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Abstrat

A broadast protool allows a sender to distribute a value among a set of players suh that

it is guaranteed that all players reeive the same value (onsisteny), and if the sender is honest,

then all players reeive the sender's value (validity). Classial broadast protools for n players

provide seurity with respet to a �xed threshold t < n=3, where both onsisteny and validity are

guaranteed as long as at most t players are orrupted, and no seurity at all is guaranteed as soon

as t+ 1 players are orrupted. Depending on the environment, validity or onsisteny may be the

more important property.

We generalize the notion of broadast by introduing an additional threshold t

+

� t. In a

broadast protool with extended validity, both onsisteny and validity are ahieved when no more

than t players are orrupted, and validity is ahieved even when up to t

+

players are orrupted.

Similarly, we de�ne broadast with extended onsisteny. We prove that broadast with extended

validity as well as broadast with extended onsisteny is ahievable if and only if t+ 2t

+

< n (or

t = 0). For example, six players an ahieve broadast when at most one player is orrupted (this

result was known to be optimal), but they an even ahieve onsisteny (or validity) when two

players are orrupted.

Furthermore, our protools ahieve detetion in ase of failure, i.e., if at most t players are

orrupted then broadast is ahieved, and if at most t

+

players are orrupted then broadast is

ahieved or every player learns that the protool failed. This protool an be employed in the

preomputation of a seure multi-party omputation protool, resulting in detetable multi-party

omputation, where up to t orruptions an be tolerated and up to t

+

orruptions an either be

tolerated or deteted in the preomputation, for any t; t

+

with t+ 2t

+

< n.

1 Introdution

1.1 Bakground

Byzantine agreement refers to two slightly di�erent onepts, namely broadast and onsensus. In

a broadast protool, a sender distributes a value among a set of players in suh a way that it is

guaranteed that all players indeed reeive the same value (even when the sender is orrupted). In

a onsensus protool, a set of players eah holding some value deide on one single value, with the

property that if they all hold the same value in the beginning then they will deide on this value. A

bit more formally, a protool for Byzantine agreement must satisfy validity and onsisteny. Validity

means that all players will end up with the orret value in ase that the dealer is honest (broadast),
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respetively in ase that all honest players start with the same input value (onsensus). Consisteny

means that all players must end up with the same value, independent of whether or not the dealer is

honest, respetively whether or not all honest players start with the same input value.

The problem of Byzantine agreement was introdued by Lamport, Shostak, and Pease [LSP82℄. In

a model with pairwise authenti hannels, they ahieve broadast (as well as onsensus) among n

players in presene of an adversary that orrupts up to t < n=3 players and make them misbehave

arbitrarily. If a seure signature sheme an be used, they ahieve broadast even for any number

t < n of orruptions, onsensus for up to t < n=2. All these bounds are tight [LSP82, KY84, FLM86℄,

but the proposed protools are ineÆient. EÆient protools were given in [DS83, DFF

+

82, TPS87,

BDDS92, FM97, BGP89, CW92, GM98℄.

The bounds t < n for broadast and t < n=2 for onsensus an also be ahieved with unonditional

seurity, when an unonditionally-seure pseudo-signature sheme is set up [BPW91, PW96℄.

Broadast is a key ingredient of seure multi-party omputation (MPC) protools. Here, a set of

players, eah holding a seret input, want to ompute an arbitrary funtion of these inputs in suh a

way that the inputs remain seret and the outome of the omputation is guaranteed to be orret,

even when some of the players are orrupted and misbehave. The problem of MPC was proposed

by Yao [Yao82℄ and �rst solved by Goldreih, Miali, and Wigderson [GMW87℄. This protool is

seure with respet to a omputationally bounded adversary that may orrupt up to t < n=2 players,

whih is optimal. When bilateral seure hannels are available, seurity is ahievable with respet

to an unbounded adversary that orrupts up to t < n=3 players [BGW88, CCD88℄; also this bound

is proven tight. If additionally to the seure hannels also seure broadast hannels are available,

then information-theoreti seurity is ahievable even for up to t < n=2 orruptions [Bea89, RB89,

CDD

+

99℄.

1.2 Contributions

Classial protools for Byzantine agreement provide seurity with respet to a �xed threshold t, where

absolute seurity is guaranteed as long as at most t players are orrupted, and no seurity at all is

guaranteed for the ase when t + 1 or more players are orrupted. We generalize this notion in the

sense that broadast (aording to the lassial de�nition) is ahieved as long as up to t players are

orrupted, but some (redued) requirements are still guaranteed even when up to t

+

� t players are

dishonest.

We propose two onrete primitives:

� In a broadast protool with extended validity, broadast is ahieved when at most t players are

orrupted, and validity (i.e., orretness of the output values) is ahieved even when up to t

+

players are orrupted.

� In a broadast protool with extended onsisteny, broadast is ahieved when at most t players

are orrupted, and onsisteny (i.e., equality of all outputs) is ahieved even when up to t

+

players are orrupted.

