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Abstract

In this paper we present a simpler construction of a public-key encryption scheme that
achieves adaptive chosen ciphertext security (CCA2), assuming the existence of trapdoor per-
mutations. We build on previous works of Sahai and De Santis et al. and construct a scheme
that we believe is the easiest to understand to date. In particular, it is only slightly more in-
volved than the Naor-Yung encryption scheme that is secure against passive chosen-ciphertext
attacks (CCA1). We stress that the focus of this paper is on simplicity only.

1 Introduction

One of the most basic tasks of cryptography is that of providing encryption schemes that enable
the safe delivery of private messages on an open network. Such an encryption scheme should reveal
no information about the plaintext to an eavesdropping adversary. However, it may be necessary
to protect the privacy of messages from an adversary who has more power than just the ability
to eavesdrop. In a chosen-ciphertext attack, the adversary has access to a decryption oracle and
uses this is in an attempt to “break” the encryption scheme. Such attacks come in two flavours:
passive chosen-ciphertext attacks (CCA1), where the adversary can access the decryption oracle
only up until the point that it receives a challenge ciphertext, and adaptive chosen-ciphertext attacks
(CCA2), where the adversary can even access the decryption oracle after it receives the challenge
ciphertext. (In the latter case, the adversary can query the decryption oracle for any ciphertext
except for the challenge itself.) This is a very strong attack; nevertheless, there are real settings
in which this level of security is required (see [2] for an example of an attack on an RSA standard
that was made possible due to the fact that the encryption scheme used was not CCA2-secure).
We refer the reader to [18] for a survey on the importance of CCA2 security.

Feasibility and efficiency. Two rather distinct directions of research have been considered with
respect to secure encryption (and cryptography in general). One direction of research focuses
on proving the feasibility of obtaining secure schemes, while the other concentrates on doing this

∗This work was carried out while the author was at the Weizmann Institute of Science, Israel.
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efficiently. The latter research usually relies on specific number-theoretic (or other) complexity
assumptions, whereas the former prefers to only assume the existence of some general primitive,
like a trapdoor permutation. This paper considers the question of the feasibility of obtaining
CCA2-secure encryption, under the assumption that trapdoor permutations exist. It is well known
that such a feasibility result has already been established. However, known constructions of CCA2-
secure encryption schemes under general assumptions are rather complicated. Thus, despite their
importance, it is hard to teach these schemes in a course on cryptography, for example. The aim
of this paper is to improve this situation.

The Naor-Yung paradigm [14]. Our encryption scheme follows the Naor-Yung paradigm for
constructing CCA1-secure encryption schemes. According to this paradigm, the plaintext is en-
crypted twice (independently), and then a non-interactive zero-knowledge proof (NIZK) is used in
order to prove that both ciphertexts are encryptions to the same plaintext. The intuition behind
this idea is that if the adversary manages to obtain two encryptions of the same plaintext with
independent keys, then essentially it must already “know” the plaintext. Therefore, the decryption
oracle that it is given is of no help.

The history of the feasibility of CCA2-encryption. The first CCA2-secure encryption
scheme was presented in a breakthrough work by Dolev, Dwork and Naor (DDN) [7]. However,
their construction is rather complicated, requiring many multiple encryptions and an involved key-
selection technique. An important step in the simplification of CCA2-secure encryption was taken
by Sahai [16] who showed that CCA2-encryption schemes can actually be constructed using the
Naor-Yung paradigm. This involved introducing a stronger notion of NIZK proofs, called one-time

simulation-sound NIZK. Loosely speaking, one-time simulation-soundness ensures that it is not
feasible for an adversary to generate an accepting NIZK proof of a false statement, even if the
reference string is generated by the simulator and even if a simulated proof (of a not necessarily
true statement) is observed.1 Sahai showed that the Naor-Yung encryption scheme, with the NIZK
proof system replaced by one which is one-time simulation-sound, is CCA2-secure. Unfortunately,
much of the complexity of the DDN construction remained in Sahai’s construction of this strong
NIZK. Thus, on the one hand, the Sahai high-level construction is significantly simpler than DDN;
however, when considering all the details, it is still quite involved.

Recently, De Santis et al. [6, 17] presented a very elegant and far simpler construction of
simulation-sound NIZK. The aim of their work was actually to strengthen the notion even further
to many-time simulation-soundness. (In a many-time simulation-sound NIZK, the soundness is
preserved even if the adversary observes many simulated proofs.) Nevertheless, their construction
also yields a simpler CCA2-secure encryption scheme.

Our contribution. In this paper, we use ideas from [6] and apply them to the problem of
one-time simulation-soundness. Exploiting the fact that one-time simulation soundness is enough
for CCA2-security, we obtain a significant simplification of the [6] construction for many-time
simulation-sound NIZK. Our construction is both intuitive and simple, and not less importantly,
has a short and easy proof of correctness. By plugging our construction into the Sahai CCA2-
secure encryption scheme, we obtain a scheme that is only slightly more involved than the original
CCA1-secure encryption scheme of Naor and Yung. Thus, we provide an alternative (and simpler
proof) to the following theorem:

1This is in contrast to regular NIZK proof systems where soundness is only guaranteed relative to a uniformly
distributed reference string.
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Theorem 1 Assuming the existence of enhanced trapdoor permutations 2, there exists public-key

encryption scheme that is secure against adaptive chosen-ciphertext (CCA2) attacks.

Related work. The focus of this work is the construction of public-key encryption schemes that
are secure against adaptive chosen-ciphertext attacks, assuming only the existence of enhanced
trapdoor permutations. As we have mentioned above, the first such scheme was presented by
Dolev, Dwork and Naor [7]. On the other hand, our construction builds rather directly on the
chain of works of Naor and Yung [14], Sahai [16] and De Santis et al. [6].

