
Fault based cryptanalysis of the
Advanced Encryption Standard (AES)

Johannes Bl�omer1 and Jean-Pierre Seifert2

1 University of Paderborn
D-33095 Paderborn, Germany

bloemer@upb.de
2 In�neon Technologies, Security & ChipCard ICs, CC TI CI

D-81609 Munich, Germany
Jean-Pierre.Seifert@infineon.com

Abstract. In this paper we describe several fault attacks on the Advanced Encryption
Standard (AES). First, using optical fault induction attacks as recently publicly presented by
Skorobogatov and Anderson [SA], we present an implementation independent fault attack on
AES. This attack is able to determine the complete 128-bit secret key of a sealed tamper-proof
smartcard by generating 128 faulty cipher texts. Second, we present several implementation-
dependent fault attacks on AES. These attacks rely on the observation that due to the AES's
known timing analysis vulnerability (as pointed out by Koeune and Quisquater [KQ]), any
implementation of the AES must ensure a data independent timing behavior for the so called
AES's xtime operation. We present fault attacks on AES based on various timing analysis
resistant implementations of the xtime-operation. Our strongest attack in this direction uses
a very liberal fault model and requires only 256 faulty encryptions to determine a 128-bit
key.

Keywords: AES, Cryptanalysis, Fault attacks, Side-channel attacks, Smartcards.

1 Introduction

Recently, Rijndael has been chosen as the winner of the Advanced Encryption Standard (AES)
contest. Thus Rijndael has become the AES. Within the near future AES will replace DES as the
worldwide standard in symmetric key encryption. Not surprisingly, a lot of research so far focused
on the mathematical security of AES. Likewise, the security of AES against side-channel attacks
like timing analysis and power analysis, has also been examined. On the other hand, no fault-based
cryptanalysis of AES has been reported so far. This is surprising as the frauds with smartcards by
inducing faults are real, cf. [A,AK1,AK2], whereas no frauds via Timing or Power Analysis attacks
have been reported so far.

In this paper we describe several methods for a fault based cryptanalysis of AES. We present
an implementation independent attack as well as attacks on several implementations of AES aimed
at making AES timing analysis secure.

Several di�erent fault models are used in our attacks. The �rst attack is implementation inde-
pendent but uses the most restrictive fault model. It is aimed at the �rst transformation during
an encryption with AES, the so called AddRoundKey. In this attack we use a rather strong but
seemingly realistic fault model. We assume, that an attacker can set a speci�c memory bit to a
�xed value, e.g., to the value 0. Moreover, we assume that the attacker can do this at a precise time
of his choice. The practicality of this model has recently been demonstrated in [SA]. Using this
model we show that an attacker can determine the complete 128-bit secret key by computing 128
encryptions inducing a single fault each time. We also show that the fault model can be relaxed in
two ways. First, an attacker need not be able to set a �xed memory bit with probability 1 to the
value 0, say. Instead, it is suÆcient that the value of a certain a bit will be changed with slightly



higher probability from 1 to 0 than from 0 to 1. Second, we show that the attacker need not be
able to change the bit at a precise point in time. Hence, to fend o� the attack it is not suÆcient
to equip a cryptographic device with a randomized timing behavior. We note that our implemen-
tation independent attack can also be mounted against other symmetric encryption ciphers like
IDEA, SAFER, and Blow�sh. In fact, like AES, these ciphers have an initial key addition. This
alone renders them immediately susceptible to our implementation independent attack. Moreover,
in a forthcoming paper [BS02] we are going to describe how optical attacks can be used to break
symmetric or asymmetric ciphers in a trivial way, when implemented on an unprotected platform.

Our second class of attacks are implementation dependent. More precisely, we consider several
di�erent implementations for the so called xtime operation that is performed during the trans-
formation MixColumn. As it is well-known, AES is susceptible to timing attacks if xtime is not
implemented appropriately. We consider various timing attack resistant implementations and show
that all of them lead to a simple fault based cryptanalysis of AES. The various implementations
we consider vary from software solutions to hardware based implementations. De�nitely, we do not
consider all implementations of xtime currently in use. However, we are con�dent that most if not
all implementations are susceptible to the attacks described in this paper. The fault models we
use in the attacks range from very liberal models (arbitrary fault at a speci�c location) to more
restricted models, like the one we use in the implementation independent attack. Our strongest
result shows that the most obvious timing attack resistant implementation of xtime opens the door
for a simple fault based attack on AES. With this attack the complete secret key can be determined
encrypting roughly 256 plaintexts. In each encryption an attacker must induce an arbitrary fault
at a speci�c memory byte. Using the methods we describe for the implementation independent
attack, one can argue, that it is not necessary for the attacker to induce the fault at a speci�c
time. We like to point out that our implementation dependent attacks use a technique introduced
by [KQ] and were inspired by ideas in [YJ].

In all our attacks we assume, that from the behavior of a cryptographic device we can deduce
whether a fault leading to a wrong ciphertext has actually occurred during an encryption. If a
fault occurs, the device may simply output a wrong ciphertext. However, an attacker can compute
the correct ciphertext by rerunning the device without inducing a fault, thereby detecting whether
a fault occured during the original encryption. The device may also check its own result, or may
even check intermediate results and answer with an error warning in case a fault has been detected
(see [KWMK]). This clearly tells an attacker that a fault has occurred. Thirdly, the card may
check whether a fault has occurred, and if so, recompute the encryption. However, in this case by
measuring the time before the device outputs the ciphertext, an attacker can tell whether a fault
occurred. To simplify the presentation, we assume that a cryptographic device will answer with
the output reset, whenever a fault caused a wrong ciphertext.

From the results in this paper, it follows that it is absolutely necessary to incorporate both
hardware and software means into AES realizations to guard against fault attacks. Of course, some
modern high-end crypto smartcards are protected by various sophisticated hardware mechanisms
to detect any intrusion attempt to their system behavior. However, as techniques to induce faults
into the computations of smartcards become more sophisticated, it is mandatory to use also various
software mechanisms to fend o� fault attacks. We like to close with an advice due to Kaliski and
Robshaw [KR] from RSA Laboratories that good engineering practices in the design of secure

hardware are essential, we only would like to add, that the same applies to secure software.

