
Concurrent Zero Knowledge Proofs with Logarithmic
Round-Complexity

Manoj Prabhakaran∗

Princeton University
Amit Sahai†

Princeton University

May 6, 2002

Abstract

We consider the problem of constructing Concurrent Zero Knowledge Proofs [6], in which the fasci-
nating and useful “zero knowledge” property is guaranteed even in situations where multiple concurrent
proof sessions are executed with many colluding dishonest verifiers. Canetti et al. [3] show that black-
box concurrent zero knowledge proofs for non-trivial languages requirẽΩ(log k) rounds wherek is the
security parameter. Till now the best known upper bound on the number of rounds for NP languages
wasω(log2 k), due to Kilian and Petrank [16]. We establish an upper bound of ω(log k) on the num-
ber of rounds for NP languages, thereby closing the gap between the upper and lower bounds, up to a
ω(log log k) factor.

∗Email: mp@cs.princeton.edu .
†Email: sahai@cs.princeton.edu .

1 Introduction

Zero Knowledge proofs, introduced in [14], are fascinatingand important cryptographic primitives. In-
formally, a zero knowledge proof is a protocol between a prover and a verifier which yields nothing to
the verifier beyond the validity of the assertion proved. However, more recently further refined notions of
Zero Knowledge have been introduced to handle scenarios more complicated than the one considered in the
original definition.

Zero knowledge proofs in settings involving many asynchronous protocol executions was first consid-
ered by Feige [8], who introduced relaxations of the zero knowledge property which were provably pre-
served under asynchronous protocol composition. Concurrent Zero Knowledge, introduced in [6], considers
a setting in which the prover holds concurrent proof sessions with polynomially many colluding dishonest
verifiers.

To show that a protocol is zero knowledge one must show that for every efficient verifier, everything it
can do after taking part in the protocol can be simulated by anefficientsimulatorwithout taking part in the
protocol. Black-box zero knowledge is a restricted versionof zero knowledge in which we require that for
all verifiers there exist a single simulator which has only black-box or oracle access to the verifier.

Previous Results A large body of fascinating research has dealt with concurrent zero knowledge and
related concepts[6, 7, 12, 3, 17, 21, 13, 20, 16, 18, 2, 10, 4, 5, 1]. We review and focus on prior work dealing
with black-box concurrent zero knowledge.

It turns out that black-box concurrent zero knowledge is indeed a stronger notion than black-box zero
knowledge. Many of the known (black-box) zero knowledge proofs are not black-box concurrent zero
knowledge. This is so because lower bounds have been established for the number of rounds in a black-box
concurrent zero knowledge proof. Following a sequence of prior work [13, 17, 21], Canetti et al [3] showed
that a black-box concurrent zero knowledge proof protocol to prove membership in a language not in BPP

requires at leastΩ
(

log k
log log k

)

rounds, wherek is a security parameter (number of concurrent sessions is

polynomial ink).
Subsequently Kilian and Petrank [16], building on the work of [20], showed that under a standard

complexity assumption, there exists a black-box concurrent zero knowledge proof system for proving mem-
bership in any NP language, with round-complexityω(log2 k). There the question was raised whether the
same proof system when reduced toω(log k) rounds remains concurrent zero knowledge. In this work we
answer that question in the affirmative.

In a recent breakthrough Barak [1] has given the first non-black-box zero-knowledge proof system under
standard complexity assumptions. He also presented a (non-black-box) proof system with only a constant
number of rounds, which remains zero knowledge for a pre-determined (polynomial ink) number of con-
current sessions. The communication in the protocol is proportional to this pre-determined bound on the
number of concurrent sessions. Compared to this scheme, ourprotocol requiresω(log k) rounds, but can
handle any polynomial number of concurrent session, and thecommunication in the protocol is independent
of the actual number of sessions.

Our Results We give a black-box concurrent zero knowledge proof for languages in NP, withω(log k)
rounds. This becomes the most efficient concurrent zero knowledge proof system which can handle any
polynomial number of concurrent sessions. This round-complexity matches the currently known lower-
bound for black-box proofs within a factor ofω(log log k). Also, as in [16] this implies a “resettable zero
knowledge proof” system of similar round-complexity.

We use the same protocol (but with a smaller number of rounds)and the same simulator as in [16, 20],
but provide a better analysis for that simulator. Apart fromproviding the tighter analysis, we present a novel

1

counting argument, developing a suggestion by Kilian [15],to show that the simulation is indistinguishable
from what the verifier sees in the proof. We also provide an alternate description of the simulator introduced
in [20], and show that our analysis is asymptotically tight for that simulator.

As described in Section 2 the only quantity to be re-analyzedto establish our improvement is the proba-
bility that the simulator aborts in the middle of the simulation. As a warm-up, and as was done in [16, 20] we
first analyze the simulator’s abort probability, assuming that the adversarial verifier uses a “static scheduling
strategy.” This means that for all points in (protocol) timethe verifier has toa priori decide the session
from which the message is sent. It cannot adaptively change this schedule during the simulation. But it
gets to decide at each point whether the message it sends overis well-formed or not. [16] shows that the
probability of the simulator aborting, for the static case is2−Ω(m/ log k) + ǫ(k), for some negligible function
ǫ. We improve on this to establish a probability bound of2−(m−O(log k)) + ǫ(k). Thus with our new analysis,
choosingm = ω(log k) makes this probability negligible, where as previouslym = ω(log2 k) was required.

As with [16, 20], our analysis for the static case can be carried over to imply concurrent zero knowledge
for general adversaries. Previous analyses of concurrent zero knowledge in the general setting, however,
have typically relied on delicate conditioning arguments,notoriously prone to subtle errors.

We develop and present an alternative to the conditioning-based analysis1 of [20, 16], based on a
suggestion to refine the analysis of [20, 16] due to Kilian [15]. The central idea is to essentially prove
that for every set of random coins in the simulation which allows the adversary to make the simulator abort,
there is a superpolynomially larger set of random coins all of which allow the simulator to succeed without
aborting.

We present this argument using an analogy to decks of cards – we view the simulator’s random coins as
cards arranged in a sequence (a deck). We show that given any deck which allows the adversary to cause
the simulator to abort, we can “shuffle” this deck to produce many new sets of random coins in which the
simulator will provably succeed in the simulation without aborting. We then argue that each of the decks
produced by our shuffling procedure is unique, by exhibitinga deterministic “unshuffling” procedure that
allows us to reconstruct the original deck of cards in which the adversary causes the simulator to abort.

2 Preliminaries

Here we review the basic cryptographic concepts and assumptions we shall need, including black-box con-
current zero knowledge, commitment schemes and witness indistinguishability. Note, however, that as
we build on the analysis of [20, 16, 18], we will be able to appeal to many of cryptographic arguments
of [20, 16, 18] as a black box. Thus, even a reader unfamiliar with the details of cryptographic definitions
should be able to follow our analysis.

Formal description and motivation of concepts described below are available in standard references on
cryptography, and in particular in Goldreich [11]. [20, 16,18] have the details and pointers specific to
concurrent zero knowledge.

