Wemust think of entities A andB as sets of playersA = fP

1

; : : : ; P

n

A

g andB = fQ

1

; : : : ; Q

n

B

g.

We 
onsider general monotone in
reasing a

ess stru
tures �

A

� 2

A

and �

B

� 2

B

in these

sets. Furthermore, the system will tolerate the presen
e of some 
oalitions of dishonest

players, those in the adversary stru
tures A

A

� 2

A

and A

B

� 2

B

, whi
h must be monotone

de
reasing; that is, the s
heme will be unforgeable even if some players in A and some

players in B are 
orrupted and ex
hange their se
ret information, provided �

A

\ A

A

= ;

and �

B

\ A

B

= ;, of 
ourse. Finally, we require A




A

� �

A

and A




B

� �

B

, in order to give

robustness to the s
heme, in the same way as in Se
tions 3.2 and 3.3.
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We assume, for simpli
ity, that there exists a fun
tion  

A

: fDg[A �! (Z

q

)

t

A

, for some

positive integer t

A

, su
h that a subset J

A

� A is in �

A

if and only if  

A

(D) 2 h 

A

(j)i

P

j

2J

A

,

and the same for the stru
ture �

B

with a 
ertain positive integer t

B

and a 
ertain fun
tion

 

B

.

Any subset of A whose honest players form a subset in �

A


an delegate A's signing


apability, and any subset of B whose honest players form a subset in �

B


an sign a message

on behalf of entity A.

4.2 Our proposal

The proto
ol that we present has four parts:

Generation of the entities' keys

Players in A jointly generate a publi
 key and shares of the 
orresponding se
ret key,

using the proto
ol in Se
tion 3.2. Players in B do the same. The result is:

(x

A;1

; : : : ; x

A;n

A

)

(A;�

A

;A

A

)

 ! ((x

A

; y

A

); fA

m

g

1�m�t

A

; F

0;A

)

(x

B;1

; : : : ; x

B;n

B

)

(B;�

B

;A

B

)

 ! ((x

B

; y

B

); fB

`

g

1�`�t

B

; F

0;B

)

Distributed generation of the proxy key

In this phase, players in entity A sign a warrant informationM

!

A

, using the �rst part of

the distributed S
hnorr's signature s
heme explained in Se
tion 3.3. However, they do not

obtain the expli
it signature, but shares of it (thus preventing the possibility of one dishonest

parti
ipant in A sending this se
ret signature to a dishonest parti
ipant in entity B). Then

they send some information to players in entity B. Ea
h player in B then 
omputes, from

this information, his share of the proxy key, whi
h will later be used to generate a proxy

signature in a distributed way. This subproto
ol is as follows.

1. Players in A exe
ute the �rst step in the signature generation phase of the distrib-

uted S
hnorr's signature s
heme explained in Se
tion 3.3. That is, they run the joint

generation proto
ol of Se
tion 3.2, with output

(k

A;1

; : : : ; k

A;n

A

)

(A;�

A

;A

A

)

 ! ((k

A

; r

A

); fC

m

g

1�m�t

A

; F

1;A

)

The values r

A

= g

k

A

and M

!

A

are made publi
.

2. Ea
h player P

i

2 F

1;A


omputes his share of the value s

A

= k

A

+x

A

H(M

!

A

; r

A

) mod q

as




i

= k

A;i

+H(M

!

A

; r

A

)x

A;i

mod q

3. Ea
h player P

i

2 F

1;A

distributes the value 


i

, veri�ably among the players in entity

B, in su
h a way that any subset in �

B


an re
over this value. He uses Feldman's

s
heme [3℄; that is, P

i


hooses a random ve
tor v

i

= (v

(1)

i

; : : : ; v

(t

B

)

i

) in Z

t

B

q

su
h that

v

i

�  

B

(D) = 


i

, he makes publi
 the 
ommitment values D

i`

= g

v

(`)

i

, for 1 � ` � t

B

,

and sends to ea
h player Q

j

2 B the share s

ij

= v

i

�  

B

(Q

j

).

4. In some way (we do not explain the details here), the 
orre
t 
ommitments fA

m

g

1�m�t

A

and fC

m

g

1�m�t

A


orresponding to the sharing of the se
ret values x

A

and k

A

, respe
-

tively, must be publi
ly revealed to all players in entity B. Then ea
h player Q

j

2 B


he
ks, for any re
eived share s

ij

, that

t

B

Y

`=1

(D

i`

)

 

B

(D)

(`)

=

t

A

Y

m=1

(C

m

)

 

A

(P

i

)

(m)

[(A

m

)

 

A

(P

i

)

(m)

℄

H(M

!

