Concurrent Zero Knowledge Proofs with Logarithmic
Round-Complexity

Manoj Prabhakaréan Amit Sahai
Princeton University Princeton University

May 6, 2002

Abstract

We consider the problem of constructing Concurrent Zerow{adge Proofs [6], in which the fasci-
nating and useful “zero knowledge” property is guarantesthén situations where multiple concurrent
proof sessions are executed with many colluding dishorex#fiers. Canetti et al. [3] show that black-
box concurrent zero knowledge proofs for non-trivial laages requiré)(log k) rounds wheré: is the
security parameter. Till now the best known upper bound ennttmber of rounds for NP languages
wasw(log? k), due to Kilian and Petrank [16]. We establish an upper bound(tvg k) on the num-
ber of rounds for NP languages, thereby closing the gap feetiiee upper and lower bounds, up to a
w(loglog k) factor.

*Email: mp@cs.princeton.edu
tEmail: sahai@cs.princeton.edu

1 Introduction

Zero Knowledge proofs, introduced in [14], are fascinatargl important cryptographic primitives. In-
formally, a zero knowledge proof is a protocol between a grand a verifier which yields nothing to
the verifier beyond the validity of the assertion proved. ldogr, more recently further refined notions of
Zero Knowledge have been introduced to handle scenarios coonplicated than the one considered in the
original definition.

Zero knowledge proofs in settings involving many asynchrenprotocol executions was first consid-
ered by Feige [8], who introduced relaxations of the zeronkadge property which were provably pre-
served under asynchronous protocol composition. ConuuZrero Knowledge, introduced in [6], considers
a setting in which the prover holds concurrent proof sessigith polynomially many colluding dishonest
verifiers.

To show that a protocol is zero knowledge one must show thavery efficient verifier, everything it
can do after taking part in the protocol can be simulated bgfficient simulatorwithout taking part in the
protocol. Black-box zero knowledge is a restricted versibmero knowledge in which we require that for
all verifiers there exist a single simulator which has onbchtbox or oracle access to the verifier.

Previous Results A large body of fascinating research has dealt with conatireero knowledge and
related concepts[6, 7,12, 3, 17, 21, 13, 20, 16, 18, 2, 10,4, SVe review and focus on prior work dealing
with black-box concurrent zero knowledge.

It turns out that black-box concurrent zero knowledge isettla stronger notion than black-box zero
knowledge. Many of the known (black-box) zero knowledgeofscare not black-box concurrent zero
knowledge. This is so because lower bounds have been ssidblior the number of rounds in a black-box
concurrent zero knowledge proof. Following a sequenceiof prork [13, 17, 21], Canetti et al [3] showed
that a black-box concurrent zero knowledge proof protoosgirove membership in a language not in BPP
requires at leas) (log’ﬁ)’;k) rounds, wherek is a security parameter (number of concurrent sessions is
polynomial ink).

Subsequently Kilian and Petrank [16], building on the wofl{20], showed that under a standard
complexity assumption, there exists a black-box conctizero knowledge proof system for proving mem-
bership in any NP language, with round-complexitflog? k). There the question was raised whether the
same proof system when reduced#@og k) rounds remains concurrent zero knowledge. In this work we
answer that question in the affirmative.

In arecent breakthrough Barak [1] has given the first nookstzox zero-knowledge proof system under
standard complexity assumptions. He also presented alflack-box) proof system with only a constant
number of rounds, which remains zero knowledge for a prergehed (polynomial irk) number of con-
current sessions. The communication in the protocol isgt@mal to this pre-determined bound on the
number of concurrent sessions. Compared to this schem@yrotacol requiresv(log k) rounds, but can
handle any polynomial number of concurrent session, anddimamunication in the protocol is independent
of the actual number of sessions.

Our Results We give a black-box concurrent zero knowledge proof for leges in NP, witho(log k)
rounds. This becomes the most efficient concurrent zero laulge proof system which can handle any
polynomial number of concurrent sessions. This round-dexity matches the currently known lower-
bound for black-box proofs within a factor af(log log k). Also, as in [16] this implies a “resettable zero
knowledge proof” system of similar round-complexity.

We use the same protocol (but with a smaller number of rouad)the same simulator as in [16, 20],
but provide a better analysis for that simulator. Apart fimmoviding the tighter analysis, we present a novel

counting argument, developing a suggestion by Kilian [1&Ehow that the simulation is indistinguishable
from what the verifier sees in the proof. We also provide agriadtte description of the simulator introduced
in [20], and show that our analysis is asymptotically tightthat simulator.

As described in Section 2 the only quantity to be re-analyaaxbtablish our improvement is the proba-
bility that the simulator aborts in the middle of the simidat As a warm-up, and as was done in [16, 20] we
first analyze the simulator’'s abort probability, assumimaf the adversarial verifier uses a “static scheduling
strategy.” This means that for all points in (protocol) titie verifier has ta priori decide the session
from which the message is sent. It cannot adaptively chanigesthedule during the simulation. But it
gets to decide at each point whether the message it sendssavehl-formed or not. [16] shows that the
probability of the simulator aborting, for the static case (/1) 4 ¢(k), for some negligible function
e. We improve on this to establish a probability boun@of™~©°g%)) 1 ¢(k). Thus with our new analysis,
choosingn = w(log k) makes this probability negligible, where as previously= w(log? k) was required.

As with [16, 20], our analysis for the static case can be edrover to imply concurrent zero knowledge
for general adversaries. Previous analyses of concurezntknowledge in the general setting, however,
have typically relied on delicate conditioning argumentstoriously prone to subtle errors.

We develop and present an alternative to the conditionaspd analysié of [20, 16], based on a
suggestion to refine the analysis of [20, 16] due to Kilian][1%he central idea is to essentially prove
that for every set of random coins in the simulation whiclwa# the adversary to make the simulator abort,
there is a superpolynomially larger set of random coinsfalitich allow the simulator to succeed without
aborting.

We present this argument using an analogy to decks of cardsview the simulator’s random coins as
cards arranged in a sequence (a deck). We show that giveneakywdhich allows the adversary to cause
the simulator to abort, we can “shuffle” this deck to produanynew sets of random coins in which the
simulator will provably succeed in the simulation withologting. We then argue that each of the decks
produced by our shuffling procedure is unique, by exhibitingeterministic “unshuffling” procedure that
allows us to reconstruct the original deck of cards in whiehadversary causes the simulator to abort.

2 Preliminaries

Here we review the basic cryptographic concepts and assamspt/e shall need, including black-box con-
current zero knowledge, commitment schemes and witnesstimglishability. Note, however, that as
we build on the analysis of [20, 16, 18], we will be able to aglpge many of cryptographic arguments
of [20, 16, 18] as a black box. Thus, even a reader unfamilidr thie details of cryptographic definitions
should be able to follow our analysis.

