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Abstra
t

In [16℄, Naor, Pinkas and Reingold introdu
ed s
hemes in whi
h some

groups of servers distribute keys among a set of users in a distributed

way. They gave some spe
i�
 proposals both in the un
onditional and

in the 
omputational se
urity framework. Their 
omputationally se
ure

s
heme is based on the De
isional DiÆe-Hellman Assumption. This model

assumes se
ure 
ommuni
ation between users and servers. Furthermore

it requires users to do some expensive 
omputations in order to obtain a

key.

In this paper we modify the model introdu
ed in [16℄, requiring au-

thenti
ated 
hannels instead of assuming the existen
e of se
ure 
hannels.

Our model makes the user's 
omputations easier, be
ause most 
ompu-

tations of the proto
ol are 
arried out by servers, keeping to a more re-

alisti
 situation. We propose a basi
 s
heme, that makes use of ElGamal


ryptosystem, and that �ts in with this model in the 
ase of a passive ad-

versary. We then add zero-knowledge proofs and veri�able se
ret sharing

to prevent from the a
tion of an a
tive adversary. We 
onsider general

stru
tures (not only the threshold ones) for those subsets of servers that


an provide a key to a user and for those tolerated subsets of servers

that 
an be 
orrupted by the adversary. We �nd ne
essary 
ombinatorial


onditions on these stru
tures in order to provide se
urity to our s
heme.

1 Introdu
tion

When a group of users wish to 
ommuni
ate se
urely over inse
ure 
hannels,

either symmetri
 or publi
 key 
ryptosystems are used. Publi
 key s
hemes

present some drawba
ks both from the 
ommuni
ation and the 
omputational

point of view. On the other hand, when symmetri
 algorithms are 
onsidered

in order to solve this problem, the question is then how to set up an eÆ
ient

proto
ol to give ea
h group of users a 
ommon key.
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The solution of setting a server responsible of the distribution and manage-

ment of the se
ret keys was introdu
ed in [17℄ by Needham and S
hroeder. This

idea of a Key Distribution Center was formalized in [3℄. This model presents

some drawba
ks. A single server that is in 
harge of the distribution of keys

to a group of users presents some weak points. It is a possible bottlene
k of

the system and it must be trusted. Among the proposed solutions in order to

remove this drawba
k, the use of Distributed Key Distribution Centers is one

of the most a

epted.

The model in whi
h the task of a single server is distributed among a set

of servers, the Distributed Key Distribution Center model, was introdu
ed

in [16℄. S
hemes �tting this model are 
alled Distributed Key Distribution

S
hemes. Some spe
i�
 realizations were proposed both in the information the-

oreti
 model, where no limits in the 
omputational power of an adversary are

assumed, and in the 
omputationally se
ure framework, where the 
omputa-

tional 
apability of an adversary is bounded.

With regard to the information theoreti
 point of view some studies have

been done sin
e then: in [5℄ an exhaustive study on the amount of information

needed to set up and manage su
h a system was presented. They 
onsidered

threshold a

ess stru
tures, that is, those sets of servers that are authorized to

provide keys have at least t servers (t is the threshold). Afterwards, in [6℄ it was

extended to a model 
onsidering general a

ess stru
tures. Moreover, a relation

between distributed key distribution s
hemes and se
ret sharing s
hemes was

shown.

However, in this paper we fo
us on 
omputationally se
ure distributed key

distribution s
hemes. Previously, in [16℄ su
h a s
heme was proposed, based

on the De
isional DiÆe-Hellman Assumption [11℄, as an appli
ation of their

s
heme for evaluating a pseudo-random fun
tion in a distributed way. This

s
heme assumes se
ure 
ommuni
ation between users and servers. Moreover, it

requires users to do some expensive 
omputations in order to get a key.

We propose a new model for des
ribing distributed key distribution s
hemes,

where the se
ure 
hannel assumption is weakened to an authenti
ated 
hannel

assumption. We provide an expli
it 
onstru
tion realizing this model. The use

of the homomorphi
 properties of the ElGamal 
ryptosystem [12℄ allows the

servers to 
arry out most 
omputations of the proto
ol. Note that this fa
t �ts

with a more real world oriented situation. The basi
 s
heme is se
ure against

a passive adversary whi
h 
an 
orrupt some set of servers and obtain all their

se
ret information, but 
an not for
e them to 
hange their 
orre
t role in the

proto
ol. Those subsets of servers that 
an be 
orrupted by the adversary are

given by an adversary stru
ture A, whi
h must be monotone de
reasing: if a

set of servers B

1

2 A 
an be 
orrupted, and B

2

� B

1

, then the set of servers

B

2

2 A 
an be 
orrupted, too.

But we want our s
heme to be se
ure even under the most powerful atta
ks.

In this 
ase, in whi
h we a

ept the presen
e of an a
tive adversary whi
h is

able to alter the behavior of the 
orrupted players during the proto
ol, we must

add some me
hanisms in order to maintain the se
urity and the 
orre
tness of

the s
heme. These tools are basi
ally the use of veri�able se
ret sharing and
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non-intera
tive zero-knowledge proofs of knowledge.

