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Abstra
t

Cryptographi
 
omputations are often 
arried out on inse
ure devi
es for whi
h the

threat of key exposure represents a serious and realisti
 
on
ern. In an e�ort to mitigate

the damage 
aused by exposure of se
ret data stored on su
h devi
es, the paradigm of

forward se
urity was introdu
ed. In this model, se
ret keys are updated at regular

intervals throughout the lifetime of the system; furthermore, exposure of a se
ret key


orresponding to a given interval does not enable an adversary to \break" the system

(in the appropriate sense) for any prior time period. A number of 
onstru
tions of

forward-se
ure digital signature s
hemes and symmetri
-key s
hemes are known.

We present the �rst 
onstru
tion of a forward-se
ure publi
-key en
ryption s
heme

whose se
urity is based on the bilinear DiÆe-Hellman assumption in the random ora
le

model. Our s
heme 
an be extended to a
hieve 
hosen-
iphertext se
urity at minimal

additional 
ost. The 
onstru
tion we give is quite eÆ
ient: all parameters of the s
heme

grow (at most) poly-logarithmi
ally with the total number of time periods.

1 Introdu
tion

Exposure of se
ret keys 
an be a devastating atta
k on a 
ryptosystem sin
e su
h an atta
k

typi
ally implies that all se
urity guarantees are lost. Indeed, standard notions of se
urity

o�er no prote
tion whatsoever on
e the se
ret key of the system has been 
ompromised.

With the threat of key exposure be
oming more a
ute as 
ryptographi
 
omputations are

performed more frequently on small, unprote
ted, and easily-stolen devi
es (e.g., mobile

phones), new te
hniques are needed to deal with this 
on
ern.

A number of methods have been introdu
ed in an attempt to 
ounter this threat. Of


ourse, one may try to eliminate the o

urren
e of key exposure entirely by using tamper-

proof hardware or some variation of this idea. While this is an important dire
tion of re-

sear
h, su
h te
hniques are often too expensive or otherwise not pra
ti
al for the intended

appli
ation. A se
ond 
lass of approa
hes assumes instead that key exposure will o

ur and

seeks to minimize the resulting damage. Se
ret sharing [21℄, threshold 
ryptography [9℄, and

proa
tive 
ryptography [20, 14℄ | in whi
h se
rets are \split" a
ross multiple devi
es |

are perhaps the best-known approa
hes in this vein. Unfortunately, su
h solutions tend to

�

This work has re
ently been superseded by [8℄.

y
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be 
ostly; for one thing, they require multiple devi
es where a single devi
e would have pre-

viously suÆ
ed. Furthermore, threshold 
omputations are inherently intera
tive and hen
e

require extensive 
oordination between di�erent hosts; in settings where 
ommuni
ation

is at a premium (e.g., wireless networks), su
h 
omputations be
ome prohibitive. Finally,

note that for devi
es whi
h are inse
ure and are thus expe
ted to have a high in
iden
e of

physi
al 
ompromise, exposing se
rets stored on multiple devi
es may not be signi�
antly

more diÆ
ult than exposing the se
rets stored on a single devi
e.

In an e�ort to address these 
on
erns, the notion of forward se
urity was re
ently pro-

posed by Anderson [3℄ and later formalized by Bellare and Miner [4℄. The basi
 idea is to

divide the lifetime of the system into N intervals (or time periods) labeled 0; : : : ; N � 1.

The devi
e begins by storing se
ret key SK

0

; this se
ret key will \evolve" with time so that

SK

0

will be used during period 0, SK

1

will be used during period 1, and so on. At the

beginning of time period i the devi
e applies some fun
tion to the \previous" key SK

i�1

in

order to derive the \
urrent" key SK

i

; key SK

i�1

is then deleted. The 
urrent key is used

for all (se
ret) 
ryptographi
 operations during the 
orresponding period. The publi
 key

(assuming one exists) is never updated; instead, it remains �xed throughout the lifetime

of the system. A forward-se
ure s
heme guarantees that an adversary who learns SK

i

for

some i will be unable to \break" the se
urity of the system (in the appropriate sense) for

all time periods prior to i. Note that sin
e the adversary obtains all se
rets existing at

that point in time, the model inherently 
annot prevent the adversary from \breaking" the

se
urity of the system at time periods subsequent to i.

