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Abstrat

We onsider ommuniation sessions in whih a pair of parties begin by running an au-

thentiated key-exhange protool to obtain a shared session key, and then seure suessive

data transmissions between them via an authentiated enryption sheme based on the session

key. We show that suh a ommuniation session meets the notion of a seure hannel protool

proposed by Canetti and Krawzyk [9℄ if and only if the underlying authentiated enryption

sheme meets two new, simple de�nitions of seurity that we introdue, and the key-exhange

protool is seure. In other words, we redue the seure hannel requirements of Canetti and

Krawzyk to easier to use, stand-alone seurity requirements on the underlying authentiated

enryption sheme. In addition, we relate the two new notions to existing seurity notions for

authentiated enryption shemes.
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1 Introdution

We onsider ommuniation sessions in whih a pair of parties begin by running an authentiated

key-exhange (KE) protool to obtain a shared session key, and then seure suessive data trans-

missions between them via an authentiated enryption sheme, a shared-key-based enryption

sheme whose goal is to provide both privay and authentiity, based on the session key. Many

popular Internet protools follow this struture [1, 14, 11, 21℄. One reason is that it minimizes om-

putationally intensive publi-key ryptography by using more eÆient symmetri-key ryptography

for the bulk of the ommuniation.

At Eurorypt 2001, Canetti and Krawzyk presented seurity de�nitions for protools of this

form [9℄. They refer to suh protools as network hannel protools (or hannel protools for short).

In their work, they derive a realisti adversarial model from [2℄ and formulate seurity de�nitions

using a mixture of both simulation-based and indistinguishability-based approahes. The former

allows them to realistially and naturally apture the seurity properties of hannel protools and

the settings in whih the protools are deployed. The latter allows them to prove seurity of the

protools with relative ease. The result is the notion of seure hannels, a notion that aptures

the desired seurity properties of the ommuniation hannels themselves, rather than those of the

omponents used in onstruting them, namely the underlying authentiated enryption shemes.

In ontrast, most existing work has traditionally foused on seurity properties of enryp-

tion shemes. Examples inlude indistinguishability notions for asymmetri enryption shemes

pioneered in [16℄ and adapted to symmetri-key settings in [3℄, non-malleability notions de�ned

in [13, 3℄ and re�ned in [8℄, and integrity notions de�ned in [18, 5, 19℄. Due to the simpliity and

ease of use of these de�nitions, this approah has proved fruitful and has beome the standard way

to prove seurity of enryption shemes.

Our work uses this traditional approah to investigate seurity properties of the authentiated

enryption shemes underlying hannel protools. In partiular, our goal is to address the following

question. Suppose one takes a \seure" KE protool and ombines it with an authentiated enryp-

tion sheme as desribed above to obtain a hannel protool. What are the neessary and suÆient

onditions on the underlying authentiated enryption sheme for the resulting hannel protool

to be a seure hannel per [9℄? The answer to this question will allow us to analyze seurity of

hannel protools in a modular fashion: �rst onsider the underlying KE protool and the under-

lying authentiated enryption sheme separately, then determine whether the former is \seure"

and whether the latter meets the neessary and suÆient onditions. If both are aÆrmative, then

the hannel protool in question is a seure hannel. Not only does this approah simplify protool

analysis, but the neessary and suÆient onditions also help distill exatly the seurity properties

of authentiated enryption shemes that are needed to obtain seure hannels. This understanding

an help guide ryptographers in designing future shemes for building seure hannels.

Krawzyk has already made some progress in this diretion in [19℄: he provides a nees-

sary ondition for a lass of authentiated enryption shemes, namely those onstruted via the

\Authentiate-then-Enrypt" method,

1

to yield a seure hannel, assuming that the underlying

KE protool is \seure." Our goal is to provide both neessary and suÆient onditions that are

easy-to-use and an be applied to any authentiated enryption shemes, as opposed to shemes

of a ertain form. To this end, we use the traditional approah of de�ning seurity sine it yields

de�nitions that are simple and relatively easy to use.

1

Under this paradigm, a message authentiation sheme and an enryption sheme are omposed to obtain an

authentiated enryption sheme as follows. To enrypt a message M , �rst ompute its MAC via a message au-

thentiation sheme and enrypt the onatenation of M and the MAC to obtain the iphertext to be transmitted.

Deryption works in a natural way.
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Seurity model of Canetti and Krawzyk. In [9℄, Canetti and Krawzyk use the adversarial

model of [2℄: an adversary is in ontrol of all message delivery and the exeution of the protool.

In partiular, one the setup phase of the protool is ompleted, all parties in the system simply

wait for ativations from the adversary. Possible ativations inlude sending messages, reeiving

messages, and establishing a session. Messages are delivered solely by the adversary under either of

the following models: the Authentiated-links Model (AM) and the Unauthentiated-links Model

(UM). Both models allow the adversary to drop messages and to deliver them out of order. In the

former, an adversary annot injet messages and must deliver messages without modi�ations. In

the latter, it an injet fabriated messages and modify messages before delivering them. Setion 2.1

desribes the seurity model of [9℄ in more detail.

Canetti and Krawzyk also present a seurity de�nition for KE protools based on the approah

of [6℄ in this adversarial model. Intuitively, they onsider a KE protool to be seure if, when the

two parties involved in the exhange omplete the protool, (1) they arrive at the same session key,

and (2) it is hard for an adversary to distinguish the session key from a random value hosen from

the distribution of keys generated by the protool.

Seure hannels. Canetti and Krawzyk de�ne a seure hannel as a hannel protool that is

both a seure (network) authentiation protool and a seure (network) enryption protool. The

de�nition of the former uses a simulation-based approah: a protool seure in this sense must

emulate ideal message transmissions where the notion of emulation amounts to omputational in-

distinguishability of protool outputs. To this end, [9℄ de�nes a session-based message transmission

(SMT) protool, a protool that does nothing more than its name suggests. For example, to estab-

lish a session, a party simply reords in its output that a session has been established. To send a

message, a party simply puts the message in the message bu�er and reords in its output that the

message has been sent.

The de�nition of seure enryption protools applies an indistinguishability-based approah

similar to the \�nd-then-guess" game in [3℄ (whih in turn is an adaptation of semanti seurity

of [16℄ into the symmetri setting) in this adversarial model. Spei�ally, the protool is run in

the UM against an adversary whih, at some point during the run, hooses a session it wishes to

break. The rest of the run losely follows the standard �nd-then-guess game with a few important

exeptions. See Setion 2.2 for details.

Capturing the essene of seure hannels. Following [9℄, we de�ne a transform to speify

how the hannel protools onsidered in this paper are generated: given a KE protool � and an au-

thentiated enryption sheme AE , we assoiate with them a hannel protool NC = NetAE(�;AE)

obtained by applying the transform to � and AE . This transform is de�ned in Setion 2.3. We

fous on protools onstruted via this transform. Our goal is to �nd simple neessary and suÆient

onditions on the underlying authentiated enryption sheme suh that the protool is a seure

hannel, assuming that the KE protool is seure. We de�ne two simple notions: SINT-PTXT

and IND-CCVA. The former (resp. the latter) is a neessary and suÆient ondition on the un-

derlying authentiated enryption sheme suh that the hannel protool is a seure authentiation

(resp. enryption) protool. In e�et, this redues the seure hannel requirements of Canetti

and Krawzyk to easier to use, stand-alone seurity requirements on the underlying authentiated

enryption sheme.

We de�ne the two notions using the traditional approah: we give an adversary aess to ertain

orales, run it in an experiment, and then measure the probability that it sueeds. Setion 3

desribes these notions in detail. Preise statements of our main results are presented in Setion 4

along with the proof ideas.
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Tehnial issue. The notion of seure authentiation protools aptures reasonable authentiity

guarantees suh as resistane against replay attaks and forgeries. Therefore, to determine if a

hannel protool provides authentiity when these attaks are of onern, one needs simply deter-

mine whether the protool is a seure authentiation protool. However, due to a tehnial issue

arisen from the notion of seure enryption protool per [9℄, the same annot be said regarding

privay. In partiular, there exists a hannel protool that learly does not provide semanti seu-

rity [16℄ (i.e., partial information about transmitted messages may be leaked) and yet is provably a

seure enryption protool. Arguably, however, this tehnial issue does not arise in many pratial

protools, inluding the popular SSH, SSL, and TLS. Consequently, the notion of seure enryption

protool an still be applied to these protools to obtain meaningful results regarding their privay

guarantees. Setion 5 disusses this issue in more detail.

Future work. Canetti and Krawzyk have reently proposed an alternative notion for seure

hannels that implies their seure hannel notion of [9℄. This new notion is alled universally

omposable seure hannels [10℄. It provides strong omposability guarantees, whih means that its

seurity guarantees hold even if the hannel protool is used in ombination with other protools.

Thus, a natural researh diretion is to determine whether we an use the same approah taken

here to derive simple neessary and suÆient onditions for an authentiated enryption sheme to

yield a universally omposable seure hannel.

2 De�nitions

2.1 Preliminaries

Sine the authentiated enryption shemes onsidered in [9℄ have stateful deryption algorithms,

we modify the standard syntax of symmetri authentiated enryption shemes, whih assumes

that deryption algorithms are stateless [3℄, to allow for stateful deryption algorithms. We also

expliitly speify the syntax of a message-driven protool based on [2, 9℄ and restate the seurity

model of [9℄ in more detail here.

