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Abstract

In a proxy signature scheme, a potential signer delegates his signing capability to
a proxy entity, who signs a message on behalf of the original signer. All the proposals
of proxy signature schemes made until now have been based on Schnorr’s signature
scheme. Threshold versions of these schemes have also been proposed, in which the
power of the proxy signer is distributed among a group of players, in such a way that
any subset with a minimum number (threshold) of players can sign a message on behalf
of the original signer.

We consider a model that is fully distributed, because we want to distribute not
only the power of the proxy signer, but also the original signer ability to delegate his
signing capability. Furthermore, we consider general structures, instead of only the
threshold ones, for both the tolerated subsets of dishonest players and the subsets of
honest players authorized to execute a valid instance of the protocol, and in both the
original and the proxy signer entities. We find sufficient combinatorial conditions that
these structures must satisfy in order to design a fully distributed, secure and robust
proxy signature scheme for this general scenario.

We propose such a scheme for this setting. It is based on the results of [8] and [15],
and inherits the security of these two works.

Keywords. Proxy signature schemes, distributed cryptographic protocols, secret
sharing schemes.
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1 Introduction

Sometimes a person or a company that has the capability and the necessity of signing a
document does not have enough time to do so. Or perhaps this person, A, is keen to
delegate his signing capability to another person, B, so B would sign documents on behalf
of A if A had some (technical, logistical) problem.

In a more concrete (or practical) situation, we can imagine a company with many depart-
ments. One of them, A (finances, business connections, loans in a bank, for example) must
sign documents regularly, but A has a lot of things to do in addition to signing, and besides
A wants its documents to be signed even if it is not able to do so because of some problem.
A solution for this company could be to have a department B, the proxy department, whose
only job would be to sign documents on behalf of the other departments of the company.

This is the scenario for a proxy signature scheme: a potential signer A delegates his
signing capability to a proxy signer, B (in some way, A tells B what kind of messages B
can sign), and B signs a message on behalf of the original signer, A. The receiver of the
message verifies the signature of B and the delegation of A together.

Proxy signature schemes must have some security properties; we list them in Section 2.
According to these properties, the most complete proxy signature schemes proposed until
now are that of Lee, Kim and Kim [8] and that of Kim, Park and Won [7]. These schemes,
as well as the previous proposals [9, 16] of proxy signature schemes, are based on Schnorr’s
signature scheme [12], which is also revisited in Section 2.

In [15], Stinson and Strobl propose a distributed version of Schnorr’s signature scheme,
which is as secure as the non-distributed one; that is, existentially unforgeable under adap-
tively chosen message attacks (as Pointcheval and Stern proved in [11]). This distributed
scheme is based on the joint generation of a random secret value. Distributed protocols
provide more security and reliability than individual ones, because they tolerate some coali-
tions of participants to be corrupted or non-working at the moment of the execution of the
protocol. In Section 3 we propose a general framework for distributed protocols; that is,
we consider general structures (families of subsets of players) that determine both which
subsets of players can perform some specific actions and which subsets of dishonest players
the system will be able to tolerate. The threshold case, in which these subsets are defined
according to their cardinality, is a particular case. We adapt to this general framework the
verifiable secret sharing scheme of Pedersen [10], the joint generation of a random secret
value of Gennaro et al. [5] and the threshold Schnorr’s signature scheme of Stinson and
Strobl [15].

In Section 4, we construct a fully distributed and secure proxy signature scheme, in the
sense that we distribute not only the proxy signer (that is, B), but also the original signer, A,
who delegates his signing capability. This scheme runs in the general framework introduced
in Section 3. If the structures satisfy some combinatorial conditions that we state, the
scheme is robust and unforgeable in the random oracle model under chosen message attacks,
because it inherits its security from the security of the distributed Schnorr’s signature scheme
of [15] and the proxy signature scheme of [8]. The distribution of the original signer, the
level of security of the scheme, and the fact that we consider a scenario which is more general
than the threshold one, make our proposal more complete than the previous threshold proxy
signature schemes ([7, 16, 6]).

Finally, in Section 5 we conclude by summing up our contribution and discussing some
problems that remain open in the area of proxy signatures.



2 Proxy Signatures

The concept of proxy signature was introduced by Mambo, Usuda and Okamoto in [9]. They
classified these signatures according to the delegation type and the protection of the proxy
signer. Kim et al. [7] included warrant information in these schemes; that is, the signer A
sends to the proxy B a signed message in which A explicitly delegates its signing capability
to B, allowing B to sign some kind of messages (specified in the warrant information) on
behalf of A.

