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Abstrat

In [16℄, Naor, Pinkas and Reingold introdued shemes in whih some

groups of servers distribute keys among a set of users in a distributed

way. They gave some spei� proposals both in the unonditional and

in the omputational seurity framework. Their omputationally seure

sheme is based on the Deisional DiÆe-Hellman Assumption. This model

assumes seure ommuniation between users and servers. Furthermore

it requires users to do some expensive omputations in order to obtain a

key.

In this paper we modify the model introdued in [16℄, requiring au-

thentiated hannels instead of assuming the existene of seure hannels.

Our model makes the user's omputations easier, beause most ompu-

tations of the protool are arried out by servers, keeping to a more re-

alisti situation. We propose a basi sheme, that makes use of ElGamal

ryptosystem, and that �ts in with this model in the ase of a passive ad-

versary. We then add zero-knowledge proofs and veri�able seret sharing

to prevent from the ation of an ative adversary. We onsider general

strutures (not only the threshold ones) for those subsets of servers that

an provide a key to a user and for those tolerated subsets of servers

that an be orrupted by the adversary. We �nd neessary ombinatorial

onditions on these strutures in order to provide seurity to our sheme.

1 Introdution

When a group of users wish to ommuniate seurely over inseure hannels,

either symmetri or publi key ryptosystems are used. Publi key shemes

present some drawbaks both from the ommuniation and the omputational

point of view. On the other hand, when symmetri algorithms are onsidered

in order to solve this problem, the question is then how to set up an eÆient

protool to give eah group of users a ommon key.
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The solution of setting a server responsible of the distribution and manage-

ment of the seret keys was introdued in [17℄ by Needham and Shroeder. This

idea of a Key Distribution Center was formalized in [3℄. This model presents

some drawbaks. A single server that is in harge of the distribution of keys

to a group of users presents some weak points. It is a possible bottlenek of

the system and it must be trusted. Among the proposed solutions in order to

remove this drawbak, the use of Distributed Key Distribution Centers is one

of the most aepted.

The model in whih the task of a single server is distributed among a set

of servers, the Distributed Key Distribution Center model, was introdued

in [16℄. Shemes �tting this model are alled Distributed Key Distribution

Shemes. Some spei� realizations were proposed both in the information the-

oreti model, where no limits in the omputational power of an adversary are

assumed, and in the omputationally seure framework, where the omputa-

tional apability of an adversary is bounded.

With regard to the information theoreti point of view some studies have

been done sine then: in [5℄ an exhaustive study on the amount of information

needed to set up and manage suh a system was presented. They onsidered

threshold aess strutures, that is, those sets of servers that are authorized to

provide keys have at least t servers (t is the threshold). Afterwards, in [6℄ it was

extended to a model onsidering general aess strutures. Moreover, a relation

between distributed key distribution shemes and seret sharing shemes was

shown.

However, in this paper we fous on omputationally seure distributed key

distribution shemes. Previously, in [16℄ suh a sheme was proposed, based

on the Deisional DiÆe-Hellman Assumption [11℄, as an appliation of their

sheme for evaluating a pseudo-random funtion in a distributed way. This

sheme assumes seure ommuniation between users and servers. Moreover, it

requires users to do some expensive omputations in order to get a key.

We propose a new model for desribing distributed key distribution shemes,

where the seure hannel assumption is weakened to an authentiated hannel

assumption. We provide an expliit onstrution realizing this model. The use

of the homomorphi properties of the ElGamal ryptosystem [12℄ allows the

servers to arry out most omputations of the protool. Note that this fat �ts

with a more real world oriented situation. The basi sheme is seure against

a passive adversary whih an orrupt some set of servers and obtain all their

seret information, but an not fore them to hange their orret role in the

protool. Those subsets of servers that an be orrupted by the adversary are

given by an adversary struture A, whih must be monotone dereasing: if a

set of servers B

1

2 A an be orrupted, and B

2

� B

1

, then the set of servers

B

2

2 A an be orrupted, too.

But we want our sheme to be seure even under the most powerful attaks.

In this ase, in whih we aept the presene of an ative adversary whih is

able to alter the behavior of the orrupted players during the protool, we must

add some mehanisms in order to maintain the seurity and the orretness of

the sheme. These tools are basially the use of veri�able seret sharing and
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non-interative zero-knowledge proofs of knowledge.