Syntax of (symmetri) authentiated enryption shemes. A (symmetri) authentiated

enryption sheme AE = (K; E ;D) onsists of three algorithms. The randomized key generation

algorithm K takes as input a seurity parameter k 2 N and returns a key K; we write K

R

 K(k).

The enryption algorithm E ould be randomized or stateful. It takes the key K and a plaintext M

to return a iphertext C; we write C

R

 E

K

(M). The deryption algorithmD ould be deterministi,

and it ould be either stateless or stateful. It takes the key K and a string C to return either the

orresponding plaintext M or the symbol ?; we write x D

K

(C) where x 2 f0; 1g

�

[f?g. Above,

a randomized algorithm ips oins anew on eah invoation, and a stateful algorithm uses and then

updates a state that is maintained aross invoations.

Sine the deryption algorithm is allowed to be stateful here, the usual orretness ondition,

whih requires that D

K

(E

K

(M)) = M for all M in the message spae, is replaed with a less

stringent ondition requiring only that deryption sueed when the enryption and deryption

proesses are in synhrony. More preisely, the following must be true for any key K and plaintexts

M

1

;M

2

; : : :. Suppose that both E

K

and D

K

are in their initial states. For i = 1; 2; : : :, let C

i

=

E

K

(M

i

) and let M

0

i

= D

K

(C

i

). It must be that M

i

= M

0

i

for all i. Notie that this imposes no

orretness requirement when iphertexts are derypted out of order. It is up to an individual

sheme to deide how to handle iphertexts that are derypted out of order. For example, it an

rejet all suh iphertexts or aept only the ones that derypt to ertain seen messages. We stress

that sine this requirement is a part of the syntax of enryption shemes, it is liberal by design
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(messages that arrive out of order an have arbitrary deryptions under this requirement!).

2

The

goal here is to ensure that as many enryption shemes as possible an be analyzed under the

seurity notions of interest.

Syntax of message-driven protools. A message-driven protool NC = (IG;B;I; x; l; n; r;

ativation list) onsists of three algorithms, four positive integer parameters, and a list of ativations

that an be invoked on a party along with instrutions on how the party should handle them. Let

k 2 N be the seurity parameter. The parameter n spei�es the upper bound of the number of

parties in the system. The randomized input generation algorithm IG takes as inputs k and an

x-bit string and returns n strings (x

1

; : : : ; x

n

). The randomized bootstrapping algorithm

3

B takes

as inputs k and an l-bit string and returns n+1 strings (I

0

; : : : ; I

n

). For eah party P

i

, the possibly

randomized initialization algorithm I takes as inputs I

0

; I

i

; x

i

; and an r-bit string. Exeuting the

initialization algorithm may ause the party to update its internal state, to generate outputs to be

appended to its loal output, and/or to produe messages to be sent to other parties.

Message-driven protool exeution [9℄. Let k 2 N be the seurity parameter. A protool

NC = (IG;B;I; x; l; n; r; ativation list) is exeuted against an adversary as follows. First, random

oins for IG;B; and I are generated, and IG and B are exeuted. Then, eah party P

i

exeutes the

initialization algorithm I giving it appropriate inputs as desribed above. When the initialization

algorithm ompletes, the party waits for inoming ativations. Finally, the adversary is run using

k; I

0

; and as many random oins as it needs. The adversary takes over and ativates any parties it

wishes to at this point.

Upon reeiving an ativation, a party exeutes the orresponding algorithm as spei�ed in

ativation list. Again, the result of the exeution may be internal state updates, loal output

generation, and/or outgoing messages. In the last ase, the party appends the message in the

message bu�er M along with its soure, destination, and, in the ase of a session-based protool,

the assoiated session. As an example, upon reeiving a \send" ativation from the adversary,

a party �nds the algorithm for handling a send ativation in its ativation list and exeutes the

algorithm. This typially involves enrypting the message, appending the iphertext (along with

its soure, destination, and session ID) to M, and reording the event (e.g., a reord to the e�et

\sent M to P within session s") in the party's loal output.

Protool output. The output of a running protool is the onatenation of the umulative loal

outputs of all the parties, together with the output of the adversary. Furthermore, sine all ations

of the adversary are reorded in the loal outputs, they are part of the protool output.

Session-based message-driven protools [9℄. A session-based message-driven protool de-

�nes at least two ativations: establish-session and expire-session. They speify how eah party an

establish a session between itself and another. We denote by (P; P

0

; s) a session de�ned by the

initiating party P , the responding party P

0

, and the session ID s. The two parties P and P

0

are said

to play the roles of an initiator and a responder, respetively. Two idential sessions (i.e., idential

session IDs, partiipating parties, and their respetive roles) from the point of view of the initiator

and the responder are alled mathing sessions. In other words, if in an exeution of a protool

an initiating party P has a session (P; P

0

; s) and a responding party P

0

has a session (P; P

0

; s),

then we say that the two sessions are mathing. The de�ning feature of session-based protools is

2

Reall that syntax and seurity notion are two separate onepts. Apparently \inseure" shemes suh as one

that allows arbitrary deryptions for messages that arrive out-of-order are in fat legitimate enryption shemes, i.e.

they follow the syntax de�ned here. However, they are not seure under integrity notions, for instane.

3

Also known as an initialization funtion in [2, 9℄. We drop their terminology here to avoid onfusion with the

initialization algorithm.
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that individual sessions are maintained separately from one another even when they are established

between the same pair of parties.

Key-exhange protools. A key-exhange (KE) protool is a session-based message-driven

protool that spei�es how two parties an establish a shared session key to be used during a

session. Upon an establish-session ativation, a party triggers a sub-protool to establish a session

with another party. This sub-protool will likely result in further ativations suh as message sends

and reeipts. One the sub-protool ompletes, the two parties write on their outputs the resulting

session key and mark the entry as \seret." Note that, although potentially onfusing, the term

\key-exhange protool" is ommonly used in the literature to refer to this sub-protool rather than

the entire protool. Upon an expire-session ativation of a partiular session, the party erases the

orresponding session key from its output and any internal state it may have (e.g., its memory) and

terminate the session. Notie that this means that a session an be unilaterally expired. The goal

of this ativation is to allow KE protools to provide perfet forward serey of sessions, a property

that past session keys remain seret even after long-term keys are ompromised [17, 12℄.

Network hannel protools. A network hannel protool (or a hannel protool for short) is

a session-based message-driven protool with two additional ativations: send and inoming. They

speify what a party running the protool should do to send and to reeive a message.

Power of an adversary. When interating with parties exeuting a session-based message-

driven protool, an adversary is allowed to aess the ontents of eah party's loal output exept

those marked as \seret." It an also perform the following ations: party ativation, party orruption,

session-state reveal, and session-output reveal. In addition to these ations, an adversary against a

KE protool an also perform a session-key reveal ation against a party to obtain a session key. A

session is onsidered exposed if it belongs to a orrupted party, has been subjeted to a session-state

reveal, a session-output reveal, a session-key reveal, or has a mathing session that has been exposed.

For ompleteness, we inlude a detailed desription of these ations in Appendix A.

Authentiated and unauthentiated links models. In the Authentiated-links Model

(AM), the adversary an perform all of the ations mentioned above. Furthermore, all message

delivery is performed by A: to deliver a message in the message bu�erM, the adversary A removes

it fromM and ativates the reeiving party with the message as an inoming message. We empha-

size that A an deliver messages in any arbitrary order and an drop messages from M entirely.

However, it annot deliver messages that are not inM, and when it does deliver a message, it must

do so without any modi�ations to the message. On the other hand, in the Unauthentiated-links

Model (UM), not only an a UM adversary perform all of the ations permitted to an AM adver-

sary, but it an also deliver messages that are not inM or modify messages inM before delivering

them.

Notation. We use jrj to denote the length in bits of a string r. Let k 2 N be the seurity parameter,

and let U be an adversary. Let NC = (IG;B;I; x; l; n; r; ativation list) be a session-based message-

driven protool. We follow the notation of [2, 9℄ for the protool output. We desribe it here in

detail for the UM. The AM is done similarly exept that the bootstrapping algorithm is ignored

and its outputs are omitted. We denote by UNADV

�;U

(k; ~x;~r) the output of the UM adversary U

running against parties exeuting the protool � with seurity parameter k, inputs ~x = (x

1

; : : : ; x

n

),

and oins ~r = r

0

; r

00

; r

0

; : : : ; r

n

where jr

0

j = x; jr

00

j = l; and jr

0

j = : : : = jr

n

j = r. We denote by

UNAUTH

�;U

(k; ~x;~r)

i

the umulative output of the party P

i

running the protool � with seurity

parameter k, inputs ~x, and oins ~r against the UM adversary U . Then, we let the protool output

UNAUTH

�;U

(k; ~x;~r) = UNADV

�;U

(k; ~x;~r);UNAUTH

�;U

(k; ~x;~r)

1

; : : : ;UNAUTH

�;U

(k; ~x;~r)

n

and

let UNAUTH

�;U

(k) be the random variable desribing UNAUTH

�;U

(k; ~x;~r) when ~r is randomly ho-
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sen and ~x is generated via IG(k; r

0

). We denote by UNAUTH

�;U

the ensemble fUNAUTH

�;U

(k)g

k2N

.

