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Abstra
t

Cryptographi
 
omputations (de
ryption, signature generation, et
.) are often performed on

a relatively inse
ure devi
e (e.g., a mobile devi
e or an Internet-
onne
ted host) whi
h 
annot

be trusted to maintain se
re
y of the private key. We propose and investigate the notion of

key-insulated se
urity whose goal is to minimize the damage 
aused by se
ret-key exposures. In

our model, the se
ret key(s) stored on the inse
ure devi
e are refreshed at dis
rete time periods

via intera
tion with a physi
ally-se
ure | but 
omputationally-limited | devi
e whi
h stores

a \master key". All 
ryptographi
 
omputations are still done on the inse
ure devi
e, and the

publi
 key remains un
hanged. In a (t;N)-key-insulated s
heme, an adversary who 
ompromises

the inse
ure devi
e and obtains se
ret keys for up to t periods of his 
hoi
e is unable to violate

the se
urity of the 
ryptosystem for any of the remaining N � t periods. Furthermore, the

s
heme remains se
ure (for all time periods) against an adversary who 
ompromises only the

physi
ally-se
ure devi
e.

We noti
e that key-insulated s
hemes signi�
antly improve the se
urity guarantee of forward-

se
ure s
hemes [3, 5℄, in whi
h exposure of the se
ret key at even a single time period (ne
essarily)


ompromises the se
urity of the system for all future time periods. This improvement is a
hieved

with minimal 
ost: infrequent key updates with a (possibly untrusted) se
ure devi
e.

We fo
us primarily on key-insulated publi
-key en
ryption. We 
onstru
t a (t;N)-key-

insulated en
ryption s
heme based on any (standard) publi
-key en
ryption s
heme, and give

a more eÆ
ient 
onstru
tion based on the DDH assumption. The latter 
onstru
tion is then

extended to a
hieve 
hosen-
iphertext se
urity.
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1 Introdu
tion

Motivation. Exposure of se
ret keys is perhaps the most devastating atta
k on a 
ryptosystem

sin
e it typi
ally means that se
urity is entirely lost. This problem is probably the greatest threat

to 
ryptography in the real world: in pra
ti
e, it is typi
ally easier for an adversary to obtain a

se
ret key from a naive user than to break the 
omputational assumption on whi
h the system is

based. The threat is in
reasing nowadays with users 
arrying mobile devi
es whi
h allow remote

a

ess from publi
 or foreign domains.

Two 
lasses of methods exist to deal with this problem. The �rst tries to prevent key exposure

altogether. While this is an important goal, it is not always pra
ti
al. For example, when using

portable devi
es to perform 
ryptographi
 operations (e.g., de
rypting transmissions using a mobile

phone) one must expe
t that the devi
e itself may be physi
ally 
ompromised in some way (e.g., lost

or stolen) and thus key exposure is inevitable. Furthermore, 
omplete prevention of key exposure

| even for non-mobile devi
es | will usually require some degree of physi
al se
urity whi
h 
an be

expensive and in
onvenient. The se
ond approa
h assumes that key exposure will inevitably o

ur

and seeks instead to minimize the damage whi
h results when keys are obtained by an adversary.

Se
ret sharing [37℄, threshold 
ryptography [14, 13℄, proa
tive 
ryptography [33℄, exposure-resilient


ryptography [10℄ and forward-se
ure signatures [3, 5℄ may all be viewed as di�erent means of

taking this approa
h.

The most su

essful solution will involve a 
ombination of the above approa
hes. Physi
al

se
urity may be ensured for a single devi
e and thus we may assume that data stored on this

devi
e will remain se
ret. On the other hand, this devi
e may be 
omputationally limited or else

not suitable for a parti
ular appli
ation and thus we are again fa
ed with the problem that some

keys will need to be stored on inse
ure devi
es whi
h are likely to be 
ompromised during the

lifetime of the system. Therefore, te
hniques to minimize the damage 
aused by su
h 
ompromises

must also be implemented.

Our Model. We fo
us here on a notion we term key-insulated se
urity. Our model is the following

(the dis
ussion here fo
uses on publi
-key en
ryption, yet the term applies equally-well to the 
ase

of digital signatures). The user begins by registering a single publi
 key PK. A \master" se
ret

key SK

�

is stored on a devi
e whi
h is physi
ally se
ure and hen
e resistant to 
ompromise. All

de
ryption, however, is done on an inse
ure devi
e for whi
h key exposure is expe
ted to be a

problem. The lifetime of the proto
ol is divided into distin
t periods 1; : : : ; N (for simpli
ity, one

may think of these time periods as being of equal length; e.g., one day). At the beginning of ea
h

period, the user intera
ts with the se
ure devi
e to derive a temporary se
ret key whi
h will be

used to de
rypt messages sent during that period; we denote by SK

i

the temporary key for period

i. On the other hand, the publi
 key PK used to en
rypt messages does not 
hange at ea
h period;

instead, 
iphertexts are now labeled with the time period during whi
h they were en
rypted. Thus,

en
rypting M in period i results in 
iphertext hi; Ci.

The inse
ure devi
e, whi
h does all a
tual de
ryption, is vulnerable to repeated key exposures;

spe
i�
ally, we assume that up to t < N periods 
an be 
ompromised (where t is a parameter). Our

goal is to minimize the e�e
t su
h 
ompromises will have. Of 
ourse, when a key SK

i

is exposed,

an adversary will be able to de
rypt messages sent during time period i. Our notion of se
urity

(informally) is that this is all an adversary 
an do. In parti
ular, the adversary will be unable to

determine any information about messages sent during all time periods other than those in whi
h

a 
ompromise o

urred. This is the strongest level of se
urity one 
an expe
t in su
h a model. We


all a s
heme satisfying the above notion (t;N)-key-insulated.

If the physi
ally-se
ure devi
e is 
ompletely trusted, we may have this devi
e generate (PK;SK

�

)
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itself, keep SK

�

, and publish PK. When a user requests a key for period i, the devi
e may 
ompute

SK

i

and send it to the user. More involved methods are needed when the physi
ally-se
ure devi
e

is not trusted by the user. In this, more diÆ
ult 
ase (whi
h we 
onsider here), the user may

generate (PK;SK) himself, publish PK, and then derive keys SK

�

; SK

0

. The user then sends

SK

�

to the devi
e and stores SK

0

himself. When the user requests a key for period i, the devi
e

sends \partial" key SK

0

i

to the user, who may then 
ompute the \a
tual" key SK

i

using SK

i�1

and SK

0

i

. In this way, the user's se
urity is guaranteed during all time periods with respe
t to the

devi
e itself, provided that the knowledge of SK

�

alone is not suÆ
ient to derive any of the a
tual

keys SK

i

. We note that this strong se
urity guarantee is essential when a single devi
e serves many

di�erent users, o�ering them prote
tion against key exposure. In this s
enario, users may trust this

devi
e to update their keys, but may not want the devi
e to be able to read their en
rypted traÆ
.

Thus, there is no reason this devi
e should have 
omplete (or any!) knowledge of their \a
tual"

keys. Finally we note that assuring that the devi
es are syn
hronized to the same period (so that

only one se
ret key per period is given by the physi
ally se
ure devi
e) and that they handle proper

authenti
ated intera
tion is taken 
are of by an underlying proto
ol (whi
h is outside our model).

Other Appli
ations. Besides the obvious appli
ation to minimizing the risk of key exposures

a
ross multiple time periods, key-insulated se
urity may also be used to prote
t against key expo-

sures a
ross multiple lo
ations, or users. For example, a 
ompany may establish a single publi
 key

and distribute (di�erent) se
ret keys to its various employees; ea
h employee is di�erentiated by his

\non-
ryptographi
 ID" i (e.g., a so
ial se
urity number or last name), and 
an use his own se
ret

key SK

i

to perform the desired 
ryptographi
 operation. This approa
h 
ould dramati
ally save on

the publi
 key size, and has the property that the system remains se
ure (for example, en
rypted

messages remain hidden) for all employees whose keys are not exposed.

A key-insulated s
heme may also be used for purposes of delegation [23℄; here, a user (who has

previously established a publi
 key) delegates his rights in some spe
i�ed, limited way to a se
ond

party. In this way, even if up to t of the delegated parties' keys are lost, the remaining keys | and,

in parti
ular, the user's se
ret key |- are se
ure.

Finally, we mention the appli
ation of key es
row by legal authorities. For example, 
onsider

the situation in whi
h the FBI wants to read email sent to a parti
ular user on a 
ertain date. If a

key-insulated s
heme (updated daily) is used, the appropriate key for up to t desired days 
an be

given to the FBI without fear that this will enable the FBI to read email sent on other days. A

similar appli
ation (with weaker se
urity guarantees) was 
onsidered by [2℄.

