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Abstrat

Cryptographi omputations (deryption, signature generation, et.) are often performed on

a relatively inseure devie (e.g., a mobile devie or an Internet-onneted host) whih annot

be trusted to maintain serey of the private key. We propose and investigate the notion of

key-insulated seurity whose goal is to minimize the damage aused by seret-key exposures. In

our model, the seret key(s) stored on the inseure devie are refreshed at disrete time periods

via interation with a physially-seure | but omputationally-limited | devie whih stores

a \master key". All ryptographi omputations are still done on the inseure devie, and the

publi key remains unhanged. In a (t;N)-key-insulated sheme, an adversary who ompromises

the inseure devie and obtains seret keys for up to t periods of his hoie is unable to violate

the seurity of the ryptosystem for any of the remaining N � t periods. Furthermore, the

sheme remains seure (for all time periods) against an adversary who ompromises only the

physially-seure devie.

We notie that key-insulated shemes signi�antly improve the seurity guarantee of forward-

seure shemes [3, 5℄, in whih exposure of the seret key at even a single time period (neessarily)

ompromises the seurity of the system for all future time periods. This improvement is ahieved

with minimal ost: infrequent key updates with a (possibly untrusted) seure devie.

We fous primarily on key-insulated publi-key enryption. We onstrut a (t;N)-key-

insulated enryption sheme based on any (standard) publi-key enryption sheme, and give

a more eÆient onstrution based on the DDH assumption. The latter onstrution is then

extended to ahieve hosen-iphertext seurity.
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1 Introdution

Motivation. Exposure of seret keys is perhaps the most devastating attak on a ryptosystem

sine it typially means that seurity is entirely lost. This problem is probably the greatest threat

to ryptography in the real world: in pratie, it is typially easier for an adversary to obtain a

seret key from a naive user than to break the omputational assumption on whih the system is

based. The threat is inreasing nowadays with users arrying mobile devies whih allow remote

aess from publi or foreign domains.

Two lasses of methods exist to deal with this problem. The �rst tries to prevent key exposure

altogether. While this is an important goal, it is not always pratial. For example, when using

portable devies to perform ryptographi operations (e.g., derypting transmissions using a mobile

phone) one must expet that the devie itself may be physially ompromised in some way (e.g., lost

or stolen) and thus key exposure is inevitable. Furthermore, omplete prevention of key exposure

| even for non-mobile devies | will usually require some degree of physial seurity whih an be

expensive and inonvenient. The seond approah assumes that key exposure will inevitably our

and seeks instead to minimize the damage whih results when keys are obtained by an adversary.

Seret sharing [37℄, threshold ryptography [14, 13℄, proative ryptography [33℄, exposure-resilient

ryptography [10℄ and forward-seure signatures [3, 5℄ may all be viewed as di�erent means of

taking this approah.

The most suessful solution will involve a ombination of the above approahes. Physial

seurity may be ensured for a single devie and thus we may assume that data stored on this

devie will remain seret. On the other hand, this devie may be omputationally limited or else

not suitable for a partiular appliation and thus we are again faed with the problem that some

keys will need to be stored on inseure devies whih are likely to be ompromised during the

lifetime of the system. Therefore, tehniques to minimize the damage aused by suh ompromises

must also be implemented.

Our Model. We fous here on a notion we term key-insulated seurity. Our model is the following

(the disussion here fouses on publi-key enryption, yet the term applies equally-well to the ase

of digital signatures). The user begins by registering a single publi key PK. A \master" seret

key SK

�

is stored on a devie whih is physially seure and hene resistant to ompromise. All

deryption, however, is done on an inseure devie for whih key exposure is expeted to be a

problem. The lifetime of the protool is divided into distint periods 1; : : : ; N (for simpliity, one

may think of these time periods as being of equal length; e.g., one day). At the beginning of eah

period, the user interats with the seure devie to derive a temporary seret key whih will be

used to derypt messages sent during that period; we denote by SK

i

the temporary key for period

i. On the other hand, the publi key PK used to enrypt messages does not hange at eah period;

instead, iphertexts are now labeled with the time period during whih they were enrypted. Thus,

enrypting M in period i results in iphertext hi; Ci.