The idea of these proxy signature schemes is the following: A sends a message and
its signature to a proxy signer, B, who uses this information to construct a proxy key,
which B will use to sign messages on behalf of A. This proxy key must contain some
authentic information about the proxy signer, if we want these schemes to satisfy the security
requirements of proxy signatures listed in the work of Mambo et al. [9]:

(i) Strong unforgeability: only a designated proxy signer can create a valid proxy
signature for the original signer (even the original signer cannot do it).

(ii) Verifiability: a verifier of a proxy signature will be convinced in any way of the
original signer’s agreement on the signed message.

(iii) Strong identifiability: a proxy signature determines the identity of the correspond-
ing proxy signer.

(iv) Strong undeniability: after creating a valid proxy signature for an original signer,
the proxy signer cannot repudiate this signature against anyone.

In [8] Lee, Kim and Kim briefly modify the proposal of [7]: now the proxy signer B and
the original signer A play asymmetric roles in the generation of a proxy signature, and so
the warrant information must not contain an explicit delegation of A’s signing capability.
Besides, A does not need to designate a specific proxy signer. In [8], the authors add a
new security requirement to proxy signature schemes (which their scheme, as well as that
proposed in [7], satisfies):

(v) Prevention of misuse: the proxy signer cannot use the proxy key for other purposes
than generating a valid proxy signature. That is, he cannot sign, with the proxy key,
messages that have not been authorized by the original signer.

All the proposals of proxy signature schemes, like [8] and [7], are based on Schnorr’s
signature scheme ([12]).

2.1 Schnorr’s Signature Scheme

In [12], Schnorr introduced the following signature scheme.

Let p and ¢ be large primes with ¢|p — 1. Let g be a generator of a multiplicative
subgroup of Zj with order ¢. H() denotes a collision resistant hash function. (This will be
the mathematical scenario in the rest of the paper.)

A signer A has a private key 4 € Z} and the corresponding public key y4 = g®4. To
sign a message M, A acts as follows:

1. choose a random k € Z;
2. compute r = g¥ modp and s =k + 2, H(M,r) modgq

3. define the signature on M to be the pair (r, s)

The validity of the signature is verified by the recipient by checking that ¢* = ryf(M’r) .
In [11], Pointcheval and Stern proved that, in the random oracle model, existential
forgery under adaptively chosen message attack of Schnorr’s scheme is equivalent to the

discrete logarithm problem in the group generated by the element g.



2.2 The proposal of Lee, Kim and Kim

The following proxy signature scheme has been introduced in [8]. It is based on the proposal
of Kim et al. [7], with the difference that the warrant information signed by the original
signer must not explicitly include either his identity or the identity of the proxy signer. This
is possible because the original signer and the proxy signer do not play the same role in the
generation of a proxy signature, and so the verifier can identify both of them.

Original signer A has the key pair (z4,y4), with y4 = ¢g®4, whereas the (future) proxy
signer B also has his user key pair (zg,yg), with yp = ¢*5.

Generation of the proxy key: the original signer A uses Schnorr’s scheme to sign
warrant information M,,, which should specify which messages A will allow the proxy to
sign on his behalf.

That is, A chooses at random ks € Zj, and computes rq = g*4 and sq4 = ka +
xaH(M,,r4) modg. Signer A sends (M,,74,54) to a proxy signer B secretly (in fact,
only the value s4 must remain secret, the values M, and r4 should be broadcast). Then B
verifies the validity of the Schnorr’s signature:

gsA — TAyf(wa”A)

If the verification is correct, B computes his proxy key pair (zp,yp) as

H(M.,,
tp=ap+sa, yp=g°F (=yprayy )
Proxy signature generation: in order to create a proxy signature on a message M
conforming to the warrant information M,,, proxy signer B uses Schnorr’s signature scheme
with keys (zp,yp) and obtains a signature (rp,sp) for the message M. The valid proxy

signature will be the tuple
(Mana‘SP)MW7TA)

Verification: a recipient can verify the validity of the proxy signature by checking that
M conforms to M, and the verification equality of Schnorr’s signature scheme with public

H(M.,, )
key Z/A( TA)TAZ/B (= yp); that is

H(M,,
g =rp(yprayy ) HO0re)

This proxy signature scheme satisfies the security requirements (i), ..., (v) listed above
(see [8] for the details). Note also that other signature schemes can be used in the proxy
signature generation, with keys (zp,yp), provided that these schemes use keys of the form
(z,y), with y = ¢%; for example, ElGamal signature scheme or DSS.