Our Contributions. We introdu
e the notion of key-insulated se
urity and 
onstru
t eÆ
ient

s
hemes se
ure under this notion. Although our de�nition may be applied to a variety of 
ryp-

tographi
 primitives, we fo
us here on publi
-key en
ryption. In Se
tion 3, we give a generi



onstru
tion of a (t;N)-key-insulated en
ryption s
heme based on any (standard) publi
-key en-


ryption s
heme. Se
tion 4 gives a more eÆ
ient 
onstru
tion whi
h is se
ure under the DDH

assumption. Both of these s
hemes a
hieve semanti
 se
urity; however, we show in Se
tion 5 how

the se
ond s
heme 
an be improved to a
hieve 
hosen-
iphertext se
urity. The 
omplexity of all

our s
hemes is essentially independent of the total number of users N . However, at least one of

the parameters is polynomial in t. This makes our s
hemes appli
able only for moderate values

of t, whi
h is, however, suÆ
ient for many appli
ations. In a 
ompanion paper [16℄, we 
onsider

key-insulated se
urity of signature s
hemes.

Related Work. Arriving at the right de�nitions and models for the notion we put forth here

has been somewhat elusive. For example, Girault [22℄ 
onsiders a notion similar to key-insulated

se
urity of signature s
hemes. However, [22℄ does not present any formal de�nitions, nor does

2



it present s
hemes whi
h are provably se
ure. Re
ently and 
on
urrently with our work, other

attempts at formalizing key-insulated publi
-key en
ryption have been made [39, 31℄. However,

these works 
onsider only a non-adaptive adversary who 
hooses whi
h time periods to expose at

the outset of the proto
ol, whereas we 
onsider the more natural and realisti
 
ase of an adaptive

adversary who may 
hoose whi
h time periods to expose at any point during proto
ol exe
ution.

Furthermore, the solution of [39℄ for a
hieving 
hosen-
iphertext se
urity is proven se
ure in the

random ora
le model; our 
onstru
tion of Se
tion 5 is proven se
ure against 
hosen-
iphertext

atta
ks in the standard model ([31℄ does not address 
hosen-
iphertext se
urity at all). Finally, our

de�nition of se
urity is stronger than that 
onsidered in [39, 31℄. Neither work 
onsiders the 
ase

of an untrusted, physi
ally-se
ure devi
e. Additionally, [31℄ require only that an adversary 
annot

fully determine an un-exposed key SK

i

; we make the mu
h stronger requirement that an adversary


annot break the underlying 
ryptographi
 s
heme for any (set of) un-exposed periods.

Our notion of se
urity 
omplements the notion of forward se
urity for digital signatures.

1

In

this model [3, 5℄, an adversary who 
ompromises the system during a parti
ular time period obtains

all the se
ret information whi
h exists at that point in time. Clearly, in su
h a setting one 
annot

hope to prevent the adversary from signing messages asso
iated with future time periods (sin
e

the adversary has all relevant information), even though no expli
it key exposures happen during

those periods. Forward-se
ure signatures, however, prevent the adversary from signing messages

asso
iated with prior time periods. Many improved 
onstru
tions of forward-se
ure signatures have

subsequently appeared [1, 29, 26, 32℄.

Our model uses a stronger assumption in that we allow for (a limited amount of) physi
ally-

se
ure storage whi
h is used ex
lusively for key updates and is not used for the a
tual 
ryptographi



omputations. As a 
onsequen
e, we are able to obtain a mu
h stronger level of se
urity in that

the adversary is unable to sign/de
rypt messages at any non-
ompromised time period, both in the

future and in the past.

Relation to Identity-Based Cryptography. The idea of ID-based 
ryptography [38℄ (for


on
reteness, we 
on
entrate on the 
ase of ID-based en
ryption) is to have a trusted 
enter publish

a single publi
 key so that users who know only ea
h other's \non-
ryptographi
" identities (e.g., e-

mail addresses) 
an se
urely 
ommuni
ate. In parti
ular, a PKI (in whi
h every user is additionally

asso
iated with a publi
 key) is not needed beyond knowledge of a single global publi
 key. Of


ourse, the trusted 
enter now must provide ea
h user with a se
ret key whi
h is a fun
tion of his

identity. Roughly speaking, an ID-based s
heme is se
ure if no 
oalition of users 
an 
ompromise

the priva
y of any other user. Note, however, that the trusted server 
an 
ompromise the se
urity

of any user (sin
e this 
enter knows all se
rets of the system).

It is easy to see that an ID-based en
ryption s
heme may be 
onverted an (N � 1; N)-key-

insulated en
ryption s
heme by viewing the period number as an \identity" and having the physi
ally-

se
ure devi
e implement the trusted 
enter. The 
onverse is true as well; in other words, a (t;N)-

key-insulated en
ryption s
heme with a fully trusted devi
e may be viewed as a relaxation of ID-

based en
ryption, where we do not insist on t = N � 1. We noti
e that the �rst pra
ti
al ID-based

en
ryption s
heme was proposed only re
ently by Boneh and Franklin [8℄ in the random ora
le

model. Moreover, even though the model of ID-based en
ryption assumes a fully trusted 
enter, it

was observed by [6℄ that the parti
ular s
heme of [8℄ | when viewed as an (N�1; N)-key-insulated

en
ryption s
heme | 
an be very easily modi�ed so that the se
ure devi
e no longer needs to be

trusted. This almost immediately gives a fully se
ure key-insulated en
ryption s
heme. It should

1

Although forward-se
urity also applies to publi
-key en
ryption, forward-se
ure en
ryption s
hemes are not yet

known. The related notion of \perfe
t forward se
re
y" [15℄, where the parties ex
hange ephemeral keys on a per-

session basis, is in
omparable to our notion here.
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be noted, however, that the se
urity of this s
heme is proven in the random ora
le model under a

very spe
i�
, number-theoreti
 assumption. By fo
using on key-insulated se
urity for t� N , as we

do here, s
hemes based on weaker assumptions (in parti
ular, not utilizing the random ora
le whi
h

is the standard model we 
onsider in this paper) and/or with improved eÆ
ien
y and fun
tionality

may be designed. In parti
ular, our results yield several ID-based en
ryption s
hemes whi
h are

provably se
ure in the standard model, when at most t out of N users 
ollude. It is still a big

open problem to design a fully se
ure ID-based (or key-insulated) en
ryption s
heme without the

random ora
le assumption.

2 De�nitions

2.1 The Model

We now provide a formal model for key-insulated se
urity, fo
using on the 
ase of publi
-key

en
ryption (other key-insulated primitives 
an be de�ned similarly; e.g., signature s
hemes are

treated in [16℄). Our de�nition of a key-updating en
ryption s
heme parallels the de�nition of a key-

evolving signature s
heme whi
h appears in [5℄, with one key di�eren
e: in a key-updating s
heme

there is some data (in parti
ular, SK

�

) whi
h is never erased sin
e it is stored on a physi
ally-se
ure

devi
e. However, sin
e the physi
ally-se
ure devi
e may not be fully trusted, new se
urity 
on
erns

arise.

De�nition 1 A key-updating (publi
-key) en
ryption s
heme is a 5-tuple of poly-time algorithms

(G;U

�

;U ; E ;D) su
h that:

� G, the key generation algorithm, is a probabilisti
 algorithm whi
h takes as input a se
urity

parameter 1

k

and the total number of time periods N . It returns a publi
 key PK, a master

key SK

�

, and an initial key SK

0

.

� U

�

, the devi
e key-update algorithm, is a deterministi
 algorithm whi
h takes as input an

index i for a time period (throughout, we assume 1 � i � N) and the master key SK

�

. It

returns the partial se
ret key SK

0

i

for time period i.

� U , the user key-update algorithm, is a deterministi
 algorithm whi
h takes as input an index

i, se
ret key SK

i�1

, and a partial se
ret key SK

0

i

. It returns se
ret key SK

i

for time period i

(and erases SK

i�1

; SK

0

i

).

� E, the en
ryption algorithm, is a probabilisti
 algorithm whi
h takes as input a publi
-key

PK, a time period i, and a message M . It returns a 
iphertext hi; Ci.

� D, the de
ryption algorithm, is a deterministi
 algorithm whi
h takes as input a se
ret key

SK

i

and a 
iphertext hi; Ci. It returns a message M or the spe
ial symbol ?.

We require that for all messages M , D

SK

i

(E

PK

(i;M)) =M .

