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Abstrat

Cryptographi omputations are often arried out on inseure devies for whih the

threat of key exposure represents a serious and realisti onern. In an e�ort to mitigate

the damage aused by exposure of seret data stored on suh devies, the paradigm of

forward seurity was introdued. In this model, seret keys are updated at regular

intervals throughout the lifetime of the system; furthermore, exposure of a seret key

orresponding to a given interval does not enable an adversary to \break" the system

(in the appropriate sense) for any prior time period. A number of onstrutions of

forward-seure digital signature shemes and symmetri-key shemes are known.

We present the �rst onstrution of a forward-seure publi-key enryption sheme

whose seurity is based on the bilinear DiÆe-Hellman assumption in the random orale

model. Our sheme an be extended to ahieve hosen-iphertext seurity at minimal

additional ost. The onstrution we give is quite eÆient: all parameters of the sheme

grow (at most) poly-logarithmially with the total number of time periods.

1 Introdution

Exposure of seret keys an be a devastating attak on a ryptosystem sine suh an attak

typially implies that all seurity guarantees are lost. Indeed, standard notions of seurity

o�er no protetion whatsoever one the seret key of the system has been ompromised.

With the threat of key exposure beoming more aute as ryptographi omputations are

performed more frequently on small, unproteted, and easily-stolen devies (e.g., mobile

phones), new tehniques are needed to deal with this onern.

A number of methods have been introdued in an attempt to ounter this threat. Of

ourse, one may try to eliminate the ourrene of key exposure entirely by using tamper-

proof hardware or some variation of this idea. While this is an important diretion of re-

searh, suh tehniques are often too expensive or otherwise not pratial for the intended

appliation. A seond lass of approahes assumes instead that key exposure will our and

seeks to minimize the resulting damage. Seret sharing [21℄, threshold ryptography [9℄, and

proative ryptography [20, 14℄ | in whih serets are \split" aross multiple devies |

are perhaps the best-known approahes in this vein. Unfortunately, suh solutions tend to

�

This work has reently been superseded by [8℄.

y

jkatz�s.umd.edu. Department of Computer Siene, University of Maryland (College Park). Portions

of this work were done while at Columbia University.

1



be ostly; for one thing, they require multiple devies where a single devie would have pre-

viously suÆed. Furthermore, threshold omputations are inherently interative and hene

require extensive oordination between di�erent hosts; in settings where ommuniation

is at a premium (e.g., wireless networks), suh omputations beome prohibitive. Finally,

note that for devies whih are inseure and are thus expeted to have a high inidene of

physial ompromise, exposing serets stored on multiple devies may not be signi�antly

more diÆult than exposing the serets stored on a single devie.

In an e�ort to address these onerns, the notion of forward seurity was reently pro-

posed by Anderson [3℄ and later formalized by Bellare and Miner [4℄. The basi idea is to

divide the lifetime of the system into N intervals (or time periods) labeled 0; : : : ; N � 1.

The devie begins by storing seret key SK

0

; this seret key will \evolve" with time so that

SK

0

will be used during period 0, SK

1

will be used during period 1, and so on. At the

beginning of time period i the devie applies some funtion to the \previous" key SK

i�1

in

order to derive the \urrent" key SK

i

; key SK

i�1

is then deleted. The urrent key is used

for all (seret) ryptographi operations during the orresponding period. The publi key

(assuming one exists) is never updated; instead, it remains �xed throughout the lifetime

of the system. A forward-seure sheme guarantees that an adversary who learns SK

i

for

some i will be unable to \break" the seurity of the system (in the appropriate sense) for

all time periods prior to i. Note that sine the adversary obtains all serets existing at

that point in time, the model inherently annot prevent the adversary from \breaking" the

seurity of the system at time periods subsequent to i.

The forward-seure paradigm is quite general and an be applied to essentially any

ryptographi primitive; most researh thus far, however, has foused on the onstrution of

forward-seure signature shemes and the related ase of identi�ation shemes. The generi

forward-seure signature sheme of Anderson [3℄ was improved by Bellare and Miner [4℄ who

also present the �rst eÆient and non-generi onstrution. These initial works inspired a

sequene of improved onstrutions yielding more eÆient forward-seure signature shemes

as well as shemes giving tradeo�s among the various parameters [18, 2, 16, 19℄. Integrating

forward-seure signature shemes and threshold tehniques has also been investigated [1, 22℄.

