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Abstra
t

We 
onsider 
ommuni
ation sessions in whi
h a pair of parties begin by running an au-

thenti
ated key-ex
hange proto
ol to obtain a shared session key, and then se
ure su

essive

data transmissions between them via an authenti
ated en
ryption s
heme based on the session

key. We show that su
h a 
ommuni
ation session meets the notion of a se
ure 
hannel proto
ol

proposed by Canetti and Kraw
zyk [9℄ if and only if the underlying authenti
ated en
ryption

s
heme meets two new, simple de�nitions of se
urity that we introdu
e, and the key-ex
hange

proto
ol is se
ure. In other words, we redu
e the se
ure 
hannel requirements of Canetti and

Kraw
zyk to easier to use, stand-alone se
urity requirements on the underlying authenti
ated

en
ryption s
heme. In addition, we relate the two new notions to existing se
urity notions for

authenti
ated en
ryption s
hemes.
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1 Introdu
tion

We 
onsider 
ommuni
ation sessions in whi
h a pair of parties begin by running an authenti
ated

key-ex
hange (KE) proto
ol to obtain a shared session key, and then se
ure su

essive data trans-

missions between them via an authenti
ated en
ryption s
heme, a shared-key-based en
ryption

s
heme whose goal is to provide both priva
y and authenti
ity, based on the session key. Many

popular Internet proto
ols follow this stru
ture [1, 14, 11, 21℄. One reason is that it minimizes 
om-

putationally intensive publi
-key 
ryptography by using more eÆ
ient symmetri
-key 
ryptography

for the bulk of the 
ommuni
ation.

At Euro
rypt 2001, Canetti and Kraw
zyk presented se
urity de�nitions for proto
ols of this

form [9℄. They refer to su
h proto
ols as network 
hannel proto
ols (or 
hannel proto
ols for short).

In their work, they derive a realisti
 adversarial model from [2℄ and formulate se
urity de�nitions

using a mixture of both simulation-based and indistinguishability-based approa
hes. The former

allows them to realisti
ally and naturally 
apture the se
urity properties of 
hannel proto
ols and

the settings in whi
h the proto
ols are deployed. The latter allows them to prove se
urity of the

proto
ols with relative ease. The result is the notion of se
ure 
hannels, a notion that 
aptures

the desired se
urity properties of the 
ommuni
ation 
hannels themselves, rather than those of the


omponents used in 
onstru
ting them, namely the underlying authenti
ated en
ryption s
hemes.

In 
ontrast, most existing work has traditionally fo
used on se
urity properties of en
ryp-

tion s
hemes. Examples in
lude indistinguishability notions for asymmetri
 en
ryption s
hemes

pioneered in [16℄ and adapted to symmetri
-key settings in [3℄, non-malleability notions de�ned

in [13, 3℄ and re�ned in [8℄, and integrity notions de�ned in [18, 5, 19℄. Due to the simpli
ity and

ease of use of these de�nitions, this approa
h has proved fruitful and has be
ome the standard way

to prove se
urity of en
ryption s
hemes.

Our work uses this traditional approa
h to investigate se
urity properties of the authenti
ated

en
ryption s
hemes underlying 
hannel proto
ols. In parti
ular, our goal is to address the following

question. Suppose one takes a \se
ure" KE proto
ol and 
ombines it with an authenti
ated en
ryp-

tion s
heme as des
ribed above to obtain a 
hannel proto
ol. What are the ne
essary and suÆ
ient


onditions on the underlying authenti
ated en
ryption s
heme for the resulting 
hannel proto
ol

to be a se
ure 
hannel per [9℄? The answer to this question will allow us to analyze se
urity of


hannel proto
ols in a modular fashion: �rst 
onsider the underlying KE proto
ol and the under-

lying authenti
ated en
ryption s
heme separately, then determine whether the former is \se
ure"

and whether the latter meets the ne
essary and suÆ
ient 
onditions. If both are aÆrmative, then

the 
hannel proto
ol in question is a se
ure 
hannel. Not only does this approa
h simplify proto
ol

analysis, but the ne
essary and suÆ
ient 
onditions also help distill exa
tly the se
urity properties

of authenti
ated en
ryption s
hemes that are needed to obtain se
ure 
hannels. This understanding


an help guide 
ryptographers in designing future s
hemes for building se
ure 
hannels.

Kraw
zyk has already made some progress in this dire
tion in [19℄: he provides a ne
es-

sary 
ondition for a 
lass of authenti
ated en
ryption s
hemes, namely those 
onstru
ted via the

\Authenti
ate-then-En
rypt" method,

1

to yield a se
ure 
hannel, assuming that the underlying

KE proto
ol is \se
ure." Our goal is to provide both ne
essary and suÆ
ient 
onditions that are

easy-to-use and 
an be applied to any authenti
ated en
ryption s
hemes, as opposed to s
hemes

of a 
ertain form. To this end, we use the traditional approa
h of de�ning se
urity sin
e it yields

de�nitions that are simple and relatively easy to use.

1

Under this paradigm, a message authenti
ation s
heme and an en
ryption s
heme are 
omposed to obtain an

authenti
ated en
ryption s
heme as follows. To en
rypt a message M , �rst 
ompute its MAC via a message au-

thenti
ation s
heme and en
rypt the 
on
atenation of M and the MAC to obtain the 
iphertext to be transmitted.

De
ryption works in a natural way.

3



Se
urity model of Canetti and Kraw
zyk. In [9℄, Canetti and Kraw
zyk use the adversarial

model of [2℄: an adversary is in 
ontrol of all message delivery and the exe
ution of the proto
ol.

In parti
ular, on
e the setup phase of the proto
ol is 
ompleted, all parties in the system simply

wait for a
tivations from the adversary. Possible a
tivations in
lude sending messages, re
eiving

messages, and establishing a session. Messages are delivered solely by the adversary under either of

the following models: the Authenti
ated-links Model (AM) and the Unauthenti
ated-links Model

(UM). Both models allow the adversary to drop messages and to deliver them out of order. In the

former, an adversary 
annot inje
t messages and must deliver messages without modi�
ations. In

the latter, it 
an inje
t fabri
ated messages and modify messages before delivering them. Se
tion 2.1

des
ribes the se
urity model of [9℄ in more detail.

Canetti and Kraw
zyk also present a se
urity de�nition for KE proto
ols based on the approa
h

of [6℄ in this adversarial model. Intuitively, they 
onsider a KE proto
ol to be se
ure if, when the

two parties involved in the ex
hange 
omplete the proto
ol, (1) they arrive at the same session key,

and (2) it is hard for an adversary to distinguish the session key from a random value 
hosen from

the distribution of keys generated by the proto
ol.

Se
ure 
hannels. Canetti and Kraw
zyk de�ne a se
ure 
hannel as a 
hannel proto
ol that is

both a se
ure (network) authenti
ation proto
ol and a se
ure (network) en
ryption proto
ol. The

de�nition of the former uses a simulation-based approa
h: a proto
ol se
ure in this sense must

emulate ideal message transmissions where the notion of emulation amounts to 
omputational in-

distinguishability of proto
ol outputs. To this end, [9℄ de�nes a session-based message transmission

(SMT) proto
ol, a proto
ol that does nothing more than its name suggests. For example, to estab-

lish a session, a party simply re
ords in its output that a session has been established. To send a

message, a party simply puts the message in the message bu�er and re
ords in its output that the

message has been sent.

The de�nition of se
ure en
ryption proto
ols applies an indistinguishability-based approa
h

similar to the \�nd-then-guess" game in [3℄ (whi
h in turn is an adaptation of semanti
 se
urity

of [16℄ into the symmetri
 setting) in this adversarial model. Spe
i�
ally, the proto
ol is run in

the UM against an adversary whi
h, at some point during the run, 
hooses a session it wishes to

break. The rest of the run 
losely follows the standard �nd-then-guess game with a few important

ex
eptions. See Se
tion 2.2 for details.

Capturing the essen
e of se
ure 
hannels. Following [9℄, we de�ne a transform to spe
ify

how the 
hannel proto
ols 
onsidered in this paper are generated: given a KE proto
ol � and an au-

thenti
ated en
ryption s
heme AE , we asso
iate with them a 
hannel proto
ol NC = NetAE(�;AE)

obtained by applying the transform to � and AE . This transform is de�ned in Se
tion 2.3. We

fo
us on proto
ols 
onstru
ted via this transform. Our goal is to �nd simple ne
essary and suÆ
ient


onditions on the underlying authenti
ated en
ryption s
heme su
h that the proto
ol is a se
ure


hannel, assuming that the KE proto
ol is se
ure. We de�ne two simple notions: SINT-PTXT

and IND-CCVA. The former (resp. the latter) is a ne
essary and suÆ
ient 
ondition on the un-

derlying authenti
ated en
ryption s
heme su
h that the 
hannel proto
ol is a se
ure authenti
ation

(resp. en
ryption) proto
ol. In e�e
t, this redu
es the se
ure 
hannel requirements of Canetti

and Kraw
zyk to easier to use, stand-alone se
urity requirements on the underlying authenti
ated

en
ryption s
heme.

We de�ne the two notions using the traditional approa
h: we give an adversary a

ess to 
ertain

ora
les, run it in an experiment, and then measure the probability that it su

eeds. Se
tion 3

des
ribes these notions in detail. Pre
ise statements of our main results are presented in Se
tion 4

along with the proof ideas.
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Te
hni
al issue. The notion of se
ure authenti
ation proto
ols 
aptures reasonable authenti
ity

guarantees su
h as resistan
e against replay atta
ks and forgeries. Therefore, to determine if a


hannel proto
ol provides authenti
ity when these atta
ks are of 
on
ern, one needs simply deter-

mine whether the proto
ol is a se
ure authenti
ation proto
ol. However, due to a te
hni
al issue

arisen from the notion of se
ure en
ryption proto
ol per [9℄, the same 
annot be said regarding

priva
y. In parti
ular, there exists a 
hannel proto
ol that 
learly does not provide semanti
 se
u-

rity [16℄ (i.e., partial information about transmitted messages may be leaked) and yet is provably a

se
ure en
ryption proto
ol. Arguably, however, this te
hni
al issue does not arise in many pra
ti
al

proto
ols, in
luding the popular SSH, SSL, and TLS. Consequently, the notion of se
ure en
ryption

proto
ol 
an still be applied to these proto
ols to obtain meaningful results regarding their priva
y

guarantees. Se
tion 5 dis
usses this issue in more detail.

