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Abstrat

Suppose Alie wishes to send a message to Bob using an identity-based enryption sheme (reall

suh a sheme is a publi key ryptosystem where any string is a valid publi key), but desires

integrity as well as seurity. In other words, Alie wants Bob to know that only she ould have

sent the message. Furthermore, suppose she does not want the non-repudiation property that would

neessarily be present if she simply used an identity-based signature sheme i.e. she does not want

Bob to be able to prove to a third party that she is the sender.

We augment the system of Boneh and Franklin [2℄ to allow ommuniation with integrity without

nonrepudiation. We formalize notions of seurity and integrity for our sheme, and show that new

enryption and deryption algorithms are more eÆient, despite being equally seure and authenti-

ated.

1 Introdution

When people onverse with one another in private, they enjoy seure, authentiated ommuniation

that is not non-repudiable. For example, if Alie is whispering to Bob, Bob knows that Alie is

transmitting a message seurely to him, but is later unable to prove any fat about that message to a

third party, inluding the fat that Alie even sent a message to him. These features are often exatly

what the sender of a message desires.

Thus it is natural to ask for these traits when ommuniating eletronially. Ideally suh a sheme

should be noninteratve so that it applies to email, or other stateless protools. Many systems providing

serey exist, but authentiity is usually ahieved by signing messages, whih is non-repudiable; the

reeiver an now prove to a third party that the sender sent a partiular message.

With standard (non-identity-based) ryptosystems, one an use designated veri�er signature shemes [10℄

to remove non-repudiation, or alternatively, integrate authentiation with enryption by using tradi-

tional publi-key ryptosystem onstruts [14℄. However, these systems require heavy use of erti�ates,

and in some settings, an identity-based system would be preferable.

Reall that an identity-based enryption (IBE) system is a publi-key ryptosystem where any string

is a valid publi key. Identity-based enryption and signature shemes were asked for in 1984 [12℄. Soon

after, various identity-based signature shemes were proposed [6, 7℄ but a fully-funtional identity-based

identity enryption sheme was not found until reently by Boneh and Franklin [2℄.

We present a method for integrating authentiation with enryption in the Boneh-Franklin IBE

system. The hanges are suh that the authentiated enryption and deryption algorithms are faster

than the orresponding non-authentiated (anonymous) versions. It is based on an idea independently

disovered by Sakai, Ohgishi and Kasahara [11℄.
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Authentiated enryption is highly desirable in IBE email systems. Another appliation for au-

thentiated IBE systems is in the onstrution of a stateless seure network protool [1℄.

We shall see that an authentiated IBE system is readily obtained by extending the system of Boneh

and Franklin, and integrity an be had for no extra ost. In fat, authentiated enryption is more

eÆient. Interestingly, the message authentiation ode is the iphertext itself, thus proving integrity

is equivalent to showing iphertext unforgeability.

2 Identity-Based Enryption

An identity-based enryption sheme is onsists of the following four algorithms [2℄: Setup, Extrat

Enrypt, and Derypt. In summary, Setup generates publily distributed system parameters and a

master key, Extrat generates private keys orresponding to a given primitive ID, Enrypt enrypts a

message using a given ID, and Derypt derypts a iphertext given a private key. We shall always take

the message spae to beM = f0; 1g

�

unless otherwise spei�ed.

We require these algorithms to satisfy the standard onsisteny onstraint, namely when d is the

private key generated by algorithm Extrat when it is given the IDA as the publi key, then

8M 2M : Derypt(params; A;C; d) =M where C = Enrypt(params; A;M):

We de�ne authentiated enryption and deryption algorithms for IBE shemes:

Authentiated-Enrypt: input: a message, a private key (the sender's), and an ID (the reeiver's),

output: a iphertext.

Authentiated-Derypt: input: a iphertext, an ID (the sender's), a private key (the reeiver's),

output: the orresponding plaintext.

