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Abstra
t

A broad
ast proto
ol allows a sender to distribute a value among a set of players su
h that

it is guaranteed that all players re
eive the same value (
onsisten
y), and if the sender is honest,

then all players re
eive the sender's value (validity). Classi
al broad
ast proto
ols for n players

provide se
urity with respe
t to a �xed threshold t < n=3, where both 
onsisten
y and validity are

guaranteed as long as at most t players are 
orrupted, and no se
urity at all is guaranteed as soon

as t+ 1 players are 
orrupted. Depending on the environment, validity or 
onsisten
y may be the

more important property.

We generalize the notion of broad
ast by introdu
ing an additional threshold t

+

� t. In a

broad
ast proto
ol with extended validity, both 
onsisten
y and validity are a
hieved when no more

than t players are 
orrupted, and validity is a
hieved even when up to t

+

players are 
orrupted.

Similarly, we de�ne broad
ast with extended 
onsisten
y. We prove that broad
ast with extended

validity as well as broad
ast with extended 
onsisten
y is a
hievable if and only if t+ 2t

+

< n (or

t = 0). For example, six players 
an a
hieve broad
ast when at most one player is 
orrupted (this

result was known to be optimal), but they 
an even a
hieve 
onsisten
y (or validity) when two

players are 
orrupted.

Furthermore, our proto
ols a
hieve dete
tion in 
ase of failure, i.e., if at most t players are


orrupted then broad
ast is a
hieved, and if at most t

+

players are 
orrupted then broad
ast is

a
hieved or every player learns that the proto
ol failed. This proto
ol 
an be employed in the

pre
omputation of a se
ure multi-party 
omputation proto
ol, resulting in dete
table multi-party


omputation, where up to t 
orruptions 
an be tolerated and up to t

+


orruptions 
an either be

tolerated or dete
ted in the pre
omputation, for any t; t

+

with t+ 2t

+

< n.

1 Introdu
tion

1.1 Ba
kground

Byzantine agreement refers to two slightly di�erent 
on
epts, namely broad
ast and 
onsensus. In

a broad
ast proto
ol, a sender distributes a value among a set of players in su
h a way that it is

guaranteed that all players indeed re
eive the same value (even when the sender is 
orrupted). In

a 
onsensus proto
ol, a set of players ea
h holding some value de
ide on one single value, with the

property that if they all hold the same value in the beginning then they will de
ide on this value. A

bit more formally, a proto
ol for Byzantine agreement must satisfy validity and 
onsisten
y. Validity

means that all players will end up with the 
orre
t value in 
ase that the dealer is honest (broad
ast),
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respe
tively in 
ase that all honest players start with the same input value (
onsensus). Consisten
y

means that all players must end up with the same value, independent of whether or not the dealer is

honest, respe
tively whether or not all honest players start with the same input value.

The problem of Byzantine agreement was introdu
ed by Lamport, Shostak, and Pease [LSP82℄. In

a model with pairwise authenti
 
hannels, they a
hieve broad
ast (as well as 
onsensus) among n

players in presen
e of an adversary that 
orrupts up to t < n=3 players and make them misbehave

arbitrarily. If a se
ure signature s
heme 
an be used, they a
hieve broad
ast even for any number

t < n of 
orruptions, 
onsensus for up to t < n=2. All these bounds are tight [LSP82, KY84, FLM86℄,

but the proposed proto
ols are ineÆ
ient. EÆ
ient proto
ols were given in [DS83, DFF

+

82, TPS87,

BDDS92, FM97, BGP89, CW92, GM98℄.

The bounds t < n for broad
ast and t < n=2 for 
onsensus 
an also be a
hieved with un
onditional

se
urity, when an un
onditionally-se
ure pseudo-signature s
heme is set up [BPW91, PW96℄.

Broad
ast is a key ingredient of se
ure multi-party 
omputation (MPC) proto
ols. Here, a set of

players, ea
h holding a se
ret input, want to 
ompute an arbitrary fun
tion of these inputs in su
h a

way that the inputs remain se
ret and the out
ome of the 
omputation is guaranteed to be 
orre
t,

even when some of the players are 
orrupted and misbehave. The problem of MPC was proposed

by Yao [Yao82℄ and �rst solved by Goldrei
h, Mi
ali, and Wigderson [GMW87℄. This proto
ol is

se
ure with respe
t to a 
omputationally bounded adversary that may 
orrupt up to t < n=2 players,

whi
h is optimal. When bilateral se
ure 
hannels are available, se
urity is a
hievable with respe
t

to an unbounded adversary that 
orrupts up to t < n=3 players [BGW88, CCD88℄; also this bound

is proven tight. If additionally to the se
ure 
hannels also se
ure broad
ast 
hannels are available,

then information-theoreti
 se
urity is a
hievable even for up to t < n=2 
orruptions [Bea89, RB89,

CDD

+

99℄.

1.2 Contributions

Classi
al proto
ols for Byzantine agreement provide se
urity with respe
t to a �xed threshold t, where

absolute se
urity is guaranteed as long as at most t players are 
orrupted, and no se
urity at all is

guaranteed for the 
ase when t + 1 or more players are 
orrupted. We generalize this notion in the

sense that broad
ast (a

ording to the 
lassi
al de�nition) is a
hieved as long as up to t players are


orrupted, but some (redu
ed) requirements are still guaranteed even when up to t

+

� t players are

dishonest.

We propose two 
on
rete primitives:

� In a broad
ast proto
ol with extended validity, broad
ast is a
hieved when at most t players are


orrupted, and validity (i.e., 
orre
tness of the output values) is a
hieved even when up to t

+

players are 
orrupted.