A

;r

A

)
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and that

g

s

ij

=

t

B

Y

`=1

(D

i`

)

 

B

(Q

j

)

(`)

If either of these two 
he
ks fails, Q

j

broad
ast a 
omplaint against P

i

. If P

i

re
eives


omplaints from players that form a subset of B that is not in A

B

, then he is reje
ted.

Let F

2;A

be the subset of players in A that pass this veri�
ation phase. Sin
e A




A

� �

A

,

we have that F

2;A

2 �

A

.

5. Players of B publi
ly �x 
oeÆ
ients f�

F

2;A

i

g

P

i

2F

2;A

in Z

q

su
h that  

A

(D) =

P

P

i

2F

2;A

�

F

2;A

i

 

A

(P

i

). Then the equality

P

P

i

2F

2;A

�

F

2;A

i




i

= s

A

holds, and ea
h

player Q

j

2 B uses these �xed 
oeÆ
ients to 
ompute his share of the value s

A

as

s

A;j

=

X

P

i

2F

2;A

�

F

2;A

i

s

ij

mod q :

In e�e
t, if J

B

2 �

B

, there exists 
oeÆ
ients f�

J

B

j

g

Q

j

2J

B

in Z

q

su
h that  

B

(D) =

P

Q

j

2J

B

�

J

B

j

 

B

(Q

j

) mod q. Then it is not diÆ
ult to see that

P

Q

j

2J

B

�

J

B

j

s

A;j

=

s

A

mod q, and that fs

A;j

g

Q

j

2B

is a perfe
t sharing of the se
ret s

A

, a

ording to the

a

ess stru
ture �

B

.

6. Ea
h player Q

j

2 B 
omputes x

P;j

= x

B;j

+ s

A;j

mod q as his share of the se
ret

proxy key x

P

= x

B

+ s

A

mod q. The publi
 proxy key is 
omputed as y

P

= g

x

P

=

y

B

r

A

y

H(M

!

A

;r

A

)

A

mod p.

Note that the ve
tor that in fa
t shares the se
ret value s

A

among the parti
ipants of B

is

v =

X

P

i

2F

2;A

�

F

2;A

i

v

i

= (v

(1)

; : : : ; v

(t

B

)

) ;

where v

(`)

=

P

P

i

2F

2;A

�

F

2;A

i

v

(`)

i

, for 1 � ` � t

B

. Therefore, the 
ommitment values V

`


orresponding to the 
omponents v

(`)

of this ve
tor v 
an be publi
ly 
omputed from the


ommitments D

i`

of the 
omponents v

(`)

i

of the ve
tors v

i

, for P

i

2 F

2;A

as follows:

V

`

= g

v

(`)

= g

P

P

i

2F

2;A

�

F

2;A

i

v

(`)

i

=

Y

P

i

2F

2;A

(g

v

(`)

i

)

�

F

2;A

i

=

Y

P

i

2F

2;A

(D

i`

)

�

F

2;A

i

Finally, the 
ommitments 
orresponding to the 
omponents of the ve
tor that shares the

se
ret proxy key x

P

= x

B

+ s

A

mod q will be U

`

= B

`

V

`

, for 1 � ` � t

B

.

Note also that another possible strategy is to have an authority that re
eives the shares




i

from players in A, 
omputes the se
ret value s

A

from these shares, and redistributes

shares of s

A

among players in B. This solution redu
es the total number of 
ommuni
ations

of the s
heme, but it has some drawba
ks: the authority must be fully trusted and reliable

(opposite to the philosophy of this work), and a bottlene
k in the system is possible.

Distributed generation of a proxy signature

If the players of entity B want to sign a message M 
onforming to M

!

A

on behalf of

entity A, they exe
ute

DistS
hnSig(B;�

B

;A

B

;M; y

P

; fx

P;j

g

j2B

; fU

`

g

1�`�t

B

) = (r

P

; s

P

)

The proxy signature is the tuple (M; r

P

; s

P

;M

!

A

; r

A

).

Veri�
ation

The re
ipient of a proxy signature 
an verify its validity by 
he
king that

g

s

P

= r

P

(y

B

r

A

y

H(M

!

A

;r

A

)

A

)

H(M;r

P

)
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4.3 Se
urity and Robustness of the S
heme

The se
urity of our distributed proxy signature s
heme stems from the se
urity requirements

that are satis�ed by the proxy signature s
heme of Lee et al. [8℄, and from the existential

unforgeability of the distributed S
hnorr's signature s
heme under 
hosen message atta
ks,

in the random ora
le model [15℄. Roughly speaking, if an algorithm 
ould forge a new dis-

tributed proxy signature after some exe
utions of our s
heme (in whi
h the forger algorithm

views all the publi
 information and the se
ret information of a tolerated subset of dishonest

players), then we 
ould 
onstru
t from it another algorithm that would forge a distributed

S
hnorr's signature; and this is 
omputationally infeasible, in the random ora
le model.