We require these two algorithms to satisfy the standard onsisteny onstraint. Additionally,

for all messages M , and for any two ID's A;B with orresponding private keys d

A

; d

B

, we require

Authentiated-Enrypt(M;d

A

; B) = Authentiated-Enrypt(M;A; d

B

).

3 Formalizing Seurity and Integrity

In our sheme, an adversary is able to forge or derypt a message if they know the sender's or the

reeiver's private key, so our models do not allow the adversary aess to these keys. Briey, the

adversary is allowed to do pratially anything but diretly obtain information about the sender's or

reeiver's private keys.

3.1 Seurity

Consider the following game, played by two parties: an adversary and a hallenger.

1. The hallenger runs the Setup algorithm for a given seurity parameter k and gives the system

parameters to the adversary. It does not divulge the master key.

2. For an arbitrary number of rounds, the adversary an submit one of the following queries:
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Enryption query: the adversary submits any two ID's (sender and reeiver) and any

plaintext, and is told the resulting iphertext.

Deryption query: the adversary submits any two ID's and any iphertext, and is

told the orresponding plaintext.

Key generation query: the adversary submits any ID, and is told the orresponding

private key.

The queries may be adaptive (i.e. eah query may depend on the replies to previous queries).

3. The adversary then outputs any two plaintexts M

0

;M

1

2 M and any two ID's A;B on whih it

wishes to be hallenged on, subjet to the restrition that the private keys of A;B have not been

queried in the previous step.

4. The hallenger piks b 2 f0; 1g randomly and omputes C = Authentiated-Enrypt(params; d

A

; B;M

b

),

where d

A

is the private key of A. It sends the hallenge C to the adversary.

5. The adversary again issues some number of enryption, deryption and/or key generation queries

adaptively, exept now it may not ask for the keys of A;B or the plaintext orresponding to C.

6. The adversary outputs b

0

2 f0; 1g, and wins if b = b

0

.

Suh an adversary is alled an AID-CCA attaker.

An authentiated identity-based enryption sheme to be seure against adaptive hosen iphertext

attak (AID-CCA) if no polynomially-bounded adversary has a non-negligible advantage in the above

game, that is, for any probabilisti polynomial-time algorithm A, Adv(A) =

�

�

Pr[b = b

0

℄�

1

2

�

�

is less

than 1=f(k) for all polynomials f . (The probability is over the random bits used by the two parties.)

3.2 Integrity

For integrity, sine the iphertext is the MAC of the message in our sheme, we require iphertext

unforgeability.

Consider the following game, played by two parties: an adversary and a hallenger.

1. The hallenger runs the Setup algorithm for a given seurity parameter k and gives the system

parameters to the adversary.

2. The adversary submits some number of enryption, deryption and/or key generation queries

adaptively.

3. The adversary then attempts to output any valid iphertext C from a sender A to a reeiver B,

provided it has not queried the private keys of A;B in the previous step. The adversary wins if

the iphertext is valid.

Call suh an adversary an AID-CUF attaker. We say an IBE sheme is seure against iphertext

forgery (AID-CUF) if no polynomially-bounded adversary has a non-negligible advantage in the above

game.
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4 Extending the Boneh-Franklin IBE Sheme

4.1 The Boneh-Franklin IBE Sheme

We briey review the IBE sheme given by Boneh and Franklin [2℄.

De�nition 4.1 Let G

1

; G

2

be groups with prime order q. Then we say a map e: G

1

�G

1

! G

2

is

bilinear if for all g; h 2 G

1

and a; b 2 F

q

, we have e

�

g

a

; h

b

�

= e(g; h)

ab

.

De�nition 4.2 The Bilinear-DiÆe-Hellman problem (BDH) for a bilinear funtion e: G

1

�G

1

! G

2

suh that jG

1

j = jG

2

j = q is prime is de�ned as follows: given g; g

a

; g

b

; g



2 G

1

, ompute e(g; g)

ab

,

where g is a generator and a; b;  are randomly hosen from F

q

. An algorithm is said to solve the BDH

problem with advantage " if

Pr

h

A

�

g; g

a

; g

b

; g



�

= e(g; g)

ab

i

� ":

De�nition 4.3 A randomized algorithm IG that takes as input a seurity parameter k 2 Z (in unary)

is a BDH parameter generator [3℄ if it runs in time polynomial in k and outputs the desription of

two groups G

1

; G

2

and a bilinear funtion e: G

1

�G

1

! G

2

, with jG

1

j = jG

2

j = q for some prime q.