Formal description and motivation of concepts describddvbare available in standard references on
cryptography, and in particular in Goldreich [11]. [20, 18] have the details and pointers specific to
concurrent zero knowledge.

Zero Knowledge Proofs An interactive proof(P, V') for a language. is a protocol between a computa-
tionally unbounded proveP and a probabilistic polynomial time verifiéf such that there exists a negligible

INote that we do use some conditioning in our analysis: Tyyigaoofs of concurrent zero knowledge have been given im tw
parts — first a (fairly standard cryptographic) proof tha imulator's output is indistinguishable from the realdaeexecution
conditioned on the event that the simulator does not aldmet) & (usually much more difficult) proof that the probapithat the
simulator aborts is negligible. Our proof will also havesthiructure, and thus we too make use of conditioning on taetetat
the simulator does not abort. We stress however, that inqus\analyses [20, 16], the (difficult) proof that the sintataaborts
with negligible probability has made use of delicate chaihsonditionings. Our proof, however, does not.

functione(k) such tha? for every common input (of length polynomial ink) (i) (completeness) i € L
Pr[(P,V)(z)] > 1 — e(k) and (ii) (soundness) if ¢ L, for every proverP*, Pr[(P*,V)(z)] < e(k).

An interactive proof system is said to be black-box (compomal) zero knowledge if there is a prob-
abilistic polynomial time oracle machin® such that for any probabilistic polynomial time verifiér and
for all z € L the distribution of the output produced Y~ on inputz is computationally indistinguishable
from the view of the verifier at the end of the interactigh V') (z).

In concurrent zero knowledge proofs the prover is involvegalynomially many (ink) sessions. We
consider the verifiers of all the sessions to be co-ordinatedn adversary. It is up to the adversarial
verifier to decide which messages it will send to the provet when. But the prover should work for
each session which behaves correctly as specified by thecptpirrespective of messages in the other
sessions, or their relative order. Proving the concurrend knowledge property involves showing that
there is a simulator (a probabilistic polynomial time oeantachine)S whose output for every: € L is
computationally indistinguishable from the view of thisvatsary for that:.

Commitment Schemes A commitment protocol involves two parties— the sender aedéceiver, and two
phases— the commit and reveal. In the commit phase the seoihenits to a bit (or a string), by sending a
commitment to the receiver. But we require the commitmeitg@ecret: it is infeasible for the receiver to
find out anything about the committed string. Later in theeed\phase the sender sends over the committed
string and possibly more information so that the receiver \aify that the revealed value is identical to
the committed value. We require that the commitment is igdbn the sender, i.e., it cannot reveal a
value other than what it committed to (with overwhelminglgability over the randomness chosen by the
receiver). This kind of commitment scheme is said to havestitaal binding and computational secrecy.
The Zero knowledge protocol we analyze will employ such @&saifrom [19] in which the receiver initiates
the commitment by sending a random string to the sender andotmmit phase has a single message from
the sender.

The above mentioned commitment is used when the all powprer is the sender. We will also
need a commitment scheme when the prover is the receivethiSore require a scheme with information
theoretic secrecy and computational binding. [11] dessrifine, again with a single initiation message from
the receiver, a single message from the sender for each ¢omantj and for each reveal.

Witness Indistinguishable proofs Witness Indistinguishable proofs, introduced in [9], iscdion similar
to, but weaker than zero-knowledge. A witness indistingalide proof for a language in NP is a protocol
such that the prover uses some witness to carry out the grobthe view of the verifier when the prover
uses a witness); and that when it uses a different witnasg are computationally indistinguishable. This
notion is weak enough to let the security be preserved uralerucrent composition.

The concurrent zero-knowledge protocol we are analyzimg tise proof-system for NP languages by
Goldreich and Kahan [12]. The proof system involves five ragss, the first one from the prover to the
verifier. Though the prover is allowed to be computationatypounded, given a witnessfor the member-
ship of the inputz the prover can run in polynomial time. This allows us to comgtsimulators which run
in polynomial time, and can carry out the prover’s part irs fiotocol.

In the concurrent zero knowledge protocol, the witnessstimtjuishable proof is used with respect to
the languagéd.’ (in NP) defined as follows(x,preamble) € L’ iff either z € L, or preamble is the
transcript of a preamble in which the session was “solvedthieyprover (see Section 3 for details). The two
witnesses we shall consider fof € L are (i) a witnessv for x € L or (ii) a withessw’ for preamble
containing a solution.

Za functionv (k) is negligible ink if, as k growsv (k) eventually becomes less thayp (k) for all polynomialsp.

Cryptographic Assumptions The cryptographic assumptions we need are the ones on wbiddirac-
tions of the above primitives are based. Assuming the exist®f acollection of claw-free permutations
suffices for this purpose [11].

Concurrent Sessions In the concurrent setting that we are interested in thera@tel = poly k sessions
that run concurrently, using one single prover. In sessitime prover is trying to prove that, € L. The
prover responds to each verifier message in the order in vihihcome; but it is upto the (adversarial)
verifier to choose the session from which the next messadédastre prover comes from.

The simulator and previous analysis We analyze the same protocol as given by [16, 20], except for
reducing the number of rounds. The soundness and compstpnaperties of this system are proved there
and the proof holds for the reduced number of rounds too. Famimg the zero-knowledge property one
needs to demonstrate that for every efficient, but possittyupt verifier co-ordinating the verifiers in the
polynomially many sessions, there is a simulator such fioateach set of inputs, the output of the
simulator and the view of the verifier at the end of the prot@ce computationally indistinguishable from
each other. [16, 18] gives a black-box simulator, and amslyke simulator.

They show that to prove this indistinguishabilitys enough to show that the probability their simulator
aborts in the middle of the simulation is negligiblein

So we need only analyze the probability that the simulatortabWe give a better analysis of the same
simulator, and show that ifi = w(log k) the probability of the simulator aborting is negligible.

3 The Protocol

We provide a brief review of the concurrent zero-knowledgeopprotocol as described in [16, 18], which
in turn is a slight modification of the protocol introduced 29].

The protocol employs a statistically binding commitmertiesne (used by the prover to commit), a
statistically hiding commitment scheme (used by the vertiecommit), and a witness indistinguishable
proof (interactive proof) system. In Section 2 we brieflyiesved these schemes.