In all ases, we onsider general adversary and aess strutures in the set of

servers, not only the threshold ones. That is, those subsets of dishonest servers

tolerated by the system as well as those subsets of servers that an provide a

valid key to a user are not neessarily de�ned aording to their ardinality. This

general framework modelizes situations in whih servers do not have all the same

power or the same suseptibility to be orrupted. We state the ombinatorial

onditions that these strutures must satisfy if we want our shemes to run

seurely.

Organization of the paper. In Setion 2 we review some ryptographi tools

that we will need throughout the rest of the paper, suh as ElGamal enryption

or basis on zero-knowledge proofs, and we also present the model of distributed

key distribution shemes desribed in [16℄. In Setion 3 we explain seret sharing

shemes for general aess strutures, and how they an be used by a set of

partiipants to jointly generate a random seret shared value. In Setion 4 we

propose a new model in order to minimize users' omputations and we propose

a distributed key distribution sheme for this model, omputationally seure

against both passive and ative adversaries. We give an expliit onstrution for

the passive ase, based on the homomorphi properties of ElGamal enryption

sheme. Then, we introdue all the tehniques that we use in order to provide

robustness for the ative ase to our proposal. All our results onsider general

strutures, not only threshold ones. Finally, in Setion 5 we onlude the work

summarizing our ontribution and future researh.

2 Preliminaries

In this setion we desribe some ryptographi tools that we will need later

on. We will also explain the model of omputationally seure Distributed Key

Distribution Shemes introdued in [16℄.

2.1 ElGamal Enryption

In [12℄, ElGamal proposed a publi-key probabilisti enryption sheme. We

explain here an spei� version of this sheme, but it an be generalized to work

in any �nite yli group (see [15℄, Setion 8.4.2, for example).

The publi parameters of the sheme are two large primes p and q, suh that

qjp � 1, and a generator g of the multipliative subgroup of Z

�

p

with order q.

Every user U generates both his publi and private keys by hoosing a random

element x 2 Z

�

q

and omputing y = g

x

mod p. The publi key of user U is

(p; q; g; y) and his private key is x.

If a user wants to enrypt a message m 2 Z

p

for user U , he hooses a

random element � 2 Z

�

q

, and omputes r = g

�

mod p and s = my

�

mod p. The

iphertext of message m that is sent to user U is  = (r; s).

When U wants to reover the original message m from the iphertext  =
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(r; s), he omputes

m = sr

�x

mod p

The semanti seurity of ElGamal ryptosystem is equivalent to the Dei-

sional DiÆe-Hellman Assumption [11℄. One of the most useful features of this

enryption shemes is its homomorphi property: if 

i

= (r

i

; s

i

) is a iphertext

orresponding to the plaintext m

i

, for i = 1; 2 then  = (r

1

r

2

; s

1

s

2

) is a ipher-

text orresponding to plaintext m = m

1

m

2

. This property is the one we need

for the enryption sheme that we will use in our proposal of a new distributed

and omputationally seure key distribution sheme.

2.2 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge allows a prover to demonstrate knowledge

of a seret while revealing no information about it to the veri�er of the proof,

other than the mentioned knowledge and what the veri�er was able to dedue

prior to the protool run. Zero-knowledge protools are examples of interative

proof systems, in whih a prover and a veri�er exhange multiple messages,

typially dependent on random numbers whih they may keep seret. In these

systems, there are seurity requirements for both the prover and the veri�er:

for the prover, seurity means that the protool should be zero-knowledge, that

is, the veri�er gains no information on the seret; for the veri�er, it means that

the protool should be a proof of knowledge: omplete and sound. Intuitively,

these two onditions mean that, with overwhelming probability, a honest veri�er

aepts a proof if and only if the prover is also honest. See [15℄, Setion 10.4.1,

for a omprehensive de�nition of these onepts.

Interative proof systems an be transformed into non-interative protools,

following the tehniques and ideas of [14℄ and [19℄. The seurity of suh a non-

interative system is argued by showing that the plain interative protool is

seure and then replaing the veri�er with a ollision resistant and random hash

funtion; this approah has been formalized as the random orale model [2℄.