The only prior instane in whih forward-seurity was onsidered for primitives other than

signature/identi�ation shemes is the work of Bellare and Yee [5℄ fousing on the private-

key setting.

Motivated by work on forward seurity, the related notion of key-insulated ryptography

has reently been introdued [10, 11℄. Although in both models the stored seret keys are

updated so as to limit the e�et of key exposures, the models are in fat inomparable. On

one hand, the key-insulated model ahieves a stronger level of seurity in that, even after

multiple key exposures our, all non-exposed time periods remain seure. On the other

hand, the prie for this additional seurity is the (neessary) assumption of a (semi-)trusted

server whih is never ompromised and with whih the devie must interat at the beginning

of eah time period. In ertain senarios an assumption of this form is learly unwarranted.

1.1 Our Contribution

As mentioned above, almost all previous researh on forward-seure primitives (with the

exeption of [5℄) has foused on the ase of digital signature shemes. Indeed, the question of
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Key generation time O(logN)

Enryption/Deryption time O(logN)

Key update time O(logN)

Ciphertext length O(logN)

Publi key size O(1)

Seret key size O(log

2

N)

Table 1: Summary of dependenies on the total number of time periods N .

whether a (non-trivial) forward-seure publi-key enryption sheme ould be onstruted

has been open sine the introdution of the forward-seurity paradigm [3, 4℄. We show here

a simple and eÆient onstrution of a forward-seure publi-key enryption sheme whose

seurity may be based on the bilinear DiÆe-Hellman assumption (f. [6℄) in the random

orale model. Using the Fujisaki-Okamoto transformation [12℄, hosen-iphertext seurity

an be ahieved with minimal additional ost. The dependeny of the parameters of our

sheme on the total number of time periods N is quite good; in all ases, it is at most

poly-logarithmi. The key details are summarized in Table 1. We stress that these results

should not be interpreted as indiating \merely" asymptoti eÆieny; in general (exept

for the size of seret key storage), our sheme is as eÆient as log

2

N invoations of the

Boneh-Franklin identity-based enryption sheme [6℄ and is therefore quite pratial for

reasonable values of N .

2 De�nitions and Preliminaries

Here, we provide de�nitions for key-evolving publi-key enryption shemes and also de�ne

what it means for an enryption sheme to be forward-seure. The former de�nition is a

straightforward adaptation of [4℄; the latter, however, is new and requires some are.

De�nition 1 A key-evolving publi-key enryption sheme ke-PKE = (Gen;Upd;En;De)

is a 4-tuple of algorithms suh that:

� The probabilisti key generation algorithm Gen takes as input a seurity parameter

1

k

and the total number of time periods N . It returns a publi key PK and an initial

seret key SK

0

.

� The probabilisti key update algorithm Upd takes as input a seret key SK

i�1

as well

as the index i of the urrent time period. It returns a seret key SK

i

for period i.

� The probabilisti enryption algorithm En takes as input a publi key PK, the index

i of the urrent time period, and a message M . It returns a iphertext C for period

i. We always represent the output as a pair hi; Ci and write hi; Ci  En

PK

(i;M).

� The deterministi deryption algorithm De takes as input a seret key SK

i

and a

iphertext hi; Ci. It returns a message M . We denote this by M := De

SK

i

(hi; Ci).
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We require the standard orretness ondition; namely, for any (PK;SK

0

) output by

Gen, any seret key SK

i

orretly generated for period i, all M , and all hi; Ci output

by En

PK

(i;M) we have M = De

SK

i

(hi; Ci).