Zero Knowledge Proofs An interactive proof(P, V) for a languageL is a protocol between a computa-
tionally unbounded proverP and a probabilistic polynomial time verifierV such that there exists a negligible

1Note that we do use some conditioning in our analysis: Typically proofs of concurrent zero knowledge have been given in two
parts – first a (fairly standard cryptographic) proof that the simulator’s output is indistinguishable from the real-world execution
conditioned on the event that the simulator does not abort; then a (usually much more difficult) proof that the probability that the
simulator aborts is negligible. Our proof will also have this structure, and thus we too make use of conditioning on the event that
the simulator does not abort. We stress however, that in previous analyses [20, 16], the (difficult) proof that the simulator aborts
with negligible probability has made use of delicate chainsof conditionings. Our proof, however, does not.

2

functionǫ(k) such that2 for every common inputx (of length polynomial ink) (i) (completeness) ifx ∈ L
Pr[(P, V)(x)] ≥ 1 − ǫ(k) and (ii) (soundness) ifx 6∈ L, for every proverP ∗, Pr[(P ∗, V)(x)] ≤ ǫ(k).

An interactive proof system is said to be black-box (computational) zero knowledge if there is a prob-
abilistic polynomial time oracle machineS such that for any probabilistic polynomial time verifierV ∗ and
for all x ∈ L the distribution of the output produced bySV ∗

on inputx is computationally indistinguishable
from the view of the verifier at the end of the interaction(P, V)(x).

In concurrent zero knowledge proofs the prover is involved in polynomially many (ink) sessions. We
consider the verifiers of all the sessions to be co-ordinatedby an adversary. It is up to the adversarial
verifier to decide which messages it will send to the prover and when. But the prover should work for
each session which behaves correctly as specified by the protocol, irrespective of messages in the other
sessions, or their relative order. Proving the concurrent zero knowledge property involves showing that
there is a simulator (a probabilistic polynomial time oracle machine)S whose output for everyx ∈ L is
computationally indistinguishable from the view of this adversary for thatx.

Commitment Schemes A commitment protocol involves two parties– the sender and the receiver, and two
phases– the commit and reveal. In the commit phase the sendercommits to a bit (or a string), by sending a
commitment to the receiver. But we require the commitment tobe secret: it is infeasible for the receiver to
find out anything about the committed string. Later in the reveal phase the sender sends over the committed
string and possibly more information so that the receiver can verify that the revealed value is identical to
the committed value. We require that the commitment is binding on the sender, i.e., it cannot reveal a
value other than what it committed to (with overwhelming probability over the randomness chosen by the
receiver). This kind of commitment scheme is said to have statistical binding and computational secrecy.
The Zero knowledge protocol we analyze will employ such a scheme from [19] in which the receiver initiates
the commitment by sending a random string to the sender and the commit phase has a single message from
the sender.

The above mentioned commitment is used when the all powerfulprover is the sender. We will also
need a commitment scheme when the prover is the receiver. Forthis we require a scheme with information
theoretic secrecy and computational binding. [11] describes one, again with a single initiation message from
the receiver, a single message from the sender for each commitment, and for each reveal.

Witness Indistinguishable proofs Witness Indistinguishable proofs, introduced in [9], is a notion similar
to, but weaker than zero-knowledge. A witness indistinguishable proof for a language in NP is a protocol
such that the prover uses some witness to carry out the proof,but the view of the verifier when the prover
uses a witnessw1 and that when it uses a different witnessw2 are computationally indistinguishable. This
notion is weak enough to let the security be preserved under concurrent composition.

The concurrent zero-knowledge protocol we are analyzing uses the proof-system for NP languages by
Goldreich and Kahan [12]. The proof system involves five messages, the first one from the prover to the
verifier. Though the prover is allowed to be computationallyunbounded, given a witnessw for the member-
ship of the inputx the prover can run in polynomial time. This allows us to construct simulators which run
in polynomial time, and can carry out the prover’s part in this protocol.

In the concurrent zero knowledge protocol, the witness indistinguishable proof is used with respect to
the languageL′ (in NP) defined as follows:(x,preamble) ∈ L′ iff either x ∈ L, or preamble is the
transcript of a preamble in which the session was “solved” bythe prover (see Section 3 for details). The two
witnesses we shall consider forx′ ∈ L are (i) a witnessw for x ∈ L or (ii) a witnessw′ for preamble
containing a solution.

2a functionν(k) is negligible ink if, ask growsν(k) eventually becomes less than1/p(k) for all polynomialsp.

3

Cryptographic Assumptions The cryptographic assumptions we need are the ones on which construc-
tions of the above primitives are based. Assuming the existence of acollection of claw-free permutations
suffices for this purpose [11].

Concurrent Sessions In the concurrent setting that we are interested in there areup toℓ = poly k sessions
that run concurrently, using one single prover. In sessions the prover is trying to prove thatxs ∈ L. The
prover responds to each verifier message in the order in whichthey come; but it is upto the (adversarial)
verifier to choose the session from which the next message sent to the prover comes from.

The simulator and previous analysis We analyze the same protocol as given by [16, 20], except for
reducing the number of rounds. The soundness and completeness properties of this system are proved there
and the proof holds for the reduced number of rounds too. For proving the zero-knowledge property one
needs to demonstrate that for every efficient, but possibly corrupt verifier co-ordinating the verifiers in the
polynomially many sessions, there is a simulator such that,for each set of inputsxs, the output of the
simulator and the view of the verifier at the end of the protocol are computationally indistinguishable from
each other. [16, 18] gives a black-box simulator, and analyzes the simulator.

They show that to prove this indistinguishabilityit is enough to show that the probability their simulator
aborts in the middle of the simulation is negligible ink.

So we need only analyze the probability that the simulator aborts. We give a better analysis of the same
simulator, and show that ifm = ω(log k) the probability of the simulator aborting is negligible.

3 The Protocol

We provide a brief review of the concurrent zero-knowledge proof protocol as described in [16, 18], which
in turn is a slight modification of the protocol introduced in[20].

The protocol employs a statistically binding commitment scheme (used by the prover to commit), a
statistically hiding commitment scheme (used by the verifier to commit), and a witness indistinguishable
proof (interactive proof) system. In Section 2 we briefly reviewed these schemes.

The protocol has two phases– a preamble and a main proof body.The outline of the preamble is provided
below:

V → P : Commit tov0, . . . , vm ∈ {0, 1}k

P → V : Commit top0

V → P : Revealv0

P → V : Commit top1

...
V → P : Revealvi

P → V : Commit topi+1

...
V → P : Revealvm

P → V : Start the main body of the proof

When the verifier initiates a session, the prover in responseinitiates the commitment scheme for the
verifier. Then the preamble starts, in which the first messagefrom the verifier is a commitment tom+1 ran-
dom stringsv0, . . . , vm ∈ {0, 1}k , k being the security parameter (it also initiates the prover’s commitment
scheme). In response the prover commits a random stringp0 ∈ {0, 1}k . In subsequent steps, the verifier
revealsvi, and the prover commits topi+1, for i from 0 tom− 1. In the last step in the preamble the verifier

4

revealsvm and the prover starts the witness indistinguishable proof.In all there arem + 2 messages from
the verifier in the preamble.