The paper is organized as follows. We �rst describe the AES algorithm. In the next section we
brie
y turn to the physics of realizing faults during computations. In particular, we sketch and
characterize the physical attacks used by us in later sections. The following section then describes
our general independent fault attack on AES. In this section we also describethe two aforementioned
relaxations concerning a probabilistic fault model and a loose time control on the induced error. The
next section starts with the explanation of the basic idea for all of our implementation dependent
fault attacks. Then, we will continue to describe incrementally more and more sophisticated fault

2



attacks. Eventually, we give some hints on conceivable countermeasures to defeat our fault attacks
on the AES.

2 Preliminaries

2.1 Description of the Advanced Encryption Standard

In this section we brie
y describe the Advanced Encryption Standard (AES). For a more detailed
description we refer to [DR2].

AES encrypts plaintexts consisting of lb bytes, where lb = 16; 24, or 32. The plaintext is
organized as a (4� Nb) array (aij), 0 � i < 4; 0 � j < Nb� 1, where Nb = 4; 6; 8, depending on the
value of lb. The n-th byte of the plaintext is stored in byte ai;j with i = n mod 4, j = bn

4
c.

AES uses a secret key, called cipher key, consisting of lk bytes, where lk = 16; 24; or 32. Any
combination of values lb and lk is allowed. The cipher key is organized in a 4 � Nk array (kij),
0 � i < 4; 0 � j � Nk� 1, where Nk = 4; 6; 8, depending on the value of lk. The n-th key byte is
stored in byte kij with i = n mod 4, j = bn

4
c.

The AES encryption process is composed of rounds. Except for the last round, each round con-
sists of four transformations called ByteSub; ShiftRow; MixColumn, and AddRoundKey. In the last
round the transformation MixColumn is omitted. The four transformations operate on intermediate
results, called states. A state is a 4 � Nb array (aij) of bytes. Initially, the state is given by the
plaintext to be encrypted. The number of rounds Nr is 10; 12, or 14, depending on maxfNb; Nkg.
In addition to the transformations performed in the Nr rounds there is an AddRoundKey applied to
the plaintext prior to the �rst round. We call this the initial AddRoundKey.

Next, we are going to describe the transformations used in the AES encryption process. We
begin with AddRoundKey.

The transformation AddRoundKey The input to the transformation AddRoundKey is a state (aij),
0 � i < 4; 0 � j < Nb, and a round key, which is an array of bytes (rkij), 0 � i < 4; 0 � j < Nb.
The output of AddRoundKey is the state (bij); 0 � i < 4; 0 � j < Nb, where

bij = aij � rkij :

The round keys are obtained from the cipher key by expanding the cipher key array (kij) into an
array (kij), 0 � i < 4; 0 � j � Nr � Nb, called the expanded key. The exact procedure by which the
expanded key is obtained from the cipher key is of no importance for the attacks described in this
paper. The round key for the initial application of AddRoundKey is given by the �rst Nb columns
of the expanded key. The round key for the application of AddRoundKey in the m-th round of AES
is given by columns mNb; : : : ; (m+ 1)Nb� 1 of the expanded key, 1 � m � Nr.

The transformation ByteSub Given a state (aij), 0 � i < 4; 0 � j < Nb, the transformation
ByteSub applies an invertible function S : f0; 1g8 ! f0; 1g8 to each state byte aij separately. The
exact nature of S is of no relevance for the attacks described later. We just mention that S is
non-linear, and in fact, it is the only non-linear part of the AES encryption process. In practice, S
is often realized by a substitution table or S-box.

The transformation ShiftRow The transformation ShiftRow cyclically shifts each row of a state
(aij) separately to the left. Row 0 is not shifted. Rows 1; 2; 3 are shifted by C1; C2; C3 bytes,
respectively, where the values of the Ci depend on Nb.

3



The transformation MixColumn The transformation MixColumn is crucial to some of our attacks.
The transformation MixColumn operates on the columns of a state separately. To each column a
�xed linear transformation is applied. To do so, bytes are interpreted as elements in the �eld F28 .
As is usually done, we will denote elements in this �eld in hexadecimal notation. Hence 01; 02
and 03 correspond to the bytes 00000001; 00000010, and 00000011, respectively. Now MixColumn

applies to each row of a state the linear transformation de�ned by the following matrix2
664
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

3
775 : (1)

One complete round of the AES encryption procedure is schematically shown in �gure 1.

Fig. 1. Schematic for one AES round.

The operation xtime The multiplications in F28 necessary to compute the transformation MixColumn
are of great importance to some of our attacks. Therefore we are going to describe them in more
detail. First we need to say a few words about the representation of the �eld F28 . In AES the �eld
F28 is represented as

F28 = F2 [x]=(x
8 + x4 + x3 + x+ 1): (2)

That is, elements of F28 are polynomials over F2 of degree at most 7. The addition and mul-
tiplication of two polynomials is done modulo the polynomial x8 + x4 + x3 + x + 1. Since this

4



is an irreducible polynomial over F2 , (2) de�nes a �eld. In this representation of F28 the byte
a = (a7; : : : ; a1; a0) corresponds to the polynomial a7x

7 + � � � a1x + a0. The multiplication of an
element a = (a7; : : : ; a1; a0) in F28 by 01; 02, and 03 is realized by multiplying the polynomial
a7x

7 + � � �a1x + a0 with the polynomials 1; x; x+ 1, respectively, and reducing the result modulo
x8 + x4 + x3 + x+ 1. Hence

01 � a = a

03 � a = 02 � a+ a:

We see that the only non-trivial multiplication needed to multiply a column of a state by the matrix
in (1) is the multiplication by 02. Following the notation in [DR2] we denote the multiplication
of byte a by 02 by xtime(a). The crucial observation is that xtime(a) is simply a shift of byte a,
followed in some cases by an xor of two bytes. More precisely, for a = (a7; : : : ; a0)

xtime(a) =

8<
:
(a6; : : : ; a0; 0) if a7 = 0

(a6; : : : ; a0; 0)� (0; 0; 0; 1; 1; 0; 1; 1) if a7 = 1
(3)

This �nishes our brief description of the AES encryption procedure.

