Authenticated Identity-Based Encryption

Ben Lynn
blynn@cs.stanford.edu

June 4, 2002

Abstract

Suppose Alice wishes to send a message to Bob using an identity-based encryption scheme (recall
such a scheme is a public key cryptosystem where any string is a valid public key), but desires
integrity as well as security. In other words, Alice wants Bob to know that only she could have
sent the message. Furthermore, suppose she does not want the non-repudiation property that would
necessarily be present if she simply used an identity-based signature scheme i.e. she does not want
Bob to be able to prove to a third party that she is the sender.

We augment the system of Boneh and Franklin [2] to allow communication with integrity without
nonrepudiation. We formalize notions of security and integrity for our scheme, and show that new
encryption and decryption algorithms are more efficient, despite being equally secure and authenti-
cated.

1 Introduction

When people converse with one another in private, they enjoy secure, authenticated communication
that is not non-repudiable. For example, if Alice is whispering to Bob, Bob knows that Alice is
transmitting a message securely to him, but is later unable to prove any fact about that message to a
third party, including the fact that Alice even sent a message to him. These features are often exactly
what the sender of a message desires.

Thus it is natural to ask for these traits when communicating electronically. Ideally such a scheme
should be noninteractve so that it applies to email, or other stateless protocols. Many systems providing
secrecy exist, but authenticity is usually achieved by signing messages, which is non-repudiable; the
receiver can now prove to a third party that the sender sent a particular message.

With standard (non-identity-based) cryptosystems, one can use designated verifier signature schemes [10]
to remove non-repudiation, or alternatively, integrate authentication with encryption by using tradi-
tional public-key cryptosystem constructs [14]. However, these systems require heavy use of certificates,
and in some settings, an identity-based system would be preferable.

Recall that an identity-based encryption (IBE) system is a public-key cryptosystem where any string
is a valid public key. Identity-based encryption and signature schemes were asked for in 1984 [12]. Soon
after, various identity-based signature schemes were proposed [6, 7] but a fully-functional identity-based
identity encryption scheme was not found until recently by Boneh and Franklin [2].

We present a method for integrating authentication with encryption in the Boneh-Franklin IBE
system. The changes are such that the authenticated encryption and decryption algorithms are faster
than the corresponding non-authenticated (anonymous) versions. It is based on an idea independently
discovered by Sakai, Ohgishi and Kasahara [11].

Authenticated encryption is highly desirable in IBE email systems. Another application for au-
thenticated IBE systems is in the construction of a stateless secure network protocol [1].

We shall see that an authenticated IBE system is readily obtained by extending the system of Boneh
and Franklin, and integrity can be had for no extra cost. In fact, authenticated encryption is more
efficient. Interestingly, the message authentication code is the ciphertext itself, thus proving integrity
is equivalent to showing ciphertext unforgeability.

2 Identity-Based Encryption

An identity-based encryption scheme is consists of the following four algorithms [2]: Setup, Extract
Encrypt, and Decrypt. In summary, Setup generates publicly distributed system parameters and a
master key, Extract generates private keys corresponding to a given primitive |D, Encrypt encrypts a
message using a given ID, and Decrypt decrypts a ciphertext given a private key. We shall always take
the message space to be M = {0,1}* unless otherwise specified.

We require these algorithms to satisfy the standard consistency constraint, namely when d is the
private key generated by algorithm Extract when it is given the IDA as the public key, then

VM € M : Decrypt(params, A, C,d) = M where C = Encrypt(params, A, M).

We define authenticated encryption and decryption algorithms for IBE schemes:

Authenticated-Encrypt: input: a message, a private key (the sender’s), and an ID (the receiver’s),
output: a ciphertext.

Authenticated-Decrypt: input: a ciphertext, an ID (the sender’s), a private key (the receiver’s),
output: the corresponding plaintext.

We require these two algorithms to satisfy the standard consistency constraint. Additionally,
for all messages M, and for any two ID’s A, B with corresponding private keys da,dp, we require
Authenticated-Encrypt(M, d 4, B) = Authenticated-Encrypt(M, A, dp).