The witness indistinguishable proof is used with respect tothe languageL′ (in NP) defined as follows:
(x,preamble) ∈ L′ iff either x ∈ L, or preamble is the transcript of a valid preamble such that there is
somei such thatpi = vi.

The protocol continues with the witness indistinguishableproof, in which the prover uses the witness of
x ∈ L. The verifier accepts or rejects as in that proof system. At any point during the protocol if an invalid
message from the verifier arrives, the protocol is terminated.

In the concurrent setting the prover runs the different sessions independent of each other. If a session is
terminated further messages from that session are ignored;but it does not affect the other sessions.

We shall show thatm = ω(log k) suffices for the zero-knowledge property of the proof systemto hold
in the concurrent setting.

4 The Simulator

In this section we describe the simulator of [16], which is based on the simulator of [20]. Our description
differs from previously given descriptions, as we identifyfeatures of the simulator which we will use to
achieve our stronger result.

The simulator does not have access to the witness ofxs ∈ L for anyxs. So in the simulated proof it
tries to get a preamblepreamble such that(xs,preamble) ∈ L′, and use information on this preamble
as the witness.

The simulatorS has black-box access to the verifier. It randomly sets up the random coins for the
verifier in the beginning, and then starts running the verifier and a modified prover on the common inputx.
But every now and then the simulator will rewind the verifier.For each sessionS hopes to find out the value
of some stringvi before committing topi, so that it can commit topi = vi. For thisS should wait till the
verifier reveals somevi and then rewind the execution beyond the point where it committed topi. But S
cannot afford to do too many rewinds as it must finish running in poly(k) time.

[16] proposes an efficient rewind strategy, which is essentially the same as the rewind strategy of [20].
The rewind strategy is specified with respect to the at mostN := (m + 2)ℓ preamble messages, numbered
from 0 to N − 1. We can assume thatN is a power of two by adding empty “dummy” messages at the end,
if necessary. The points0 to N − 1 when a preamble message arrives, are referred to as theprotocol points
or theprotocol time.

Protocol TreeT Consider the complete balanced binary tree withN leaves. We shall call this theprotocol
treeand denote it byT. Height ofT is h = log N = O(log k) (as we will consider onlym = O(poly(k))).

It will be convenient later to identify each node inT by the path to that node from the root; the path is
specified as a string of L’s and R’s, referred to as the “left-right” or L/R path, in the natural way.

To describe the rewind strategy consider the directed acyclic graph obtained by doubling the edges of
T except the ones at the leaf level (see figure 1). The schedule is essentially a depth-first traversal of this
DAG, with the slot numbers appearing at the leaves. Informally, the simulator traverses the DAG, and at a
node, after returning from the first edge in a double edge, it rewinds the verifier, and continues the traversal
by descending the second edge.

Simulation Tree T̂ The above DAG can be written out as a 4-ary tree by duplicatingthe nodes. We call
this 4-ary tree thesimulation tree, and denote it bŷT (see figure 2). Again we shall identify each node inT̂

by the path to it from the root. The path is specified by a stringof edge-labels from the set{L0, L1, R0, R1}.

5

L0
L1 R0

R1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

L0
L0

L1 R0

R1
R1

R0L1

Figure 1:T and the edge-doubled DAG forN = 8

We separate this string, referred to as thecomposite pathinto two strings– the L/R path, and the 0/1 path, in
the natural way.

Instances inT̂ Each nodea in T has manyinstancesin T̂, which are the nodes with the same L/R path as
a has inT. There is one instance for each 0/1 path. Below, we shall usually denote nodes inT by a,X etc.
and those in̂T by â, X̂ etc., possibly with some subscripts or superscripts.

TheN2/2 leaves of̂T correspond to the points at which a preamble message arrivesduring the simula-
tion. The simulator goes through the leaves of the tree from left to right, and we visualize it as an in-order
traversal ofT̂. We refer to theseN2/2 points in the execution of the simulator assimulation pointsor
simulation-time(as opposed to protocol-time).

 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3 4 5 4 5 6 7 6 7 4 5 4 5 6 7 6 7

L0

L1 R0

R1

L0
L1

R1
R0

L0

L1 R0

R1 L0

L1 R0

R1

R0

R1

L1

L0

Figure 2:Simulation treêT for N = 8

Sessions A sessionduring the run of the simulator is identified by the point in simulation time (leaf of
T̂) where the first preamble message of the session, namely the initial commit message from the verifier,
arrives. Note that many sessions may simply disappear from the views of the prover and the verifier as the
simulator rewinds beyond the start of the session.

The Runs Supposex is a node inT and x̂ is an instance ofx in T̂. The run of x associated witĥx is
defined as the execution of the simulator from the point at which it traverses down the nodêx to the point
at which it returns from̂x. The run ofx̂ can be identified with the interval in simulation-time containing all
the descendant-leaves ofx̂.

Consider a nodex in T with childreny andz. Let x̂ be an instance ofx in T̂, with childrenŷ0, ŷ1, ẑ0 and
ẑ1. The run ofx at x̂ consists of two runs ofy and two runs ofz. After the first run ofy, ŷ0 the simulator
rewinds– i.e., sets the state of the verifier and the prover to that before the run̂y0. Then it does another run
of y, ŷ1. Then it goes on to do two runs ofz, with a rewind between them.

Suppose during the run̂y0, two properly revealed preamble messagesvi andvi+1 are received from a
sessions that startsbeforethat run. At the end of the run̂y0 , the simulator knowsvi+1. Now the simulator

6

rewinds to the state before the start of the runŷ0. Note that the prover’s messagepi+1 is in response tovi,
which has not yet arrived at the point after the rewind. When the simulator continues its run and at some
point the reveal ofvi arrives, it responds by committing not to a random value aspi+1 but topi+1 := vi+1.
This gives a valid preamble withpi+1 = vi+1 which the prover can use as a witness in the main body of the
proof. When the simulator rewinds the runŷ0, we say that the simulator hassolvedthe sessions.

Once a sessions is solved as above, the simulator records this in an auxiliary table called the Solution
Table. The Solution Table has entries of the form(s, i, vi), for 0 ≤ s < N and0 ≤ i ≤ m. Whenever
the modified prover has to respond with a commitment topi for a sessions it checks if an entry(s, i, vi) is
available in the Solution Table. If it is, it commits topi = vi and notes down this fact and the random coins
used in making the commitment; later when the sessions enters the main body of the proof the prover can
use this information as a witness that(xs,preamble) ∈ L′ without knowing the witness forxs ∈ L. Since
the main body of the proof is a witness indistinguishable system, using this witness is indistinguishable from
what an actual prover will do, and the simulation remains indistinguishable from the real thing.

Note that during the run of the simulator, a sessions may reach thei-th message many times; each time
the solution from the table (if available) is used to commit to pi = vi. Also the session may enter the main
body of the proof many times; again each time a witness will beavailable from the last commitment ofpi.

Aborting the simulation If at any point in the simulation, a session reaches the main body, i.e., the reveal
for vm arrives, and no solution is available for the session, the simulator cannot successfully simulate the
witness indistinguishable proof. If this happens the simulatorabortsthe entire simulation.