Thus, if the 
onditions �

A

\A

A

= ; and �

B

\A

B

= ; hold, we 
an state that any subset

of A

A

does not obtain any information that allows it to delegate A's signing 
apability to

a proxy entity; and any subset of A

B

does not obtain any information that allows it to

sign a message on behalf of an original signer entity A (strong distributed unforgeability).

Moreover, the distributed proxy signature s
heme satis�es the requirements of veri�ability,

strong identi�ability, strong undeniability and prevention of misuse (see Se
tion 2).

Steps 3 and 4 in the distributed proxy key generation phase are a variation of Feldman's

veri�able se
ret sharing s
heme (whi
h is 
omputationally se
ure, see [3℄). In these steps,

players in B dete
t dishonest players P

i

2 F

1;A

who want to share an in
orre
t ~


i

among

players in B or who want to give them shares ~s

ij

whi
h are in
onsistent with the 
orre
t 


i

.

Sin
e we impose A




A

� �

A

and A




B

� �

B

, the s
heme is robust: an authorized subset

always remains in the set of non reje
ted players and 
an exe
ute ea
h step of the proto
ol.

Note that, even in the 
ase where the players of a subset R

A

2 A

A

and the players of

a subset R

B

2 A

B

are 
orrupted at the same time by the same adversary, the s
heme is

unforgeable and robust.

5 Con
lusion and Open Problems

In this paper we propose a se
ure and fully distributed proxy signature s
heme. We 
onsider

a framework whi
h is more general than the threshold one, in the sense that the authorized

subsets and the tolerated subsets of dishonest players are not ne
essarily de�ned a

ording

to their 
ardinality. We state the 
ombinatorial 
onditions that these stru
tures must satisfy

if we want our s
heme to be unforgeable and robust. The s
heme is based on the results of

[8℄ and [15℄, and inherits its se
urity from the se
urity of these two previous works. All these

properties, espe
ially the fa
t that we distribute not only the power of the proxy signer,

but also the original signer ability to delegate his signing 
apability, make our s
heme more


omplete than the previous proposals of threshold proxy signature s
hemes ([16, 7, 6℄).

Distributing proto
ols is a way of a
hieving se
urity and reliability, so our s
heme 
an be

used in a framework in whi
h entities wish to prevent external atta
ks or dishonest a
tions

from their own members. For example, we might imagine a 
ompany in whi
h a department

wants to delegate its signing 
apability to a proxy department of the same 
ompany. These

departments are formed by many members, and it is dangerous to give all the power of a

department to a single member. Our work allows this 
ompany to be se
ure so there is no

possibility of irregularity in the fun
tioning of the 
ompany, even in the presen
e of some

dishonest members in ea
h department. Besides, we 
onsider general a

ess stru
tures (not

only the threshold ones) in the departments; that is, the members do not all have the same

power or in
uen
e within the department. We also 
onsider general adversary stru
tures;

that is, members do not all have the same sus
eptibility to be 
orrupted.

Some problems remain open in the area of proxy signatures. Up to now, all the proposed

s
hemes are based on S
hnorr's signature s
heme; therefore the keys of all the users are in

the same group and the se
urity parameters must be the same for ea
h user. This may

sometimes be undesirable, so it would be very interesting to �nd proxy signature s
hemes

based on other signature s
hemes in whi
h this situation does not arise (for example, RSA);

this would appear to be a hard problem to solve.
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With respe
t to distributed proxy signature s
hemes, other signature s
hemes based on

the dis
rete logarithm problem 
an be used, su
h as DSS [4℄. But this s
heme makes use of

the 
alled problem of the multipli
ation, whi
h has an eÆ
ient solution only in the threshold


ase, if an a
tive adversary is 
onsidered. So it will be very interesting to �nd a way of

solving the problem of the multipli
ation in the 
ase of more general stru
tures.

Finally, the number of 
ommuni
ations between the parti
ipants in our fully distributed

s
heme is quite large, but this fa
t is in part inherited from the 
ost of the joint generation

of a random se
ret value. Furthermore, 
ommuni
ations between entities A and B must be

performed only on
e. However, perhaps other fully distributed proxy signature s
hemes 
an

be designed to over
ome this drawba
k.
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