3 Formalizing Security and Integrity

In our scheme, an adversary is able to forge or decrypt a message if they know the sender’s or the
receiver’s private key, so our models do not allow the adversary access to these keys. Briefly, the
adversary is allowed to do practically anything but directly obtain information about the sender’s or
receiver’s private keys.

3.1 Security

Consider the following game, played by two parties: an adversary and a challenger.

1. The challenger runs the Setup algorithm for a given security parameter k£ and gives the system
parameters to the adversary. It does not divulge the master key.

2. For an arbitrary number of rounds, the adversary can submit one of the following queries:

Encryption query: the adversary submits any two ID’s (sender and receiver) and any
plaintext, and is told the resulting ciphertext.

Decryption query: the adversary submits any two ID’s and any ciphertext, and is
told the corresponding plaintext.

Key generation query: the adversary submits any 1D, and is told the corresponding
private key.

The queries may be adaptive (i.e. each query may depend on the replies to previous queries).

3. The adversary then outputs any two plaintexts My, M; € M and any two ID’s A, B on which it
wishes to be challenged on, subject to the restriction that the private keys of A, B have not been
queried in the previous step.

4. The challenger picks b € {0, 1} randomly and computes C' = Authenticated-Encrypt(params,d 4, B, M),
where d4 is the private key of A. It sends the challenge C to the adversary.

5. The adversary again issues some number of encryption, decryption and/or key generation queries
adaptively, except now it may not ask for the keys of A, B or the plaintext corresponding to C.

6. The adversary outputs b’ € {0,1}, and wins if b =b'.

Such an adversary is called an AID-CCA attacker.

An authenticated identity-based encryption scheme to be secure against adaptive chosen ciphertext
attack (AID-CCA) if no polynomially-bounded adversary has a non-negligible advantage in the above
game, that is, for any probabilistic polynomial-time algorithm A, Adv(A) = ‘Pr[b =] - %‘ is less
than 1/f(k) for all polynomials f. (The probability is over the random bits used by the two parties.)

3.2 Integrity

For integrity, since the ciphertext is the MAC of the message in our scheme, we require ciphertext
unforgeability.

Consider the following game, played by two parties: an adversary and a challenger.

1. The challenger runs the Setup algorithm for a given security parameter k£ and gives the system
parameters to the adversary.

2. The adversary submits some number of encryption, decryption and/or key generation queries
adaptively.

3. The adversary then attempts to output any valid ciphertext C from a sender A to a receiver B,
provided it has not queried the private keys of A, B in the previous step. The adversary wins if
the ciphertext is valid.

Call such an adversary an AID-CUF attacker. We say an IBE scheme is secure against ciphertext
forgery (AID-CUF) if no polynomially-bounded adversary has a non-negligible advantage in the above
game.

4 Extending the Boneh-Franklin IBE Scheme

4.1 The Boneh-Franklin IBE Scheme

We briefly review the IBE scheme given by Boneh and Franklin [2].
Definition 4.1 Let Gy, G2 be groups with prime order q. Then we say a map e: G1 X G1 — G is
bilinear if for all g,h € Gy and a,b € F;, we have e(ga,hb) =e(g,h)®.

Definition 4.2 The Bilinear-Diffie-Hellman problem (BDH) for a bilinear function e: G1 x G1 — G2
such that |G1| = |Gy| = q is prime is defined as follows: given g,g%, g%, g¢ € G1, compute e(g,g)*,
where g is a generator and a,b,c are randomly chosen from F,. An algorithm is said to solve the BDH
problem with advantage ¢ if

Pr [A(g,g“,g”,gc) = e(g,g)“bc} > e,

Definition 4.3 A randomized algorithm ZG that takes as input a security parameter k € Z (in unary)
is « BDH parameter generator [3] if it runs in time polynomial in k and outputs the description of
two groups G1,G2 and a bilinear function e: G1 x G1 — Ga, with |G1| = |G2| = q for some prime q.
Denote the output of the algorithm by (G1,G2,e) = Ig(lk).