If the simulator does not abort till all the sessions are over(or the verifier terminates), it outputs the
view of the verifier at that point. As shown in [20, 16, 18], conditioned on the simulator not aborting, the
simulated view it outputs is distributed indistinguishably from the distribution of the view of the verifier
after the interaction with an honest prover with witnesses for xs ∈ L for all the sessions.

States of the Simulator We go on to give a more formal description of the simulator in terms of its states
during the execution. (This may be skipped without much lossof continuity.)

To describe the rewind schedule formally, we will consider asnapshot of the simulator, when the simu-
lator is at a node in its traversal ofT̂.3 (see below for details). We define thestateof the simulator, as this
snapshot consisting of

(i) The (current) View: The verifier-view consists of a transcript between the prover and the verifier,
and the state (work tapes) of the verifier. The simulator alsomaintains the state of a modified prover
(described later). Collectively all this is referred to as the current view.

(ii) Solution Table: the internal table to store the solutions to the solved sessions,

(iii) Book-keeping: A stack of views, called theview-stack, to do the rewinds; a counter to indicate the
depth of the current node in the simulation treeT̂, and a stack of 5-ary values, called thetraversal-
stackto traversêT.

We visualize the operation of the simulator as an in-order traversal ofT̂, as described below. The
simulator starts from the root, traverses down the tree to the left most leaf of̂T, and waits there for the first
preamble message to arrive; at any time the simulator is at some leaf ofT̂ and when a preamble message,
arrives it continues the depth-first traversal until it reaches the next leaf. The preamble message is indexed
by the leaf at which the simulator was when the message arrived.

3Given such a snapshot we will be able to start the simulator from the point where the snapshot was taken.

7

A state describes the simulator at a node inT̂. The top of the traversal stack holds one of the values L0,
L1, R0, R1 indicating the next child to descend into in the traversal, or a special valuereturn . Below we
describe the traversal formally by how one state is updated to the next.

Suppose the depth counter indicates that we are not yet at a node just above the leaves. To move to the
next state the simulator checks the top of this stack. If the top value of the traversal-stack isreturn it pops
the value from the stack and decrements the depth counter. Ifit is L0 or R0, the current view is saved by
pushing it into the view stack, and the top of the traversal-stack is incremented to L1 or R1, resp. Else if the
top of the traversal-stack is L1 or R1, the simulator does arewindby popping the view-stack and replacing
the current view with the popped value; also it increments L1to R0, or R1 toreturn . Finally it moves
down in the traversal by incrementing the depth counter and pushing an R0 into the traversal stack, so that
the traversal of the child node starts with its first child.

If the depth counter indicates that we are just one level above the leaves, then the simulator has to wait
for the next two preamble messages, i.e., it has to move through the two leaves, and then return. For this the
simulator keeps modifying the current view by letting the (modified) prover and the verifier run, until two
preamble messages arrive. When the second one arrives the simulator moves into the next state by popping
the traversal-stack and decrementing the counter.

The Solution Table is a data structure maintained by the simulator and used by the modified prover.
While the simulator is running the prover and verifier, the solution table is updated as follows: whenever a
properly revealed preamble messagevi from sessions comes along, the simulator records the revealed value
as the(s, i)-th entry in the solution table.

Whenever the modified prover has to make the commitmentpi for sessions, it checks if the(s, i)-th
entry in the table is available. If so it commits that value, marks the session assolvedand records the details
of this commitment as asolutionin the table. If this happens we say the session was solved. Else the prover
commits an arbitrary string (say, the zero string).

When the modified prover reaches the main body of proof in a session, instead of entering the witness
indistinguishable proof with the witness for the membership of xs ∈ L, it looks at the solution table to see
if the session was ever marked as solved. If it was solved, thesolution gives a witness in terms of ani such
thatpi = vi, and the modified prover uses this witness. If the session wasnot solved till this point, then the
prover makes the entire simulationabort.

When all the sessions are over (or the verifier terminates), the simulator outputs the current view of the
verifier.

Modified Simulators We use a couple of modified simulatorsS∗ andS† for purposes of analysis. They
differ from the original simulatorS only in the behaviour of the prover. The simulatorS∗ has for each
sessions, the witness forxs ∈ L, and its prover uses that for the body of the proof. InS†, in addition to
using these witnesses, the prover always commits to the zerostring in the preamble. Though the provers
of S∗ andS† do not use the entries in the Solution Table, they also abort the simulation if it reaches the
main body of proof in an unsolved session. Note thatS∗ andS† are also efficient simulators because in the
witness indistinguishable proof system used the prover canrun efficiently given a witness forxs ∈ L.

We would like to show that the distribution of the view outputby the simulatorS is computationally
indistinguishable from that of the view obtained by the verifier as a result of the interaction with the prover.
As shown in [16, 20] it is enough to show that the probability that theS aborts is negligible in the security
parameterk. The following lets us show this only forS†.

Lemma 1 The difference between the probability ofS† aborting, and the probability ofS aborting is neg-
ligible in k.

8

Proof: This follows from the guarantees of the commitment scheme used by the prover, and the witness
indistinguishable proof employed in the main body.S∗ serves as a hybrid betweenS† and the original
simulatorS. The difference in abort probabilities ofS andS∗ is negligible by the guarantee on the witness
indistinguishable scheme, and that ofS∗ andS† is negligible by the guarantee on the commitment scheme.
S andS∗ are indistinguishable: First we construct hybrid simulators S = S∗

0 ,S∗
1 , . . . ,S∗

N = S∗, whereS∗
i

uses the witness forxs ∈ L only for the sessionss = 0, . . . , i − 1. By the hybrid argument it is enough to
show that the abort probabilities ofS∗

i andS∗
i+1 differ negligibly for all i. We shall construct an adversary

for the witness indistinguishable proof, which has an advantage in distinguishing the witness equal to the
difference between the abort probabilities ofS∗

i andS∗
i+1. This is achieved by introducing the proof to be

identified into the simulator’s prover for sessioni+ 1. More formally, the adversary is a modification ofS∗
i .

It outputs 1 if the (modified) simulator aborts, and 0 otherwise. The adversary startsS∗
i and if a session gets

started at the simulation pointi + 1, then it engages with the given prover as follows: when the simulator
reaches the main body of proof in sessioni + 1 (if it does at all), the messages from the verifier are directed
to the prover. The prover enters the proof with one of the two witnesses– the witness forxi+1 ∈ L or the
witness in terms of the preamble. If it uses the former, the execution of the adversary is identical to that of
S∗

i+1 and else to that ofS∗
i . Thus the difference in the abort probabilities ofS∗

i andS∗
i+1 translates into an

advantage in distinguishing the witnesses.
S∗ andS† are indistinguishable: This can be shown in a fashion similar to the above. But this time we
are attacking the commitment scheme. The simulator’s prover makes many commitments for each session.
So this time we introduce one more level of hybrids to take care of this. DefineS†

i,j as a simulator which

commits to the zero string in all sessionss ≤ i for the firstj commitments. ThenS∗ = S†
0,0 andS† =

S†
N,m+1. Rest of the argument is standard.

In the rest of the paper we analyze the simulatorS†.