The forward-se
ure paradigm is quite general and 
an be applied to essentially any


ryptographi
 primitive; most resear
h thus far, however, has fo
used on the 
onstru
tion of

forward-se
ure signature s
hemes and the related 
ase of identi�
ation s
hemes. The generi


forward-se
ure signature s
heme of Anderson [3℄ was improved by Bellare and Miner [4℄ who

also present the �rst eÆ
ient and non-generi
 
onstru
tion. These initial works inspired a

sequen
e of improved 
onstru
tions yielding more eÆ
ient forward-se
ure signature s
hemes

as well as s
hemes giving tradeo�s among the various parameters [18, 2, 16, 19℄. Integrating

forward-se
ure signature s
hemes and threshold te
hniques has also been investigated [1, 22℄.

The only prior instan
e in whi
h forward-se
urity was 
onsidered for primitives other than

signature/identi�
ation s
hemes is the work of Bellare and Yee [5℄ fo
using on the private-

key setting.

Motivated by work on forward se
urity, the related notion of key-insulated 
ryptography

has re
ently been introdu
ed [10, 11℄. Although in both models the stored se
ret keys are

updated so as to limit the e�e
t of key exposures, the models are in fa
t in
omparable. On

one hand, the key-insulated model a
hieves a stronger level of se
urity in that, even after

multiple key exposures o

ur, all non-exposed time periods remain se
ure. On the other

hand, the pri
e for this additional se
urity is the (ne
essary) assumption of a (semi-)trusted

server whi
h is never 
ompromised and with whi
h the devi
e must intera
t at the beginning

of ea
h time period. In 
ertain s
enarios an assumption of this form is 
learly unwarranted.

1.1 Our Contribution

As mentioned above, almost all previous resear
h on forward-se
ure primitives (with the

ex
eption of [5℄) has fo
used on the 
ase of digital signature s
hemes. Indeed, the question of
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Key generation time O(logN)

En
ryption/De
ryption time O(logN)

Key update time O(logN)

Ciphertext length O(logN)

Publi
 key size O(1)

Se
ret key size O(log

2

N)

Table 1: Summary of dependen
ies on the total number of time periods N .

whether a (non-trivial) forward-se
ure publi
-key en
ryption s
heme 
ould be 
onstru
ted

has been open sin
e the introdu
tion of the forward-se
urity paradigm [3, 4℄. We show here

a simple and eÆ
ient 
onstru
tion of a forward-se
ure publi
-key en
ryption s
heme whose

se
urity may be based on the bilinear DiÆe-Hellman assumption (
f. [6℄) in the random

ora
le model. Using the Fujisaki-Okamoto transformation [12℄, 
hosen-
iphertext se
urity


an be a
hieved with minimal additional 
ost. The dependen
y of the parameters of our

s
heme on the total number of time periods N is quite good; in all 
ases, it is at most

poly-logarithmi
. The key details are summarized in Table 1. We stress that these results

should not be interpreted as indi
ating \merely" asymptoti
 eÆ
ien
y; in general (ex
ept

for the size of se
ret key storage), our s
heme is as eÆ
ient as log

2

N invo
ations of the

Boneh-Franklin identity-based en
ryption s
heme [6℄ and is therefore quite pra
ti
al for

reasonable values of N .

2 De�nitions and Preliminaries

Here, we provide de�nitions for key-evolving publi
-key en
ryption s
hemes and also de�ne

what it means for an en
ryption s
heme to be forward-se
ure. The former de�nition is a

straightforward adaptation of [4℄; the latter, however, is new and requires some 
are.

De�nition 1 A key-evolving publi
-key en
ryption s
heme ke-PKE = (Gen;Upd;En
;De
)

is a 4-tuple of algorithms su
h that:

� The probabilisti
 key generation algorithm Gen takes as input a se
urity parameter

1

k

and the total number of time periods N . It returns a publi
 key PK and an initial

se
ret key SK

0

.

� The probabilisti
 key update algorithm Upd takes as input a se
ret key SK

i�1

as well

as the index i of the 
urrent time period. It returns a se
ret key SK

i

for period i.

� The probabilisti
 en
ryption algorithm En
 takes as input a publi
 key PK, the index

i of the 
urrent time period, and a message M . It returns a 
iphertext C for period

i. We always represent the output as a pair hi; Ci and write hi; Ci  En


PK

(i;M).