The inseure devie, whih does all atual deryption, is vulnerable to repeated key exposures;

spei�ally, we assume that up to t < N periods an be ompromised (where t is a parameter). Our

goal is to minimize the e�et suh ompromises will have. Of ourse, when a key SK

i

is exposed,

an adversary will be able to derypt messages sent during time period i. Our notion of seurity

(informally) is that this is all an adversary an do. In partiular, the adversary will be unable to

determine any information about messages sent during all time periods other than those in whih

a ompromise ourred. This is the strongest level of seurity one an expet in suh a model. We

all a sheme satisfying the above notion (t;N)-key-insulated.

If the physially-seure devie is ompletely trusted, we may have this devie generate (PK;SK

�

)
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itself, keep SK

�

, and publish PK. When a user requests a key for period i, the devie may ompute

SK

i

and send it to the user. More involved methods are needed when the physially-seure devie

is not trusted by the user. In this, more diÆult ase (whih we onsider here), the user may

generate (PK;SK) himself, publish PK, and then derive keys SK

�

; SK

0

. The user then sends

SK

�

to the devie and stores SK

0

himself. When the user requests a key for period i, the devie

sends \partial" key SK

0

i

to the user, who may then ompute the \atual" key SK

i

using SK

i�1

and SK

0

i

. In this way, the user's seurity is guaranteed during all time periods with respet to the

devie itself, provided that the knowledge of SK

�

alone is not suÆient to derive any of the atual

keys SK

i

. We note that this strong seurity guarantee is essential when a single devie serves many

di�erent users, o�ering them protetion against key exposure. In this senario, users may trust this

devie to update their keys, but may not want the devie to be able to read their enrypted traÆ.

Thus, there is no reason this devie should have omplete (or any!) knowledge of their \atual"

keys. Finally we note that assuring that the devies are synhronized to the same period (so that

only one seret key per period is given by the physially seure devie) and that they handle proper

authentiated interation is taken are of by an underlying protool (whih is outside our model).

Other Appliations. Besides the obvious appliation to minimizing the risk of key exposures

aross multiple time periods, key-insulated seurity may also be used to protet against key expo-

sures aross multiple loations, or users. For example, a ompany may establish a single publi key

and distribute (di�erent) seret keys to its various employees; eah employee is di�erentiated by his

\non-ryptographi ID" i (e.g., a soial seurity number or last name), and an use his own seret

key SK

i

to perform the desired ryptographi operation. This approah ould dramatially save on

the publi key size, and has the property that the system remains seure (for example, enrypted

messages remain hidden) for all employees whose keys are not exposed.

A key-insulated sheme may also be used for purposes of delegation [23℄; here, a user (who has

previously established a publi key) delegates his rights in some spei�ed, limited way to a seond

party. In this way, even if up to t of the delegated parties' keys are lost, the remaining keys | and,

in partiular, the user's seret key |- are seure.

Finally, we mention the appliation of key esrow by legal authorities. For example, onsider

the situation in whih the FBI wants to read email sent to a partiular user on a ertain date. If a

key-insulated sheme (updated daily) is used, the appropriate key for up to t desired days an be

given to the FBI without fear that this will enable the FBI to read email sent on other days. A

similar appliation (with weaker seurity guarantees) was onsidered by [2℄.