3 Some Distributed Protocols in a General Framework

In [15], Stinson and Strobl propose a distributed version of Schnorr’s signature scheme,
which is proved to be as secure as the original signature scheme. This proposal is based on
verifiable secret sharing schemes and on the joint generation of a random secret value.

We will consider a framework which is more general than the threshold one. That is,
those subsets of players authorized to perform some specific actions, such as the recovery of
a secret or the signature of a message, as well as those subsets of dishonest players that the
system is able to tolerate, will not be necessarily defined according to their cardinality.

So we will adapt to this general framework the previous (threshold) proposals for verifi-
able secret sharing [10], the joint generation of a random secret [5] and threshold Schnorr’s
signature scheme [15].



3.1 Verifiable Secret Sharing

In a secret sharing scheme, a dealer distributes shares of a secret value among a set of
players P = {1,...,n} in such a way that only authorized subsets of players (those in
the so-called access structure, denoted by I' C 27) can recover the secret value from their
shares, whereas non-authorized subsets do not obtain any information about the secret
(unconditional security). The structure I' must be monotone increasing, that is, if A; € T
and A; C Ay, then A, €T

Secret sharing schemes were introduced independently by Shamir [13] and Blakley [1] in
1979. Shamir proposed a well-known threshold scheme, in which the authorized subsets are
those with more than ¢ members (¢ is the threshold). Other works propose schemes realizing
more general access structures; for example, vector space secret sharing schemes [2] are often
used. An access structure I' can be realized by such a scheme if, for some positive integer
t and some vector space E = K over a finite field K (in our context, it will be K = Z,),
there exists a function

v:PU{D} — E

such that A € T if and only if the vector (D) can be expressed as a linear combination of
the vectors in the set ¥(A) = {¢(i)|i € A}. If T’ can be defined in this way, we say that I is
a vector space access structure; then we can construct a secret sharing scheme for I with set
of secrets Z,: given a secret value k € Z,, the dealer takes a random element v € E = (Z,)*,
such that v - (D) = k. The share of a participant i € P is s; = v - (i) € Z4. Let A be an
authorized subset, A € I'; then, (D) = Y, , ci*4(i), for some ¢* € Z,. In order to recover
the secret, the players of A compute

doctsi = Y eveyli) = v Y ') = v-9(D) = k modg

icA icA icA

Shamir threshold secret sharing scheme with threshold ¢ is a particular case of vector
space schemes, taking ¢(D) = (1,0,...,0) and (i) = (1,i,42,...,i'"1).

Linear secret sharing schemes can be seen as vector space secret sharing schemes in
which each player can have associated more than one vector. They were introduced by
Simmons, Jackson and Martin [14], who proved that any access structure can be realized by
a linear secret sharing scheme, although in general the construction they proposed results
in an inefficient secret sharing scheme. These schemes have been considered under other
names such as geometric secret sharing schemes or monotone span programs. In our work,
we will consider any possible access structure, so we will know that there exists a linear
secret sharing scheme realizing this structure. However, we will suppose for simplicity that
this scheme is a vector space one.

A variation of these schemes are verifiable secret sharing schemes, which prevent the
dealer and the players from cheating; each participant can check if his share is consistent
with the shared secret. The two most used verifiable secret sharing schemes are the proposals
of Pedersen [10] and Feldman [3]. Here we present a modification of the (threshold) verifiable
secret sharing scheme proposed in [10]. We consider any access structure I'. Furthermore,
we must take into account which subsets of dishonest players can be tolerated by the system.
Those subsets form the adversary structure A C 27, which must be monotone decreasing: if
B; € Ais tolerated and B> C By, then Bs € A is also tolerated.

The situation is modelized by an active adversary who can corrupt, at the beginning of
the protocol, all players of some subset R € A. During the execution of the protocol, the
adversary controls the behavior of these players, deciding at each moment which players of
R follow the protocol correctly and which ones lie, but the adversary cannot change the
subset R in A that he has chosen at the beginning (we say that it is a static adversary). An
obvious requirement is that the adversary cannot obtain the secret from the shares of the
participants that he has corrupted, so the condition I' N A = () must be satisfied.