� The deterministi
 de
ryption algorithm De
 takes as input a se
ret key SK

i

and a


iphertext hi; Ci. It returns a message M . We denote this by M := De


SK

i

(hi; Ci).
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We require the standard 
orre
tness 
ondition; namely, for any (PK;SK

0

) output by

Gen, any se
ret key SK

i


orre
tly generated for period i, all M , and all hi; Ci output

by En


PK

(i;M) we have M = De


SK

i

(hi; Ci).

A de�nition for forward-se
ure publi
-key en
ryption (PKE) does not follow immediately

from the 
orresponding de�nition for signature s
hemes. For one thing, in a forgery atta
k

the forged signature/message pair is the �nal output of the adversary whereas in the 
ase

of PKE the adversary might be able to perform additional useful \atta
ks" even after

observing a 
iphertext hi; Ci. To be more spe
i�
, one 
an imagine two plausible de�nitions

of forward-se
ure PKE: (1) the adversary must obtain some se
ret key SK

i

before requesting


iphertext hj; Ci for some j < i; or (2) the adversary must request 
iphertext hj; Ci before

he 
an obtain some se
ret key SK

i

with i > j. To make matters worse, neither de�nition of

se
urity seems to imply the other. Our de�nition 
aptures the strongest notion of se
urity

by giving the adversary 
ontrol over the ordering of the above events.

De�nition 2 A key-evolving publi
-key en
ryption s
heme ke-PKE is forward-se
ure in the

sense of indistinguishability (fs-IND) if no ppt adversary has non-negligible advantage in

the following game:

Setup: Gen(1

k

; N) is run, yielding output (PK;SK

0

). The adversary is given PK.

Atta
k: The adversary issues one breakin(i) query and one 
hallenge(j;M

0

;M

1

) query, in

either order, subje
t to 0 � j < i < N . These queries are answered as follows:

� On query breakin(i), key SK

i

is 
omputed via Upd(� � �Upd(SK

0

; 1); � � � i). This key is

then given to the adversary.

� On query 
hallenge(j;M

0

;M

1

) a random bit b is sele
ted and the adversary is given

En


PK

(j;M

b

).

Guess: The adversary outputs a guess b

0

2 f0; 1g. The adversary su

eeds if b

0

= b.

The advantage of the adversary is de�ned as the absolute value of the di�eren
e between

its su

ess probability and 1/2.

Remark 1. When s
hemes are de�ned in the random ora
le model we additionally allow

the adversary to make a polynomially-bounded number of queries to any random ora
les

used in 
onstru
ting the s
heme. These queries may be interleaved in any order with the

breakin and 
hallenge queries.

Remark 2. Following [6, 15, 13℄, we may de�ne forward se
urity in the sense of one-

wayness (fs-OWE) in the obvious way. Similarly, we may also de�ne forward se
urity under


hosen-
iphertext atta
k (fs-CCA) as the natural extension of De�nition 2. We defer the

details until the �nal version of this paper.

2.1 Cryptographi
 Assumptions

The se
urity of our forward-se
ure en
ryption s
heme is based on the diÆ
ulty of the bilinear

DiÆe-Hellman (BDH) problem as re
ently formalized by Boneh and Franklin [6℄. This
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assumption, or variants thereof, has been used for a number of di�erent 
ryptographi



onstru
tions (e.g., [17, 7, 23, 15, 13℄). We review the relevant de�nitions as they appear

in [6, 13℄. Let G

1

and G

2

be two 
y
li
 groups of prime order q, where G

1

is represented

additively and G

2

is represented multipli
atively. We use a map ê : G

1

�G

1

! G

2

for whi
h

the following hold:

1. The map ê is bilinear ; that is, for all P

0

; P

1

2 G

1

and all x; y 2 Z

q

we have

ê(xP

0

; yP

1

) = ê(P

0

; P

1

)

xy

.

2. There is an eÆ
ient algorithm to 
ompute ê(P

0

; P

1

) for any P

0

; P

1

2 G

1

.