In the ontext of this paper, we are speially interested in zero-knowledge

proofs of the validity of statements about disrete logarithms. This topi has

been deeply studied in works suh as [8, 9℄. We will use notation introdued by

Camenish and Stadler [9℄: for instane, the statement

PK f (�; �) : A = g

�

1

g

�

2

^ B = g

�

3

g

denotes a zero-knowledge proof of knowledge of values � and � suh that A =

g

�

1

g

�

2

and B = g

�

3

. By onvention, Greek letters (�; �; : : :) denote quantities

whose knowledge is being proved, while all other parameters are known to the

veri�er (in this ase, the values A;B; g

1

; g

2

; g

3

).

2.3 Previous Computational Distributed Key Distribution

Shemes

In [16℄ it was introdued the notion of Distributed Key Distribution Shemes in

order to avoid the main drawbaks that the existene of a single Key Distribution
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Sheme had. They onsidered a set of servers S = fS

1

; : : : ; S

n

g and a group of

users U = fU

1

; : : : ; U

m

g (they also referred to them as lients). Eah user U

has private ommuniation with at least t servers. Let C � 2

U

a family of sets

of users, the onferenes , who want to ommuniate seurely among them.

Initialization: Eah server S

i

reeives a share �

i

of some random seret

�, shared among the servers by means of Shamir seret sharing sheme. The

generation of these values an be performed by either a entral authority or

jointly by a group of servers.

Regular Operation: if a user U in a onferene C 2 C needs the key of this

onferene, he proeeds as follows:

� He ontats t servers S

1

; : : : ; S

t

and asks them for the key of the onferene

C. Eah onferene C is related to a publi value h

C

.

� Eah server S

i

, for i = 1; : : : ; t, veri�es that the user is allowed to ask for

that key and, if so, omputes the value h

�

i

C

and sends it to him through

their private hannel.

� After reeiving the information from the servers, the user is able to om-

pute the onferene key �

C

as follows: �

C

= h

�

C

=

Q

t

i=1

(h

�

i

C

)

�

i

, where �

i

are the Lagrange interpolation oeÆients.

3 Seret Sharing Shemes and Distributed Gen-

eration of a Random Seret Shared Value

In a seret sharing sheme, a dealer distributes shares of a seret value among

a set of players P = fP

1

; : : : ; P

n

g in suh a way that only authorized subsets

of players (those in the alled aess struture) an reover the seret value

from their shares, whereas non-authorized subsets do not obtain any informa-

tion about the seret. The aess struture is usually noted �. It must be

monotone inreasing, i.e. any subset ontaining an authorized subset will also

be authorized.

Seret sharing shemes were introdued independently by Shamir [21℄ and

Blakley [4℄ in 1979. Shamir proposed a threshold sheme, i.e. subsets that an

reover the seret are those with at least t members (t is the threshold). Other

works have proposed shemes realizing more general strutures, suh as vetor

spae seret sharing shemes [7℄. An aess struture � is realizable by suh a

sheme de�ned in a �nite �eld Z

q

, for some prime q, if there exists a positive

integer r and a funtion  : P [ fDg �! (Z

q

)

r

suh that W 2 � if and only

if  (D) 2 h (P

i

)i

P

i

2W

. Here D denotes a speial entity (real or not), outside

the set P . If a dealer wants to distribute a seret value x 2 Z

q

, he takes a

random element v 2 (Z

q

)

r

, suh that v �  (D) = x. The share of a partiipant

P

i

2 P is x

i

= v �  (P

i

) 2 Z

q

. Let W be an authorized subset, W 2 �; then,
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 (D) =

P

P

i

2W

�

W

i

 (P

i

), for some �

W

i

2 Z

q

. In order to reover the seret,

the players of W ompute

X

P

i

2W

�

W

i

x

i

=

X

P

i

2W

�

W

i

v� (P

i

) = v�

X

P

i

2W

�

W

i

 (P

i

) = v� (D) = x mod q :

Simmons, Jakson and Martin [22℄ introdued linear seret sharing shemes,

that an be seen as vetor spae seret sharing shemes in whih eah player an

be assoiated with more than one vetor. They proved that any aess struture

an be realized by a linear seret sharing sheme (in general, the onstrution

they proposed results in an ineÆient seret sharing sheme). From now on in

our work, we will onsider any possible aess struture �, so we will know that

there exists a linear seret sharing sheme realizing this struture. For simpliity,

however, we will suppose that this sheme is a vetor spae one de�ned by a

funtion  over Z

q

. See [24℄ for a omprehensive introdution to seret sharing

shemes.