For eah primitive, we propose an eÆient protool for t+ 2t

+

< n (speial ases for t = 0 are known

[FGH

+

02, GL02℄ in the literature). Furthermore, the protool with extended onsisteny also ahieves

agreement about the fat whether or not validity is ahieved (validity detetion). The protool with

extended validity an be extended suh that even when the sender is maliious, every player reeives

the same value or learns that no onsisteny ould be reahed (onsisteny detetion).

As a speial ase of these results, we an onstrut protools for detetable broadast, where broadast

is ahieved even when up to t players are orrupted, and either broadast is ahieved or a failure

is deteted by all honest players when no more than t

+

players are orrupted, for t + 2t

+

< n.
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This stritly generalizes the result for detetable broadast in [FGH

+

02℄. This broadast protool

an be plugged into a multi-party omputation protool for the unonditional model with broadast

(e.g., [Bea89, RB89, CDD

+

99℄), whih results in a detetable MPC protool [FGMR02℄. Here, the

omputation is seure and robust as long as at most t players are orrupted, and either the omputation

is seure or it is aborted before any honest player has distributed his input when up to t

+

players are

orrupted, for any t; t

+

with t+ 2t

+

< n (respetively, for t = 0 and t

+

< n=2).

Finally, we prove that the ahieved bounds are tight, i.e., broadast with extended validity (resp. on-

sisteny) is impossible for t+ 2t

+

� n.

1.3 Outline

In Setion 2, we formally introdue the used model and state some de�nitions. In Setions 3 and 4,

we propose families of eÆient deterministi protools for broadast with extended validity and ex-

tended onsisteny, respetively. Optimality of our protools is proven in Setion 5, and some �nal

observations and onlusions are given in Setion 6.

2 Models and De�nitions

We onsider a set P = fp

1

; : : : ; p

n

g of players, onneted with a omplete network of pairwise syn-

hronous authentiated (or seure) hannels. The players do not share any onsistent information

(as a PKI setup). We assume an adaptive adversary that atively orrupts some of the players. The

adversary's omputational power is unlimited (though the tightness of the protools will be proved

even with respet to a non-adaptive probabilisti polytime adversary).

A broadast protool allows a player (the sender) to onsistently send a message to all other players,

suh that all players reeive the sender's value, or at least, when the sender is maliious, all players

reeive the same value.

De�nition 1 (Broadast): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite domain.

A protool � among P where player p

s

2 P (alled the sender) holds an input value x

s

2 D and every

player p

i

2 P �nally deides on an output value y

i

2 D ahieves broadast (or is a broadast protool)

with respet to P , p

s

, and D, if it satis�es the following onditions:

Validity: If the sender p

s

is orret then all orret players p

i

deide on the sender's input value,

y

i

= x

s

.

Consisteny (or Agreement): All orret players deide on the same output value, i.e., if p

i

2

P and p

j

2 P are orret then y

i

= y

j

.

�

In a onsensus protool, every player starts with an input value, and the goal is to make all players

agree on the same output value. If all orret players hold the same input value then the output value

is required to be the same as this input value.

De�nition 2 (Consensus): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite domain.

A protool � among P where every player p

i

2 P holds an input value x

i

2 D and �nally deides on

an output value y

i

2 D ahieves onsensus (or is a onsensus protool) with respet to P and D if it

satis�es the following onditions:

Persisteny (or Validity): If all orret players p

i

hold the same input value x

i

= v then all

orret players p

i

deide on it, y

i

= v.

Consisteny (or Agreement): All orret players deide on the same output value, i.e., if p

i

2

P and p

j

2 P are orret then y

i

= y

j

.
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When lear from the ontext, we simply say that a given protool ahieves broadast (or onsensus),

negleting the parameters P , p

s

, and D.

Furthermore, we fous on binary Byzantine agreement (domain D = f0; 1g) sine Byzantine agreement

for any �nite domain D an be eÆiently solved with any binary protool [TC84℄.

Graded onsensus, derived from graded broadast in [FM97℄, is a variation of onsensus where, addi-

tionally to the output value, every player gets a grade g 2 f0; 1; 2g on the outome of the protool.

We present a slightly modi�ed version with binary grades. If any orret player gets grade 1 then all

orret players deide on the same output value, i.e., getting grade 1 implies deteting agreement. If

all orret players start with the same input value then all orret players detet agreement, i.e., they

get grade 1.

De�nition 3 (Graded Consensus): Let P = fp

1

; : : : ; p

n

g be a set of n players and let D be a �nite

domain. A protool � among P where every player p

i

2 P holds an input value x

i

2 D and �nally

deides on an output value y

i

2 D and a grade g

i

2 f0; 1g ahieves graded onsensus with respet to

P and D, if it satis�es the following onditions:

Persisteny (or Validity): If all orret players p

i

hold the same input value x

i

= v then all

orret players p

i

deide on it, y

i

= v, and get grade g

i

= 1.