Our Contributions. We introdue the notion of key-insulated seurity and onstrut eÆient

shemes seure under this notion. Although our de�nition may be applied to a variety of ryp-

tographi primitives, we fous here on publi-key enryption. In Setion 3, we give a generi

onstrution of a (t;N)-key-insulated enryption sheme based on any (standard) publi-key en-

ryption sheme. Setion 4 gives a more eÆient onstrution whih is seure under the DDH

assumption. Both of these shemes ahieve semanti seurity; however, we show in Setion 5 how

the seond sheme an be improved to ahieve hosen-iphertext seurity. The omplexity of all

our shemes is essentially independent of the total number of users N . However, at least one of

the parameters is polynomial in t. This makes our shemes appliable only for moderate values

of t, whih is, however, suÆient for many appliations. In a ompanion paper [16℄, we onsider

key-insulated seurity of signature shemes.

Related Work. Arriving at the right de�nitions and models for the notion we put forth here

has been somewhat elusive. For example, Girault [22℄ onsiders a notion similar to key-insulated

seurity of signature shemes. However, [22℄ does not present any formal de�nitions, nor does
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it present shemes whih are provably seure. Reently and onurrently with our work, other

attempts at formalizing key-insulated publi-key enryption have been made [39, 31℄. However,

these works onsider only a non-adaptive adversary who hooses whih time periods to expose at

the outset of the protool, whereas we onsider the more natural and realisti ase of an adaptive

adversary who may hoose whih time periods to expose at any point during protool exeution.

Furthermore, the solution of [39℄ for ahieving hosen-iphertext seurity is proven seure in the

random orale model; our onstrution of Setion 5 is proven seure against hosen-iphertext

attaks in the standard model ([31℄ does not address hosen-iphertext seurity at all). Finally, our

de�nition of seurity is stronger than that onsidered in [39, 31℄. Neither work onsiders the ase

of an untrusted, physially-seure devie. Additionally, [31℄ require only that an adversary annot

fully determine an un-exposed key SK

i

; we make the muh stronger requirement that an adversary

annot break the underlying ryptographi sheme for any (set of) un-exposed periods.

Our notion of seurity omplements the notion of forward seurity for digital signatures.

1

In

this model [3, 5℄, an adversary who ompromises the system during a partiular time period obtains

all the seret information whih exists at that point in time. Clearly, in suh a setting one annot

hope to prevent the adversary from signing messages assoiated with future time periods (sine

the adversary has all relevant information), even though no expliit key exposures happen during

those periods. Forward-seure signatures, however, prevent the adversary from signing messages

assoiated with prior time periods. Many improved onstrutions of forward-seure signatures have

subsequently appeared [1, 29, 26, 32℄.

Our model uses a stronger assumption in that we allow for (a limited amount of) physially-

seure storage whih is used exlusively for key updates and is not used for the atual ryptographi

omputations. As a onsequene, we are able to obtain a muh stronger level of seurity in that

the adversary is unable to sign/derypt messages at any non-ompromised time period, both in the

future and in the past.

Relation to Identity-Based Cryptography. The idea of ID-based ryptography [38℄ (for

onreteness, we onentrate on the ase of ID-based enryption) is to have a trusted enter publish

a single publi key so that users who know only eah other's \non-ryptographi" identities (e.g., e-

mail addresses) an seurely ommuniate. In partiular, a PKI (in whih every user is additionally

assoiated with a publi key) is not needed beyond knowledge of a single global publi key. Of

ourse, the trusted enter now must provide eah user with a seret key whih is a funtion of his

identity. Roughly speaking, an ID-based sheme is seure if no oalition of users an ompromise

the privay of any other user. Note, however, that the trusted server an ompromise the seurity

of any user (sine this enter knows all serets of the system).