In the threshold case, the structures ' = {4 € 27 : |A| >t} and A= {B € 2” : |B| <
t} have been usually considered. We are going to consider any possible structures I" and A



satisfying 'NA = (), and so we will use general linear secret sharing schemes (for simplicity,
vector space ones) instead of threshold secret sharing schemes.

As before, ¢ and p are large primes such that ¢|p — 1. Let g and h be generators of a
multiplicative subgroup of Z; with order g. The set of players is P = {1,...,n}, and the
access structure I' C 2% is defined by the function ¢ : P U{D} — (Z,)!. If the dealer
wants to share the secret kK € Z, in a verifiable way, he does the following:

1. Choose two random vectors in (Z,)*:

v = (v(l),...,v(t)) , W= (w(l),...,w(t))
such that v - (D) = k.

2. Compute (s;,8}) = (v- (i), w-9(i)) € (Z,)? and send the pair (s;, s}) to player i, for
1< <n.

3. Broadcast the public commitments C,, = g”(m)h“’(m) € ZLy, for 1 <m < t.

Each player ¢ verifies that

t

Si 7.8 i) (m)
g*ihs = H(Cm)w() (1)

m=1

where (i)™ denotes the m-th component of vector 1 (i). If this equality does not hold,
player ¢ broadcasts a complaint against the dealer.

For each complaint from a player 4, the dealer broadcasts the values (s;, s}) = (v-9(i), w-
(1)) satisfying equation (1). The dealer is rejected if he receives complaints from players of
a subset that is not in the adversary structure A, or if he answers a complaint with values
that do not satisfy equation (1). Otherwise, the dealer is accepted.

This verifiable secret sharing scheme is computationally secure, assuming that the dis-
crete logarithm problem in the group generated by g is hard (the proof is almost the same
as that in [10] for the threshold case).

3.2 Robust Joint Generation of a Random Secret Value

In this work, and roughly speaking, a distributed protocol is said to be robust if it always
produces a correct output, even in the presence of some tolerated subset of dishonest players.

In [5] Gennaro, Jarecki, Krawczyk and Rabin use Pedersen’s verifiable secret sharing
scheme to design a protocol in which players in a set P = {1,...,n} jointly generate a
public key y = ¢g* and shares of the corresponding secret key z, in such a way that ¢ or more
players can recover this secret key (threshold access structure). The idea is the following:
each player ¢ plays the role of a dealer and shares a random value k; among the players. The
secret key = will be the sum of some of these values.

We explain here the more general version considering any access structure I' C 2% (real-
izable, for simplicity, by a vector space scheme defined by a function ) and any adversary
structure A satisfying some security and robustness conditions. If we want this protocol
to be robust, we must make sure that, when we detect a dishonest subset of players in A
and reject them from the protocol, an authorized subset in I still remains among the non-
rejected players; this authorized subset of honest players can go on executing the protocol.
That is, for any subset R € A, it must be P — R € I, or equivalently, A° C T', where
A°={P—-R : Re A}.

Combining this condition with the unforgeability condition 'N.A = (), we have in partic-
ular that the structures A and I' must satisfy the following condition: for all subset R € A
it is necessary P — R ¢ A. We say that such a monotone decreasing structure A is Q2 in P.
Note that in the threshold case, this Q% condition is equivalent to n > 2¢ + 1.

The protocol is as follows:



1. Each player i executes Pedersen’s verifiable secret sharing scheme playing the role

R

of a dealer. That is, he chooses two random vectors vi = (v; ’,...,v;’) and w; =

(wgl), e ,wgt)), in (Z,)t, where v; - (D) = k; is the random secret distributed by
player i, and sends to player j the pair (s, si;) = (vi-¢(j), wi - (j)), for 1 <j <n.
The public commitments are Cj,, = g”z(m)h“’z(m), for1<m <t.

2. At step 1, players who cheat are detected and rejected. We define Fy = {i| player ¢
is not rejected at step 1}. Since A¢ C I, we have that Fy € I'. Furthermore, for all
players ¢ € Fy that pass this phase, there are valid shares s;; corresponding to players
j that form an authorized subset. Each player j € P computes his share of the total
secret as x; = ) ;o sij (the total secret will be x =), ki € Zy).