Future work. Canetti and Kraw
zyk have re
ently proposed an alternative notion for se
ure


hannels that implies their se
ure 
hannel notion of [9℄. This new notion is 
alled universally


omposable se
ure 
hannels [10℄. It provides strong 
omposability guarantees, whi
h means that its

se
urity guarantees hold even if the 
hannel proto
ol is used in 
ombination with other proto
ols.

Thus, a natural resear
h dire
tion is to determine whether we 
an use the same approa
h taken

here to derive simple ne
essary and suÆ
ient 
onditions for an authenti
ated en
ryption s
heme to

yield a universally 
omposable se
ure 
hannel.

2 De�nitions

2.1 Preliminaries

Sin
e the authenti
ated en
ryption s
hemes 
onsidered in [9℄ have stateful de
ryption algorithms,

we modify the standard syntax of symmetri
 authenti
ated en
ryption s
hemes, whi
h assumes

that de
ryption algorithms are stateless [3℄, to allow for stateful de
ryption algorithms. We also

expli
itly spe
ify the syntax of a message-driven proto
ol based on [2, 9℄ and restate the se
urity

model of [9℄ in more detail here.

Syntax of (symmetri
) authenti
ated en
ryption s
hemes. A (symmetri
) authenti
ated

en
ryption s
heme AE = (K; E ;D) 
onsists of three algorithms. The randomized key generation

algorithm K takes as input a se
urity parameter k 2 N and returns a key K; we write K

R

 K(k).

The en
ryption algorithm E 
ould be randomized or stateful. It takes the key K and a plaintext M

to return a 
iphertext C; we write C

R

 E

K

(M). The de
ryption algorithmD 
ould be deterministi
,

and it 
ould be either stateless or stateful. It takes the key K and a string C to return either the


orresponding plaintext M or the symbol ?; we write x D

K

(C) where x 2 f0; 1g

�

[f?g. Above,

a randomized algorithm 
ips 
oins anew on ea
h invo
ation, and a stateful algorithm uses and then

updates a state that is maintained a
ross invo
ations.

Sin
e the de
ryption algorithm is allowed to be stateful here, the usual 
orre
tness 
ondition,

whi
h requires that D

K

(E

K

(M)) = M for all M in the message spa
e, is repla
ed with a less

stringent 
ondition requiring only that de
ryption su

eed when the en
ryption and de
ryption

pro
esses are in syn
hrony. More pre
isely, the following must be true for any key K and plaintexts

M

1

;M

2

; : : :. Suppose that both E

K

and D

K

are in their initial states. For i = 1; 2; : : :, let C

i

=

E

K

(M

i

) and let M

0

i

= D

K

(C

i

). It must be that M

i

= M

0

i

for all i. Noti
e that this imposes no


orre
tness requirement when 
iphertexts are de
rypted out of order. It is up to an individual

s
heme to de
ide how to handle 
iphertexts that are de
rypted out of order. For example, it 
an

reje
t all su
h 
iphertexts or a

ept only the ones that de
rypt to 
ertain seen messages. We stress

that sin
e this requirement is a part of the syntax of en
ryption s
hemes, it is liberal by design
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(messages that arrive out of order 
an have arbitrary de
ryptions under this requirement!).

2

The

goal here is to ensure that as many en
ryption s
hemes as possible 
an be analyzed under the

se
urity notions of interest.

Syntax of message-driven proto
ols. A message-driven proto
ol NC = (IG;B;I; x; l; n; r;

a
tivation list) 
onsists of three algorithms, four positive integer parameters, and a list of a
tivations

that 
an be invoked on a party along with instru
tions on how the party should handle them. Let

k 2 N be the se
urity parameter. The parameter n spe
i�es the upper bound of the number of

parties in the system. The randomized input generation algorithm IG takes as inputs k and an

x-bit string and returns n strings (x

1

; : : : ; x

n

). The randomized bootstrapping algorithm

3

B takes

as inputs k and an l-bit string and returns n+1 strings (I

0

; : : : ; I

n

). For ea
h party P

i

, the possibly

randomized initialization algorithm I takes as inputs I

0

; I

i

; x

i

; and an r-bit string. Exe
uting the

initialization algorithm may 
ause the party to update its internal state, to generate outputs to be

appended to its lo
al output, and/or to produ
e messages to be sent to other parties.

Message-driven proto
ol exe
ution [9℄. Let k 2 N be the se
urity parameter. A proto
ol

NC = (IG;B;I; x; l; n; r; a
tivation list) is exe
uted against an adversary as follows. First, random


oins for IG;B; and I are generated, and IG and B are exe
uted. Then, ea
h party P

i

exe
utes the

initialization algorithm I giving it appropriate inputs as des
ribed above. When the initialization

algorithm 
ompletes, the party waits for in
oming a
tivations. Finally, the adversary is run using

k; I

0

; and as many random 
oins as it needs. The adversary takes over and a
tivates any parties it

wishes to at this point.

Upon re
eiving an a
tivation, a party exe
utes the 
orresponding algorithm as spe
i�ed in

a
tivation list. Again, the result of the exe
ution may be internal state updates, lo
al output

generation, and/or outgoing messages. In the last 
ase, the party appends the message in the

message bu�er M along with its sour
e, destination, and, in the 
ase of a session-based proto
ol,

the asso
iated session. As an example, upon re
eiving a \send" a
tivation from the adversary,

a party �nds the algorithm for handling a send a
tivation in its a
tivation list and exe
utes the

algorithm. This typi
ally involves en
rypting the message, appending the 
iphertext (along with

its sour
e, destination, and session ID) to M, and re
ording the event (e.g., a re
ord to the e�e
t

\sent M to P within session s") in the party's lo
al output.

Proto
ol output. The output of a running proto
ol is the 
on
atenation of the 
umulative lo
al

outputs of all the parties, together with the output of the adversary. Furthermore, sin
e all a
tions

of the adversary are re
orded in the lo
al outputs, they are part of the proto
ol output.

Session-based message-driven proto
ols [9℄. A session-based message-driven proto
ol de-

�nes at least two a
tivations: establish-session and expire-session. They spe
ify how ea
h party 
an

establish a session between itself and another. We denote by (P; P

0

; s) a session de�ned by the

initiating party P , the responding party P

0

, and the session ID s. The two parties P and P

0

are said

to play the roles of an initiator and a responder, respe
tively. Two identi
al sessions (i.e., identi
al

session IDs, parti
ipating parties, and their respe
tive roles) from the point of view of the initiator

and the responder are 
alled mat
hing sessions. In other words, if in an exe
ution of a proto
ol

an initiating party P has a session (P; P

0

; s) and a responding party P

0

has a session (P; P

0

; s),

then we say that the two sessions are mat
hing. The de�ning feature of session-based proto
ols is

2

Re
all that syntax and se
urity notion are two separate 
on
epts. Apparently \inse
ure" s
hemes su
h as one

that allows arbitrary de
ryptions for messages that arrive out-of-order are in fa
t legitimate en
ryption s
hemes, i.e.

they follow the syntax de�ned here. However, they are not se
ure under integrity notions, for instan
e.

3

Also known as an initialization fun
tion in [2, 9℄. We drop their terminology here to avoid 
onfusion with the

initialization algorithm.

6



that individual sessions are maintained separately from one another even when they are established

between the same pair of parties.

Key-ex
hange proto
ols. A key-ex
hange (KE) proto
ol is a session-based message-driven

proto
ol that spe
i�es how two parties 
an establish a shared session key to be used during a

session. Upon an establish-session a
tivation, a party triggers a sub-proto
ol to establish a session

with another party. This sub-proto
ol will likely result in further a
tivations su
h as message sends

and re
eipts. On
e the sub-proto
ol 
ompletes, the two parties write on their outputs the resulting

session key and mark the entry as \se
ret." Note that, although potentially 
onfusing, the term

\key-ex
hange proto
ol" is 
ommonly used in the literature to refer to this sub-proto
ol rather than

the entire proto
ol. Upon an expire-session a
tivation of a parti
ular session, the party erases the


orresponding session key from its output and any internal state it may have (e.g., its memory) and

terminate the session. Noti
e that this means that a session 
an be unilaterally expired. The goal

of this a
tivation is to allow KE proto
ols to provide perfe
t forward se
re
y of sessions, a property

that past session keys remain se
ret even after long-term keys are 
ompromised [17, 12℄.

Network 
hannel proto
ols. A network 
hannel proto
ol (or a 
hannel proto
ol for short) is

a session-based message-driven proto
ol with two additional a
tivations: send and in
oming. They

spe
ify what a party running the proto
ol should do to send and to re
eive a message.

Power of an adversary. When intera
ting with parties exe
uting a session-based message-

driven proto
ol, an adversary is allowed to a

ess the 
ontents of ea
h party's lo
al output ex
ept

those marked as \se
ret." It 
an also perform the following a
tions: party a
tivation, party 
orruption,

session-state reveal, and session-output reveal. In addition to these a
tions, an adversary against a

KE proto
ol 
an also perform a session-key reveal a
tion against a party to obtain a session key. A

session is 
onsidered exposed if it belongs to a 
orrupted party, has been subje
ted to a session-state

reveal, a session-output reveal, a session-key reveal, or has a mat
hing session that has been exposed.

For 
ompleteness, we in
lude a detailed des
ription of these a
tions in Appendix A.

Authenti
ated and unauthenti
ated links models. In the Authenti
ated-links Model

(AM), the adversary 
an perform all of the a
tions mentioned above. Furthermore, all message

delivery is performed by A: to deliver a message in the message bu�erM, the adversary A removes

it fromM and a
tivates the re
eiving party with the message as an in
oming message. We empha-

size that A 
an deliver messages in any arbitrary order and 
an drop messages from M entirely.

However, it 
annot deliver messages that are not inM, and when it does deliver a message, it must

do so without any modi�
ations to the message. On the other hand, in the Unauthenti
ated-links

Model (UM), not only 
an a UM adversary perform all of the a
tions permitted to an AM adver-

sary, but it 
an also deliver messages that are not inM or modify messages inM before delivering

them.