Adversary’s success on (start,stop) The adversarial verifier is said to succeed for a pair of simulation
points(start,stop), if the session starting at start point reaches the main proof body at the point stop without
S† having solved the session, thereby forcingS† to abort at that point.

Note that for the session to be alive at the point stop, the point start is never rewound beyond, within the
interval (start,stop). Formally this means that the current view when the simulator reaches the stop leaf, is
obtained by letting the prover and verifier run on the view at the start leaf.

There are onlyO(N2) (start,stop) pairs, which is polynomial ink. We shall show that for any given pair
the probability that the adversary succeeds with respect tothat pair is negligible ink. Then the probability
of the adversary succeeding is negligible by union bound.

The points corresponding to start and stop in the protocol-time are calledproto-startandproto-stop.

The forests We define a few structures which we shall be referring to frequently throughout the rest of
the paper. Theprotocol forestF and thesimulation forest̂F are subgraphs ofT andT̂ respectively, and are
determined by the pair (start,stop). Later on we also define thegood forestG which is a subgraph ofF and
is determined by a set ofm protocol points.

Figures 4 and 4 illustrate these structures.

1. The protocol forest An edge inT is retained inF if it points to a node all of whose descendant leaves
occur strictly within the protocol interval(proto-start,proto-stop). F is the subgraph ofT induced by
these edges.

9

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

* *

a

b

a*^
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

’

*b
^

R0

L1

R0

R0

to stop

Figure 3: Left, the Protocol forestF as a subgraph ofT: the elements in thick outline are part ofF. The *’s
indicate the points proto-start and proto-stop. Also, nodea is labeled. Right, a portion of the corresponding
Simulation forest̂F: the 0/1 path of the point stop begins as0100..; the corresponding composite path is
labeled. This path along with the corresponding path to the start pointcut out F̂ from the treeT̂. Filled
nodes are all the instances of the nodea. The final instances of nodesa andb in F are marked in̂F as â∗

andb̂∗.

Xa

a

ta

Figure 4: A tree from the good forestG. The thick edges are part ofG. The roots of the shaded subtrees
(which have two schedule points, one in each child) are the leaves ofG. A leafa and its pivotXa are marked.
G consists of many trees like this.

10

2. The simulation forest An edge inT̂ is retained inF̂ if it points to a node all of whose descendant
leaves occur strictly within the simulation interval(start,stop). F̂ is the subgraph of̂T induced by
these edges.

We shall focus on these forestsF̂ andF rather than the entire treeŝT andT. Figure 4 illustrates portions
of F andF̂, for a given (start,stop) pair. Note that all nodes except possibly the roots of the trees inF has
all its descendant leaves strictly in the interval (start,stop). If a nodea in F is at depthd in its tree in the
forestF, a has at least2d instances in̂F. (The precise number of instances inF̂ of a node at depthd in F, is
2d × (number of instances in̂F of the root of that node’s tree inF).) HoweverF̂ can have nodes which are
instances of nodes inT outsideF.

Now suppose we are given a run ofS† in which the adversary succeeds. Then the (current) transcript
when the simulator reaches the point stop will showm preamble messages of the session, where the verifier
properly revealsv0, . . . , vm−1, at somem points in the interval(proto-start,proto-stop). We call thesem
protocol points theschedule pointsof the session. Given such a transcript withm schedule points, we define
the following forest:

3. The Good ForestG is the subgraph ofF induced by all the nodes inF which have at least two
schedule points as descendants (see Figure 4).

The leaves ofG essentially correspond to themay-solveintervals as defined in [16, 18] (where it is
shown that there areΩ(m/h) such leaves, but we will not need this). They coverdisjoint intervals in
protocol-time. We order these leaves from left to right according to their intervals, in the natural way.

Pivot Xa and ta For each leaf ofG a, let thepivot of a, denoted byXa, be the node inG defined as
follows: Xa is the least common ancestor ofa with thepreviousleaf inG, or if no such node exists, the root
of a’s tree inG. Defineta as the distance ofa to Xa.

Note that
∑

a ta = number of edges inG, where the summation is over all the leaves ofG. This is
because each edge inG is counted in theta whena is the first leaf (in the order defined above) among its
descendants.

Lemma 2 Number of edges in the good forestG is at leastm − O(h), whereh is the height of the protocol
treeT.

Then by the above note, we have
∑

a ta = m − O(h) where the summation is over all the leaves ofG.

Proof: Define the good treeG′ as a subgraph of the protocol treeT, of nodes with at least two schedule
points among descendants. Note thatG is a subgraph ofG′ obtained by removing all the edges which are in
the path to the leaves proto-start or proto-stop. Now map each schedule point to its closest ancestor inG′.
Then each leaf inG′ has exactly two points mapped to it and each other node inG′ has at most one point
mapped to it (or none if it has degree 2 inG′). So there areΘ(m) nodes with something mapped on to it.
SoG′ has at least that many nodes. In factG′ has at leastm − 1 nodes. To see this note that the nodes of
G′ with one point mapped to it are internal nodes with only one child in G′, and those with two are leaves of
G′; if theren1 andn2 of them respectively,n1 + 2n2 = m. To haven2 leaves,G′ must have at leastn2 − 1
internal nodes of out-degree 2; thus in allG′ has at leastn1 + n2 + n2 − 1 = m − 1 nodes. ThusG′ has at
leastm − 2 edges.

There are at most2h edges inG′ which point to nodes with proto-start or proto-stop among descendants,
namely the edges in the paths up to the root from those points.We delete these edges to getG. ThusG has
at leastm − O(h) edges as claimed.

11

We make a few definitions regarding the nodes inF̂.

• Final instance:Consider any nodex in G. There are many instances of this node inF̂ (and many in
T̂ outsideF̂, which we do not consider4). These instances can be ordered by the time the simulator
starts their run. We define thefinal instanceof x to be the last instance in this orderwithin F̂. We
denote the final instance ofx by x̂∗.

• Critical runs: Consider a leaf ofG a, and its pivotXa. There are many instances ofXa in F̂. Each
run ofXa contains2ta runs ofa. Consider the last such run,̂X∗

a . We define the2ta runs ofa in X̂∗
a as

thecritical runs of a. Note that, ifb is a leaf ofG beforea, the critical runs ofa are all after the run
b̂∗.

• â〈i〉 andâ〈∗〉: The2ta critical instances of a leafa in G appearing in̂F are numbered from left to right.
They are denoted bŷa〈i〉 for 0 ≤ i < 2ta , wherei is a ta digit binary number. Note that̂a〈2

ta−1〉 is
the same aŝa∗. We denote this bŷa〈∗〉 to emphasize that this is a critical run.

5 Analysis: Static Case

In the static case the adversarial verifier schedules the messages from the various sessions at pre-determined
slots. The only choice the adversary gets to make is as to whether the message is revealed properly or not.
There arem points in the protocol time interval(proto-start,proto-stop), where the adversary has non-zero
probability of ever scheduling a message from the session. These points are called the potential points. Thus
if the adversary succeeds in a run, the schedule points of that run are exactly the potential points.

In the static case we consider theG defined with respect to the potential points as the schedule points.