In many protools, it is interesting to avoid the presene of a dealer who

knows all the seret information of the system. The role of the dealer an be

distributed among the players, as long as the seret is hosen at random. This

distributed protool must be proteted against the presene of some oalition

of players orrupted by an adversary. The monotone dereasing family of these

tolerated oalitions of orrupted servers is the adversary struture A. If the

adversary is passive, the only required ondition is �\A = ;, and the distributed

generation of a random seret value an be performed by any authorized subset

A 2 �, as follows:

� Eah player P

i

2 A hooses at random a value k

i

2 Z

q

, and distributes

it among all players in P , using the orresponding vetor spae seret

sharing sheme. That is, P

i

hooses a random vetor v

i

2 (Z

q

)

r

suh

that v

i

�  (D) = k

i

. Then P

i

sends to eah player P

j

in P his share

k

ij

= v

i

�  (P

j

). The generated random seret will be x =

P

i2A

k

i

.

� Eah player P

j

2 P omputes his share of the seret x as x

j

=

P

i2A

k

ij

.

In e�et, suppose that an authorized subset of players W 2 � wants to

reover the seret x. We know that there exist values f�

W

j

g

j2W

suh that

 (D) =

P

j2W

�

W

j

 (P

j

). Then players in W an obtain the seret x from their

shares:

X

j2W

�

W

j

x

j

=

X

j2W

�

W

j

X

i2A

k

ij

=

X

j2W

X

i2A

�

W

j

v

i

�  (P

j

) =

X

i2A

v

i

X

j2W

�

W

j

 (P

j

) =

=

X

i2A

v

i

 (D) =

X

i2A

k

i

= x

We denote an exeution of this distributed protool, in the passive adversary

senario, with the following expression:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! x
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However, if the adversary is ative, some players of P an heat during the

protools. Veri�able seret sharing shemes were introdued in order to tolerate

this kind of situations. The two most used veri�able seret sharing shemes

are the proposals of Pedersen [18℄ and Feldman [13℄, whih are both based on

Shamir's seret sharing sheme. Whereas the seurity of seret sharing shemes

is unonditional, that is, subsets that are not in the aess struture do not

obtain any information about the seret, independently of their omputational

apability, the seurity of some veri�able seret sharing shemes is based on some

omputational assumption; for instane, Feldman's sheme is seure assuming

that the disrete logarithm problem in some �nite �eld is hard.

Now we explain a distributed generation of a random seret value, shared

among players in P aording to the aess struture �, and seure against

the ation of an ative adversary who an orrupt a subset of players in the

adversary struture A. It must be performed by a subset R of players satisfying

that for all B 2 A, we have R�B 2 �. We denote by 
 = 
(�;A) the monotone

inreasing family formed by those subsets R. This family is not empty if and

only if A



� �, where A



= fP � B j B 2 Ag. In e�et, P 2 
 if and only if

for all B 2 A we have that P �B 2 �, and this is equivalent to A



� �.

In the threshold ase, where � = fW � P : jW j � tg and the adversary

struture is usually taken as A = fB � P : jBj < tg, we have that 
 = fR �

P : jRj � 2t� 1g. This family is not empty if and only if n � 2t� 1.

The protool for generating a random seret value in a distributed way an

be performed by a subset R 2 
 as follows:

� Eah player P

i

2 R hooses at random a value k

i

2 Z

q

, and distributes

it among all players in P , using the following (veri�able) vetor spae

seret sharing sheme (it is a generalization of the threshold sheme of

Feldman [13℄). Let q and p be large primes suh that qjp� 1. Let ~g be a

generator of a multipliative subgroup of Z

�

p

with order q.

P

i

hooses a random vetor v

i

= (v

(1)

i

; : : : ; v

(r)

i

) 2 (Z

q

)

r

suh that v

i

�

 (D) = k

i

. Then P

i

sends to eah player P

j

in P his share k

ij

= v

i

� (P

j

).

He also makes publi the ommitments V

i`

= ~g

v

(`)

i

, for 1 � ` � r.

� Eah player P

j

2 P veri�es the orretness of his share k

ij

by heking

that

~g

k

ij

=

r

Y

`=1

(V

i`

)

 (P

j

)

(`)

If this hek fails, P

j

makes publi a omplaint against P

i

.