Notation. We use jrj to denote the length in bits of a string r. Let k 2 N be the se
urity parameter,

and let U be an adversary. Let NC = (IG;B;I; x; l; n; r; a
tivation list) be a session-based message-

driven proto
ol. We follow the notation of [2, 9℄ for the proto
ol output. We des
ribe it here in

detail for the UM. The AM is done similarly ex
ept that the bootstrapping algorithm is ignored

and its outputs are omitted. We denote by UNADV

�;U

(k; ~x;~r) the output of the UM adversary U

running against parties exe
uting the proto
ol � with se
urity parameter k, inputs ~x = (x

1

; : : : ; x

n

),

and 
oins ~r = r

0

; r

00

; r

0

; : : : ; r

n

where jr

0

j = x; jr

00

j = l; and jr

0

j = : : : = jr

n

j = r. We denote by

UNAUTH

�;U

(k; ~x;~r)

i

the 
umulative output of the party P

i

running the proto
ol � with se
urity

parameter k, inputs ~x, and 
oins ~r against the UM adversary U . Then, we let the proto
ol output

UNAUTH

�;U

(k; ~x;~r) = UNADV

�;U

(k; ~x;~r);UNAUTH

�;U

(k; ~x;~r)

1

; : : : ;UNAUTH

�;U

(k; ~x;~r)

n

and

let UNAUTH

�;U

(k) be the random variable des
ribing UNAUTH

�;U

(k; ~x;~r) when ~r is randomly 
ho-

7



sen and ~x is generated via IG(k; r

0

). We denote by UNAUTH

�;U

the ensemble fUNAUTH

�;U

(k)g

k2N

.

2.2 Se
ure Channels per Canetti and Kraw
zyk [9℄

In [9℄, Canetti and Kraw
zyk de�ne a se
ure 
hannel as a 
hannel proto
ol that is both a (se
ure)

authenti
ation proto
ol and a (se
ure) en
ryption proto
ol. For authenti
ation proto
ols, their

approa
h is to �rst de�ne a proto
ol 
onsidered ideal as a message authenti
ation proto
ol 
alled

the SMT proto
ol. A 
hannel proto
ol is 
onsidered a se
ure authenti
ation proto
ol if it emulates

the SMT proto
ol in the UM. Below, we present the 
on
ept of proto
ol emulation, the SMT

proto
ol, and the de�nition of se
ure authenti
ation proto
ols in De�nition 2.1, Constru
tion 2.2,

and De�nition 2.3, respe
tively.

De�nition 2.1 [Proto
ol Emulation [2, 9℄℄ Let �; �

0

be message-driven proto
ols. We say that

�

0

emulates � in the UM if, for any UM adversary U , there exists an AM adversary A su
h that

AUTH

�;A

and UNAUTH

�

0

;U

are 
omputationally indistinguishable.

Constru
tion 2.2 [SMT Proto
ol [9℄℄ The proto
ol SMT is a session-based message-driven pro-

to
ol with the following a
tivations: establish-session, expire-session, send, and in
oming. Upon

an establish-session a
tivation, a party re
ords the event a

ordingly in its output. Upon an

expire-session a
tivation, a party 
he
ks that the session exists, marks the session as expired, and

re
ords the event a

ordingly in its output. When a party re
eives a send a
tivation involving a

message, a partner, and a session ID, it 
he
ks that the session is established and is not expired.

If so, it sends the given message to its partner via the spe
i�ed session. Then, it re
ords the event

a

ordingly in its output. Finally, upon an in
oming a
tivation, a party 
he
ks that the session is

established and is not expired. If so, it re
ords the event a

ordingly in its output.

De�nition 2.3 [Network Authenti
ation Proto
ol Se
urity [9℄℄ A proto
ol is 
onsidered to

be a se
ure authenti
ation proto
ol if it emulates the SMT proto
ol in the UM.

In de�ning se
ure en
ryption proto
ols, [9℄ adapts the indistinguishability-based approa
h to a

multi-party 
omputation setting. We present their se
urity de�nition here. In what follows,

the a
tivation send

�

(P;Q; s;M

b

) has the same e�e
ts as send(P;Q; s;M

b

) ex
ept that the party

Q merely re
ords the fa
t that a message is sent but not the a
tual 
ontents of the message,

i.e., P re
ords the entry \sent a message to Q within session s". Similarly, the a
tivation

in
oming

�

(Q;P; s; C;M

b

) has the same e�e
ts as in
oming(Q;P; s; C) ex
ept that, if the de
rypted

message of C is equal to M

b

, then Q merely re
ords the fa
t that a message is re
eived but not

the a
tual 
ontents of the message M

b

, i.e., Q re
ords the entry \re
eived a message from P

within session s". For 
ompleteness, these two a
tivations are de�ned in detail in Appendix B.

Let b be a bit. In the experiment below, an adversary U runs in the UM, and its goal is to

break one session of its 
hoi
e by performing an a
tion 
alled test-session against the session and

then doing what it 
an to guess the bit b. On
e U pi
ks a session, say (P;Q; s), it outputs a pair of

messages, say (M

0

;M

1

). The sender P is then a
tivated to send M

b

. However, if P re
ords in its

lo
al output at this point that it sends M

b

, then U 
an easily win the game by simply looking at

P 's output. Therefore, P is a
tivated with send

�

(P;Q; s;M

b

), rather than a regular send a
tivation.

The rest of the run 
ontinues in the same way as before ex
ept that now the re
eiving party of the

tested session uses in
oming

�

(Q;P; s; C;M

b

) to handle in
oming messages. The reason for this is

the following: if Q re
ords all de
ryptions of in
oming 
iphertexts, U 
an easily determine the bit

b by simply taking the 
hallenge 
iphertext 
orresponding to M

b

, handing it to Q as an in
oming

8




iphertext, then seeing what Q writes on its output. The a
tivation in
oming

�

prevents this trivial

atta
k.

Unfortunately, the game in its present form allows U to easily win via another trivial atta
k.

Suppose the tested session is (P;Q; s). First, U pi
ks any message M , a
tivates P with a send

a
tivation to send M to Q via s, and outputs the 
hallenge message pair (M;M

0

) where M 6=M

0

.

As a result of the send a
tivation, P en
rypts M to obtain a 
iphertext C and appends C to the

message bu�er. Now, U a
tivates the re
eiver Q with the 
iphertext C as an in
oming message

from P via session s. If Q does not re
ord the de
rypted message, then C 
orresponds to M , and

thus b = 0. Otherwise, C 
orresponds to M

0

, and thus b = 1. Therefore, to prevent this trivial

atta
k, [9℄ requires that an adversary never ask for an en
ryption of a parti
ular message more than

on
e. This requirement 
an be easily implemented using 
ounters. For example, the en
ryption

algorithm 
an prepend an internal 
ounter to the input message before en
rypting the resulting

string to obtain the 
iphertext. In fa
t, the use of this me
hanism is 
ommon in pra
ti
al Internet

proto
ols in
luding SSH [21℄, SSL [14℄, and TLS [11℄. De�nition 2.4 below des
ribes the se
urity

of network en
ryption proto
ols more pre
isely.

De�nition 2.4 [Network En
ryption Proto
ol Se
urity [9℄℄ Let k 2 N. Let NC = (IG;B;I; x;

l; n; r; a
tivation list) be a 
hannel proto
ol. Let U be a UM atta
ker, and let r

U

: N ! N be the

fun
tion spe
ifying the upper bound of the running time of U in terms of k. Consider the following

experiment:

Experiment Exp

ind-ne-b

NC;U

(k)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

(x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

i

on (I

0

; I

i

; x

i

; r

i

)

Run U on input (k; I

0

; r

0

), 
arrying out U 's a
tions as spe
i�ed in NC

. When U submits test-session(P

i

; P

j

; s

0

) and outputs (M

0

;M

1

)

| A
tivate P

i

with send

�

(P

i

; P

j

; s

0

;M

b

)

. Continue 
arrying out U 's a
tions as spe
i�ed in NC ex
ept

| Whenever U a
tivates P

j

with in
oming(P

j

; P

i

; s

0

; C),

A
tivate P

j

with in
oming

�

(P

j

; P

i

; s

0

; C;M

b

) instead

Until U halts and outputs a bit d

Output d

Above, it is required that U submit only one test-session query and that it not expose the tested

session thereafter. Furthermore, for the tested session, we require that U never invoke send a
ti-

vations involving M

0

or M

1

and also never invoke send a
tivations involving a parti
ular message

more than on
e. We de�ne the advantage of the adversary via

Adv

ind-ne

NC;U

(k) = Pr[Exp

ind-ne-1

NC;U

(k) = 1 ℄� Pr[Exp

ind-ne-0

NC;U

(k) = 1 ℄ :

The 
hannel proto
ol NC is said to be a se
ure en
ryption proto
ol in the UM if the fun
tion

Adv

ind-ne

NC;U

(�) is negligible for any UM adversary U whose time-
omplexity is polynomial in k.

2.3 From KE and Authenti
ated En
ryption S
hemes to Channel Proto
ols

In [9℄, Canetti and Kraw
zyk use a template by whi
h one 
an des
ribe how a KE proto
ol and an

authenti
ated en
ryption s
heme 
an be used as building blo
ks for a 
hannel proto
ol. We de�ne

a transform based on this template.

9



Constru
tion 2.5 [Transform [9℄℄ Let � = (IG;B;I; x; l; n; r; a
tivation list) be a KE proto
ol,

and let AE = (K; E ;D) be an authenti
ated en
ryption s
heme. We asso
iate with � andAE a 
han-

nel proto
ol NAE = NetAE(�;AE) = (IG;B;I; x; l; n; r; alist) where alist 
ontains the a
tivations in

a
tivation list together with the following a
tivations.

1. establish-session(P

i

; P

j

; s; role): This triggers a KE-session under � within P

i

with partner P

j

,

session ID s, and role 2 finitiator; responderg. If the KE-session 
ompletes, P

i

re
ords in its lo
al

output the entry \established session s with P

j

" and the generated session key marked as

\se
ret." Otherwise, no a
tion is taken.

2. expire-session(P

i

; P

j

; s): If the session (P

i

; P

j

; s) exists at P

i

, the party P

i

marks the session as

expired and erases the session key. Then, P

i

re
ords in its lo
al output \expired session s

with P

j

". Otherwise, no a
tion is taken.

3. send(P

i

; P

j

; s;M): The party P

i


he
ks that the session (P

i

; P

j

; s) has been 
ompleted and not

expired. If so, it 
omputes C

R

 E

K

(M) using the 
orresponding session keyK, puts (P

i

; P

j

; s; C)

in the message bu�erM, and re
ords \sent M to P

j

within session s" in the lo
al output.

Otherwise, no a
tion is taken.

4. in
oming(P

j

; P

i

; s; C): The party P

j


he
ks that the session (P

i

; P

j

; s) has been 
ompleted and

not expired. If so, it 
omputes M  D

K

(C) under the 
orresponding session key K. If M 6= ?,

then P

j

re
ords \re
eived M from P

i

within session s". Otherwise, no a
tion is taken.