The first efficient CCA2-secure encryption scheme (proved in the standard model) was pre-
sented in a breakthrough work by Cramer and Shoup [4]. However, their construction relies on
a specific complexity assumption (namely, the Decisional Diffie-Hellman assumption). Recently,
they presented other CCA2-secure schemes, relying on other assumptions (some of which are more
standard) [5]. (We stress that our work is incomparable to theirs. On the one hand, they achieve
high efficiency while relying on specific complexity assumptions. On the other hand, we assume
only the existence of trapdoor permutations, but obtain a scheme that is very inefficient due to the
generic NIZK proof that is used.)

Much work on the problem of efficient CCA2-secure encryption has been carried out in the
random-oracle model; the most famous of these being OAEP [1]. However, when the random
oracle is replaced by a concrete hash function, the security argument becomes heuristic only. Thus,
the existence of these schemes does not constitute a proof of Theorem 1.

Organization. As we have mentioned, the technical contribution of this paper is the construc-
tion of a simple one-time simulation-sound NIZK. Therefore, the main body of the paper focuses
on this issue. In particular, Section 2 contains the formal definitions of simulation-sound NIZK
proof systems and the cryptographic tools necessary for our construction. Then, in Section 3 we
present our construction of a one-time simulation-sound NIZK and its proof of correctness. For the
sake of completeness, in Section 4 we describe the Sahai CCA2-secure encryption scheme, and in
Appendix A we provide its proof of correctness. These latter results are reproduced from [16].

2 Definitions and Cryptographic Tools

2.1 Definitions

In this section, we present the definitions for adaptive non-interactive zero-knowledge (NIZK) and
one-time simulation-sound adaptive NIZK. Our formal definitions are essentially taken from [10, 16].
We denote the security parameter by n, and an unspecified negligible function by µ(n) (i.e., µ(n)
grows slower than 1/p(n) for every polynomial p(·)). We often omit explicit reference to the security
parameter n in our notations.

Adaptive non-interactive zero-knowledge. In the model of non-interactive zero-knowledge
proofs [3], the prover and verifier both have access to the same uniformly distributed reference
string. A proof in this model is a single string sent by the prover to the verifier, and the reference
string is used for both generating proofs and verifying their validity. The soundness of the proof
system is such that if the reference string is indeed uniformly distributed, then with overwhelming

2Enhanced trapdoor permutations have the property that a random element generated by the domain sampler
is hard to invert, even given the random coins used by the sampler. See [11, Appendix C] for a full discussion on
enhanced trapdoor permutations and why they are needed.
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probability, no false theorem can be proved (even by an all-powerful cheating prover). On the
other hand, the zero-knowledge property is formulated by stating that there exists a simulator who
outputs a reference string and a proof, that are computationally indistinguishable from what is
viewed by a verifier in the real setting described above. Notice that the simulator generates both
the reference string and the proof and is not expected to simulate proofs relative to a uniformly
distributed reference string (which would not be possible to achieve). In particular, this means that
the simulator may choose the reference string to be pseudorandom, and according to some specific
distribution.

The adaptivity of a NIZK system refers both to the soundness and zero-knowledge. In both
cases, an adaptive NIZK is one where the statement to be proven is chosen only after the reference
string has been fixed. Thus, the cheating prover first receives a uniformly distributed reference
string, and then attempts to find some x 6∈ L for which it can provide an accepting proof π for x.
The adaptive soundness condition states that the probability that such a π is an accepting proof is
negligible. The adaptive zero-knowledge property is formulated by having the simulator output a
reference string before giving it a statement x for which it must generate a simulated proof. In the
formal definition below, a function f is specified that “chooses” a statement x to be proven, based
on the reference string R (for soundness, f chooses x 6∈ L, whereas for zero-knowledge f chooses
x ∈ L).

Definition 2 (adaptive non-interactive zero-knowledge): A pair of probabilistic machines (P, V )
is called an adaptive non-interactive zero-knowledge proof system for a language L if the following

holds:

• Completeness: For every x ∈ L,

Pr[V (x, R, P (x, R)) = 1] > 1 − µ(|x|)

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

• Adaptive Soundness: For every function f :{0, 1}poly(n) → {0, 1}n \ L and prover P ∗,

Pr[V (f(R), R, P ∗(R)) = 1] < µ(n)

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

• Adaptive Zero-Knowledge: There exists a probabilistic polynomial-time simulator S = (S1, S2)
such that for every probabilistic polynomial-time function f : {0, 1}poly(n) → {0, 1}n ∩ L, the

ensembles {f(Rn), Rn, P (f(Rn), Rn)}n∈N and {Sf (1n)}n∈N are computational indistinguishable,

where Rn is a random variable uniformly distributed in {0, 1}poly(n) and Sf (1n) denotes the

output from the following experiment:

1. (r, s) ← S1(1
n): Simulator S1 (upon input 1n) outputs a reference string r and some state

information s to be passed on to S2.

2. x ← f(r): the statement x to be proven is chosen.

3. π ← S2(x, r, s): Simulator S2 generates a simulated proof π that x ∈ L.

4. Output (x, r, π).

Adaptive NIZK proof systems can be constructed from any enhanced trapdoor permutation [8]. We
note that any NIZK proof system is witness-indistinguishable, where informally speaking, witness-
indistinguishability means that proofs generated using one witness are indistinguishable from proofs
generated using a different witness [9].
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One-time simulation-sound adaptive NIZK. Loosely speaking, a NIZK proof system is one-
time simulation-sound if the soundness condition holds even with respect to a reference string
generated by the simulator (and not uniformly distributed), and even after a single simulated proof
(of a not necessarily correct statement) has been observed. Of course, it is always possible for a
cheating prover to simply copy the simulated proof that it observed. Therefore, the requirement is
that it is infeasible to efficiently compute any other pair of an incorrect statement and accepting
proof.

Definition 3 (one-time simulation soundness): Let (P, V ) be an adaptive NIZK proof system for a

language L, and let S = (S1, S2) be a simulator for (P, V ). Then, we say that (P, V, S) is one-time
simulation-sound, if for every probabilistic polynomial-time adversary A = (A1, A2), it holds that

the probability that A succeeds in the following experiment is negligible:

1. (r, s) ← S1(1
n).