Definition 4.4 We say that ZG satisfies the BDH assumption if no probabilistic polynomial-time al-
gorithm A can solve BDH (for Ig(lk)) with non-negligible advantage.

We use the same Setup and Extract algorithms as the Boneh-Franklin scheme except that we require
an additional hash function. The original Encrypt and Decrypt algorithimns are not authenticated, though
they are worth retaining for encrypting when no private key is available, or for anonymous encryption.

Setup: input: £ € Z. Run Ig(lk). Choose a random a € F; and a random g € G1. Pick cryp-
tographic hash functions Hy: F, x Go — {0,1}", Hy: {0,1}* — G, H3: {0,1}* x {0,1}* — I,
Hy: {0,1}" — {0,1}", (for some n). For the security proof, we view the hash functions as random
oracles.

Output: the master key a and params := (Ig(lk),g,g“,Hl, Hy, H3, Hy).

Extract: input: an IDA, output: dq = Hy(A)“.

4.2 Authenticated Encryption

We add the following algorithms to the system. Suppose we have a semantically secure symmetric
cryptosystem. We represent its encryption and decryption functions with a key K by Eg, Dk, and
assume the keyspace is K € {0,1}*.

Authenticated-Encrypt: input: a mesage M € {0,1}*, a private key d4, an ID B, and the system

parameters. Choose a random o & {0,1}", compute r = H3(o, M) and s := e(da, H2(B)) Then output
the ciphertext C := (r,0 © Hi(r,), Ep,(5)(M))

Authenticated-Decrypt: input: a ciphertext (U,V, W), an ID A, a private key dp. Compute s :=
G(HQ(A),dB), oc=V® Hl(U,S), M = DH4(O’)(W)

Check that U = Hs(o, M). If not, reject the ciphertext, otherwise output then plaintext M.
Consistency is clear since e(da, H2(B) = e(H2(A), H2(B))* = e(H2(A),dp) by bilinearity.

Note that Authenticated-Encryptis faster than plain Encrypt because there is one less exponentiation
and no point multiplication.

Note also that now both algorithms benefit greatly from caching: if Alice and Bob expect to
send many messages to each other they can both compute s once and cache the result, obviating
the need for an expensive Weil pairing computation during encryption and decryption which makes
their communication as fast as a symmetric cipher and MAC. (In the original system, caching helped
encryption but not decryption.)

4.3 Proof of Integrity

Theorem 4.1 Suppose A is a polynomially-bounded attacker that can forge a ciphertext with advantage

€ and makes at most QQ Hy queries and at most Qp decryption queries. Then there exists a polynomially-
2

bounded algorithm B that solves the BDH problem with advantage at least €/Qp (g) .

abe

Proof The algorithm B is given g,¢%, g% ¢¢, and its goal is to output e(g,g) It uses A as a
subroutine. There is a list Ly that stores information on Hsy queries, a list Ly for Hy queries, and a list
of possible answers Lg. All lists are initially empty.

B runs A giving it the system parameters g,g*. Then two random numbers ¢, j between 1 and Q)
are chosen. Without loss of generality we may assume that all Hy queries are distinct (as the replies
can be cached), and that if a query involving an IDA is issued (be it encryption, decryption or key
generation) then A has already issued an Hy query for A.

There are several assumptions we may make about A’s behaviour when interacting with the decryp-
tion oracle. Firstly, we may assume before A gives its guess, A issues a decryption query on it. Next
we may assume A does not issue decryption queries on ciphertexts it has received from the encryption
oracle, or ciphertexts it can compute because it has previously asked for the private key of the sender
or receiver. Lastly, given these assumptions, we may assume that after every decryption query on a
ciphertext, if the reply is a plaintext (i.e. the ciphertext it queried is valid) then A stops and outputs
this ciphertext, because it has clearly won.