The protocol has two phases— a preamble and a main proof bbodyoutline of the preamble is provided
below:

V — P: Commit tovy, . .., v, € {0,1}*
P — V: Commit topg

V — P: Reveahly

P — V: Commit top,

V — P: Reveal;
P — V: Committop; 1

V — P: Reveal,,
P — V: Start the main body of the proof

When the verifier initiates a session, the prover in respamsiates the commitment scheme for the
verifier. Then the preamble starts, in which the first mesgage the verifier is a commitment ta + 1 ran-
dom stringsvo, . . ., v, € {0,1}*, k being the security parameter (it also initiates the prevesmmitment
scheme). In response the prover commits a random stgng {0, 1}*. In subsequent steps, the verifier
revealsv;, and the prover commits g, ;, for i from O tom — 1. In the last step in the preamble the verifier

revealsv,, and the prover starts the witness indistinguishable prooéll there aren + 2 messages from
the verifier in the preamble.

The witness indistinguishable proof is used with respethédanguagd.’ (in NP) defined as follows:
(z,preamble) e L’ iff either x € L, or preamble is the transcript of a valid preamble such that there is
somei such thap; = v;.

The protocol continues with the witness indistinguishaiiaof, in which the prover uses the witness of
x € L. The verifier accepts or rejects as in that proof system. ptpammt during the protocol if an invalid
message from the verifier arrives, the protocol is termuhate

In the concurrent setting the prover runs the differentisassndependent of each other. If a session is
terminated further messages from that session are ignbue¢d;does not affect the other sessions.

We shall show thatn = w(log k) suffices for the zero-knowledge property of the proof systeimold
in the concurrent setting.

4 The Simulator

In this section we describe the simulator of [16], which isdzhon the simulator of [20]. Our description
differs from previously given descriptions, as we identi@atures of the simulator which we will use to
achieve our stronger result.

The simulator does not have access to the witness af L for anyz,;. So in the simulated proof it
tries to get a preamblereamble such that(zs,preamble) € L', and use information on this preamble
as the witness.

The simulatorS has black-box access to the verifier. It randomly sets up ahdam coins for the
verifier in the beginning, and then starts running the verdied a modified prover on the common input
But every now and then the simulator will rewind the veriffeor each sessiafi hopes to find out the value
of some stringy; before committing tg;, so that it can commit tp; = v;. For thisS should wait till the
verifier reveals some; and then rewind the execution beyond the point where it cdtathiop;. ButS
cannot afford to do too many rewinds as it must finish runnmgpiy (k) time.

[16] proposes an efficient rewind strategy, which is esafintine same as the rewind strategy of [20].
The rewind strategy is specified with respect to the at Most= (m + 2)¢ preamble messages, numbered
from0to N — 1. We can assume thaf is a power of two by adding empty “dummy” messages at the end,
if necessary. The pointsto V — 1 when a preamble message arrives, are referred to gsdtexol points
or theprotocol time

Protocol TreeT Consider the complete balanced binary tree \Wtleaves. We shall call this tharotocol
treeand denote it byT. Height of T is h = log N = O(log k) (as we will consider onlyn = O(poly(k))).

It will be convenient later to identify each nodednby the path to that node from the root; the path is
specified as a string of L's and R’s, referred to as the “light’ or L/R path, in the natural way.

To describe the rewind strategy consider the directed mcgchph obtained by doubling the edges of
T except the ones at the leaf level (see figure 1). The schesl@ssentially a depth-first traversal of this
DAG, with the slot numbers appearing at the leaves. Infdgmtide simulator traverses the DAG, and at a
node, after returning from the first edge in a double edgewtinds the verifier, and continues the traversal
by descending the second edge.

Simulation Tree T The above DAG can be written out as a 4-ary tree by duplicatiegnodes. We call
this 4-ary tree thasimulation trege and denote it by (see figure 2). Again we shall identify each nod€in
by the path to it from the root. The path is specified by a stohedge-labels from the s¢L0, L1, RO, R1.

< D
/ \ / N RS

O
3 S o/\ooz/\o A

2 345 67 0 1

Figure 1:7 and the edge-doubled DAG fof = 8

We separate this string, referred to as¢benposite patinto two strings— the L/R path, and the 0/1 path, in
the natural way.

Instances inT Each node: in T has manynstancesn T, which are the nodes with the same L/R path as
a has inJ. There is one instance for each 0/1 path. Below, we shallllysienote nodes i by a, X etc.
and those ifT by a, X etc., possibly with some subscripts or superscripts.

The N2/2 leaves of correspond to the points at which a preamble message adivex) the simula-
tion. The simulator goes through the leaves of the tree figftrtd right, and we visualize it as an in-order
traversal ofT. We refer to theseéV?2/2 points in the execution of the simulator sisnulation pointsor
simulation-timeas opposed to protocol-time).

Figure 2:Simulation tre€J for N = 8

Sessions A sessionduring the run of the simulator is identified by the point imalation time (leaf of
‘j) where the first preamble message of the session, nhamelyittad commit message from the verifier,
arrives. Note that many sessions may simply disappear fne@wiews of the prover and the verifier as the
simulator rewinds beyond the start of the session.

The Runs Supposer is a node inJ andz is an instance of in T. Therun of 2 associated witlf: is
defined as the execution of the simulator from the point atiwiti traverses down the nodeto the point
at which it returns fronx.. The run ofz can be identified with the interval in simulation-time cantag all
the descendant-leaves if

Consider a node in T with childreny andz. Letz be an instance af in T, with childrengy, 41, Zo and
%1. The run ofz at z consists of two runs of and two runs of:. After the first run ofy, 4, the simulator
rewinds—i.e., sets the state of the verifier and the prover to thatrbehe runj,. Then it does another run
of y, 41. Then it goes on to do two runs of with a rewind between them.

Suppose during the rudy, two properly revealed preamble messageandwv;; are received from a
sessiors that startdeforethat run. At the end of the rufy , the simulator knows;,; 1. Now the simulator

rewinds to the state before the start of the fign Note that the prover's messagg ; is in response teo;,
which has not yet arrived at the point after the rewind. WHendimulator continues its run and at some
point the reveal ob; arrives, it responds by committing not to a random valug;as but top; 1 := v;11.

This gives a valid preamble withy, 1 = v; 1 which the prover can use as a witness in the main body of the
proof. When the simulator rewinds the rgg we say that the simulator haslvedthe sessiors.

Once a session is solved as above, the simulator records this in an auxitale called the Solution
Table. The Solution Table has entries of the fdumi, v;), for 0 < s < N and0 < i < m. Whenever
the modified prover has to respond with a commitment;tfor a sessiors it checks if an entrys, i, v;) is
available in the Solution Table. If it is, it commits ¢ = v; and notes down this fact and the random coins
used in making the commitment; later when the sessienters the main body of the proof the prover can
use this information as a witness tffat,preamble) € L’ without knowing the witness for, € L. Since
the main body of the proof is a witness indistinguishabldgesys using this witness is indistinguishable from
what an actual prover will do, and the simulation remainssiimguishable from the real thing.