3 Physical faults attacks

Although there are lots of possibilities to introduce an error during the cryptographic operation
of an unprotected smartcard IC, we will only brie
y explain so called spike attacks, glitch attacks
and the recently developed optical attacks. We selected these attacks, as they are so called non
invasive attacks or at least only semi-invasive, meaning that these methods require no physical
opening, no chemical preparation nor an electrical contact to the chip's metal surface. Therefore,
these attacks are the most obvious methods for attacking smartcard ICs by fault attacks. For
a thorough treatment of tamper-resistance and especially on methods how to enforce erroneous
computations of microcontroller chips we refer to [A,AK1,AK2,Gu1,Gu2,Koca,SA,KK,Ma].

Moreover, although the e�ects of applying physical stress via the above mentioned methods to a
smartcard IC can be completely explained by numerous physical and technical considerations, these
explanations are clearly beyond the scope of this paper, meaning that our physical explanations
will be pretty rough.

3.1 Spike attacks

As required by [ISO], a smartcard IC must be able to tolerate on the contact VCC a supply voltage
between 4; 5V and 5; 5V, where the standard voltage is speci�ed at 5V. Within this range the
smartcard must be able to work properly. However, a deviation of the external power supply,
called spike, of much more than the speci�ed 10% tolerance might cause problems for a proper
functionality of the smartcard IC. Indeed, it will most probably lead to a wrong computation result,
provided that the smartcard IC is still able to �nish its computation completely.

Although a spike seems from the above explanation very simple, a speci�c type of a power spike
is determined by altogether nine di�erent parameters. These nine parameters are determined by
a combination of time, voltage values, and the shape of the voltage transition. This indicates the
range of di�erent parameters which an attacker can try to modify in order to induce a fault.

As spike attacks are non-invasive attacks, they are the most obvious method for inducing
computational faults on smartcard ICs. In particular, they require no physical opening, no chemical
preparation of the smartcard IC and do not require making an electrical contact to the IC's metal
surface.

5



3.2 Glitch attacks

Similar to above, [ISO] prescribes that a smartcard IC must be able to tolerate on the clock contact
CLK a voltage for VIH of 0; 7VCC ; : : : ; VCC and for VIL of 0VCC ; : : : ; 0; 5VCC . Moreover, it must
be also able to tolerate clock rise and clock fall times of 9% from the period cycle. Within this
range the smartcard must be able to work properly. However, a deviation of the external CLK,
most often called glitch, of much more than the speci�ed tolerances clearly will cause problems for
a proper functionality of the smartcard IC. Again, similar to voltage spikes there is huge range of
di�erent parameters determining a glitch, which can be altered by an attacker to induce a faulty
computation on a device performing a encryption.

Interestingly, a �nely tuned clock glitch is able to completely change a CPU's execution behavior
including the omitting of instructions during the executions of programs. For physical explanations
of this nice e�ect we refer the interested reader to [AK1,AK2,KK]. According to [KK], around 1999
clock glitch attacks have been the simplest and most practical attacks.

3.3 Optical attacks

Without doubt, light attacks now belong to the classical non invasive methods to realize faulty
computations on smartcards by manipulating their non-volatile memory, i.e., their EEPROM, cf.
[A,AK1,AK2,BS99,KK,Koca,NR,Ma,Pe]. Unfortunately, such light attacks could be used so far
only in an unsystematic way, for e.g. 
ipping randomly selected bits from 1 to 0 with some non
zero probability.

However, recently it was demonstrated by [SA] that by using focussed camera 
ash-light on
the right places of a microcontroller it is indeed possible to set or reset any individual bit of its
memory at a time speci�ed by the attacker. Such an attack enables a very timing-precise controlled
transient fault on a given individual bit. Moreover, it is claimed by [SA] to be practical and seems
to require only very cheap and simple public available photo equipment. Therefore, [SA] called it
optical attack instead of light attack, as it mainly relies on using optical equipment.

3.4 Di�erentiating the physical attacks

In order to sort the zoo of possible e�ects by physically stressing a chip, we will now characterize
the above attacks concerning:

{ Control on fault location.
{ Precision of timing.
{ Fault model.
{ Number of faulty bits induced.

Control on fault location For the issue of the control on the resulting fault location, one can clearly
de�ne three natural classes: no control, loose control and complete control. The de�nition of them
is self contained.

Precision of timing As with the former issue it is obvious to de�ne three natural classes whose
de�nition speaks for themselves: no control on the fault occurence time, loose control on the fault
occurence time and very precise control on the fault occurence time.

Fault model Although there are usually only three fault models speci�ed, cf.
[BDL,BDHJNT,BS97,YJ,YKLM1,YKLM2,ZM], we will introduce a new fault model. This
model re
ects the power of the optical induced fault models as developed in [SA]. In addition to
the classical fault models, which are given by the stuck at faults model (saf), bit 
ip model (bf) or
random fault model (rf)), we will de�ne the bit set or reset model (bsr). In this model the attacker
is able to set or reset the value of any target bit at any time speci�ed by himself, regardless of its
previous contents, cf. [SA].

6



Number of faulty bits induced Clearly, the number of induced faulty bits due to physical stress is
very important for a fault based cryptanalysis. Here one usually makes the distinction between
single faulty bit, few faulty bits and random number of faulty bits.

We present the characterization of the di�erent physical attacks presented previously by a table.

Control on fault loc. Prec. of timing Fault model #(faulty bits induc.)

Spike no precise random random
Glitch depending precise depending depending
Optical complete precise bsr and bf as required

4 A general fault attack on AES

First we will show how to compute the complete cipher key under the assumption that Nk � Nb,
that is, the block length is greater or equal than the key size. In this case the complete cipher key
is used in the initial AddRoundKey. We will show how to compute the cipher key bit by bit.

As described in Section 2.1 the cipher key is stored in a 4� Nr array of bytes (kij). We denote
the l-th bit in byte kij by klij ; 0 � l < 7. Similarly, the l-th bit in state byte aij will be denoted

by alij . We will show how an attacker can determine klij by inducing a single fault during one

encryption. Consider the plaintext 0 = 08�lb, i.e., each bit of 0 has value 0. The attacker encrypts
0. During the initial transformation AddRoundKey the operation

aij := 08 � kij

will be performed. Of course, after this operation has been performed, we have aij = kij . Before
the next transformation is performed, the attacker tries to set alij to 0. After this fault has been
induced, the encryption proceeds without further faults being induced.