3 Simple Chara
terizations of Authenti
ated En
ryption S
hemes

for Se
ure Channels

We propose two new se
urity notions for authenti
ated en
ryption s
hemes: SINT-PTXT (for

strong integrity of plaintexts) and IND-CCVA (for indistinguishability against 
hosen-
iphertext

atta
ks with veri�
ation). The goal is to 
apture the ne
essary and suÆ
ient properties of the

authenti
ated en
ryption s
heme su
h that, on
e the transform per Constru
tion 2.5 is applied to

the s
heme and a KE proto
ol, the resulting 
hannel proto
ol is a se
ure 
hannel, assuming that the

KE proto
ol \se
urely implements" the key generation algorithm of the authenti
ated en
ryption

s
heme. We postpone a pre
ise de�nition of the term in quotes to Se
tion 4. In what follows, we

use x

R

 f(y) to denote the pro
ess of running a possibly randomized algorithm f on an input y and

assigning the result to x. If A is a program, A ( x means \return x to A." The time-
omplexity

referred to in our de�nitions is the worst 
ase total exe
ution time of the entire experiment, plus

the size of the 
ode of the adversary, in some �xed RAM model of 
omputation. Also, ora
les


orresponding to stateful algorithms maintain their states a
ross invo
ations.

First, we 
apture the notion of a se
ure authenti
ation proto
ol with SINT-PTXT. Re
all that

a proto
ol is 
onsidered a se
ure authenti
ation proto
ol if it emulates the SMT proto
ol in the

UM where SMT is an ideal session-based message transmission proto
ol. Under the SMT proto
ol

in the AM, when a party sends a message M to another party, the message M is simply put on

the bu�er. Sin
e the adversary is operating in the AM, it 
an drop messages but 
annot modify or

inje
t messages. Therefore, a se
ure authenti
ation proto
ol must ensure that ea
h sent message is

re
eived at most on
e (i.e., replay atta
ks are unsu

essful), and that its 
ontents are left inta
t.

We de�ne the SINT-PTXT notion in De�nition 3.1. An adversary is given a

ess to an en
ryp-

tion ora
le and a de
ryption ora
le. This 
aptures its ability to obtain en
ryption and de
ryption

of messages and 
iphertexts of its 
hoi
e. We use a multiset, denoted T below, to keep tra
k of

messages that have been sent but not yet re
eived. Whenever a message is re
eived, it is removed

from the multiset. If an adversary is able to submit a query to the de
ryption ora
le that results in
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a message that is not in the multiset T , i.e., the message is not one of those waiting to be re
eived,

then it wins.

De�nition 3.1 [SINT-PTXT℄ Let AE = (K; E ;D) be an authenti
ated en
ryption s
heme. Let

k 2 N. Let A be an adversary with a

ess to two ora
les. Consider the following experiment.

Experiment Exp

sint-ptxt

AE ;A

(k)

K

R

 K(k) ; T  ; // T is a multiset

Run A

E

K

(�);D

K

(�)

(k)

Reply to E

K

(M) as follows:

C

R

 E

K

(M) ; T  T [ fMg ; A( C

Reply to D

K

(C) as follows:

M  D

K

(C)

If M = ? Then A(M

Else If M 2 T Then T  T � fMg ; A(M

Else return 1

Until A halts

Return 0

We de�ne the advantage of the adversary via

Adv

sint-ptxt

AE ;A

(k) = Pr[Exp

sint-ptxt

AE ;A

(k) = 1 ℄ :

The s
heme AE is said to be SINT-PTXT se
ure if the fun
tion Adv

sint-ptxt

AE ;A

(�) is negligible for any

adversary A whose time-
omplexity is polynomial in k.

Now, we 
apture the notion of a se
ure en
ryption proto
ol. To 
apture an adversary's ability to

obtain en
ryption and de
ryption of messages and 
iphertexts of its 
hoi
e, we give it a

ess to an

en
ryption ora
le E

K

(�) and a de
ryption ora
le D

K

(�). The de�nition follows that of [9℄ 
losely

and straightforwardly. Let b 2 f0; 1g. Re
all that, in the de�nition of se
ure en
ryption proto
ol

per [9℄, on
e the adversary outputs a 
hallenge message pair (M

0

;M

1

), the re
eiver of the tested

session does not re
ord the de
rypted message if it is equal to the se
ret message M

b

. Therefore,

we 
apture this through an ora
le denoted by D

K

(�;M

b

). This ora
le is the same as the standard

de
ryption ora
le D

K

(�) ex
ept the following. If a given 
iphertext de
rypts to M

b

, then the ora
le

D

K

(�;M

b

) returns a spe
ial symbol �. Otherwise, it returns the de
rypted message. Additionally,

sin
e an adversary in the de�nition per [9℄ 
annot obtain en
ryptions of a parti
ular message more

than on
e, we also impose the same restri
tion on the adversary in our experiment.

De�nition 3.2 [IND-CCVA℄ Let AE = (K; E ;D) be an authenti
ated en
ryption s
heme. Let

b 2 f0; 1g and k 2 N. Let A be an adversary that has a

ess to three ora
les. Consider the following

experiment.

Experiment Exp

ind-

va-b

AE ;A

(k)

K

R

 K(k)

(M

0

;M

1

; st) A

E

K

(�);D

K

(�)

(k; �nd)

C

R

 E

K

(M

b

)

d A

E

K

(�);D

K

(�;M

b

)

(k; guess; C; st)

Return d

The 
omputation E

K

(M

b

) above is a 
all to the en
ryption ora
le. Also, the ora
le D

K

(�;M

b

) shares

states with (i.e., is initialized with the 
urrent states of) D

K

(�) if any. Furthermore, we require
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that A never query E

K

(�) on M

0

or M

1

and also never query E

K

(�) on a parti
ular message more

than on
e. We de�ne the advantage of the adversary via

Adv

ind-

va

AE ;A

(k) = Pr[Exp

ind-

va-1

AE ;A

(k) = 1 ℄� Pr[Exp

ind-

va-0

AE ;A

(k) = 1 ℄ :

The s
heme AE is said to be IND-CCVA se
ure if the fun
tion Adv

ind-

va

AE ;A

(�) is negligible for any

adversary A whose time-
omplexity is polynomial in k.

4 SINT-PTXT and IND-CCVA are Ne
essary and SuÆ
ient

Our results use De�nition 4.1 below. It des
ribes how a key generation algorithm of an authenti-


ated en
ryption s
heme should relate to a KE proto
ol of a 
hannel proto
ol based on the authen-

ti
ated en
ryption s
heme. In parti
ular, the KE proto
ol should \implement" the key generation

algorithm, meaning that two parties that have 
ompleted the KE proto
ol with ea
h other should

end up with the same key whi
h in turn should be drawn from the distribution generated by the

key generation algorithm. The de�nition, whi
h is adapted from [9℄, 
aptures this property more

pre
isely via the following game. Let k 2 N be the se
urity parameter. Let � be a session-based

message-driven proto
ol that in
ludes a KE proto
ol � as a sub-proto
ol, and let U be a UM adver-

sary running against �. The adversary U 
an 
arry out a
tions spe
i�ed in � plus one additional

a
tivation, namely a test-session-key query, against at most one unexpired and unexposed session s

whose KE portion is 
ompleted. From this point on, U is not allowed to expose the tested session.

On
e U perform a test-session-key query, a bit b is 
hosen at random. If b = 0, then U re
eives

the session key for s. Otherwise, it re
eives a value r

R

 K(k). The adversary wins if it 
orre
tly

guesses the bit b.

De�nition 4.1 [Se
urely Implementing a Key Generation Algorithm via a Key Ex-


hange Proto
ol.℄ Let k 2 N be the se
urity parameter. A KE proto
ol � is said to se
urely

implement a key generation algorithm K in the UM during the run of a proto
ol if, for any adversary

U in the UM,

| When an un
orrupted party 
ompletes � with another un
orrupted party, they both arrive at

the same session key, AND

| U wins the game above with probability no more than 1/2 plus a negligible fun
tion of k.

We present our main results here. They state that, respe
tively, SINT-PTXT and IND-CCVA

are ne
essary and suÆ
ient for the notions of network authenti
ation and network en
ryption

of Canetti and Kraw
zyk [9℄. We present the theorems and their proof ideas below. The full

proofs in detail are in Appendix C. For brevity, we write X

s

� Y when the ensembles X and Y

are statisti
ally indistinguishable. Note that statisti
al indistinguishability implies 
omputational

indistinguishability.

Theorem 4.2 [Given a se
ure KE, SINT-PTXT , Se
ure Authenti
ation Proto
ol℄

Let AE = (K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let

NAE = NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that �

se
urely implements K in the UM during the run of NAE. Then, AE is SINT-PTXT se
ure if and

only if NAE is a se
ure authenti
ation proto
ol.

We sket
h the proof for ea
h dire
tion of the \if and only if," assuming throughout that � se-


urely implements K. For the \if" dire
tion, we show that if AE is SINT-PTXT, then given

any UM adversary U against NAE, we 
an 
onstru
t an AM adversary A against SMT su
h that
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AUTH

SMT;A

s

� UNAUTH

NAE;U

. The 
rux of this proof is essentially the same as that of Theorem 12

of [9℄, and thus, we do not dis
uss it further.

For the \only if" dire
tion, we show that, given any sint-ptxt adversary F against AE , we


an 
onstru
t a UM adversary U against NAE su
h that, for any AM adversary A against SMT,

AUTH

SMT;A

6

s

� UNAUTH

NAE;U

as follows. The adversary U starts two parties P

1

and P

2

. Then,

it a
tivates P

1

with establish-session(P

1

; P

2

; s; initiator) and runs F . Whenever F submits an en-


ryption query E

K

(M), the adversary U a
tivates the party P

1

with send(P

1

; P

2

;M; s). Similarly,

whenever F submits a de
ryption query D

K

(C), the adversary U a
tivates the party P

2

with

in
oming(P

2

; P

1

; C; s). Re
all that a su

essful sint-ptxt adversary F 
an essentially replay a mes-

sage or forge a 
iphertext the de
rypts to a previously-unseen message. Sin
e su
h a
tions are not

allowed in the AM, there 
an be no AM adversaries that 
an generate the global output that is

statisti
ally indistinguishable from that generated by U .

Theorem 4.3 [Given a se
ure KE, IND-CCVA , Se
ure En
ryption Proto
ol℄ Let

AE = (K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let NAE =

NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that � se
urely

implements K in the UM during the run of NAE. Then, AE is IND-CCVA se
ure if and only if

NAE is a se
ure en
ryption proto
ol.