� If player P

i

2 R reeives omplaints from players that form a subset

that is not in A, he is rejeted. Otherwise, P

i

makes publi the shares k

ij

orresponding to the players that have omplained against him. If any one

of these published shares do not satisfy the previous veri�ation equation,

P

i

is also rejeted.
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� We denote by Qual � R the (publi) set of players that pass this veri�a-

tion phase. Due to the de�nition of the struture 
, we have that Qual

belongs to �.

� The generated random seret will be x =

P

i2Qual

k

i

. Note that, sine

Qual 2 �, we have that Qual =2 A, and so any subset in A annot ob-

tain the seret x from their initial seret values k

i

. Eah player P

j

2 P

omputes his share of the seret x as x

j

=

P

i2Qual

k

ij

.

An authorized subset of players ould obtain the value of x from their shares

exatly in the same way explained for the passive ase.

Note that the values D

j

= ~g

x

j

an be publily omputed by all players as

follows:

D

j

= ~g

P

i2Qual

k

ij

=

Y

i2Qual

~g

k

ij

=

Y

i2Qual

r

Y

`=1

(V

i`

)

 (P

j

)

(`)

We denote the output of this protool with the expression:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! (x; ~g; fD

j

g

1�j�n

)

4 Our Computational Seure Distributed Key

Distribution Sheme

In [16℄ a onstrution based on the deisional DiÆe-Hellman assumption was

presented. However, this proposal requires a user to ompute O(t) exponenti-

ations in order to obtain a key (where t is the minimum number of servers the

user must ontat with) whereas a server should ompute only a single exponen-

tiation in order to help a user. This may not orrespond to real situations, where

it is possible to take pro�t of the omputational power of the servers. Thus,

we are interested in a sheme minimizing the omputational e�ort of the user.

Next we will set up the new model of omputationally seure distributed key

distribution sheme that we will use from now on. Afterwards, we will present

an expliit onstrution based on ElGamal enryption. We will take into a-

ount both passive and ative adversaries. When we desribe the protool, �rst,

we will onsider a passive adversary, and later on, we will note whih hanges

should be made in the protool to provide seurity against an ative adversary.

4.1 Setting up the model

Let U = fU

1

; : : : ; U

m

g be a set of m users and S = fS

1

; : : : ; S

n

g a set of n

servers. Let � � 2

S

be a general monotone inreasing aess struture, formed

by those subsets of servers that are allowed to reover a seret from their shares;

and let A � 2

S

be a general monotone dereasing adversary struture, formed

by those subsets of dishonest servers that the system is able to tolerate. These

two strutures must satisfy A\� = ;. For simpliity, we assume that the aess

struture � an be realized by a vetor spae seret sharing sheme. That is,
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there exist a positive integer r and a funtion  : S [ fDg �! (Z

q

)

r

suh that

A 2 � if and only if  (D) 2 h (S

i

)i

S

i

2A

.

Let C � 2

U

be a family of sets of users (onferenes). Every user in a

onferene needs to know the onferene key in order to ommuniate seurely

with other members of the onferene. Let R � 2

S

be the family of sets of

servers that a user must ontat with in order to obtain the onferene key.

This family R must be monotone inreasing, and will be di�erent depending on

the kind of adversary (passive or ative) that we onsider. We say that a set

of servers in R is robust. We divide a distributed key distribution sheme into

three di�erent phases:

Initialization Phase. We assume that the initialization phase is performed by

a robust subset of servers, that jointly performs the generation of shares f�

i

g

i2S

of a random value �, realizing the aess struture �, by using the protools

explained in Setion 3. Eah server has a share �

i

of � and any set that is not

in � an obtain no information of this random seret value �.

Key Request and Computational Phase. A user U

j

in a onferene C 2

C ontats with a robust subset of servers A 2 R asking for the key of the

onferene C, whih we will all �

C

. Every server S

i

2 A heks for membership

of U

j

in C. If he belongs to, server S

i

omputes a share of the onferene key

using �

i

and a value related with the onferene C. Afterwards, server S

i

enrypts his share of the key by means of a suitable homomorphi enryption

sheme with the publi key of user U

j

. The ontated group of servers A, by

using homomorphi properties of the used ryptosystem, is able to ompute an

enryption of the onferene key �

C

from the enryptions of the shares of the

key.

Key Delivery Phase. Either a single server in A or the whole set A (de-

pending on the behavior of the adversary, passive or ative, respetively) sends

the omputed result to user U

j

through an authentiated hannel. Using his

private key, the user will be able to derypt this message obtaining in this way

the onferene key.