A BDH parameter generator IG is a randomized algorithm that takes a se
urity param-

eter 1

k

, runs in polynomial time, and outputs the des
ription of two groups G

1

; G

2

and a

map ê satisfying the above 
onditions. We de�ne the BDH problem with respe
t to IG as the

following: given (G

1

; G

2

; ê) output by IG along with random P; aP; bP; 
P 2 G

1

, 
ompute

ê(P; P )

ab


. We say that IG satis�es the BDH assumption if the following is negligible (in

k) for all ppt algorithms A:

Pr[(G

1

; G

2

; ê) IG(1

k

);P  G

1

; a; b; 
 Z

q

: A(G

1

; G

2

; ê; P; aP; bP; 
P ) = ê(P; P )

ab


℄:

We note that BDH parameter generators for whi
h the BDH assumption is believed to hold


an be 
onstru
ted from Weil and Tate pairings asso
iated with supersingular ellipti
 
urves

or abelian varieties. As our results do not depend on any spe
i�
 instantiation, we refer the

interested reader to [6℄ for details.

3 Forward-Se
ure Publi
-Key En
ryption

3.1 Overview

We �rst provide an overview of our 
onstru
tion. Assume for simpli
ity that the total

number of time periods N is a power of 2; that is, N = 2

t

. We imagine a full binary tree of

height t in whi
h the root is labeled with " (representing the empty string) and furthermore

if a node at depth less than t is labeled with w then its left 
hild is labeled with w0 and

its right 
hild is labeled with w1. Let hii denote the t-bit representation of integer i (where

0 � i � 2

t

�1). The leaves of the tree (whi
h are labeled with strings of length t) 
orrespond

to su

essive time periods in the obvious way; i.e., time period i is asso
iated with the leaf

labeled by hii.

For simpli
ity, we refer to the node labeled by w as simply \node w". Every node w in

the tree will have an asso
iated se
ret key sk

w

; re
all further that there is one publi
 key

PK whi
h remains �xed throughout the lifetime of the s
heme. The properties of our PKE


onstru
tion 
an informally be stated as follows:

1. To de
rypt a message en
rypted using PK during period i, only key sk

hii

is needed.

2. Given key sk

w

, it is possible to eÆ
iently derive keys sk

w0

and sk

w1

.

3. Given PK and i, and without sk

w

for all pre�xes w of hii, it is infeasible to derive

sk

hii

and furthermore infeasible to de
rypt messages en
rypted during period i.

5



The formal statements 
orresponding to these requirements will be
ome 
lear from the

detailed des
ription below.

On
e we have a s
heme satisfying the above requirements, we immediately obtain an

eÆ
ient 
onstru
tion of a forward-se
ure en
ryption s
heme.

1

For a given period i, let

i

0

i

1

� � � i

t

= hii, where i

0

= " and i

1

; : : : ; i

t

2 f0; 1g. The se
ret key SK

i

for period i will


onsist of (1) sk

hii

and also (2) fsk

i

0

���i

k�1

1

g for all 1 � k � t su
h that i

k

= 0. Clearly,

this allows for 
orre
t de
ryption of 
iphertexts transmitted during the appropriate period.

Furthermore, key updates 
an be done as follows: At the end of period i, key sk

hii

is

erased and | as 
an be easily veri�ed | the remainder of the keys 
an be updated as

required (more detail is provided below). The above-stated requirements essentially imply

the forward-se
urity of this s
heme.

One may noti
e that the requirements listed above immediately give rise to a hierar
hi
al

identity-based en
ryption s
heme (HIBE) as well [15, 13℄. Indeed, one 
an interpret our

results as showing a generi
 transformation from any HIBE to a forward-se
ure PKE; we

explore this 
onne
tion further in the full version of this paper.

3.2 The Details

As mentioned in the previous se
tion, an HIBE may be used toward the 
onstru
tion of

a forward-se
ure PKE. The 
onstru
tion we present here is based on the HIBE suggested

by [13℄ (the 2-HIBE of [15℄ is not suited for our purpose). We note that the proof of

forward-se
urity for our 
onstru
tion does not immediately follow from the results of [13℄.

In parti
ular, for an adaptive adversary | as 
onsidered here | the HIBE of [13℄ is proven

se
ure only for 
onstant t (and hen
e 
onstant N) whereas we give a proof of se
urity for

t = �(log k) thereby allowing N = poly(k). Furthermore, be
ause we do not require \full"

se
urity in the sense of HIBE we give a simpler proof and tighter se
urity redu
tion.

Let IG be a BDH parameter generator for whi
h the BDH assumption holds. We now

present the details of the s
heme.

Gen(1

k

; N) does the following:

1. IG(1

k

) is run to generate groups G

1

; G

2

of order q and bilinear map ê.

2. A random generator P  G

1

is sele
ted along with random s

"

 Z

q

. Set Q = s

"

P .