In all 
ases, we 
onsider general adversary and a

ess stru
tures in the set of

servers, not only the threshold ones. That is, those subsets of dishonest servers

tolerated by the system as well as those subsets of servers that 
an provide a

valid key to a user are not ne
essarily de�ned a

ording to their 
ardinality. This

general framework modelizes situations in whi
h servers do not have all the same

power or the same sus
eptibility to be 
orrupted. We state the 
ombinatorial


onditions that these stru
tures must satisfy if we want our s
hemes to run

se
urely.

Organization of the paper. In Se
tion 2 we review some 
ryptographi
 tools

that we will need throughout the rest of the paper, su
h as ElGamal en
ryption

or basi
s on zero-knowledge proofs, and we also present the model of distributed

key distribution s
hemes des
ribed in [16℄. In Se
tion 3 we explain se
ret sharing

s
hemes for general a

ess stru
tures, and how they 
an be used by a set of

parti
ipants to jointly generate a random se
ret shared value. In Se
tion 4 we

propose a new model in order to minimize users' 
omputations and we propose

a distributed key distribution s
heme for this model, 
omputationally se
ure

against both passive and a
tive adversaries. We give an expli
it 
onstru
tion for

the passive 
ase, based on the homomorphi
 properties of ElGamal en
ryption

s
heme. Then, we introdu
e all the te
hniques that we use in order to provide

robustness for the a
tive 
ase to our proposal. All our results 
onsider general

stru
tures, not only threshold ones. Finally, in Se
tion 5 we 
on
lude the work

summarizing our 
ontribution and future resear
h.

2 Preliminaries

In this se
tion we des
ribe some 
ryptographi
 tools that we will need later

on. We will also explain the model of 
omputationally se
ure Distributed Key

Distribution S
hemes introdu
ed in [16℄.

2.1 ElGamal En
ryption

In [12℄, ElGamal proposed a publi
-key probabilisti
 en
ryption s
heme. We

explain here an spe
i�
 version of this s
heme, but it 
an be generalized to work

in any �nite 
y
li
 group (see [15℄, Se
tion 8.4.2, for example).

The publi
 parameters of the s
heme are two large primes p and q, su
h that

qjp � 1, and a generator g of the multipli
ative subgroup of Z

�

p

with order q.

Every user U generates both his publi
 and private keys by 
hoosing a random

element x 2 Z

�

q

and 
omputing y = g

x

mod p. The publi
 key of user U is

(p; q; g; y) and his private key is x.

If a user wants to en
rypt a message m 2 Z

p

for user U , he 
hooses a

random element � 2 Z

�

q

, and 
omputes r = g

�

mod p and s = my

�

mod p. The


iphertext of message m that is sent to user U is 
 = (r; s).

When U wants to re
over the original message m from the 
iphertext 
 =
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(r; s), he 
omputes

m = sr

�x

mod p

The semanti
 se
urity of ElGamal 
ryptosystem is equivalent to the De
i-

sional DiÆe-Hellman Assumption [11℄. One of the most useful features of this

en
ryption s
hemes is its homomorphi
 property: if 


i

= (r

i

; s

i

) is a 
iphertext


orresponding to the plaintext m

i

, for i = 1; 2 then 
 = (r

1

r

2

; s

1

s

2

) is a 
ipher-

text 
orresponding to plaintext m = m

1

m

2

. This property is the one we need

for the en
ryption s
heme that we will use in our proposal of a new distributed

and 
omputationally se
ure key distribution s
heme.

2.2 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge allows a prover to demonstrate knowledge

of a se
ret while revealing no information about it to the veri�er of the proof,

other than the mentioned knowledge and what the veri�er was able to dedu
e

prior to the proto
ol run. Zero-knowledge proto
ols are examples of intera
tive

proof systems, in whi
h a prover and a veri�er ex
hange multiple messages,

typi
ally dependent on random numbers whi
h they may keep se
ret. In these

systems, there are se
urity requirements for both the prover and the veri�er:

for the prover, se
urity means that the proto
ol should be zero-knowledge, that

is, the veri�er gains no information on the se
ret; for the veri�er, it means that

the proto
ol should be a proof of knowledge: 
omplete and sound. Intuitively,

these two 
onditions mean that, with overwhelming probability, a honest veri�er

a

epts a proof if and only if the prover is also honest. See [15℄, Se
tion 10.4.1,

for a 
omprehensive de�nition of these 
on
epts.

Intera
tive proof systems 
an be transformed into non-intera
tive proto
ols,

following the te
hniques and ideas of [14℄ and [19℄. The se
urity of su
h a non-

intera
tive system is argued by showing that the plain intera
tive proto
ol is

se
ure and then repla
ing the veri�er with a 
ollision resistant and random hash

fun
tion; this approa
h has been formalized as the random ora
le model [2℄.