A key-updating en
ryption s
heme is used as one might expe
t. A user begins by generating

(PK;SK

�

; SK

0

) G(1

k

; N), registering PK in a 
entral lo
ation (just as he would for a standard

publi
-key s
heme), storing SK

�

on a physi
ally-se
ure devi
e, and storing SK

0

himself. At the

beginning of time period i, the user requests SK

0

i

= U

�

(i; SK

�

) from the se
ure devi
e. Using SK

0

i

and SK

i�1

, the user may 
ompute SK

i

= U(i; SK

i�1

; SK

0

i

). This key may be used to de
rypt

messages sent during time period i without further a

ess to the devi
e. After 
omputation of SK

i

,

4



the user must erase SK

0

i

and SK

i�1

. Note that en
ryption is always performed with respe
t to a

�xed publi
 key PK whi
h need not be 
hanged. Also note that the 
ase when the devi
e is fully

trusted 
orresponds to SK

0

=? and SK

i

= SK

0

i

.

Random-A

ess Key Updates. All the s
hemes we 
onstru
t will have a useful property we


all random-a

ess key updates. For any 
urrent period j and any desired period i, it is possible to

update the se
ret key from SK

j

to SK

i

in \one shot". Namely, we 
an generalize the key updating

algorithms U

�

and U to take a pair of periods i and j su
h that U

�

((i; j); SK

�

) outputs the partial

key SK

0

ij

and U((i; j); SK

j

; SK

0

ij

) outputs SK

i

. Our de�nition above impli
itly �xes j = i� 1. We

remark that random-a

ess key updates are impossible to a
hieve in the forward-se
urity model.

2.2 Se
urity

The are three types of exposures we prote
t against: (1) ordinary key exposure, whi
h models

(repeated) 
ompromise of the inse
ure storage (i.e., leakage of SK

i

); (2) key-update exposure, whi
h

models (repeated) 
ompromise of the inse
ure devi
e during the key-updating step (i.e., leakage of

SK

i�1

and SK

0

i

); and (3) master key exposure, whi
h models 
ompromise of the physi
ally-se
ure

devi
e (i.e., leakage of SK

�

; this in
ludes the 
ase when the devi
e itself is untrusted).

To formally model key exposure atta
ks, we give the adversary a

ess to two (possibly three)

types of ora
les. The �rst is a key exposure ora
le Exp

SK

�

;SK

0

(�) whi
h, on input i, returns the

temporary se
ret key SK

i

(note that SK

i

is uniquely de�ned by SK

�

and SK

0

). The se
ond is a

left-or-right en
ryption ora
le [4℄, LR

PK;

~

b

(�; �; �), where

~

b = b

1

: : : b

N

2 f0; 1g

N

, de�ned as:

LR

PK;

~

b

(i;M

0

;M

1

)

def

= E

PK

(i;M

b

i

)

This models en
ryption requests by the adversary for time periods and message pairs of his 
hoi
e.

We allow the adversary to interleave en
ryption requests and key exposure requests, and in parti
-

ular the key exposure requests of the adversary may be made adaptively and in any order. Finally,

we may also allow the adversary a

ess to a de
ryption ora
le D

�

SK

�

;SK

0

(�) that, on input hi; Ci,


omputes D

SK

i

(hi; Ci). This models a 
hosen-
iphertext atta
k by the adversary.

The ve
tor

~

b for the left-or-right ora
le will be 
hosen randomly, and the adversary su

eeds

by guessing the value of b

i

for any un-exposed time period i. Informally, a s
heme is se
ure if any

probabilisti
 polynomial time (PPT) adversary has su

ess negligibly 
lose to 1=2. More formally:

De�nition 2 Let � = (G;U

�

;U ; E ;D) be a key-updating en
ryption s
heme. For adversary A,

de�ne the following:

Su



A;�

(k)

def

= Pr

h

(PK;SK

�

; SK

0

) G(1

k

; N);

~

b f0; 1g

N

;

(i; b

0

) A

LR

PK;

~

b

(�;�;�);Exp

SK

�

;SK

0

(�);O(�)

(PK) : b

0

= b

i

i

;

where i was never submitted to Exp

SK

�

;SK

0

(�), and O(�) =? for a plaintext-only atta
k and O(�) =

D

�

SK

�

;SK

0

(�) for a 
hosen-
iphertext atta
k (in the latter 
ase the adversary is not allowed to query

D

�

(hi; Ci) if hi; Ci was returned by LR(i; �; �)). � is (t;N)-key-insulated if, for any PPT A who

submits at most t requests to the key-exposure ora
le, jSu



A;�

(k)� 1=2j is negligible.

As mentioned above, we may also 
onsider atta
ks in whi
h an adversary breaks in to the user's

storage while a key update is taking pla
e (i.e., the exposure o

urs between two periods i � 1

and i); we 
all this a key-update exposure at period i. In this 
ase, the adversary re
eives SK

i�1

,

5



SK

0

i

, and (
an 
ompute) SK

i

. Informally, we say a s
heme has se
ure key updates if a key-update

exposure at period i is equivalent to key exposures at periods i � 1 and i and no more. More

formally:

De�nition 3 Key-updating en
ryption s
heme � has se
ure key updates if the view of any adver-

sary A making a key-update exposure request at period i 
an be perfe
tly simulated by an adversary

A

0

who makes key exposure requests at periods i� 1 and i.

This property is desirable in real-world implementations of a key-updating en
ryption s
heme sin
e

an adversary who gains a

ess to the user's storage is likely to have a

ess for several 
onse
utive

time periods (i.e., until the user dete
ts or re-boots), in
luding the key updating steps.

We also 
onsider atta
ks whi
h 
ompromise the physi
ally-se
ure devi
e (this in
ludes atta
ks

in whi
h this devi
e is untrusted). Here, our de�nition requires that the en
ryption s
heme be

se
ure against an adversary whi
h is given SK

�

as input. Note that we do not require se
urity

against an adversary who 
ompromises both the user's storage and the se
ure devi
e | in our

model this is impossible sin
e, given SK

�

and SK

i

, an adversary 
an 
ompute SK

j

(at least for

j > i) by himself.

De�nition 4 Let � be a key-updating s
heme whi
h is (t;N)-key-insulated. For any adversary B,

de�ne the following:

Su



B;�

(k)

def

= Pr

h

(PK;SK

�

; SK

0

) G(1

k

; N);

~

b f0; 1g

N

;

(i; b

0

) B

LR

PK;

~

b

(�;�;�);O(�)

(PK;SK

�

) : b

0

= b

i

i

;

where O(�) =? for a plaintext-only atta
k and O(�) = D

�

SK

�

;SK

0

(�) for a 
hosen-
iphertext atta
k (in

the latter 
ase the adversary is not allowed to query D

�

(hi; Ci) if hi; Ci was returned by LR(i; �; �)).

� is strongly (t;N)-key-insulated if, for any PPT B, jSu



B;�

(k) � 1=2j is negligible.

3 Generi
 Semanti
ally-Se
ure Constru
tion

Let (G;E;D) be any semanti
ally se
ure en
ryption s
heme. Rather than giving a separate (by

now, standard) de�nition, we may view it simply as a (0; 1)-key-insulated s
heme. Namely, only one

se
ret key SK is present, and any PPT adversary, given PK and the left-or-right-ora
le LR

PK;b

,


annot predi
t b with su

ess non-negligibly di�erent from 1=2. Hen
e, our 
onstru
tion below 
an

be viewed as an ampli�
ation of a (0; 1)-key-insulated s
heme into a general (t;N)-key-insulated

s
heme.

We will assume below that t; logN = O(poly(k)), where k is our se
urity parameter. Thus, we

allow exponentially-many periods, and 
an tolerate exposure of any polynomial number of keys.

We assume that E operates on messages of length ` = `(k), and 
onstru
t a (t;N)-key-insulated

s
heme operating on messages of length L = L(k).

Auxiliary Definitions. We need two auxiliary de�nitions: that of an all-or-nothing trans-

form [35, 9℄ (AONT) and a 
over-free family [19, 17℄. Informally, an AONT splits the message M

into n se
ret shares x

1

; : : : ; x

n

(and possibly one publi
 share z), and has the property that (1)

the message M 
an be eÆ
iently re
overed from all the shares x

1

; : : : ; x

n

; z, but (2) missing even a

single share x

j

gives \no information" about M . As su
h, it is a generalization of (n� 1; n)-se
ret

sharing. We formalize this, modifying the 
onventional de�nitions [9, 10℄ to a form more 
ompatible

with our prior notation.
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De�nition 5 An eÆ
ient randomized transformation T is 
alled an (L; `; n)-AONT if: (1) on

input M 2 f0; 1g

L

, T outputs (X; z)

def

= (x

1

; : : : ; x

n

; z), where x

j

2 f0; 1g

`

; (2) there exists an

eÆ
ient inverse fun
tion I su
h that I(X; z) =M ; (3) T satis�es the indistinguishability property

des
ribed below.