2. (x, a) ← A1(r): Adversary A1 receives the (simulator-generated) reference string r and outputs

a statement x for which it wants to see a proof, and state information a for A2.

3. π ← S2(x, r, s).

4. (x′, π′) ← A2(x, r, π, a): Adversary A2 receives the simulated proof, and outputs a statement

x′ and a proof π′ that x′ ∈ L.

5. We say that A succeeds if it outputs an accepting proof of a false statement (and did not copy

the proof π). That is, A succeeds if x′ 6∈ L, (x′, π′) 6= (x, π) and V (x′, r, π′) = 1.

If there exists an S such that (P, V, S) is one-time simulation sound, then we say that the proof

system (P, V ) is a one-time simulation-sound adaptive NIZK.

As we have mentioned above, the notion of simulation-soundness was first introduced by [16] who
also presented a construction for one-time simulation-soundness (and an extension to allow for
any predetermined polynomial number of simulated proofs). Unbounded simulation-soundness
(allowing any polynomial number of simulated proofs) was later demonstrated in [6].

2.2 Cryptographic Tools

In this section, we present informal definitions for the cryptographic tools that we use in construct-
ing our one-time simulation-sound NIZK. These tools are standard; however we add minor (yet
important) additional requirements. We note that it is easy to obtain these additional require-
ments using known techniques.

Non-interactive perfectly-binding commitment schemes. Loosely speaking, a non-interactive
perfectly-binding commitment scheme is a probabilistic algorithm C with the following properties:

• Hiding: for every two strings s1 and s2 (such that |s1| = |s2|), it is hard to distinguish {C(s1)}
from {C(s2)}.

• Binding: for every two strings s1 6= s2, the range of C(s1) is disjoint from the range of C(s2).
(Thus, given C(s1), it is impossible to decommit to any value other than s1.)
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We denote by C(s; r) the output of the commitment scheme C upon input s ∈ {0, 1}n and using
random coins r ∈R {0, 1}poly(n). (Thus, the binding property states that for s1 6= s2, it holds
that C(s1; r1) 6= C(s2; r2) for every r1 and r2.) In addition to the above, we require the following
properties:

• Pseudorandom range: We require that the output of the commitment algorithm be pseudoran-
dom. This property is fulfilled by the following commitment scheme based on one-way permuta-

tions: Let f be a one-way permutation and b a hard-core of f . Then, C(σ)
def
= (f(Un), b(Un)⊕σ),

where Un denotes the uniform distribution over {0, 1}n.

• Negligible support: We require that a random string is a valid commitment with only negligible
probability. This is easily obtained from the above-described commitment scheme based on
one-way permutations, by requiring that any commitment to s is preceded by a commitment to
0n. That is, define C ′(s) = (Commit(0n), Commit(s)), where each bit is separately committed
to using C(σ) = (f(Un), b(Un) ⊕ σ).3

We note that the Naor commitment scheme [12] as is, has both of these above properties. (Although
the [12] commitment scheme is interactive, the receiver message can be hardwired into the common
reference string, and so suffices for our needs here.)

“Strong” one-time signature schemes. Loosely speaking, a one-time signature scheme is
an existentially unforgeable signature scheme (secure against a chosen-message attack), with the
restriction that the signer must only sign a single message with any key. Thus, such a signature
scheme is defined as a triplet of algorithms (G, Sign, Verify), where G is a probabilistic generator
that outputs a signing-key sk and a verification-key vk. The validity of the signature scheme
fulfills that for every message m, Verify(vk, m,Sign(sk, m)) = 1, where (vk, sk) ← G(1n) (i.e.,
honestly generated signatures are always accepted). A signature scheme is said to be secure if the
probability that an efficient forging algorithm S∗ succeeds in generating a forgery given a single
chosen signature is negligible. More formally, the following experiment is defined: The generator
G is run, outputting a key-pair (vk, sk). Then, S∗ is given vk and chooses a message m for which
it receives a signature σ = Sign(sk, m). Following this, S∗ outputs a pair (m′, σ′) and it is required
that the probability that Verify(vk, m′, σ′) = 1 and m′ 6= m is negligible.

As with the commitment scheme, here we also require an additional property. The standard
definition of security requires that the forger cannot generate a valid signature on any different
message. We strengthen this and require that the forger cannot even generate a different valid
signature on the same message. That is, we modify the above (informal) definition and require
that the probability that Verify(vk, m′, σ′) = 1 and (m′, σ′) 6= (m, σ), is negligible. (Thus, the only
valid signature the forger can present is the exact one that it has seen.) Such a signature scheme
can be constructed using universal one-way hash functions [13] and 1–1 one way functions (in a
similar fashion to the standard construction based on any one-way function [15]). By using 1–1
one-way functions, we ensure that each message has a unique signature and therefore the above
strengthening is achieved.

3We remark that if it suffices to obtain soundness for polynomial-time provers only (i.e., computational soundness),
then the commitment scheme used need not have negligible support.
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3 Simple One-Time Simulation-Sound NIZK

The motivation behind our construction is as follows. Following [8], (and similarly to [6]) the
reference string for the non-interactive proof is divided into two parts. The first part of the string
is used by the simulator to simulate a proof, while the second is really used for proving (according
to a given NIZK scheme). Typically, in order to prove that x ∈ L, a compound statement of the
following structure is proved: either the first part of the reference string has some special property
or x ∈ L. Now, when the reference string is chosen at random, the first part will not have this
special property (except with negligible probability). Therefore, if the proof is accepting it must
be that x ∈ L, and soundness holds for the proof system. Zero-knowledge is derived from the fact
that the simulator is able to generate a pseudorandom string that does have the special property,
enabling it to “cheat” in the proof.

In our scheme, the special property used is that the first part of the reference string is a
commitment to a verification-key vk of a one-time signature scheme. That is, the prover sends a
verification-key vk along with the proof and proves that: either the first part of the reference string
is a commitment to this verification-key vk, or x ∈ L. Furthermore, the prover signs on the proof
using the associated signing-key sk (and the verifier checks the validity of this signature using vk).
A real prover chooses a random pair of signature keys and generates a proof based on the fact that
x ∈ L.