In the 
ontext of this paper, we are spe
ially interested in zero-knowledge

proofs of the validity of statements about dis
rete logarithms. This topi
 has

been deeply studied in works su
h as [8, 9℄. We will use notation introdu
ed by

Camenis
h and Stadler [9℄: for instan
e, the statement

PK f (�; �) : A = g

�

1

g

�

2

^ B = g

�

3

g

denotes a zero-knowledge proof of knowledge of values � and � su
h that A =

g

�

1

g

�

2

and B = g

�

3

. By 
onvention, Greek letters (�; �; : : :) denote quantities

whose knowledge is being proved, while all other parameters are known to the

veri�er (in this 
ase, the values A;B; g

1

; g

2

; g

3

).

2.3 Previous Computational Distributed Key Distribution

S
hemes

In [16℄ it was introdu
ed the notion of Distributed Key Distribution S
hemes in

order to avoid the main drawba
ks that the existen
e of a single Key Distribution
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S
heme had. They 
onsidered a set of servers S = fS

1

; : : : ; S

n

g and a group of

users U = fU

1

; : : : ; U

m

g (they also referred to them as 
lients). Ea
h user U

has private 
ommuni
ation with at least t servers. Let C � 2

U

a family of sets

of users, the 
onferen
es , who want to 
ommuni
ate se
urely among them.

Initialization: Ea
h server S

i

re
eives a share �

i

of some random se
ret

�, shared among the servers by means of Shamir se
ret sharing s
heme. The

generation of these values 
an be performed by either a 
entral authority or

jointly by a group of servers.

Regular Operation: if a user U in a 
onferen
e C 2 C needs the key of this


onferen
e, he pro
eeds as follows:

� He 
onta
ts t servers S

1

; : : : ; S

t

and asks them for the key of the 
onferen
e

C. Ea
h 
onferen
e C is related to a publi
 value h

C

.

� Ea
h server S

i

, for i = 1; : : : ; t, veri�es that the user is allowed to ask for

that key and, if so, 
omputes the value h

�

i

C

and sends it to him through

their private 
hannel.

� After re
eiving the information from the servers, the user is able to 
om-

pute the 
onferen
e key �

C

as follows: �

C

= h

�

C

=

Q

t

i=1

(h

�

i

C

)

�

i

, where �

i

are the Lagrange interpolation 
oeÆ
ients.

3 Se
ret Sharing S
hemes and Distributed Gen-

eration of a Random Se
ret Shared Value

In a se
ret sharing s
heme, a dealer distributes shares of a se
ret value among

a set of players P = fP

1

; : : : ; P

n

g in su
h a way that only authorized subsets

of players (those in the 
alled a

ess stru
ture) 
an re
over the se
ret value

from their shares, whereas non-authorized subsets do not obtain any informa-

tion about the se
ret. The a

ess stru
ture is usually noted �. It must be

monotone in
reasing, i.e. any subset 
ontaining an authorized subset will also

be authorized.

Se
ret sharing s
hemes were introdu
ed independently by Shamir [21℄ and

Blakley [4℄ in 1979. Shamir proposed a threshold s
heme, i.e. subsets that 
an

re
over the se
ret are those with at least t members (t is the threshold). Other

works have proposed s
hemes realizing more general stru
tures, su
h as ve
tor

spa
e se
ret sharing s
hemes [7℄. An a

ess stru
ture � is realizable by su
h a

s
heme de�ned in a �nite �eld Z

q

, for some prime q, if there exists a positive

integer r and a fun
tion  : P [ fDg �! (Z

q

)

r

su
h that W 2 � if and only

if  (D) 2 h (P

i

)i

P

i

2W

. Here D denotes a spe
ial entity (real or not), outside

the set P . If a dealer wants to distribute a se
ret value x 2 Z

q

, he takes a

random element v 2 (Z

q

)

r

, su
h that v �  (D) = x. The share of a parti
ipant

P

i

2 P is x

i

= v �  (P

i

) 2 Z

q

. Let W be an authorized subset, W 2 �; then,
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 (D) =

P

P

i

2W

�

W

i

 (P

i

), for some �

W

i

2 Z

q

. In order to re
over the se
ret,

the players of W 
ompute

X

P

i

2W

�

W

i

x

i

=

X

P

i

2W

�

W

i

v� (P

i

) = v�

X

P

i

2W

�

W

i

 (P

i

) = v� (D) = x mod q :

Simmons, Ja
kson and Martin [22℄ introdu
ed linear se
ret sharing s
hemes,

that 
an be seen as ve
tor spa
e se
ret sharing s
hemes in whi
h ea
h player 
an

be asso
iated with more than one ve
tor. They proved that any a

ess stru
ture


an be realized by a linear se
ret sharing s
heme (in general, the 
onstru
tion

they proposed results in an ineÆ
ient se
ret sharing s
heme). From now on in

our work, we will 
onsider any possible a

ess stru
ture �, so we will know that

there exists a linear se
ret sharing s
heme realizing this stru
ture. For simpli
ity,

however, we will suppose that this s
heme is a ve
tor spa
e one de�ned by a

fun
tion  over Z

q

. See [24℄ for a 
omprehensive introdu
tion to se
ret sharing

s
hemes.