Let X

�j

= (x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

) and T

�j

(M) = (X

�j

; z), where (X; z)  T (M). De�ne the

left-or-right ora
le LR

b

(j;M

0

;M

1

)

def

= T

�j

(M

b

), where b 2 f0; 1g. For any PPT A, we let

Su



A;T

(k)

def

= Pr[b f0; 1g; b

0

 A

LR

b

(�;�;�)

(1

k

) : b

0

= b℄

We require that jSu



A;T

(k)� 1=2j is negligible.

A family of subsets S

1

; : : : ; S

N

over some universe U is said to be t-
over-free if no t subsets

S

i

1

; : : : ; S

i

t


ontain a (di�erent) subset S

i

0

; in other words, for all fi

0

; : : : ; i

t

g with i

0

62 fi

1

; : : : ; i

t

g,

we have S

i

0

6� [

t

j=1

S

i

j

. A family is said to be (t; �)-
over-free, where 0 < � < 1, if, for all

fi

0

; : : : ; i

t

g with i

0

62 fi

1

; : : : ; i

t

g, we have jS

i

0

n [

t

j=1

S

i

j

j � �jS

i

0

j. Su
h families are well known

and have been used several times in 
ryptographi
 appli
ations [11, 30, 21℄. In what follows, we �x

� = 1=2 for simpli
ity, and will use the following (essentially optimal) result, non-
onstru
tively

proven by [19℄ and subsequently made eÆ
ient by [30, 25℄.

Theorem 1 ([19, 30, 25℄) For any N and t, one 
an eÆ
iently 
onstru
t a (t;

1

2

)-
over-free 
ol-

le
tion of N subsets S

1

; : : : ; S

N

of U = f1; : : : ; ug with jS

i

j = n for all i, satisfying u = �(t

2

logN)

and n = �(t logN).

Sin
e we assumed that t; logN = O(poly(k)), we have u; n = O(poly(k)) as well.

Constru
tion. For simpli
ity, we �rst des
ribe the s
heme whi
h is not strongly se
ure (see

De�nition 4), and then show a modi�
ation making it strongly se
ure. Let S

1

; : : : ; S

N

� [u℄

def

=

f1; : : : ; ug be the (t;

1

2

)-
over-free family of n-element sets, as given by Theorem 1. Also, let T

be a se
ure (L; `; n)-AONT. Our (t;N)-key-insulated s
heme will have a set of u independent

en
ryption/de
ryption keys (sk

r

; pk

r

) for our basi
 en
ryption E, of whi
h only the subset S

i

will

be used at time period i. Spe
i�
ally, the publi
 key of the s
heme will be PK = fpk

1

; : : : ; pk

u

g,

the se
ret key at time i will be SK

i

= fsk

r

: r 2 S

i

g, and the master key (for now) will be

SK

�

= fsk

1

; : : : ; sk

u

g. We de�ne the en
ryption of M 2 f0; 1g

L

at time period i as:

E

PK

(i;M) = h i; (E

pk

r

1

(x

1

); : : : ; E

pk

r

n

(x

n

); z) i;

where (x

1

; : : : ; x

n

; z)  T (M) and S

i

= fr

1

; : : : ; r

n

g. To de
rypt hi; (y

1

; : : : ; y

n

; z)i using SK

i

=

fsk

r

: r 2 S

i

g, the user �rst re
overs the x

j

's from the y

j

's using D, and then re
overs the

message M = I(x

1

; : : : ; x

n

; z). Key updates are trivial: the devi
e sends the new key SK

i

and

the user erases the old key SK

i�1

. Obviously, the s
heme supports se
ure key updates as well as

random-a

ess key updates.

Se
urity. We sket
h the intuition for (t;N)-key-insulated se
urity of this s
heme. The de�nition

of the AONT implies that the system is se
ure at time period i provided the adversary misses at least

one key sk

r

, where r 2 S

i

. Indeed, semanti
 se
urity of E implies that the adversary 
ompletely

misses the shares en
rypted with sk

r

in this 
ase, and hen
e has no information about the message

M . On the other hand, if the adversary learn any t keys SK

i

1

; : : : ; SK

i

t

, he learns the auxiliary keys

fsk

r

: r 2 S

i

1

[S

i

2

: : :[S

i

t

g. Hen
e, the ne
essary and suÆ
ient 
ondition for (t;N)-key-insulated

se
urity is exa
tly the t-
over freeness of the S

i

's! The parameter � =

1

2

is used to improve the

exa
t se
urity of our redu
tion.
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Theorem 2 The generi
 s
heme � des
ribed above is (t;N)-key-insulated with se
ure key updates,

provided (G;E;D) is semanti
ally-se
ure, T is a se
ure (L; `; n)-AONT, and the family S

1

; : : : ; S

N

is (t;

1

2

)-
over-free. Spe
i�
ally, breaking the se
urity of � with advantage " implies the same for

either (G;E;D) or T with advantage at least 
("=t).

Proof: Let A be the adversary for � with Su



A;�

(k) =

1

2

+ ". First, we 
reate the following

adversary A

0

su
h that Su



A

0

;�

�

1

2

+ " �

�n

u

=

1

2

+ 
(

"

t

). A

0

�rst pi
ks a random index r 2 [u℄.

Then it runs A up to the point when A outputs (i; b

0

). At this stage, A

0

looks at indi
es i

1

; : : : ; i

t

of the t exposed time periods, and 
he
ks if r 2 S

i

n [

t

j=1

S

i

j

. If this test su

eeds, A

0

also outputs

(i; b

0

). Else, it outputs (i; 
), where 
 is a random bit. In other words, A

0

uses the output of

A provided the guess r is su
h that sk

r

is used at period i but A did not learn sk

r

. Sin
e A


annot output i 2 fi

1

: : : i

t

g and sin
e our family is (t;

1

2

)-
over-free, there are at least �jS

i

j = n=2

indi
es r

0

2 S

i

n [

t

j=1

S

i

j

. Also, sin
e A

0


hose r 2 [u℄ at random and independently of the run

of A, with probability at least q =

n

2u

= 
(

1

t

) we get that A

0

will use the output of A, so that

Su



A

0

;�

� (1� q)

1

2

+ q(

1

2

+ ") �

1

2

+
(

"

t

), as 
laimed.

Next, we 
reate a more favorable environment for A

0

to simplify the proof. Right after A

0

pi
ks

its random r, we give A

0

the se
ret keys sk

p

for all p 6= r. At this point, there is no need to

en
rypt with any keys other than pk

r

(A

0


an de
rypt anyway). Moreover, there is no need for

our environment to pi
k a full-
edged N -bit ve
tor

~

b; rather, only b

i

's su
h that r 2 S

i

should be


hosen. In fa
t, rather than 
hoosing the b

i

's (where r 2 S

i

) independently, we 
hoose only one

random bit b and set b

i

= b for all i s.t. r 2 S

i

. Clearly, this only helps A

0

.

2

Sin
e A

0

is 
ommitted

to output a non-random bit b

0

only for period i su
h that r 2 S

i

and the original adversary A did

not learn sk

r

, we get that Pr(b

0

= b) �

1

2

+
(

"

t

) in the modi�ed environment.

To summarize, we 
an assume A

0

runs in the following environment Env

0

. A

0

pi
ks a random

r 2 [u℄. We pi
k a random key pair (sk

r

; pk

r

) for E and a random bit b 2 f0; 1g. We give A

0

the publi
 key pk

r

, and a

ess to the \redu
ed" left-or-right ora
le LR

0

pk

r

;b

(i;M

0

;M

1

) whi
h 
an

be 
alled only for i satisfying r 2 S

i

. The ora
le runs (X; z)  T (M

b

), and returns the following:

(T

�j

(M

b

); E

pk

r

(x

j

)), where j 2 [n℄ is the position of r inside S

i

. The goal of A

0

is to predi
t b, and

we assumed that it does so 
orre
tly with probability q

0

= Pr(b = b

0

j Env

0

) �

1

2

+
(

"

t

).

Next, we run A

0

in a di�erent environment Env

1

. It is identi
al to Env

0

ex
ept that on left-

or-right query (i;M

0

;M

1

) (where r 2 S

i

), rather than returning (T

�j

(M

b

); E

pk

r

(x

j

)), Env

1

instead

returns (T

�j

(M

b

); E

pk

r

(0)). Namely, it en
rypts the all-zero string 0 instead of the share x

j

. We

let q

1

= Pr(b = b

0

j Env

1

).