� In a broad
ast proto
ol with extended 
onsisten
y, broad
ast is a
hieved when at most t players

are 
orrupted, and 
onsisten
y (i.e., equality of all outputs) is a
hieved even when up to t

+

players are 
orrupted.

For ea
h primitive, we propose an eÆ
ient proto
ol for t+ 2t

+

< n (spe
ial 
ases for t = 0 are known

[FGH

+

02, GL02℄ in the literature). Furthermore, the proto
ol with extended 
onsisten
y also a
hieves

agreement about the fa
t whether or not validity is a
hieved (validity dete
tion). The proto
ol with

extended validity 
an be extended su
h that even when the sender is mali
ious, every player re
eives

the same value or learns that no 
onsisten
y 
ould be rea
hed (
onsisten
y dete
tion).

As a spe
ial 
ase of these results, we 
an 
onstru
t proto
ols for dete
table broad
ast, where broad
ast

is a
hieved even when up to t players are 
orrupted, and either broad
ast is a
hieved or a failure

is dete
ted by all honest players when no more than t

+

players are 
orrupted, for t + 2t

+

< n.
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This stri
tly generalizes the result for dete
table broad
ast in [FGH

+

02℄. This broad
ast proto
ol


an be plugged into a multi-party 
omputation proto
ol for the un
onditional model with broad
ast

(e.g., [Bea89, RB89, CDD

+

99℄), whi
h results in a dete
table MPC proto
ol [FGMR02℄. Here, the


omputation is se
ure and robust as long as at most t players are 
orrupted, and either the 
omputation

is se
ure or it is aborted before any honest player has distributed his input when up to t

+

players are


orrupted, for any t; t

+

with t+ 2t

+

< n (respe
tively, for t = 0 and t

+

< n=2).

Finally, we prove that the a
hieved bounds are tight, i.e., broad
ast with extended validity (resp. 
on-

sisten
y) is impossible for t+ 2t

+

� n.

1.3 Outline

In Se
tion 2, we formally introdu
e the used model and state some de�nitions. In Se
tions 3 and 4,

we propose families of eÆ
ient deterministi
 proto
ols for broad
ast with extended validity and ex-

tended 
onsisten
y, respe
tively. Optimality of our proto
ols is proven in Se
tion 5, and some �nal

observations and 
on
lusions are given in Se
tion 6.

2 Models and De�nitions

We 
onsider a set P = fp

1

; : : : ; p

n

g of players, 
onne
ted with a 
omplete network of pairwise syn-


hronous authenti
ated (or se
ure) 
hannels. The players do not share any 
onsistent information

(as a PKI setup). We assume an adaptive adversary that a
tively 
orrupts some of the players. The

adversary's 
omputational power is unlimited (though the tightness of the proto
ols will be proved

even with respe
t to a non-adaptive probabilisti
 polytime adversary).

A broad
ast proto
ol allows a player (the sender) to 
onsistently send a message to all other players,

su
h that all players re
eive the sender's value, or at least, when the sender is mali
ious, all players

re
eive the same value.

De�nition 1 (Broad
ast): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite domain.

A proto
ol � among P where player p

s

2 P (
alled the sender) holds an input value x

s

2 D and every

player p

i

2 P �nally de
ides on an output value y

i

2 D a
hieves broad
ast (or is a broad
ast proto
ol)

with respe
t to P , p

s

, and D, if it satis�es the following 
onditions:

Validity: If the sender p

s

is 
orre
t then all 
orre
t players p

i

de
ide on the sender's input value,

y

i

= x

s

.

Consisten
y (or Agreement): All 
orre
t players de
ide on the same output value, i.e., if p

i

2

P and p

j

2 P are 
orre
t then y

i

= y

j

.

�

In a 
onsensus proto
ol, every player starts with an input value, and the goal is to make all players

agree on the same output value. If all 
orre
t players hold the same input value then the output value

is required to be the same as this input value.

De�nition 2 (Consensus): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite domain.

A proto
ol � among P where every player p

i

2 P holds an input value x

i

2 D and �nally de
ides on

an output value y

i

2 D a
hieves 
onsensus (or is a 
onsensus proto
ol) with respe
t to P and D if it

satis�es the following 
onditions:

Persisten
y (or Validity): If all 
orre
t players p

i

hold the same input value x

i

= v then all


orre
t players p

i

de
ide on it, y

i

= v.

Consisten
y (or Agreement): All 
orre
t players de
ide on the same output value, i.e., if p

i

2

P and p

j

2 P are 
orre
t then y

i

= y

j

.
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When 
lear from the 
ontext, we simply say that a given proto
ol a
hieves broad
ast (or 
onsensus),

negle
ting the parameters P , p

s

, and D.

Furthermore, we fo
us on binary Byzantine agreement (domain D = f0; 1g) sin
e Byzantine agreement

for any �nite domain D 
an be eÆ
iently solved with any binary proto
ol [TC84℄.

Graded 
onsensus, derived from graded broad
ast in [FM97℄, is a variation of 
onsensus where, addi-

tionally to the output value, every player gets a grade g 2 f0; 1; 2g on the out
ome of the proto
ol.

We present a slightly modi�ed version with binary grades. If any 
orre
t player gets grade 1 then all


orre
t players de
ide on the same output value, i.e., getting grade 1 implies dete
ting agreement. If

all 
orre
t players start with the same input value then all 
orre
t players dete
t agreement, i.e., they

get grade 1.