In many proto
ols, it is interesting to avoid the presen
e of a dealer who

knows all the se
ret information of the system. The role of the dealer 
an be

distributed among the players, as long as the se
ret is 
hosen at random. This

distributed proto
ol must be prote
ted against the presen
e of some 
oalition

of players 
orrupted by an adversary. The monotone de
reasing family of these

tolerated 
oalitions of 
orrupted servers is the adversary stru
ture A. If the

adversary is passive, the only required 
ondition is �\A = ;, and the distributed

generation of a random se
ret value 
an be performed by any authorized subset

A 2 �, as follows:

� Ea
h player P

i

2 A 
hooses at random a value k

i

2 Z

q

, and distributes

it among all players in P , using the 
orresponding ve
tor spa
e se
ret

sharing s
heme. That is, P

i


hooses a random ve
tor v

i

2 (Z

q

)

r

su
h

that v

i

�  (D) = k

i

. Then P

i

sends to ea
h player P

j

in P his share

k

ij

= v

i

�  (P

j

). The generated random se
ret will be x =

P

i2A

k

i

.

� Ea
h player P

j

2 P 
omputes his share of the se
ret x as x

j

=

P

i2A

k

ij

.

In e�e
t, suppose that an authorized subset of players W 2 � wants to

re
over the se
ret x. We know that there exist values f�

W

j

g

j2W

su
h that

 (D) =

P

j2W

�

W

j

 (P

j

). Then players in W 
an obtain the se
ret x from their

shares:

X

j2W

�

W

j

x

j

=

X

j2W

�

W

j

X

i2A

k

ij

=

X

j2W

X

i2A

�

W

j

v

i

�  (P

j

) =

X

i2A

v

i

X

j2W

�

W

j

 (P

j

) =

=

X

i2A

v

i

 (D) =

X

i2A

k

i

= x

We denote an exe
ution of this distributed proto
ol, in the passive adversary

s
enario, with the following expression:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! x
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However, if the adversary is a
tive, some players of P 
an 
heat during the

proto
ols. Veri�able se
ret sharing s
hemes were introdu
ed in order to tolerate

this kind of situations. The two most used veri�able se
ret sharing s
hemes

are the proposals of Pedersen [18℄ and Feldman [13℄, whi
h are both based on

Shamir's se
ret sharing s
heme. Whereas the se
urity of se
ret sharing s
hemes

is un
onditional, that is, subsets that are not in the a

ess stru
ture do not

obtain any information about the se
ret, independently of their 
omputational


apability, the se
urity of some veri�able se
ret sharing s
hemes is based on some


omputational assumption; for instan
e, Feldman's s
heme is se
ure assuming

that the dis
rete logarithm problem in some �nite �eld is hard.

Now we explain a distributed generation of a random se
ret value, shared

among players in P a

ording to the a

ess stru
ture �, and se
ure against

the a
tion of an a
tive adversary who 
an 
orrupt a subset of players in the

adversary stru
ture A. It must be performed by a subset R of players satisfying

that for all B 2 A, we have R�B 2 �. We denote by 
 = 
(�;A) the monotone

in
reasing family formed by those subsets R. This family is not empty if and

only if A




� �, where A




= fP � B j B 2 Ag. In e�e
t, P 2 
 if and only if

for all B 2 A we have that P �B 2 �, and this is equivalent to A




� �.

In the threshold 
ase, where � = fW � P : jW j � tg and the adversary

stru
ture is usually taken as A = fB � P : jBj < tg, we have that 
 = fR �

P : jRj � 2t� 1g. This family is not empty if and only if n � 2t� 1.

The proto
ol for generating a random se
ret value in a distributed way 
an

be performed by a subset R 2 
 as follows:

� Ea
h player P

i

2 R 
hooses at random a value k

i

2 Z

q

, and distributes

it among all players in P , using the following (veri�able) ve
tor spa
e

se
ret sharing s
heme (it is a generalization of the threshold s
heme of

Feldman [13℄). Let q and p be large primes su
h that qjp� 1. Let ~g be a

generator of a multipli
ative subgroup of Z

�

p

with order q.

P

i


hooses a random ve
tor v

i

= (v

(1)

i

; : : : ; v

(r)

i

) 2 (Z

q

)

r

su
h that v

i

�

 (D) = k

i

. Then P

i

sends to ea
h player P

j

in P his share k

ij

= v

i

� (P

j

).

He also makes publi
 the 
ommitments V

i`

= ~g

v

(`)

i

, for 1 � ` � r.

� Ea
h player P

j

2 P veri�es the 
orre
tness of his share k

ij

by 
he
king

that

~g

k

ij

=

r

Y

`=1

(V

i`

)

 (P

j

)

(`)

If this 
he
k fails, P

j

makes publi
 a 
omplaint against P

i

.