3. The publi
 key is PK = (G

1

; G

2

; ê; P;Q).

4. Set S

0

= s

"

H

1

(0) and S

1

= s

"

H

1

(1). Set sk

0

= (S

0

; ;) and sk

1

= (S

1

; ;). Using sk

0

,

re
ursively apply algorithm Extra
t (de�ned below) to generate keys sk

01

, sk

001

; : : :,

sk

0

t�1

1

, sk

0

t .

5. Store SK

0

= (sk

0

t
; fsk

1

; sk

01

; : : : ; sk

0

t�1

1

g). Erase all other information.

We furthermore assume that hash fun
tions H

1

: f0; 1g

�

! G

1

and H

2

: G

2

! f0; 1g

n

are de�ned, either by Gen or else as part of the spe
i�
ation of the s
heme. These hash

fun
tions will be treated as random ora
les in the analysis.

1

This was noted in the 
ontext of digital signatures as well [4℄.
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Extra
t(sk

w

; w) takes as input the se
ret key asso
iated with node w and outputs the se
ret

keys for nodes w0 and w1. It runs as follows:

1. Parse w as w

1

� � �w

`

where jwj = `. Parse sk

w

as (S

w

;Q

w

) where S

w

2 G

1

and

Q

w

= (Q

w

1

; : : : ; Q

w

1

���w

`�1

) 2 G

`�1

1

.

2. Choose random s

w

2 Z

q

. Set S

w0

= S

w

+ s

w

H

1

(w0) and S

w1

= S

w

+ s

w

H

1

(w1). Set

Q

w

1

���w

`

= s

w

P and Q

w0

= Q

w1

= (Q

w

1

; : : : ; Q

w

1

���w

`

).

3. Output sk

w0

= (S

w0

;Q

w0

) and sk

w1

= (S

w1

;Q

w1

).

Upd(SK

i

; i+ 1) (where i < N � 1) does the following:

1. Parse hii as i

0

i

1

� � � i

t

where i

0

= ". Parse SK

i

as (sk

hii

; fsk

i

0

���i

k�1

1

g

i

k

=0

). Erase sk

hii

.

2. We distinguish two 
ases. If i

t

= 0, simply output the remaining keys as the key

SK

i+1

for the next period. Otherwise, let

~

k be the largest value su
h that i

~

k

= 0

(su
h

~

k must exist sin
e i < N�1). Let i

0

= i

0

� � � i

~

k�1

1. Using sk

i

0

(whi
h is in
luded

as part of SK

i

), re
ursively apply algorithm Extra
t to generate keys sk

i

0

1

, sk

i

0

01

; : : :,

sk

i

0

0

t�

~

k�1

1

, sk

i

0

0

t�

~

k

. Erase sk

i

0

and output the remaining keys as SK

i+1

.

It 
an be easily veri�ed that the key SK

i+1

that is output has the 
orre
t form.

En


PK

(i;M) (where M 2 f0; 1g

n

) does the following:

1. Let i

1

� � � i

t

= hii. Sele
t random r Z

q

.

2. Output hi; Ci where C = (rP; rH

1

(i

1

i

2

); : : : ; rH

1

(i

1

� � � i

t

);M �H

2

(ê(Q;H

1

(i

1

))

r

))

De


SK

i

(hi; Ci) does the following:

1. Parse hii as i

1

� � � i

t

. Parse SK

i

as (sk

hii

; fsk

i

0

���i

k�1

1

g

i

k

=0

) and sk

hii

as (S

hii

;Q

hii

)

where Q

hii

= (Q

i

1

; : : : ; Q

i

1

���i

t�1

). Parse C as (U

0

; U

2

; : : : ; U

t

; V ).

2. Compute

M = V �H

2

�

ê(U

0

; S

hii

)

�

t

k=2

ê(Q

i

1

���i

k�1

; U

k

)

�

:

We now verify that de
ryption is performed 
orre
tly. When en
rypting, we have

ê(Q;H

1

(i

1

))

r

= ê(P;H

1

(i

1

))

rs

"

. When de
rypting, we have U

0

= rP , U

2

= rH

1

(i

1

i

2

); : : : ;

U

t

= rH

1

(i

1

� � � i

t

) so that

ê(U

0

; S

hii

)

�

t

k=2

ê(Q

i

1

���i

k�1

; U

k

)

=

ê

�

rP; s

"

H

1

(i

1

) +

P

t

k=2

s

i

1

���i

k�1

H

1

(i

1

� � � i

k

)

�

Q

t

k=2

ê

�

s

i

1

���i

k�1

P; rH

1

(i

1

� � � i

k

)

�

=

ê(P;H

1

(i

1

))

rs

"

�

Q

t

k=2

ê (P;H

1

(i

1

� � � i

k

))

rs

i

1

���i

k�1

Q

t

k=2

ê (P;H

1

(i

1

� � � i

k

))

rs

i

1

���i

k�1

= ê(P;H

1

(i

1

))

rs

"

and thus de
ryption su

eeds.