An H, query on an IDA is handled thus:

1. If it is the ith query, respond with g°. We call A a guessed ID.

2. If it is the jth query, respond with g¢. We call A a guessed 1D.

3. Otherwise, choose a random d & IF,, insert the tuple (A,d) into Ly and return g¢.

An H; query on a tuple (r, h) € I, x Gy is handled thus: a random R & {0,1}™ is output, and the
tuple (r, h, R) is inserted into the list L;.

Next, A’s queries of step 2 are handled:

Encryption: suppose A issues an encryption query for a plaintext M between ID’s A and
B. If A and B are the guessed ID’s, then B picks a random R & {0,1}", a random r & IFy

and a random K & {0,1}"™. Then B outputs the ciphertext C := (r, R, Ex(M)). (It turns
out that the message that is encrypted can be arbitrary, but for simplicity we fix it to be
equal to the queried plaintext.)

Otherwise without loss of generality assume A is not a guessed ID. By assumption the
list Ly must contain the entry (A,d) for some d € F,. Then A’s private key is g*, and
the ciphertext is computed as described by the Authenticated-Encryptalgorithm. (i.e. s:=
e(Ha(B), g*%) is computed and so on.) A is given the ciphertext.

Decryption: suppose A issues an decryption query for a ciphertext ciphertext C =
(U, V,W) between ID’s A and B. If A and B are the guessed ID’s, then L; is exam-
ined for an entry of the form (U, s, R) for some s, R. If such an entry is present s is added
to the list Lg. A is notified that C is invalid, even if C is valid.

Otherwise without loss of generality assume A is not a guessed ID. Again the list Lo must
contain the entry (A, d) for some d € I, and so g% is A’s private key. Then the ciphertext
is decrypted as outlined in the description of the Authenticated-Decryptalgorithm. If valid,
the plaintext given to A (and A wins).

Key generation: suppose A issues a key generation query for an IDA. If A is a guessed

IDthen B fails. Otherwise the list Ly must contain the entry (A, d) for some d and B outputs
d
9.

Eventually A terminates. Any output is ignored. Now if L is empty then B fails, otherwise B
outputs a random element of L.

Firstly, the probability that A never issues a key generation query on one of the guessed ID’s, is at
least 1/ (g) (there are at least two ID’s it cannot ask the keys for).

If A has submitted a valid ciphertext, then with at least probability 1/ ((’22), A has successfully
forged a ciphertext between the guessed ID’s (but is told that the ciphertext is invalid).

In this case, it is evident that if s = e(g, ¢)%¢ is not on the list L, then A’s view is independent
of a correct forgery, because we are modeling H; as a random oracle. Thus the probability that A
queries Hj(s) is at least €. If this happens, then B cannot fail because L, is not empty, and outputs
the correct s with probability at least 1/Qp (as the size of the list is bounded by Qp).

It is possible for A to distinguish between this simulation and real life:

1. If A asks for an encryption of a particular message between the guessed I1D’s, it may be able to tell
that the simulation’s ciphertext is invalid (which will be the case with overwhelming probability).
However, because H; and H,4 are modeled as random oracles, this is only possible if .4 has made
a Hy query on s = (g, g)®, in which case s will appear on Lj.

2. If A queries Hy(U,s) for any U and s = e(g,¢)%¢, and has also issued a decryption query for
C = (U,V,W) for some valid ciphertext C' on the guessed ID’s, it may realize it is being lied
to when it is told that C is invalid. However, again this implies s = e(g, ¢)%* will have been
recorded on L.

abc

In other words, A can realize that it is in a simulation only after it has deposited e(g, g)*"° on L.

Otherwise, because we are modeling the hash functions as random oracles, we are guaranteed that
A cannot tell the difference (with overwhelming probability) between the simulation and real life.

4.4 Proof of Security

Theorem 4.2 Suppose A is a polynomially-bounded AID-CCA attacker with advantage € whose num-
ber of Hy queries is bounded by Q, and whose number of Hy queries is bounded by Q1. Furthermore,
suppose our scheme is ciphertext unforgeable. Then there exists a polynomially-bounded algorithm B

that can solve the BDH problem with advantage €/Q (3)2

Proof The algorithm B is given g,g%, g% ¢°, and its goal is to output e(g,g)®°. It uses A as a
subroutine. There is a list Ly that stores information on Hs queries, a list Ly for Hy queries, and a list
of possible answers L. All lists are initially empty. B runs A giving it the system parameters g, g%.