• Recall that a leaf ofG has two potential points below it. A run of a leaf ofG is good if the transcript
at the end of the run has both the potential messages properlyrevealed. Else it is called bad.

• A leaf ofG a is said to bewon(by the adversarial verifier) if all the2ta critical runs ofa are bad except
the final one which is good.

• For each leafa of G, we definep〈i〉a as the probability that̂a〈i〉 is good given that̂a〈j〉 for all j < i
were bad and all previous leaves ofG were won. The probability is taken over the coin-flips of the
simulator (which includes the coin-flips of the verifier and the modified prover).

Lemma 3 p
〈i〉
a = p

〈j〉
a for all i, j, 0 ≤ i < j < 2ta .

Proof: It is enough to prove this for the case when the binary representation ofi andj have a hamming
distance of one. There is some nodeb̂ in F̂ which is the least common ancestor of the two critical instances
of a, â〈i〉 andâ〈j〉. Let the children of̂b, ĉ0 andĉ1 be the ancestors of̂a〈i〉 andâ〈j〉 respectively, wherêc0, ĉ1

are either the L0 and L1 children (resp.) ofb̂ or the R0 and R1 children (resp.) ofb̂.
Supposep〈i〉a 6= p

〈j〉
a . Consider a state of the simulator (as defined earlier) at thestart of the run of̂c0, and

definep′〈i〉a (respp′〈j〉a) by modifying the definition ofp〈i〉a (respp
〈j〉
a) by further conditioning on that state.

Thenp
〈i〉
a (respp

〈j〉
a) is a convex combination ofp′〈i〉a (respp′〈j〉a) defined with respect to the various states.

Then there is one such stateτ , such thatp′〈i〉a andp′〈j〉a defined with respect toτ differ.
4also there are nodes in̂F which do not have any corresponding nodes inG or evenF, but we will not consider them

12

Reasoning similarly, there must exist some stateτ ′ at the start of the run of̂c1 such that (i)τ ′ is an
extension ofτ (because we are now considering events conditioned onτ) and, (ii)p′′〈j〉a defined by modifying
p′〈j〉a by further conditioning onτ ′, differs fromp′〈i〉a .

We note the following regardingτ andτ ′:

(i) The view of the verifier is identical inτ andτ ′ becauseτ ′ is an extension ofτ (by which we mean
that the simulator can reachτ ′ starting fromτ) and at the point of starting the run ofĉ1 the simulator
rewinds the verifier’s view to the point before it started therun of ĉ0, to get the view inτ .

(ii) They can differ in the solution tables. But note thatS† runs independent of the solution table.

(iii) The depth counter ofτ andτ ′ are the same. But the stacks inτ andτ ′ are different: view-stack ofτ is
a prefix of that ofτ ′, and the tree-traversal-stack ofτ andτ ′ differ in the top value. But during the run
of ĉ0 or ĉ1 both are equivalent; that is, if one is replaced by the other,the simulator will still behave
identically. This is because during the run ofĉ0 or ĉ1 (or any run for that matter) the simulator does
not make use of the records already in the stacks before the run starts.

Thus we see that the run ofĉ0 starting from the stateτ and the run of̂c1 starting from the stateτ ′ are
identical and this contradicts the two probabilities beingdifferent.

This lets us writepa for p
〈i〉
a for all i.

Bounding the probability

We consider an adversarial verifier. When the simulator runs, if the adversary has to succeed in taking the
session started at the pointstart to the pointstopwith out the simulator solving the session, each leafa in G
must be won (recall that it means all the2ta runs ofa are bad except the final one which is good). We seek
to bound the probability of this event by a negligible function.

Theorem 1 (Static Case) Ifm = ω(log k) the probability that at the pointstop, the adversary succeeds in
a session starting atstart, is negligible.

Proof: In the products below,a ranges over all the leaves ofG.

Pr [adversary succeeds]≤ Pr [all the critical runs of all the leaves ofG are won]

=
∏

a

Pr[all the critical runs ofa are won|

all the critical runs of all the previous leaves ofG are won]

=
∏

a

2ta−2
∏

i=0

Pr[â〈i〉 is bad| â〈j〉 is bad for allj < i,

and all the previous leaves ofG are won]

× Pr[last critical run ofa is good| â〈j〉 is bad for allj < i,

and all the previous leaves ofG are won]

=
∏

a

2ta−2
∏

i=0

(1 − p〈i〉a)

 p〈2
ta−1〉

a ≤
∏

a

(1 − pa)
2ta−1pa

13

But for all values ofpa in the range[0, 1] and allT ≥ 1 we have(1 − pa)
T pa ≤

(

T
T+1

)T
1

T+1 < 1
T+1 .

So(1 − pa)
2ta−1pa ≤

(

1
2

)ta (this is true forta = 0 also). Thus,

Pr [adversary succeeds]≤
∏

a

1/2ta =

(

1

2

)

P

a ta

But
∑

a ta (where the summation is over all the leafs inG) is exactly the number of edges inG, which by
Lemma 2 ism−O(h) = m−O(log k). If we choosem = ω(log k),

∑

a ta = ω(log k) and the probability
of adversary succeeding is bounded by1/2ω(log k), which is negligible.

6 Analysis: General Case

Now we present the analysis for the general case.
Recall that the adversarial verifier is said to succeed on a run of S† for a (start,stop) pair, if the session

starting at the point start reaches the main proof body at thepoint stop withoutS† having solved it. We
would like to bound the probability that the adversary succeeds. We shall bound this probability for each
setting of the coin flips of the verifier. Now onwards we assumethe coin flips of the verifier to be fixed.
Thus we consider the probability with respect to the coin-flips of the simulated prover only.

Cards and Decks To represent the coin-flips of the simulator, we augment the simulation treeT̂ by in-
stalling long enough random strings at each leaf. The numberof random bits needed by the simulator at
each leaf is bounded by a polynomial ink, sayp(k), which we let to be the length of the random string at
each leaf. Each such random string is called acard, drawn uniformly from a universe of size2p(k). All the
N cards in the leaves of̂T will be collectively referred to as adeck. WhenS† is at a leaf it uses the random
string from the card at that leaf to do its commitments and non-preamble proof steps.

Since we have already fixed the coins of the verifier, given a deck the entire execution of the simulator
is determined. Now, to bound the probability that the adversary succeeds we have to bound the number of
decks for which the adversary succeeds. We shall show that for every deck for which the adversary succeeds,
there are many other decks with which the adversary fails (taking care not to double-count the decks).

Good forest, good nodes and pivot-instance The (start,stop) pair defines the protocol forestF and the
simulation forest̂F as before, and also fixes the session we will be considering, namely the session with the
initial verifier commitment at the start point. The only variable then is the deck. Given a deck with which
the adversary succeeds, we can define thegood treeG from the transcript at the stop point, as described
earlier.

Further for each leafa of G we can define the pivotXa (and its final instance in̂F, X̂∗
a), the lengthta

and the2ta critical runs ofa as described before.
A node in F̂ is good if its run adds exactly two properly revealed preamble messages of the session

to the transcript, and each of its descendant nodes’ run addsat most one. Note that the good instance is
defined with no reference to “potential-points” orG. Given a deck (with which the adversary may or may
not succeed), it is possible to check if an instance is good ornot.