The se
urity of the above s
heme is stated in the following theorem:
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Theorem 1 Suppose there is an adversary A that has advantage Æ against the above s
heme

in the sense of fs-OWE (
f. Remark 2) and that makes at most q

H

2

hash queries to H

2

. Then

there is an algorithm A

0

that solves the BDH problem with respe
t to IG with probability at

least (Æ � 2

�n

)=N � q

H

2

A proof of Theorem 1 appears in Appendix A.

In parti
ular, the theorem implies that as long as IG satis�es the BDH assumption,

then the above s
heme is fs-OWE whenever N = poly(k). We note that the loss of a fa
tor

of N in the se
urity redu
tion (implying the \limitation" N = poly(k)) is also present

in most previous work on forward-se
ure primitives (e.g., [4, 2, 16℄). However, we 
an in

fa
t improve upon this and 
onstru
t a modi�ed s
heme whose se
urity depends on the

number of periods elapsed thus far. We 
an further modify this s
heme so as to support an

\unbounded" number of time periods (i.e., the number of time periods does not need to be

known at the time of key generation).

2

We defer details to the �nal version.

As in [6, 15, 13℄, we may apply the transformation due to Fujisaki and Okamoto [12℄ to

obtain a s
heme whi
h is forward-se
ure under adaptive 
hosen-
iphertext atta
ks. Details

and a full proof (whi
h is non-trivial and does not follow immediately from the results of

[12℄) will appear in the �nal version.

3.3 Analysis of Parameters

We brie
y justify the 
laims given in Table 1. Key generation requires t invo
ations of

Extra
t in addition to O(1) other operations. Ea
h invo
ation of Extra
t runs in O(1) time,

showing that the entire key generation pro
ess requires time O(logN). En
ryption time,

de
ryption time, and 
iphertext length are all 
learly O(logN). The key update time is

O(logN) in the worst 
ase; amortizing over all time periods results in 
omplexity O(1).

Finally, note that during any time period i the se
ret key SK

i


onsists of at most logN

\node" se
ret keys sk

w

; furthermore, ea
h node se
ret key is of size O(logN). This implies

that the total se
ret storage is O(log

2

N).

A
knowledgments

We are very grateful to Craig Gentry for helpful dis
ussions regarding [13℄ as well as a

preliminary version of subsequent work.

Referen
es

[1℄ M. Abdalla, S. Miner, and C. Namprempre. Forward-Se
ure Threshold Signature

S
hemes. RSA '01.

[2℄ M. Abdalla and L. Reyzin. A New Forward-Se
ure Digital Signature S
heme. Asia
rypt

'00.

[3℄ R. Anderson. Two Remarks on Publi
-Key Cryptology. Invited le
ture, CCCS '97.

Available at http://www.
l.
am.a
.uk/users/rja14/.

2

Similar results were previously shown by [19℄ in the 
ontext of forward-se
ure digital signatures.

8



[4℄ M. Bellare and S. Miner. A Forward-Se
ure Digital Signature S
heme. Crypto '99.

[5℄ M. Bellare and B. Yee. Forward Se
urity in Private-Key Cryptography. Manus
ript,

Nov. 2001. Available at http://eprint.ia
r.org.

[6℄ D. Boneh and M. Franklin. Identity-Based En
ryption from the Weil Pairing.

Crypto '01. Full version to appear in SIAM J. Computing and available at

http://eprint.ia
r.org/2001/090/.

[7℄ D. Boneh, B. Lynn, and H. Sha
ham. Short Signatures from the Weil Pairing. Asia
rypt

'01.

[8℄ R. Canetti, S. Halevi, and J. Katz. A Forward-Se
ure Publi
-Key En
ryption S
heme.

Draft. Presented at Crypto 2002 rump session.

[9℄ Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Crypto '89.