� If player P

i

2 R re
eives 
omplaints from players that form a subset

that is not in A, he is reje
ted. Otherwise, P

i

makes publi
 the shares k

ij


orresponding to the players that have 
omplained against him. If any one

of these published shares do not satisfy the previous veri�
ation equation,

P

i

is also reje
ted.
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� We denote by Qual � R the (publi
) set of players that pass this veri�
a-

tion phase. Due to the de�nition of the stru
ture 
, we have that Qual

belongs to �.

� The generated random se
ret will be x =

P

i2Qual

k

i

. Note that, sin
e

Qual 2 �, we have that Qual =2 A, and so any subset in A 
annot ob-

tain the se
ret x from their initial se
ret values k

i

. Ea
h player P

j

2 P


omputes his share of the se
ret x as x

j

=

P

i2Qual

k

ij

.

An authorized subset of players 
ould obtain the value of x from their shares

exa
tly in the same way explained for the passive 
ase.

Note that the values D

j

= ~g

x

j


an be publi
ly 
omputed by all players as

follows:

D

j

= ~g

P

i2Qual

k

ij

=

Y

i2Qual

~g

k

ij

=

Y

i2Qual

r

Y

`=1

(V

i`

)

 (P

j

)

(`)

We denote the output of this proto
ol with the expression:

(x

1

; : : : ; x

n

)

(P;�;A)

 ! (x; ~g; fD

j

g

1�j�n

)

4 Our Computational Se
ure Distributed Key

Distribution S
heme

In [16℄ a 
onstru
tion based on the de
isional DiÆe-Hellman assumption was

presented. However, this proposal requires a user to 
ompute O(t) exponenti-

ations in order to obtain a key (where t is the minimum number of servers the

user must 
onta
t with) whereas a server should 
ompute only a single exponen-

tiation in order to help a user. This may not 
orrespond to real situations, where

it is possible to take pro�t of the 
omputational power of the servers. Thus,

we are interested in a s
heme minimizing the 
omputational e�ort of the user.

Next we will set up the new model of 
omputationally se
ure distributed key

distribution s
heme that we will use from now on. Afterwards, we will present

an expli
it 
onstru
tion based on ElGamal en
ryption. We will take into a
-


ount both passive and a
tive adversaries. When we des
ribe the proto
ol, �rst,

we will 
onsider a passive adversary, and later on, we will note whi
h 
hanges

should be made in the proto
ol to provide se
urity against an a
tive adversary.

4.1 Setting up the model

Let U = fU

1

; : : : ; U

m

g be a set of m users and S = fS

1

; : : : ; S

n

g a set of n

servers. Let � � 2

S

be a general monotone in
reasing a

ess stru
ture, formed

by those subsets of servers that are allowed to re
over a se
ret from their shares;

and let A � 2

S

be a general monotone de
reasing adversary stru
ture, formed

by those subsets of dishonest servers that the system is able to tolerate. These

two stru
tures must satisfy A\� = ;. For simpli
ity, we assume that the a

ess

stru
ture � 
an be realized by a ve
tor spa
e se
ret sharing s
heme. That is,

8



there exist a positive integer r and a fun
tion  : S [ fDg �! (Z

q

)

r

su
h that

A 2 � if and only if  (D) 2 h (S

i

)i

S

i

2A

.

Let C � 2

U

be a family of sets of users (
onferen
es). Every user in a


onferen
e needs to know the 
onferen
e key in order to 
ommuni
ate se
urely

with other members of the 
onferen
e. Let R � 2

S

be the family of sets of

servers that a user must 
onta
t with in order to obtain the 
onferen
e key.

This family R must be monotone in
reasing, and will be di�erent depending on

the kind of adversary (passive or a
tive) that we 
onsider. We say that a set

of servers in R is robust. We divide a distributed key distribution s
heme into

three di�erent phases:

Initialization Phase. We assume that the initialization phase is performed by

a robust subset of servers, that jointly performs the generation of shares f�

i

g

i2S

of a random value �, realizing the a

ess stru
ture �, by using the proto
ols

explained in Se
tion 3. Ea
h server has a share �

i

of � and any set that is not

in � 
an obtain no information of this random se
ret value �.

Key Request and Computational Phase. A user U

j

in a 
onferen
e C 2

C 
onta
ts with a robust subset of servers A 2 R asking for the key of the


onferen
e C, whi
h we will 
all �

C

. Every server S

i

2 A 
he
ks for membership

of U

j

in C. If he belongs to, server S

i


omputes a share of the 
onferen
e key

using �

i

and a value related with the 
onferen
e C. Afterwards, server S

i

en
rypts his share of the key by means of a suitable homomorphi
 en
ryption

s
heme with the publi
 key of user U

j

. The 
onta
ted group of servers A, by

using homomorphi
 properties of the used 
ryptosystem, is able to 
ompute an

en
ryption of the 
onferen
e key �

C

from the en
ryptions of the shares of the

key.