3. Now they want to compute the value y = g* = HieFO gk € L. They use Feldman’s
verifiable secret sharing scheme (see [3] for the original threshold version):

3.1. Each player i € Fy broadcasts A;,, = g”z(m), for 1 <m <t.

3.2. Each player j verifies the values broadcast by all the other players in Fy. That
is, for each ¢ € Fy, player j checks that

t

5ij jy0m)
g* = H (Aim ) PO (2)

m=1

If this verification is false, player j complains against ¢ broadcasting the pair
(sij, 8;;) that satisfies verification at step 1 (Pedersen’s scheme, equation (1) in
Section 3.1), but does not satisfy equation (2).

3.3. For players ¢ who received some valid complaint at step 3.2, the other players
j run the reconstruction phase of Pedersen’s scheme to recover a vector vy =
(ﬁgl), e ,172@) such that ¥; - ¢(j) = sy, for all these players j (depending on the
case, they will recover exactly v; = v;, but this is not necessary). They can also
recover the value k;; this can be done because there are valid shares s;; satisfying
equation (1) at step 1 (Pedersen’s scheme), corresponding to players j that form
an authorized subset. All players in Fjy can compute, therefore, the correct value
g*i. From the vector ¥;, the correct commitment values A;,, = gf’gm) can also be
computed.

Then the public key y = ¢g* can be obtained by any participant in the following way:

y = H gki — H gvi-dl(D) — H ﬁ gvgm)w(D)(m) _ H ﬁ(Aim)w(D)(M)

ieFp ieFy i€Fp m=1 i€Fp m=1

After the execution of this protocol, we have the public key y = g%, where z =3, 7, ki
is the corresponding secret key, and x; = >, sij = Qe Vi) - ¥(J) = v - 1(j) is the
share of player j corresponding to the secret z, where v = (v(l),...,v(t)), with v(™ =
ZiEFo vgm). Besides, the final commitment values A, = g”(m)
Am = [Licp, Aim, for 1L <m <t

We note all these facts (parameters and outputs of the protocol) with the following
expression:

can be easily computed as

P,T,A
T (@), {Am b1 <mets Fo)

The security and robustness of this protocol can be proved analogously to the proof in [5]
(which corresponds to the threshold case n > 2t + 1).

(T1,-.-,%n)



3.3 Stinson and Strobl Distributed Schnorr’s Signature Scheme

Now we will explain the proposal of Stinson and Strobl [15] for distributing Schnorr’s sig-
nature scheme. They consider threshold structures; that is, the system can tolerate the
presence of less than ¢ dishonest players, whereas any subset of at least ¢ honest players
can compute a valid signature. But they remark that the protocol can be adapted to run
with other structures, using a general linear (verifiable) secret sharing scheme instead of the
threshold secret sharing scheme (and its verifiable variants) of Shamir.

We now explain the scheme in [15] adapted to the case of any access structure I' and
adversary structure A, such that ' N A = 0 and A° C I (the justification for these com-
binatorial requirements is the same as in Section 3.2). We assume again that I' is a vector
space access structure defined by a function . The protocol has three parts.

Key generation: players in P = {1,...,n} use the protocol explained in Section 3.2
to jointly generate shares of a secret key and the corresponding public key. The output will

be:
(P,I',A)
—

(Ila"'axn) ((I,y);{Am}lngt,FO)

Signature generation: let H be a collision-free hash function, and M the message to
be signed. If an authorized subset F} € I', F; C Fp wants to sign M, they do the following:

1. Players in F] run again the joint generation protocol of Section 3.2, with output

P,T,A
(koo k) 2V (B 1), {Co b1 <me s F)

where k is a random secret shared value in Z, and r = g* is public, and F» C Fj.
2. Each player ¢ € F,, broadcasts

vi = ki + H(M,r)x;

3. Each player j € F; verifies, for all ¢ € Fy, that

t
) 5)(m) 7)0m) r
g = JI Gy (AR O

m=1
Define F3 = {i| player ¢ is not detected to be cheating at step 3}.

4. Each player i € F3 computes s = k + H(M,r)z modgq, in the following way: since
A¢ C I, we have that F3 € I', so there exist public coeflicients {/\f3 }ier, in Zg4 such

that > ;e p /\531/1(_]') = ¢)(D). Then, each player i € F3 computes

F
5= X
JEF3
The signature for the message M is the pair (r,s).

Verification: the verification phase is the same as in Schnorr’s signature scheme; that
is, the recipient cannot distinguish if the signature has been generated in a distributed way
or not. The recipient checks that

gs — ,,_yH(M,r)

Notation: we will use the expression
DZStSChnSZg(Pa F: -’47 M: Y, {xi}ieP: {Am}lgmff) = (Ta S)

to refer to an execution of the signature generation phase, in which players of a set P, with
authorized subsets in the access structure I' and tolerated subsets of dishonest players in the



adversary structure .4, jointly generate a Schnorr’s signature (r,s) on a message M, using
the public key y, shares (z1,...,z,) of the secret key z, and commitment values A,,, = g”(m)

for the components v("™) of the vector that in fact distributes the shares of .