In contrast, the simulator works by generating the reference string so that indeed the first part
is a commitment to a verification-key vk (for which it knows the associated signing-key sk). Then,
the simulator proves the proof using this fact (rather than the fact that x ∈ L). Notice that the
simulator is also able to sign on the proof, as required, because it knows the associated secret-key.
The fact that the scheme is simulation-sound follows from the observation that any accepting proof
to a false statement must use the property that the first part of the reference string is a commitment
to vk. In particular, this means that such a proof is accompanied with a signature using sk (where
sk is known only to the simulator). Thus, it is only possible to generate an accepting proof to a
false statement if it is possible to forge a signature.

We now formally present the proof system. In the presentation, we refer to an adaptive NIZK
proof system, denoted (P, V ), and to commitment and signature schemes. These commitment and
signature schemes have the additional properties described in Section 2.2.

Protocol 1 (NIZK Scheme Π)

• Common reference string: (r1, r2)

• Prover protocol (upon input x ∈ L and a witness w for x):

1. Choose a random pair of signature keys (vk, sk) for a strong one-time signature scheme.

2. Let L′ be the following language:

L′ = {(x, r1, vk) | x ∈ L or r1 = Commit(vk)}

Then, generate a non-interactive proof (using reference string r2) that (x, r1, vk) ∈ L′. That

is, invoke the NIZK prover P for L′ on input (x, r1, vk), auxiliary-input w and reference

string r2, obtaining a proof p.

3. Compute σ = Signsk(x, p).

4. Output π = (vk, x, p, σ).

• Verifier protocol (upon input x and a proof π = (vk, x, p, σ)):
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1. Check the signature using vk. That is, check that Verifyvk((x, p), σ) = 1.

2. Invoke the NIZK verifier V and check that p constitutes a correct proof that (x, r1, vk) ∈ L′

when the reference string equals r2 (i.e., check that V ((x, r1, vk), r2, p) = 1).

3. Output 1 if and only if the above two checks succeed.

We now proceed to prove the correctness of Protocol 1:

Theorem 4 Assume that (P, V ) is a secure adaptive NIZK proof system for NP, and that the

signature and commitment schemes meet the requirements as described in Section 2.2. Then, Pro-

tocol 1 constitutes a one-time simulation-sound adaptive NIZK proof system for NP.

Proof: We begin by proving that Protocol 1 is an adaptive non-interactive proof system. Com-
pleteness is immediate. Soundness follows from the fact that the commitment scheme used has
negligible support (see Section 2.2), and thus a random string is a valid commitment with only
negligible probability. Therefore, when r1 is uniformly chosen, x 6∈ L implies that (x, vk, r1) 6∈ L′,
except with negligible probability. Adaptive soundness then follows from the adaptive soundness
of the NIZK proof system (P, V ) for which proofs are generated using the uniformly distributed
reference string r2.

We now proceed to demonstrate the zero-knowledge property. As we mentioned in the motivat-
ing discussion, intuitively, zero-knowledge holds because a simulator can set r1 to be a commitment
to a verification-key vk, for which it knows the associated signing-key sk. Then, the simulator
proves that (x, vk, r1) ∈ L′ based on the fact that r1 = Commit(vk), and without any witness to
the fact that x ∈ L. Since, the commitment scheme used has a pseudorandom range, such a r1

is indistinguishable from a random string. Furthermore, the NIZK proof system (P, V ) is witness
indistinguishable and therefore the simulated proof cannot be distinguished from a real one. We
now provide the exact description of the simulator. The simulator is divided into two parts: S1

who chooses the reference string and S2 who generates simulated proofs.

1. Simulator S1:

(a) Choose a random pair of signature keys (vk, sk) for a strong one-time signature scheme.

(b) Compute r1 = Commit(vk) = C(vk; rc) for a random rc.

(c) Choose a uniformly distributed string r2.

(d) Output (r1, r2) and s = (vk, sk, rc) where s is S1’s output state information to be given
to S2.

2. Simulator S2 (upon input x, (r1, r2) and s = (vk, sk, rc)):

(a) Invoke the NIZK prover for L′ (as defined in Protocol 1) on input (x, r1, vk), auxiliary-
input rc and reference string r2, and obtain a proof p. (Note that the witness provided
to the NIZK prover is for r1 = Commit(vk), and not the witness for x ∈ L.)

(b) Compute σ = Signsk(x, p).

(c) Output π = (vk, x, p, σ).

There are two differences between a real proof and that provided by the simulator (where we con-
sider the joint distribution {x, (r1, r2), π} of the reference string and the proof). Firstly, the string
r1 generated by S1 is only pseudorandom (and not random as in a real setting). Secondly, the proof
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p provided by S2 is based on the witness for the fact that r1 = Commit(vk), rather than being
based on the witness for x ∈ L. Intuitively, since r1 is pseudorandom and the NIZK is witness
indistinguishable, these distributions cannot be distinguished. Formally, one defines a hybrid dis-
tribution in which r1 = Commit(vk) and yet the proof p is based on the witness for x ∈ L. Then,
the hybrid is indistinguishable from a real proof by the indistinguishability of r1 from a random
string (everything else is exactly the same). Furthermore, the hybrid is indistinguishable from a
simulated proof due to the witness indistinguishability of the NIZK. (Notice that the reference
string r2 for this NIZK is uniformly distributed, and thus the witness indistinguishability property
holds.) The indistinguishability of a simulated proof from a real one follows. (We note that from
the above proof it follows that the underlying non-interactive proof need not be zero-knowledge;
rather, adaptive witness indistinguishability suffices.)

One-time simulation-soundness. Until now, we have shown that Protocol 1 constitutes a non-
interactive zero-knowledge proof system. It remains to show that it is also one-time simulation-
sound. Intuitively, one-time simulation-soundness holds for the following reason. Let (vk, sk) be
the signature keys chosen by the simulator S1. Then, if an adversary generates a proof based on the
fact that r1 = Commit(vk), it must sign on the proof using the key sk (otherwise, the verification of
the signature will fail). This constitutes a successful forgery of the signature scheme and therefore
can only occur with negligible probability. Details follow.