Then two random numbers 7,7 between 1 and @) are chosen. Without loss of generality we may
assume that all Hy queries are distinct (as the replies can be cached), and that any query involving
IDA is issued (be it encryption, decryption or key generation) implies that A has already issued an H,
query for A.

As before we may make assumptions about the behaviour of A when issuing decryption queries.
Firstly, we may assume A does not issue a decryption query for a ciphertext that was the result of a
previous encryption query, and similarly, it never issues a decryption query for a ciphertext when it
has previously issued a key generation query on the sender or receiver ID.

An H, query on an IDA is handled thus:

1. If it is the ith query, respond with g°. We call A a guessed ID.

2. If it is the jth query, respond with g¢. We call A a guessed 1D.

3. Otherwise, choose a random d & IF,, insert the tuple (A,d) into Ly and return g¢.

For every H; query on a tuple (r,h) € F, x G2, a random R & {0,1}" is output, and the tuple
(r,h, R) is inserted into the list L.

Next, A’s queries of step 2 are handled:

1. Encryption: suppose A issues an encryption query for a plaintext M between ID’s A and B.

If A and B are the guessed ID’s, then B picks a random r & Fy, a random K & {0,1}" and a
random R & {0,1}"™. Then B outputs the ciphertext C' := (r, R, Ex (M)).
Otherwise without loss of generality assume A is not a guessed ID. Let dp be the response to
the Hy query that was issued for B. In this case the list Ly must contain the entry (A,d) for
some d € [F,. Then A’s private key is g%, and the ciphertext is computed as described by the
Authenticated-Encryptalgorithm (i.e. s := e(dp,¢°?) is computed and so on). A is given the
ciphertext.

2. Decryption: whenever A issues a decryption query, it is notified that the given ciphertext is
invalid. Since we assume our scheme is ciphertext unforgeable, 4 cannot distinguish between this
simulation of a decryption oracle and a real one (with overwhelming probability).

3. Key generation: suppose A issues a key generation query for an IDA. If A is a guessed IDthen
B fails. Otherwise the list Ly must contain the entry (A,d) for some d and B outputs g*.

Eventually A outputs any two plaintexts My, M; € M and any two ID’s A, B on which it wishes to
be challenged on. If these are not the guessed ID’s then B fails. Otherwise B picks a random U & IFg,

a random V & {0,1}", and a random o & {0,1}"™. It then computes W := E,(M) for any (not
necessarily random) message M, and responds with the challenge C' := (U, V,W).

The next round of queries is handled as before.

Finally A outputs its guess. This is ignored.

The probability A does not ask for the keys of one of the guessed ID’s is again at least 1/ ((’22)

The probability A’s challenge ID’s are the guessed ID’s is also least 1/ ((’22)

Now if A has never queried H; (U, s) for s = e(g, g)**, since we are modeling H; and H, as random

oracles, its view is independent of M, and so in this case A is unable to tell that that it is in a
simulation, and has no advantage. Hence the probability that A queries Hy (U, s) is at least .

If A has queried H; (U, s) then it may be able to distinguish the simulation from real life (it can tell
that ciphertexts generated by the simulation are invalid), but s will be recorded on L;. Then B wins
provided it guesses the correct element of L; to output. The size of this list is bounded by Q.

4.5 Non-identity-based Authenticated Encryption

It is also not difficult to attain authenticated communication using standard cryptographic construc-
tions. For example, if one uses a SKIP-like system [14], then Alice’s public and private keys are g%, z,
say, and Bob’s are g¥,y. Then they can use the quantity gy as a “shared secret”, i.e. in the same
manner we have used s = e(H3(A),dp) = e(Ha(A), Hy(B))® = e(da, H2(B)) to acheive authenticated
encryption and decryption. (If we assume CDH is hard, no one but Alice and Bob can efficiently
compute g*y.)