Denote the output of the algorithm by (G

1

; G

2

; e) = IG

�

1

k

�

.

De�nition 4.4 We say that IG satis�es the BDH assumption if no probabilisti polynomial-time al-

gorithm A an solve BDH (for IG

�

1

k

�

) with non-negligible advantage.

We use the same Setup and Extrat algorithms as the Boneh-Franklin sheme exept that we require

an additional hash funtion. The original Enrypt and Derypt algorithms are not authentiated, though

they are worth retaining for enrypting when no private key is available, or for anonymous enryption.

Setup: input: k 2 Z. Run IG

�

1

k

�

. Choose a random a 2 F

q

and a random g 2 G

1

. Pik ryp-

tographi hash funtions H

1

: F

q

�G

2

! f0; 1g

n

, H

2

: f0; 1g

�

! G

1

, H

3

: f0; 1g

�

� f0; 1g

�

! F

q

,

H

4

: f0; 1g

n

! f0; 1g

n

, (for some n). For the seurity proof, we view the hash funtions as random

orales.

Output: the master key a and params := hIG

�

1

k

�

; g; g

a

;H

1

;H

2

;H

3

;H

4

i.

Extrat: input: an IDA, output: d

A

= H

2

(A)

a

.

4.2 Authentiated Enryption

We add the following algorithms to the system. Suppose we have a semantially seure symmetri

ryptosystem. We represent its enryption and deryption funtions with a key K by E

K

;D

K

, and

assume the keyspae is K 2 f0; 1g

�

.

Authentiated-Enrypt: input: a mesage M 2 f0; 1g

�

, a private key d

A

, an ID B, and the system

parameters. Choose a random �

R

 f0; 1g

n

, ompute r = H

3

(�;M) and s := e(d

A

;H

2

(B)) Then output

the iphertext C := hr; � �H

1

(r; s); E

H

4

(�)

(M)i

Authentiated-Derypt: input: a iphertext hU; V;W i, an ID A, a private key d

B

. Compute s :=

e(H

2

(A); d

B

), � := V �H

1

(U; s), M := D

H

4

(�)

(W )

Chek that U = H

3

(�;M). If not, rejet the iphertext, otherwise output then plaintext M .

Consisteny is lear sine e(d

A

;H

2

(B) = e(H

2

(A);H

2

(B))

a

= e(H

2

(A); d

B

) by bilinearity.

Note that Authentiated-Enryptis faster than plain Enrypt beause there is one less exponentiation

and no point multipliation.
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Note also that now both algorithms bene�t greatly from ahing: if Alie and Bob expet to

send many messages to eah other they an both ompute s one and ahe the result, obviating

the need for an expensive Weil pairing omputation during enryption and deryption whih makes

their ommuniation as fast as a symmetri ipher and MAC. (In the original system, ahing helped

enryption but not deryption.)

4.3 Proof of Integrity

Theorem 4.1 Suppose A is a polynomially-bounded attaker that an forge a iphertext with advantage

" and makes at most Q H

2

queries and at most Q

D

deryption queries. Then there exists a polynomially-

bounded algorithm B that solves the BDH problem with advantage at least "=Q

D

�

Q

2

�

2

.

Proof The algorithm B is given g; g

a

; g

b

; g



, and its goal is to output e(g; g)

ab

. It uses A as a

subroutine. There is a list L

2

that stores information on H

2

queries, a list L

1

for H

1

queries, and a list

of possible answers L

s

. All lists are initially empty.

B runs A giving it the system parameters g; g

a

. Then two random numbers i; j between 1 and Q

are hosen. Without loss of generality we may assume that all H

2

queries are distint (as the replies

an be ahed), and that if a query involving an IDA is issued (be it enryption, deryption or key

generation) then A has already issued an H

2

query for A.