Note that during the run of the simulator, a sessionay reach the-th message many times; each time
the solution from the table (if available) is used to commip{ = v;. Also the session may enter the main
body of the proof many times; again each time a witness wiltil@glable from the last commitment pf.

Aborting the simulation If at any point in the simulation, a session reaches the nly,h.e., the reveal
for v, arrives, and no solution is available for the session, thmikitor cannot successfully simulate the
witness indistinguishable proof. If this happens the satarlabortsthe entire simulation.

If the simulator does not abort till all the sessions are deerthe verifier terminates), it outputs the
view of the verifier at that point. As shown in [20, 16, 18], didioned on the simulator not aborting, the
simulated view it outputs is distributed indistinguishalilom the distribution of the view of the verifier
after the interaction with an honest prover with witnessesf € L for all the sessions.

States of the Simulator We go on to give a more formal description of the simulatoemmts of its states
during the execution. (This may be skipped without much @dsontinuity.)

To describe the rewind schedule formally, we will considenapshot of the simulator, when the simu-
lator is at a node in its traversal 6t (see below for details). We define te@ateof the simulator, as this
snapshot consisting of

(i) The (current) View: The verifier-view consists of a tranpt between the prover and the verifier,
and the state (work tapes) of the verifier. The simulator alatains the state of a modified prover
(described later). Collectively all this is referred to las turrent view.

(i) Solution Table: the internal table to store the solntido the solved sessions,

(iif) Book-keeping: A stack of views, called theew-stack to do the rewinds; a counter to indicate the
depth of the current node in the simulation tfeand a stack of 5-ary values, called ti@versal-
stackto traverseT.

We visualize the operation of the simulator as an in-ordavetrsal of‘f, as described below. The
simulator starts from the root, traverses down the treeddetft most leaf ofl, and waits there for the first
preamble message to arrive; at any time the simulator israe deaf ofT and when a preamble message,
arrives it continues the depth-first traversal until it feex the next leaf. The preamble message is indexed
by the leaf at which the simulator was when the message drrive

3Given such a snapshot we will be able to start the simulaton the point where the snapshot was taken.

A state describes the simulator at a nod&ifThe top of the traversal stack holds one of the values LO,
L1, RO, R1 indicating the next child to descend into in thedraal, or a special valueturn . Below we
describe the traversal formally by how one state is updateiet next.

Suppose the depth counter indicates that we are not yet ateajust above the leaves. To move to the
next state the simulator checks the top of this stack. Ifdpesalue of the traversal-stackristurn it pops
the value from the stack and decrements the depth counti¢risIEO or RO, the current view is saved by
pushing it into the view stack, and the top of the travertatisis incremented to L1 or R1, resp. Else if the
top of the traversal-stack is L1 or R1, the simulator doessand by popping the view-stack and replacing
the current view with the popped value; also it incrementdd_RO, or R1 toreturn . Finally it moves
down in the traversal by incrementing the depth counter arsthipg an RO into the traversal stack, so that
the traversal of the child node starts with its first child.

If the depth counter indicates that we are just one level altog leaves, then the simulator has to wait
for the next two preamble messages, i.e., it has to movedhrthe two leaves, and then return. For this the
simulator keeps modifying the current view by letting theo(tfied) prover and the verifier run, until two
preamble messages arrive. When the second one arrivesrithiaigir moves into the next state by popping
the traversal-stack and decrementing the counter.

The Solution Table is a data structure maintained by the lsimuand used by the modified prover.
While the simulator is running the prover and verifier, thiuison table is updated as follows: whenever a
properly revealed preamble messag&om sessiors comes along, the simulator records the revealed value
as the(s, i)-th entry in the solution table.

Whenever the modified prover has to make the commitmpgfir sessions, it checks if the(s, i)-th
entry in the table is available. If so it commits that valuarks the session aslvedand records the details
of this commitment as solutionin the table. If this happens we say the session was solved.tE# prover
commits an arbitrary string (say, the zero string).

When the modified prover reaches the main body of proof in sigesinstead of entering the witness
indistinguishable proof with the witness for the membegygifiz, € L, it looks at the solution table to see
if the session was ever marked as solved. If it was solvedsdhgion gives a witness in terms of asuch
thatp; = v;, and the modified prover uses this witness. If the sessiomafsolved till this point, then the
prover makes the entire simulatiabort

When all the sessions are over (or the verifier terminathe)simulator outputs the current view of the
verifier.

Modified Simulators We use a couple of modified simulata$$ and ST for purposes of analysis. They
differ from the original simulatoS only in the behaviour of the prover. The simulat®t has for each
sessions, the witness for; € L, and its prover uses that for the body of the proofsﬁm in addition to
using these witnesses, the prover always commits to thesteng in the preamble. Though the provers
of S* andST do not use the entries in the Solution Table, they also abersimulation if it reaches the
main body of proof in an unsolved session. Note tiaandST are also efficient simulators because in the
witness indistinguishable proof system used the proveraarfficiently given a witness fat,; € L.

We would like to show that the distribution of the view outayt the simulatorS is computationally
indistinguishable from that of the view obtained by the fierias a result of the interaction with the prover.
As shown in [16, 20] it is enough to show that the probabilitsititheS aborts is negligible in the security
parametek. The following lets us show this only fa?.

Lemma 1 The difference between the probability&f aborting, and the probability of aborting is neg-
ligible in k.

Proof: This follows from the guarantees of the commitment schenee by the prover, and the witness
indistinguishable proof employed in the main bod§* serves as a hybrid betweei and the original
simulatorS. The difference in abort probabilities SfandS* is negligible by the guarantee on the witness
indistinguishable scheme, and thatfandS is negligible by the guarantee on the commitment scheme.
S andS* are indistinguishable: First we construct hybrid simulat® = S;, ST, ..., Sy = S&*, whereS;
uses the witness fat; € L only for the sessions = 0,...,7 — 1. By the hybrid argument it is enough to
show that the abort probabilities 6f andS;, , differ negligibly for alli. We shall construct an adversary
for the witness indistinguishable proof, which has an ath@m in distinguishing the witness equal to the
difference between the abort probabilities®)fandS;", ;. This is achieved by introducing the proof to be
identified into the simulator’s prover for sessiomn 1. More formally, the adversary is a modification$f.

It outputs 1 if the (modified) simulator aborts, and 0 otheeviThe adversary stais and if a session gets
started at the simulation point+ 1, then it engages with the given prover as follows: when theuiator
reaches the main body of proof in sessicn 1 (if it does at all), the messages from the verifier are dikcte
to the prover. The prover enters the proof with one of the titoegses— the witness fef; € L or the
witness in terms of the preamble. If it uses the former, trexation of the adversary is identical to that of
S;, 1 and else to that of;. Thus the difference in the abort probabilities&jf andS;, ; translates into an
advantage in distinguishing the witnesses.