2.2 Seure Channels per Canetti and Krawzyk [9℄

In [9℄, Canetti and Krawzyk de�ne a seure hannel as a hannel protool that is both a (seure)

authentiation protool and a (seure) enryption protool. For authentiation protools, their

approah is to �rst de�ne a protool onsidered ideal as a message authentiation protool alled

the SMT protool. A hannel protool is onsidered a seure authentiation protool if it emulates

the SMT protool in the UM. Below, we present the onept of protool emulation, the SMT

protool, and the de�nition of seure authentiation protools in De�nition 2.1, Constrution 2.2,

and De�nition 2.3, respetively.

De�nition 2.1 [Protool Emulation [2, 9℄℄ Let �; �

0

be message-driven protools. We say that

�

0

emulates � in the UM if, for any UM adversary U , there exists an AM adversary A suh that

AUTH

�;A

and UNAUTH

�

0

;U

are omputationally indistinguishable.

Constrution 2.2 [SMT Protool [9℄℄ The protool SMT is a session-based message-driven pro-

tool with the following ativations: establish-session, expire-session, send, and inoming. Upon

an establish-session ativation, a party reords the event aordingly in its output. Upon an

expire-session ativation, a party heks that the session exists, marks the session as expired, and

reords the event aordingly in its output. When a party reeives a send ativation involving a

message, a partner, and a session ID, it heks that the session is established and is not expired.

If so, it sends the given message to its partner via the spei�ed session. Then, it reords the event

aordingly in its output. Finally, upon an inoming ativation, a party heks that the session is

established and is not expired. If so, it reords the event aordingly in its output.

De�nition 2.3 [Network Authentiation Protool Seurity [9℄℄ A protool is onsidered to

be a seure authentiation protool if it emulates the SMT protool in the UM.

In de�ning seure enryption protools, [9℄ adapts the indistinguishability-based approah to a

multi-party omputation setting. We present their seurity de�nition here. In what follows,

the ativation send

�

(P;Q; s;M

b

) has the same e�ets as send(P;Q; s;M

b

) exept that the party

Q merely reords the fat that a message is sent but not the atual ontents of the message,

i.e., P reords the entry \sent a message to Q within session s". Similarly, the ativation

inoming

�

(Q;P; s; C;M

b

) has the same e�ets as inoming(Q;P; s; C) exept that, if the derypted

message of C is equal to M

b

, then Q merely reords the fat that a message is reeived but not

the atual ontents of the message M

b

, i.e., Q reords the entry \reeived a message from P

within session s". For ompleteness, these two ativations are de�ned in detail in Appendix B.

Let b be a bit. In the experiment below, an adversary U runs in the UM, and its goal is to

break one session of its hoie by performing an ation alled test-session against the session and

then doing what it an to guess the bit b. One U piks a session, say (P;Q; s), it outputs a pair of

messages, say (M

0

;M

1

). The sender P is then ativated to send M

b

. However, if P reords in its

loal output at this point that it sends M

b

, then U an easily win the game by simply looking at

P 's output. Therefore, P is ativated with send

�

(P;Q; s;M

b

), rather than a regular send ativation.

The rest of the run ontinues in the same way as before exept that now the reeiving party of the

tested session uses inoming

�

(Q;P; s; C;M

b

) to handle inoming messages. The reason for this is

the following: if Q reords all deryptions of inoming iphertexts, U an easily determine the bit

b by simply taking the hallenge iphertext orresponding to M

b

, handing it to Q as an inoming
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iphertext, then seeing what Q writes on its output. The ativation inoming

�

prevents this trivial

attak.

Unfortunately, the game in its present form allows U to easily win via another trivial attak.

Suppose the tested session is (P;Q; s). First, U piks any message M , ativates P with a send

ativation to send M to Q via s, and outputs the hallenge message pair (M;M

0

) where M 6=M

0

.

As a result of the send ativation, P enrypts M to obtain a iphertext C and appends C to the

message bu�er. Now, U ativates the reeiver Q with the iphertext C as an inoming message

from P via session s. If Q does not reord the derypted message, then C orresponds to M , and

thus b = 0. Otherwise, C orresponds to M

0

, and thus b = 1. Therefore, to prevent this trivial

attak, [9℄ requires that an adversary never ask for an enryption of a partiular message more than

one. This requirement an be easily implemented using ounters. For example, the enryption

algorithm an prepend an internal ounter to the input message before enrypting the resulting

string to obtain the iphertext. In fat, the use of this mehanism is ommon in pratial Internet

protools inluding SSH [21℄, SSL [14℄, and TLS [11℄. De�nition 2.4 below desribes the seurity

of network enryption protools more preisely.

De�nition 2.4 [Network Enryption Protool Seurity [9℄℄ Let k 2 N. Let NC = (IG;B;I; x;

l; n; r; ativation list) be a hannel protool. Let U be a UM attaker, and let r

U

: N ! N be the

funtion speifying the upper bound of the running time of U in terms of k. Consider the following

experiment:

Experiment Exp

ind-ne-b

NC;U

(k)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

(x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

i

on (I

0

; I

i

; x

i

; r

i

)

Run U on input (k; I

0

; r

0

), arrying out U 's ations as spei�ed in NC

. When U submits test-session(P

i

; P

j

; s

0

) and outputs (M

0

;M

1

)

| Ativate P

i

with send

�

(P

i

; P

j

; s

0

;M

b

)

. Continue arrying out U 's ations as spei�ed in NC exept

| Whenever U ativates P

j

with inoming(P

j

; P

i

; s

0

; C),

Ativate P

j

with inoming

�

(P

j

; P

i

; s

0

; C;M

b

) instead

Until U halts and outputs a bit d

Output d

Above, it is required that U submit only one test-session query and that it not expose the tested

session thereafter. Furthermore, for the tested session, we require that U never invoke send ati-

vations involving M

0

or M

1

and also never invoke send ativations involving a partiular message

more than one. We de�ne the advantage of the adversary via

Adv

ind-ne

NC;U

(k) = Pr[Exp

ind-ne-1

NC;U

(k) = 1 ℄� Pr[Exp

ind-ne-0

NC;U

(k) = 1 ℄ :

The hannel protool NC is said to be a seure enryption protool in the UM if the funtion

Adv

ind-ne

NC;U

(�) is negligible for any UM adversary U whose time-omplexity is polynomial in k.

2.3 From KE and Authentiated Enryption Shemes to Channel Protools

In [9℄, Canetti and Krawzyk use a template by whih one an desribe how a KE protool and an

authentiated enryption sheme an be used as building bloks for a hannel protool. We de�ne

a transform based on this template.

9



Constrution 2.5 [Transform [9℄℄ Let � = (IG;B;I; x; l; n; r; ativation list) be a KE protool,

and let AE = (K; E ;D) be an authentiated enryption sheme. We assoiate with � andAE a han-

nel protool NAE = NetAE(�;AE) = (IG;B;I; x; l; n; r; alist) where alist ontains the ativations in

ativation list together with the following ativations.

1. establish-session(P

i

; P

j

; s; role): This triggers a KE-session under � within P

i

with partner P

j

,

session ID s, and role 2 finitiator; responderg. If the KE-session ompletes, P

i

reords in its loal

output the entry \established session s with P

j

" and the generated session key marked as

\seret." Otherwise, no ation is taken.

2. expire-session(P

i

; P

j

; s): If the session (P

i

; P

j

; s) exists at P

i

, the party P

i

marks the session as

expired and erases the session key. Then, P

i

reords in its loal output \expired session s

with P

j

". Otherwise, no ation is taken.

3. send(P

i

; P

j

; s;M): The party P

i

heks that the session (P

i

; P

j

; s) has been ompleted and not

expired. If so, it omputes C

R

 E

K

(M) using the orresponding session keyK, puts (P

i

; P

j

; s; C)

in the message bu�erM, and reords \sent M to P

j

within session s" in the loal output.

Otherwise, no ation is taken.

4. inoming(P

j

; P

i

; s; C): The party P

j

heks that the session (P

i

; P

j

; s) has been ompleted and

not expired. If so, it omputes M  D

K

(C) under the orresponding session key K. If M 6= ?,

then P

j

reords \reeived M from P

i

within session s". Otherwise, no ation is taken.

3 Simple Charaterizations of Authentiated Enryption Shemes

for Seure Channels

We propose two new seurity notions for authentiated enryption shemes: SINT-PTXT (for

strong integrity of plaintexts) and IND-CCVA (for indistinguishability against hosen-iphertext

attaks with veri�ation). The goal is to apture the neessary and suÆient properties of the

authentiated enryption sheme suh that, one the transform per Constrution 2.5 is applied to

the sheme and a KE protool, the resulting hannel protool is a seure hannel, assuming that the

KE protool \seurely implements" the key generation algorithm of the authentiated enryption

sheme. We postpone a preise de�nition of the term in quotes to Setion 4. In what follows, we

use x

R

 f(y) to denote the proess of running a possibly randomized algorithm f on an input y and

assigning the result to x. If A is a program, A ( x means \return x to A." The time-omplexity

referred to in our de�nitions is the worst ase total exeution time of the entire experiment, plus

the size of the ode of the adversary, in some �xed RAM model of omputation. Also, orales

orresponding to stateful algorithms maintain their states aross invoations.