There are several assumptions we may make about A's behaviour when interating with the deryp-

tion orale. Firstly, we may assume before A gives its guess, A issues a deryption query on it. Next

we may assume A does not issue deryption queries on iphertexts it has reeived from the enryption

orale, or iphertexts it an ompute beause it has previously asked for the private key of the sender

or reeiver. Lastly, given these assumptions, we may assume that after every deryption query on a

iphertext, if the reply is a plaintext (i.e. the iphertext it queried is valid) then A stops and outputs

this iphertext, beause it has learly won.

An H

2

query on an IDA is handled thus:

1. If it is the ith query, respond with g

b

. We all A a guessed ID.

2. If it is the jth query, respond with g



. We all A a guessed ID.

3. Otherwise, hoose a random d

R

 F

q

, insert the tuple hA; di into L

2

and return g

d

.

An H

1

query on a tuple hr; hi 2 F

q

�G

2

is handled thus: a random R

R

 f0; 1g

n

is output, and the

tuple hr; h;Ri is inserted into the list L

1

.

Next, A's queries of step 2 are handled:

Enryption: suppose A issues an enryption query for a plaintext M between ID's A and

B. If A and B are the guessed ID's, then B piks a random R

R

 f0; 1g

n

, a random r

R

 F

q

and a random K

R

 f0; 1g

n

. Then B outputs the iphertext C := hr;R;E

K

(M)i. (It turns

out that the message that is enrypted an be arbitrary, but for simpliity we �x it to be

equal to the queried plaintext.)

Otherwise without loss of generality assume A is not a guessed ID. By assumption the

list L

2

must ontain the entry hA; di for some d 2 F

q

. Then A's private key is g

ad

, and

the iphertext is omputed as desribed by the Authentiated-Enryptalgorithm. (i.e. s :=

e(H

2

(B); g

ad

) is omputed and so on.) A is given the iphertext.
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Deryption: suppose A issues an deryption query for a iphertext iphertext C =

hU; V;W i between ID's A and B. If A and B are the guessed ID's, then L

1

is exam-

ined for an entry of the form hU; s;Ri for some s;R. If suh an entry is present s is added

to the list L

s

. A is noti�ed that C is invalid, even if C is valid.

Otherwise without loss of generality assume A is not a guessed ID. Again the list L

2

must

ontain the entry hA; di for some d 2 F

q

, and so g

ad

is A's private key. Then the iphertext

is derypted as outlined in the desription of the Authentiated-Deryptalgorithm. If valid,

the plaintext given to A (and A wins).

Key generation: suppose A issues a key generation query for an IDA. If A is a guessed

IDthen B fails. Otherwise the list L

2

must ontain the entry hA; di for some d and B outputs

g

ad

.

Eventually A terminates. Any output is ignored. Now if L

s

is empty then B fails, otherwise B

outputs a random element of L

s

.

Firstly, the probability that A never issues a key generation query on one of the guessed ID's, is at

least 1=

�

Q

2

�

(there are at least two ID's it annot ask the keys for).

If A has submitted a valid iphertext, then with at least probability 1=

�

Q

2

�

, A has suessfully

forged a iphertext between the guessed ID's (but is told that the iphertext is invalid).

In this ase, it is evident that if s = e(g; g)

ab

is not on the list L

s

, then A's view is independent

of a orret forgery, beause we are modeling H

1

as a random orale. Thus the probability that A

queries H

1

(s) is at least ". If this happens, then B annot fail beause L

s

is not empty, and outputs

the orret s with probability at least 1=Q

D

(as the size of the list is bounded by Q

D

).

It is possible for A to distinguish between this simulation and real life:

1. If A asks for an enryption of a partiular message between the guessed ID's, it may be able to tell

that the simulation's iphertext is invalid (whih will be the ase with overwhelming probability).