Security of the protocol. In [15], this distributed signature scheme is proved to be as
secure as Schnorr’s signature scheme. The idea of the proof is the following: they prove that
the protocol is simulatable; that is, given an adversary against the scheme, there exists an
algorithm which outputs values that are computationally indistinguishable from the values
that the adversary views during a real execution of the protocol. Then, assuming that this
adversary against the distributed scheme is successful in forging a signature under a chosen
message attack, both this fact and the simulability of the distributed protocol can be used
to construct an adversary against the original Schnorr’s scheme, which is also successful
in forging a signature under a chosen message attack. But in the random oracle model,
this is equivalent to solving the discrete logarithm problem [11], so they can conclude that
the distributed version of Schnorr’s signature scheme has this same level of security, in the
random oracle model (see [15] for the complete proof).

The protocol is also robust, if A¢ C I'. This is due to the fact that there is always a
subset in I' that passes all the verification tests, and so players of this subset can finish the
protocol correctly.

4 Fully Distributed Proxy Signatures

In this section, we propose a distributed proxy signature scheme based on the proxy signature
scheme of Lee et al. [8] and on the idea of the distributed Schnorr’s signature scheme of
Stinson and Strobl [15], explained above.

Distributed protocols have two main advantages with respect to individual ones: an
increase of the security, because now more than one party must be corrupted in order to
obtain a secret key, for example; and an increase of the reliability, because the protocol can
be executed even if some parties are non-working at that moment for some reason.

There are various proposals of distributed (threshold) proxy signature schemes. Zhang’s
proposal [16] is not strongly unforgeable, because the original signer can impersonate the
proxy signer. Kim et al. [7] also proposed a threshold version of their proxy signature
scheme. Hwang, Lin and Lu [6] adapt the threshold scheme of Kim et al. to the case in
which the verifier of the proxy signature must be able to identify which concrete players in
the proxy entity have signed the message. All these schemes distribute only the power of the
proxy signer that signs messages on behalf of the original signer. Why not also distribute
the original signer, and in this way increase the security and reliability of the full scheme?

Our proxy signature scheme is the first that is fully distributed, in the sense that we
distribute both the original and the proxy signer. We consider general structures for the
authorized subsets and for the tolerated subsets of dishonest players. Finally, our scheme
is based on the proxy signature scheme of Lee et al. [8], and so the original signer entity
does not need to include explicitly his identity, nor the identity of the proxy signer in the
warrant information that it signs.

4.1 The Scenario

We must think of entities A and B as sets of players A = {Py,..., Py, }and B = {Q1,...,Qn, }-
We consider general monotone increasing access structures I'y C 24 and s C 28 in these
sets. Furthermore, the system will tolerate the presence of some coalitions of dishonest
players, those in the adversary structures A4 C 24 and Ap C 22, which must be monotone
decreasing; that is, the scheme will be unforgeable even if some players in A and some
players in B are corrupted and exchange their secret information, provided 'y N A4 = 0
and I'g N A = 0, of course. Finally, we require A4 C 'y and A% C I'p, in order to give
robustness to the scheme, in the same way as in Sections 3.2 and 3.3.



We assume, for simplicity, that there exists a function ¢4 : {D}UA — (Z,)'4, for some
positive integer ¢4, such that a subset J4 C Ais in ['4 if and only if ¥4 (D) € (Y4(j))pjesa,
and the same for the structure I'p with a certain positive integer tp and a certain function
Vp.

Any subset of A whose honest players form a subset in I'4 can delegate A’s signing
capability, and any subset of B whose honest players form a subset in I'g can sign a message
on behalf of entity A.