The main observation is that if klij = 0, then setting the value of alij to 0, did not change the

value of this bit and we still get a correct encryption of 0 = 08�lb. However, if klij = 1, then setting

the value of alij to 0 results in an incorrect ciphertext and the cryptographic device will answer

with reset. Hence, from the behavior of the device the attacker can deduce the value of klij .
Altogether, we see that in case Nk � Nb we can determine the complete cipher key by encrypting

8lk times the message 0, each time inducing a single fault.
Next we consider the case Nk > Nb. In case Nk > Nb, an attacker can determine the �rst Nb

bytes of the cipher key using the attack described above. Once the attacker knows the �rst Nb

blocks of the cipher key, he can simulate the AES encryption process up to the AddRoundKey

transformation in round 1. More importantly, the attacker can compute a plaintext P , such that
during the encryption of P the state (aij) prior to the application of AddRoundKey in round 1
consists of zero bytes only, i.e., aij = 08 for all i; j.

To determine alij for j � Nk, the attacker encrypts the plaintext P . After the transformation

AddRoundKey has been performed in the �rst round, the attacker resets alij to 0. After that, the

encryption procedure proceeds without further faults. As before and by choice of P , if klij = 0

resetting the value of alij has no e�ect and the correct encryption of P is computed. However, if

klij = 1, the ciphertext will not be correct. As before, the attacker can determine the value of klij .
Recall that we always have Nk � 2Nb (see Section 2.1). Hence in the way just described the

attacker can determine the complete cipher key. Overall, to compute the cipher key, an attacker
needs to compute the encryption of 8lk plaintexts, each time inducing a single fault.

4.1 A probabilistic fault model

Inspired by technological considerations we will now consider a slightly relaxed fault model. Namely,
given the rapid shrink processes of semiconductor technologies, it is plausible to assume that

7



optical attacks using a cheap and unprofessional lithography equipment will not achieve a suÆcient
resolution to exactly attack single bits in the desired way. In the best case an optical attack will
approximately hit the correct physical location to set or reset a speci�c bit. We model this in the
following way. If the value of the bit an attacker tries to reset is 1, then we assume that with
probability p1 >

1

2
the attacker successfully resets the value of that bit to 0. If the value of the bit

the attacker tries to reset is 0, then we assume that the value will change to 1 with probability
p0 <

1

2
. We can assume that the probabilities p0; p1 are known to the attacker.

We only describe how to determine the value of k000 with this fault model. The generalization
to arbitrary bits of the cipher key is straightforward. To compute k000 the attacker encrypts the
message 0 m-times, where m is a parameter to be speci�ed later. In each encryption of 0, after
the operation

a00 = 08 � k00

has been performed in the initial AddRoundKey, the attacker tries to reset the value of a000. For
each encryption the attacker can deduce from the behavior of the cryptographic device whether it
yielded a correct or an incorrect ciphertext. If the number of incorrect ciphertexts is at least

m

�
p1 + p0

2

�

the attacker guesses k000 = 1. Otherwise, the attacker guesses k000 = 1.
Let us analyze the probability that the attacker guesses k000 correctly. If k

0
00 = 1, then in each

encryption of 0 the value of a000 will be set to 0 with probability p1. Hence in the case k000 = 1,
each encryption of 0 results in an incorrect ciphertext with probability p1. Therefore, we expect
p1m incorrect ciphertexts. By Bernstein's inequality (see for example [GS]), the probability that in
this case fewer than m

�
p1+p0

2

�
ciphertexts are incorrect is bounded from above by exp(�m(p1 �

p0)
2=16).
Similarly, one can show that in case k000 = 0, the probability that the number of incorrect

ciphertexts is larger than mp1+p0
2

is also bounded from above by exp(�m(p1�p0)
2=16). Altogether

we obtain that the attacker guesses bit k000 correctly with probability at least

1� exp

�
�m

(p1 � p0)
2

16

�
:

One checks that with the choice

m =
176

(p1 � p0)2

the attacker correctly guesses k000 with probability 1 � 2�15. Analogously, the other cipher key
bits can be determined. If for every cipher key bit we choose m = 176=(p1 � p0)

2 plaintexts, the
probability that every cipher key bit key is guessed correctly is 1� 2�8.

For example, if p1 = 3

4
, p0 = 1

4
and lk = 16, then with the choice m = 90112 the attacker

guesses the complete cipher key correctly with probability 1� 2�8.
We note that the bounds on the probability that the attacker guesses a bit incorrectly can be

reduced somewhat by using Cherno� bounds instead of Bernstein's bound (see [GS]).

4.2 Relaxing the timing constraint

In the basic fault model as well as in the probabilistic fault model, we always assumed that
the attacker is able to exactly determine the time when he resets the value of a memory bit b.
Unfortunately, as described in [CCD], some modern secure microcontrollers are equipped with a
randomized timing behavior to counteract statistical side-channel attacks. However, in this section
we will show that under some very plausible assumptions this hardware mechanism doesn't yield
suÆcient protection. More speci�cally, we only want to assume that the attacker has a certain

8



window of time in which he can reset the value of a particular memory bit b. We assume, that
within the time window there are only c operations performed by the AES encryption procedure
that involve bit b. The attacker knows c. Furthermore we assume that the time at which bit b is
reset is randomly distributed. That is, for each t = 0; : : : ; c the probability that b is reset after the
execution of the t-th operation involving b, but before the following operation involving b, is 1

c
.

We describe the modi�cations that have to applied to the basic attack to take care of this weaker
assumption. Similar modi�cations can be carried out for the attack in the probabilistic fault model.

We only describe how to determine the �rst cipher key bit k000. Instead of encrypting the
plaintext 0, the attacker encrypts several plaintexts P1; : : : ; Pm. In all these plaintexts Pi the
leftmost bit has value 0. The remaining bits of the plaintexts are chosen uniformly at random. As
before the attacker tries to reset the value of a000 after the initial AddRoundKey has been performed.
Instead he only manages to reset a000 within a time window that besides the initial operation
a00 := a00 � k00 includes c � 1 other operations involving a000. However, the initial AddRoundKey
is the �rst transformation involving a000. The next operation involving a000 is the ByteSub of round
1. We now make the following heuristic assumption:

Assume that bit a000 has a �xed value b, while the remaining bits of a00 are chosen uniformly at

random. Then the leftmost bit of ByteSub(a00) is distributed uniformly at random.