De�nition 3 (Graded Consensus): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite

domain. A proto
ol � among P where every player p

i

2 P holds an input value x

i

2 D and �nally

de
ides on an output value y

i

2 D and a grade g

i

2 f0; 1g a
hieves graded 
onsensus with respe
t to

P and D, if it satis�es the following 
onditions:

Persisten
y (or Validity): If all 
orre
t players p

i

hold the same input value x

i

= v then all


orre
t players p

i

de
ide on it, y

i

= v, and get grade g

i

= 1.

Consisten
y: If any 
orre
t player p

i

gets grade g

i

= 1 then all 
orre
t players p

j

de
ide on the

same output value y

i

= y

j

.

�

A broad
ast proto
ol with extended 
onsisten
y is a proto
ol whi
h, for two given thresholds t and

t

+

with t � t

+

, a
hieves broad
ast as long as no more than t players are 
orrupted, and a
hieves


onsisten
y (but potentially not validity) as long as no more than t

+

players are 
orrupted

De�nition 4 (Broad
ast with extended 
onsisten
y): Let P = fp

1

; : : : ; p

n

g be a set of n players

and let D be a �nite domain. A proto
ol � among P where player p

s

2 P (
alled the sender) holds

an input value x

s

2 D and every player p

i

2 P �nally de
ides on an output value y

i

2 D a
hieves

broad
ast with extended 
onsisten
y with respe
t to P , p

s

, D, and thresholds t and t

+

if it satis�es the

following 
onditions:

Validity: If the sender p

s

is 
orre
t and at most t players are 
orrupted then all 
orre
t players

p

i

de
ide on the sender's input value, y

i

= x

s

.

Consisten
y (or Agreement): If at most f � t

+

players are 
orrupted then all 
orre
t players

de
ide on the same output value.

�

A broad
ast proto
ol with extended validity is a proto
ol whi
h, for two given thresholds t and t

+

with t � t

+

, a
hieves broad
ast as long as no more than t players are 
orrupted, and a
hieves validity

(but potentially not 
onsisten
y) as long as no more than t

+

players are 
orrupted

De�nition 5 (Broad
ast with extended validity): Let P = fp

1

; : : : ; p

n

g be a set of n players

and let D be a �nite domain. A proto
ol � among P where player p

s

2 P (
alled the sender) holds

an input value x

s

2 D and every player p

i

2 P �nally de
ides on an output value y

i

2 D a
hieves

broad
ast with extended validity with respe
t to P , p

s

, D, and thresholds t and t

+

if it satis�es the

following 
onditions:

Validity: If the sender p

s

is 
orre
t and at most t

+

players are 
orrupted then all 
orre
t players

p

i

de
ide on the sender's input value, y

i

= x

s

.

Consisten
y (or Agreement): If at most f � t players are 
orrupted then all 
orre
t players

de
ide on the same output value.
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Whereas the 
omputation 
omplexities of all our proto
ols are obviously polynomial and thus will not

be expli
itly stated, we state the proto
ol's 
ommuni
ation 
omplexities with respe
t to two measures.

R denotes the worst-
ase round 
omplexity, i.e., the maximal possible number of 
ommuni
ation

rounds required by the proto
ol. B denotes the worst-
ase bit-
omplexity of a proto
ol, i.e., the

maximal possible number of bits to be sent by all 
orre
t players overall during the whole proto
ol.

3 Broad
ast with Extended Validity

We dire
tly present a 
onstru
tion for broad
ast with extended validity and 
onsisten
y dete
tion

whi
h is stri
tly stronger than ordinary broad
ast with extended validity.

De�nition 6 (Broad
ast with Extended Validity and Consisten
y Dete
tion): Let P be a

set of n players and let D be a �nite domain. A proto
ol � among P where player p

s

2 P (
alled the

sender) holds an input value x

s

2 D and every player p

i

2 P �nally de
ides on an output value y

i

2 D

and a grade value g

i

2 f0; 1g a
hieves broad
ast with extended validity and 
onsisten
y dete
tion

(ECBC

+

for short) with respe
t to P , p

s

, D, and thresholds t and t

+

if it satis�es the following


onditions:

Validity: If the sender p

s

is 
orre
t and at most f � t

+

players are 
orrupted then all 
orre
t

players p

i

de
ide on the sender's input value, y

i

= x

s

.

Consisten
y: If at most f � t players are 
orrupted then every 
orre
t player p

i

de
ides on the

same output value y

i

= v and g

i

= 1.

Consisten
y Dete
tion: If at most f � t

+

players are 
orrupted and any 
orre
t player p

i


omputes g

i

= 1 then every 
orre
t player p

j


omputes y

j

= y

i

.

�

Note that however, it is not possible that the players a
hieve 
ommon knowledge about whether or

not 
onsisten
y has been a
hieved. However, it 
an be a
hieved that all players \
ompletely" dete
t


onsisten
y if f � t and \soundly" dete
t 
onsisten
y if f � t

+

, i.e., g

i

= 1 always implies reliable

dete
tion of 
onsisten
y.

Note that the spe
ial 
ase t = 0 (and t

+

< n) 
an be a
hieved by a proto
ol wherein the sender

simply multi-sends his input to all players who in turn redistribute the re
eived value to everybody

(see Proto
ol CondGrade
ast in [FGH

+

02℄ and Proto
ol 1 in [GL02℄). We thus fo
us on proto
ols for

t > 0. The �nal proto
ol is based on the implementation of a proto
ol to solve the following problem:

De�nition 7 (Two-level Graded Consensus): A proto
ol among n players, where every player

p

i

2 P holds an input value x

i

2 D and every player p

i

de
ides on an value y

i

2 D and a grade

g

i

2 f0; 1; 2g, a
hieves two-level graded 
onsensus with respe
t to thresholds t and t

+

if it satis�es

Persisten
y: If f � t and all 
orre
t players p

i

enter the proto
ol with the same input value

x

i

= v then every 
orre
t player p

i


omputes outputs y

i

= v and g

i

= 2. If f � t

+

and all


orre
t players p

i

enter the proto
ol with the same input value x

i

= v then every 
orre
t player

p

i


omputes outputs y

i

= v and g

i

� 1.