4.2 Our Proposal for the Passive Adversary Case

Now we propose a method to onstrut a Distributed Key Distribution Sheme

omputationally seure against a passive adversary who orrupts servers on a

subset in A, following the model introdued in Setion 4.1. We use ElGamal

ryptosystem [12℄, and take pro�t from its homomorphi properties.

We have an aess struture �, suh that the ondition � \ A = ; holds. In

this passive ase, we have that the family of robust subsets is R = �. Let p and

q be two large primes suh that qjp � 1. Let H be a hash funtion (ollision

and pre-image resistant) that inputs a onferene in C and outputs an element

in Z

�

p

. We assume that eah user U

j

has a publi ElGamal key (p; q; g; y

j

)

orresponding to a private key x

j

2 Z

�

q

; that is, y

j

= g

x

j

mod p, where g is an

element with order q in Z

�

p

. Here we present our sheme:

9



Initialization Phase

A subset in R = � jointly performs the passive version of the protool in Setion

3 for the generation of a random shared seret, whih results in

(�

1

; : : : ; �

n

)

(S;�;A)

 ! �

where �; �

i

2 Z

q

are random.

Key Request and Computational Phase

A user U

j

in a onferene C 2 C asks for the onferene key �

C

to a robust

subset of servers A 2 R. These servers hek the membership of the user

in the onferene and perform the following distributed enryption protool.

Note that A 2 R = � is an authorized set of servers and we are assuming

that the aess struture � is realized by a vetor spae seret sharing sheme

de�ned by the funtion  . Thus, there exist values f�

A

i

g

S

i

2A

in Z

q

suh that

 (D) =

P

S

i

2A

�

A

i

 (S

i

) and so � =

P

S

i

2A

�

A

i

�

i

mod q (in the threshold ase,

these values f�

A

i

g

S

i

2A

would be the Lagrange interpolation oeÆients). Servers

in A proeed as follows:

� Eah server S

i

2 A applies the hash funtion H to the onferene C,

obtaining h

C

= H(C) 2 Z

�

p

. The onferene key will be �

C

= h

�

C

. Then

eah S

i

2 A enrypts the value h

�

i

C

mod p using the ElGamal publi key

of user U

j

, whih is (p; q; g; y

j

). That is:

{ Server S

i

hooses a random element �

i

2 Z

�

q

.

{ He omputes r

i

= g

�

i

mod p and s

i

= h

�

i

C

y

�

i

j

mod p.

{ Server S

i

broadasts the iphertext 

i

= (r

i

; s

i

).

� Now eah server S

i

2 A an mpute the enryption (r; s) of the onferene

key �

C

= (h

C

)

�

as follows:

r =

Y

S

i

2A

r

�

A

i

i

= (g)

P

S

i

2A

�

A

i

�

i

mod p

s =

Y

S

i

2A

s

�

A

i

i

= (h

C

)

P

S

i

2A

�

A

i

�

i

(y

j

)

P

S

i

2A

�

A

i

�

i

= h

�

C

(y

j

)

P

S

i

2A

�

A

i

�

i

mod p

Sine the elements f�

i

g

S

i

2A

are random, we have that the element

P

S

i

2A

�

A

i

�

i

is also random, and so (r; s) is a valid ElGamal enryption of the message

h

�

C

. We also note that the resulting iphertext (r; s) does not depend on

the authorized subset A 2 � that has been onsidered.

Key Delivery Phase

The iphertext  = (r; s) is sent by some server S

i

2 A to user U

j

, who derypts

it (he is the only one who an do this) and obtains automatially the onferene

key �

C

= h

�

C

.
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4.3 Ahieving Robustness Against an Ative Adversary

Next we will onsider an adversary who orrupts servers on a subset in A, in an

ative way; that is, those orrupted servers may not follow the protool properly.

The ondition � \ A = ; is still neessary, of ourse. In this ative senario,

the family R of robust subsets of servers will be R = 
(�;A) de�ned as in

Setion 3. Note that the ondition A



� � is neessary and suÆient in order to

make sure that the family R is not empty (again, the justi�ation is explained

in Setion 3).

The following hanges must be introdued in eah one of the phases:

Initialization Phase

We require a robust subset of servers to perform this phase. They jointly gen-

erate a random shared seret, using veri�able seret sharing (see Setion 3) to

detet orrupted servers:

(�

1

; : : : ; �

n

)

(S;�;A)

 ! (�; ~g; fD

i

g

1�i�n

)

where ~g is an element with order q in Z

�

p

and D

i

= ~g

�

i

are the publi ommit-

ments assoiated with the shares �

i

's of the seret value �.