Consisteny: If any orret player p

i

gets grade g

i

= 1 then all orret players p

j

deide on the

same output value y

i

= y

j

.

�

A broadast protool with extended onsisteny is a protool whih, for two given thresholds t and

t

+

with t � t

+

, ahieves broadast as long as no more than t players are orrupted, and ahieves

onsisteny (but potentially not validity) as long as no more than t

+

players are orrupted

De�nition 4 (Broadast with extended onsisteny): Let P = fp

1

; : : : ; p

n

g be a set of n players

and let D be a �nite domain. A protool � among P where player p

s

2 P (alled the sender) holds

an input value x

s

2 D and every player p

i

2 P �nally deides on an output value y

i

2 D ahieves

broadast with extended onsisteny with respet to P , p

s

, D, and thresholds t and t

+

if it satis�es the

following onditions:

Validity: If the sender p

s

is orret and at most t players are orrupted then all orret players

p

i

deide on the sender's input value, y

i

= x

s

.

Consisteny (or Agreement): If at most f � t

+

players are orrupted then all orret players

deide on the same output value.

�

A broadast protool with extended validity is a protool whih, for two given thresholds t and t

+

with t � t

+

, ahieves broadast as long as no more than t players are orrupted, and ahieves validity

(but potentially not onsisteny) as long as no more than t

+

players are orrupted

De�nition 5 (Broadast with extended validity): Let P = fp

1

; : : : ; p

n

g be a set of n players

and let D be a �nite domain. A protool � among P where player p

s

2 P (alled the sender) holds

an input value x

s

2 D and every player p

i

2 P �nally deides on an output value y

i

2 D ahieves

broadast with extended validity with respet to P , p

s

, D, and thresholds t and t

+

if it satis�es the

following onditions:

Validity: If the sender p

s

is orret and at most t

+

players are orrupted then all orret players

p

i

deide on the sender's input value, y

i

= x

s

.

Consisteny (or Agreement): If at most f � t players are orrupted then all orret players

deide on the same output value.
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Whereas the omputation omplexities of all our protools are obviously polynomial and thus will not

be expliitly stated, we state the protool's ommuniation omplexities with respet to two measures.

R denotes the worst-ase round omplexity, i.e., the maximal possible number of ommuniation

rounds required by the protool. B denotes the worst-ase bit-omplexity of a protool, i.e., the

maximal possible number of bits to be sent by all orret players overall during the whole protool.

3 Broadast with Extended Validity

We diretly present a onstrution for broadast with extended validity and onsisteny detetion

whih is stritly stronger than ordinary broadast with extended validity.

De�nition 6 (Broadast with Extended Validity and Consisteny Detetion): Let P be a

set of n players and let D be a �nite domain. A protool � among P where player p

s

2 P (alled the

sender) holds an input value x

s

2 D and every player p

i

2 P �nally deides on an output value y

i

2 D

and a grade value g

i

2 f0; 1g ahieves broadast with extended validity and onsisteny detetion

(ECBC

+

for short) with respet to P , p

s

, D, and thresholds t and t

+

if it satis�es the following

onditions:

Validity: If the sender p

s

is orret and at most f � t

+

players are orrupted then all orret

players p

i

deide on the sender's input value, y

i

= x

s

.

Consisteny: If at most f � t players are orrupted then every orret player p

i

deides on the

same output value y

i

= v and g

i

= 1.

Consisteny Detetion: If at most f � t

+

players are orrupted and any orret player p

i

omputes g

i

= 1 then every orret player p

j

omputes y

j

= y

i

.

�

Note that however, it is not possible that the players ahieve ommon knowledge about whether or

not onsisteny has been ahieved. However, it an be ahieved that all players \ompletely" detet

onsisteny if f � t and \soundly" detet onsisteny if f � t

+

, i.e., g

i

= 1 always implies reliable

detetion of onsisteny.

Note that the speial ase t = 0 (and t

+

< n) an be ahieved by a protool wherein the sender

simply multi-sends his input to all players who in turn redistribute the reeived value to everybody

(see Protool CondGradeast in [FGH

+

02℄ and Protool 1 in [GL02℄). We thus fous on protools for

t > 0. The �nal protool is based on the implementation of a protool to solve the following problem:

De�nition 7 (Two-level Graded Consensus): A protool among n players, where every player

p

i

2 P holds an input value x

i

2 D and every player p

i

deides on an value y

i

2 D and a grade

g

i

2 f0; 1; 2g, ahieves two-level graded onsensus with respet to thresholds t and t

+

if it satis�es

Persisteny: If f � t and all orret players p

i

enter the protool with the same input value

x

i

= v then every orret player p

i

omputes outputs y

i

= v and g

i

= 2. If f � t

+

and all

orret players p

i

enter the protool with the same input value x

i

= v then every orret player

p

i

omputes outputs y

i

= v and g

i

� 1.