Key Delivery Phase. Either a single server in A or the whole set A (de-

pending on the behavior of the adversary, passive or a
tive, respe
tively) sends

the 
omputed result to user U

j

through an authenti
ated 
hannel. Using his

private key, the user will be able to de
rypt this message obtaining in this way

the 
onferen
e key.

4.2 Our Proposal for the Passive Adversary Case

Now we propose a method to 
onstru
t a Distributed Key Distribution S
heme


omputationally se
ure against a passive adversary who 
orrupts servers on a

subset in A, following the model introdu
ed in Se
tion 4.1. We use ElGamal


ryptosystem [12℄, and take pro�t from its homomorphi
 properties.

We have an a

ess stru
ture �, su
h that the 
ondition � \ A = ; holds. In

this passive 
ase, we have that the family of robust subsets is R = �. Let p and

q be two large primes su
h that qjp � 1. Let H be a hash fun
tion (
ollision

and pre-image resistant) that inputs a 
onferen
e in C and outputs an element

in Z

�

p

. We assume that ea
h user U

j

has a publi
 ElGamal key (p; q; g; y

j

)


orresponding to a private key x

j

2 Z

�

q

; that is, y

j

= g

x

j

mod p, where g is an

element with order q in Z

�

p

. Here we present our s
heme:

9



Initialization Phase

A subset in R = � jointly performs the passive version of the proto
ol in Se
tion

3 for the generation of a random shared se
ret, whi
h results in

(�

1

; : : : ; �

n

)

(S;�;A)

 ! �

where �; �

i

2 Z

q

are random.

Key Request and Computational Phase

A user U

j

in a 
onferen
e C 2 C asks for the 
onferen
e key �

C

to a robust

subset of servers A 2 R. These servers 
he
k the membership of the user

in the 
onferen
e and perform the following distributed en
ryption proto
ol.

Note that A 2 R = � is an authorized set of servers and we are assuming

that the a

ess stru
ture � is realized by a ve
tor spa
e se
ret sharing s
heme

de�ned by the fun
tion  . Thus, there exist values f�

A

i

g

S

i

2A

in Z

q

su
h that

 (D) =

P

S

i

2A

�

A

i

 (S

i

) and so � =

P

S

i

2A

�

A

i

�

i

mod q (in the threshold 
ase,

these values f�

A

i

g

S

i

2A

would be the Lagrange interpolation 
oeÆ
ients). Servers

in A pro
eed as follows:

� Ea
h server S

i

2 A applies the hash fun
tion H to the 
onferen
e C,

obtaining h

C

= H(C) 2 Z

�

p

. The 
onferen
e key will be �

C

= h

�

C

. Then

ea
h S

i

2 A en
rypts the value h

�

i

C

mod p using the ElGamal publi
 key

of user U

j

, whi
h is (p; q; g; y

j

). That is:

{ Server S

i


hooses a random element �

i

2 Z

�

q

.

{ He 
omputes r

i

= g

�

i

mod p and s

i

= h

�

i

C

y

�

i

j

mod p.

{ Server S

i

broad
asts the 
iphertext 


i

= (r

i

; s

i

).

� Now ea
h server S

i

2 A 
an mpute the en
ryption (r; s) of the 
onferen
e

key �

C

= (h

C

)

�

as follows:

r =

Y

S

i

2A

r

�

A

i

i

= (g)

P

S

i

2A

�

A

i

�

i

mod p

s =

Y

S

i

2A

s

�

A

i

i

= (h

C

)

P

S

i

2A

�

A

i

�

i

(y

j

)

P

S

i

2A

�

A

i

�

i

= h

�

C

(y

j

)

P

S

i

2A

�

A

i

�

i

mod p

Sin
e the elements f�

i

g

S

i

2A

are random, we have that the element

P

S

i

2A

�

A

i

�

i

is also random, and so (r; s) is a valid ElGamal en
ryption of the message

h

�

C

. We also note that the resulting 
iphertext (r; s) does not depend on

the authorized subset A 2 � that has been 
onsidered.

Key Delivery Phase

The 
iphertext 
 = (r; s) is sent by some server S

i

2 A to user U

j

, who de
rypts

it (he is the only one who 
an do this) and obtains automati
ally the 
onferen
e

key �

C

= h

�

C

.
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4.3 A
hieving Robustness Against an A
tive Adversary

Next we will 
onsider an adversary who 
orrupts servers on a subset in A, in an

a
tive way; that is, those 
orrupted servers may not follow the proto
ol properly.

The 
ondition � \ A = ; is still ne
essary, of 
ourse. In this a
tive s
enario,

the family R of robust subsets of servers will be R = 
(�;A) de�ned as in

Se
tion 3. Note that the 
ondition A




� � is ne
essary and suÆ
ient in order to

make sure that the family R is not empty (again, the justi�
ation is explained

in Se
tion 3).