First, we apture the notion of a seure authentiation protool with SINT-PTXT. Reall that

a protool is onsidered a seure authentiation protool if it emulates the SMT protool in the

UM where SMT is an ideal session-based message transmission protool. Under the SMT protool

in the AM, when a party sends a message M to another party, the message M is simply put on

the bu�er. Sine the adversary is operating in the AM, it an drop messages but annot modify or

injet messages. Therefore, a seure authentiation protool must ensure that eah sent message is

reeived at most one (i.e., replay attaks are unsuessful), and that its ontents are left intat.

We de�ne the SINT-PTXT notion in De�nition 3.1. An adversary is given aess to an enryp-

tion orale and a deryption orale. This aptures its ability to obtain enryption and deryption

of messages and iphertexts of its hoie. We use a multiset, denoted T below, to keep trak of

messages that have been sent but not yet reeived. Whenever a message is reeived, it is removed

from the multiset. If an adversary is able to submit a query to the deryption orale that results in
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a message that is not in the multiset T , i.e., the message is not one of those waiting to be reeived,

then it wins.

De�nition 3.1 [SINT-PTXT℄ Let AE = (K; E ;D) be an authentiated enryption sheme. Let

k 2 N. Let A be an adversary with aess to two orales. Consider the following experiment.

Experiment Exp

sint-ptxt

AE ;A

(k)

K

R

 K(k) ; T  ; // T is a multiset

Run A

E

K

(�);D

K

(�)

(k)

Reply to E

K

(M) as follows:

C

R

 E

K

(M) ; T  T [ fMg ; A( C

Reply to D

K

(C) as follows:

M  D

K

(C)

If M = ? Then A(M

Else If M 2 T Then T  T � fMg ; A(M

Else return 1

Until A halts

Return 0

We de�ne the advantage of the adversary via

Adv

sint-ptxt

AE ;A

(k) = Pr[Exp

sint-ptxt

AE ;A

(k) = 1 ℄ :

The sheme AE is said to be SINT-PTXT seure if the funtion Adv

sint-ptxt

AE ;A

(�) is negligible for any

adversary A whose time-omplexity is polynomial in k.

Now, we apture the notion of a seure enryption protool. To apture an adversary's ability to

obtain enryption and deryption of messages and iphertexts of its hoie, we give it aess to an

enryption orale E

K

(�) and a deryption orale D

K

(�). The de�nition follows that of [9℄ losely

and straightforwardly. Let b 2 f0; 1g. Reall that, in the de�nition of seure enryption protool

per [9℄, one the adversary outputs a hallenge message pair (M

0

;M

1

), the reeiver of the tested

session does not reord the derypted message if it is equal to the seret message M

b

. Therefore,

we apture this through an orale denoted by D

K

(�;M

b

). This orale is the same as the standard

deryption orale D

K

(�) exept the following. If a given iphertext derypts to M

b

, then the orale

D

K

(�;M

b

) returns a speial symbol �. Otherwise, it returns the derypted message. Additionally,

sine an adversary in the de�nition per [9℄ annot obtain enryptions of a partiular message more

than one, we also impose the same restrition on the adversary in our experiment.

De�nition 3.2 [IND-CCVA℄ Let AE = (K; E ;D) be an authentiated enryption sheme. Let

b 2 f0; 1g and k 2 N. Let A be an adversary that has aess to three orales. Consider the following

experiment.

Experiment Exp

ind-va-b

AE ;A

(k)

K

R

 K(k)

(M

0

;M

1

; st) A

E

K

(�);D

K

(�)

(k; �nd)

C

R

 E

K

(M

b

)

d A

E

K

(�);D

K

(�;M

b

)

(k; guess; C; st)

Return d

The omputation E

K

(M

b

) above is a all to the enryption orale. Also, the orale D

K

(�;M

b

) shares

states with (i.e., is initialized with the urrent states of) D

K

(�) if any. Furthermore, we require
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that A never query E

K

(�) on M

0

or M

1

and also never query E

K

(�) on a partiular message more

than one. We de�ne the advantage of the adversary via

Adv

ind-va

AE ;A

(k) = Pr[Exp

ind-va-1

AE ;A

(k) = 1 ℄� Pr[Exp

ind-va-0

AE ;A

(k) = 1 ℄ :

The sheme AE is said to be IND-CCVA seure if the funtion Adv

ind-va

AE ;A

(�) is negligible for any

adversary A whose time-omplexity is polynomial in k.

4 SINT-PTXT and IND-CCVA are Neessary and SuÆient

Our results use De�nition 4.1 below. It desribes how a key generation algorithm of an authenti-

ated enryption sheme should relate to a KE protool of a hannel protool based on the authen-

tiated enryption sheme. In partiular, the KE protool should \implement" the key generation

algorithm, meaning that two parties that have ompleted the KE protool with eah other should

end up with the same key whih in turn should be drawn from the distribution generated by the

key generation algorithm. The de�nition, whih is adapted from [9℄, aptures this property more

preisely via the following game. Let k 2 N be the seurity parameter. Let � be a session-based

message-driven protool that inludes a KE protool � as a sub-protool, and let U be a UM adver-

sary running against �. The adversary U an arry out ations spei�ed in � plus one additional

ativation, namely a test-session-key query, against at most one unexpired and unexposed session s

whose KE portion is ompleted. From this point on, U is not allowed to expose the tested session.

One U perform a test-session-key query, a bit b is hosen at random. If b = 0, then U reeives

the session key for s. Otherwise, it reeives a value r

R

 K(k). The adversary wins if it orretly

guesses the bit b.

De�nition 4.1 [Seurely Implementing a Key Generation Algorithm via a Key Ex-

hange Protool.℄ Let k 2 N be the seurity parameter. A KE protool � is said to seurely

implement a key generation algorithm K in the UM during the run of a protool if, for any adversary

U in the UM,

| When an unorrupted party ompletes � with another unorrupted party, they both arrive at

the same session key, AND

| U wins the game above with probability no more than 1/2 plus a negligible funtion of k.

We present our main results here. They state that, respetively, SINT-PTXT and IND-CCVA

are neessary and suÆient for the notions of network authentiation and network enryption

of Canetti and Krawzyk [9℄. We present the theorems and their proof ideas below. The full

proofs in detail are in Appendix C. For brevity, we write X

s

� Y when the ensembles X and Y

are statistially indistinguishable. Note that statistial indistinguishability implies omputational

indistinguishability.

Theorem 4.2 [Given a seure KE, SINT-PTXT , Seure Authentiation Protool℄

Let AE = (K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let

NAE = NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that �

seurely implements K in the UM during the run of NAE. Then, AE is SINT-PTXT seure if and

only if NAE is a seure authentiation protool.

We sketh the proof for eah diretion of the \if and only if," assuming throughout that � se-

urely implements K. For the \if" diretion, we show that if AE is SINT-PTXT, then given

any UM adversary U against NAE, we an onstrut an AM adversary A against SMT suh that
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AUTH

SMT;A

s

� UNAUTH

NAE;U

. The rux of this proof is essentially the same as that of Theorem 12

of [9℄, and thus, we do not disuss it further.

For the \only if" diretion, we show that, given any sint-ptxt adversary F against AE , we

an onstrut a UM adversary U against NAE suh that, for any AM adversary A against SMT,

AUTH

SMT;A

6

s

� UNAUTH

NAE;U

as follows. The adversary U starts two parties P

1

and P

2

. Then,

it ativates P

1

with establish-session(P

1

; P

2

; s; initiator) and runs F . Whenever F submits an en-

ryption query E

K

(M), the adversary U ativates the party P

1

with send(P

1

; P

2

;M; s). Similarly,

whenever F submits a deryption query D

K

(C), the adversary U ativates the party P

2

with

inoming(P

2

; P

1

; C; s). Reall that a suessful sint-ptxt adversary F an essentially replay a mes-

sage or forge a iphertext the derypts to a previously-unseen message. Sine suh ations are not

allowed in the AM, there an be no AM adversaries that an generate the global output that is

statistially indistinguishable from that generated by U .

Theorem 4.3 [Given a seure KE, IND-CCVA , Seure Enryption Protool℄ Let

AE = (K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let NAE =

NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that � seurely

implements K in the UM during the run of NAE. Then, AE is IND-CCVA seure if and only if

NAE is a seure enryption protool.

We sketh the proof for eah diretion of the \if and only if," assuming throughout that � seurely

implements K. For the \if" diretion, we show that, given any ind-ne adversary U against NAE, we

an onstrut an ind-va adversary A against AE suh that A's suess probability is no less than

that of U divided by the total number of sessions established by U over its run. The adversary

A simply simulates U as in the experiment Exp

ind-ne-b

NAE;U

(k) (where b is a bit) with one exeption:

during the �nd phase, A hooses a session at random and uses its orales to enrypt and derypt

messages in this session. If U submits a test-session query on the hosen session and outputs a pair

of test messages, A does too. (Otherwise, A aborts.) Then, A enters its guess phase and ontinues

the simulation exatly as before. It halts and outputs what U outputs. Sine � seurely implements

K, the adversary A orretly simulates U . Thus, it sueeds if U does.

For the \only if" diretion, we show that, given any ind-va adversary A against AE, we an

onstrut an ind-ne adversary U against NAE suh that U 's suess probability is no less than

that of U using a similar tehnique as before: U establishes a session between two parties, then

runs A, answering its enryption and deryption queries by making send and inoming ativations

respetively for the session. Finally, U halts and outputs what A outputs. Sine � seurely

implements K, the adversary U orretly simulates A. Thus, it sueeds if A does.