4.6 Practical Considerations

The Fujisaki-Okamoto construction [8] used in the Boneh-Franklin system and our system facilitates
proofs of security and allows for theoretically clean, self-contained, standalone systems. However,
for practical purposes, it is more convenient to forgo the Fujisaki-Okamoto construction and instead
achieve chosen ciphertext security by combining a slightly modified IBE system with semantically
secure symmetric encryption schemes and message authentication schemes (that are secure against
existential forgery) as described by Shoup [13, Theorem 1], Krawczyk [9, Theorem 1], and others for
any public key system.

The Boneh-Franklin scheme is easily converted to a key encapsulation mechanism (see Shoup [13]
for the definition). This (identity-based) key encapsulation mechanism can then be composed with
encryption and MAC schemes to yield a chosen-ciphertext secure IBE system [13, 9]. Briefly, using
our notation, the Boneh-Franklin key encapsulation mechanism is defined as follows: generating an

encryption of a random key for an IDA consists of picking a random r & F, and outputing g".
This ¢g" is the encryption of the random key K = H(e(H2(A),g*)"), where H is a hash function
H: Gy x {0,1}" — IF,. If H is modeled as a random oracle then it is readily shown that this is indeed
a secure key encapsulation mechanism.

Similarly, for our scheme, the quantity we denote by s can be used as a shared secret to gener-
ate additional keys which are then used to encrypt and authenticate the message with off-the-shelf
symmetric encryption and MAC schemes.

These modified schemes are often used instead of their original counterparts in the real world [15].

5 Conclusion

We have given formal definitons of security and integrity for identity-based encryption schemes. We
have constructed an authenticated identity-based encryption scheme by extending the Boneh-Franklin

scheme, and shown that it is secure and authenticated using only the BDH assumption and the random
oracle model.

If non-repudiation is desired, identity-based signature schemes can be used. It is worth noting that
the Boneh-Franklin scheme can be extended to allow for identity-based signatures [4], that is, the same
system parameters and public and private keys are used for signatures. However, this scheme is less
efficient than authenticated encryption, as encryption and signing are separate operations; it is natural
to ask if there is a way to perform identity-based signcryption (encryption with built-in signatures)
just as efficiently as anonymous or authenticated encryption.

References

[1]
2]

3]

[10]

[11]

[12]

[13]

[14]
[15]

G. Appenzeller and B. Lynn, “Stateless Network Layer Security”, work in progress.

D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing”, Advances in
Cryptology: CRYPTO 2001 (LNCS 2139), pp. 213229, 2001.

D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing”, Cryptology
ePrint Archive, Report 2001/090, 2001. http://eprint.iacr.org/2001/090/

Jae Choon Cha and Jung Hee Cheon, “Identity-based Signature from the Weil pairing”, sub-
mitted for publication

J. Coron, “On the exact security of Full-Domain-Hash”, Proc. of Crypto 2000.

U. Feige, A. Fiat and A. Shamir, “Zero-knowledge proofs of identity”, J. Cryptology, vol. 1, pp.
77-94, 1988.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signa-
ture problems”, Proc. Crypto 86, pp. 186-194, 1986.

E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryption
schemes”, Advances in Cryptology: CRYPTO °99 (LNCS 1666), pp. 537-554, 1999.

H. Krawcyzk, “The Order of Encryption and Authentication for Protecting Communications”,
Proc. Crypto ’01, 2001.

R. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret”, Proc. Asiacrypt 01, pp.
552-565, 2001.

R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems Based on Pairing”, SCIS2000

A. Shamir, “Identity-based cryptosystems and signature schemes”, Advances in Cryptology:
CRYPTO 84 (LNCS 196), pp. 47-53, 1985.

V. Shoup, “Using Hash Function as a Hedge Against Chosen Ciphertext Attack”, Proc. Euro-
crypt 2000

SKIP, “Simple Key management for Internet Protocols”, http://skip.incog.com/

B. Lynn, The Stanford IBE Library, http://crypto.stanford.edu/ibe/