The following 
hanges must be introdu
ed in ea
h one of the phases:

Initialization Phase

We require a robust subset of servers to perform this phase. They jointly gen-

erate a random shared se
ret, using veri�able se
ret sharing (see Se
tion 3) to

dete
t 
orrupted servers:

(�

1

; : : : ; �

n

)

(S;�;A)

 ! (�; ~g; fD

i

g

1�i�n

)

where ~g is an element with order q in Z

�

p

and D

i

= ~g

�

i

are the publi
 
ommit-

ments asso
iated with the shares �

i

's of the se
ret value �.

Note that although the adversary 
orrupts a tolerated set of servers, these


orrupted servers will be dete
ted; the remaining servers of the robust subset

will belong to the a

ess stru
ture �, be
ause of the de�nition of the family R,

and they will able to �nish the proto
ol 
orre
tly.

Key Request and Computational Phase

Now a user must ask for a 
onferen
e key �

C

to a robust subset A of servers.

After this, every server S

i

in A broad
asts a 
iphertext 


i

= (r

i

; s

i

) of its share

h

�

i

C

of the 
onferen
e key as in the passive 
ase.

We must deal with the 
ase of 
orrupted servers who want to boy
ott the

system, by broad
asting a 
iphertext ~


i

= (~r

i

; ~s

i

) whi
h does not 
orrespond to

the plaintext h

�

i

C

.

We will dete
t these 
orrupted servers if we impose them to do a determined

proof of knowledge. After the joint generation of the se
ret shared value �, all

servers know publi
 
ommitments D

i

= g

�

i

to the value �

i

, for 1 � i � n. Ea
h

server, after broad
asting 


i

= (r

i

; s

i

), must prove that he knows values �

i

and

�

i

su
h that D

i

= g

�

i

, r

i

= (g)

�

i

and s

i

= (h

C

)

�

i

(y

j

)

�

i

. The rest of servers

will play the role of a veri�er in this non-intera
tive proof of knowledge. So,

following the notation of Se
tion 2.2, ea
h server must perform :

PK f (�

i

; �

i

) : D

i

= g

�

i

^ r

i

= g

�

i

^ s

i

= (h

C

)

�

i

(y

j

)

�

i

g

where D

i

; r

i

; s

i

; g; g

�

; h

C

; g are elements known to the veri�ers. We present now

a proto
ol to a
hieve this non-intera
tive proof of knowledge; it is similar to the

one that appears in [1℄, and uses standard te
hniques introdu
ed by Camenis
h

[8℄, Stadler [23℄ and Camenis
h and Stadler [9℄. In the random ora
le model,

the se
urity of this proto
ol 
an be proved using the same strategies as them.
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The proof PKf(�; �) : A = g

�

1

^ B = g

�

2

^ C = g

�

3

g

�

4

g is as follows: let

` � k be two se
urity parameters and

^

H : f0; 1g

�

! f0; 1g

k

be a hash fun
tion.

The prover does the following:

1. Generate 2` numbers u

1

; : : : ; u

`

and v

1

; : : : ; v

`

at random in Z

�

q

2. Compute, for 1 � i � `, the values t

i

= g

u

i

1

, t

0

i

= g

v

i

2

and t

00

i

= g

u

i

3

g

v

i

4

3. Compute 
 =

^

H(A;B;C; g

1

; g

2

; g

3

; g

4

; t

1

; : : : ; t

`

; t

0

1

; : : : ; t

0

`

; t

00

1

; : : : ; t

00

`

)

4. Compute, for 1 � i � `

if 
[i℄ = 0 then w

i

= u

i

and w

0

i

= v

i

if 
[i℄ = 1 then w

i

= u

i

� � and w

0

i

= v

i

� �

5. The proof of knowledge is the tuple (
; w

1

; : : : ; w

`

; w

0

1

; : : : ; w

0

`

)

The veri�er of the proof must do the following:

1. Compute, for 1 � i � `

if 
[i℄ = 0 then

~

t

i

= g

w

i

1

,

~

t

0

i

= g

w

0

i

2

and

~

t

00

i

= g

w

i

3

g

w

0

i

4

if 
[i℄ = 1 then

~

t

i

= Ag

w

i

1

,

~

t

0

i

= Bg

w

0

i

2

and

~

t

00

i

= Cg

w

i

3

g

w

0

i

4

2. Compute 


0

=

^

H(A;B;C; g

1

; g

2

; g

3

; g

4

;

~

t

1

; : : : ;

~

t

`

;

~

t

0

1

; : : : ;

~

t

0

`

;

~

t

00

1

; : : : ;

~

t

00

`

)

3. If 


0

= 
, then a

ept the proof; otherwise, reje
t the proof.

Ea
h server S

i

veri�es the proofs published by the rest of servers, until he

obtains a

epted partial 
iphertexts from a subset of servers in �. Noti
e that

this subset in � always exists, be
ause of the de�nition of the family R. Then

S

i


an use the 
orre
t values 


j

= (r

j

; s

j

) 
orresponding to servers S

j

in this

subset in � to 
ompute, exa
tly in the same way as we have shown in Se
tion

4.2, an en
ryption (r; s) of the 
onferen
e key �

C

= h

�

C

, using the homomorphi


properties of ElGamal 
ryptosystem.