From this it follows that unless the attacker manages to reset a000 immediately after the initial
AddRoundKey has been performed, the attacker tries to reset a bit whose value is distributed
uniformly at random.

Next we compute the probability that the fault induced by the attacker during the encryption of
plaintext Pi leads to an incorrect cipher text. With probability 1

c
the attacker resets a000 immediately

after the initial AddRoundKey. In this case, the ciphertext will not be correct if and only if k000 = 1.
With probability 1� 1

c
= c�1

c
the attacker resets bit a000 following the ByteSub of round 1 or later.

From the assumption stated above, it follows that in this case the attacker resets the value of a
bit whose value is distributed uniformly at random. Therefore the ensuing ciphertext will not be
correct with probability 1

2
.

We conclude that for all plaintexts Pi, if k
0
00 = 0 the encryption of Pi will be incorrect with

probability
c� 1

2c
:

On the other hand, if k000 = 1 then the ciphertext for Pi will not be correct with probability

c� 1

2c
+
1

c
:

As in the probabilistic fault model, this di�erence in probability can be exploited to guess the value
of k000 correctly with high probability. The attacker simply chooses m large enough and depending
on the number of incorrect ciphertexts he sets k000 to 0 or 1. The details are exactly as in the
previous section, so we omit them.

5 Implementation speci�c fault attacks

Since a fault-based cryptanalysis (actually an engineering type of attack) might also exploit some
peculiar implementation properties, we now take a closer look at some particular implementa-
tion details to understand the fault-based vulnerability of AES. We will �rst present the idea for
our implementation speci�c fault attacks. Then we we will apply this idea to several conceivable
implementations of the xtime operation. Nevertheless, it should be clear that also other imple-
mentations of xtime might be suspectible to the kind of attack described below. Moreover, we
would like to stress that the ideas developed within Sections 4.1 and 4.2 also apply to the following
implementation speci�c fault attack scenarios.

9



5.1 Description of the underlying idea

Combining an idea of [YJ] together with ideas from the Timing Analysis of the AES, we will turn
the attack of [KQ] into a fault based cryptanalysis of the AES. Depending on the actual realization
of the xtime operation, di�erent attack scenarios will follow.

Table based fault attacks of the AES First we describe how to determine the �rst byte of the cipher
key, when given the information that a speci�c xtime operation reduces its result by xoring it with
the byte (0; 0; 0; 1; 1; 0; 1; 1) (see (3)). But, in contrast to [KQ] we will get this information by induc-
ing a computational error during that speci�c xtime operation. The information retrieval process
itself is the implementation despendent part of the attack. For some conceivable implementations
it will be described later.

First a 256�N table T is set up. Here N � 256 is some parameter to be speci�ed later. Every
row in this table corresponds to a possible value for the �rst cipher key byte k00, while the columns
correspond to possible values for the �rst plaintext byte a00. The table entries T [k;m]; 0 � k <
256; 0 � m < N are de�ned as follows

T [k;m] =

8<
:
1 if the leftmost bit of ByteSub(k �m) is 1

0 if the leftmost bit of ByteSub(k �m) is 0
(4)

Next the attacker constructs N plaintexts m0; : : : ;mN�1. The �rst byte of the plaintext mi is i.
The remaining text bytes are chosen uniformly at random. Now an attacker encrypts the messages
mi and for each i he enforces an error during the encryption of the plaintext. As already said, the
actual time and kind of error will be speci�ed below depending on the speci�c implementation of
the xtime operation. At this point it suÆces to note that during the encryption of plaintext mi the
transformation MixColumn in round 1 multiplies the byte ByteSub(k00 � i) by 02, or equivalently
MixColumn applies xtime(ByteSub(k00 � i)). This operation will be shown to be highly vulnerable
to a fault attack revealing whether the leftmost bit of ByteSub(k00�i) is 1 or 0. Hence, the attacker
is then able to predict the leftmost bit of ByteSub(k00 � i).

Then the attacker compares his predictions for the leftmost bits of ByteSub(k00 � i); i =
0; : : : ; N � 1, with the entries in table T . If the attacker chooses N = 256 and his predecitions are
correct, this comparison reveals the �rst cipher key byte. However, we expect that fewer than 256
plaintexts Pi will suÆce to determine the �rst cipher key byte. In fact, Koeune and Quisquater
observed that in their timing attack N = 20 already suÆces. Since a fault attack will yield much
more reliable predictions for the leftmost bits of ByteSub(k00�i) we expect that in our caseN � 16
will suÆce.

Note that the main diagonal of the matrix in (1) consists of 02 only. Hence during MixColumn

every state byte gets multiplied by 02 once. From this, one concludes that the method to compute
the cipher key byte k000 can be used to compute the other cipher key bytes as well. Due to the AES's
key schedule as described in section 2.1, the cipher is broken once the attacker has determined Nk

consecutive bytes of the round key. Thus, for Nk � Nb the above methods breaks AES. For smaller
block sizes, similiar ideas as presented in section 4 apply.

Based on this table approach we now present in �gure 2 the resulting common skeleton for all
of our following implementation speci�c fault attacks.

5.2 The simplest attack against an unskilled textbook-secured implementation

The simplest and also most obvious way for a Timing Analysis (and SPA) resistant implementation
of the xtime operation seems to be given by the following. Save the most signi�cant bit of the
input byte, shift the byte by one bit to the left, perform two xor's with the shifted byte. Finally,
according to the most signi�cant bit of the input byte, return one of the two previously computed
results as shown in the �gure 3.

10



build table T [k;m]
build plaintexts m0; : : : ;mN

for i := 0 to N do
encrypt the message mi and
disturb the operation xtime(ByteSub(k00 � i)) within MixColumn

of round 1 by an appropriate physical attack as described later
if output refused or incorrect then

~T [i] is set to 0 or 1 depending on the xtime realization
od

by comparing the tables T and ~T determine the �rst key byte k00

output: k00

Fig. 2. Common fault attack skeleton, revealing the �rst key byte.

input: a = (a7; a6; a5; a4; a3; a2; a1; a0)

f := a7
a := (a6; a5; a4; a3; a2; a1; 0)
xtime[0] := a� (0; 0; 0; 0; 0; 0; 0; 0)
xtime[1] := a� (0; 0; 0; 1; 1; 0; 1; 1)
return(xtime[f ])

output: xtime(a)

Fig. 3. Timing Analysis secured xtime(a) realization.