S* and St are indistinguishable: This can be shown in a fashion similehe above. But this time we
are attacking the commitment scheme. The simulator's pnmakes many commitments for each session.
So this time we introduce one more level of hybrids to take adrthis. DefineSZj as a simulator which

commits to the zero string in all sessions< ¢ for the firstj commitments. Thed™ = S&O andS' =

S]TV m+1- Restof the argument is standard.
|

In the rest of the paper we analyze the simulator

Adversary’s success on (start,stop) The adversarial verifier is said to succeed for a pair of it
points (start,stop, if the session starting at start point reaches the mairf fa@dy at the point stop without
ST having solved the session, thereby forcifigto abort at that point.

Note that for the session to be alive at the point stop, thietbart is never rewound beyond, within the
interval (start,stop). Formally this means that the curvéew when the simulator reaches the stop leaf, is
obtained by letting the prover and verifier run on the viewhatgtart leaf.

There are only)(N?) (start,stop pairs, which is polynomial it. We shall show that for any given pair
the probability that the adversary succeeds with respettiatiopair is negligible irk. Then the probability
of the adversary succeeding is negligible by union bound.

The points corresponding to start and stop in the protoood-tire callegroto-startandproto-stop

The forests We define a few structures which we shall be referring to featjy throughout the rest of
the paper. Therotocol forest¥ and thesimulation forestF are subgraphs af andT respectively, and are
determined by the pair (start,stop). Later on we also defiagaod foresG which is a subgraph of and
is determined by a set @i protocol points.

Figures 4 and 4 illustrate these structures.

1. The protocol forest An edge in7J is retained irfF if it points to a node all of whose descendant leaves
occur strictly within the protocol intervabproto-start,proto-stop F is the subgraph df induced by
these edges.

\

o'/ ‘g @) O
/

YR A \O\\ A "i-é\i;\
LAAAS ORI /

AR -

Figure 3: Left, the Protocol forest as a subgraph df: the elements in thick outline are part®f The *'s
indicate the points proto-start and proto-stop. Also, nedelabeled. Right, a portion of the corresponding
Simulation forestF: the 0/1 path of the point stop begins @0..; the corresponding composite path is
labeled. This path along with the corresponding path to tag pointcut outF from the treeT. Filled
nodes are all the instances of the nadeThe final instances of nodesandb in J are marked i asa*
andb*.

Figure 4: A tree from the good foregi. The thick edges are part ¢f. The roots of the shaded subtrees
(which have two schedule points, one in each child) are treds olG. A leafa and its pivotX, are marked.
G consists of many trees like this.

10

2. The simulation forest An edge inT is retained inf if it points to a node all of whose descendant
leaves occur strictly within the simulation interv@tart,stop. F is the subgraph of” induced by
these edges.

We shall focus on these forestsand rather than the entire trefsandJ. Figure 4 illustrates portions
of ¥ and7, for a given (start,stop) pair. Note that all nodes excegsitdy the roots of the trees i has
all its descendant leaves strictly in the interval (staops If a nodea in F is at depthd in its tree in the
forest, a has at leas?? instances ir¥F. (The precise number of instancesJirof a node at depthin F, is
24 » (number of instances ifi of the root of that node’s tree #fi).) However¥ can have nodes which are
instances of nodes ffi outside.

Now suppose we are given a run$f in which the adversary succeeds. Then the (current) trihscr
when the simulator reaches the point stop will shavypreamble messages of the session, where the verifier
properly revealsy, ..., v,_1, at somem points in the interval proto-start,proto-stop We call thesen
protocol points thechedule pointsf the session. Given such a transcript wittschedule points, we define
the following forest:

3. The Good Forestg is the subgraph off induced by all the nodes iff which have at least two
schedule points as descendants (see Figure 4).

The leaves ofj essentially correspond to theay-solveintervals as defined in [16, 18] (where it is
shown that there ar@(m/h) such leaves, but we will not need this). They cod&joint intervals in
protocol-time. We order these leaves from left to right adow to their intervals, in the natural way.

Pivot X, and ¢, For each leaf o7 a, let thepivot of a, denoted byX,, be the node iy defined as
follows: X, is the least common ancestorofvith the previousleaf in G, or if no such node exists, the root
of a’s tree inG. Definet, as the distance of to X,.

Note that) " t, = number of edges i, where the summation is over all the leavesGof This is
because each edge ghis counted in the, whena is the first leaf (in the order defined above) among its
descendants.

Lemma 2 Number of edges in the good forgkis at leastm — O(h), whereh is the height of the protocol
tree 7.

Then by the above note, we haye, t, = m — O(h) where the summation is over all the leavegjof

Proof: Define the good treg’ as a subgraph of the protocol tréeof nodes with at least two schedule
points among descendants. Note tfias a subgraph of/’ obtained by removing all the edges which are in
the path to the leaves proto-start or proto-stop. Now mah selsedule point to its closest ancestogin
Then each leaf iy’ has exactly two points mapped to it and each other nod# s at most one point
mapped to it (or none if it has degree 2Gf). So there ar®(m) nodes with something mapped on to it.
So ¢’ has at least that many nodes. In fé¢thas at leastn — 1 nodes. To see this note that the nodes of
G’ with one point mapped to it are internal nodes with only oni&léh G’, and those with two are leaves of
G’; if theren; andnsy of them respectivelyp; + 2n, = m. To haven; leaves G’ must have at least, — 1
internal nodes of out-degree 2; thus in@llhas at least; + no + ns — 1 = m — 1 nodes. Thug/’ has at
leastm — 2 edges.

There are at mo$th edges ing’ which point to nodes with proto-start or proto-stop amonscdedants,
namely the edges in the paths up to the root from those paivisdelete these edges to getThusG has
at leastm — O(h) edges as claimed.]

11

We make a few definitions regarding the node§in

e Final instance:Consider any node in G. There are many instances of this nodé?i(and many in
T outsideF, which we do not considel). These instances can be ordered by the time the simulator
starts their run. We define tHimal instanceof = to be the last instance in this ordeithin . We
denote the final instance afby z*.

e Critical runs: Consider a leaf of a, and its pivotX,. There are many instances &f, in F. Each
run of X, contains2’» runs ofa. Consider the last such rui,*. We define the’= runs ofa in X} as
thecritical runs of a. Note that, ift is a leaf ofG beforea, the critical runs ot are all after the run
b*.

e 4" anda*): The2 critical instances of a leafin G appearing irF are numbered from left to right.
They are denoted by‘®) for 0 < i < 2t=, wherei is at, digit binary number. Note that(®~1) is
the same ag*. We denote this by to emphasize that this is a critical run.