A de�nition for forward-seure publi-key enryption (PKE) does not follow immediately

from the orresponding de�nition for signature shemes. For one thing, in a forgery attak

the forged signature/message pair is the �nal output of the adversary whereas in the ase

of PKE the adversary might be able to perform additional useful \attaks" even after

observing a iphertext hi; Ci. To be more spei�, one an imagine two plausible de�nitions

of forward-seure PKE: (1) the adversary must obtain some seret key SK

i

before requesting

iphertext hj; Ci for some j < i; or (2) the adversary must request iphertext hj; Ci before

he an obtain some seret key SK

i

with i > j. To make matters worse, neither de�nition of

seurity seems to imply the other. Our de�nition aptures the strongest notion of seurity

by giving the adversary ontrol over the ordering of the above events.

De�nition 2 A key-evolving publi-key enryption sheme ke-PKE is forward-seure in the

sense of indistinguishability (fs-IND) if no ppt adversary has non-negligible advantage in

the following game:

Setup: Gen(1

k

; N) is run, yielding output (PK;SK

0

). The adversary is given PK.

Attak: The adversary issues one breakin(i) query and one hallenge(j;M

0

;M

1

) query, in

either order, subjet to 0 � j < i < N . These queries are answered as follows:

� On query breakin(i), key SK

i

is omputed via Upd(� � �Upd(SK

0

; 1); � � � i). This key is

then given to the adversary.

� On query hallenge(j;M

0

;M

1

) a random bit b is seleted and the adversary is given

En

PK

(j;M

b

).

Guess: The adversary outputs a guess b

0

2 f0; 1g. The adversary sueeds if b

0

= b.

The advantage of the adversary is de�ned as the absolute value of the di�erene between

its suess probability and 1/2.

Remark 1. When shemes are de�ned in the random orale model we additionally allow

the adversary to make a polynomially-bounded number of queries to any random orales

used in onstruting the sheme. These queries may be interleaved in any order with the

breakin and hallenge queries.

Remark 2. Following [6, 15, 13℄, we may de�ne forward seurity in the sense of one-

wayness (fs-OWE) in the obvious way. Similarly, we may also de�ne forward seurity under

hosen-iphertext attak (fs-CCA) as the natural extension of De�nition 2. We defer the

details until the �nal version of this paper.

2.1 Cryptographi Assumptions

The seurity of our forward-seure enryption sheme is based on the diÆulty of the bilinear

DiÆe-Hellman (BDH) problem as reently formalized by Boneh and Franklin [6℄. This
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assumption, or variants thereof, has been used for a number of di�erent ryptographi

onstrutions (e.g., [17, 7, 23, 15, 13℄). We review the relevant de�nitions as they appear

in [6, 13℄. Let G

1

and G

2

be two yli groups of prime order q, where G

1

is represented

additively and G

2

is represented multipliatively. We use a map ê : G

1

�G

1

! G

2

for whih

the following hold:

1. The map ê is bilinear ; that is, for all P

0

; P

1

2 G

1

and all x; y 2 Z

q

we have

ê(xP

0

; yP

1

) = ê(P

0

; P

1

)

xy

.

2. There is an eÆient algorithm to ompute ê(P

0

; P

1

) for any P

0

; P

1

2 G

1

.

A BDH parameter generator IG is a randomized algorithm that takes a seurity param-

eter 1

k

, runs in polynomial time, and outputs the desription of two groups G

1

; G

2

and a

map ê satisfying the above onditions. We de�ne the BDH problem with respet to IG as the

following: given (G

1

; G

2

; ê) output by IG along with random P; aP; bP; P 2 G

1

, ompute

ê(P; P )

ab

. We say that IG satis�es the BDH assumption if the following is negligible (in

k) for all ppt algorithms A:

Pr[(G

1

; G

2

; ê) IG(1

k

);P  G

1

; a; b;  Z

q

: A(G

1

; G

2

; ê; P; aP; bP; P ) = ê(P; P )

ab

℄:

We note that BDH parameter generators for whih the BDH assumption is believed to hold

an be onstruted from Weil and Tate pairings assoiated with supersingular ellipti urves

or abelian varieties. As our results do not depend on any spei� instantiation, we refer the

interested reader to [6℄ for details.