Consisteny: If f � t and any orret player p

i

omputes g

i

� 1 then every orret player p

j

omputes y

j

= y

i

. If f � t

+

and any orret player p

i

omputes g

i

= 2 then every orret

player p

j

omputes y

j

= y

i

.

�
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Protool 1 TLGradedConsensus

p

1

(P; x

1

; t; t

+

)

1. SendToAll(x

i

); P : Reeive(x

1

i

; : : : ; x

n

i

);

2. S

0

i

:=

n

j 2 f1; : : : ; ng j x

j

i

= 0

o

; S

1

i

:=

n

j 2 f1; : : : ; ng j x

j

i

= 1

o

;

3. if jS

x

i

i

j � n� t

+

then z

i

:= x

i

else z

i

:=? fi;

4. SendToAll(z

i

); P : Reeive(z

1

i

; : : : ; z

n

i

);

5. T

0

i

:=

n

j 2 f1; : : : ; ng j z

j

i

= 0

o

; T

1

i

:=

n

j 2 f1; : : : ; ng j z

j

i

= 1

o

;

6. if jT

0

i

j � jT

1

i

j then y

i

:= 0 else y

i

:= 1 fi;

7. if jT

y

i

i

j � n� t then g

i

:= 2

8. elseif jT

y

i

i

j � n� t+ then g

i

:= 1

9. else g

i

:= 0 fi;

10. return (y

i

; g

i

);

Lemma 3.1. In Model M

aut

, Protool 1 ahieves TLGC if t+ 2t

+

< n and t

+

� t.

Proof.

Persisteny: Suppose that all orret players p

i

enter the protool with the same input value x

i

= v

and suppose that at most f � t

+

players are orrupted. Then at least n� t

+

orret players distribute

value x

i

= v in Step 1, and every orret player p

i

omputes S

v

i

suh that jS

v

i

j � n� t

+

. Furthermore,

sine t+ 2t

+

< n, it holds that jS

1�v

i

j � t

+

< n� t

+

, and every orret p

i

omputes z

i

= v in Step 3.

Hene, in Step 4, every suh p

i

redistributes value z

i

= v, gets jT

v

i

j � n � t

+

> t

+

, and omputes

y

i

= v and g

i

� 1. Finally, if only f � t players are orrupted then jT

v

i

j � n � t, and every orret

player p

i

omputes g

i

= 2.

Consisteny: For v 2 f0; 1g, let S

v

�

and T

v

�

be the set of orret players sending value v in Step 1,

and Step 4, respetively. Furthermore, let F � P be the set of orrupted players.

Suppose �rst, that f � t players are orrupted (jF j � t) and that some orret player p

i

omputes

g

i

� 1 and y

i

= v 2 f0; 1g. Hene, jT

v

i

j � n� t

+

, and sine jF j � t, it follows that jT

v

�

j � n� t

+

� t.

Furthermore, as follows from Step 3 of the protool, for every orret player p

i

with z

i

6= x

i

, it holds

that z

i

=?, and hene that jT

v

�

j � jS

v

�

j. Therefore, jT

v

�

j � n � t

+

� t implies for every orret

player p

j

that jS

v

j

j � jS

v

�

j � jT

v

�

j � n � t

+

� t. Additionally, the bound t + 2t

+

< n implies that

jS

1�v

j

j � n�jS

v

j

j � t

+

+t < n�t

+

, and hene, onsidering Step 3, that no orret player p

j

distributed

value z

j

= 1 � v during Step 4, i.e., T

1�v

�

= ;. Thus, we get that every orret player p

j

omputes

sets T

v

j

and T

1�v

j

suh that jT

1�v

j

j � jF j � t and jT

v

j

j � jT

v

�

j � n � t

+

� t > t

+

� t � jT

1�v

j

j, and

omputes y

j

= y

i

.

Suppose now, that f � t

+

players are orrupted and that some orret player p

i

omputes g

i

= 2.

Hene, jT

v

i

j � n� t, and sine jF j � t

+

, it follows that jT

v

�

j � n� t� t

+

. As above, for the ase that

f � t, this implies that T

1�v

�

= ; (Step 3), and thus every orret player p

j

omputes sets T

v

j

and

T

1�v

j

suh that jT

1�v

j

j � jF j � t

+

and jT

v

j

j � n� t

+

� t > jT

1�v

j

j, and omputes y

j

= y

i

.