Consisten
y: If f � t and any 
orre
t player p

i


omputes g

i

� 1 then every 
orre
t player p

j


omputes y

j

= y

i

. If f � t

+

and any 
orre
t player p

i


omputes g

i

= 2 then every 
orre
t

player p

j


omputes y

j

= y

i

.

�

5



Proto
ol 1 TLGradedConsensus

p

1

(P; x

1

; t; t

+

)

1. SendToAll(x

i

); P : Re
eive(x

1

i

; : : : ; x

n

i

);

2. S

0

i

:=

n

j 2 f1; : : : ; ng j x

j

i

= 0

o

; S

1

i

:=

n

j 2 f1; : : : ; ng j x

j

i

= 1

o

;

3. if jS

x

i

i

j � n� t

+

then z

i

:= x

i

else z

i

:=? fi;

4. SendToAll(z

i

); P : Re
eive(z

1

i

; : : : ; z

n

i

);

5. T

0

i

:=

n

j 2 f1; : : : ; ng j z

j

i

= 0

o

; T

1

i

:=

n

j 2 f1; : : : ; ng j z

j

i

= 1

o

;

6. if jT

0

i

j � jT

1

i

j then y

i

:= 0 else y

i

:= 1 fi;

7. if jT

y

i

i

j � n� t then g

i

:= 2

8. elseif jT

y

i

i

j � n� t+ then g

i

:= 1

9. else g

i

:= 0 fi;

10. return (y

i

; g

i

);

Lemma 3.1. In Model M

aut

, Proto
ol 1 a
hieves TLGC if t+ 2t

+

< n and t

+

� t.

Proof.

Persisten
y: Suppose that all 
orre
t players p

i

enter the proto
ol with the same input value x

i

= v

and suppose that at most f � t

+

players are 
orrupted. Then at least n� t

+


orre
t players distribute

value x

i

= v in Step 1, and every 
orre
t player p

i


omputes S

v

i

su
h that jS

v

i

j � n� t

+

. Furthermore,

sin
e t+ 2t

+

< n, it holds that jS

1�v

i

j � t

+

< n� t

+

, and every 
orre
t p

i


omputes z

i

= v in Step 3.

Hen
e, in Step 4, every su
h p

i

redistributes value z

i

= v, gets jT

v

i

j � n � t

+

> t

+

, and 
omputes

y

i

= v and g

i

� 1. Finally, if only f � t players are 
orrupted then jT

v

i

j � n � t, and every 
orre
t

player p

i


omputes g

i

= 2.

Consisten
y: For v 2 f0; 1g, let S

v

�

and T

v

�

be the set of 
orre
t players sending value v in Step 1,

and Step 4, respe
tively. Furthermore, let F � P be the set of 
orrupted players.

Suppose �rst, that f � t players are 
orrupted (jF j � t) and that some 
orre
t player p

i


omputes

g

i

� 1 and y

i

= v 2 f0; 1g. Hen
e, jT

v

i

j � n� t

+

, and sin
e jF j � t, it follows that jT

v

�

j � n� t

+

� t.

Furthermore, as follows from Step 3 of the proto
ol, for every 
orre
t player p

i

with z

i

6= x

i

, it holds

that z

i

=?, and hen
e that jT

v

�

j � jS

v

�

j. Therefore, jT

v

�

j � n � t

+

� t implies for every 
orre
t

player p

j

that jS

v

j

j � jS

v

�

j � jT

v

�

j � n � t

+

� t. Additionally, the bound t + 2t

+

< n implies that

jS

1�v

j

j � n�jS

v

j

j � t

+

+t < n�t

+

, and hen
e, 
onsidering Step 3, that no 
orre
t player p

j

distributed

value z

j

= 1 � v during Step 4, i.e., T

1�v

�

= ;. Thus, we get that every 
orre
t player p

j


omputes

sets T

v

j

and T

1�v

j

su
h that jT

1�v

j

j � jF j � t and jT

v

j

j � jT

v

�

j � n � t

+

� t > t

+

� t � jT

1�v

j

j, and


omputes y

j

= y

i

.

Suppose now, that f � t

+

players are 
orrupted and that some 
orre
t player p

i


omputes g

i

= 2.

Hen
e, jT

v

i

j � n� t, and sin
e jF j � t

+

, it follows that jT

v

�

j � n� t� t

+

. As above, for the 
ase that

f � t, this implies that T

1�v

�

= ; (Step 3), and thus every 
orre
t player p

j


omputes sets T

v

j

and

T

1�v

j

su
h that jT

1�v

j

j � jF j � t

+

and jT

v

j

j � n� t

+

� t > jT

1�v

j

j, and 
omputes y

j

= y

i

.