Assume by contradiction that there exists an adversary A = (A1, A2) (as in Definition 3)
who sees a simulated proof π for a statement x, and with non-negligible probability outputs a
pair (x′, π′) 6= (x, π) where x′ 6∈ L and π′ is an accepting proof. That is, let (r1, r2) be the
reference string output by S1, let x be the statement that A1 outputs upon receiving (r1, r2), and let
π = (vk, x, p, σ) be the simulated proof of x ∈ L that is supplied by S2. Then, by the contradicting
assumption, with non-negligible probability A2 outputs an accepting proof π′ = (vk′, x′, p′, σ′), such
that (x′, π′) 6= (x, π), and x′ 6∈ L. We consider two different cases:

1. Case 1 – vk′ 6= vk: First recall that by the definition of the simulator S1, the string r1 is such
that r1 = Commit(vk). However, vk′ 6= vk and therefore we have that r1 6= Commit(vk′)
(by the perfect binding property of the commitment scheme). Therefore, x′ 6∈ L implies that
(x, r1, vk) 6∈ L′. By the (unconditional) soundness of the underlying NIZK scheme, we have
that the probability that p′ (and therefore π′) is an accepting proof is at most negligible.

2. Case 2 – vk′ = vk: In this case, we use A to contradict the (strong) security of the signature
scheme. Recall that A’s proof π′ is only accepting if Verifyvk′((x′, p′), σ′) = 1. Since (x′, π′) 6=
(x, π) and vk′ = vk, it holds that (x′, p′, σ′) 6= (x, p, σ). Therefore, we have that A received
a message and signature ((x, p), σ) and generated a valid message and signature ((x′, p′), σ′),
where ((x′, p′), σ′) 6= ((x, p), σ). By the strong security of the signature scheme, A can succeed
in doing this with only negligible probability.

Formally, we construct a forger A′ who receives vk and a single oracle query to Signsk(·) and
successfully forges a signature. A′ works exactly like the simulator S except that in Step
(b) of S2’s specification, it “computes” the signature by consulting its oracle. Notice that
S1 and S2 need no knowledge of sk in order to complete all their other steps. Thus, A′ can
perfectly emulate the simulation setting for A. Therefore, if A outputs π′ = (vk, x′, p′, σ′),
where (x′, p′, σ′) 6= (x, p, σ) and σ′ is a valid signature on (x′, p′), then this constitutes a suc-
cessful forgery of the signature scheme. This implies that A succeeds with at most negligible
probability.

This completes the proof.

9



We remark that enhanced trapdoor permutations suffice for securely obtaining all the building
blocks required in the construction of Protocol 1. We therefore have the following result:

Proposition 3.1 Assuming the existence of enhanced trapdoor permutations, there exists a one-

time simulation-sound adaptive NIZK proof system.

4 The Encryption Scheme

In this section, we describe the CCA2-secure public-key encryption scheme of Sahai [16]. This
scheme is exactly the scheme of Naor-Yung [14], with the modification that the NIZK used is one-
time simulation-sound. We stress that our contribution is in Section 3, where we present a simple
one-time simulation-sound NIZK. Thus, we directly plug our NIZK into the construction (and
proof) of [16], obtaining a new (and simpler) CCA2-secure public-key encryption scheme. (The
definition of chosen-ciphertext security can be found in Appendix A. For the exposition below, we
assume familiarity with these concepts and definitions.)

The Naor-Yung paradigm. As we have mentioned, the [16] encryption scheme is based on the
Naor-Yung paradigm [14]. According to this paradigm, the plaintext is encrypted twice with inde-
pendent keys (from an encryption scheme that is secure against chosen-plaintext attacks) and then
a NIZK proof is provided to ensure that both encryptions are indeed of the same plaintext. Passive
chosen-ciphertext security (CCA1) or adaptive chosen-ciphertext security (CCA2) are achieved by
applying NIZKs with certain “special” properties. For CCA1, the NIZK is such that soundness
holds even with respect to the pseudorandom string output by the simulator (as long as a simulated
proof has not been observed).4 For CCA2, the NIZK must be one-time simulation-sound. From
here on, we focus on the CCA2 case. However, we stress that the CCA2 scheme and its proof of
security are almost identical to that of the CCA1 scheme. This highlights one of the conceptual
advantages of the [16] approach; both CCA1 and CCA2-secure encryption schemes can be presented
and proved together (and for almost the price of one).

Formal definition of the scheme. We now present the construction of the encryption scheme.
Let (G, E, D) be a public-key encryption scheme that is secure against chosen-plaintext attacks.
Furthermore, let (P, V ) be a one-time simulation-sound adaptive NIZK proof system for the fol-
lowing NP-language:

L = {(c1, c2, pk1, pk2) | ∃m s.t. c1 = Epk1
(m) & c2 = Epk2

(m)}

That is, L is the language of pairs of ciphertexts (and public-keys), such that both ciphertexts are
encryptions of the same message (we denote c = Epk(m), if c is an encryption of m). Then, the
CCA2-secure scheme, denoted (G, E ,D), is defined as follows:

Construction 2 (adaptive chosen-ciphertext encryption scheme (G, E ,D)):

• Key Generation: Obtain two independent key sets from G. That is, obtain (pk1, sk1) ← G(1n)
and (pk2, sk2) ← G(1n). Furthermore, choose a uniformly distributed reference string r of the

correct length for the NIZK proof system (P, V ).

• Public Key PK = (pk1, pk2, r)

4This is in contrast with standard NIZK proof systems, where soundness is guaranteed only if the reference string
is uniformly distributed.
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• Secret Key SK = (sk1, sk2)

• Encryption: In order to encrypt a plaintext m, compute c1 = Epk1
(m; r1) and c2 = Epk2

(m; r2),
for random strings r1 and r2. Then, invoke the NIZK prover P upon (c1, c2, pk1, pk2) with

reference string r, obtaining a proof π. Notice that P can prove this statement efficiently when

it is given the witness (m, r1, r2). Finally, output E(m) = (c1, c2, π).