Let us now analyze what happens, if an attacker uses the fault attack skeleton outlined above.
That is, the attacker encrypts N plaintexts mi, i = 1; : : : ; N . Moreover, in each encryption the
attacker disturbs the computation of xtime[0]. Here we can apply a very liberal fault model. We
assume that the attacker is able to enforce an arbitrary wrong value

xtime[0]0 6= xtime[0]:

Then, depending on bit a7 of the original byte a, the following will result. If a7 = 1, due to the
fact that xtime[1] will be returned, the wrong result xtime[0]0 is of no further interest and will be
therefore discarded. Therefore the encryption yields a correct ciphertext. However, if a7 = 0, the
wrong result xtime[0]0 will lead to a wrong ciphertext and the cryptographic device will answer
with reset. Hence, from the behavior of the device, the attacker can determine the bit a7. Now
the attacker can proceed as described in Section 5.1 to completely break the cipher.

Note, that we did not make any assumption on the kind of introduced error during the com-
putation of xtime[0]. We simply need a wrong result. Thus it is indeed easy to realize by any one
of the methods presented in 3, indicating that this attack is actually devestating.

5.3 An attack against a possible real implementation

After we have seen an unskilled textbook implementation of the xtime operation, we will now
consider a slow but real implementation written in an extended 8051 assembler language. We
selected an extended 8051 microcontroller as it is the most commonly used controller in todays'
smartcards. Consider the following xtime realization, which is obviously secure against a Timing
Analysis.

11



; xtime(a)

; parameters: "a" in accu

; return value: "xtime(a)" in accu

xtime:

MOV B, A ; B:=a

SLL B ; B:=(a 6,a 5,...,a 1,0)

DIV A, #10000000b ; A:=(0,0,...,0,a 7)

MUL A, #00011011b ; A:=a 7*(0,0,0,1,1,0,1,1)

XRL A, B ; A:=A�(a 6,a 5,...,a 1,0)

RET

Fig. 4. Timing Analysis secured xtime(a) realization.

As above, let us analyze what happens, if an attacker applies the fault attack skeleton, i.e., he
encrypts N plaintexts mi, i = 1; : : : ; N . However, this time the attacker will apply a glitch attack,
cf. Section 3.2, to omit the execution of the MUL A, #00011011b instruction.

Then, depending on bit a7 of the input byte a, the following will result. If a7 = 0, the register
A will be zero after the instruction DIV A, #10000000b. Thus, omitting via a glitch the following
MUL A, #00011011b instruction does not matter, as it would write back to register A a zero, still
guaranteeing a correct encryption of mi. Hence, in case a7 = 0, the encryption processes ends with
a correct ciphertext. However, in the case of a7 = 1, omitting the MUL A, #00011011b instruction,
will result in a value 1 in register A, whereas (0; 0; 0; 1; 1; 0; 1; 1) would be the correct value. Thus,
the cryptographic device will detect a computational error and will answer with reset, resulting
in an answer which indicates that a wrong computation happened which will actually be observed
by the attacker. Therefore, from the behavior of the cryptographic device, the attacker can deduce
the value of bit a7. As before, applying in this fashion the fault attack skeleton to every one of the
32 key bytes will completely break the cipher.

5.4 An attack against a suggested implementation

Now, that we have seen some vulnerable xtime realizations we will consider the implementation
actually suggested by the inventors of the AES, as proposed in [DR2]. Inspired by the knowledge
about the timing analysis vulnerability of the AES, they proposed to implement xtime as an array
T consisting of 256 bytes, where

T [b] := xtime(b):

As above, an attacker applies the fault attack skeleton as described in Section 5.1. This time
the attacker will apply an optical attack, cf. Section 3.3. Clearly it is most conceivable that the
table T will be stored in ROM and therefore is of no use to an attacker. However, the whole current
state of the AES encryption clearly must be stored in RAM. Therefore, this time the attacker will
reset via an optical attack on the RAM the bit a7 of the state byte a.

Although the analysis is very similiar to the former two cases, for completeness sake we will
include it. Depending on the bit a7 of the input byte a, the optical attack will have the following
e�ect. If a7 = 0, trying to reset it via optical attacks has no e�ect. Therefore, the table T is
consulted for the correct value and the cryptographic device will answer with a correct ciphertext.
However, in case a7 = 1, resetting this bit to 0 must result in a wrong encryption, since the table
T is consulted for a wrong value. Hence, from the behavior of the cryptographic device an attacker
can determine the value of bit a7. As before described in Section 5.1 this can be used to completely
break the cipher.

12



We note that recently the table based approach for xtime was also shown to be suspectible to
a Di�erential Power Analysis by [YJ]. Given all this, one can de�nitely say that the suggestion of
[DR2] is completely insecure against physical side-channel attacks.

5.5 An attack against a hardware implementation

So far we have only considered software realizations of xtime, eventually we will brie
y strive over
a possible hardware realization. However, as a complete hardware description even if only for the
MixColumn transformation is clearly out of the present papers scope, we will concentrate again
on the xtime circuit. In this vein of building a dedicated AES circuit, it is widely anticipated, cf.
[Wo], that xtime should be realized by the following very simple circuit, being beside clearly secure
against a Timing Analysis.

a0a4a5 a2a6 a3 a1a7

b0b4b5 b2b6 b3 b1b7

Fig. 5. Circuit for b := xtime(a).

We will now elaborate this situation a bit more in depth. Forced by the tough area require-
ments for a chipcard IC, most AES hardware architecture proposals are silicon size optimized.
This means in particular, that such AES hardware modules really compute the AES operations
ByteSub, MixColumn and of course xtime, instead of using large ROM based lookup tables to
compute the corresponding transformations, cf. [SMTM,Wo,WOL]. However, due to the logical
depth of the corresponding computations, those architectures have to take into account that every
single transformation needs at least one clock cycle, and most often it will require more cycles.
Thus, between di�erent transformations the whole AES encryption state is stored within a register
bank, which is actually realized by a large number of 
ip-
ops, cf. [WE]. In particular, the whole
encryption state prior to the execution of MixColumn must be stored within 
ip-
ops, cf. [WE].
Indeed, the inputs (a7; : : : ; a0) to a corresponding xtime circuit are actually 
ip-
ops, storing the
results from the previous ShiftRow transformation. But this in turn means that again we can use
an optical attack, cf. Section 3.3, against these 
ip-
ops, exactly as described in [SA]. Indeed, this
time the attacker will reset (during the time period when the results from the previous ShiftRow
are stored within the 
ip-
ops) the bit a7 of the state byte a via an optical attack on the aforesaid

ip-
op. The rest of the analysis is completely analog to the table based xtime realization.