Proto
ol 2 ExtConsBC

+

p

1

(P; x

1

; t; t

+

)

1. y

i

:= x

i

; h

i

:= 0;

2. for k := 1 to t+ 1 do

3. if i = k then SendToAll(y

i

) fi; P : Re
eive(y

k

i

);

4. if h

i

= 0 then y

i

:= y

k

i

fi;

5. (y

i

; h

i

) := TLGradedConsensus(P; y

i

; t; t

+

);

6. od;

7. if h

i

= 2 then g

i

:= 1 else g

i

:= 0 fi;

8. return (y

i

; g

i

);

Lemma 3.2. Consider Proto
ol 2 in Model M

aut

, and assume that t + 2t

+

< n and t

+

� t. Then,

for any k = 2; : : : ; t+ 1, the following holds:

6



1. If at most f � t

+

players are 
orrupted and all 
orre
t players p

i

start Loop k in Step 2 with the

same value y

i

= v then every 
orre
t player p

i

holds values y

i

= v and h

i

� 1 at the end of the

same loop. Additionally, if only f � t players are 
orrupted then h

i

= 2 at the end of the loop.

2. If at most f � t players are 
orrupted and player p

k

is 
orre
t then, at the end of the loop, every


orre
t player p

i

holds the same value y

i

= y

k

and grade h

i

= 2.

Proof.

1. Suppose that f � t

+

and that every 
orre
t player p

i

holds value y

i

= v at the beginning of the

loop. Then, by the persisten
y property of TLGC, they all 
ompute y

i

= v and h

i

� 1 in Step 5,

and if f � t then even h

i

= 2 holds.

2. Suppose that f � t and that p

k

is 
orre
t and thus distributes the same value y

k

2 f0; 1g to

all players in Step 3. If every 
orre
t player p

i

holds grade value h

i

= 0 then they all enter

Proto
ol TLGradedConsensus with y

i

= y

k

, and by its persisten
y property, 
ompute outputs

y

i

= y

k

and h

i

= 2. Espe
ially, this holds for k = 1 sin
e the players start with grade h

i

= 0. On

the other hand, if any 
orre
t player p

i

holds h

i

� 0 then, by the 
onsisten
y property of TLGC

whi
h has been priorly invoked, every 
orre
t player p

i

already holds the same value y

i

= y

k

before Step 3, and nothing 
hanges until the end of the loop.

Theorem 1. In Model M

aut

, Proto
ol 2 a
hieves eÆ
ient, perfe
tly se
ure broad
ast with extended

validity and 
onsisten
y dete
tion with sender p

1

if t + 2t

+

< n and t

+

� t. The round and bit


omplexities are R = 3t+ 3 and B = O(n

3

).

Proof.

Validity: Suppose that the sender p

1

is 
orre
t and that at most f � t

+

players are 
orrupted. Then,

by Lemma 3.2, after Step 5 of the �rst loop (k = 1), every 
orre
t player p

i

holds values y

i

= x

1

and

h

i

� 1. Sin
e h

i

� 1 and by the persisten
y property of Proto
ol TLGradedConsensus, no further loop

(k > 1) 
an in
uen
e the values y

i

and h

i

, and every 
orre
t player p

i

holds value y

i

= x

1

at the end

of the proto
ol.

Consisten
y: If f � t players are 
orrupted then there is a player p




2 fp

1

; : : : ; p

t+1

g that is 
orre
t.

By Lemma 3.2 (2), at the end of loop k = 
, every 
orre
t player p

i

holds the same value y

i

= y




and grade h

1

= 2. By Lemma 3.2 (1), these values stay persistent until the end of the proto
ol, and


onsisten
y follows.

Consisten
y Dete
tion: Suppose that at most f � t

+

players are 
orrupted and that some 
orre
t

player p

i


omputes g

i

= 1 at the end of the proto
ol. This implies that h

i

= 2 after the last invo
ation

of Proto
ol TLGradedConsensus, and by the 
onsisten
y property of TLGC, that every 
orre
t player

p

j


omputed y

j

= y

i

during this invo
ation and thus exited the proto
ol with y

j

= y

i

.

The stated 
omplexities 
an be easily veri�ed by 
ode inspe
tion.

Note that there is a proto
ol for broad
ast with extended validity without 
onsisten
y dete
tion that

requires the same bit 
omplexity but 2 less rounds of 
ommuni
ation.

4 Broad
ast with Extended Consisten
y

We dire
tly present a 
onstru
tion for broad
ast with extended 
onsisten
y and validity dete
tion

whi
h is stri
tly stronger than ordinary broad
ast with extended 
onsisten
y.

7



In 
ontrast to the inherently non-
ommon 
onsisten
y dete
tion in ECBC

+

, here it is possible that

the players a
hieve 
ommon knowledge about whether or not validity has been a
hieved.

De�nition 8 (Broad
ast with Extended Consisten
y and Validity Dete
tion): Let P be a

set of n players and let D be a �nite domain. A proto
ol � among P where player p

s

2 P (
alled the

sender) holds an input value x

s

2 D and every player p

i

2 P �nally de
ides on an output value y

i

2 D

and a grade value g

i

2 f0; 1g a
hieves broad
ast with extended 
onsisten
y and validity dete
tion

(EVBC

+

, for short) with respe
t to P , p

s

, D, and thresholds t and t

+

if it satis�es the following


onditions:

Consisten
y: If at most f � t

+

players are 
orrupted then every 
orre
t player p

i

de
ides on the

same pair of output (y; g), y

i

= y and g

i

= g.

Validity: If the sender p

s

is 
orre
t and at most f � t players are 
orrupted then all 
orre
t

players p

i

de
ide on the sender's input value, y

i

= x

s

, and grade g

i

= 1.

Validity Dete
tion: If the sender p

s

is 
orre
t, at most f � t

+

players are 
orrupted, and any


orre
t player p

i


omputes g

i

= 1 then every 
orre
t player p

j


omputes y

j

= x

s

.