4.2 Our proposal

The protocol that we present has four parts:

Generation of the entities’ keys
Players in A jointly generate a public key and shares of the corresponding secret key,
using the protocol in Section 3.2. Players in B do the same. The result is:

ATA,A

(xA717"'7IA7nA) ( ;)A) ((IA,ZJA),{Am}lngtA,FO,A)
B,I'g,A

(xB717"'7xB7nB) ( (L)B) ((xB:yB)a{Bf}lﬁeﬁtBaFO,B)

Distributed generation of the proxy key

In this phase, players in entity A sign a warrant information M, ,, using the first part of
the distributed Schnorr’s signature scheme explained in Section 3.3. However, they do not
obtain the explicit signature, but shares of it (thus preventing the possibility of one dishonest
participant in A sending this secret signature to a dishonest participant in entity B). Then
they send some information to players in entity B. Each player in B then computes, from
this information, his share of the proxy key, which will later be used to generate a proxy
signature in a distributed way. This subprotocol is as follows.

1. Players in A execute the first step in the signature generation phase of the distrib-
uted Schnorr’s signature scheme explained in Section 3.3. That is, they run the joint
generation protocol of Section 3.2, with output

(A,Ta,AA)
>

(kaa,--- kan,) ((ka,74),{Cm}1<m<ta, F1,4)

The values r4 = g¥4 and M,,, are made public.

2. Each player P; € F} 4 computes his share of the value s4 = ka+zaH (M, ,,r4) modgq
as
vi=kas+H(M,,,ra)xas,; modg

3. Each player P; € F 4 distributes the value +;, verifiably among the players in entity
B, in such a way that any subset in I'p can recover this value. He uses Feldman’s

scheme [3]; that is, P; chooses a random vector v = (vgl), e ,vl(tB)) in Z# such that

vi - (D) = 7;, he makes public the commitment values D;y = g”zm, for1 </¢<tg,
and sends to each player @); € B the share s;; = vi - ¢¥5(Q;).

4. In some way (we do not explain the details here), the correct commitments { A, }1<m<t,
and {Cp, }1<m<t, corresponding to the sharing of the secret values x4 and k4, respec-
tively, must be publicly revealed to all players in entity B. Then each player Q; € B
checks, for any received share s;;, that

tp ta
H(Du)ilzs(D)“) =11 () VAP (4 ) YA (PO H (M 1)
=1 m=1



and that

te
gsij — H(Dil)wB (Qj)(l)
(=1
If either of these two checks fails, (); broadcast a complaint against F;. If P; receives
complaints from players that form a subset of B that is not in Ap, then he is rejected.
Let F5 4 be the subset of players in A that pass this verification phase. Since A4 C I'4,
we have that F5 4 € I'a.

5. Players of B publicly fix coefficients {/\fz’A}pierA in Z, such that ¢¥4(D) =

Y PicFs 4 /\52’A1/1A(Pi). Then the equality Y p cp | )\52"’% = s4 holds, and each

player (); € B uses these fixed coeflicients to compute his share of the value s4 as

F.
SAj = Z A 2%si; modg .
Pl a
In effect, if Jp € I'p, there exists coefficients {A}-]B }q;ess in Zg such that ¢p(D) =
220,65 /\‘].IB@ZJB(QJ-) modg. Then it is not difficult to see that } 5 ¢, )\'].]B SAj =

s4 mod g, and that {sa ;}q,;ep is a perfect sharing of the secret s4, according to the
access structure I'p.

6. Each player (J; € B computes xp; = B, + 54,; modq as his share of the secret
proxy key p = xp + s4 modgq. The public proxy key is computed as yp = ¢g°% =
H(My ,,ra)
YBTAY 4 mod p.

Note that the vector that in fact shares the secret value s 4 among the participants of B

V= Z )‘f‘ZVAVi = (v(l)a"'7v(tB)) )
P;eF> a

is

where v(0) = 37 — )\fz‘AvZ(l), for 1 < ¢ < tg. Therefore, the commitment values V

corresponding to the components v(® of this vector v can be publicly computed from the

commitments D;; of the components vl@) of the vectors vj, for P; € F5 4 as follows:

F.
A-2’Av£2)

> F F
() p;EF i () \F2,4 224
w = gv = g 2,A = I I (gvl ) 1 = | | (Dzl) 1
PieFQVA PiEF2,A

Finally, the commitments corresponding to the components of the vector that shares the
secret proxy key xp = xp + s4 modq will be Uy = BV, for 1 < { <tp.

Note also that another possible strategy is to have an authority that receives the shares
v; from players in A, computes the secret value sy from these shares, and redistributes
shares of s 4 among players in B. This solution reduces the total number of communications
of the scheme, but it has some drawbacks: the authority must be fully trusted and reliable
(opposite to the philosophy of this work), and a bottleneck in the system is possible.