6 Countermeasures

We would like to point out that some modern high-end crypto smartcards are protected by various
and numerous means of sophisticated hardware mechanisms to detect any intrusion attempt to
their system behavior, cf. [Ma,MACMT,MAK,NR]. Various but not all hardware manufacturers
of cryptographic devices such as smartcard ICs have been aware of the importance of protecting

13



their chips against intrusions by, e.g., external voltage variations, external clock variations, light
attacks, etc. To do so they use carefully developed logic families, sensors, �lters, regulators, etc.

And indeed, only this special hardware countermeasures might give rise to a trustworthy func-
tionality of the chip. The reason is that only those proprietary and secretly kept hardware mech-
anisms are indeed designed to counteract the source of a physical attack and not to counteract
their e�ect on computations. Counteracting e�ects rather than sources is usually done by naive
software countermeasures or some proposed hardware architectures [KWMK]. Namely, the latter
ones simply check the computed ciphertext for correctness and will cause the chip to react with
some kind of alarm if an erroneous ciphertext has been detected. Unfortunately, as shown in the
present paper, this is obviously detectable and exploitable to mount our fault attacks.

Another possibility could be a complete and good randomization of the AES's computation,
i.e., randomizing the plaintext and the cipherkey. A �rst step in this direction was recently done
by [AG] and might be helpful to develop appropriate software countermeasures.

7 Acknowledgments

We would like to thank Alexander May for careful reading of our paper.

References

[A] R. Anderson, Security Engineering, John Wiley & Sons, New York, 2001.
[AG] M. L. Akkar, C. Giraud, \An implementation of DES and AES, secure against some attacks",

Proc. of CHES '01, Springer LNCS vol. 2162, pp. 315-324, 2001.
[AK1] R. Anderson, M. Kuhn, \Tamper Resistance { a cautionary note", Proc. of 2nd USENIX

Workshop on Electronic Commerce, pp. 1-11, 1996.
[AK2] R. Anderson, M. Kuhn, \Low cost attacks attacks on tamper resistant devices", Proc. of 1997

Security Protocols Workshop, Springer LNCS vol. 1361, pp. 125-136, 1997.
[BDL] D. Boneh, R. A. DeMillo, R. Lipton, \On the Importance of Eliminating Errors in Crypto-

graphic Computations" Journal of Cryptology 14(2):101-120, 2001.
[BDHJNT] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimbalu, T. Ngair, \Breaking public key

cryptosystems on tamper resistant dives in the presence of transient faults", Proc. of 1997
Security Protocols Workshop, Springer LNCS vol. 1361, pp. 115-124, 1997.

[BS97] E. Biham, A. Shamir, \Di�erential fault analysis of secret key cryptosystems", Proc. of
CRYPTO '97, Springer LNCS vol. 1294, pp. 513-525, 1997.

[BS99] E. Biham, A. Shamir, \Power analysis of the key scheduling of the AES candidates", Proc. of
the second AES conference, pp. 115-121, 1999.

[BS02] J. Bl�omer, J.-P. Seifert, \On the power of optical attacks to induce faults on cryptosystems".
[BMM] I. Biehl, B. Meyer, V. M�uller, \Di�erential fault attacks on elliptic curve cryptosystems", Proc.

of CRYPTO '00, Springer LNCS vol. 1880, pp. 131-146, 2000.
[CCD] C. Clavier, J.-S. Coron, N. Dabbous, \Di�erential Power Analysis in the presence of Hardware

Countermeasures", Proc. of CHES '00, Springer LNCS vol. 1965, pp. 252-263, 2000.
[CJRR] S. Chari, C. Jutla, J. R. Rao, P. J. Rohatgi, \A cautionary note regarding evaluation of AES

candidates on smartcards", Proc. of the second AES conference, pp. 135-150, 1999.
[CKN] J.-S. Coron, P. Kocher D. Naccache, \Statistics and Secret Leakage", Proc. of Financial Cryp-

tography, Springer LNCS, 2000.
[DR1] J. Daemen, V. Rijmen, \Resistance against implementation attacks: a comparative study",

Proc. of the second AES conference, pp. 122-132, 1999.
[DR2] J. Daemen, V. Rijmen, The Design of Rijndael, Springer-Verlag, Berlin, 2002.
[DPV] J. Daemen, M. Peeters, G. Van Assche, \Bitslice ciphers and implementation attacks", Proc.

of Fast Software Encryption 2000, Springer LNCS vol. 1978, pp. 134-149, 2001.
[GS] G. R. Grimmett, D. R. Stirzaker, Probability and random processes, Oxford Science Publica-

tions, Oxford, 1992.
[Gu1] P. Gutmann, \Secure deletion of data from magnetic and solid-state memory", Proc. of 6th

USENIX Security Symposium, pp. 77-89, 1997.

14



[Gu2] P. Gutmann, \Data Remanence in Semiconductor Devices", Proc. of 7th USENIX Security

Symposium, pp. ?-?, 1998.
[ISO] International Organization for Standardization, \ISO/IEC 7816-3: Electronic signals and trans-

mission protocols", http://www.iso.ch, 2002.
[JLQ] M. Joye, A. K. Lenstra, J.-J. Quisquater, \Chinese remaindering based cryptosystem in the

presence of faults", Journal of Cryptology 12(4):241-245, 1999.
[JPY] M. Joye, P. Pailler, S.-M. Yen, \Secure Evaluation of Modular Functions", Proc. of 2001

International Workshop on Cryptology and Network Security, pp. 227-229, 2001.
[JQBD] M. Joye, J.-J. Quisquater, F. Bao, R. H. Deng, \RSA-type signatures in the presence of tran-

sient faults", Cryptography and Coding, Springer LNCS vol. 1335, pp. 155-160, 1997.
[JQYY] M. Joye, J.-J. Quisquater, S. M. Yen, M. Yung, \Observability analysis | detecting when

improved cryptosystems fail", Proc. of CT-RSA Conference 2002, Springer LNCS vol. 2271,
pp. 17-29, 2002.