[10℄ Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Publi
-Key Cryptosystems.

Euro
rypt '02.

[11℄ Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature S
hemes.

Manus
ript, April 2002.

[12℄ E. Fujisaki and T. Okamoto. Se
ure Integration of Asymmetri
 and Symmetri
 En-


ryption S
hemes. Crypto '99.

[13℄ C. Gentry and A. Silverberg. Hierar
hi
al ID-Based Cryptography. Manus
ript, May

2002. Available at http://eprint.ia
r.org.

[14℄ A. Herzberg, M. Jakobsson, S. Jare
ki, H. Kraw
zyk, and M. Yung. Proa
tive Publi
-

Key and Signature S
hemes. CCCS '97.

[15℄ J. Horwitz and B. Lynn. Toward Hierar
hi
al Identity-Based En
ryption. Euro
rypt

'02.

[16℄ G. Itkis and L. Reyzin. Forward-Se
ure Signatures with Optimal Signing and Verifying.

Crypto '01.

[17℄ A. Joux. A One-Round Proto
ol for Tri-Partite DiÆe Hellman. ANTS '00.

[18℄ H. Kraw
zyk. Simple Forward-Se
ure Signature From any Signature S
heme. CCCS

'00.

[19℄ T. Malkin, D. Mi

ian
io, and S. Miner. EÆ
ient Generi
 Forward-Se
ure Signatures

with an Unbounded Number of Time Periods. Euro
rypt '02.

[20℄ R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Atta
ks. PODC '91.

[21℄ A. Shamir. How to Share a Se
ret. Comm. ACM, 22(11):612{613, 1979.

[22℄ W. Tzeng and Z. Tzeng. Robust Forward-Se
ure Digital Signatures with Proa
tive

Se
urity. PKC '01.

[23℄ E. Verheul. Self-Blindable Credential Certi�
ates from the Weil Pairing. Asia
rypt '01.

9



A Proof of Theorem 1

Our proof is largely similar to that of [13℄ ex
ept that, be
ause we work in a di�erent


ontext, we are able to simplify some details. As mentioned earlier, our results are not

immediately implied by those of [13℄ sin
e (in their setting) they are unable to handle an

adaptive adversary when t = 
(1). In our 
ontext, we are able to a
hieve se
urity against

an adaptive adversary even when t = O(log k).

Assume an adversary A who has advantage Æ in atta
king the s
heme of Se
tion 3 in

the sense of fs-OWE. We show how to 
onstru
t an adversary A

0

solving the BDH problem

with probability at least (Æ � 2

�n

)=q

H

2

N .

Adversary A

0

is given (G

1

; G

2

; ê) as output by IG(1

k

), and is additionally given random

elements P;Q = s

"

P; P

0

= bP , and U

0

= 
P . The goal of A

0

is to output ê(P; P )

s

"

b


. A

0

will

simulate an instan
e of the ke-PKE for adversary A. First, A

0

sets PK = (G

1

; G

2

; ê; P;Q)

and gives PK to A. Next, A

0

guesses a random index i

�

2 f0; : : : ; N � 1g (this represents

a guess of the period for whi
h A will request a 
hallenge). Let hii = i

�

1

� � � i

�

t

and i

�

0

= ".

To answer the hash queries of A, algorithm A

0

maintains lists H

list

1

and H

list

2

. To begin,

H

list

2

will be empty. H

list

1

is prepared by �rst having A

0

sele
t random x

2

; : : : ; x

t

2 Z

q

and

then storing the tuples (i

�

1

; P

0

), (i

�

1

i

�

2

; x

2

P ); : : : ; (i

�

1

� � � i

�

t

; x

t

P ) in H

list

1

. Next, A

0

generates

\node keys" fsk

i

�

0

���i

�

k�1

1

g

i

�

k

=0

as follows:

1. If i

�

1

= 0, 
hoose random y

1

2 Z

q

. Store (1; y

1

P ) in H

list

1

and set sk

1

= (y

1

Q; ;).

2. Sele
t random s

0

i

�

1

; s

0

i

�

1

i

�

2

; : : : ; s

0

i

�

1

���i

�

t�1

2 Z

q

.

3. For ea
h 2 � k � t su
h that i

�

k

= 0:

(a) Choose random y

k

2 Z

q

and store

�

i

�

1

� � � i

�

k�1

1; y

k

P � (s

0

i

�

1

���i

�

k�1

)

�1

P

0

�

in H

list

1

.