Distributed generation of a proxy signature
If the players of entity B want to sign a message M conforming to M,,, on behalf of
entity A, they execute

DistSchnSig(B,Up, Ap, M,yp,{zp;}jen, {Utt1<t<ty) = (rp,sp)
The proxy signature is the tuple (M,rp,sp, M, ,,T4).

Verification
The recipient of a proxy signature can verify its validity by checking that

gSp _ rP(Z/BTAin(MWA 7TA))H(M7TP)
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4.3 Security and Robustness of the Scheme

The security of our distributed proxy signature scheme stems from the security requirements
that are satisfied by the proxy signature scheme of Lee et al. [8], and from the existential
unforgeability of the distributed Schnorr’s signature scheme under chosen message attacks,
in the random oracle model [15]. Roughly speaking, if an algorithm could forge a new dis-
tributed proxy signature after some executions of our scheme (in which the forger algorithm
views all the public information and the secret information of a tolerated subset of dishonest
players), then we could construct from it another algorithm that would forge a distributed
Schnorr’s signature; and this is computationally infeasible, in the random oracle model.

Thus, if the conditions Ty N A4 = 0 and TN .Ap = () hold, we can state that any subset
of A4 does not obtain any information that allows it to delegate A’s signing capability to
a proxy entity; and any subset of Ap does not obtain any information that allows it to
sign a message on behalf of an original signer entity A (strong distributed unforgeability).
Moreover, the distributed proxy signature scheme satisfies the requirements of verifiability,
strong identifiability, strong undeniability and prevention of misuse (see Section 2).

Steps 3 and 4 in the distributed proxy key generation phase are a variation of Feldman’s
verifiable secret sharing scheme (which is computationally secure, see [3]). In these steps,
players in B detect dishonest players P; € F} 4 who want to share an incorrect 4; among
players in B or who want to give them shares §;; which are inconsistent with the correct ;.

Since we impose A4 C 'y and A% C I'g, the scheme is robust: an authorized subset
always remains in the set of non rejected players and can execute each step of the protocol.

Note that, even in the case where the players of a subset R4 € A4 and the players of
a subset Rp € Ap are corrupted at the same time by the same adversary, the scheme is
unforgeable and robust.

5 Conclusion and Open Problems

In this paper we propose a secure and fully distributed proxy signature scheme. We consider
a framework which is more general than the threshold one, in the sense that the authorized
subsets and the tolerated subsets of dishonest players are not necessarily defined according
to their cardinality. We state the combinatorial conditions that these structures must satisfy
if we want our scheme to be unforgeable and robust. The scheme is based on the results of
[8] and [15], and inherits its security from the security of these two previous works. All these
properties, especially the fact that we distribute not only the power of the proxy signer,
but also the original signer ability to delegate his signing capability, make our scheme more
complete than the previous proposals of threshold proxy signature schemes ([16, 7, 6]).

Distributing protocols is a way of achieving security and reliability, so our scheme can be
used in a framework in which entities wish to prevent external attacks or dishonest actions
from their own members. For example, we might imagine a company in which a department
wants to delegate its signing capability to a proxy department of the same company. These
departments are formed by many members, and it is dangerous to give all the power of a
department to a single member. Our work allows this company to be secure so there is no
possibility of irregularity in the functioning of the company, even in the presence of some
dishonest members in each department. Besides, we consider general access structures (not
only the threshold ones) in the departments; that is, the members do not all have the same
power or influence within the department. We also consider general adversary structures;
that is, members do not all have the same susceptibility to be corrupted.

Some problems remain open in the area of proxy signatures. Up to now, all the proposed
schemes are based on Schnorr’s signature scheme; therefore the keys of all the users are in
the same group and the security parameters must be the same for each user. This may
sometimes be undesirable, so it would be very interesting to find proxy signature schemes
based on other signature schemes in which this situation does not arise (for example, RSA);
this would appear to be a hard problem to solve.

11



With respect to distributed proxy signature schemes, other signature schemes based on
the discrete logarithm problem can be used, such as DSS [4]. But this scheme makes use of
the called problem of the multiplication, which has an efficient solution only in the threshold
case, if an active adversary is considered. So it will be very interesting to find a way of
solving the problem of the multiplication in the case of more general structures.

Finally, the number of communications between the participants in our fully distributed
scheme is quite large, but this fact is in part inherited from the cost of the joint generation
of a random secret value. Furthermore, communications between entities A and B must be
performed only once. However, perhaps other fully distributed proxy signature schemes can
be designed to overcome this drawback.
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