5 Analysis: Static Case

In the static case the adversarial verifier schedules theages from the various sessions at pre-determined
slots. The only choice the adversary gets to make is as tchehtie message is revealed properly or not.
There aren points in the protocol time intervdproto-start,proto-stop where the adversary has non-zero
probability of ever scheduling a message from the sessibasd points are called the potential points. Thus
if the adversary succeeds in a run, the schedule points bftthare exactly the potential points.

In the static case we consider tfialefined with respect to the potential points as the scheahitgg

e Recall that a leaf off has two potential points below it. A run of a leaf @fis goodif the transcript
at the end of the run has both the potential messages propedgled. Else it is called bad.

e Aleaf of G a is said to bavon(by the adversarial verifier) if all thgf« critical runs ofa are bad except
the final one which is good.

e For each leaf: of G, we definep’ as the probability that” is good given that:? for all j <
were bad and all previous leaves @fwere won. The probability is taken over the coin-flips of the
simulator (which includes the coin-flips of the verifier ahe tmodified prover).

Lemma 3 pi = p¥’ for all i,7,0<i<j< 2,

Proof. It is enough to prove this for the case when the binary reptasen ofi and;j have a hamming
distance of one. There is some ndde F which is the least common ancestor of the two critical inséan
of a, a? anda'’. Let the children ob, ¢, andé; be the ancestors af?’ anda'’) respectively, wheréy, ¢,
are either the LO and L1 children (resp.)iodr the RO and R1 children (resp.) lf

Supposq;ff> #* péj>. Consider a state of the simulator (as defined earlier) agtreof the run of, and

definep’ﬁf> (respp’m) by modifying the definition ofoff> (resppfl”) by further conditioning on that state.

Thenpff> (resppflJ >) is a convex combination qf fj> (respp’flj >) defined with respect to the various states.

Then there is one such statesuch thap’ff> andp’ﬁf> defined with respect to differ.

“also there are nodes thwhich do not have any corresponding node§ iar evend’, but we will not consider them

12

Reasoning similarly, there must exist some stdtat the start of the run of; such that (i)’ is an
extension of- (because we are now considering events conditioned and, (ii)p” flj) defined by modifying
p'Y7 by further conditioning on”, differs fromp’".

We note the following regarding andr':

(i) The view of the verifier is identical im and 7’ becauser’ is an extension of (by which we mean
that the simulator can reaet starting fromr) and at the point of starting the run &f the simulator
rewinds the verifier's view to the point before it started the of ¢y, to get the view inr.

(i) They can differ in the solution tables. But note ti®itruns independent of the solution table.

(iii) The depth counter of and7’ are the same. But the stacksrimnd7’ are different: view-stack of is
a prefix of that ofr’, and the tree-traversal-stack-ofind’ differ in the top value. But during the run
of ¢y or ¢; both are equivalent; that is, if one is replaced by the otthersimulator will still behave
identically. This is because during the rundgfor ¢; (or any run for that matter) the simulator does
not make use of the records already in the stacks before thetats.

Thus we see that the run 6f starting from the state and the run of; starting from the state’ are
identical and this contradicts the two probabilities beilifferent.
[|

This lets us writep,, forpff> for all <.

Bounding the probability

We consider an adversarial verifier. When the simulator,rifitse adversary has to succeed in taking the
session started at the postartto the pointstopwith out the simulator solving the session, each teaf G
must be won (recall that it means all the runs ofa are bad except the final one which is good). We seek
to bound the probability of this event by a negligible funati

Theorem 1 (Static Case) lin = w(log k) the probability that at the poingtop the adversary succeeds in
a session starting attart is negligible.

Proof: Inthe products below; ranges over all the leaves Gf

Pr [adversary succeeds] Pr [all the critical runs of all the leaves of are won]

= H Pr| all the critical runs of: are won|

all the critical runs of all the previous leaves®fre won|
2fta 2 _ '
=[I I Prla" isbad| a" is bad for allj < i,
i=0

a

and all the previous leaves Gfare won|

x Pr[last critical run ofa is good| a"’ is bad for allj < 4,
and all the previous leaves gfare won|
2ta 2

=TI(IT a=» | p2 " <TI0 =pa)* 'pa

=0

13

T
But for all values ofp, in the rangg0, 1] and allT’ > 1 we have(l — p,)"p, < <T—+1) 1 < 747
So(1 — pa)**~p, < (4)™ (this is true fort, = 0 also). Thus,

1 Za ta
ta __ -
Pr [adversary succeeds] 1:[1/2% = < 2)
But)_, t, (where the summation is over all the leafsjinis exactly the number of edgesdh which by
Lemma 2 isn — O(h) = m— O(log k). If we choosen = w(log k), >, t, = w(log k) and the probability
of adversary succeeding is boundedig~(°2¥) which is negligible. N

6 Analysis: General Case

Now we present the analysis for the general case.

Recall that the adversarial verifier is said to succeed omaf$' for a (start,stop pair, if the session
starting at the point start reaches the main proof body aptiet stop withoutS' having solved it. We
would like to bound the probability that the adversary sedse We shall bound this probability for each
setting of the coin flips of the verifier. Now onwards we assuhwecoin flips of the verifier to be fixed.
Thus we consider the probability with respect to the coipsfiof the simulated prover only.

Cards and Decks To represent the coin-flips of the simulator, we augment timeilation treeT by in-
stalling long enough random strings at each leaf. The nurabendom bits needed by the simulator at
each leaf is bounded by a polynomialknsayp(k), which we let to be the length of the random string at
each leaf. Each such random string is callezhal, drawn uniformly from a universe of siz#(*), All the

N cards in the leaves &F will be collectively referred to as deck WhenS' is at a leaf it uses the random
string from the card at that leaf to do its commitments andm@amble proof steps.

Since we have already fixed the coins of the verifier, givenck dee entire execution of the simulator
is determined. Now, to bound the probability that the adugrsucceeds we have to bound the number of
decks for which the adversary succeeds. We shall show thavéoy deck for which the adversary succeeds,
there are many other decks with which the adversary faikingecare not to double-count the decks).

Good forest, good nodes and pivot-instance The (start,stop pair defines the protocol foreStand the
simulation forestF as before, and also fixes the session we will be consideramgely the session with the
initial verifier commitment at the start point. The only \ale then is the deck. Given a deck with which
the adversary succeeds, we can definegied treeG from the transcript at the stop point, as described
earlier.

Further for each leaf of G we can define the pivak, (and its final instance iff, X;;), the lengtht,,
and the2!« critical runs ofa as described before.

A node in¥ is goodif its run adds exactly two properly revealed preamble mgssaf the session
to the transcript, and each of its descendant nodes’ run @daf®st one. Note that the good instance is
defined with no reference to “potential-points” @r Given a deck (with which the adversary may or may
not succeed), it is possible to check if an instance is goawbbr

If the adversary succeeds with a deck, the good instancesxacdly thefinal instances of the leaves of
G. Having a good instance which is not final allows the simul#tsolve the session.