Note that although the adversary orrupts a tolerated set of servers, these

orrupted servers will be deteted; the remaining servers of the robust subset

will belong to the aess struture �, beause of the de�nition of the family R,

and they will able to �nish the protool orretly.

Key Request and Computational Phase

Now a user must ask for a onferene key �

C

to a robust subset A of servers.

After this, every server S

i

in A broadasts a iphertext 

i

= (r

i

; s

i

) of its share

h

�

i

C

of the onferene key as in the passive ase.

We must deal with the ase of orrupted servers who want to boyott the

system, by broadasting a iphertext ~

i

= (~r

i

; ~s

i

) whih does not orrespond to

the plaintext h

�

i

C

.

We will detet these orrupted servers if we impose them to do a determined

proof of knowledge. After the joint generation of the seret shared value �, all

servers know publi ommitments D

i

= g

�

i

to the value �

i

, for 1 � i � n. Eah

server, after broadasting 

i

= (r

i

; s

i

), must prove that he knows values �

i

and

�

i

suh that D

i

= g

�

i

, r

i

= (g)

�

i

and s

i

= (h

C

)

�

i

(y

j

)

�

i

. The rest of servers

will play the role of a veri�er in this non-interative proof of knowledge. So,

following the notation of Setion 2.2, eah server must perform :

PK f (�

i

; �

i

) : D

i

= g

�

i

^ r

i

= g

�

i

^ s

i

= (h

C

)

�

i

(y

j

)

�

i

g

where D

i

; r

i

; s

i

; g; g

�

; h

C

; g are elements known to the veri�ers. We present now

a protool to ahieve this non-interative proof of knowledge; it is similar to the

one that appears in [1℄, and uses standard tehniques introdued by Camenish

[8℄, Stadler [23℄ and Camenish and Stadler [9℄. In the random orale model,

the seurity of this protool an be proved using the same strategies as them.
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The proof PKf(�; �) : A = g

�

1

^ B = g

�

2

^ C = g

�

3

g

�

4

g is as follows: let

` � k be two seurity parameters and

^

H : f0; 1g

�

! f0; 1g

k

be a hash funtion.

The prover does the following:

1. Generate 2` numbers u

1

; : : : ; u

`

and v

1

; : : : ; v

`

at random in Z

�

q

2. Compute, for 1 � i � `, the values t

i

= g

u

i

1

, t

0

i

= g

v

i

2

and t

00

i

= g

u

i

3

g

v

i

4

3. Compute  =

^

H(A;B;C; g

1

; g

2

; g

3

; g

4

; t

1

; : : : ; t

`

; t

0

1

; : : : ; t

0

`

; t

00

1

; : : : ; t

00

`

)

4. Compute, for 1 � i � `

if [i℄ = 0 then w

i

= u

i

and w

0

i

= v

i

if [i℄ = 1 then w

i

= u

i

� � and w

0

i

= v

i

� �

5. The proof of knowledge is the tuple (; w

1

; : : : ; w

`

; w

0

1

; : : : ; w

0

`

)

The veri�er of the proof must do the following:

1. Compute, for 1 � i � `

if [i℄ = 0 then

~

t

i

= g

w

i

1

,

~

t

0

i

= g

w

0

i

2

and

~

t

00

i

= g

w

i

3

g

w

0

i

4

if [i℄ = 1 then

~

t

i

= Ag

w

i

1

,

~

t

0

i

= Bg

w

0

i

2

and

~

t

00

i

= Cg

w

i

3

g

w

0

i

4

2. Compute 

0

=

^

H(A;B;C; g

1

; g

2

; g

3

; g

4

;

~

t

1

; : : : ;

~

t

`

;

~

t

0

1

; : : : ;

~

t

0

`

;

~

t

00

1

; : : : ;

~

t

00

`

)

3. If 

0

= , then aept the proof; otherwise, rejet the proof.

Eah server S

i

veri�es the proofs published by the rest of servers, until he

obtains aepted partial iphertexts from a subset of servers in �. Notie that

this subset in � always exists, beause of the de�nition of the family R. Then

S

i

an use the orret values 

j

= (r

j

; s

j

) orresponding to servers S

j

in this

subset in � to ompute, exatly in the same way as we have shown in Setion

4.2, an enryption (r; s) of the onferene key �

C

= h

�

C

, using the homomorphi

properties of ElGamal ryptosystem.