5 Understanding Seure Channels through SINT-PTXT and IND-

CCVA

We explore the new notions by taking the standard approah of relating them to familiar notions.

Sine the two notions are neessary and suÆient for seure hannels, the knowledge we gain from

this exerise is appliable to seure hannels as well. In our omparisons, we use the following

terminology. Suppose X and Y are seurity notions. We say that X implies Y if any sheme seure

under X is seure under Y . We say that X does not imply Y if there exists an enryption sheme

that is seure under X but is inseure under Y . We say that A is equivalent to B if A implies B

and vie versa. We say that X is stritly stronger than Y if X implies Y but Y does not imply X.

Finally, we say that X and Y are inomparable if X does not imply Y and if Y does not imply X.
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privay integrity

IND-CCA IND-CCVA

IND-CPA

SINT-PTXT INT-CTXT

INT-PTXT

[4℄ [5℄

Figure 1: Relations among notions of symmetri enryption: An arrow from a notion X

to a notion Y denotes that X is stritly stronger than Y . A dashed line between a notion X

and a notion Y denotes that the two notions are inomparable. The relations established in other

papers are annotated with the orresponding itations. For simpliity, only interesting relations are

shown here. We emphasize that the existing notions in this �gure (those in unshadowed frames)

are variants of the standard notions in the literature. In partiular, the orales here maintain states

aross invoations.

In this setion, we disuss relations among notions of symmetri enryption as summarized in

Figure 1. Our strategy for showing that X implies Y is the standard redution approah: given

an adversary that suessfully breaks the sheme under the notion Y , onstrut an adversary that

suessfully breaks the sheme under the notion X. To show that X does not imply Y , we start

with a sheme seure under X, then modify it to obtain a sheme that remains seure under X but

is inseure under Y .

The standard privay notions we onsider here are indistinguishability under hosen-plaintext

and adaptive hosen-iphertext attaks (IND-CPA and IND-CCA). The original de�nitions of these

notions were in the asymmetri setting [16, 15, 13, 20℄ but an be \lifted" to the symmetri setting

using the enryption orale based template of [3℄. We use the \�nd-then-guess" de�nitions per [3℄

throughout our disussions here. In partiular, for both notions, an adversary A plays a game in

whih it is to \�nd" a pair of hallenge messages (M

0

;M

1

), obtain the iphertext orresponding

to the enryption of one of the hallenge messages, and then \guess" a bit indiating to whih

hallenge message the iphertext orresponds. For IND-CPA, A is given aess to an enryption

orale throughout the game. For IND-CCA, A is given aess to both an enryption orale and a

deryption orale throughout the game. (This notion is also known as IND-CCA2 [4℄.)

The integrity notions onsidered here are integrity of plaintexts [5℄ and integrity of iphertexts [7,

18, 5℄. An adversary attaking a sheme under these notions is given aess to two orales: a

standard enryption orale and a veri�ation orale| an orale that returns a bit indiating whether

the given iphertext is valid, i.e., whether it derypts to ?. An adversary sueeds in breaking a

sheme under the INT-PTXT notion if it an forge a iphertext that derypts to a \new" message,

i.e., a message that has not been submitted to the enryption orale before. Similarly, it sueeds

in breaking a sheme under the INT-CTXT notion if it an forge a \new" and valid iphertext, i.e.,

a valid iphertext that has not been returned by the enryption orale.

Stritly speaking, the original de�nitions of the existing seurity notions onsidered here, namely

IND-CPA, IND-CCA, INT-PTXT and INT-CTXT, do not expliitly deal with enryption shemes

with stateful deryption algorithms. Therefore, to ompare them to our proposed notions, namely

IND-CCVA and SINT-PTXT, we make one small modi�ation to existing de�nitions. Spei�ally,

we allow eah orale used in the de�nitions to maintain states aross invoations. It is easy to see
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that, this modi�ation notwithstanding, the relations among existing notions shown in [4℄ and [5℄

remain the same. It is also easy to see that any shemes seure under the original de�nitions are

seure under the de�nitions with this modi�ation. Heneforth, we use the original names to refer

to the modi�ed de�nitions.

Now we justify all relations among the six notions shown in Figure 1 although the �gure only

shows some of them. We group the justi�ations of the relations into three ategories: those for

relations among privay notions, those for relations among integrity notions, and those for relations

aross the two ategories. Not all of the relations are interesting. Nonetheless we inlude them all

here for ompleteness. We onlude this setion with a brief disussion.

5.1 Privay Notions

IND-CCA 6=) IND-CCVA. We show that IND-CCA does not imply IND-CCVA. The idea here

is to onstrut an enryption sheme for whih there exists a valid iphertext whose deryption is

known but the iphertext itself is never produed. This allows an ind-va adversary to submit

a valid iphertext to the deryption orale without the help of the enryption orale and to then

use the deryption orale's response to its advantage. In more detail, given an IND-CCA seure

sheme SE , we onstrut a sheme SE

0

as follows. The key generation remains the same. The

enryption algorithm prepends a bit 0 to all iphertexts. The deryption algorithm strips the �rst

bit b o� of the input iphertext. If b = 0, then it returns the deryption of the rest of the iphertext.

Otherwise, it returns a single bit 0. It is easy to see that SE

0

is IND-CCA seure. (In fat, this

is shown in the proof of Proposition 3.3 in [5℄.) However, SE

0

is not seure under IND-CCVA. An

adversary an simply output a pair of bits (0; 1) as the hallenge messages then request for the

deryption of the iphertext 10. If the orale's response is �, then it outputs 0. Otherwise, it

outputs 1. It wins with probability one.

IND-CCVA 6=) IND-CPA. Reall that, in the de�nition of seure enryption protools, an ind-ne

adversary U is not allowed to submit send ativations involving a partiular message more than

one for the tested session. This translates into a similar restrition for ind-va adversaries sine

IND-CCVA is neessary and suÆient for the notion of seure enryption protools. Unfortunately,

under this restrition, one an show that there exists a stateless and deterministi enryption

sheme seure under IND-CCVA. An example of suh a sheme is presented in Appendix D. Now,

it is well-known that stateless deterministi enryption shemes are not seure under the standard

privay notions. Furthermore, it is easy to see that they are not seure under the variant of the

privay notions with stateful orales onsidered here. Consequently, this means that IND-CCVA

does not imply IND-CPA and IND-CCA.

IND-CPA 6=) IND-CCVA. Sine IND-CCA does not imply IND-CCVA and sine IND-CCA

implies IND-CPA, we have that IND-CPA does not imply IND-CCVA.

IND-CCVA 6=) IND-CCA. Sine IND-CCVA does not imply IND-CPA and sine IND-CCA

implies IND-CPA, we have that IND-CCVA does not imply IND-CCA.

5.2 Integrity Notions

SINT-PTXT =) INT-PTXT. The reasoning behind this relation is simple. If an adversary an

forge a iphertext for a message that has not been previously enrypted, i.e., it defeats INT-PTXT,

it an also defeat SINT-PTXT with the same attak.
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INT-PTXT 6=) SINT-PTXT. To show this relation, we simply use a stateless sheme seure under

INT-PTXT. Being stateless, it is thus inseure under SINT-PTXT. An example of a sheme we an

use for this purpose is a stateless sheme onstruted via the enrypt-then-MAC omposition

4

as

de�ned and shown in [5℄ to be INT-PTXT seure if the underlying MAC and enryption shemes are

seure. Note that this does not ontradit the result in [9℄ sine the enrypt-then-MAC omposition

de�ned there is stateful.

INT-CTXT 6=) SINT-PTXT. The reason is similar to the previous ase. Consider stateless shemes

onstruted via the enrypt-then-MAC omposition as de�ned and shown in [5℄ to be INT-CTXT

seure if the underlying MAC and enryption shemes are seure (the seurity assumption on the

MAC here is stronger than in the ase of INT-PTXT seurity above). Being stateless, however,

they are not seure under SINT-PTXT.

SINT-PTXT 6=) INT-CTXT. Consider a sheme seure under SINT-PTXT. It is easy to see that

adding a redundant bit to every iphertext generated via this sheme yields a sheme that is inseure

under INT-CTXT (iphertexts an now be easily forged) but is still seure under SINT-PTXT (the

underlying messages are una�eted and so will still be hard to forge).

5.3 Comparing Privay Notions to Integrity Notions

No integrity notions imply privay notions. We show a simple sheme seure under all of the

integrity notions but does not provide any privay. The sheme uses a seure MAC sheme to

obtain INT-PTXT and INT-CTXT in a straightforward manner. Furthermore, to ensure SINT-

PTXT, it also uses an internal ounter. To ensure that it does not provide privay, we transmit

eah plaintext message as part of the iphertext. In more detail, onsider the sheme SE de�ned

as follows. Both enryption and deryption algorithms maintain internal ounter. To enrypt a

message, the enryption algorithm inrements its internal ounter, prepends the ounter to the

message, MAC the resulting string, and �nally outputs the message and the resulting tag. To

derypt a iphertext, the deryption algorithm inrements its internal ounter, omputes the MAC

of the onatenation of its ounter and the message portion of the iphertext, ompares the resulting

MAC to the tag part of the iphertext, and outputs the message if they math. It is easy to see

that SE is seure under SINT-PTXT as well as INT-PTXT and INT-CTXT, assuming that the

underlying MAC is seure. Furthermore, sine messages are transmitted in the lear, SE learly

does not provide any privay.