�

For dida
ti
 reasons, we �rst sket
h a simple proto
ol for a model with authenti
ated 
hannels that

only guarantees 
omputational se
urity. The proto
ol for the standard model with se
ure 
hannels

providing un
onditional se
urity is stated more expli
itly,

Sin
e, for the spe
ial 
ase that t = 0, eÆ
ient and optimally resilient proto
ols were already given

in [FGH

+

02℄, we fo
us on proto
ols for t > 0.

4.1 A Simple Proto
ol for Computational Se
urity

Proto
ol 3 ExtValBC

+

p

1

(P; x

1

; t; t

+

)

1. Generate a se
ret-key/publi
-key pair (SK

i

;PK

i

) a

ording to the key generation algorithm

of a digital signature system. For every player p

j

2 P as a sender, invoke Proto
ol 2:

ExtConsBC

+

p

j

(P; PK

j

; t; t

+

) where p

j

inputs his publi
 key PK

j

. Store all re
eived publi
 keys

PK

1

i

; : : : ;PK

n

i

and grades g

1

i

; : : : ; g

n

i

from these n invo
ations.

2. G

i

:=

V

n

k=1

g

k

i

.

3. SendToAll(G

i

); Re
eive(G

1

i

; : : : ; G

n

i

);

For every player p

j

2 P as a sender, an instan
e of Dolev-Strong broad
ast is invoked where p

j

inputs G

j

. Store all re
eived values as �

1

i

; : : : ;�

n

i

.

5. if jfj j G

j

i

= 1gj > t

+

^ jfj j �

j

i

= 1gj � n� t then g

i

:= 1 else g

i

:= 0 fi;

6. If g

i

= 1 then an instan
e of Dolev-Strong broad
ast is invoked where p

1

inputs x

1

, and its output

y

i

is returned; else y

i

:= 0 is 
omputed.

Theorem 2. In Model M

aut

, Proto
ol 3 a
hieves broad
ast with extended 
onsisten
y and validity

dete
tion with sender p

1

if t+ 2t

+

< n and t

+

� t as se
ure as the underlying signature s
heme.

Its round 
omplexity is R = 3t+ t

+

+4 and its bit 
omplexity is polynomial in n, k, and log jDj where

D is the domain of the value to be distributed and k is the maximal length of a signature.

Proof.

Consisten
y: Suppose that f � t

+

players are 
orrupted. If every 
orre
t player p

i

reje
ts by


omputing g

i

= 0 then 
onsisten
y is satis�ed sin
e they all 
ompute y

i

= 0.

Thus, suppose that some 
orre
t player p

i

a

epts by 
omputing g

i

= 1. Then jfj j G

j

i

= 1gj > t

+

,

implying that at least one 
orre
t player p

k

sent G

k

= 1. Hen
e, by the de�nition of ECBC

+

,

all invo
ations of Proto
ol 2 a
hieved validity and 
onsisten
y (i.e., broad
ast when negle
ting the

grade outputs) implying that all 
orre
t players hold ea
h other's authenti
 publi
 keys. Hen
e, the

invo
ations of Dolev-Strong broad
ast in Step 3 all a
hieve broad
ast and all 
orre
t players p

j


ompute

8



the same set of values �

1

j

; : : : ;�

n

j

. Furthermore, sin
e g

i

= 1, for every 
orre
t player p

`

it holds that

jfj j �

j

`

gj � n � t and thus that jfj j G

j

`

= 1gj � n � t � t

+

> t

+

, and all players p

`


ompute g

`

= 1.

Finally, all 
orre
t players invoke Dolev-Strong broad
ast whi
h now is indeed guaranteed to a
hieve

broad
ast, and 
onsisten
y follows.

Validity: Suppose that f � t players are 
orrupted and that the sender p

1

is 
orre
t. Hen
e, by the

de�nition of ECBC

+

, all invo
ations of Proto
ol 2 a
hieve validity and 
onsisten
y (i.e., broad
ast

when negle
ting the grade outputs) and that every 
orre
t player p

i


omputes g

i

= 1. Thus, all


orre
t players p

i


ompute G

i

= 1, all invo
ations of Dolev-Strong broad
ast a
hieve broad
ast, and,

in Step 3, the players p

i

in turn 
ompute values G

j

i

and �

j

i

su
h that jfj j G

j

i

= 1gj � n� t > t

+

and

jfj j �

j

i

= 1gj � n� t. Finally, all 
orre
t players p

i


ompute g

i

= 1 and 
ompute y

i

= x

1

in Step 6.

Validity Dete
tion: Suppose that f � t

+

. We already showed when proving 
onsisten
y, that if one


orre
t player p

i


omputes g

i

= 1, then all 
orre
t players hold ea
h other's authenti
 publi
 keys and

all players invoke the Dolev-Strong broad
ast proto
ol. Hen
e, if the sender p

s

is honest the players

will indeed 
ompute his input value x

s

, a

ording to the properties of Dolev-Strong broad
ast.

By inspe
tion of Proto
ol 2, Step 1 requires 3(t+1) rounds. Dolev-Strong broad
ast (whi
h is exe
uted

in parallel to the multi-send of Step 3, and on
e again in Step 6) requires another t

+

+ 1 rounds, and

hen
e the stated round 
omplexity follows. Futhermore, the bit 
omplexities of Proto
ol 2 and Dolev-

Strong broad
ast are 
learly polynomial in n, k, and log jDj.

4.2 Un
onditional Se
urity

We demonstrate the a
hievability with respe
t to un
onditional se
urity by modifying the P�tzmann-

Waidner pre
omputation proto
ol to tolerate t < n. However, more eÆ
ient solutions 
an be a
hieved

by modifying the pre
omputation proto
ol in [BPW91℄ to tolerate t < n=2. This is possible sin
e

t + 2t

+

< n and t � t

+

. However, the P�tzmann-Waidner proto
ol is more generi
 in that it allows

for any later broad
ast proto
ol using authenti
ation.