The proof is now almost 
omplete. The fa
t that q

0

�

1

2

+ 
(

"

t

) implies that either: (a)

q

0

� q

1

� 
(

"

t

); or (b) q

1

�

1

2

+
(

"

t

). We show that either 
ase is a 
ontradi
tion: 
ase (a) to the

indistinguishability of en
ryption E, while 
ase (b) to the indistinguishability of AONT T .

Case (a): If q

0

� q

1

� 
(

"

t

), we break the indistiguishability of E by means of the following

adversary A

1

whi
h in turn runs A

0

as follows. When A

0


hooses r 2 [u℄, A

1

views the publi
 key

of E as pk

r

and pi
ks a random b 2 f0; 1g. From now on, A

1

runs A

0

and answers the left-or-right

queries (i;M

0

;M

1

) of A

0

as follows. If r 62 S

i

, it ignores it. Else, it sets (X; z) T (M

b

), and gives

its own left-or-right ora
le the query (x

j

; 0), where j is the position of r inside S

i

. When it gets y

(en
ryption of either x

j

or 0) ba
k from its ora
le, it returns to A

0

the answer (X

�j

; z; y). When

A

0

�nally outputs its guess b

0

, A

1


he
ks if b = b

0

. If so, it guesses its own bit d was 0 (i.e., x

j

was

always en
rypted), else that it was 1 (0 was always en
rypted). It is easy to see that if d = 0, we

2

One way to see this is to imagine that we pi
ked all the b

i

's independently, then pi
ked a random b and told A

0

the set of i su
h that b

i

= b (and thus, the set of i where b

i

= 1� b), but did not dis
lose b.

8



exa
tly run A

0

in Env

0

, else | exa
tly in Env

1

. Hen
e, A

1

predi
ts d 
orre
tly with probability

1

2

(1� q

1

) +

1

2

q

0

�

1

2

+
(

"

t

), 
ontradi
ting the se
urity of E.

Case (b): If q

1

�

1

2

+ 
(

"

t

), we break the indistingushability of T by means of the following

adversary A

2

whi
h in turn runs A

0

as follows. A

2

pi
ks a random key (pk

r

; sk

r

) and runs A

0

up

to 
ompletion, outputting the same b

0

as A

0

does. To answer the left-or-right-query (i;M

0

;M

1

),

where r 2 S

i

, A

2


alls its own ora
le of (j;M

0

;M

1

), where j is the position of r inside S

i

. It gets

ba
k T

�j

(M

b

), and returns A

0

the pair (T

�j

(M

b

); E

pk

r

(0)). Clearly, A

2

exa
tly re
reates Env

1

, and

hen
e predi
ts its own b with probability q

1

�

1

2

+
(

"

t

), 
ontradi
ting se
urity of T .

Strong Key-Insulated Se
urity. The above s
heme is not strongly (t;N)-key-insulated sin
e

the devi
e stores all the se
ret keys (sk

1

; : : : ; sk

u

). However, we 
an easily �x this problem. The user

generates one extra key pair (sk

0

; pk

0

). It publishes pk

0

together with the other publi
 keys, but

keeps sk

0

for itself (never erasing it). Assuming now that T produ
es n+1 se
ret shares x

0

; : : : ; x

n

rather than n, we just en
rypt the �rst share x

0

with pk

0

(and the others, as before, with the


orresponding keys in S

i

). Formally, let S

0

i

= S

i

[f0g, the master key is still SK

�

= fsk

1

; : : : ; sk

u

g,

but now PK = fpk

0

; pk

1

; : : : ; pk

u

g and the i-th se
ret key is SK

i

= fsk

r

: r 2 S

0

i

g. Strong

key-insulated se
urity of this s
heme follows a similar argument as in Theorem 2.

Effi
ien
y. The main parameters of the s
heme are: (1) the size of PK and SK

�

are both u =

O(t

2

logN); and (2) the user's storage and the number of lo
al en
ryptions per global en
ryption

are both n = O(t logN). In parti
ular, the surprising aspe
t of our 
onstru
tion is that it supports

an exponential number of periods N and the main parameters depend mainly on t, the number

of exposures we allow. Sin
e t is usually quite small (say, t = O(1) and 
ertainly t � N), we

obtain good parameters 
onsidering the generality of the s
heme. (In Se
tion 4 we use a spe
i�


en
ryption s
heme and a
hieve jPKj; jSK

�

j = O(t) and jSK

i

j = O(1).)

Additionally, the 
hoi
e of a se
ure (L; `; n)-AONT de�nes the tradeo� between the number

of en
rypted bits L 
ompared to the total en
ryption size, whi
h is (�n` + jzj), where � is the

expansion of E, and jzj is the size of the publi
 share. In parti
ular, if L = `, we 
an use any

traditional (n� 1; n)-se
ret sharing s
heme (e.g., Shamir's s
heme [37℄, or even XOR-sharing: pi
k

random x

j

's subje
t to M =

L

x

j

). This way we have no publi
 part, but the 
iphertext in
reases

by a fa
tor of �n as 
ompared to the plaintext. Computationally-se
ure AONT's allow for better

tradeo�s. For example, using either the 
omputational se
ret sharing s
heme of [28℄, or the AONT


onstru
tions of [10℄, we 
an a
hieve jzj = L, while ` 
an be as small as the se
urity parameter

k (in parti
ular, ` � L). Thus, we get additive in
rease �n`, whi
h is essentially independent of

L. Finally, in the random ora
le model, we 
ould use the 
onstru
tion of [9℄ a
hieving jzj = 0,

L = `(n � 1), so the 
iphertext size is �`n � �L. Finally, in pra
ti
e one would use the above

s
heme to en
rypt a random key K (whi
h is mu
h shorter thanM) for a symmetri
-key en
ryption

s
heme, and 
on
atenate to this the symmetri
-key en
ryption of M using K.

Adaptive vs. Non-adaptive adversaries. Theorem 2 holds for an adaptive adversary who

makes key exposure requests based on all information 
olle
ted so far. We noti
e, however, that

both the se
urity and the eÆ
ien
y of our 
onstru
tion 
ould be somewhat improved for non-

adaptive adversaries, who 
hoose the key-exposure periods i

1

; : : : ; i

t

at the outset of the proto
ol

(whi
h is the model of [39, 31, 2℄). For example, it is easy to see that we no longer lose the fa
tor

t in the se
urity of our redu
tion in Theorem 2. As for the eÆ
ien
y, instead of using an AONT

(whi
h is essentially an (n � 1; n)-se
ret sharing s
heme), we 
an now use any (n=2; n)-\ramp"

se
ret sharing s
heme [7℄. This means that n shares re
onstru
t the se
ret, but any n=2 shares

yield no information about the se
ret. Indeed, sin
e our family is (t;

1

2

)-
over-free, any non-exposed

9



period will have the adversary miss more than half of the relevant se
ret keys. For non-adaptive

adversaries, we know at the outset whi
h se
ret keys are non-exposed, and 
an use a simple hybrid

argument over these keys to prove the se
urity of the modi�ed s
heme. For example, we 
an use

the \ramp" generalization of Shamir's se
ret sharing s
heme

3

proposed by Franklin and Yung [20℄,

and a
hieve L = `n=2 instead of L = ` resulting from regular Shamir's (n� 1; n)-s
heme.

4 Semanti
 Se
urity Based on DDH

In this se
tion, we present an eÆ
ient strongly (t;N)-key-insulated s
heme, whose semanti
 se
urity


an be proved under the DDH assumption.

We �rst des
ribe the basi
 en
ryption s
heme we build upon. The key generation algorithm

Gen(1

k

) sele
ts a random prime q with jqj = k su
h that p = 2q+1 is prime. This de�nes a unique

subgroup G � Z

�

p

of size q in whi
h the DDH assumption is assumed to hold; namely, it is hard

to disinguish a random tuple (g; h; u; v) of four independent elements in G from a random tuple

satisfying log

g

u = log

h

v. Given group G , key generation pro
eeds by sele
ting random elements

g; h 2 G and random x; y 2 Z

q

. The publi
 key 
onsists of g; h, and the Pedersen 
ommitment [34℄

to x and y: z = g

x

h

y

. The se
ret key 
ontains both x and y. To en
rypt M 2 G , 
hoose random

r 2 Z

q

and 
ompute (g

r

; h

r

; z

r

M). To de
rypt (u; v; w), 
ompute M = w=u

x

v

y

. This s
heme is

very similar to El Gamal en
ryption [18℄, ex
ept it uses two generators. It has been re
ently used

by [27℄ in a di�erent 
ontext.