We sket
h the proof for ea
h dire
tion of the \if and only if," assuming throughout that � se
urely

implements K. For the \if" dire
tion, we show that, given any ind-ne adversary U against NAE, we


an 
onstru
t an ind-

va adversary A against AE su
h that A's su

ess probability is no less than

that of U divided by the total number of sessions established by U over its run. The adversary

A simply simulates U as in the experiment Exp

ind-ne-b

NAE;U

(k) (where b is a bit) with one ex
eption:

during the �nd phase, A 
hooses a session at random and uses its ora
les to en
rypt and de
rypt

messages in this session. If U submits a test-session query on the 
hosen session and outputs a pair

of test messages, A does too. (Otherwise, A aborts.) Then, A enters its guess phase and 
ontinues

the simulation exa
tly as before. It halts and outputs what U outputs. Sin
e � se
urely implements

K, the adversary A 
orre
tly simulates U . Thus, it su

eeds if U does.

For the \only if" dire
tion, we show that, given any ind-

va adversary A against AE, we 
an


onstru
t an ind-ne adversary U against NAE su
h that U 's su

ess probability is no less than

that of U using a similar te
hnique as before: U establishes a session between two parties, then

runs A, answering its en
ryption and de
ryption queries by making send and in
oming a
tivations

respe
tively for the session. Finally, U halts and outputs what A outputs. Sin
e � se
urely

implements K, the adversary U 
orre
tly simulates A. Thus, it su

eeds if A does.

5 Understanding Se
ure Channels through SINT-PTXT and IND-

CCVA

We explore the new notions by taking the standard approa
h of relating them to familiar notions.

Sin
e the two notions are ne
essary and suÆ
ient for se
ure 
hannels, the knowledge we gain from

this exer
ise is appli
able to se
ure 
hannels as well. In our 
omparisons, we use the following

terminology. Suppose X and Y are se
urity notions. We say that X implies Y if any s
heme se
ure

under X is se
ure under Y . We say that X does not imply Y if there exists an en
ryption s
heme

that is se
ure under X but is inse
ure under Y . We say that A is equivalent to B if A implies B

and vi
e versa. We say that X is stri
tly stronger than Y if X implies Y but Y does not imply X.

Finally, we say that X and Y are in
omparable if X does not imply Y and if Y does not imply X.
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priva
y integrity

IND-CCA IND-CCVA

IND-CPA

SINT-PTXT INT-CTXT

INT-PTXT

[4℄ [5℄

Figure 1: Relations among notions of symmetri
 en
ryption: An arrow from a notion X

to a notion Y denotes that X is stri
tly stronger than Y . A dashed line between a notion X

and a notion Y denotes that the two notions are in
omparable. The relations established in other

papers are annotated with the 
orresponding 
itations. For simpli
ity, only interesting relations are

shown here. We emphasize that the existing notions in this �gure (those in unshadowed frames)

are variants of the standard notions in the literature. In parti
ular, the ora
les here maintain states

a
ross invo
ations.

In this se
tion, we dis
uss relations among notions of symmetri
 en
ryption as summarized in

Figure 1. Our strategy for showing that X implies Y is the standard redu
tion approa
h: given

an adversary that su

essfully breaks the s
heme under the notion Y , 
onstru
t an adversary that

su

essfully breaks the s
heme under the notion X. To show that X does not imply Y , we start

with a s
heme se
ure under X, then modify it to obtain a s
heme that remains se
ure under X but

is inse
ure under Y .

The standard priva
y notions we 
onsider here are indistinguishability under 
hosen-plaintext

and adaptive 
hosen-
iphertext atta
ks (IND-CPA and IND-CCA). The original de�nitions of these

notions were in the asymmetri
 setting [16, 15, 13, 20℄ but 
an be \lifted" to the symmetri
 setting

using the en
ryption ora
le based template of [3℄. We use the \�nd-then-guess" de�nitions per [3℄

throughout our dis
ussions here. In parti
ular, for both notions, an adversary A plays a game in

whi
h it is to \�nd" a pair of 
hallenge messages (M

0

;M

1

), obtain the 
iphertext 
orresponding

to the en
ryption of one of the 
hallenge messages, and then \guess" a bit indi
ating to whi
h


hallenge message the 
iphertext 
orresponds. For IND-CPA, A is given a

ess to an en
ryption

ora
le throughout the game. For IND-CCA, A is given a

ess to both an en
ryption ora
le and a

de
ryption ora
le throughout the game. (This notion is also known as IND-CCA2 [4℄.)

The integrity notions 
onsidered here are integrity of plaintexts [5℄ and integrity of 
iphertexts [7,

18, 5℄. An adversary atta
king a s
heme under these notions is given a

ess to two ora
les: a

standard en
ryption ora
le and a veri�
ation ora
le| an ora
le that returns a bit indi
ating whether

the given 
iphertext is valid, i.e., whether it de
rypts to ?. An adversary su

eeds in breaking a

s
heme under the INT-PTXT notion if it 
an forge a 
iphertext that de
rypts to a \new" message,

i.e., a message that has not been submitted to the en
ryption ora
le before. Similarly, it su

eeds

in breaking a s
heme under the INT-CTXT notion if it 
an forge a \new" and valid 
iphertext, i.e.,

a valid 
iphertext that has not been returned by the en
ryption ora
le.

Stri
tly speaking, the original de�nitions of the existing se
urity notions 
onsidered here, namely

IND-CPA, IND-CCA, INT-PTXT and INT-CTXT, do not expli
itly deal with en
ryption s
hemes

with stateful de
ryption algorithms. Therefore, to 
ompare them to our proposed notions, namely

IND-CCVA and SINT-PTXT, we make one small modi�
ation to existing de�nitions. Spe
i�
ally,

we allow ea
h ora
le used in the de�nitions to maintain states a
ross invo
ations. It is easy to see
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that, this modi�
ation notwithstanding, the relations among existing notions shown in [4℄ and [5℄

remain the same. It is also easy to see that any s
hemes se
ure under the original de�nitions are

se
ure under the de�nitions with this modi�
ation. Hen
eforth, we use the original names to refer

to the modi�ed de�nitions.

Now we justify all relations among the six notions shown in Figure 1 although the �gure only

shows some of them. We group the justi�
ations of the relations into three 
ategories: those for

relations among priva
y notions, those for relations among integrity notions, and those for relations

a
ross the two 
ategories. Not all of the relations are interesting. Nonetheless we in
lude them all

here for 
ompleteness. We 
on
lude this se
tion with a brief dis
ussion.

5.1 Priva
y Notions

IND-CCA 6=) IND-CCVA. We show that IND-CCA does not imply IND-CCVA. The idea here

is to 
onstru
t an en
ryption s
heme for whi
h there exists a valid 
iphertext whose de
ryption is

known but the 
iphertext itself is never produ
ed. This allows an ind-

va adversary to submit

a valid 
iphertext to the de
ryption ora
le without the help of the en
ryption ora
le and to then

use the de
ryption ora
le's response to its advantage. In more detail, given an IND-CCA se
ure

s
heme SE , we 
onstru
t a s
heme SE

0

as follows. The key generation remains the same. The

en
ryption algorithm prepends a bit 0 to all 
iphertexts. The de
ryption algorithm strips the �rst

bit b o� of the input 
iphertext. If b = 0, then it returns the de
ryption of the rest of the 
iphertext.

Otherwise, it returns a single bit 0. It is easy to see that SE

0

is IND-CCA se
ure. (In fa
t, this

is shown in the proof of Proposition 3.3 in [5℄.) However, SE

0

is not se
ure under IND-CCVA. An

adversary 
an simply output a pair of bits (0; 1) as the 
hallenge messages then request for the

de
ryption of the 
iphertext 10. If the ora
le's response is �, then it outputs 0. Otherwise, it

outputs 1. It wins with probability one.

IND-CCVA 6=) IND-CPA. Re
all that, in the de�nition of se
ure en
ryption proto
ols, an ind-ne

adversary U is not allowed to submit send a
tivations involving a parti
ular message more than

on
e for the tested session. This translates into a similar restri
tion for ind-

va adversaries sin
e

IND-CCVA is ne
essary and suÆ
ient for the notion of se
ure en
ryption proto
ols. Unfortunately,

under this restri
tion, one 
an show that there exists a stateless and deterministi
 en
ryption

s
heme se
ure under IND-CCVA. An example of su
h a s
heme is presented in Appendix D. Now,

it is well-known that stateless deterministi
 en
ryption s
hemes are not se
ure under the standard

priva
y notions. Furthermore, it is easy to see that they are not se
ure under the variant of the

priva
y notions with stateful ora
les 
onsidered here. Consequently, this means that IND-CCVA

does not imply IND-CPA and IND-CCA.

IND-CPA 6=) IND-CCVA. Sin
e IND-CCA does not imply IND-CCVA and sin
e IND-CCA

implies IND-CPA, we have that IND-CPA does not imply IND-CCVA.

IND-CCVA 6=) IND-CCA. Sin
e IND-CCVA does not imply IND-CPA and sin
e IND-CCA

implies IND-CPA, we have that IND-CCVA does not imply IND-CCA.

5.2 Integrity Notions

SINT-PTXT =) INT-PTXT. The reasoning behind this relation is simple. If an adversary 
an

forge a 
iphertext for a message that has not been previously en
rypted, i.e., it defeats INT-PTXT,

it 
an also defeat SINT-PTXT with the same atta
k.
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INT-PTXT 6=) SINT-PTXT. To show this relation, we simply use a stateless s
heme se
ure under

INT-PTXT. Being stateless, it is thus inse
ure under SINT-PTXT. An example of a s
heme we 
an

use for this purpose is a stateless s
heme 
onstru
ted via the en
rypt-then-MAC 
omposition

4

as

de�ned and shown in [5℄ to be INT-PTXT se
ure if the underlying MAC and en
ryption s
hemes are

se
ure. Note that this does not 
ontradi
t the result in [9℄ sin
e the en
rypt-then-MAC 
omposition

de�ned there is stateful.

INT-CTXT 6=) SINT-PTXT. The reason is similar to the previous 
ase. Consider stateless s
hemes


onstru
ted via the en
rypt-then-MAC 
omposition as de�ned and shown in [5℄ to be INT-CTXT

se
ure if the underlying MAC and en
ryption s
hemes are se
ure (the se
urity assumption on the

MAC here is stronger than in the 
ase of INT-PTXT se
urity above). Being stateless, however,

they are not se
ure under SINT-PTXT.

SINT-PTXT 6=) INT-CTXT. Consider a s
heme se
ure under SINT-PTXT. It is easy to see that

adding a redundant bit to every 
iphertext generated via this s
heme yields a s
heme that is inse
ure

under INT-CTXT (
iphertexts 
an now be easily forged) but is still se
ure under SINT-PTXT (the

underlying messages are una�e
ted and so will still be hard to forge).