No privay notions imply SINT-PTXT.We know that shemes with stateless deryption algorithms

are not SINT-PTXT seure. However, there are plenty of shemes with stateless deryption algo-

rithms seure under IND-CCA and IND-CPA. Furthermore, the sheme in Appendix D shown to

be seure under IND-CCVA also has a stateless deryption algorithm.

Neither IND-CCA nor IND-CPA imply INT-PTXT or INT-CTXT. This is implied by the fat

that IND-CCA does not imply INT-PTXT shown in [5℄.

IND-CCVA =) INT-PTXT. Let AE be an authentiated enryption sheme. Suppose that there

exists an int-ptxt adversary A. In partiular, A an forge a iphertext C of a message M that has

not been previously enrypted, i.e., it an generate C on its own without ever submitting M to

4

Under this paradigm, to enrypt a message M , �rst enrypt M then MAC the result to obtain the iphertext to

be transmitted. Deryption works in a natural way.
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the enryption orale. Then, we onstrut an ind-va adversary A

0

as follows. First, A

0

forges the

iphertext C orresponding to a message M in the �nd stage, outputs (M;M

0

) where M 6=M

0

as

the hallenge message pair, then submit C to the deryption orale in the guess stage. If it reeives

the speial symbol � as a response, then it returns 0. Otherwise, it returns 1. Thus, A

0

is suessful

if A is suessful.

IND-CCVA 6=) INT-CTXT. The reasoning behind this relation is simple. Suppose SE is a sheme

seure under IND-CCVA. Consider a sheme SE

0

that is almost idential to SE exept that its

enryption algorithm appends to all iphertexts a bit that is ignored by the deryption algorithm.

It is easy to show that SE

0

remains IND-CCVA seure. However, it is learly inseure under

INT-CTXT.

5.4 Disussion

First, we omment that, as Figure 1 shows, SINT-PTXT is reasonably strong: it implies INT-PTXT

but not the stronger notion of INT-CTXT. Also, an integrity notion, spei�ally INT-PTXT, turns

out to be neessary for IND-CCVA, a privay notion.

Being a neessary and suÆient haraterization of seure enryption protool of [9℄, IND-CCVA

is not meant to onstitute a omplete seurity measure on its own. Rather, it guarantees serey only

in onjuntion with additional mehanisms that guarantee uniqueness of messages. Consequently,

it may be surprising at �rst glane that IND-CCVA emerges as a notion that is inomparable to

both IND-CPA and IND-CCA. In partiular, IND-CCVA does not imply even a weak notion of

privay suh as IND-CPA. Moreover, it is easy to see that a hannel protool onstruted from

the stateless deterministi enryption sheme used to prove the relation that IND-CCVA does not

imply IND-CPA (i.e., that in Appendix D) does not provide the stateful variant of semanti seurity

either. The unfortunate impliation here is that hannel protools proven seure as an enryption

protool may in fat leak information. This is a rather unexpeted result sine one would naturally

assume that a seure enryption protool should protet privay of transmitted information. On

the other hand, it is also arguably simply a tehnial issue that does not arise in many ases in

pratie. As pointed out in [9℄, if one an ensure that all messages are unique, then one an obtain

seurity. (In partiular, this requirement rules out the stateless deterministi enryption sheme in

Appendix D.) One way to ensure uniqueness of messages is to simply prepend unique message IDs

to all messages and to verify them when iphertexts are reeived. In fat, many Internet protools

in use today (e.g., SSH, SSL, and TLS) already do so: they inlude in every paket a sequene

number maintained internally by the ommuniating parties [14, 11, 21℄.
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A Adversary Ations

An adversary A running against a session-based message-driven protool an perform the �rst four

ations below. An adversary A against a key exhange protool an perform all of the ations

below.

1. Party ativation. The ativation list spei�es what an be ativated on a party. Examples inlude

asking a party to send a message to, reeive a message from, or establish a session with another

party. An adversary an also ask a party to expire an existing session. This auses the party to

permanently erases all state information relevant to the session.

2. Party orruption. A obtains from a party all of its state, inluding its long-term serets. The

party appends to its output the entry \orrupted" and terminates. It generates no further

output.

3. Session-state reveal. A obtains from a party the portion of its state that is \loal" to the spei�ed

session. The protool spei�es what information is onsidered \loal" to a session. This query

is valid only for sessions that have not ompleted. The party appends to its output the entry

\revealed state of (P; P

0

; s)" where (P; P

0

; s) is the session being revealed.

4. Session-output reveal. A obtains from a party all of its transripts that have been reated for the

spei�ed session (P; P

0

; s) and are marked \seret." The party appends to its output the entry

\revealed output of (P; P

0

; s)".
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5. Session-key reveal. A obtains from a party the session key for the spei�ed session whih must be

ompleted but has not expired. The party appends to its output the entry \revealed session

key for (P; P

0

; s)" where (P; P

0

; s) is the session in question.

B Desription of the send

�

and inoming

�

Ativations

Let NC be a network hannel protool. Let k 2 N be the seurity parameter, let b 2 f0; 1g, and let

U be a UM attaker. The ativations send

�

and inoming

�

used in the experiment Exp

ind-ne-b

NC;U

(k)

are de�ned as follows.

Ativation send

�

(P

i

; P

j

; s;M) at P

i

If the session (P

i

; P

j

; s) is expired or exposed, then return

If the key exhange protool for the session (P

i

; P

j

; s) is not ompleted, then return

C  E

K

(M) where K is the session key for the session (P

i

; P

j

; s)

Reord \sent a message to P

j

within session s" on P

i

's output

Put (P

i

; P

j

; s; C) in the message bu�erM

Ativation inoming

�

(P

j

; P

i

; s; C;M

b

) at P

j

If the session (P

i

; P

j

; s) is expired, then return

If the key exhange protool for the session (P

i

; P

j

; s) is not ompleted, then return

M  D

K

(C) where K is the session key for the session (P

i

; P

j

; s)

If M =M

b

then reord \reeived a message from P

i

within session s" on P

j

's output

else if M 6= ? then reord \reeived M from P

i

within session s" on P

j

's output

C Proofs that SINT-PTXT and IND-CCVA are Neessary and

SuÆient

We state the lemmas from whih Theorem 4.2 and Theorem 4.3 diretly follow. Lemma C.1 and

Lemma C.2 prove the former. Lemma C.3 and Lemma C.4 prove the latter. Then, we present their

proofs in detail.

Lemma C.1 [Given a seure KE, SINT-PTXT) Seure Authentiation Protool℄ Let

AE = (K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let NAE =

NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that � seurely

implements K in the UM during the run of NAE. If AE is SINT-PTXT seure, then given any UM

adversary U against NAE, we an onstrut an AM adversary A against SMT suh that

AUTH

SMT;A

s

� UNAUTH

NAE;U

:

Lemma C.2 [Given a seure KE, SINT-PTXT( Seure Authentiation Protool℄ Let

AE = (K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let NAE =

NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that � seurely

implements K in the UM during the run of NAE. Then, given any sint-ptxt adversary F against

AE , we an onstrut a UM adversary U against NAE suh that, for any AM adversary A against

SMT,

AUTH

SMT;A

6

s

� UNAUTH

NAE;U

:
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Lemma C.3 [Given a seure KE, IND-CCVA) Seure Enryption Protool℄ Let AE =

(K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let NAE =

NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that � se-

urely implements K in the UM during the run of NAE. Then, given any ind-ne adversary U

against NAE, we an onstrut an ind-va adversary A against AE suh that

Adv

ind-ne

NAE;U

(k) � S �Adv

ind-va

AE ;A

(k)

where U establishes at most S sessions and A's time-omplexity is polynomially-related to that

of U .

Lemma C.4 [Given a seure KE, IND-CCVA( Seure Enryption Protool℄ Let AE =

(K; E ;D) be an authentiated enryption sheme, and let � be a KE protool. Let NAE =

NetAE(�;AE) be the assoiated hannel protool as per Constrution 2.5. Suppose that � se-

urely implements K in the UM during the run of NAE. Then, given any ind-va adversary A

against AE, we an onstrut an ind-ne adversary U against NAE suh that

Adv

ind-va

AE ;A

(k) � Adv

ind-ne

NAE;U

(k) :

Furthermore, U 's time-omplexity is polynomially-related to that of A.

C.1 Proof of Lemma C.1

Proof Idea. The rux of this proof is the same as that of Theorem 12 of [9℄. Let k 2 N and

i 2 f1; : : : ; ng. Given a UM adversary U , we onstrut an AM adversary A. We denote the parties

interating with A and U by P

i

and P

0

i

, respetively. To run U , the AM adversary A simulates

the parties P

0

i

by arrying out all requests and ativations from U by itself on P

0

i

's behalf and only

makes requests and ativations to a party P

i

for events that have been reorded and events that

involve orruption or exposure of a party.

Then, we show that for any seurity parameter k 2 N, any UM adversary U , and the AM

adversary A de�ned above, if AE is SINT-PTXT seure, then the random variables AUTH

SMT;A

(k)

and UNAUTH

NAE;U

(k) are statistially indistinguishable.