Our S
heme. Our (t;N)-key-insulated s
heme builds on the above basi
 en
ryption s
heme and

is presented in Figure 1. The key di�eren
e is that, after 
hoosing G ; g; h; as above, we sele
t two

random polynomials f

x

(�)

def

=

P

t

j=0

x

�

j

�

j

and f

y

(�)

def

=

P

t

j=0

y

�

j

�

j

over Z

q

of degree t. The publi


key 
onsists of g; h and Pedersen 
ommitments fz

�

0

; : : : ; z

�

t

g to the 
oeÆ
ients of the two polynomials

(see Figure 1). The user stores the 
onstant terms of the two polynomials (i.e., x

�

0

and y

�

0

) and

the remaining 
oeÆ
ients are stored by the physi
ally-se
ure devi
e. To en
rypt during period i,

�rst z

i

is 
omputed from the publi
 key as z

i

def

= �

t

j=0

(z

�

j

)

i

j

. Then (similar to the basi
 s
heme),

en
ryption of message M is done by 
hoosing r 2 Z

q

at random and 
omputing hi; (g

r

; h

r

; z

r

i

M)i.

Using our notation from above, it is 
lear that z

i

= g

f

x

(i)

h

f

y

(i)

. Thus, as long as the user has se
ret

key SK

i

= (f

x

(i); f

y

(i)) during period i, de
ryption during that period may be done just as in the

basi
 s
heme. As for key evolution, the user begins with SK

0

= (x

�

0

; y

�

0

) = (f

x

(0); f

y

(0)). At the

start of any period i, the devi
e transmits partial key SK

0

i

= (x

0

i

; y

0

i

) to the user. Note that (
f.

Figure 1) x

0

i

= f

x

(i)� f

x

(i� 1) and y

0

i

= f

y

(i)� f

y

(i� 1). Thus, sin
e the user already has SK

i�1

,

the user may easily 
ompute SK

i

from these values. At this point, the user erases SK

i�1

, and uses

SK

i

to de
rypt for the remainder of the time period.

Theorem 3 Under the DDH assumption, the en
ryption s
heme of Figure 1 is strongly (t;N)-

key-insulated under plaintext-only atta
ks. Furthermore, it has se
ure key updates and supports

random-a

ess key updates.

Proof: Showing se
ure key updates is trivial, sin
e an adversary who exposes keys SK

i�1

and

SK

i


an 
ompute the value SK

0

i

by itself (and thereby perfe
tly simulate a key-update exposure at

period i). Similarly, random-a

ess key updates 
an be done using partial keys SK

0

ij

= (x

0

ij

; y

0

ij

),

3

Here the message length L = `n=2, and the `-bit parts m

1

; : : : ;m

n=2

of M are viewed as the n=2 lower order


oeÆ
ients of an otherwise random polynomial of degree (n � 1) over GF [2

`

℄. This polynomial is then evaluated at

n points of GF [2

`

℄ to give the �nal n shares.
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G(1

k

): (g; h; q)  Gen(1

k

); x

�

0

; y

�

0

; : : : ; x

�

t

; y

�

t

 Z

q

z

�

0

:= g

x

�

0

h

y

�

0

; : : : ; z

�

t

:= g

x

�

t

h

y

�

t

PK := (g; h; q; z

�

0

; : : : ; z

�

t

)

SK

�

:= (x

�

1

; y

�

1

; : : : ; x

�

t

; y

�

t

); SK

0

:= (x

�

0

; y

�

0

)

return PK;SK

�

; SK

0

U

�

(i; SK

�

= (x

�

1

; y

�

1

; : : : ; x

�

t

; y

�

t

)):

x

0

i

:=

P

t

j=1

x

�

j

�

i

j

� (i� 1)

j

�

y

0

i

:=

P

t

j=1

y

�

j

�

i

j

� (i� 1)

j

�

return SK

0

i

= (x

0

i

; y

0

i

)

U(i; SK

i�1

= (x

i�1

; y

i�1

); SK

0

i

= (x

0

i

; y

0

i

)):

x

i

:= x

i�1

+ x

0

i

y

i

:= y

i�1

+ y

0

i

return SK

i

= (x

i

; y

i

)

E

(g;h;q;z

�

0

;:::;z

�

y

)

(i;M):

z

i

:= �

t

j=0

(z

�

j

)

i

j

r  Z

q

C := (g

r

; h

r

; z

r

i

M)

return hi; Ci

D

(x

i

;y

i

)

(hi; C = (u; v; w)i):

M := w=u

x

i

v

y

i

return M

Figure 1: Semanti
ally-se
ure key-updating en
ryption s
heme based on DDH.

where x

0

ij

= f

x

(i) � f

x

(j), y

0

ij

= f

y

(i) � f

y

(j). The user 
an then 
ompute x

i

= x

j

+ x

0

ij

and

y

i

= y

j

+ y

0

ij

.

We now show that the s
heme satis�es De�nition 2. By a standard hybrid argument [4℄, it is

suÆ
ient to 
onsider an adversary A who asks a single query to its left-or-right ora
le (for some

time period i of A's 
hoi
e) and must guess the value b

i

. So we assume A makes only a single query

to the LR ora
le during period i for whi
h it did not make a key exposure request. In the original

experiment (
f. Figure 1), the output of LR

PK;

~

b

(i;M

0

;M

1

) is de�ned as follows: 
hoose r 2 Z

q

at

random and output hi; (g

r

; h

r

; z

r

i

M

b

i

)i. Given a tuple (g; h; u; v) whi
h is either a DDH tuple or

a random tuple, modify the original experiment as follows: the output of LR

PK;

~

b

(i;M

0

;M

1

) will

be hi; (u; v; u

x

i

v

y

i

M

b

)i. Note that if (g; h; u; v) is a DDH tuple, then this is a perfe
t simulation of

the original experiment. On the other hand, if (g; h; u; v) is a random tuple then, under the DDH

assumption, the su

ess of any ppt adversary in this modi�ed experiment 
annot di�er by more

than a negligible amount from its su

ess in the original experiment. It is important to note that,

in running the experiment, we 
an answer all of A's key exposure requests 
orre
tly sin
e all se
ret

keys are known. Thus, in 
ontrast to [39, 31℄, we may handle an adaptive adversary who 
hooses

when to make key exposure requests based on all information seen during the experiment.

Assume now that (g; h; u; v) is a random tuple and log

g

h 6= log

u

v (this will o

ur with all

but negligible probability). We 
laim that the adversary's view in the modi�ed experiment is

independent of

~

b. Indeed, the adversary knows only t values of f

x

(�) and f

y

(�) (at points other than

i), and sin
e both f

x

(�) and f

y

(�) are random polynomials of degree t, the values x

i

; y

i

(= f

x

(i); f

y

(i))

are information-theoreti
ally uniformly distributed, subje
t only to:

log

g

z

i

= x

i

+ y

i

log

g

h: (1)

Consider the output hi; (u; v; u

x

i

v

y

i

M

b

)i of the en
ryption ora
le. Sin
e:

log

u

(u

x

i

v

y

i

) = x

i

+ y

i

log

u

v; (2)

and (1) and (2) are linearly independent, the 
onditional distribution of u

x

i

v

y

i

(
onditioned on b

i

and the adversary's view) is uniform. Thus, the adversary's view is independent of b

i

(and hen
e

11



~

b). This implies that the su

ess probability of A in this modi�ed experiment is 1=2, and hen
e the

su

ess probability of A in the original experiment is at most negligibly di�erent from 1=2.

We now 
onsider se
urity against (
ompromises of) the physi
ally-se
ure devi
e; in this 
ase,

there are no key exposure requests but the adversary learns SK

�

. Again, it is suÆ
ient to 
onsider

an adversary who asks a single query to its left-or-right ora
le (for time period i of its 
hoi
e)

and must guess the value b

i

. Sin
e SK

�

only 
ontains the t highest-order 
oeÆ
ients of t-degree

polynomials, the pair (x

i

; y

i

) is information-theoreti
ally uniformly distributed (for all i) subje
t

to x

i

+ y

i

log

g

h = log

g

z

i

. An argument similar to that given previously shows that the su

ess

probability of the adversary is at most negligibly better than 1=2, and hen
e the s
heme satis�es

De�nition 4.