5.3 Comparing Priva
y Notions to Integrity Notions

No integrity notions imply priva
y notions. We show a simple s
heme se
ure under all of the

integrity notions but does not provide any priva
y. The s
heme uses a se
ure MAC s
heme to

obtain INT-PTXT and INT-CTXT in a straightforward manner. Furthermore, to ensure SINT-

PTXT, it also uses an internal 
ounter. To ensure that it does not provide priva
y, we transmit

ea
h plaintext message as part of the 
iphertext. In more detail, 
onsider the s
heme SE de�ned

as follows. Both en
ryption and de
ryption algorithms maintain internal 
ounter. To en
rypt a

message, the en
ryption algorithm in
rements its internal 
ounter, prepends the 
ounter to the

message, MAC the resulting string, and �nally outputs the message and the resulting tag. To

de
rypt a 
iphertext, the de
ryption algorithm in
rements its internal 
ounter, 
omputes the MAC

of the 
on
atenation of its 
ounter and the message portion of the 
iphertext, 
ompares the resulting

MAC to the tag part of the 
iphertext, and outputs the message if they mat
h. It is easy to see

that SE is se
ure under SINT-PTXT as well as INT-PTXT and INT-CTXT, assuming that the

underlying MAC is se
ure. Furthermore, sin
e messages are transmitted in the 
lear, SE 
learly

does not provide any priva
y.

No priva
y notions imply SINT-PTXT.We know that s
hemes with stateless de
ryption algorithms

are not SINT-PTXT se
ure. However, there are plenty of s
hemes with stateless de
ryption algo-

rithms se
ure under IND-CCA and IND-CPA. Furthermore, the s
heme in Appendix D shown to

be se
ure under IND-CCVA also has a stateless de
ryption algorithm.

Neither IND-CCA nor IND-CPA imply INT-PTXT or INT-CTXT. This is implied by the fa
t

that IND-CCA does not imply INT-PTXT shown in [5℄.

IND-CCVA =) INT-PTXT. Let AE be an authenti
ated en
ryption s
heme. Suppose that there

exists an int-ptxt adversary A. In parti
ular, A 
an forge a 
iphertext C of a message M that has

not been previously en
rypted, i.e., it 
an generate C on its own without ever submitting M to

4

Under this paradigm, to en
rypt a message M , �rst en
rypt M then MAC the result to obtain the 
iphertext to

be transmitted. De
ryption works in a natural way.
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the en
ryption ora
le. Then, we 
onstru
t an ind-

va adversary A

0

as follows. First, A

0

forges the


iphertext C 
orresponding to a message M in the �nd stage, outputs (M;M

0

) where M 6=M

0

as

the 
hallenge message pair, then submit C to the de
ryption ora
le in the guess stage. If it re
eives

the spe
ial symbol � as a response, then it returns 0. Otherwise, it returns 1. Thus, A

0

is su

essful

if A is su

essful.

IND-CCVA 6=) INT-CTXT. The reasoning behind this relation is simple. Suppose SE is a s
heme

se
ure under IND-CCVA. Consider a s
heme SE

0

that is almost identi
al to SE ex
ept that its

en
ryption algorithm appends to all 
iphertexts a bit that is ignored by the de
ryption algorithm.

It is easy to show that SE

0

remains IND-CCVA se
ure. However, it is 
learly inse
ure under

INT-CTXT.

5.4 Dis
ussion

First, we 
omment that, as Figure 1 shows, SINT-PTXT is reasonably strong: it implies INT-PTXT

but not the stronger notion of INT-CTXT. Also, an integrity notion, spe
i�
ally INT-PTXT, turns

out to be ne
essary for IND-CCVA, a priva
y notion.

Being a ne
essary and suÆ
ient 
hara
terization of se
ure en
ryption proto
ol of [9℄, IND-CCVA

is not meant to 
onstitute a 
omplete se
urity measure on its own. Rather, it guarantees se
re
y only

in 
onjun
tion with additional me
hanisms that guarantee uniqueness of messages. Consequently,

it may be surprising at �rst glan
e that IND-CCVA emerges as a notion that is in
omparable to

both IND-CPA and IND-CCA. In parti
ular, IND-CCVA does not imply even a weak notion of

priva
y su
h as IND-CPA. Moreover, it is easy to see that a 
hannel proto
ol 
onstru
ted from

the stateless deterministi
 en
ryption s
heme used to prove the relation that IND-CCVA does not

imply IND-CPA (i.e., that in Appendix D) does not provide the stateful variant of semanti
 se
urity

either. The unfortunate impli
ation here is that 
hannel proto
ols proven se
ure as an en
ryption

proto
ol may in fa
t leak information. This is a rather unexpe
ted result sin
e one would naturally

assume that a se
ure en
ryption proto
ol should prote
t priva
y of transmitted information. On

the other hand, it is also arguably simply a te
hni
al issue that does not arise in many 
ases in

pra
ti
e. As pointed out in [9℄, if one 
an ensure that all messages are unique, then one 
an obtain

se
urity. (In parti
ular, this requirement rules out the stateless deterministi
 en
ryption s
heme in

Appendix D.) One way to ensure uniqueness of messages is to simply prepend unique message IDs

to all messages and to verify them when 
iphertexts are re
eived. In fa
t, many Internet proto
ols

in use today (e.g., SSH, SSL, and TLS) already do so: they in
lude in every pa
ket a sequen
e

number maintained internally by the 
ommuni
ating parties [14, 11, 21℄.
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A Adversary A
tions

An adversary A running against a session-based message-driven proto
ol 
an perform the �rst four

a
tions below. An adversary A against a key ex
hange proto
ol 
an perform all of the a
tions

below.

1. Party a
tivation. The a
tivation list spe
i�es what 
an be a
tivated on a party. Examples in
lude

asking a party to send a message to, re
eive a message from, or establish a session with another

party. An adversary 
an also ask a party to expire an existing session. This 
auses the party to

permanently erases all state information relevant to the session.

2. Party 
orruption. A obtains from a party all of its state, in
luding its long-term se
rets. The

party appends to its output the entry \
orrupted" and terminates. It generates no further

output.

3. Session-state reveal. A obtains from a party the portion of its state that is \lo
al" to the spe
i�ed

session. The proto
ol spe
i�es what information is 
onsidered \lo
al" to a session. This query

is valid only for sessions that have not 
ompleted. The party appends to its output the entry

\revealed state of (P; P

0

; s)" where (P; P

0

; s) is the session being revealed.

4. Session-output reveal. A obtains from a party all of its trans
ripts that have been 
reated for the

spe
i�ed session (P; P

0

; s) and are marked \se
ret." The party appends to its output the entry

\revealed output of (P; P

0

; s)".
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5. Session-key reveal. A obtains from a party the session key for the spe
i�ed session whi
h must be


ompleted but has not expired. The party appends to its output the entry \revealed session

key for (P; P

0

; s)" where (P; P

0

; s) is the session in question.

B Des
ription of the send

�

and in
oming

�

A
tivations

Let NC be a network 
hannel proto
ol. Let k 2 N be the se
urity parameter, let b 2 f0; 1g, and let

U be a UM atta
ker. The a
tivations send

�

and in
oming

�

used in the experiment Exp

ind-ne-b

NC;U

(k)

are de�ned as follows.

A
tivation send

�

(P

i

; P

j

; s;M) at P

i

If the session (P

i

; P

j

; s) is expired or exposed, then return

If the key ex
hange proto
ol for the session (P

i

; P

j

; s) is not 
ompleted, then return

C  E

K

(M) where K is the session key for the session (P

i

; P

j

; s)

Re
ord \sent a message to P

j

within session s" on P

i

's output

Put (P

i

; P

j

; s; C) in the message bu�erM

A
tivation in
oming

�

(P

j

; P

i

; s; C;M

b

) at P

j

If the session (P

i

; P

j

; s) is expired, then return

If the key ex
hange proto
ol for the session (P

i

; P

j

; s) is not 
ompleted, then return

M  D

K

(C) where K is the session key for the session (P

i

; P

j

; s)

If M =M

b

then re
ord \re
eived a message from P

i

within session s" on P

j

's output

else if M 6= ? then re
ord \re
eived M from P

i

within session s" on P

j

's output

C Proofs that SINT-PTXT and IND-CCVA are Ne
essary and

SuÆ
ient

We state the lemmas from whi
h Theorem 4.2 and Theorem 4.3 dire
tly follow. Lemma C.1 and

Lemma C.2 prove the former. Lemma C.3 and Lemma C.4 prove the latter. Then, we present their

proofs in detail.

Lemma C.1 [Given a se
ure KE, SINT-PTXT) Se
ure Authenti
ation Proto
ol℄ Let

AE = (K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let NAE =

NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that � se
urely

implements K in the UM during the run of NAE. If AE is SINT-PTXT se
ure, then given any UM

adversary U against NAE, we 
an 
onstru
t an AM adversary A against SMT su
h that

AUTH

SMT;A

s

� UNAUTH

NAE;U

:

Lemma C.2 [Given a se
ure KE, SINT-PTXT( Se
ure Authenti
ation Proto
ol℄ Let

AE = (K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let NAE =

NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that � se
urely

implements K in the UM during the run of NAE. Then, given any sint-ptxt adversary F against

AE , we 
an 
onstru
t a UM adversary U against NAE su
h that, for any AM adversary A against

SMT,

AUTH

SMT;A

6

s

� UNAUTH

NAE;U

:
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Lemma C.3 [Given a se
ure KE, IND-CCVA) Se
ure En
ryption Proto
ol℄ Let AE =

(K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let NAE =

NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that � se-


urely implements K in the UM during the run of NAE. Then, given any ind-ne adversary U

against NAE, we 
an 
onstru
t an ind-

va adversary A against AE su
h that

Adv

ind-ne

NAE;U

(k) � S �Adv

ind-

va

AE ;A

(k)

where U establishes at most S sessions and A's time-
omplexity is polynomially-related to that

of U .

Lemma C.4 [Given a se
ure KE, IND-CCVA( Se
ure En
ryption Proto
ol℄ Let AE =

(K; E ;D) be an authenti
ated en
ryption s
heme, and let � be a KE proto
ol. Let NAE =

NetAE(�;AE) be the asso
iated 
hannel proto
ol as per Constru
tion 2.5. Suppose that � se-


urely implements K in the UM during the run of NAE. Then, given any ind-

va adversary A

against AE, we 
an 
onstru
t an ind-ne adversary U against NAE su
h that

Adv

ind-

va

AE ;A

(k) � Adv

ind-ne

NAE;U

(k) :

Furthermore, U 's time-
omplexity is polynomially-related to that of A.