If the adversary succeeds with a deck, the good instances areexactly thefinal instances of the leaves of
G. Having a good instance which is not final allows the simulator to solve the session.

Define thepivot-instanceof a nodêa as a nodeX̂â in F̂ as follows: if the last good node before the start
of the run ofâ (if it exists) is in the same tree in̂F asâ, thenX̂â is the least common ancestor of that node

14

andâ; otherwiseX̂â is the root of the tree in̂F containingâ. For a deck with which the adversary succeeds,
if a is a leaf ofG and â is any critical instance ofa in F̂, thenX̂â∗ is the same as the final instance of the
pivot of a, X̂∗

a .

Lemma 4 There exists a procedure with the following behaviour.
Input: A deckD∗ such that the adversary succeeds inD∗.
Output:At least2m−O(h) distinct decks, such that in all but one of them,S† solves the session. There exists
a procedureUNSHUFFLEsuch that it unshuffles each of these distinct decks back to the original deckD∗.

We shall prove this lemma shortly, but before that note that it achieves our goal.

Theorem 2 The probability that the adversary succeeds for a given (start,stop) pair is at most2−(m−O(h)).

Proof: All the decks are equally probable. Lemma 4 says that for every deck with which the adversary
succeeds there are2m−O(h) − 1 other decks for which it doesn’t. Being able to unshuffle these decks
to the original one guarantees us that we do not double-countany of them for different decks given by
the adversary. Thus the existence of a procedure as described in Lemma 4 establishes an upper bound of
2−(m−O(h)) on the probability that the adversary succeeds.

Shuffle-Unshuffle In order to prove Lemma 4, first we give a procedureSHUFFLEand an inverse procedure
UNSHUFFLE.

Let the leaves ofG, from left to right, bea1, a2, . . . , aq. The shuffle procedureSHUFFLE consists of a
sequence of basic shuffles, one associated with each leaf ofG. The leaves are processed right to left, i.e. in
the orderaq, . . . , a1.

SHUFFLEtakes a deckD∗ in which the adversary succeeds. With this deck there are many good instances
as defined above, but all of them have to be final. The aim ofSHUFFLE is to produce a new deck such that
these final good instances get moved around and occur as non-final good instances, allowing the simulator
to solve the session.

The algorithm is described in Figure 6. Note that we refer to the L0 child of a nodeX̂ in F̂ as
(L : 0)-child of X and so on.

SWAP does an atomic shuffle operation, exchanging the cards at theleaves of a run̂Z0 with that of a run
Ẑ1; informally, this advances the run of̂Z1 ahead of that of̂Z0, as the runs of these nodes are essentially
determined by the cards at the leaves.BASIC-SHUFFLE (D, j, αj) will shuffle the deck so that the final and

good run ofαj , â
〈∗〉
j is advanced to the nodêa

〈αj〉
j . If αj is the all-ones string this does not change anything;

but otherwisêa
〈αj〉
j is a non-final run and after the shuffle is a good run, allowing the simulator to solve the

session.

Lemma 5 If the firstj good instances with the deckD are â
〈∗〉
1 , . . . , â

〈∗〉
j−1, â

〈∗〉
j , then the deckD′ = BASIC-

SHUFFLE(D, j, αj) is such that(I) the first j good instances withD′ are â
〈∗〉
1 , . . . , â

〈∗〉
j−1, â

〈αj 〉
j , and (II)

BASIC-UNSHUFFLE (D′, j) gives(D,αj).

Proof: (I) We examine the steps during the shuffle. Letαj/r denote the stringαj but with the lasttaj
− r

bits replaced by all ones. We shall establish that afterr iterations of the loop inBASIC-SHUFFLE, with the

resulting deck̂a
〈αj/r〉
j is thej-th good instance; then, since at the end of the subroutiner = taj

we have

that â
〈αj/r〉
j = â

〈αj 〉
j is thej-th good instance as claimed. We shall also show that the firstj − 1 good nodes

unchanged.

15

SHUFFLE(D∗, (α1; . . . ; αq))
D = D∗

for j := q to 1 do
D :=BASIC-SHUFFLE(D, j, αj)

outputD

BASIC-SHUFFLE(D, j, αj)
β := L/R path fromXaj

to aj in T

Ẑ := X̂∗

aj

for r := 1 to tj do
b := β[r] {β[r] is ther-th bit of β}
Ẑ0 := (b : 0)-child of Ẑ
Ẑ1 := (b : 1)-child of Ẑ
if αj [r] = 0 then

D := SWAP (D, Ẑ0, Ẑ1)
Ẑ := Ẑ0

else
Ẑ := Ẑ1

outputD

SWAP (D, Ẑ0, Ẑ1)
for eachcomposite pathγ from Ẑ0 do

Takeγ from Ẑ0 to reach leafτ0

Takeγ from Ẑ1 to reach leafτ1

Exchange cards atτ0 andτ1

outputD

UNSHUFFLE(D)
for j := 1 to q do {q is not knowna priori but
determined when adversary succeeds inD }

(D, η) :=BASIC-UNSHUFFLE(D, j)
α := α; η

output(D, α)

BASIC-UNSHUFFLE(D, j)
â := j-th good node
X̂ := X̂â, the pivot-instance of̂a
β := L/R path fromX̂ to â (of lengthtj)
α := 0/1 path fromX̂ to â
Ẑ := â
for r := tj to 1 do

Ẑ := parent ofẐ
if α[r] = 0 then

Ẑ0 := (β[r] : 0)-child of Ẑ
Ẑ1 := (β[r] : 1)-child of Ẑ
D := SWAP (D, Ẑ0, Ẑ1)

output(D, α)

Figure 6: TheSHUFFLEandUNSHUFFLEprocedures
for modifying the decks.

We use induction onr. Whenr = 0, αj/0 is the all-ones string, and̂a
〈αj/0〉
j = â

〈∗〉
j . The claim is true

by the assumption on the input. Now we considerr > 0. At the beginning of ther-th iterationẐ is at

a distancetaj
− r + 1 from â

〈αj〉
j , and â

〈αj〉
j is under the(β[r] : αj [r])-child of Ẑ. If αj [r] = 1, then in

ther-th iteration of the loop inBASIC-SHUFFLE the deck stays unchanged andαj/r = αj/(r − 1); so the
conclusion follows trivially. But if it is 0 a swap takes place, in which the cards on the leaves of the subtree

underẐ1 are moved to the leaves of the subtree underẐ0. The subtree under̂Z1 containsâ
〈αj/r−1〉
j which

by induction hypothesis, is thej-th good instance before the swap. Also at that point the subtree underẐ0

does not have any good instance because thej − 1-st good instance iŝa〈∗〉j−1 which occurs beforêZ0.

The simulator has the same state when it starts the run ofẐ0 and the run ofẐ1 except for the contents
already in its stacks, which are not examined during the runs, and the contents of the Solution Table, which
are also ignored by the simulatorS†. The cards at the leaves of̂Z1 before the swap appear at the leaves of
Ẑ0 after the swap. So the run of̂Z0 with the deck after the swap is identical to the run ofẐ1 with the deck
before the swap. (But the executionafter Ẑ1 may now be totally different from anything before the shuffle.)