However, beause H

1

and H

4

are modeled as random orales, this is only possible if A has made

a H

1

query on s = e(g; g)

ab

, in whih ase s will appear on L

s

.

2. If A queries H

1

(U; s) for any U and s = e(g; g)

ab

, and has also issued a deryption query for

C = hU; V;W i for some valid iphertext C on the guessed ID's, it may realize it is being lied

to when it is told that C is invalid. However, again this implies s = e(g; g)

ab

will have been

reorded on L

s

.

In other words, A an realize that it is in a simulation only after it has deposited e(g; g)

ab

on L

s

.

Otherwise, beause we are modeling the hash funtions as random orales, we are guaranteed that

A annot tell the di�erene (with overwhelming probability) between the simulation and real life.

4.4 Proof of Seurity

Theorem 4.2 Suppose A is a polynomially-bounded AID-CCA attaker with advantage " whose num-

ber of H

2

queries is bounded by Q, and whose number of H

1

queries is bounded by Q

1

. Furthermore,

suppose our sheme is iphertext unforgeable. Then there exists a polynomially-bounded algorithm B

that an solve the BDH problem with advantage "=Q

1

�

Q

2

�

2

.
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Proof The algorithm B is given g; g

a

; g

b

; g



, and its goal is to output e(g; g)

ab

. It uses A as a

subroutine. There is a list L

2

that stores information on H

2

queries, a list L

1

for H

1

queries, and a list

of possible answers L

s

. All lists are initially empty. B runs A giving it the system parameters g; g

a

.

Then two random numbers i; j between 1 and Q are hosen. Without loss of generality we may

assume that all H

2

queries are distint (as the replies an be ahed), and that any query involving

IDA is issued (be it enryption, deryption or key generation) implies that A has already issued an H

2

query for A.

As before we may make assumptions about the behaviour of A when issuing deryption queries.

Firstly, we may assume A does not issue a deryption query for a iphertext that was the result of a

previous enryption query, and similarly, it never issues a deryption query for a iphertext when it

has previously issued a key generation query on the sender or reeiver ID.

An H

2

query on an IDA is handled thus:

1. If it is the ith query, respond with g

b

. We all A a guessed ID.

2. If it is the jth query, respond with g



. We all A a guessed ID.

3. Otherwise, hoose a random d

R

 F

q

, insert the tuple hA; di into L

2

and return g

d

.

For every H

1

query on a tuple hr; hi 2 F

q

� G

2

, a random R

R

 f0; 1g

n

is output, and the tuple

hr; h;Ri is inserted into the list L

1

.

Next, A's queries of step 2 are handled:

1. Enryption: suppose A issues an enryption query for a plaintext M between ID's A and B.

If A and B are the guessed ID's, then B piks a random r

R

 F

q

, a random K

R

 f0; 1g

n

and a

random R

R

 f0; 1g

n

. Then B outputs the iphertext C := hr;R;E

K

(M)i.

Otherwise without loss of generality assume A is not a guessed ID. Let d

B

be the response to

the H

2

query that was issued for B. In this ase the list L

2

must ontain the entry hA; di for

some d 2 F

q

. Then A's private key is g

ad

, and the iphertext is omputed as desribed by the

Authentiated-Enryptalgorithm (i.e. s := e(d

B

; g

ad

) is omputed and so on). A is given the

iphertext.

2. Deryption: whenever A issues a deryption query, it is noti�ed that the given iphertext is

invalid. Sine we assume our sheme is iphertext unforgeable, A annot distinguish between this

simulation of a deryption orale and a real one (with overwhelming probability).

3. Key generation: suppose A issues a key generation query for an IDA. If A is a guessed IDthen

B fails. Otherwise the list L

2

must ontain the entry hA; di for some d and B outputs g

ad

.

Eventually A outputs any two plaintexts M

0

;M

1

2M and any two ID's A;B on whih it wishes to

be hallenged on. If these are not the guessed ID's then B fails. Otherwise B piks a random U

R

 F

q

,

a random V

R

 f0; 1g

n

, and a random �

R

 f0; 1g

n

. It then omputes W := E

�

(M) for any (not

neessarily random) message M , and responds with the hallenge C := hU; V;W i.