• Decryption: In order to decrypt (c1, c2, π), first verify that π is an accepting proof for the state-

ment (c1, c2, pk1, pk2) with reference string r. If yes, then decrypt c1 and output the decryption

value m.5

The fact that the above encryption scheme is secure against adaptive chosen-ciphertext attacks has
been proven in [16]. That is,

Theorem 5 (Sahai [16]): Assume that (G, E, D) is a public-key encryption scheme secure against

chosen-plaintext attacks, and that (P, V ) is a one-time simulation-sound adaptive NIZK proof sys-

tem. Then, the encryption scheme (G, E ,D) of Construction 2 is secure against adaptive chosen-

ciphertext attacks.

Combining Theorem 5 with Proposition 3.1, we obtain the existence of CCA2-secure encryption
assuming enhanced trapdoor permutations only (i.e., we obtain Theorem 1). For the sake of
completeness, we reproduce the proof of Theorem 5 in Appendix A (below, we describe the basic
idea behind this proof).

Motivation for the proof of security. The basic idea underlying Construction 2 of (G, E ,D) is
that it is enough to use only one secret-key in order to decrypt ciphertexts. This is because anyone
can verify the validity of a NIZK proof. Therefore, given knowledge of any of the two secret-keys,
decryption can be carried out by verifying the NIZK and then decrypting. Since the NIZK proof
ensures that both encryptions are to the same plaintext, it does not matter which secret-key is used.
Now, consider an adversary Acpa who carries out a chosen-plaintext attack (CPA) on the scheme
(G, E, D). (Recall that in a CPA attack, the adversary gets no decryption oracle.) Adversary Acpa

receives a public-key pk1 and proceeds to generate a simulated public-key for the scheme (G, E ,D)
which incorporates pk1. Specifically, Acpa chooses a second key-pair (pk2, sk2) and a NIZK reference
string r, thereby obtaining a public-key (pk1, pk2, r) for (G, E ,D). Furthermore, Acpa knows one of
the two secret-keys (namely sk2). Therefore, as we have discussed above, Acpa is able to correctly
decrypt ciphertexts. The important point is that Acpa is able to correctly simulate a decryption

oracle for a CCA2-adversary A who attacks (G, E ,D). In other words, given only chosen-plaintext
ability, Acpa can simulate an adaptive chosen-ciphertext attack for a CCA2-adversary A.

The above shows how the decryption oracle in a CCA2-attack can be simulated by Acpa. How-
ever, Acpa must also be able to generate a challenge ciphertext for A from (G, E ,D), given its own
challenge ciphertext from (G, E, D). That is, during its attack, Acpa receives some challenge cipher-
text c1. Based on c1, Acpa must provide A with a challenge. Furthermore, it must be shown that if
A can distinguish ciphertexts in (G, E ,D) with non-negligible probability, then Acpa can use this to
also distinguish ciphertexts in (G, E, D). Loosely speaking, Acpa generates the needed ciphertext
by simply computing c2 = Epk2

(0n) (i.e., c2 is an encryption to garbage) and then providing a proof
π that c1 and c2 are encryptions of the same message. Of course, this statement may not be true

5Our choice of decrypting the first ciphertext c1 is arbitrary; equivalently, one could define the decryption algorithm
by having it decrypt c2.
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(since Acpa does not know if c1 is an encryption of 0n or of some other message). Nevertheless,
such a proof can be generated using the NIZK simulator, and this will be indistinguishable from
a real ciphertext. Thus, A receives the challenge ciphertext (c1, c2, π) in its CCA2-attack. The
point is that A’s challenge ciphertext contains c1 and therefore any “information” learned by A
about its challenge ciphertext (c1, c2, π) can be used by Acpa to derive information about its own
challenge ciphertext c1. Observe, however, that by the way Acpa constructs the challenge cipher-
text, it follows that A receives a simulated NIZK proof π during its attack. Furthermore, A is able
to ask for more decryptions of ciphertexts after seeing this simulated proof, and these ciphertexts
contain NIZK proofs. In order for the decryption simulation of Acpa described above to be correct,
it must hold that A cannot generate accepting proofs of false statements, even in such a setting.
This is where the one-time simulation-soundness of the NIZK is utilized. Thus we have that Acpa

can simulate a complete CCA2-attack for A.
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A Proof of Theorem 5

In this appendix, for the sake of completeness, we reproduce the proof of Theorem 5 from [16]. We
begin by providing the formal definition of public-key encryption schemes that are secure under
chosen-ciphertext attacks. We assume familiarity with the notion and motivation behind chosen-
ciphertext attacks, and therefore go straight to presenting the formal definition:

Definition 6 (indistinguishability of encryptions under adaptive chosen-ciphertext attacks): A

public-key encryption scheme (G, E ,D) is indistinguishable under adaptive chosen-ciphertext attacks
(CCA2) if for every pair of probabilistic polynomial-time oracle machines A = (A1,A2),

|Pr[ExptA(0) = 1] − Pr[ExptA(1) = 1]| < µ(n)

where ExptA(b) is defined as follows for b ∈ {0, 1} (below, Dsk is an oracle that decrypts according

to the secret-key sk and, D¬c
sk is an analogous oracle that decrypts any ciphertext except for c):

1. (pk, sk) ← G(1n): generate a public and secret key-pair.

2. (m0, m1, a) ← ADsk

1 (pk), where |m0| = |m1|: A1 receives a decryption oracle and outputs a

pair of plaintexts for the challenge, and state information a for A2.

3. c ← Epk(mb): compute the challenge ciphertext
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4. b′ ← A
D¬c

sk

2 (c, a): A2 receives the challenge ciphertext, access to a (restricted) decryption oracle

and the state information a from A1, and outputs a guess b′ for b.

5. Output b′.

We note that if A2 is not given access to a decryption oracle and everything else remains the
same, then the encryption scheme is said to satisfy passive chosen-ciphertext security (CCA1). If
in addition, no decryption oracle is given to A1, then the scheme is said to satisfy chosen-plaintext
security (CPA).