C.1 Proof of Lemma C.1

Proof Idea. The 
rux of this proof is the same as that of Theorem 12 of [9℄. Let k 2 N and

i 2 f1; : : : ; ng. Given a UM adversary U , we 
onstru
t an AM adversary A. We denote the parties

intera
ting with A and U by P

i

and P

0

i

, respe
tively. To run U , the AM adversary A simulates

the parties P

0

i

by 
arrying out all requests and a
tivations from U by itself on P

0

i

's behalf and only

makes requests and a
tivations to a party P

i

for events that have been re
orded and events that

involve 
orruption or exposure of a party.

Then, we show that for any se
urity parameter k 2 N, any UM adversary U , and the AM

adversary A de�ned above, if AE is SINT-PTXT se
ure, then the random variables AUTH

SMT;A

(k)

and UNAUTH

NAE;U

(k) are statisti
ally indistinguishable.

We do so by �rst arguing that, for any k 2 N, if AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are

statisti
ally distinguishable, then a forgery event has o

urred. Before de�ning a forgery event,

we �rst des
ribe the 
on
ept of mat
hing entries. An entry in the lo
al output of a party P

i

that

reads \sent M to P

j

within session s" is said to be a mat
h of an entry in the lo
al output

of a party P

j

that reads \re
eived M from P

i

within session s". We mandate that on
e two

entries are mat
hed, they 
annot be mat
hed with any other entries, in whi
h 
ase we say that they

be
ome unavailable. An entry that has not been mat
hed (i.e., is not unavailable) is 
onsidered

available. A forgery event is an event in whi
h the lo
al output of a party P

j


ontains an entry of the

form \re
eived M from P

i

within session s" while the lo
al output of P

i

does not 
ontain an

available mat
hing entry. In other words, a forgery event o

urs if, for some M;P

i

; P

j

; and s, the

output of P

j


ontains a re
eipt re
ord of M from P

i

within session s and the re
ord is available.

Then, we 
onstru
t an adversary F so that, if a forgery event o

urs, then F wins as follows.

First, F 
hooses a session s at random from all sessions and uses its ora
les, rather than the a
tual

session key, to 
ompute the messages transmitted via s. Then, F runs the UM adversary U until it

halts. We argue that, if a forgery event o

urs, then F wins as follows. Sin
e the multiset T in the

experiment Exp

sint-ptxt

AE ;F

(k) keeps tra
k of sent messages that are yet to be re
eived, an o

urren
e of

a forgery event means that there exists a message M that has been re
eived butM 62 T . Therefore,

the adversary F will su

eed in breaking the SINT-PTXT se
urity of AE . Sin
e we assume that

the KE proto
ol se
urely implements the key generation algorithm, this 
on
ludes the proof.
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Proof Details. Given a UM adversary U , we 
onstru
t A as follows. Here, r

U

(�) spe
i�es the

upper bound on the running time of U .

Adversary A(k; r

A

)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

0

i

on (I

0

; I

i

; x

i

; r

i

)

Run U on (k; I

0

; r

0

), 
arrying out U 's a
tions as follows:

. When U a
tivates P

0

i

with establish-session(P

0

i

; P

0

j

; s; role),

expire-session(P

0

i

; P

0

j

; s), send(P

0

i

; P

0

j

; s;M), in
oming(P

0

i

; P

0

j

; s; C),

or any a
tivations as part of the run of the KE proto
ol

| Invoke the same a
tivation against P

0

i

| Put any resulting messages to be delivered on U 's message bu�erM

. When U 
orrupts P

0

i

| Corrupt P

0

i

and give P

0

i

's internal states to U

| Corrupt P

i

. When U exposes a session (P

0

i

; P

0

j

; s) at P

0

i

| Expose the same session at P

0

i

and give resulting data to U

| Expose the session (P

i

; P

j

; s) at P

i

. When P

0

i

re
ords \established session s with P

0

j

", \expired session s with P

0

j

",

or \sent M to P

0

j

within session s"

| A
tivate P

i

with establish-session(P

i

; P

j

; s), expire-session(P

i

; P

j

; s), or send(P

i

; P

j

; s;M)

. When P

0

i

re
ords \re
eived M from P

0

j

within session s"

| Find an available mat
h of this entry in the lo
al output of P

0

j

| If an available mat
h is found

Then mat
h the two entries and a
tivate P

i

with in
oming(P

i

; P

j

; s;M)

Else If P

j

is 
orrupted or exposed

Then a
tivate P

j

with send(P

j

; P

i

; s;M) and P

i

with in
oming(P

i

; P

j

; s;M)

Else abort

Until U halts

Output what U outputs

We de�ne the following event, make a few observations, then state and prove Claim C.6. Lemma C.1

follows dire
tly.

Forgery Event: There exists two parties P

0

i

and P

0

j

su
h that at some point during the proto
ol

exe
ution, the lo
al output of P

0

j


ontains an entry \re
eived M from P

0

i

within session

s" where M is a message and s is a session ID, and this entry 
annot be mat
hed with any

available entry in the lo
al output of P

0

i

.

Remark C.5

1. The adversary A above simulates U exa
tly as in any run of U against parties running NAE.

2. The adversary A aborts if a forgery event o

urs.

3. Suppose that A does not abort. Then, for ea
h entry re
orded in the lo
al outputs of the

simulated parties running NAE against U , there is an entry re
orded in the lo
al outputs of

the parties running SMT against A.

Claim C.6 Let k 2 N be the se
urity parameter, let AE = (K; E ;D) be an authenti
ated en
ryp-

tion s
heme, and let � be a KE proto
ol. Let NAE = NetAE(�;AE). Let U be a UM adversary, and

22



let A be the AM adversary de�ned above. Suppose that the KE proto
ol � se
urely implements

K. If AE is SINT-PTXT se
ure, then AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are statisti
ally

indistinguishable.

We prove Claim C.6 by 
ontradi
tion. Suppose that AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are

statisti
ally distinguishable. From Remark C.5, this means that a forgery event o

urs. We 
on-

stru
t an adversary F that breaks SINT-PTXT se
urity of AE with non-negligible probability. The

adversary F works as follows. Here, r

U

(�) spe
i�es the upper bound on the running time of U .

Adversary F

E

K

(�);D

K

(�)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

0

i

on (I

0

; I

i

; x

i

; r

i

)

Pi
k a session (P

0

i

; P

0

j

; s

0

) at random from all sessions

Run U on (k; I

0

; r

0

) 
arrying out U 's a
tions as spe
i�ed in NAE ex
ept

| When U a
tivates P

0

i

with send(P

0

i

; P

0

j

; s

0

;M),

Take P

0

i

's 
ode for handling a send a
tivation

Repla
e exe
ution of the en
ryption algorithm in the 
ode with 
all to the ora
le E

K

(�)

Exe
ute the resulting 
ode

| When U a
tivates P

0

j

with in
oming(P

0

j

; P

0

i

; s

0

; C),

Take P

0

j

's 
ode for handling an in
oming a
tivation

Repla
e exe
ution of the de
ryption algorithm in the 
ode with 
all to the ora
le D

K

(�)

Exe
ute the resulting 
ode

Until U halts

Output what U outputs

Noti
e that, when F pi
ks a session at random, it does not yet know the total number of sessions

to be established. We address this by putting an upper bound on the total number of sessions

using the running time of U and letting F 
hoose a session at random. Also, re
all that the KE

proto
ol � is assumed to se
urely implement the key generation algorithm K. This means that the

session keys and the keys used by the ora
les are drawn from the same distribution. Therefore, the

probability that a forgery event o

urs in a regular run of U and the probability that it o

urs in

F 's run of U above are the same.

We argue here that, if a forgery event o

urs, then the experiment Exp

sint-ptxt

AE ;F

(k) returns 1.

First, we observe that the 
ode of F above ensures that ea
h send a
tivation results in the 
orre-

sponding en
ryption query and that ea
h in
oming a
tivation results in the 
orresponding de
ryp-

tion query. Now, re
all that in the experiment Exp

sint-ptxt

AE ;F

(k), whenever F submits an en
ryption

query E

K

(M) (or, equivalently here, whenever U a
tivates P

0

i

with a send a
tivation involving M),

the message M is added to the multiset T . Furthermore, whenever F submits a de
ryption query

D

K

(C) (or, equivalently here, whenever U a
tivates P

0

j

with an in
oming a
tivation involving C),

if C de
rypts to some message M 6= ?, then M is removed from T . In short, whenever a message

is sent, it is added to T , and whenever a message is re
eived, it is removed from T .

If a forgery event o

urs in the session (P

0

i

; P

0

j

; s

0

), then we know that (1) there is a re
eipt

re
ord involving M;P

0

i

; and s in the output of P

0

j

but (2) it 
annot be mat
hed with any available

mat
hing send entry in the output of P

0

i

. The �rst 
ondition implies that F will submit a query

that de
rypts to M 6= ? to the de
ryption ora
le. The se
ond 
ondition implies that this query

results in M 62 T . Therefore, the experiment returns 1, and F su

eeds. Finally, sin
e F 
hooses

the session (P

0

i

; P

0

j

; s

0

) from the total number of sessions whi
h is polynomial in k, the probability

that F su

eeds remains non-negligible. Moreover, F runs in time polynomial in k sin
e U does.

Hen
e, Claim C.6 follows.
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C.2 Proof of Lemma C.2

Proof Idea. Given an sint-ptxt adversary F against AE , we 
onstru
t a UM adversary U as

follows. The adversary U starts two parties P

1

and P

2

, a
tivates P

1

with establish-session(P

1

; P

2

; s),

then runs F . Whenever F submits an en
ryption query E

K

(M), the adversary U a
tivates the

party P

1

with send(P

1

; P

2

;M; s). Similarly, whenever F submits a de
ryption query D

K

(C), the

adversary U a
tivates the party P

2

with in
oming(P

2

; P

1

; C; s).

Similar to the proof of Lemma C.1, our analysis involves a forgery event in the simulation. The

forgery event is de�ned exa
tly as in the proof of Lemma C.1, so we do not repeat it here. Now,

suppose that F wins its game, meaning that it has submitted a de
ryption query that results in

a message M 6= ? so that M 62 T . Sin
e the multiset T in the experiment Exp

sint-ptxt

AE ;F

(k) keeps

tra
k of sent messages that are yet to be re
eived, this means that there exists a re
eipt re
ord

of a message with no available mat
hing send re
ord. In other words, U has 
aused a forgery

event to o

ur. Now, sin
e no two plaintext messages 
an en
rypt to the same 
iphertext, the fa
t

that the re
eived message has not been sent implies that no 
iphertext whose de
ryption is the

re
eived message has been inserted into the message bu�erM before U delivers the 
iphertext to

the re
ipient. Therefore, U has indeed a
tivated a party with an in
oming string that is not in the

message bu�erM. Sin
e su
h an a
tion is not permitted in the AM and sin
e its e�e
t is a
tually

re
orded by a party, there 
an be no AM adversaries that 
an generate the global output that is

statisti
ally indistinguishable from that generated by U . Thus, Lemma C.2 follows.