We do so by �rst arguing that, for any k 2 N, if AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are

statistially distinguishable, then a forgery event has ourred. Before de�ning a forgery event,

we �rst desribe the onept of mathing entries. An entry in the loal output of a party P

i

that

reads \sent M to P

j

within session s" is said to be a math of an entry in the loal output

of a party P

j

that reads \reeived M from P

i

within session s". We mandate that one two

entries are mathed, they annot be mathed with any other entries, in whih ase we say that they

beome unavailable. An entry that has not been mathed (i.e., is not unavailable) is onsidered

available. A forgery event is an event in whih the loal output of a party P

j

ontains an entry of the

form \reeived M from P

i

within session s" while the loal output of P

i

does not ontain an

available mathing entry. In other words, a forgery event ours if, for some M;P

i

; P

j

; and s, the

output of P

j

ontains a reeipt reord of M from P

i

within session s and the reord is available.

Then, we onstrut an adversary F so that, if a forgery event ours, then F wins as follows.

First, F hooses a session s at random from all sessions and uses its orales, rather than the atual

session key, to ompute the messages transmitted via s. Then, F runs the UM adversary U until it

halts. We argue that, if a forgery event ours, then F wins as follows. Sine the multiset T in the

experiment Exp

sint-ptxt

AE ;F

(k) keeps trak of sent messages that are yet to be reeived, an ourrene of

a forgery event means that there exists a message M that has been reeived butM 62 T . Therefore,

the adversary F will sueed in breaking the SINT-PTXT seurity of AE . Sine we assume that

the KE protool seurely implements the key generation algorithm, this onludes the proof.
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Proof Details. Given a UM adversary U , we onstrut A as follows. Here, r

U

(�) spei�es the

upper bound on the running time of U .

Adversary A(k; r

A

)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

0

i

on (I

0

; I

i

; x

i

; r

i

)

Run U on (k; I

0

; r

0

), arrying out U 's ations as follows:

. When U ativates P

0

i

with establish-session(P

0

i

; P

0

j

; s; role),

expire-session(P

0

i

; P

0

j

; s), send(P

0

i

; P

0

j

; s;M), inoming(P

0

i

; P

0

j

; s; C),

or any ativations as part of the run of the KE protool

| Invoke the same ativation against P

0

i

| Put any resulting messages to be delivered on U 's message bu�erM

. When U orrupts P

0

i

| Corrupt P

0

i

and give P

0

i

's internal states to U

| Corrupt P

i

. When U exposes a session (P

0

i

; P

0

j

; s) at P

0

i

| Expose the same session at P

0

i

and give resulting data to U

| Expose the session (P

i

; P

j

; s) at P

i

. When P

0

i

reords \established session s with P

0

j

", \expired session s with P

0

j

",

or \sent M to P

0

j

within session s"

| Ativate P

i

with establish-session(P

i

; P

j

; s), expire-session(P

i

; P

j

; s), or send(P

i

; P

j

; s;M)

. When P

0

i

reords \reeived M from P

0

j

within session s"

| Find an available math of this entry in the loal output of P

0

j

| If an available math is found

Then math the two entries and ativate P

i

with inoming(P

i

; P

j

; s;M)

Else If P

j

is orrupted or exposed

Then ativate P

j

with send(P

j

; P

i

; s;M) and P

i

with inoming(P

i

; P

j

; s;M)

Else abort

Until U halts

Output what U outputs

We de�ne the following event, make a few observations, then state and prove Claim C.6. Lemma C.1

follows diretly.

Forgery Event: There exists two parties P

0

i

and P

0

j

suh that at some point during the protool

exeution, the loal output of P

0

j

ontains an entry \reeived M from P

0

i

within session

s" where M is a message and s is a session ID, and this entry annot be mathed with any

available entry in the loal output of P

0

i

.

Remark C.5

1. The adversary A above simulates U exatly as in any run of U against parties running NAE.

2. The adversary A aborts if a forgery event ours.

3. Suppose that A does not abort. Then, for eah entry reorded in the loal outputs of the

simulated parties running NAE against U , there is an entry reorded in the loal outputs of

the parties running SMT against A.

Claim C.6 Let k 2 N be the seurity parameter, let AE = (K; E ;D) be an authentiated enryp-

tion sheme, and let � be a KE protool. Let NAE = NetAE(�;AE). Let U be a UM adversary, and
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let A be the AM adversary de�ned above. Suppose that the KE protool � seurely implements

K. If AE is SINT-PTXT seure, then AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are statistially

indistinguishable.

We prove Claim C.6 by ontradition. Suppose that AUTH

SMT;A

(k) and UNAUTH

NAE;U

(k) are

statistially distinguishable. From Remark C.5, this means that a forgery event ours. We on-

strut an adversary F that breaks SINT-PTXT seurity of AE with non-negligible probability. The

adversary F works as follows. Here, r

U

(�) spei�es the upper bound on the running time of U .

Adversary F

E

K

(�);D

K

(�)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

0

i

on (I

0

; I

i

; x

i

; r

i

)

Pik a session (P

0

i

; P

0

j

; s

0

) at random from all sessions

Run U on (k; I

0

; r

0

) arrying out U 's ations as spei�ed in NAE exept

| When U ativates P

0

i

with send(P

0

i

; P

0

j

; s

0

;M),

Take P

0

i

's ode for handling a send ativation

Replae exeution of the enryption algorithm in the ode with all to the orale E

K

(�)

Exeute the resulting ode

| When U ativates P

0

j

with inoming(P

0

j

; P

0

i

; s

0

; C),

Take P

0

j

's ode for handling an inoming ativation

Replae exeution of the deryption algorithm in the ode with all to the orale D

K

(�)

Exeute the resulting ode

Until U halts

Output what U outputs

Notie that, when F piks a session at random, it does not yet know the total number of sessions

to be established. We address this by putting an upper bound on the total number of sessions

using the running time of U and letting F hoose a session at random. Also, reall that the KE

protool � is assumed to seurely implement the key generation algorithm K. This means that the

session keys and the keys used by the orales are drawn from the same distribution. Therefore, the

probability that a forgery event ours in a regular run of U and the probability that it ours in

F 's run of U above are the same.

We argue here that, if a forgery event ours, then the experiment Exp

sint-ptxt

AE ;F

(k) returns 1.

First, we observe that the ode of F above ensures that eah send ativation results in the orre-

sponding enryption query and that eah inoming ativation results in the orresponding deryp-

tion query. Now, reall that in the experiment Exp

sint-ptxt

AE ;F

(k), whenever F submits an enryption

query E

K

(M) (or, equivalently here, whenever U ativates P

0

i

with a send ativation involving M),

the message M is added to the multiset T . Furthermore, whenever F submits a deryption query

D

K

(C) (or, equivalently here, whenever U ativates P

0

j

with an inoming ativation involving C),

if C derypts to some message M 6= ?, then M is removed from T . In short, whenever a message

is sent, it is added to T , and whenever a message is reeived, it is removed from T .

If a forgery event ours in the session (P

0

i

; P

0

j

; s

0

), then we know that (1) there is a reeipt

reord involving M;P

0

i

; and s in the output of P

0

j

but (2) it annot be mathed with any available

mathing send entry in the output of P

0

i

. The �rst ondition implies that F will submit a query

that derypts to M 6= ? to the deryption orale. The seond ondition implies that this query

results in M 62 T . Therefore, the experiment returns 1, and F sueeds. Finally, sine F hooses

the session (P

0

i

; P

0

j

; s

0

) from the total number of sessions whih is polynomial in k, the probability

that F sueeds remains non-negligible. Moreover, F runs in time polynomial in k sine U does.

Hene, Claim C.6 follows.
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C.2 Proof of Lemma C.2

Proof Idea. Given an sint-ptxt adversary F against AE , we onstrut a UM adversary U as

follows. The adversary U starts two parties P

1

and P

2

, ativates P

1

with establish-session(P

1

; P

2

; s),

then runs F . Whenever F submits an enryption query E

K

(M), the adversary U ativates the

party P

1

with send(P

1

; P

2

;M; s). Similarly, whenever F submits a deryption query D

K

(C), the

adversary U ativates the party P

2

with inoming(P

2

; P

1

; C; s).

Similar to the proof of Lemma C.1, our analysis involves a forgery event in the simulation. The

forgery event is de�ned exatly as in the proof of Lemma C.1, so we do not repeat it here. Now,

suppose that F wins its game, meaning that it has submitted a deryption query that results in

a message M 6= ? so that M 62 T . Sine the multiset T in the experiment Exp

sint-ptxt

AE ;F

(k) keeps

trak of sent messages that are yet to be reeived, this means that there exists a reeipt reord

of a message with no available mathing send reord. In other words, U has aused a forgery

event to our. Now, sine no two plaintext messages an enrypt to the same iphertext, the fat

that the reeived message has not been sent implies that no iphertext whose deryption is the

reeived message has been inserted into the message bu�erM before U delivers the iphertext to

the reipient. Therefore, U has indeed ativated a party with an inoming string that is not in the

message bu�erM. Sine suh an ation is not permitted in the AM and sine its e�et is atually

reorded by a party, there an be no AM adversaries that an generate the global output that is

statistially indistinguishable from that generated by U . Thus, Lemma C.2 follows.

Proof Details. Given an sint-ptxt adversary F , we onstrut a UM adversary U as follows.