3 Forward-Seure Publi-Key Enryption

3.1 Overview

We �rst provide an overview of our onstrution. Assume for simpliity that the total

number of time periods N is a power of 2; that is, N = 2

t

. We imagine a full binary tree of

height t in whih the root is labeled with " (representing the empty string) and furthermore

if a node at depth less than t is labeled with w then its left hild is labeled with w0 and

its right hild is labeled with w1. Let hii denote the t-bit representation of integer i (where

0 � i � 2

t

�1). The leaves of the tree (whih are labeled with strings of length t) orrespond

to suessive time periods in the obvious way; i.e., time period i is assoiated with the leaf

labeled by hii.

For simpliity, we refer to the node labeled by w as simply \node w". Every node w in

the tree will have an assoiated seret key sk

w

; reall further that there is one publi key

PK whih remains �xed throughout the lifetime of the sheme. The properties of our PKE

onstrution an informally be stated as follows:

1. To derypt a message enrypted using PK during period i, only key sk

hii

is needed.

2. Given key sk

w

, it is possible to eÆiently derive keys sk

w0

and sk

w1

.

3. Given PK and i, and without sk

w

for all pre�xes w of hii, it is infeasible to derive

sk

hii

and furthermore infeasible to derypt messages enrypted during period i.

5



The formal statements orresponding to these requirements will beome lear from the

detailed desription below.

One we have a sheme satisfying the above requirements, we immediately obtain an

eÆient onstrution of a forward-seure enryption sheme.

1

For a given period i, let

i

0

i

1

� � � i

t

= hii, where i

0

= " and i

1

; : : : ; i

t

2 f0; 1g. The seret key SK

i

for period i will

onsist of (1) sk

hii

and also (2) fsk

i

0

���i

k�1

1

g for all 1 � k � t suh that i

k

= 0. Clearly,

this allows for orret deryption of iphertexts transmitted during the appropriate period.

Furthermore, key updates an be done as follows: At the end of period i, key sk

hii

is

erased and | as an be easily veri�ed | the remainder of the keys an be updated as

required (more detail is provided below). The above-stated requirements essentially imply

the forward-seurity of this sheme.

One may notie that the requirements listed above immediately give rise to a hierarhial

identity-based enryption sheme (HIBE) as well [15, 13℄. Indeed, one an interpret our

results as showing a generi transformation from any HIBE to a forward-seure PKE; we

explore this onnetion further in the full version of this paper.

3.2 The Details

As mentioned in the previous setion, an HIBE may be used toward the onstrution of

a forward-seure PKE. The onstrution we present here is based on the HIBE suggested

by [13℄ (the 2-HIBE of [15℄ is not suited for our purpose). We note that the proof of

forward-seurity for our onstrution does not immediately follow from the results of [13℄.

In partiular, for an adaptive adversary | as onsidered here | the HIBE of [13℄ is proven

seure only for onstant t (and hene onstant N) whereas we give a proof of seurity for

t = �(log k) thereby allowing N = poly(k). Furthermore, beause we do not require \full"

seurity in the sense of HIBE we give a simpler proof and tighter seurity redution.

Let IG be a BDH parameter generator for whih the BDH assumption holds. We now

present the details of the sheme.

Gen(1

k

; N) does the following:

1. IG(1

k

) is run to generate groups G

1

; G

2

of order q and bilinear map ê.

2. A random generator P  G

1

is seleted along with random s

"

 Z

q

. Set Q = s

"

P .

3. The publi key is PK = (G

1

; G

2

; ê; P;Q).

4. Set S

0

= s

"

H

1

(0) and S

1

= s

"

H

1

(1). Set sk

0

= (S

0

; ;) and sk

1

= (S

1

; ;). Using sk

0

,

reursively apply algorithm Extrat (de�ned below) to generate keys sk

01

, sk

001

; : : :,

sk

0

t�1

1

, sk

0

t .

5. Store SK

0

= (sk

0

t
; fsk

1

; sk

01

; : : : ; sk

0

t�1

1

g). Erase all other information.

We furthermore assume that hash funtions H

1

: f0; 1g

�

! G

1

and H

2

: G

2

! f0; 1g

n

are de�ned, either by Gen or else as part of the spei�ation of the sheme. These hash

funtions will be treated as random orales in the analysis.