Proof Details. Given an sint-ptxt adversary F , we 
onstru
t a UM adversary U as follows.

Adversary U(k; I

0

; r

0

)

A
tivate P

1

with establish-session(P

1

; P

2

; s; initiator)

Wait until the KE proto
ol for the session (P

1

; P

2

; s) is 
ompleted

Run F

E

K

(�);D

K

(�)

(k)

. Reply to E

K

(M) queries as follows:

| A
tivate P

1

with send(P

1

; P

2

; s;M)

| Wait until an entry (P

1

; P

2

; s; C) is appended to the message bu�er

| Return C to F

. Reply to D

K

(C) queries as follows:

| A
tivate P

2

with in
oming(P

2

; P

1

; s; C)

| If P

2

re
ords \re
eived M from P

1

within session s"

Then return M to A ; Else return ? to A

Until F halts

Re
all that the KE proto
ol � is assumed to se
urely implement the key generation algorithm

K. This means that the session key and the key used by the ora
les are drawn from the same

distribution. Therefore, the probability that F su

essfully breaks SINT-PTXT se
urity of AE

remains una�e
ted.

Now we argue that, if F su

eeds, then a forgery event has o

urred. We use a similar line of

reasoning as in the proof of Lemma C.1. First, we observe that the 
ode of U above ensures that

ea
h en
ryption query results in the 
orresponding send a
tivation and that ea
h de
ryption query

results in the 
orresponding in
oming a
tivation. Now, re
all that in the experiment Exp

sint-ptxt

AE ;F

(k),

whenever F submits an en
ryption query E

K

(M) or, equivalently here, whenever U a
tivates P

0

i

with a send a
tivation involving M , the message M is added to the multiset T . Furthermore,

whenever F submits a de
ryption query D

K

(C) or, equivalently here, whenever U a
tivates P

0

j

with an in
oming a
tivation involving C, if C de
rypts to some message M 6= ?, then M is
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removed from T . In short, whenever a message is sent, it is added to T , and whenever a message

is re
eived, it is removed from T .

If F su

eeds, then it has submitted a de
ryption query D

K

(C) su
h that (1) the response

M = D

K

(C) is not equal to ? and (2) M 62 T . The former implies that, at some point during the

proto
ol exe
ution, U a
tivates P

2

with in
oming(P

2

; P

1

; s; C) and P

2

a
tually re
ords the re
eipt of

M . The latter implies that, at that moment, there is no mat
hing send entry at P

1

for the re
eipt

entry of M re
orded at P

2

.

Now, sin
e no two plaintext messages 
an en
rypt to the same 
iphertext, the fa
t that the

re
eived message has not been sent implies that no 
iphertext whose de
ryption is the re
eived

message has been inserted into the message bu�er M before U delivers the 
iphertext to the

re
ipient. Therefore, U has a
tivated P

2

with an in
oming string that is not present in the bu�er

M at the time. Sin
e su
h an a
tion is not permitted in the AM and sin
e the e�e
t of this

a
tivation is a
tually re
orded by P

2

, there exists no AM adversaries that 
an generate the global

output that is statisti
ally indistinguishable from that generated by U . Thus, Lemma C.2 follows.

C.3 Proof of Lemma C.3

Given an ind-ne adversary U against NAE, we 
onstru
t an ind-

va adversary A against AE below.

The a
tivation in
oming

D

K

(�;M

b

)

is de�ned in a similar manner as in Appendix B ex
ept that here

we use the ora
le D

K

(�;M

b

) to determine whether to write the de
rypted message in the lo
al

output.

A
tivation in
oming

D

K

(�;M

b

)

(P

j

; P

i

; s; C) at P

j

If the session (P

i

; P

j

; s) is expired, then return

If the KE proto
ol for the session (P

i

; P

j

; s) is not 
ompleted, then return

M  D

K

(C;M

b

)

If M = � then re
ord \re
eived a message from P

i

within session s" on P

j

's output

else if M 6= ? then re
ord \re
eived M from P

i

within session s" on P

j

's output

Now, we de�ne the adversary A as follows. Here, r

U

(�) spe
i�es the upper bound on the running

time of U .

Adversary A

E

K

(�);D

K

(�)

(k; �nd)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

i

on (I

0

; I

i

; x

i

; r

i

)

Pi
k a session (P

i

; P

j

; s

0

) at random from all sessions

Run U on (k; I

0

; r

0

)

. Carry out U 's a
tions as spe
i�ed in NAE ex
ept

| Whenever U a
tivates P

i

with send(P

i

; P

j

; s

0

;M),

Take P

i

's 
ode for handling a send a
tivation

Repla
e exe
ution of the en
ryption algorithm in the 
ode with 
all to the ora
le E

K

(�)

Exe
ute the resulting 
ode at P

i

| Whenever U a
tivates P

j

with in
oming(P

j

; P

i

; s

0

;M),

Take P

j

's 
ode for handling an in
oming a
tivation

Repla
e exe
ution of the de
ryption algorithm in the 
ode with 
all to the ora
le D

K

(�)

Exe
ute the resulting 
ode at P

j

Until U submits test-session(P;Q; s) and outputs (M

0

;M

1

)

If P 6= P

i

or Q 6= P

j

or s 6= s

0

then abort

st (P

i

; P

j

; s

0

)kM

0

kM

1

k internal states of all parties k state of U

25



Output (M

0

;M

1

; st)

Adversary A

E

K

(�);D

K

(�;M

b

)

(k; guess; C; st)

Parse st as (P

i

; P

j

; s

0

)kM

0

kM

1

k internal states of all parties k state of U

Restart all parties and U to where they were

. If the session (P

i

; P

j

; s

0

) is expired or exposed, then abort

. If the KE proto
ol for the session (P

i

; P

j

; s

0

) is not 
ompleted, then abort.

. Re
ord \sent a message to P

j

within session s

0

" on P

i

's lo
al output

. Put (P

i

; P

j

; s

0

; C) in the message bu�er

. Carry out U 's a
tions as spe
i�ed in NAE ex
ept

| Whenever U a
tivates P

j

with in
oming(P

j

; P

i

; s

0

; C),

Exe
ute in
oming

D

K

(�;M

b

)

(P

j

; P

i

; s; C) at P

j

Until U halts and outputs a bit d

Output d

Noti
e that A does not yet know the total number of sessions to be established when it pi
ks a

session at random. We address this by putting an upper bound on the total number of sessions using

U 's running time. It is easy to see that A simulates U exa
tly as in the experiment Exp

ind-ne-b

NAE;U

(k)

where b 2 f0; 1g. We stress that this is true even though the session key for the tested session

(P

i

; P

j

; s

0

) is substituted with the key used by the ora
les, the reason being that the KE proto
ol �

se
urely implements the key generation algorithm K. Therefore, if U 
an guess the bit b 
orre
tly,

then so 
an A. Sin
e there are a total of at most S sessions in the run of U , the probability that

A guesses the tested session (P

i

; P

j

; s

0

) 
orre
tly is 1=S. Thus,

1

S

�Adv

ind-ne

NAE;U

(k) = Adv

ind-

va

AE ;A

(k) :

Furthermore, re
all that the time-
omplexity of an adversary pertains to the entire experiment in

whi
h it runs. Therefore, the time-
omplexity of A is polynomially-related to that of U . Thus,

Lemma C.3 follows.

C.4 Proof of Lemma C.4

Given an ind-

va adversary A against AE, we 
onstru
t an ind-ne adversary U against NAE below.

Adversary U(k; I

0

; r

0

)

A
tivate P

1

with establish-session(P

1

; P

2

; s; initiator)

Wait until the KE proto
ol for the session (P

1

; P

2

; s) is 
ompleted

Run A

E

K

(�);D

K

(�)

(k; �nd)

. Reply to E

K

(M) queries as follows:

| A
tivate P

1

with send(P

1

; P

2

; s;M)

| Wait until an entry (P

1

; P

2

; s; C) is appended to the message bu�erM

| Return C to A

. Reply to D

K

(C) queries as follows:

| A
tivate P

2

with in
oming(P

2

; P

1

; s; C)

| If P

2

re
ords \re
eived M from P

1

within session s"

Then return M to A ; Else return ? to A

Until A outputs (M

0

;M

1

; st)

Submit the query test-session(P

1

; P

2

; s) and output (M

0

;M

1

)

Wait until an entry (P

1

; P

2

; s; 
) is appended to the message bu�erM

Run A

E

K

(�);D

K

(�;M

b

)

(k; guess; 
; st)
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. Reply to E

K

(M) queries exa
tly as before

. Reply to D

K

(C;M

b

) queries as follows:

| A
tivate P

2

with in
oming(P

2

; P

1

; s; C)

| If P

2

re
ords \re
eived M from P

1

within session s"

Then return M to A

Else If P

2

re
ords \re
eived a message from P

1

within session s"

Then return � to A ; Else return ? to A

Until A stops and outputs a bit d

Output d

Sin
e the KE proto
ol � se
urely implements the key generation algorithm K, it is easy to see that

U runs A in the same environment as the experiment Exp

ind-

va-b

AE ;A

(k) where b is a bit. Therefore, if

A 
an guess the bit b 
orre
tly, then so 
an U . Furthermore, time-
omplexity of U is polynomially-

related to that of A. Thus, Lemma C.4 follows.

D A Deterministi
 En
ryption S
heme Se
ure under IND-CCVA

Let l be a positive integer, and let F be an l-bit blo
k 
ipher. We denote by F

K

(M) and F

�1

K

(C)

an appli
ation of the blo
k 
ipher on M with key K and an appli
ation of the inverse 
ipher on

C with key K, respe
tively. Consider an en
ryption s
heme SE with message spa
e f0; 1g

l

that

works as follows: to en
rypt a message M using a key K, 
ompute and return F

K

(M); to de
rypt a


iphertext C using K, 
ompute and return F

�1

K

(M). Being deterministi
, SE is 
learly not se
ure

under IND-CPA. However, it is easy to see that, if F is a pseudorandom permutation, then SE is

se
ure under IND-CCVA. To see this, re
all that an adversary against SE under this notion is not

allowed to ask for en
ryptions of its 
hallenge message pair. Furthermore, if it asks for a de
ryption

of the 
hallenge 
iphertext C, it will get ba
k only the symbol �. Therefore, there is not mu
h the

adversary 
an do here to win its game other than breaking the blo
k 
ipher itself. We omit details.
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