Proto
ol 4 ExtValBC

+

p

1

(P; x

1

; t; t

+

)

1. Exe
ute pre
omputation the P�tzmann-Waidner proto
ol for b+1 future broad
asts wherein ea
h

invo
ation of broad
ast is repla
ed by an invo
ation of ECBC

+

Proto
ol 2 with the same sender:

ExtConsBC

+

p

k

(P; �; t; t

+

). Of these instan
es, one is 
omputed with respe
t to the intended sender

s 2 f1; : : : ; ng of the future broad
ast. Of the other n instan
es, one is 
omputed with respe
t to

ea
h player p

j

2 P .

2. G

i

:=

V

`

k=1

g

k

i

where the g

k

i

are all grades re
eived during an invo
ation of ECBC

+

during Step 1.

Syn
hronize: Wait and start exe
uting the next step at round b

n

2

(9t+10)

2


+ 1.

3. SendToAll(G

i

); Re
eive(G

1

i

; : : : ; G

n

i

);

For every player p

j

2 P as a sender, an instan
e of Dolev-Strong broad
ast is invoked (using

pseudo-signatures) where p

j

inputs G

j

. Store all re
eived values as �

1

i

; : : : ;�

n

i

.

5. if jfj j G

j

i

= 1gj > t

+

^ jfj j �

j

i

= 1gj � n� t then g

i

:= 1 else g

i

:= 0 fi;

6. If g

i

= 1 then an instan
e of Dolev-Strong broad
ast is invoked where p

1

inputs x

1

, and its output

y

i

is returned; else y

i

:= 0 is 
omputed.

Theorem 3. In Model M

se


, for any se
urity parameter k > 0, Proto
ol 4 a
hieves un
onditionally

se
ure broad
ast with extended 
onsisten
y and validity dete
tion (dete
table broad
ast) with sender p

1

if t+ 2t

+

< n and t+ � t. Thereby the error probability is " < 2

�k

.

Its round 
omplexity is b

n

2

(9t+10)

2


+ 2t

+

+ 2 and its bit 
omplexity is polynomial in n, k, and log jDj

where D is the domain of the value to be distributed.

9



Proof. Consisten
y, validity, and validity dete
tion follow along the lines of the proof of Theorem 2.

As follows from the analysis in [PW96℄ and 
ode inspe
tion of Proto
ol 2, repla
ing ea
h invo
ation

of broad
ast in the P�tzmann-Waidner pre
omputation proto
ol by an invo
ation of ECBC

+

leads to

a round 
omplexity of Steps 1 and 2 of at most b

n

2

(9t+10)

2


 until all players have �nished { note that

beyond f � t, no fault-lo
alization is required but only fault-dete
tion. Steps 3 and 6 ea
h require

another t

+

+ 1 rounds, and hen
e the stated round 
omplexity follows. Futhermore, the Proto
ols 2

and Dolev-Strong broad
ast are all polynomial in n, k, and log jDj.

5 Impossibility Result

Whereas the 
ase t = 0 is obviously are optimal for both, broad
ast with extended validity and

broad
ast with extended 
onsisten
y, it still needs to be proven that the bound t+2t

+

< n is optimal.

Note that this impossibility result even holds for the ordinary variants without 
onsisten
y dete
tion,

or validity dete
tion, respe
tively. The proof pro
eeds along the lines of the impossibility proof in

[FLM86℄ that broad
ast is impossible if t � n=3.

Theorem 4. In Models M

aut

and M

se


, neither broad
ast with extended validity nor broad
ast with

extended 
onsisten
y is a
hievable among a set of n players P if t > 0 and t + 2t

+

� n. For every

proto
ol there exists a value x

0

2 f0; 1g su
h that, when the sender holds input x

0

, the adversary 
an

make the proto
ol fail

� with a probability of at least

1

6

if he is 
omputationally bounded, and

� with a probability of at least

1

3

if he is 
omputationally unbounded.

The proof of this theorem was moved to the appendix.

6 Con
lusions

We have introdu
ed a generalization of broad
ast, where either validity (resp. 
onsisten
y) 
an be

a
hieved even when more than a third of the players are 
orrupted, at the 
osts that 
onsisten
y

(resp. validity) 
an be guaranteed only when less than a third of the players is 
orrupted. Su
h

proto
ols a
hieve broad
ast in the 
lassi
al sense when up to t players are 
orrupted, and some redu
ed

notion of broad
ast when up to t

+

� t players are 
orrupted, where t

+


an be stri
tly greater than the

number of 
orruptions tolerable in 
lassi
al broad
ast proto
ols. The presented proto
ols are eÆ
ient.

This extended notion of broad
ast has impli
ations in pra
ti
e, both when broad
ast is used as a

stand-alone proto
ol, as well as when it is used as a sub-proto
ol of some other distributed proto
ol.

For example, it is known that un
onditionally-se
ure multi-party 
omputation robust against t < n=2


orruptions is a
hievable if during a pre
omputation phase broad
ast 
hannels are available. Using

broad
ast with extended 
onsisten
y and validity dete
tion, in a model with se
ure 
hannels but

without broad
ast, one 
an �x two parameters t and t

+

with t + 2t

+

< n and start to repeat a

pre
omputation. As soon as the pre
omputation su

eeds (whi
h is guaranteed when at most t players

are 
orrupted) then broad
ast will be available un
onditionally se
ure against any number of players,

and hen
e also multi-party 
omputation se
ure against faulty minorities. In 
ase the proto
ol does not

su

eed, all players 
ommonly abort even before having entered any private input to the 
omputation.