1

This was noted in the ontext of digital signatures as well [4℄.
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Extrat(sk

w

; w) takes as input the seret key assoiated with node w and outputs the seret

keys for nodes w0 and w1. It runs as follows:

1. Parse w as w

1

� � �w

`

where jwj = `. Parse sk

w

as (S

w

;Q

w

) where S

w

2 G

1

and

Q

w

= (Q

w

1

; : : : ; Q

w

1

���w

`�1

) 2 G

`�1

1

.

2. Choose random s

w

2 Z

q

. Set S

w0

= S

w

+ s

w

H

1

(w0) and S

w1

= S

w

+ s

w

H

1

(w1). Set

Q

w

1

���w

`

= s

w

P and Q

w0

= Q

w1

= (Q

w

1

; : : : ; Q

w

1

���w

`

).

3. Output sk

w0

= (S

w0

;Q

w0

) and sk

w1

= (S

w1

;Q

w1

).

Upd(SK

i

; i+ 1) (where i < N � 1) does the following:

1. Parse hii as i

0

i

1

� � � i

t

where i

0

= ". Parse SK

i

as (sk

hii

; fsk

i

0

���i

k�1

1

g

i

k

=0

). Erase sk

hii

.

2. We distinguish two ases. If i

t

= 0, simply output the remaining keys as the key

SK

i+1

for the next period. Otherwise, let

~

k be the largest value suh that i

~

k

= 0

(suh

~

k must exist sine i < N�1). Let i

0

= i

0

� � � i

~

k�1

1. Using sk

i

0

(whih is inluded

as part of SK

i

), reursively apply algorithm Extrat to generate keys sk

i

0

1

, sk

i

0

01

; : : :,

sk

i

0

0

t�

~

k�1

1

, sk

i

0

0

t�

~

k

. Erase sk

i

0

and output the remaining keys as SK

i+1

.

It an be easily veri�ed that the key SK

i+1

that is output has the orret form.

En

PK

(i;M) (where M 2 f0; 1g

n

) does the following:

1. Let i

1

� � � i

t

= hii. Selet random r Z

q

.

2. Output hi; Ci where C = (rP; rH

1

(i

1

i

2

); : : : ; rH

1

(i

1

� � � i

t

);M �H

2

(ê(Q;H

1

(i

1

))

r

))

De

SK

i

(hi; Ci) does the following:

1. Parse hii as i

1

� � � i

t

. Parse SK

i

as (sk

hii

; fsk

i

0

���i

k�1

1

g

i

k

=0

) and sk

hii

as (S

hii

;Q

hii

)

where Q

hii

= (Q

i

1

; : : : ; Q

i

1

���i

t�1

). Parse C as (U

0

; U

2

; : : : ; U

t

; V ).

2. Compute

M = V �H

2

�

ê(U

0

; S

hii

)

�

t

k=2

ê(Q

i

1

���i

k�1

; U

k

)

�

:

We now verify that deryption is performed orretly. When enrypting, we have

ê(Q;H

1

(i

1

))

r

= ê(P;H

1

(i

1

))

rs

"

. When derypting, we have U

0

= rP , U

2

= rH

1

(i

1

i

2

); : : : ;

U

t

= rH

1

(i

1

� � � i

t

) so that

ê(U

0

; S

hii

)

�

t

k=2

ê(Q

i

1

���i

k�1

; U

k

)

=

ê

�

rP; s

"

H

1

(i

1

) +

P

t

k=2

s

i

1

���i

k�1

H

1

(i

1

� � � i

k

)

�

Q

t

k=2

ê

�

s

i

1

���i

k�1

P; rH

1

(i

1

� � � i

k

)

�

=

ê(P;H

1

(i

1

))

rs

"

�

Q

t

k=2

ê (P;H

1

(i

1

� � � i

k

))

rs

i

1

���i

k�1

Q

t

k=2

ê (P;H

1

(i

1

� � � i

k

))

rs

i

1

���i

k�1

= ê(P;H

1

(i

1

))

rs

"

and thus deryption sueeds.

The seurity of the above sheme is stated in the following theorem:
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Theorem 1 Suppose there is an adversary A that has advantage Æ against the above sheme

in the sense of fs-OWE (f. Remark 2) and that makes at most q

H

2

hash queries to H

2

. Then

there is an algorithm A

0

that solves the BDH problem with respet to IG with probability at

least (Æ � 2

�n

)=N � q

H

2

A proof of Theorem 1 appears in Appendix A.