5 Chosen-Ciphertext Se
urity Based on DDH

We may modify the s
heme given in the previous se
tion so as to be resistant to 
hosen-
iphertext

atta
ks. In doing so, we build upon the 
hosen-
iphertext-se
ure (standard) publi
-key en
ryption

s
heme of Cramer and Shoup [12℄.

G(1

k

): (g; h; q) Gen(1

k

); H  CRHF(1

k

)

for i = 0 to t and n = 0 to 2:

x

�

i;n

; y

�

i;n

 Z

q

for i = 0 to t:

z

�

i

:= g

x

�

i;0

h

y

�

i;0

; 


�

i

:= g

x

�

i;1

h

y

�

i;1

; d

�

i

:= g

x

�

i;2

h

y

�

i;2

PK := (g; h; q;H; fz

�

i

; 


�

i

; d

�

i

g

0�i�t

)

SK

�

:= (fx

�

i;n

; y

�

i;n

g

1�i�t; 0�n�2

); SK

0

:= (fx

�

0;n

; y

�

0;n

g

0�n�2

)

return PK;SK

�

; SK

0

U

�

(i; SK

�

):

for n = 0 to 2:

x

0

i;n

:=

P

t

j=1

x

�

j;n

�

i

j

� (i� 1)

j

�

y

0

i;n

:=

P

t

j=1

y

�

j;n

�

i

j

� (i� 1)

j

�

return SK

0

i

= (fx

0

i;n

; y

0

i;n

g

0�n�2

)

U(i; SK

i�1

; SK

0

i

):

for n = 0 to 2:

x

i;n

= x

i�1;n

+ x

0

i;n

y

i;n

= y

i�1;n

+ y

0

i;n

return SK

i

= (fx

i;n

; y

i;n

g

0�n�2

)

E

PK

(i;M):

z

i

:= �

t

j=0

(z

�

j

)

i

j

; 


i

:= �

t

j=0

(


�

j

)

i

j

d

i

:= �

t

j=0

(d

�

j

)

i

j

r  Z

q

C := (g

r

; h

r

; z

r

i

M; (


i

d

�

i

)

r

);

where �

def

= H(i; g

r

; h

r

; z

r

i

M)

return hi; Ci

D

SK

i

(hi; (u; v; w; e)i):

� := H(i; u; v; w)

if u

x

i;1

+x

i;2

�

v

y

i;1

+y

i;2

�

6= e

return ?

else M := w=u

x

i;0

v

y

i;0

return M

Figure 2: Chosen-
iphertext-se
ure key-updating en
ryption s
heme based on DDH.

We brie
y review the \basi
" Cramer-Shoup s
heme (in part to 
onform to the notation used

in Figure 2). Given generators g; h of group G (as des
ribed in the previous se
tion), se
ret keys

fx

n

; y

n

g

0�n�2

are 
hosen randomly from Z

q

. Then, publi
-key 
omponents z = g

x

0

h

y

0

, 
 = g

x

1

h

y

1

,

and d = g

x

2

h

y

2

are 
omputed. In addition, a fun
tion H is randomly 
hosen from a family of

universal one-way hash fun
tions (UOWHF's). The publi
 key is (g; h; q; z; 
; d;H).
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To en
rypt a message M 2 G , a random element r 2 Z

q

is 
hosen and the 
iphertext is:

(g

r

; h

r

; z

r

M; (
d

�

)

r

), where � = H(g

r

; h

r

; z

r

M). To de
rypt a 
iphertext (u; v; w; e), we �rst 
he
k

whether u

x

1

+x

2

�

v

y

1

+y

2

�

= e. If not, we output ?. Otherwise, we output M = w=u

x

0

v

y

0

.

In our extended s
heme (
f. Figure 2), we 
hoose six random, degree-t polynomials (over Z

q

) f

x

0

,

f

y

0

, f

x

1

, f

y

1

, f

x

2

, and f

y

2

, where f

x

n

(�)

def

=

P

t

j=0

x

�

j;n

�

j

and f

y

n

(�)

def

=

P

t

j=0

y

�

j;n

�

j

for 0 � n � 2.

The user stores the 
onstant term of ea
h of these polynomials, and the remaining 
oeÆ
ients are

stored by the physi
ally-se
ure devi
e. The publi
 key 
onsists of g; h;H, and Pedersen 
ommit-

ments to the 
oeÆ
ients of these polynomials. Here, H is 
hosen from a family of 
ollision-resistant

hash fun
tions (CRHF's). For su
h a fun
tion H, it is infeasible to �nd two distin
t inputs m

1

and

m

2

su
h that H(m

1

) = H(m

2

).

To en
rypt during period i, a user �rst 
omputes z

i

; 


i

, and d

i

by evaluating the polynomials

\in the exponent" (see Figure 2). Then, similar to the basi
 s
heme, en
ryption of M is performed

by 
hoosing random r 2 Z

q

and 
omputing hi; (g

r

; h

r

; z

r

i

M; (


i

d

�

i

)

r

)i, where �

def

= H(i; g

r

; h

r

; z

r

i

M).

Note that we now in
lude the period i in the hash fun
tion; this will be important in the analysis.

Also noti
e that z

i

= g

f

x

0

(i)

h

f

y

0

(i)

, 


i

= g

f

x

1

(i)

h

f

y

1

(i)

, and d

i

= g

f

x

2

(i)

h

f

y

2

(i)

. Thus, the user 
an

de
rypt (just as in the basi
 s
heme) as long as he has f

x

n

(i); f

y

n

(i) for 0 � n � 2. The period

se
ret key SK

i


ontains exa
tly these values.

Theorem 4 Under the DDH assumption, the en
ryption s
heme of Figure 2 is strongly (t;N)-

key-insulated under 
hosen-
iphertext atta
ks. Furthermore, the s
heme has se
ure key updates and

supports random-a

ess key updates.

Proof: That the s
heme has se
ure key updates is trivial, sin
e SK

0

i

may be 
omputed from

SK

i�1

and SK

i

. Random-a

ess key updates are done analogously to the s
heme of the previous

se
tion. We now show the key-insulated se
urity of the s
heme (
f. De�nition 2). A standard hybrid

argument [4℄ shows that it is suÆ
ient to 
onsider an adversary A who makes only a single request

to its left-or-right ora
le (for time period i of the adversary's 
hoi
e) and must guess the value b

i

.

We stress that polynomially-many 
alls to the de
ryption ora
le are allowed.

Assume A makes a single query to the LR ora
le during period i for whi
h it did not make a key

exposure request. In the original experiment (
f. Figure 2), the output of LR

PK;

~

b

(i;M

0

;M

1

) is as

follows: 
hoose r  Z

q

and output hi; (g

r

; h

r

; z

r

i

M

b

i

; (


i

d

�

i

)

r

)i, where � is as above. As in the proof

of Theorem 3, we now modify the experiment. Given a tuple (g; h; u; v) whi
h is either a DDH tuple

or a random tuple, we de�ne the output of LR

PK;

~

b

(i;M

0

;M

1

) to be hi; (u; v; ~w = u

x

i;0

v

y

i;0

M

b

i

; ~e =

u

x

i;1

+x

i;2

�

v

y

i;1

+y

i;2

�

)i, where �

def

= H(i; u; v; ~w). Note that if (g; h; u; v) is a DDH tuple, then this

results in a perfe
t simulation of the LR ora
le from the original experiment. On the other hand, if

(g; h; u; v) is a random tuple, then, under the DDH assumption, the su

ess of any ppt adversary


annot di�er by a non-negligible amount from its su

ess in the original experiment. As in the

proof of Theorem 3, note that, in running the experiment, we 
an answer all of A's key exposure

queries. Thus, the proof handles an adaptive adversary whose key exposure requests may be made

based on all information seen up to that point.

Assume now that (g; h; u; v) is a random tuple and log

g

h 6= log

u

v (this happens with all but

negligible probability). We show that, with all but negligible probability, the adversary's view in

the modi�ed experiment is independent of

~

b. The proof parallels [12, Lemma 2℄. Say a 
iphertext

hi; (u

0

; v

0

; w

0

; e

0

)i is invalid if log

g

u

0

6= log

h

v

0

. Then:

Claim: If the de
ryption ora
le outputs ? for all invalid 
iphertexts during the adversary's atta
k,

then the value of b

i

(and hen
e

~

b) is independent of the adversary's view.
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The adversary knows at most t values of f

x

0

(�) and f

y

0

(�) (at points other than i). Sin
e f

x

0

(�)

and f

y

0

(�) are random polynomials of degree t, the values x

i;0

; y

i;0

(= f

x

0

(i); f

y

0

(i)) are uniformly

distributed subje
t only to the 
onstraint given by the publi
 key:

log

g

z

i

= x

i;0

+ y

i;0

log

g

h: (3)

Furthermore, when the de
ryption ora
le de
rypts valid 
iphertexts hi; (u

0

; v

0

; w

0

; e

0

)i, the adversary

only obtains linearly-dependent relations r

0

log

g

z

i

= r

0

x

i;0

+ r

0

y

i;0

log

g

h (where r

0

def

= log

g

u

0

).