Adversary U(k; I

0

; r

0

)

Ativate P

1

with establish-session(P

1

; P

2

; s; initiator)

Wait until the KE protool for the session (P

1

; P

2

; s) is ompleted

Run F

E

K

(�);D

K

(�)

(k)

. Reply to E

K

(M) queries as follows:

| Ativate P

1

with send(P

1

; P

2

; s;M)

| Wait until an entry (P

1

; P

2

; s; C) is appended to the message bu�er

| Return C to F

. Reply to D

K

(C) queries as follows:

| Ativate P

2

with inoming(P

2

; P

1

; s; C)

| If P

2

reords \reeived M from P

1

within session s"

Then return M to A ; Else return ? to A

Until F halts

Reall that the KE protool � is assumed to seurely implement the key generation algorithm

K. This means that the session key and the key used by the orales are drawn from the same

distribution. Therefore, the probability that F suessfully breaks SINT-PTXT seurity of AE

remains una�eted.

Now we argue that, if F sueeds, then a forgery event has ourred. We use a similar line of

reasoning as in the proof of Lemma C.1. First, we observe that the ode of U above ensures that

eah enryption query results in the orresponding send ativation and that eah deryption query

results in the orresponding inoming ativation. Now, reall that in the experiment Exp

sint-ptxt

AE ;F

(k),

whenever F submits an enryption query E

K

(M) or, equivalently here, whenever U ativates P

0

i

with a send ativation involving M , the message M is added to the multiset T . Furthermore,

whenever F submits a deryption query D

K

(C) or, equivalently here, whenever U ativates P

0

j

with an inoming ativation involving C, if C derypts to some message M 6= ?, then M is
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removed from T . In short, whenever a message is sent, it is added to T , and whenever a message

is reeived, it is removed from T .

If F sueeds, then it has submitted a deryption query D

K

(C) suh that (1) the response

M = D

K

(C) is not equal to ? and (2) M 62 T . The former implies that, at some point during the

protool exeution, U ativates P

2

with inoming(P

2

; P

1

; s; C) and P

2

atually reords the reeipt of

M . The latter implies that, at that moment, there is no mathing send entry at P

1

for the reeipt

entry of M reorded at P

2

.

Now, sine no two plaintext messages an enrypt to the same iphertext, the fat that the

reeived message has not been sent implies that no iphertext whose deryption is the reeived

message has been inserted into the message bu�er M before U delivers the iphertext to the

reipient. Therefore, U has ativated P

2

with an inoming string that is not present in the bu�er

M at the time. Sine suh an ation is not permitted in the AM and sine the e�et of this

ativation is atually reorded by P

2

, there exists no AM adversaries that an generate the global

output that is statistially indistinguishable from that generated by U . Thus, Lemma C.2 follows.

C.3 Proof of Lemma C.3

Given an ind-ne adversary U against NAE, we onstrut an ind-va adversary A against AE below.

The ativation inoming

D

K

(�;M

b

)

is de�ned in a similar manner as in Appendix B exept that here

we use the orale D

K

(�;M

b

) to determine whether to write the derypted message in the loal

output.

Ativation inoming

D

K

(�;M

b

)

(P

j

; P

i

; s; C) at P

j

If the session (P

i

; P

j

; s) is expired, then return

If the KE protool for the session (P

i

; P

j

; s) is not ompleted, then return

M  D

K

(C;M

b

)

If M = � then reord \reeived a message from P

i

within session s" on P

j

's output

else if M 6= ? then reord \reeived M from P

i

within session s" on P

j

's output

Now, we de�ne the adversary A as follows. Here, r

U

(�) spei�es the upper bound on the running

time of U .

Adversary A

E

K

(�);D

K

(�)

(k; �nd)

r

0

R

 f0; 1g

x

; r

00

R

 f0; 1g

l

; r

0

R

 f0; 1g

r

U

(k)

; (x

1

; : : : ; x

n

) IG(k; r

0

) ; (I

0

; : : : I

n

) B(k; r

00

)

For i = 1; : : : ; n do r

i

R

 f0; 1g

r

; start P

i

on (I

0

; I

i

; x

i

; r

i

)

Pik a session (P

i

; P

j

; s

0

) at random from all sessions

Run U on (k; I

0

; r

0

)

. Carry out U 's ations as spei�ed in NAE exept

| Whenever U ativates P

i

with send(P

i

; P

j

; s

0

;M),

Take P

i

's ode for handling a send ativation

Replae exeution of the enryption algorithm in the ode with all to the orale E

K

(�)

Exeute the resulting ode at P

i

| Whenever U ativates P

j

with inoming(P

j

; P

i

; s

0

;M),

Take P

j

's ode for handling an inoming ativation

Replae exeution of the deryption algorithm in the ode with all to the orale D

K

(�)

Exeute the resulting ode at P

j

Until U submits test-session(P;Q; s) and outputs (M

0

;M

1

)

If P 6= P

i

or Q 6= P

j

or s 6= s

0

then abort

st (P

i

; P

j

; s

0

)kM

0

kM

1

k internal states of all parties k state of U

25



Output (M

0

;M

1

; st)

Adversary A

E

K

(�);D

K

(�;M

b

)

(k; guess; C; st)

Parse st as (P

i

; P

j

; s

0

)kM

0

kM

1

k internal states of all parties k state of U

Restart all parties and U to where they were

. If the session (P

i

; P

j

; s

0

) is expired or exposed, then abort

. If the KE protool for the session (P

i

; P

j

; s

0

) is not ompleted, then abort.

. Reord \sent a message to P

j

within session s

0

" on P

i

's loal output

. Put (P

i

; P

j

; s

0

; C) in the message bu�er

. Carry out U 's ations as spei�ed in NAE exept

| Whenever U ativates P

j

with inoming(P

j

; P

i

; s

0

; C),

Exeute inoming

D

K

(�;M

b

)

(P

j

; P

i

; s; C) at P

j

Until U halts and outputs a bit d

Output d

Notie that A does not yet know the total number of sessions to be established when it piks a

session at random. We address this by putting an upper bound on the total number of sessions using

U 's running time. It is easy to see that A simulates U exatly as in the experiment Exp

ind-ne-b

NAE;U

(k)

where b 2 f0; 1g. We stress that this is true even though the session key for the tested session

(P

i

; P

j

; s

0

) is substituted with the key used by the orales, the reason being that the KE protool �

seurely implements the key generation algorithm K. Therefore, if U an guess the bit b orretly,

then so an A. Sine there are a total of at most S sessions in the run of U , the probability that

A guesses the tested session (P

i

; P

j

; s

0

) orretly is 1=S. Thus,

1

S

�Adv

ind-ne

NAE;U

(k) = Adv

ind-va

AE ;A

(k) :

Furthermore, reall that the time-omplexity of an adversary pertains to the entire experiment in

whih it runs. Therefore, the time-omplexity of A is polynomially-related to that of U . Thus,

Lemma C.3 follows.

C.4 Proof of Lemma C.4

Given an ind-va adversary A against AE, we onstrut an ind-ne adversary U against NAE below.

Adversary U(k; I

0

; r

0

)

Ativate P

1

with establish-session(P

1

; P

2

; s; initiator)

Wait until the KE protool for the session (P

1

; P

2

; s) is ompleted

Run A

E

K

(�);D

K

(�)

(k; �nd)

. Reply to E

K

(M) queries as follows:

| Ativate P

1

with send(P

1

; P

2

; s;M)

| Wait until an entry (P

1

; P

2

; s; C) is appended to the message bu�erM

| Return C to A

. Reply to D

K

(C) queries as follows:

| Ativate P

2

with inoming(P

2

; P

1

; s; C)

| If P

2

reords \reeived M from P

1

within session s"

Then return M to A ; Else return ? to A

Until A outputs (M

0

;M

1

; st)

Submit the query test-session(P

1

; P

2

; s) and output (M

0

;M

1

)

Wait until an entry (P

1

; P

2

; s; ) is appended to the message bu�erM

Run A

E

K

(�);D

K

(�;M

b

)

(k; guess; ; st)
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. Reply to E

K

(M) queries exatly as before

. Reply to D

K

(C;M

b

) queries as follows:

| Ativate P

2

with inoming(P

2

; P

1

; s; C)

| If P

2

reords \reeived M from P

1

within session s"

Then return M to A

Else If P

2

reords \reeived a message from P

1

within session s"

Then return � to A ; Else return ? to A

Until A stops and outputs a bit d

Output d

Sine the KE protool � seurely implements the key generation algorithm K, it is easy to see that

U runs A in the same environment as the experiment Exp

ind-va-b

AE ;A

(k) where b is a bit. Therefore, if

A an guess the bit b orretly, then so an U . Furthermore, time-omplexity of U is polynomially-

related to that of A. Thus, Lemma C.4 follows.

D A Deterministi Enryption Sheme Seure under IND-CCVA

Let l be a positive integer, and let F be an l-bit blok ipher. We denote by F

K

(M) and F

�1

K

(C)

an appliation of the blok ipher on M with key K and an appliation of the inverse ipher on

C with key K, respetively. Consider an enryption sheme SE with message spae f0; 1g

l

that

works as follows: to enrypt a message M using a key K, ompute and return F

K

(M); to derypt a

iphertext C using K, ompute and return F

�1

K

(M). Being deterministi, SE is learly not seure

under IND-CPA. However, it is easy to see that, if F is a pseudorandom permutation, then SE is

seure under IND-CCVA. To see this, reall that an adversary against SE under this notion is not

allowed to ask for enryptions of its hallenge message pair. Furthermore, if it asks for a deryption

of the hallenge iphertext C, it will get bak only the symbol �. Therefore, there is not muh the

adversary an do here to win its game other than breaking the blok ipher itself. We omit details.
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