[KR] B. Kaliski, M. J. B. Robshaw, \Comments on some new attacks on cryptographic devices",
RSA Laboratories Bulletin 5, July 1997.

[Kn] D. E. Knuth, The Art of Computer Programming, Vol.2: Seminumerical Algorithms, 3rd ed.,
Addison-Wesley, Reading MA, 1999.

[KK] O. K�ommerling, M. Kuhn, \Design Principles for Tamper-Resistant Smartcard Processors",
Proc. of the USENIX Workshop on Smartcard Technologies, pp. 9-20, 1999.

[KQ] F. Koeune, J.-J. Quisquater, \A timing attack against Rijndael", Universit�e catholique de

Louvain, TR CG-1999/1, 6 pages , 1999.
[Koca] O. Kocar, \Hardwaresicherheit von Mikrochips in Chipkarten", Datenschutz und Datensicher-

heit 20(7):421-424, 1996.
[Koch] P. Kocher, \Timing attacks on implementations of DiÆe-Hellmann, RSA, DSS and other

systems", Proc. of CYRPTO '97, Springer LNCS vol. 1109, pp. 104-113, 1997.
[KJJ] P. Kocher, J. Ja�e, J. Jun, \Di�erential Power Analysis", Proc. of CYRPTO '99, Springer

LNCS vol. 1666, pp. 388-397, 1999.
[KWMK] R. Karri, K. Wu, P. Mishra, Y. Kim, \Concurrent error detection of fault-based side-channel

cryptanalysis of 128-bit symmetric block ciphers", Proc. of IEEE Design Automation Confer-

ence, pp. 579-585, 2001.
[Ma] D. P. Maher, \Fault induction attacks, tamper resistance, and hostile reverse engineering in

perspective", Proc. of Financial Cryptography, Springer LNCS vol. 1318, pp. 109-121, 1997.
[MvOV] A. J. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press,

New York, 1997.
[Me] T. Messerges, \Securing the AES �nalists against power analysis attacks", Proc. of Fast Soft-

ware Encryption 2000, Springer LNCS vol. 1978, pp. 150-164, 2001.
[MAK] S. W. Moore, R. J. Anderson, M. G. Kuhn, \Improving Smartcard Security using Self-Timed

Circuit Technology", Fourth AciD-WG Workshop, Grenoble, ISBN 2-913329-44-6, 2000.
[MACMT] S. W. Moore, R. J. Anderson, P. Cunningham, R. Mullins, G. Taylor, \Improving Smartcard

Security using Self-Timed Circuit Technology", Proc. of Asynch 2002, IEEE Computer Society
Press, pp. ?-?, 2002.

[NR] D. Naccache, D. M'Raihi, \Cryptographic smart cards", IEEE Micro, pp. 14-24, 1996.
[Pai] P. Pailler, \Evaluating di�erential fault analysis of unknown cryptosystems", Gemplus Corpo-

rate Product R&D Division, TR AP05-1998, 8 pages, 1999.
[Pe] I. Petersen, \Chinks in digital armor | Exploiting faults to break smartcard cryptosystems",

Science News 151(5):78-79, 1997.
[RSA] R. Rivest, A. Shamir, L. Adleman, \A method for obtaining digital signatures and public-key

cryptosystems", Comm. of the ACM 21:120-126, 1978.
[SQ] D. Samyde, J.-J. Quisquater, \ElectroMagnetic Analysis (EMA): Measures and Countermea-

sures for Smart Cards", Proc. of Int. Conf. on Research in Smart Cards, E-Smart 2001, Springer
LNCS vol. 2140, pp. 200-210, 2001.

[SMTM] A. Satoh, S. Morioka, K. Takano, S. Munetoh, \A compact Rijndael hardware architecture
with S-Box optimization", Proc. of ASIACRYPT '01, Springer LNCS, pp. 241-256, 2001.

[SA] S. Skorobogatov, R. Anderson, \Optical Fault Induction Attacks", Proc. of 2002 IEEE Sym-

posium on Security and Privacy, 2002.
[Sh] A. Shamir, \Method and Apparatus for protecting public key schemes from timing and fault

attacks", U.S. Patent Number 5,991,415, November 1999; also presented at the rump session
of EUROCRYPT '97.

15



[WE] N. H. E. Weste, K. Eshraghian, Principles of CMOS VLSI Design, 2nd ed., Addison-Wesley,
Reading MA, 1994.

[Wo] J. Wolkerstorfer, \An ASIC implementation of the AES MixColumn-operation", Graz Uni-
versity of Technology, Institute for Applied Information Processing and Communications,
Manuscript, 4 pages, 2001.

[WOL] J. Wolkerstorfer, E. Oswald, M. Lamberger, \An ASIC implementation of the AES S-Boxes",
Proc. of CT-RSA Conference 2002, Springer LNCS vol. 2271, 2002.

[YJ] S.-M. Yen, M. Joye, \Checking before output may not be enough against fault-based crypt-
analysis", IEEE Trans. on Computers 49:967-970, 2000.

[YKLM1] S.-M. Yen, S.-J. Kim, S.-G. Lim, S.-J. Moon, \RSA Speedup with Residue Number System
immune from Hardware fault cryptanalysis", Proc. of the ICISC 2001, Springer LNCS, 2001.

[YKLM2] S.-M. Yen, S.-J. Kim, S.-G. Lim, S.-J. Moon, \A countermeasure against one physical crypt-
analysis may bene�t another attack", Proc. of the ICISC 2001, Springer LNCS, 2001.

[YT] S.-M. Yen, S. Y. Tseng, \Di�erential power cryptanalysis of a Rijndael implementation", LCIS
Technical Report TR-2K1-9, Dept. of Computer Science and Information Engineering, Na-
tional Central University, Taiwan, 2001.

[ZM] Y. Zheng, T. Matsumoto, \Breaking real-world implementations of cryptosystems by manipu-
lating their random number generation", Proc. of the 1997 Symposium on Cryptography and

Information Security, Springer LNCS, 1997.

16