In partiular, the theorem implies that as long as IG satis�es the BDH assumption,

then the above sheme is fs-OWE whenever N = poly(k). We note that the loss of a fator

of N in the seurity redution (implying the \limitation" N = poly(k)) is also present

in most previous work on forward-seure primitives (e.g., [4, 2, 16℄). However, we an in

fat improve upon this and onstrut a modi�ed sheme whose seurity depends on the

number of periods elapsed thus far. We an further modify this sheme so as to support an

\unbounded" number of time periods (i.e., the number of time periods does not need to be

known at the time of key generation).

2

We defer details to the �nal version.

As in [6, 15, 13℄, we may apply the transformation due to Fujisaki and Okamoto [12℄ to

obtain a sheme whih is forward-seure under adaptive hosen-iphertext attaks. Details

and a full proof (whih is non-trivial and does not follow immediately from the results of

[12℄) will appear in the �nal version.

3.3 Analysis of Parameters

We briey justify the laims given in Table 1. Key generation requires t invoations of

Extrat in addition to O(1) other operations. Eah invoation of Extrat runs in O(1) time,

showing that the entire key generation proess requires time O(logN). Enryption time,

deryption time, and iphertext length are all learly O(logN). The key update time is

O(logN) in the worst ase; amortizing over all time periods results in omplexity O(1).

Finally, note that during any time period i the seret key SK

i

onsists of at most logN

\node" seret keys sk

w

; furthermore, eah node seret key is of size O(logN). This implies

that the total seret storage is O(log

2

N).
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A Proof of Theorem 1

Our proof is largely similar to that of [13℄ exept that, beause we work in a di�erent

ontext, we are able to simplify some details. As mentioned earlier, our results are not

immediately implied by those of [13℄ sine (in their setting) they are unable to handle an

adaptive adversary when t = 
(1). In our ontext, we are able to ahieve seurity against

an adaptive adversary even when t = O(log k).

Assume an adversary A who has advantage Æ in attaking the sheme of Setion 3 in

the sense of fs-OWE. We show how to onstrut an adversary A

0

solving the BDH problem

with probability at least (Æ � 2

�n

)=q

H

2

N .

Adversary A

0

is given (G

1

; G

2

; ê) as output by IG(1

k

), and is additionally given random

elements P;Q = s

"

P; P

0

= bP , and U

0

= P . The goal of A

0

is to output ê(P; P )

s

"

b

. A

0

will

simulate an instane of the ke-PKE for adversary A. First, A

0

sets PK = (G

1

; G

2

; ê; P;Q)

and gives PK to A. Next, A

0

guesses a random index i

�

2 f0; : : : ; N � 1g (this represents

a guess of the period for whih A will request a hallenge). Let hii = i

�

1

� � � i

�

t

and i

�

0

= ".

To answer the hash queries of A, algorithm A

0

maintains lists H

list

1

and H

list

2

. To begin,

H

list

2

will be empty. H

list

1

is prepared by �rst having A

0

selet random x

2

; : : : ; x

t

2 Z

q

and

then storing the tuples (i

�

1

; P

0

), (i

�

1

i

�

2

; x

2

P ); : : : ; (i

�

1

� � � i

�

t

; x

t

P ) in H

list

1

. Next, A

0

generates

\node keys" fsk

i

�

0

���i

�

k�1

1

g

i

�

k

=0

as follows:

1. If i

�

1

= 0, hoose random y

1

2 Z

q

. Store (1; y

1

P ) in H

list

1

and set sk

1

= (y

1

Q; ;).

2. Selet random s

0

i

�

1

; s

0

i

�

1

i

�

2

; : : : ; s

0

i

�

1

���i

�

t�1

2 Z

q

.

3. For eah 2 � k � t suh that i

�

k

= 0:

(a) Choose random y

k

2 Z

q

and store

�

i

�

1

� � � i

�

k�1

1; y

k

P � (s

0

i

�

1

���i

�

k�1

)

�1

P

0

�

in H

list

1

.