(b) Set sk

i

�

1

���i

�

k�1

1

=

�

s

0

i

�

1

���i

�

k�1

y

k

Q+

P

k�1

`=2

s

0

i

�

1

���i

�

`�1

x

`

Q;

�

s

0

i

�

1

Q; : : : ; s

0

i

�

1

���i

�

k�1

Q

��

.

3

A

0

will respond to hash queries of A in the obvious way. If A queries H

b

(X), then A

0


he
ks whether there is a tuple of the form (X;Y ) in H

list

b

. If so, the value Y is returned.

Otherwise, A

0


hooses random Y from the appropriate range, stores (X;Y ) in H

list

b

, and

returns Y .

We now verify that the node keys 
reated above have the 
orre
t distribution. In 
ase

i

�

1

= 0, note that y

1

Q = s

"

y

1

P = s

"

H

1

(1) so that sk

1

is of the 
orre
t form. For 2 � k � t,

de�ne s

i

�

1

���i

�

k�1

= s

"

s

0

i

�

1

���i

�

k�1

. We then have:

s

0

i

�

1

���i

�

k�1

y

k

Q+

k�1

X

`=2

s

0

i

�

1

���i

�

`�1

x

`

Q = s

i

�

1

���i

�

k�1

y

k

P � s

"

P

0

+ s

"

P

0

+

k�1

X

`=2

s

i

�

1

���i

�

`�1

x

`

P

= s

i

�

1

���i

�

k�1

(y

k

P � (s

0

i

�

1

���i

�

k�1

)

�1

P

0

) + s

"

P

0

+

k�1

X

`=2

s

i

�

1

���i

�

`�1

x

`

P

3

For k = 2 the upper limit of the summation is less than the lower limit; by 
onvention, we let the sum

in this 
ase be 0.
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= s

"

H

1

(i

�

1

) +

 

k�2

X

`=1

s

i

�

1

���i

�

`

H

1

(i

�

1

� � � i

�

`+1

)

!

+ s

i

�

1

���i

�

k�1

H

1

(i

�

1

� � � i

�

k�1

1):

Furthermore, s

0

i

�

1

���i

�

k�1

Q = s

i

�

1

���i

�

k�1

P . Thus, sk

i

�

1

���i

�

k�1

1

has the 
orre
t form for all k su
h

that i

�

k

= 0. Using these node keys, A

0


an derive key SK

i

�

+1

with the 
orre
t distribution;

this implies that A

0


an 
orre
tly respond to query breakin(i) of A for any i > i

�

.

A

0

now runs A, responding to hash queries as des
ribed previously. If A makes a query

breakin(i) for i � i

�

or a query 
hallenge(j) for j 6= i

�

, then A

0

aborts. Otherwise, A

0

responds to the breakin(i) query by generating the appropriate node keys and giving these

to A (as mentioned previously, A

0


an do this whenever i > i

�

). A

0

responds to the query


hallenge(i

�

) with hi

�

; Ci, where C = (U

0

; x

2

U

0

; : : : ; x

t

U

0

; V ) and V is sele
ted at random

from f0; 1g

n

. Note that, as long as A

0

does not abort, this results in a perfe
t simulation of

the view of A.

Eventually (assuming A

0

does not abort), A outputs a guess M in an attempt to break

the one-way se
urity of the s
heme. At this point, A

0

pi
ks a random tuple (X;Y ) from

H

list

2

and outputs X. Let X

�

= ê(P; P )

s

"

b


= ê(Q;P

0

)




. Let query be the event that, at the

end of the simulation, X

�

appears as the �rst element of some tuple in H

list

2

and let 
orre
t

be the probability that A su

eeds in 
orre
tly guessingM . By assumption, Pr[
orre
t℄ = Æ.

Sin
e H

2

is modeled as a random ora
le, we have Pr[
orre
tjquery℄ = 2

�n

. Therefore:

Æ = Pr[
orre
tjquery℄ Pr[query℄ + Pr[
orre
tjquery℄ Pr[query℄

� Pr[query℄ + 2

�n

(1� Pr[query℄)

so that Pr[query℄ � Æ � 2

�n

. The probability that A

0

does not abort is exa
tly 1=N .

Assuming A

0

does not abort, A

0

outputs the 
orre
t answer with probability Pr[query℄=q

H

2

.

Theorem 1 follows.
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