Key Delivery Phase

Ea
h server in A sends the en
ryption of the 
onferen
e key to user U

j

. After

re
eiving these messages, user U

j

sele
ts from the whole list of values, the one

whi
h is sent by all the servers of a subset that is not in A. This implies

that there exists at least one honest server in this subset (otherwise, the subset

would be in A), and so the 
orresponding 
iphertext must be the 
orre
t one.

U

j

de
rypts it by means of his private key, obtaining in this way the required


onferen
e key.
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4.4 Some Remarks

Note that, although ElGamal 
ryptosystem is probabilisti
, all the honest servers

obtain the same 
iphertext (r; s) of the requested 
onferen
e key, be
ause of the

deterministi
 way in whi
h they must 
al
ulate this 
iphertext from the proba-

bilisti
 
iphertexts (r

i

; s

i

).

In the 
ase of a passive adversary, all servers follow the proto
ol 
orre
tly.

So, a user 
ould ask a single server for the key instead of an entire robust subset.

This server will then 
onta
t with a robust subset, and the proto
ol will follow

as we explain in Se
tion 4.2. In the a
tive 
ase, this is not possible be
ause

the users do not know whi
h servers are honest, thus they 
ould ask wrongly a


orrupted server, who 
ould boy
ott the proto
ol.

The fa
t that we denote as robust the subsets of servers that 
an provide a

valid 
onferen
e key to a user is not a

idental. We de�ne these robust subsets

in su
h a way that their members 
an exe
ute the proto
ol 
orre
tly even if they


ontain some subset of players 
orrupted by the adversary. Roughly speaking,

that is the de�nition of a robust distributed proto
ol, and for this reason we use

the terminology of robust subsets.

And last but not least, note that in some way, the model we propose 
an

be rewritten as a Multi-party proto
ol. Indeed, the proto
ol in whi
h servers


ompute shares of the en
ryption of a 
onferen
e key from their shares of the

random se
ret value � �ts in a Multi-party framework. This 
ould be used in

order to prove se
urity properties of the proto
ol by means of using te
hniques

of Canetti [10℄ to prove se
urity in Multi-party proto
ols.

5 Con
lusion

In this paper we introdu
e a new model for distributing keys in a distributed

way in the 
omputationally se
ure framework, and we design a proto
ol realizing

it. This model minimizes the 
omputations that every user has to 
arry out in

order to obtain a key, and transmits them to the servers, whi
h are supposed

to have more powerful 
omputational resour
es. In order to �t this proto
ol

into a real oriented s
enario we introdu
e te
hniques to provide se
urity against

both passive and a
tive adversaries who 
an 
orrupt some groups of servers.

We 
onsider general stru
tures, not only threshold ones, for both subsets of

servers that 
an provide a valid key to a user and subsets of servers that 
an

be 
orrupted by the adversary. We �nd the 
ombinatorial 
onditions that these

stru
tures must satisfy if we want our s
heme to run se
urely.

In our model, we require se
ure and authenti
ated 
hannels among the

servers only in the initialization phase. In the rest of phases, servers only need

an authenti
ated broad
ast 
hannel among them. In the 
ommuni
ation be-

tween a user and a server, authenti
ated 
hannels are needed, but not se
ure

ones, be
ause the information that servers send to users is en
rypted. This

last point is an improvement with respe
t to the model in [16℄, be
ause in that

proposal se
ure 
hannels between servers and users were required. Even the
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requirement of se
ure 
hannels among the servers 
an be eliminated (in our

proposal as well as in [16℄), if the se
ret sharing s
hemes that servers use in the

initialization phase are publi
ly veri�able (see [23, 20℄ for the details). The use

of these s
hemes, however, redu
es the eÆ
ien
y of the distributed generation

of a random se
ret shared value in Se
tion 3.

In the passive 
ase, a user only needs to de
rypt a value (basi
ally, one

exponentiation) in order to obtain the requested key. Re
all that in the proposal

of [16℄ ea
h user had to 
ompute O(t) exponentiations to get the key. In the

a
tive 
ase, he must in addition 
ompare a list of values and dete
t the 
orre
t


iphertext. But these operations are always ne
essary if we 
onsider an a
tive

adversary, be
ause the user must verify in some way whi
h of the informations

that he re
eives 
ome from a 
orrupted server and are, therefore, in
orre
t.

Some interesting questions arise from this work: �rst of all, it must be de�ned

in a formal way all se
urity requirements that must satisfy a distributed key

distribution s
heme and prove the se
urity of our s
heme based on this se
urity

model. Maybe the strategy is to see these s
hemes as Multi-Party proto
ols,

and apply the se
urity results of Canetti [10℄ in this s
enario. It would be also

interesting to 
he
k if other 
ryptosystems 
ould �t in with our model, and if so,

to study the eÆ
ien
y of the 
onsequent s
hemes. Likewise, some other se
urity

requirements su
h as proa
tivity or resharing would be desirable.
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