Protool 2 ExtConsBC

+

p

1

(P; x

1

; t; t

+

)

1. y

i

:= x

i

; h

i

:= 0;

2. for k := 1 to t+ 1 do

3. if i = k then SendToAll(y

i

) fi; P : Reeive(y

k

i

);

4. if h

i

= 0 then y

i

:= y

k

i

fi;

5. (y

i

; h

i

) := TLGradedConsensus(P; y

i

; t; t

+

);

6. od;

7. if h

i

= 2 then g

i

:= 1 else g

i

:= 0 fi;

8. return (y

i

; g

i

);

Lemma 3.2. Consider Protool 2 in Model M

aut

, and assume that t + 2t

+

< n and t

+

� t. Then,

for any k = 2; : : : ; t+ 1, the following holds:
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1. If at most f � t

+

players are orrupted and all orret players p

i

start Loop k in Step 2 with the

same value y

i

= v then every orret player p

i

holds values y

i

= v and h

i

� 1 at the end of the

same loop. Additionally, if only f � t players are orrupted then h

i

= 2 at the end of the loop.

2. If at most f � t players are orrupted and player p

k

is orret then, at the end of the loop, every

orret player p

i

holds the same value y

i

= y

k

and grade h

i

= 2.

Proof.

1. Suppose that f � t

+

and that every orret player p

i

holds value y

i

= v at the beginning of the

loop. Then, by the persisteny property of TLGC, they all ompute y

i

= v and h

i

� 1 in Step 5,

and if f � t then even h

i

= 2 holds.

2. Suppose that f � t and that p

k

is orret and thus distributes the same value y

k

2 f0; 1g to

all players in Step 3. If every orret player p

i

holds grade value h

i

= 0 then they all enter

Protool TLGradedConsensus with y

i

= y

k

, and by its persisteny property, ompute outputs

y

i

= y

k

and h

i

= 2. Espeially, this holds for k = 1 sine the players start with grade h

i

= 0. On

the other hand, if any orret player p

i

holds h

i

� 0 then, by the onsisteny property of TLGC

whih has been priorly invoked, every orret player p

i

already holds the same value y

i

= y

k

before Step 3, and nothing hanges until the end of the loop.

Theorem 1. In Model M

aut

, Protool 2 ahieves eÆient, perfetly seure broadast with extended

validity and onsisteny detetion with sender p

1

if t + 2t

+

< n and t

+

� t. The round and bit

omplexities are R = 3t+ 3 and B = O(n

3

).

Proof.

Validity: Suppose that the sender p

1

is orret and that at most f � t

+

players are orrupted. Then,

by Lemma 3.2, after Step 5 of the �rst loop (k = 1), every orret player p

i

holds values y

i

= x

1

and

h

i

� 1. Sine h

i

� 1 and by the persisteny property of Protool TLGradedConsensus, no further loop

(k > 1) an inuene the values y

i

and h

i

, and every orret player p

i

holds value y

i

= x

1

at the end

of the protool.

Consisteny: If f � t players are orrupted then there is a player p



2 fp

1

; : : : ; p

t+1

g that is orret.

By Lemma 3.2 (2), at the end of loop k = , every orret player p

i

holds the same value y

i

= y



and grade h

1

= 2. By Lemma 3.2 (1), these values stay persistent until the end of the protool, and

onsisteny follows.

Consisteny Detetion: Suppose that at most f � t

+

players are orrupted and that some orret

player p

i

omputes g

i

= 1 at the end of the protool. This implies that h

i

= 2 after the last invoation

of Protool TLGradedConsensus, and by the onsisteny property of TLGC, that every orret player

p

j

omputed y

j

= y

i

during this invoation and thus exited the protool with y

j

= y

i

.

The stated omplexities an be easily veri�ed by ode inspetion.

Note that there is a protool for broadast with extended validity without onsisteny detetion that

requires the same bit omplexity but 2 less rounds of ommuniation.

4 Broadast with Extended Consisteny

We diretly present a onstrution for broadast with extended onsisteny and validity detetion

whih is stritly stronger than ordinary broadast with extended onsisteny.

7



In ontrast to the inherently non-ommon onsisteny detetion in ECBC

+

, here it is possible that

the players ahieve ommon knowledge about whether or not validity has been ahieved.

De�nition 8 (Broadast with Extended Consisteny and Validity Detetion): Let P be a

set of n players and let D be a �nite domain. A protool � among P where player p

s

2 P (alled the

sender) holds an input value x

s

2 D and every player p

i

2 P �nally deides on an output value y

i

2 D

and a grade value g

i

2 f0; 1g ahieves broadast with extended onsisteny and validity detetion

(EVBC

+

, for short) with respet to P , p

s

, D, and thresholds t and t

+

if it satis�es the following

onditions:

Consisteny: If at most f � t

+

players are orrupted then every orret player p

i

deides on the

same pair of output (y; g), y

i

= y and g

i

= g.

Validity: If the sender p

s

is orret and at most f � t players are orrupted then all orret

players p

i

deide on the sender's input value, y

i

= x

s

, and grade g

i

= 1.

Validity Detetion: If the sender p

s

is orret, at most f � t

+

players are orrupted, and any

orret player p

i

omputes g

i

= 1 then every orret player p

j

omputes y

j

= x

s

.