Further the cards at the leaves of all the runs completing before the start of the run of̂Z0 remain un-
changed. Hence with the new deck, the good nodes encounteredbefore starting the run of̂Z0 are exactly the

ones encountered till then with the old deck. Thus after ther-th iteration,â
〈αj/r〉
j is thej-th good node for

the new deck and the firstj − 1 good nodes remain unchanged.

(II) By the above, thej-th good node withD′ is â
〈αj〉
j (denoted inBASIC-UNSHUFFLE as â) and the one

before that iŝa〈∗〉j−1. So the pivot-instance of̂a
〈αj〉
j is the same as that of̂a〈∗〉j with D, and is denoted aŝX.

Then the 0/1 path from̂X to â (denoted asα) is αj . Also β, the L/R path fromX̂ to â is the same as the L/R
path fromXaj

to aj in T. Then it is straight-forward to verify thatBASIC-UNSHUFFLE reverses the shuffle

16

done byBASIC-SHUFFLE (note thatSWAP is its own inverse operation).

Proof of Lemma 4: The complete shuffling procedure takesq shuffle-stringsα1 . . . αq, and the deck

given by the adversaryD∗ (such that the only good nodes withDq are theq final instanceŝa〈∗〉1 . . . â
〈∗〉
q).

Let Dq := D∗. It then applies the shuffle subroutine repeatedly to produce Dj−1 := BASIC-SHUFFLE

(Dj , j, αj), for j = q, . . . , 1. The final deckD0 is output.
UNSHUFFLE applies theBASIC-UNSHUFFLE repeatedly to this deck. By the above claim we have

(Dj , αj) := BASIC-UNSHUFFLE (Dj−1, j), for j = 1, 2, . . . , q (q can be found out once it reaches a deck
with which the adversary succeeds). ThusUNSHUFFLE indeed recoversD∗ andα1 . . . αq from D0.

αj is a taj
long bit string, and therefore there are2

P

aj
taj strings(α1; . . . ;αq). Consider a procedure

which callsSHUFFLEwith all of them. SinceUNSHUFFLEcan recover(α1; . . . ;αq) from the shuffled deck,

this way we get2
P

aj
taj distinctdecks. But

∑

aj
taj

is equal to the number of edges inG and by Lemma 2
is at leastm − O(h).

To complete the proof we observe the following: when all theq shuffle-strings are all-ones strings, the
resulting deck is the original deck. For any other collection of shuffle-strings, the resulting deck lets the

simulator solve the session: supposeαj is the first not-all-ones shuffle-string. Thenâ
〈αj〉
j is a non-final

instance which is good. This allowsS† with this deck to solve the session.

In Theorem 2 if we setm = ω(log k), the probability of the simulator aborting becomes negligible (ash
the height of the simulation tree isO(log k)). By the analysis in [16, 18] this establishes that this protocol of
round complexityω(log k) is a concurrent zero knowledge for languages in NP, yieldingthe improvement
that we promised.

7 Tightness of the analysis

Our analysis of the simulator is asymptotically tight. We demonstrate that ifm < h, h being the height of
the protocol tree, then a simple deterministic schedule by the verifier can make the simulatorS abort with
probability one. Note that withΘ(k) sessionsh = Θ(log k). Som = O(log k) rounds is not sufficient for
S not to abort the simulation.

The first preamble message (verifier’s commit) is scheduled at the first protocol point, 0 and the last one
in response to which the prover has to enter the main body of the proof is scheduled at the last pointN − 1,
whereN = 2h. The otherm < h preamble messages are scheduled at theh − 1 protocol points numbered
N/2, N/2 + N/4, . . . , N − 2. The verifier deterministically reveals all the messages properly.

Then it is not hard to verify that the first time the simulator reaches the pointN −1, the session wouldn’t
have been solved.

8 Conclusion

We have shown concurrent zero knowledge proofs for languages in NP with round complexityω(log k). In
[3] it is established that if the round-complexity of a concurrent zero-knowledge proof system for a language

L is o
(

log k
log log k

)

thenL is in BPP. Our upperbound on round-complexity, on the other hand isω(log k). It

will be interesting to close this gap. But in Section 7 we saw that it is not possible to bring down the
upperbound using this simulator.

17

Acknowledgments

We gratefully thank Joe Kilian for sharing his thoughts withus and generously giving us his permission
to use and build up on his suggestion [15] for a general-case analysis which avoids conditioning. This
suggestion came out of discussions between the authors and Kilian regarding the dangers and subtleties
involved in conditioning-based analyses.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In42nd IEEE Symposium on Foun-
dations of Computer Science, pages 106–115, 2001.

[2] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. (revised version
available fromhttp://www.wisdom.weizmann.ac.il/˜oded/p_cggm.html). In ACM
Symposium on Theory of Computing, 2000.

[3] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box Concurrent Zero-Knowledge Requires
Omega (log n) Rounds. InACM Symposium on Theory of Computing, pages 570–579, 2001.

[4] G. D. Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-processing. InCRYPTO,
pages 485–502, 1999.

[5] I. Dåmgard. Efficient Concurrent Zero-Knowledge in theAuxiliary String Model. InEUROCRYPT,
2000.

[6] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. InACM Symposium on Theory of
Computing, pages 409–418, 1998.

[7] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints. In
CRYPTO, pages 442–457, 1998.

[8] U. Feige. PhD thesis, Weizmann Institute of Science, 1990.

[9] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In22nd ACM
Symposium on the Theory of Computing, 1990.

[10] O. Goldreich. Concurrent Zero-Knowledge With Timing,Revisited. (available from
http://www.wisdom.weizmann.ac.il/˜oded/p_conc-zk.ht ml), 2001.

[11] O. Goldreich.Foundations of Cryptography – Basic Tools. Cambridge University Press, 2001.

[12] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for
NP. Journal of Cryptology, 9(2):167–189, 1996.

[13] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.SIAM Journal
on Computing, 25(1):169–192, 1996.

[14] S. Goldwasser, S. Micali, and C. Rackoff. The KnowledgeComplexity of Interactive Proof-Systems.
SIAM Journal on Computing, 18:186–208, 1989.

[15] J. Kilian. Personal Communication.

18

[16] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-logorithmic rounds. In
ACM Symposium on Theory of Computing, pages 560–569, 2001.

[17] J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero Knowledge on the Internet. InIEEE
Symposium on Foundations of Computer Science, pages 484–492, 1998.

[18] J. Kilian, E. Petrank, and R. Richardson. Concurrent Zero-Knowledge Proofs for NP. (available
athttp://www.cs.technion.ac.il/˜erez/publications.htm l from the public web-
page of Erez Petrank), 2001.

[19] M. Naor. Bit Commitment Using Pseudorandomness.Journal of Cryptology: the journal of the
International Association for Cryptologic Research, 4(2):151–158, 1991.

[20] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. InEURO-
CRYPT, pages 415–431, 1999.

[21] A. Rosen. A Note on the Round-Complexity of Concurrent Zero-Knowledge. InCRYPTO, pages
451–468, 2000.

19