Define thepivot-instanceof a nodei as a nodeX; in F as follows: if the last good node before the start
of the run ofa (if it exists) is in the same tree ifi asa, then X, is the least common ancestor of that node

14

anda; otherwiseXj is the root of the tree iff containinga. For a deck with which the adversary succeeds,
if a is a leaf ofG anda is any critical instance of in F, then X;- is the same as the final instance of the
pivot of a, X*.

Lemma 4 There exists a procedure with the following behaviour.

Input: A deckD* such that the adversary succeeddlh.

Output: At least2™—9() distinct decks, such that in all but one of thesii,solves the session. There exists
a procedureUNsSHUFFLE such that it unshuffles each of these distinct decks bacletortbinal deckD*.

We shall prove this lemma shortly, but before that note thathieves our goal.

Theorem 2 The probability that the adversary succeeds for a giverri(stap) pair is at mosg~(m—9("),

Proof: All the decks are equally probable. Lemma 4 says that foryesteck with which the adversary
succeeds there a9 _ 1 other decks for which it doesn't. Being able to unshuffle ¢hdecks

to the original one guarantees us that we do not double-camytof them for different decks given by
the adversary. Thus the existence of a procedure as dasénitheemma 4 establishes an upper bound of
2~ (m=0(h)) on the probability that the adversary succeeds. n

Shuffle-Unshuffle In order to prove Lemma 4, first we give a procedsreFFLEand an inverse procedure
UNSHUFFLE

Let the leaves of, from left to right, bea;, as, ..., a,. The shuffle procedureHUFFLE consists of a
sequence of basic shuffles, one associated with each I€afTdfe leaves are processed right to left, i.e. in
the ordera, . .., a;.

SHUFFLEtakes a declO* in which the adversary succeeds. With this deck there arg gaod instances
as defined above, but all of them have to be final. The aisHafFFLE is to produce a new deck such that
these final good instances get moved around and occur asnabmfiod instances, allowing the simulator
to solve the session.

The algorithm is described in Figure 6. Note that we referh® LO child of a nodeX in F as
(L : 0)-child of X and so on.

swaP does an atomic shuffle operation, exchanging the cards &aties of a rur, with that of a run
71 informally, this advances the run af, ahead of that of/,, as the runs of these nodes are essentially
determined by the cards at the leavBasic- SHUFFLE (D, j, o) will shuffle the deck so that the final and

good run ofa], ') is advanced to the nodé . If a; is the all-ones string this does not change anything;

but otherW|secL;. >

session.

is a non-final run and after the shuffle is a good run, allowh@dimulator to solve the

Lemma 5 If the firstj good instances with the de¢k are d§*>, e ,d§*>1, 4" , then the declD’ = BASIC-

SHUFFLE(D, j, a;) is such that(l) the firstj good instances wittD’ are a§ >,...,d§.*_>1, ; , and (1)
BASIC-UNSHUFFLE (D', j) gives(D, a;).

Proof: (1) We examine the steps during the shuffle. ketr denote the string; but with the last,,; —
bits replaced by all ones. We shall establish that aftéerations of the loop iBBASIC-SHUFFLE, with the

resulting decl«ﬁo”/’"> is the j-th good instance; then, since at the end of the subroutinet,; we have
thata ;.aj/ "= §.C”> is thej-th good instance as claimed. We shall also show that thejfirst good nodes
unchanged.

15

SHUFFLE (D*, (au;. . .5 aq))
D = D*
for j:=qtoldo
D :=BASIC-SHUFFLE (D, j, o)

UNSHUFFLE (D)
for j := 1 to g do {q is not knowna priori but
determined when adversary succeedBih
(D, n) :=BASIC-UNSHUFFLE (D, j)

outputD o= q;n
output(D, «)

BASIC-SHUFFLE (D, j, a;)
8 := LIR path fromX,, toa; in T BASIC-UNSHUFFLE(D, j)
7 .= X* a := j-th good node
for r:=1tot, do X := X;, the pivot-instance of
Blr] {5[] is ther-th bit of 5} B = L/IR path fromX to a (of lengtht;)
:= (b : 0)-child of Z o := 0/1 path fromX to &
z} := (b : 1)-child of Z Z:=a
if aj[r] = 0 then for r :=t¢; to1do
D := SWAP (D, Zo, Z1) Z := parent ofZ

Z = Zy if a[r] = 0then
else Zo := (B[r] : 0)-child of Z
Z =7 Zy := (B[r] : 1)-child of Z
outputD D :=swAP (D, Zy, Z1)

P output(D,
SWAP (D, Zy, Z1) put()

for each composite pathy from Z, do
Take~ from Zy to reach leaf
Take~ from Z; to reach leaf;
Exchange cards a andr; Figure 6: ThesHUFFLEandUNSHUFFLEprocedures
outputD for modifying the decks.

We use induction om. Whenr = 0, «;/0 is the all-ones string, an&;l< 310 = &§*>. The claim is true

by the assumption on the input. Now we consider 0. At the beglnnlng of the-th iteration Z is at
a distancet,; — r + 1 from d§aj>, anddy”> is under the(3[r] : a;[r])-child of Z. If a;[r] = 1, then in
the r-th iteration of the loop irBAsIC-SHUFFLE the deck stays unchanged amg/r = «;/(r — 1); so the
conclusion follows trivially. But if it is O a swap takes pdn which the cards on the leaves of the subtree
underZ; are moved to the leaves of the subtree uriderThe subtree under; contalnSa@/T b which
by induction hypothesis, is thgth good instance before the swap. Also at that point thereetntnder%
does not have any good instance becausg thé-st good instance ls;*fl which occurs beforeZ,,.

The simulator has the same state when it starts the rufy ahd the run ofZ; except for the contents
already in its stacks, which are not examined during the, rang the contents of the Solution Table, which
are also ignored by the simulatsit. The cards at the leaves &f before the swap appear at the leaves of
7, after the swap. So the run &k, with the deck after the swap is identical to the run/gfwith the deck
before the swap. (But the executiafter Z; may now be totally different from anything before the shufle

Further the cards at the leaves of all the runs completingrbethe start of the run of,, remain un-
changed. Hence with the new deck, the good nodes encourttefa starting the run df, are exactly the
ones encountered till then with the old deck. Thus after-ttieiteration, a<aJ/ " is thej-th good node for
the new deck and the firgt— 1 good nodes remam unchanged

(n) By the above, thg-th good node withD’ is a (denoted iNBASIC-UNSHUFFLE asa) and the one
before that |sa;._>1. So the pivot-instance (ﬂ§. i is the same as that ﬁé. with D, and is denoted ax.