�

For didati reasons, we �rst sketh a simple protool for a model with authentiated hannels that

only guarantees omputational seurity. The protool for the standard model with seure hannels

providing unonditional seurity is stated more expliitly,

Sine, for the speial ase that t = 0, eÆient and optimally resilient protools were already given

in [FGH

+

02℄, we fous on protools for t > 0.

4.1 A Simple Protool for Computational Seurity

Protool 3 ExtValBC

+

p

1

(P; x

1

; t; t

+

)

1. Generate a seret-key/publi-key pair (SK

i

;PK

i

) aording to the key generation algorithm

of a digital signature system. For every player p

j

2 P as a sender, invoke Protool 2:

ExtConsBC

+

p

j

(P; PK

j

; t; t

+

) where p

j

inputs his publi key PK

j

. Store all reeived publi keys

PK

1

i

; : : : ;PK

n

i

and grades g

1

i

; : : : ; g

n

i

from these n invoations.

2. G

i

:=

V

n

k=1

g

k

i

.

3. SendToAll(G

i

); Reeive(G

1

i

; : : : ; G

n

i

);

For every player p

j

2 P as a sender, an instane of Dolev-Strong broadast is invoked where p

j

inputs G

j

. Store all reeived values as �

1

i

; : : : ;�

n

i

.

5. if jfj j G

j

i

= 1gj > t

+

^ jfj j �

j

i

= 1gj � n� t then g

i

:= 1 else g

i

:= 0 fi;

6. If g

i

= 1 then an instane of Dolev-Strong broadast is invoked where p

1

inputs x

1

, and its output

y

i

is returned; else y

i

:= 0 is omputed.

Theorem 2. In Model M

aut

, Protool 3 ahieves broadast with extended onsisteny and validity

detetion with sender p

1

if t+ 2t

+

< n and t

+

� t as seure as the underlying signature sheme.

Its round omplexity is R = 3t+ t

+

+4 and its bit omplexity is polynomial in n, k, and log jDj where

D is the domain of the value to be distributed and k is the maximal length of a signature.

Proof.

Consisteny: Suppose that f � t

+

players are orrupted. If every orret player p

i

rejets by

omputing g

i

= 0 then onsisteny is satis�ed sine they all ompute y

i

= 0.

Thus, suppose that some orret player p

i

aepts by omputing g

i

= 1. Then jfj j G

j

i

= 1gj > t

+

,

implying that at least one orret player p

k

sent G

k

= 1. Hene, by the de�nition of ECBC

+

,

all invoations of Protool 2 ahieved validity and onsisteny (i.e., broadast when negleting the

grade outputs) implying that all orret players hold eah other's authenti publi keys. Hene, the

invoations of Dolev-Strong broadast in Step 3 all ahieve broadast and all orret players p

j

ompute

8



the same set of values �

1

j

; : : : ;�

n

j

. Furthermore, sine g

i

= 1, for every orret player p

`

it holds that

jfj j �

j

`

gj � n � t and thus that jfj j G

j

`

= 1gj � n � t � t

+

> t

+

, and all players p

`

ompute g

`

= 1.

Finally, all orret players invoke Dolev-Strong broadast whih now is indeed guaranteed to ahieve

broadast, and onsisteny follows.

Validity: Suppose that f � t players are orrupted and that the sender p

1

is orret. Hene, by the

de�nition of ECBC

+

, all invoations of Protool 2 ahieve validity and onsisteny (i.e., broadast

when negleting the grade outputs) and that every orret player p

i

omputes g

i

= 1. Thus, all

orret players p

i

ompute G

i

= 1, all invoations of Dolev-Strong broadast ahieve broadast, and,

in Step 3, the players p

i

in turn ompute values G

j

i

and �

j

i

suh that jfj j G

j

i

= 1gj � n� t > t

+

and

jfj j �

j

i

= 1gj � n� t. Finally, all orret players p

i

ompute g

i

= 1 and ompute y

i

= x

1

in Step 6.

Validity Detetion: Suppose that f � t

+

. We already showed when proving onsisteny, that if one

orret player p

i

omputes g

i

= 1, then all orret players hold eah other's authenti publi keys and

all players invoke the Dolev-Strong broadast protool. Hene, if the sender p

s

is honest the players

will indeed ompute his input value x

s

, aording to the properties of Dolev-Strong broadast.

By inspetion of Protool 2, Step 1 requires 3(t+1) rounds. Dolev-Strong broadast (whih is exeuted

in parallel to the multi-send of Step 3, and one again in Step 6) requires another t

+

+ 1 rounds, and

hene the stated round omplexity follows. Futhermore, the bit omplexities of Protool 2 and Dolev-

Strong broadast are learly polynomial in n, k, and log jDj.

4.2 Unonditional Seurity

We demonstrate the ahievability with respet to unonditional seurity by modifying the P�tzmann-

Waidner preomputation protool to tolerate t < n. However, more eÆient solutions an be ahieved

by modifying the preomputation protool in [BPW91℄ to tolerate t < n=2. This is possible sine

t + 2t

+

< n and t � t

+

. However, the P�tzmann-Waidner protool is more generi in that it allows

for any later broadast protool using authentiation.