The next round of queries is handled as before.

Finally A outputs its guess. This is ignored.
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The probability A does not ask for the keys of one of the guessed ID's is again at least 1=

�

Q

2

�

.

The probability A's hallenge ID's are the guessed ID's is also least 1=

�

Q

2

�

.

Now if A has never queried H

1

(U; s) for s = e(g; g)

ab

, sine we are modeling H

1

and H

4

as random

orales, its view is independent of M , and so in this ase A is unable to tell that that it is in a

simulation, and has no advantage. Hene the probability that A queries H

1

(U; s) is at least ".

If A has queried H

1

(U; s) then it may be able to distinguish the simulation from real life (it an tell

that iphertexts generated by the simulation are invalid), but s will be reorded on L

1

. Then B wins

provided it guesses the orret element of L

1

to output. The size of this list is bounded by Q

1

.

4.5 Non-identity-based Authentiated Enryption

It is also not diÆult to attain authentiated ommuniation using standard ryptographi onstru-

tions. For example, if one uses a SKIP-like system [14℄, then Alie's publi and private keys are g

x

; x,

say, and Bob's are g

y

; y. Then they an use the quantity g

x

y as a \shared seret", i.e. in the same

manner we have used s = e(H

2

(A); d

B

) = e(H

2

(A);H

2

(B))

a

= e(d

A

;H

2

(B)) to aheive authentiated

enryption and deryption. (If we assume CDH is hard, no one but Alie and Bob an eÆiently

ompute g

x

y.)

4.6 Pratial Considerations

The Fujisaki-Okamoto onstrution [8℄ used in the Boneh-Franklin system and our system failitates

proofs of seurity and allows for theoretially lean, self-ontained, standalone systems. However,

for pratial purposes, it is more onvenient to forgo the Fujisaki-Okamoto onstrution and instead

ahieve hosen iphertext seurity by ombining a slightly modi�ed IBE system with semantially

seure symmetri enryption shemes and message authentiation shemes (that are seure against

existential forgery) as desribed by Shoup [13, Theorem 1℄, Krawzyk [9, Theorem 1℄, and others for

any publi key system.

The Boneh-Franklin sheme is easily onverted to a key enapsulation mehanism (see Shoup [13℄

for the de�nition). This (identity-based) key enapsulation mehanism an then be omposed with

enryption and MAC shemes to yield a hosen-iphertext seure IBE system [13, 9℄. Briey, using

our notation, the Boneh-Franklin key enapsulation mehanism is de�ned as follows: generating an

enryption of a random key for an IDA onsists of piking a random r

R

 F

q

and outputing g

r

.

This g

r

is the enryption of the random key K = H(e(H

2

(A); g

a

)

r

), where H is a hash funtion

H: G

2

� f0; 1g

n

! F

q

. If H is modeled as a random orale then it is readily shown that this is indeed

a seure key enapsulation mehanism.

Similarly, for our sheme, the quantity we denote by s an be used as a shared seret to gener-

ate additional keys whih are then used to enrypt and authentiate the message with o�-the-shelf

symmetri enryption and MAC shemes.

These modi�ed shemes are often used instead of their original ounterparts in the real world [15℄.

5 Conlusion

We have given formal de�nitons of seurity and integrity for identity-based enryption shemes. We

have onstruted an authentiated identity-based enryption sheme by extending the Boneh-Franklin

8



sheme, and shown that it is seure and authentiated using only the BDH assumption and the random

orale model.

If non-repudiation is desired, identity-based signature shemes an be used. It is worth noting that

the Boneh-Franklin sheme an be extended to allow for identity-based signatures [4℄, that is, the same

system parameters and publi and private keys are used for signatures. However, this sheme is less

eÆient than authentiated enryption, as enryption and signing are separate operations; it is natural

to ask if there is a way to perform identity-based signryption (enryption with built-in signatures)

just as eÆiently as anonymous or authentiated enryption.
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