(b) Set sk

i

�

1

���i

�

k�1

1

=

�

s

0

i

�

1

���i

�

k�1

y

k

Q+

P

k�1

`=2

s

0

i

�

1

���i

�

`�1

x

`

Q;

�

s

0

i

�

1

Q; : : : ; s

0

i

�

1

���i

�

k�1

Q

��

.

3

A

0

will respond to hash queries of A in the obvious way. If A queries H

b

(X), then A

0

heks whether there is a tuple of the form (X;Y ) in H

list

b

. If so, the value Y is returned.

Otherwise, A

0

hooses random Y from the appropriate range, stores (X;Y ) in H

list

b

, and

returns Y .

We now verify that the node keys reated above have the orret distribution. In ase

i

�

1

= 0, note that y

1

Q = s

"

y

1

P = s

"

H

1

(1) so that sk

1

is of the orret form. For 2 � k � t,

de�ne s

i

�

1

���i

�

k�1

= s

"

s

0

i

�

1

���i

�

k�1

. We then have:

s

0

i

�

1

���i

�

k�1

y

k

Q+

k�1

X

`=2

s

0

i

�

1

���i

�

`�1

x

`

Q = s

i

�

1

���i

�

k�1

y

k

P � s

"

P

0

+ s

"

P

0

+

k�1

X

`=2

s

i

�

1

���i

�

`�1

x

`

P

= s

i

�

1

���i

�

k�1

(y

k

P � (s

0

i

�

1

���i

�

k�1

)

�1

P

0

) + s

"

P

0

+

k�1

X

`=2

s

i

�

1

���i

�

`�1

x

`

P

3

For k = 2 the upper limit of the summation is less than the lower limit; by onvention, we let the sum

in this ase be 0.
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= s

"

H

1

(i

�

1

) +

 

k�2

X

`=1

s

i

�

1

���i

�

`

H

1

(i

�

1

� � � i

�

`+1

)

!

+ s

i

�

1

���i

�

k�1

H

1

(i

�

1

� � � i

�

k�1

1):

Furthermore, s

0

i

�

1

���i

�

k�1

Q = s

i

�

1

���i

�

k�1

P . Thus, sk

i

�

1

���i

�

k�1

1

has the orret form for all k suh

that i

�

k

= 0. Using these node keys, A

0

an derive key SK

i

�

+1

with the orret distribution;

this implies that A

0

an orretly respond to query breakin(i) of A for any i > i

�

.

A

0

now runs A, responding to hash queries as desribed previously. If A makes a query

breakin(i) for i � i

�

or a query hallenge(j) for j 6= i

�

, then A

0

aborts. Otherwise, A

0

responds to the breakin(i) query by generating the appropriate node keys and giving these

to A (as mentioned previously, A

0

an do this whenever i > i

�

). A

0

responds to the query

hallenge(i

�

) with hi

�

; Ci, where C = (U

0

; x

2

U

0

; : : : ; x

t

U

0

; V ) and V is seleted at random

from f0; 1g

n

. Note that, as long as A

0

does not abort, this results in a perfet simulation of

the view of A.

Eventually (assuming A

0

does not abort), A outputs a guess M in an attempt to break

the one-way seurity of the sheme. At this point, A

0

piks a random tuple (X;Y ) from

H

list

2

and outputs X. Let X

�

= ê(P; P )

s

"

b

= ê(Q;P

0

)



. Let query be the event that, at the

end of the simulation, X

�

appears as the �rst element of some tuple in H

list

2

and let orret

be the probability that A sueeds in orretly guessingM . By assumption, Pr[orret℄ = Æ.

Sine H

2

is modeled as a random orale, we have Pr[orretjquery℄ = 2

�n

. Therefore:

Æ = Pr[orretjquery℄ Pr[query℄ + Pr[orretjquery℄ Pr[query℄

� Pr[query℄ + 2

�n

(1� Pr[query℄)

so that Pr[query℄ � Æ � 2

�n

. The probability that A

0

does not abort is exatly 1=N .

Assuming A

0

does not abort, A

0

outputs the orret answer with probability Pr[query℄=q

H

2

.

Theorem 1 follows.
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