It is easy to see that an ID-based enryption sheme may be onverted an (N � 1; N)-key-

insulated enryption sheme by viewing the period number as an \identity" and having the physially-

seure devie implement the trusted enter. The onverse is true as well; in other words, a (t;N)-

key-insulated enryption sheme with a fully trusted devie may be viewed as a relaxation of ID-

based enryption, where we do not insist on t = N � 1. We notie that the �rst pratial ID-based

enryption sheme was proposed only reently by Boneh and Franklin [8℄ in the random orale

model. Moreover, even though the model of ID-based enryption assumes a fully trusted enter, it

was observed by [6℄ that the partiular sheme of [8℄ | when viewed as an (N�1; N)-key-insulated

enryption sheme | an be very easily modi�ed so that the seure devie no longer needs to be

trusted. This almost immediately gives a fully seure key-insulated enryption sheme. It should

1

Although forward-seurity also applies to publi-key enryption, forward-seure enryption shemes are not yet

known. The related notion of \perfet forward serey" [15℄, where the parties exhange ephemeral keys on a per-

session basis, is inomparable to our notion here.
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be noted, however, that the seurity of this sheme is proven in the random orale model under a

very spei�, number-theoreti assumption. By fousing on key-insulated seurity for t� N , as we

do here, shemes based on weaker assumptions (in partiular, not utilizing the random orale whih

is the standard model we onsider in this paper) and/or with improved eÆieny and funtionality

may be designed. In partiular, our results yield several ID-based enryption shemes whih are

provably seure in the standard model, when at most t out of N users ollude. It is still a big

open problem to design a fully seure ID-based (or key-insulated) enryption sheme without the

random orale assumption.

2 De�nitions

2.1 The Model

We now provide a formal model for key-insulated seurity, fousing on the ase of publi-key

enryption (other key-insulated primitives an be de�ned similarly; e.g., signature shemes are

treated in [16℄). Our de�nition of a key-updating enryption sheme parallels the de�nition of a key-

evolving signature sheme whih appears in [5℄, with one key di�erene: in a key-updating sheme

there is some data (in partiular, SK

�

) whih is never erased sine it is stored on a physially-seure

devie. However, sine the physially-seure devie may not be fully trusted, new seurity onerns

arise.

De�nition 1 A key-updating (publi-key) enryption sheme is a 5-tuple of poly-time algorithms

(G;U

�

;U ; E ;D) suh that:

� G, the key generation algorithm, is a probabilisti algorithm whih takes as input a seurity

parameter 1

k

and the total number of time periods N . It returns a publi key PK, a master

key SK

�

, and an initial key SK

0

.

� U

�

, the devie key-update algorithm, is a deterministi algorithm whih takes as input an

index i for a time period (throughout, we assume 1 � i � N) and the master key SK

�

. It

returns the partial seret key SK

0

i

for time period i.

� U , the user key-update algorithm, is a deterministi algorithm whih takes as input an index

i, seret key SK

i�1

, and a partial seret key SK

0

i

. It returns seret key SK

i

for time period i

(and erases SK

i�1

; SK

0

i

).

� E, the enryption algorithm, is a probabilisti algorithm whih takes as input a publi-key

PK, a time period i, and a message M . It returns a iphertext hi; Ci.

� D, the deryption algorithm, is a deterministi algorithm whih takes as input a seret key

SK

i

and a iphertext hi; Ci. It returns a message M or the speial symbol ?.

We require that for all messages M , D

SK

i

(E

PK

(i;M)) =M .

A key-updating enryption sheme is used as one might expet. A user begins by generating

(PK;SK

�

; SK

0

) G(1

k

; N), registering PK in a entral loation (just as he would for a standard

publi-key sheme), storing SK

�

on a physially-seure devie, and storing SK

0

himself. At the

beginning of time period i, the user requests SK

0

i

= U

�

(i; SK

�

) from the seure devie. Using SK

0

i

and SK

i�1

, the user may ompute SK

i

= U(i; SK

i�1

; SK

0

i

). This key may be used to derypt

messages sent during time period i without further aess to the devie. After omputation of SK

i

,
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the user must erase SK

0

i

and SK

i�1

. Note that enryption is always performed with respet to a

�xed publi key PK whih need not be hanged. Also note that the ase when the devie is fully

trusted orresponds to SK

0

=? and SK

i

= SK

0

i

.