Then the 0/1 path fronX to a (denoted as) is a;. Also 3, the L/R path fromX to a is the same as the L/R
path fromX,; to a; in T. Then it is straight-forward to verify th@®AsiC-UNSHUFFLE reverses the shuffle

16

done byBASIC-SHUFFLE (note thatSwAP is its own inverse operation).]

Proof of Lemma 4: The complete shuffling procedure takgshuffle-stringsa; ...y, and the deck

given by the adversaryp™* (such that the only good nodes with, are theq final instancesifk> . &§*>).
Let D, := D*. It then applies the shuffle subroutine repeatedly to predig_; := BASIC-SHUFFLE
(Dj,j,aj), for j = ¢q,..., 1. The final deckD, is output.

UNSHUFFLE applies theBAsIC-UNSHUFFLE repeatedly to this deck. By the above claim we have
(Dj, oj) = BASIC-UNSHUFFLE (D;_1,j), for j = 1,2,...,¢ (¢ can be found out once it reaches a deck
with which the adversary succeeds). ThussHUFFLEindeed recover®* anda; . . . o, from Dy.

aj is at,; long bit string, and therefore there aﬁg%‘ e strings(au ;.. .;a4). Consider a procedure
which callssHUFFLEwith all of them. Since&JNSHUFFLEcan recovelay; .. . ; o) from the shuffled deck,

this way we gerzzf‘j " distinctdecks. Butzaj tq; is equal to the number of edgesgnand by Lemma 2
is at leastn — O(h).

To complete the proof we observe the following: when all grshuffle-strings are all-ones strings, the
resulting deck is the original deck. For any other collettad shuffle-strings, the resulting deck lets the
simulator solve the session: suppasgis the first not-all-ones shuffle-string. Thééf“j> is a non-final
instance which is good. This allows with this deck to solve the session.]

In Theorem 2 if we setn = w(log k), the probability of the simulator aborting becomes neblgi{ash
the height of the simulation tree @(log k)). By the analysis in [16, 18] this establishes that thisquot of
round complexityw(log k) is a concurrent zero knowledge for languages in NP, yielthegimprovement
that we promised.

7 Tightness of the analysis

Our analysis of the simulator is asymptotically tight. Werdmstrate that ifn < h, h being the height of
the protocol tree, then a simple deterministic schedulénbwerifier can make the simulatSrabort with
probability one. Note that witld (k) sessions: = O(log k). Som = O(log k) rounds is not sufficient for
S not to abort the simulation.

The first preamble message (verifier's commit) is scheduléuedirst protocol point, 0 and the last one
in response to which the prover has to enter the main bodyegbthof is scheduled at the last poi¥it— 1,
whereN = 2", The otherm < h preamble messages are scheduled akthel protocol points numbered
N/2,N/2+ N/4,...,N — 2. The verifier deterministically reveals all the messageperly.

Then itis not hard to verify that the first time the simulateaches the poinvV — 1, the session wouldn’t
have been solved.

8 Conclusion

We have shown concurrent zero knowledge proofs for languegi P with round complexitw(log k). In
[3] it is established that if the round-complexity of a corremt zero-knowledge proof system for a language

Liso (log’i’;k) then L is in BPP. Our upperbound on round-complexity, on the otlkerdhsw(log k). It

will be interesting to close this gap. But in Section 7 we shat it is not possible to bring down the
upperbound using this simulator.

17

Acknowledgments

We gratefully thank Joe Kilian for sharing his thoughts with and generously giving us his permission
to use and build up on his suggestion [15] for a general-caséysis which avoids conditioning. This
suggestion came out of discussions between the authors iliad Kegarding the dangers and subtleties
involved in conditioning-based analyses.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]
[12]

[13]

[14]

B. Barak. How to Go Beyond the Black-Box Simulation Barriin42nd IEEE Symposium on Foun-
dations of Computer Sciengegages 106—-115, 2001.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micaks&table Zero-Knowledge. (revised version
available fromhttp://www.wisdom.weizmann.ac.il/"oded/p_cggm.html). In ACM
Symposium on Theory of Computi2§00.

R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-li&oncurrent Zero-Knowledge Requires
Omega (log n) Rounds. IACM Symposium on Theory of Computipgges 570-579, 2001.

G. D. Crescenzo and R. Ostrovsky. On Concurrent Zerovdedge with Pre-processing. ®RYPTQ
pages 485-502, 1999.

I. Damgard. Efficient Concurrent Zero-Knowledge in thexiliary String Model. INEUROCRYPT
2000.

C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowged InACM Symposium on Theory of
Computing pages 409-418, 1998.

C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Radg¢he Need for Timing Constraints. In
CRYPTQpages 442-457, 1998.

U. Feige. PhD thesis, Weizmann Institute of Science 0199

U. Feige and A. Shamir. Witness Indistinguishabilitydawitness Hiding Protocols. 182nd ACM
Symposium on the Theory of Computih§90.

O. Goldreich. Concurrent Zero-Knowledge With TimingRevisited. (available from
http://lwww.wisdom.weizmann.ac.il/"oded/p_conc-zk.ht ml), 2001.

O. Goldreich.Foundations of Cryptography — Basic ToolS8ambridge University Press, 2001.

O. Goldreich and A. Kahan. How to Construct ConstantiitbZero-Knowledge Proof Systems for
NP. Journal of Cryptology9(2):167-189, 1996.

O. Goldreich and H. Krawczyk. On the Composition of Z&wowledge Proof SystemSIAM Journal
on Computing25(1):169-192, 1996.

S. Goldwasser, S. Micali, and C. Rackoff. The Knowle@mmplexity of Interactive Proof-Systems.
SIAM Journal on Computindl8:186—208, 1989.

[15] J. Kilian. Personal Communication.

18

[16] J. Kilian and E. Petrank. Concurrent and resettable-kapwledge in poly-logorithmic rounds. In
ACM Symposium on Theory of Computipgges 560-569, 2001.

[17] J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds fard Knowledge on the Internet. IEEE
Symposium on Foundations of Computer Sciepages 484-492, 1998.

[18] J. Kilian, E. Petrank, and R. Richardson. Concurrentozénowledge Proofs for NP. (available
athttp://www.cs.technion.ac.il/"erez/publications.htm | from the public web-
page of Erez Petrank), 2001.

[19] M. Naor. Bit Commitment Using Pseudorandomneskurnal of Cryptology: the journal of the
International Association for Cryptologic Reseayd(2):151-158, 1991.

[20] R. Richardson and J. Kilian. On the Concurrent Compmsibf Zero-Knowledge Proofs. IRURO-
CRYPT pages 415431, 1999.

[21] A. Rosen. A Note on the Round-Complexity of Concurreer@ZKnowledge. INCRYPTQ pages
451-468, 2000.

19