Similarly, de
ryptions of valid 
iphertexts at other time periods do not further 
onstrain x

i;0

; y

i;0

.

Now 
onsider the third 
omponent u

x

i;0

v

y

i;0

M

b

i

of the en
ryption ora
le (the only one whi
h depends

on b

i

). Spe
i�
ally, 
onsider the dis
rete log of the \one-time pad" u

x

i;0

v

y

i;0

:

log

u

(u

x

i;0

v

y

i;0

) = x

i;0

+ y

i;0

log

u

v: (4)

Sin
e we assumed that log

u

v 6= log

g

h, (3) and (4) are linearly independent and the distribution of

u

x

i;0

v

y

i;0

(
onditioned on b

i

and the adversary's view) is uniform. Thus, u

x

i;0

v

y

i;0

a
ts as a perfe
t

\one-time pad" and the adversary's view is independent of b

i

. The following 
laim now 
ompletes

the proof of key-insulated se
urity:

Claim: With all but negligible probability, the de
ryption ora
le will output ? for all invalid


iphertexts.

Consider an invalid 
iphertext hj; (u

0

; v

0

; w

0

; e

0

)i, where j represents a period during whi
h a key

exposure request was not made, and let �

0

= H(j; u

0

; v

0

; w

0

). We show that, with all but negligible

probability, this 
iphertext is reje
ted if it is invalid. There are two 
ases to 
onsider: (1) j = i

(re
all that i is the period during whi
h the 
all to the LR ora
le is made) and (2) j 6= i.

When j = i, the proof of the 
laim follows the proof of [12, Claim 2℄ exa
tly. The adversary

knows at most t values of f

x

1

(�); f

y

1

(�); f

x

2

(�), and f

y

2

(�) (at points other than i). Sin
e these are

all random polynomials of degree t, the values (x

i;1

; y

i;1

; x

i;2

; y

i;2

) are uniformly distributed subje
t

only to:

log

g




i

= x

i;1

+ y

i;1

log

g

h (5)

log

g

d

i

= x

i;2

+ y

i;2

log

g

h (6)

log

u

~e = x

i;1

+ �x

i;2

+ (log

u

v) y

i;1

+ (log

u

v)� y

i;2

; (7)

where (5) and (6) 
ome from the publi
 key and (7) 
omes from the output of the en
ryption

ora
le. If the submitted 
iphertext hi; (u

0

; v

0

; w

0

; e

0

)i is invalid and (u

0

; v

0

; w

0

; e

0

) 6= (u; v; ~w; ~e), there

are three possibilities:

Case 1. (u

0

; v

0

; w

0

) = (u; v; ~w). In this 
ase, e

0

6= ~e ensures that the de
ryption ora
le will reje
t.

Case 2. (u

0

; v

0

; w

0

) 6= (u; v; ~w) but H(i; u

0

; v

0

; w

0

) = H(i; u; v; ~w). This immediately violates the


ollision-resistan
e of our hash fun
tion and hen
e 
annot o

ur with non-negligible probability.

Case 3. H(i; u

0

; v

0

; w

0

) 6= H(i; u; v; ~w), i.e. � 6= �

0

. The de
ryption ora
le will reje
t unless:

log

u

0

e

0

= x

i;1

+ �

0

x

i;2

+ (log

u

0

v

0

) y

i;1

+ (log

u

0

v

0

)�

0

y

i;2

: (8)

But (5){(8) are all linearly independent when � 6= �

0

, log

g

h 6= log

u

v and log

g

h 6= log

u

0

v

0

(the


iphertext is invalid), from whi
h it follows that the de
ryption ora
le reje
ts ex
ept with probability

1=q. (As in [12℄, ea
h reje
tion further 
onstrains the values (x

i;1

; y

i;1

; x

i;2

; y

i;2

); however, the k

th

query will be reje
ted ex
ept with probability at most 1=(q � k + 1).)
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When j 6= i, the proof is a bit more involved. The 8-tuple (x

i;1

; y

i;1

; x

i;2

; y

i;2

; x

j;1

; y

j;1

; x

j;2

; y

j;2

)

is uniformly distributed subje
t to several 
onstraints. First, we have the three 
onstraints (5){(7).

Next, we have the following two 
onstraints arising from the publi
 key:

log

g




j

= x

j;1

+ y

j;1

log

g

h (9)

log

g

d

j

= x

j;2

+ y

j;2

log

g

h: (10)

Furthermore, sin
e the adversary 
ould have made up to t key exposure requests (at periods other

than i and j), it may now know t values of ea
h of f

x

1

; f

x

2

; f

y

1

; f

y

2

. This means than it knows

a linear relation between ea
h pair (x

i;1

; x

j;1

), (x

i;2

; x

j;2

), (y

i;1

; y

j;1

), (y

i;2

; y

j;2

). Spe
i�
ally, these

relations are of the form:

x

i;1

+ �x

j;1

= s

1

(11)

x

i;2

+ �x

j;2

= s

2

(12)

y

i;1

+ �y

j;1

= s

3

(13)

y

i;2

+ �y

j;2

= s

4

; (14)

where � is the 
orresponding Lagrange 
oeÆ
ient � = (i� i

1

) � � � (i� i

t

)=(j � i

1

) � � � (j � i

t

). Noti
e

that the same � appears in all four 
onstraints. On �rst glan
e, it appears we have more 
onstraints

than unknowns. However, it is easy to see that (13) is linearly dependent on (5), (9), and (11)

while (14) is linearly dependent on (6), (10), and (12). Hen
e, we only have 7 linearly independent


onstraints and 8 unknowns.

If the 
iphertext hj; (u

0

; v

0

; w

0

; e

0

)i submitted by the adversary is invalid, the de
ryption ora
le

will reje
t unless:

log

u

0

e

0

= x

j;1

+ �

0

x

j;2

+ (log

u

0

v

0

) y

j;1

+ (log

u

0

v

0

)�

0

y

j;2

: (15)

Now, looking at all 8 equations (5){(7), (9){(12), (15), we see that they are linearly independent

pre
isely when the following three 
onditions hold:

1. log

g

h 6= log

u

v. This is true with overwhelming probability sin
e (g; h; u; v) is a random tuple.

2. log

g

h 6= log

u

0

v

0

. This is true sin
e the 
iphertext hj; (u

0

; v

0

; w

0

; e

0

)i is invalid.

3. � 6= �

0

, i.e. H(i; u; v; ~w) 6= H(j; u

0

; v

0

; w

0

). This is true sin
e we assumed that i 6= j and H

is 
hosen from a family of 
ollision resistant fun
tions. Here we require 
ollision resistan
e of

H sin
e the adversary's 
hoi
e of i; j is not known in advan
e.

Thus, (15) is linearly independent from all previous 
onstraints and thus the 
iphertext is reje
ted

ex
ept with negligible probability at most 1=q (again, the k

th

su
h query is reje
ted ex
ept with

probability at most 1=(q � k + 1)).

This 
ompletes the proof of (t;N)-key-insulated se
urity. The proof of strong key-insulated

se
urity follows exa
tly the same arguments given above ex
ept the 
onstraints (11){(14) now have

� = �1, as the adversary knows (x

i;1

� x

j;1

), et
. from SK

�

.

CRHF's vs. UOWHF's. In the proof we use the fa
t that H is 
ollision resistant, while in

the basi
 Cramer-Shoup s
heme [12℄, a universal one-way hash fun
tion suÆ
es. We note that this

does not introdu
e an extra assumption as 
ollision-resistant hash families 
an be 
onstru
ted based

on the DDH assumption [34, 36℄ (in fa
t, the dis
rete logarithm assumption is enough). Se
ond,

15



UOWHF's suÆ
e for our 
onstru
tion as long as the maximum number of periods N is polynomial

in the se
urity parameter (sin
e a fa
tor of 1=N is lost by \guessing" the period i for whi
h the

adversary will submit its en
ryption ora
le request). Third, if the adversary only makes (t� 1) key

exposure requests and we do not require strong se
urity, we no longer have to in
lude the period i

inside H and UOWHF's suÆ
e again. Having said this, using a 
ollision-resistant H seems a small

pri
e to pay for the simpli
ity and additional se
urity of our s
heme.
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