Protool 4 ExtValBC

+

p

1

(P; x

1

; t; t

+

)

1. Exeute preomputation the P�tzmann-Waidner protool for b+1 future broadasts wherein eah

invoation of broadast is replaed by an invoation of ECBC

+

Protool 2 with the same sender:

ExtConsBC

+

p

k

(P; �; t; t

+

). Of these instanes, one is omputed with respet to the intended sender

s 2 f1; : : : ; ng of the future broadast. Of the other n instanes, one is omputed with respet to

eah player p

j

2 P .

2. G

i

:=

V

`

k=1

g

k

i

where the g

k

i

are all grades reeived during an invoation of ECBC

+

during Step 1.

Synhronize: Wait and start exeuting the next step at round b

n

2

(9t+10)

2

+ 1.

3. SendToAll(G

i

); Reeive(G

1

i

; : : : ; G

n

i

);

For every player p

j

2 P as a sender, an instane of Dolev-Strong broadast is invoked (using

pseudo-signatures) where p

j

inputs G

j

. Store all reeived values as �

1

i

; : : : ;�

n

i

.

5. if jfj j G

j

i

= 1gj > t

+

^ jfj j �

j

i

= 1gj � n� t then g

i

:= 1 else g

i

:= 0 fi;

6. If g

i

= 1 then an instane of Dolev-Strong broadast is invoked where p

1

inputs x

1

, and its output

y

i

is returned; else y

i

:= 0 is omputed.

Theorem 3. In Model M

se

, for any seurity parameter k > 0, Protool 4 ahieves unonditionally

seure broadast with extended onsisteny and validity detetion (detetable broadast) with sender p

1

if t+ 2t

+

< n and t+ � t. Thereby the error probability is " < 2

�k

.

Its round omplexity is b

n

2

(9t+10)

2

+ 2t

+

+ 2 and its bit omplexity is polynomial in n, k, and log jDj

where D is the domain of the value to be distributed.

9



Proof. Consisteny, validity, and validity detetion follow along the lines of the proof of Theorem 2.

As follows from the analysis in [PW96℄ and ode inspetion of Protool 2, replaing eah invoation

of broadast in the P�tzmann-Waidner preomputation protool by an invoation of ECBC

+

leads to

a round omplexity of Steps 1 and 2 of at most b

n

2

(9t+10)

2

 until all players have �nished { note that

beyond f � t, no fault-loalization is required but only fault-detetion. Steps 3 and 6 eah require

another t

+

+ 1 rounds, and hene the stated round omplexity follows. Futhermore, the Protools 2

and Dolev-Strong broadast are all polynomial in n, k, and log jDj.

5 Impossibility Result

Whereas the ase t = 0 is obviously are optimal for both, broadast with extended validity and

broadast with extended onsisteny, it still needs to be proven that the bound t+2t

+

< n is optimal.

Note that this impossibility result even holds for the ordinary variants without onsisteny detetion,

or validity detetion, respetively. The proof proeeds along the lines of the impossibility proof in

[FLM86℄ that broadast is impossible if t � n=3.

Theorem 4. In Models M

aut

and M

se

, neither broadast with extended validity nor broadast with

extended onsisteny is ahievable among a set of n players P if t > 0 and t + 2t

+

� n. For every

protool there exists a value x

0

2 f0; 1g suh that, when the sender holds input x

0

, the adversary an

make the protool fail

� with a probability of at least

1

6

if he is omputationally bounded, and

� with a probability of at least

1

3

if he is omputationally unbounded.

The proof of this theorem was moved to the appendix.

6 Conlusions

We have introdued a generalization of broadast, where either validity (resp. onsisteny) an be

ahieved even when more than a third of the players are orrupted, at the osts that onsisteny

(resp. validity) an be guaranteed only when less than a third of the players is orrupted. Suh

protools ahieve broadast in the lassial sense when up to t players are orrupted, and some redued

notion of broadast when up to t

+

� t players are orrupted, where t

+

an be stritly greater than the

number of orruptions tolerable in lassial broadast protools. The presented protools are eÆient.

This extended notion of broadast has impliations in pratie, both when broadast is used as a

stand-alone protool, as well as when it is used as a sub-protool of some other distributed protool.

For example, it is known that unonditionally-seure multi-party omputation robust against t < n=2

orruptions is ahievable if during a preomputation phase broadast hannels are available. Using

broadast with extended onsisteny and validity detetion, in a model with seure hannels but

without broadast, one an �x two parameters t and t

+

with t + 2t

+

< n and start to repeat a

preomputation. As soon as the preomputation sueeds (whih is guaranteed when at most t players

are orrupted) then broadast will be available unonditionally seure against any number of players,

and hene also multi-party omputation seure against faulty minorities. In ase the protool does not

sueed, all players ommonly abort even before having entered any private input to the omputation.
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Figure 1: Rearrangement of proessors in the proof of Theorem 4

Proof. Assume 	 to be a protool among n players, P = fp

0

; : : : ; p

n�1

g, that ahieves broadast with

either extended validity or extended onsisteny for t > 0 and t+ 2t

+

� n; and assume p

0

to be the

sender with input x

0

.