We now proceed to formally prove that Construction 2 constitutes a CCA2-secure public-key
encryption scheme. (Motivating discussion can be found at the end of Section 4.)

Theorem 7 (Theorem 5 – restated): Let (G, E, D) be an encryption scheme that is indistinguish-

able under chosen plaintext attack and let (P, V ) be a one-time simulation sound adaptive NIZK
proof system. Then, the encryption scheme (G, E ,D) of Construction 2 is indistinguishable under

adaptive chosen-ciphertext attack.

Proof: Let A be any (probabilistic polynomial-time) CCA2-adversary. We begin by describing
a mental experiment in which A runs its attack. The difference between the mental experiment
and a real attack is that the challenge ciphertext received by A is not properly generated. Rather,
the NIZK proof is generated by the NIZK simulator S = (S1, S2) and the two encryptions may not
be to the same message. The experiment is defined as follows (the item numbers match those of
ExptA(b) in Definition 6):

Experiment ExptSA(b1, b2):

1. A public and secret key-pair is generated:

• (r, s) ← S1(1
n): choose a simulator-generated reference string r for the public-key.

• (pk1, sk1), (pk2, sk2) ← G(1n): generate two public and secret key pairs from the CPA-
secure encryption scheme.

Define pk = (pk1, pk2, r) and sk = (sk1, sk2).

2. (m0, m1, a) ← ADsk

1 (pk), where |m0| = |m1|. (We note that the decryption oracle here is
defined exactly as in Construction 2. That is, it first verifies the NIZK proof using reference
string r, and then decrypts using sk1.)

3. Set up the challenge ciphertext:

• c1 ← Epk1
(mb1)

• c2 ← Epk2
(mb2)

• π ← S2((c1, c2, pk1, pk2), r, s) (π is a simulated NIZK proof of the fact that Dsk1
(c1) =

Dsk2
(c2)).

Define c = (c1, c2, π)

4. b′ ← A
D¬c

sk

2 (c, a).

5. Output b′.
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There are two differences between ExptSA(b1, b2) (the mental experiment) and ExptA(b) (from Def-
inition 6). First, in the mental experiment, the challenge ciphertext is made up of an encryption
to mb1 and an encryption to mb2 , where b1 may not equal b2. On the other hand, in ExptA(b),
the challenge ciphertext contains two encryptions of the same message mb. Second, in the mental
experiment, the NIZK reference string and the proof that is included in the challenge ciphertext
are simulator-generated (and not real). We first claim that if b1 = b2, then the fact that the NIZK
is simulated essentially makes no difference. That is,

Lemma A.1 For every probabilistic polynomial-time A and for any b ∈ {0, 1}

∣

∣

∣
Pr[ExptA(b) = 1] − Pr[ExptSA(b, b) = 1]

∣

∣

∣
< µ(n)

Proof: Intuitively, this follows from the zero-knowledge property of the NIZK proof system (the
only difference between the experiments relates to this point). That is, we construct a distinguisher
D for the (P, V ) proof system that distinguishes a simulated proof from a real one with the same
probability as the difference between the experiments in the claim. Distinguisher D works as
follows: D receives a reference string r, chooses (pk1, sk1), (pk2, sk2) ← G(1n) and invokes A on
the public-key pk = (pk1, pk2, r), while emulating the decryption oracle Dsk for A. Notice that D
is able to carry out this decryption because it knows the secret key sk1, and the NIZK proofs can
be verified by anyone. When A outputs (m0, m1) for the challenge, D computes c1 = Epk1

(mb)
and c2 = Epk2

(mb) and asks for a proof π of the correct statement (c1, c2, pk1, pk2). Distinguisher
D then gives A the challenge ciphertext (c1, c2, π) and outputs whatever A does.

Notice that if D receives a real proof, then it perfectly simulates ExptA(b). On the other hand,
if D receives a simulated proof, then it perfectly simulates ExptSA(b, b). Thus, D’s advantage in
distinguishing simulated proofs from real proofs is exactly |Pr[ExptA(b) = 1]−Pr[ExptSA(b, b) = 1]|.
By the adaptive zero-knowledge property of (P, V ), this advantage is negligible. It thus follows
that the difference in the probabilities in the lemma is also negligible.

Before proceeding, we prove a claim stating that when A participates in ExptSA(b1, b2), with over-
whelming probability all ciphertext queries to its decryption oracle that contain accepting NIZK
proofs, are of valid ciphertexts. Formally, we say that a ciphertext c′ = (c′1, c

′
2, π

′) is invalid with

an accepting NIZK, if Dsk1
(c′1) 6= Dsk2

(c′2), and yet V ((c′1, c
′
2, pk1, pk2), r, π

′) = 1. Intuitively, if any
of A’s ciphertext queries are of the above form, then this means that A generated an accepting
NIZK of a false statement. Thus, A could be used to contradict the one-time simulation-soundness
of (P, V ).

Claim A.2 Let A be participating in ExptSA(b1, b2) for some b1, b2 ∈ {0, 1}. Then, the probability

that during the experiment, A queries its oracle with an invalid ciphertext that has an accepting

NIZK proof (and is not the challenge), is negligible.

Proof: This claim holds because if A succeeds in producing a false proof, then it can be used by
an adversary A to contradict the one-time simulation-soundness of (P, V ). In particular, A receives
a simulator reference string r and sets up a public-key (pk1, pk2, r) (where it knows both sk1 and
sk2). Then, A runs the rest of ExptSA(b1, b2) in the same way as D in the proof of Lemma A.1.
That is, A invokes A on the public-key pk = (pk1, pk2, r), while emulating the decryption oracle
Dsk for A (A knows the secret key sk1 and can verify NIZK proofs; therefore it can carry out
this decryption). When A outputs (m0, m1) for the challenge, A computes c1 = Epk1

(mb1) and
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c2 = Epk2
(mb2) and asks for a simulated proof π of the statement (c1, c2, pk1, pk2). A then gives A

the challenge ciphertext (c1, c2, π) and completes the simulation of ExptSA(b1, b2). It is easy to see
that this simulation of the experiment by A is perfect.