10
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Figure 1: Rearrangement of pro
essors in the proof of Theorem 4

Proof. Assume 	 to be a proto
ol among n players, P = fp

0

; : : : ; p

n�1

g, that a
hieves broad
ast with

either extended validity or extended 
onsisten
y for t > 0 and t+ 2t

+

� n; and assume p

0

to be the

sender with input x

0

.

Let t




2 ft; t

+

g denote the threshold su
h that the 
onsisten
y 
ondition of broad
ast is always

satis�ed when f � t




players are 
orrupted, and t

v

2 ft; t

+

g denote the threshold su
h that the

validity 
ondition of broad
ast is always satis�ed when f � t

v

players are 
orrupted. In parti
ular

t

v

= t

+

and t




= t for broad
ast with extended validity; and t




= t

+

and t

v

= t for broad
ast with

extended 
onsisten
y.

Let � = f�

0

; : : : ; �

n�1

g be the set of the players' 
orresponding pro
essors with their lo
al programs.

As follows from the impossibility of standard broad
ast, the assumed a
hievability implies that t < n=3,

and thus, that t

+

� n=3. Hen
e, it is possible to partition the pro
essors into three non-empty sets,

�

0

_

[�

1

_

[�

2

= �, su
h that 1 � j�

0

j � t




, 1 � j�

1

j � t

v

, and hen
e 1 � j�

2

j � t

+

. Note that, hen
e,

j�

0

[�

1

j � n� t

+

, j�

1

[�

2

j � n� t




, and j�

2

[�

0

j � n� t

v

.

Furthermore, for ea
h i 2 f0; : : : ; n � 1g, let �

i+n

be an identi
al 
opy of pro
essor �

i

. For every �

i

(0 � i � 2n � 1) let the type of pro
essor �

i

be de�ned as the number i mod n. Finally, for ea
h

k 2 f0; 1; 2g, let �

k+3

= f�

i+n

j �

i

2 �

k

g form identi
al 
opies of the sets �

k

.

Instead of 
onne
ting the original pro
essors as required for the broad
ast setting, we build a network

involving all 2n pro
essors (i.e., the original ones together with their 
opies) by arranging the six

pro
essor sets �

k

in a 
ir
le. In parti
ular, for all sets �

k

(0 � k � 5), every pro
essor �

i

2 �

k

is 
onne
ted (exa
tly) by one 
hannel with all pro
essors in �

k

nf�

i

g, �

(k�1)mod6

, and �

(k+1)mod6

.

Hen
e, ea
h pro
essor �

i

in the new system is symmetri
ally 
onne
ted with exa
tly one pro
essor of

ea
h type (di�erent from his own one) as in the original system. We say that �

k

and �

`

are adja
ent

pro
essor sets if and only if ` � k � 1 (mod 6).

Now, along the lines of [FLM86℄, for every set �

k

[ �

(k+1)mod6

(0 � k � 5) in the new system and

without the presen
e of an adversary, their 
ommon view is indistinguishable from their view as the set

of pro
essors �

kmod3

[�

(k+1)mod3

in the original system with respe
t to an adversary who 
orrupts

all (up to either t or t

+

) pro
essors of the remaining pro
essor set �

(k+2)mod3

in an admissible way.

Let now �

0

and �

n

be initialized with di�erent inputs. We now argue that, for ea
h run of the

new system, there are at least two pairs �

k

[ �

(k+1)mod6

(0 � k � 5) su
h that the 
onditions of

two-threshold broad
ast are not satis�ed for them:

By the validity property with respe
t to t

v

, the at least n � t

v

players p

i

in �

5

[ �

0

must 
ompute

y

i

= x

0

whereas the at least n� t

v

players p

i

in �

2

[�

3

must 
ompute y

i

= x

n

= 1� x

0

.

By the 
onsisten
y property, the at least n� t




players p

i

in �

1

[�

2

must 
ompute the same output

y

i

among themselves, and also the at least n� t

v

players in �

4

and �

5

.

Finally, by either the 
onsisten
y or validity property with respe
t to t

+

, the at least n� t

+

players
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p

i

in �

0

[ �

1

must 
ompute the same output y

i

among themselves (sin
e sender p

0

2 �

0

), and also

the at least n� t

+

players p

i

in �

3

and �

4

.

Hen
e, for any possible run of the new system on inputs x

0

and x

n

= 1�x

0

it holds that, 
hosen a pair

(�

k

;�

(k+1)mod6

) of adja
ent pro
essor sets uniformly at random, the probability that the 
onditions

for broad
ast are violated for this pair is at least

1

3

.

In parti
ular, there is a pair (�

k

;�

(k+1)mod6

) in the new system su
h that, over all possible runs

on inputs x

0

= 0 and x

n

= 1 the probability that the 
onditions of broad
ast are violated for

(�

k

;�

(k+1)mod6

) is at least

1

3

.

If the adversary is unbounded, given any proto
ol 	, he 
an 
ompute su
h a pair (�

k

;�

(k+1)mod6

)

and a
t a

ordingly by 
orrupting the pro
essors in �

(k+2)mod3

in the original system, hen
e for
ing

the proto
ol to fail on input

x

0

=

�

0 , if 0 2 fk; k + 1g , and

1 , else ,

with a probability of at least

1

3

.

If the adversary is 
omputationally bounded then he 
an still make the proto
ol fail with a probability

of at least

1

6

.
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