Let t



2 ft; t

+

g denote the threshold suh that the onsisteny ondition of broadast is always

satis�ed when f � t



players are orrupted, and t

v

2 ft; t

+

g denote the threshold suh that the

validity ondition of broadast is always satis�ed when f � t

v

players are orrupted. In partiular

t

v

= t

+

and t



= t for broadast with extended validity; and t



= t

+

and t

v

= t for broadast with

extended onsisteny.

Let � = f�

0

; : : : ; �

n�1

g be the set of the players' orresponding proessors with their loal programs.

As follows from the impossibility of standard broadast, the assumed ahievability implies that t < n=3,

and thus, that t

+

� n=3. Hene, it is possible to partition the proessors into three non-empty sets,

�

0

_

[�

1

_

[�

2

= �, suh that 1 � j�

0

j � t



, 1 � j�

1

j � t

v

, and hene 1 � j�

2

j � t

+

. Note that, hene,

j�

0

[�

1

j � n� t

+

, j�

1

[�

2

j � n� t



, and j�

2

[�

0

j � n� t

v

.

Furthermore, for eah i 2 f0; : : : ; n � 1g, let �

i+n

be an idential opy of proessor �

i

. For every �

i

(0 � i � 2n � 1) let the type of proessor �

i

be de�ned as the number i mod n. Finally, for eah

k 2 f0; 1; 2g, let �

k+3

= f�

i+n

j �

i

2 �

k

g form idential opies of the sets �

k

.

Instead of onneting the original proessors as required for the broadast setting, we build a network

involving all 2n proessors (i.e., the original ones together with their opies) by arranging the six

proessor sets �

k

in a irle. In partiular, for all sets �

k

(0 � k � 5), every proessor �

i

2 �

k

is onneted (exatly) by one hannel with all proessors in �

k

nf�

i

g, �

(k�1)mod6

, and �

(k+1)mod6

.

Hene, eah proessor �

i

in the new system is symmetrially onneted with exatly one proessor of

eah type (di�erent from his own one) as in the original system. We say that �

k

and �

`

are adjaent

proessor sets if and only if ` � k � 1 (mod 6).

Now, along the lines of [FLM86℄, for every set �

k

[ �

(k+1)mod6

(0 � k � 5) in the new system and

without the presene of an adversary, their ommon view is indistinguishable from their view as the set

of proessors �

kmod3

[�

(k+1)mod3

in the original system with respet to an adversary who orrupts

all (up to either t or t

+

) proessors of the remaining proessor set �

(k+2)mod3

in an admissible way.

Let now �

0

and �

n

be initialized with di�erent inputs. We now argue that, for eah run of the

new system, there are at least two pairs �

k

[ �

(k+1)mod6

(0 � k � 5) suh that the onditions of

two-threshold broadast are not satis�ed for them:

By the validity property with respet to t

v

, the at least n � t

v

players p

i

in �

5

[ �

0

must ompute

y

i

= x

0

whereas the at least n� t

v

players p

i

in �

2

[�

3

must ompute y

i

= x

n

= 1� x

0

.

By the onsisteny property, the at least n� t



players p

i

in �

1

[�

2

must ompute the same output

y

i

among themselves, and also the at least n� t

v

players in �

4

and �

5

.

Finally, by either the onsisteny or validity property with respet to t

+

, the at least n� t

+

players
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p

i

in �

0

[ �

1

must ompute the same output y

i

among themselves (sine sender p

0

2 �

0

), and also

the at least n� t

+

players p

i

in �

3

and �

4

.

Hene, for any possible run of the new system on inputs x

0

and x

n

= 1�x

0

it holds that, hosen a pair

(�

k

;�

(k+1)mod6

) of adjaent proessor sets uniformly at random, the probability that the onditions

for broadast are violated for this pair is at least

1

3

.

In partiular, there is a pair (�

k

;�

(k+1)mod6

) in the new system suh that, over all possible runs

on inputs x

0

= 0 and x

n

= 1 the probability that the onditions of broadast are violated for

(�

k

;�

(k+1)mod6

) is at least

1

3

.

If the adversary is unbounded, given any protool 	, he an ompute suh a pair (�

k

;�

(k+1)mod6

)

and at aordingly by orrupting the proessors in �

(k+2)mod3

in the original system, hene foring

the protool to fail on input

x

0

=

�

0 , if 0 2 fk; k + 1g , and

1 , else ,

with a probability of at least

1

3

.

If the adversary is omputationally bounded then he an still make the protool fail with a probability

of at least

1

6

.
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