Throughout the entire simulation, A checks every ciphertext decryption request (c′1, c
′
2, π

′) from
A. (We note that if (c′1, c

′
2, π

′) equals the challenge ciphertext (c1, c2, π), then A ignores the query.)
If Dsk1

(c′1) 6= Dsk2
(c′2), and yet V ((c′1, c

′
2, pk1, pk2), r, π

′) = 1, then A outputs ((c′1, c
′
2, pk1, pk2), π

′)
and halts (A can check this because it knows both decryption keys and because it can verify the
validity of the NIZK proof π′). Therefore, if A outputs an invalid ciphertext with an accepting proof
in ExptSA(b1, b2), it follows that A outputs a false statement with an accepting proof. Furthermore,
since the simulation by A is perfect, A outputs such a false statement and an accepting proof with
the same probability as A does in the experiment. By the one-time simulation soundness of the
NIZK proof system (P, V ), it follows that A queries its decryption oracle with an invalid ciphertext
that has an accepting proof, with only negligible probability.

We are now ready to complete the proof of Theorem 5. By Lemma A.1, it suffices to show that,

∣

∣

∣
Pr[ExptSA(0, 0) = 1] − Pr[ExptSA(1, 1) = 1]

∣

∣

∣
< µ(n) (1)

We consider the hybrid experiment ExptSA(1, 0) and prove Eq. (1) by showing that both the following
hold:

∣

∣

∣
Pr[ExptSA(0, 0) = 1] − Pr[ExptSA(1, 0) = 1]

∣

∣

∣
< µ(n)

and
∣

∣

∣
Pr[ExptSA(1, 0) = 1] − Pr[ExptSA(1, 1) = 1]

∣

∣

∣
< µ(n)

Both of these equations are proven using analogous arguments. We therefore present the proof of
the first only. That is,

Lemma A.3 For every probabilistic polynomial-time A,

∣

∣

∣
Pr[ExptSA(0, 0) = 1] − Pr[ExptSA(1, 0) = 1]

∣

∣

∣
< µ(n)

Proof: This lemma is proven by showing that there exists a CPA-adversary Acpa who carries out
a chosen-plaintext attack and distinguishes encryptions from (G, E, D) with the same probability
as the difference between the experiments in the lemma. Adversary Acpa works by simulating the
experiment ExptSA(∗, 0) for A. Recall that A is allowed an adaptive chosen ciphertext attack in
this experiment, whereas Acpa has no decryption oracle at all. Therefore, Acpa must simulate the
decryption oracle for A during the attack.

Adversary Acpa:

1. Key generation: In the beginning of Acpa’s chosen plaintext attack, it receives a public-key
pk from the scheme (G, E, D). The first thing that Acpa does is set up a public-key for Acca2

from (G, E ,D). It does this by setting pk1 = pk, choosing another (independent) key-pair
(pk2, sk2), and obtaining the simulator reference string r for the one-time simulation-sound
NIZK (by running S1(1

n)). Then, Acpa invokes Acca2 on the public-key (pk1, pk2, r).

2. Pre-challenge decryption: For every decryption request (c1, c2, π) given by Acca2 to Acpa,
adversary Acpa decrypts by first checking that the proof π is correct, and then decrypting c2.
(Recall that Acpa knows the decryption key sk2 and is therefore able to decrypt c2.)
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3. Challenge generation: Following the above stage, Acca2 outputs two plaintext messages m0

and m1. Acpa also outputs these messages and receives back a challenge ciphertext c1 =
Epk1

(mb) for b ∈R {0, 1}. Then, Acpa computes c2 = Epk2
(m0). Furthermore, Acpa runs

the NIZK simulator to obtain a proof π that c1 and c2 are encryptions to the same message
(although this may not be true). Acpa then passes the challenge ciphertext (c1, c2, π) to Acca2.

4. Post-challenge decryption: Acpa continues to decrypt messages for Acca2 in the same way as
in the preprocessing stage.6

5. Output guess: Finally, Acca2 outputs a guess b′ for the bit b. Likewise, Acpa outputs this
same bit b′.

The main point of the simulation is as follows: by Claim A.2, all ciphertext queries made by A
that have accepting NIZKs are also valid (except with negligible probability). Therefore, in order
to simulate the decryption oracle, it is enough to verify the NIZK proof and decrypt using one of
either of the two secret-keys. This is in contrast to the actual decryption oracle who always uses
a specified key; in Construction 2, this key was specified to be sk1. Therefore, despite the fact
that Acpa uses sk2 in the simulation and not sk1, its simulation of the decryption oracle is correct
(except with negligible probability).7

Now, if the challenge ciphertext received by Acpa is an encryption of m0, then the probability
that the output of Acpa’s simulation equals 1 is negligibly close to that of ExptSA(0, 0). On the
other hand, if the challenge received by Acpa is an encryption of m1, then the probability that the
output of Acpa’s simulation equals 1 is negligibly close to that of ExptSA(1, 0). It follows that Acpa’s
advantage in distinguishing between encryptions of m0 and encryptions of m1 is negligibly close to
|Pr[ExptSA(0, 0) = 1] − Pr[ExptSA(1, 0) = 1]|. By the chosen-plaintext security of (G, E, D), we have
that this difference is negligible, as required.

This completes the proof of the theorem.

6This step in the simulation is essentially different to [14]. In their scheme, the NIZK used is not strong enough to
also ensure soundness in the post-challenge decryption phase. Therefore, the simulation must halt after the “challenge
generation” phase. The result is CCA1 security.

7We note that the proof of the fact that
∣

∣Pr[ExptS

A(1, 0) = 1] − Pr[ExptS

A(1, 1) = 1]
∣

∣ < µ(n) is easier regarding
this point. There, Acpa is defined analogously except that it uses sk1 to decrypt. Therefore, its simulation of the
decryption oracle in ExptS

A(1, ∗) is perfect, and Claim A.2 is not needed.
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