Key Delivery Phase

Eah server in A sends the enryption of the onferene key to user U

j

. After

reeiving these messages, user U

j

selets from the whole list of values, the one

whih is sent by all the servers of a subset that is not in A. This implies

that there exists at least one honest server in this subset (otherwise, the subset

would be in A), and so the orresponding iphertext must be the orret one.

U

j

derypts it by means of his private key, obtaining in this way the required

onferene key.
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4.4 Some Remarks

Note that, although ElGamal ryptosystem is probabilisti, all the honest servers

obtain the same iphertext (r; s) of the requested onferene key, beause of the

deterministi way in whih they must alulate this iphertext from the proba-

bilisti iphertexts (r

i

; s

i

).

In the ase of a passive adversary, all servers follow the protool orretly.

So, a user ould ask a single server for the key instead of an entire robust subset.

This server will then ontat with a robust subset, and the protool will follow

as we explain in Setion 4.2. In the ative ase, this is not possible beause

the users do not know whih servers are honest, thus they ould ask wrongly a

orrupted server, who ould boyott the protool.

The fat that we denote as robust the subsets of servers that an provide a

valid onferene key to a user is not aidental. We de�ne these robust subsets

in suh a way that their members an exeute the protool orretly even if they

ontain some subset of players orrupted by the adversary. Roughly speaking,

that is the de�nition of a robust distributed protool, and for this reason we use

the terminology of robust subsets.

And last but not least, note that in some way, the model we propose an

be rewritten as a Multi-party protool. Indeed, the protool in whih servers

ompute shares of the enryption of a onferene key from their shares of the

random seret value � �ts in a Multi-party framework. This ould be used in

order to prove seurity properties of the protool by means of using tehniques

of Canetti [10℄ to prove seurity in Multi-party protools.

5 Conlusion

In this paper we introdue a new model for distributing keys in a distributed

way in the omputationally seure framework, and we design a protool realizing

it. This model minimizes the omputations that every user has to arry out in

order to obtain a key, and transmits them to the servers, whih are supposed

to have more powerful omputational resoures. In order to �t this protool

into a real oriented senario we introdue tehniques to provide seurity against

both passive and ative adversaries who an orrupt some groups of servers.

We onsider general strutures, not only threshold ones, for both subsets of

servers that an provide a valid key to a user and subsets of servers that an

be orrupted by the adversary. We �nd the ombinatorial onditions that these

strutures must satisfy if we want our sheme to run seurely.

In our model, we require seure and authentiated hannels among the

servers only in the initialization phase. In the rest of phases, servers only need

an authentiated broadast hannel among them. In the ommuniation be-

tween a user and a server, authentiated hannels are needed, but not seure

ones, beause the information that servers send to users is enrypted. This

last point is an improvement with respet to the model in [16℄, beause in that

proposal seure hannels between servers and users were required. Even the

13



requirement of seure hannels among the servers an be eliminated (in our

proposal as well as in [16℄), if the seret sharing shemes that servers use in the

initialization phase are publily veri�able (see [23, 20℄ for the details). The use

of these shemes, however, redues the eÆieny of the distributed generation

of a random seret shared value in Setion 3.

In the passive ase, a user only needs to derypt a value (basially, one

exponentiation) in order to obtain the requested key. Reall that in the proposal

of [16℄ eah user had to ompute O(t) exponentiations to get the key. In the

ative ase, he must in addition ompare a list of values and detet the orret

iphertext. But these operations are always neessary if we onsider an ative

adversary, beause the user must verify in some way whih of the informations

that he reeives ome from a orrupted server and are, therefore, inorret.

Some interesting questions arise from this work: �rst of all, it must be de�ned

in a formal way all seurity requirements that must satisfy a distributed key

distribution sheme and prove the seurity of our sheme based on this seurity

model. Maybe the strategy is to see these shemes as Multi-Party protools,

and apply the seurity results of Canetti [10℄ in this senario. It would be also

interesting to hek if other ryptosystems ould �t in with our model, and if so,

to study the eÆieny of the onsequent shemes. Likewise, some other seurity

requirements suh as proativity or resharing would be desirable.
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