Random-Aess Key Updates. All the shemes we onstrut will have a useful property we

all random-aess key updates. For any urrent period j and any desired period i, it is possible to

update the seret key from SK

j

to SK

i

in \one shot". Namely, we an generalize the key updating

algorithms U

�

and U to take a pair of periods i and j suh that U

�

((i; j); SK

�

) outputs the partial

key SK

0

ij

and U((i; j); SK

j

; SK

0

ij

) outputs SK

i

. Our de�nition above impliitly �xes j = i� 1. We

remark that random-aess key updates are impossible to ahieve in the forward-seurity model.

2.2 Seurity

The are three types of exposures we protet against: (1) ordinary key exposure, whih models

(repeated) ompromise of the inseure storage (i.e., leakage of SK

i

); (2) key-update exposure, whih

models (repeated) ompromise of the inseure devie during the key-updating step (i.e., leakage of

SK

i�1

and SK

0

i

); and (3) master key exposure, whih models ompromise of the physially-seure

devie (i.e., leakage of SK

�

; this inludes the ase when the devie itself is untrusted).

To formally model key exposure attaks, we give the adversary aess to two (possibly three)

types of orales. The �rst is a key exposure orale Exp

SK

�

;SK

0

(�) whih, on input i, returns the

temporary seret key SK

i

(note that SK

i

is uniquely de�ned by SK

�

and SK

0

). The seond is a

left-or-right enryption orale [4℄, LR

PK;

~

b

(�; �; �), where

~

b = b

1

: : : b

N

2 f0; 1g

N

, de�ned as:

LR

PK;

~

b

(i;M

0

;M

1

)

def

= E

PK

(i;M

b

i

)

This models enryption requests by the adversary for time periods and message pairs of his hoie.

We allow the adversary to interleave enryption requests and key exposure requests, and in parti-

ular the key exposure requests of the adversary may be made adaptively and in any order. Finally,

we may also allow the adversary aess to a deryption orale D

�

SK

�

;SK

0

(�) that, on input hi; Ci,

omputes D

SK

i

(hi; Ci). This models a hosen-iphertext attak by the adversary.

The vetor

~

b for the left-or-right orale will be hosen randomly, and the adversary sueeds

by guessing the value of b

i

for any un-exposed time period i. Informally, a sheme is seure if any

probabilisti polynomial time (PPT) adversary has suess negligibly lose to 1=2. More formally:

De�nition 2 Let � = (G;U

�

;U ; E ;D) be a key-updating enryption sheme. For adversary A,

de�ne the following:

Su

A;�

(k)

def

= Pr

h

(PK;SK

�

; SK

0

) G(1

k

; N);

~

b f0; 1g

N

;

(i; b

0

) A

LR

PK;

~

b

(�;�;�);Exp

SK

�

;SK

0

(�);O(�)

(PK) : b

0

= b

i

i

;

where i was never submitted to Exp

SK

�

;SK

0

(�), and O(�) =? for a plaintext-only attak and O(�) =

D

�

SK

�

;SK

0

(�) for a hosen-iphertext attak (in the latter ase the adversary is not allowed to query

D

�

(hi; Ci) if hi; Ci was returned by LR(i; �; �)). � is (t;N)-key-insulated if, for any PPT A who

submits at most t requests to the key-exposure orale, jSu

A;�

(k)� 1=2j is negligible.

As mentioned above, we may also onsider attaks in whih an adversary breaks in to the user's

storage while a key update is taking plae (i.e., the exposure ours between two periods i � 1

and i); we all this a key-update exposure at period i. In this ase, the adversary reeives SK

i�1

,
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SK

0

i

, and (an ompute) SK

i

. Informally, we say a sheme has seure key updates if a key-update

exposure at period i is equivalent to key exposures at periods i � 1 and i and no more. More

formally:

De�nition 3 Key-updating enryption sheme � has seure key updates if the view of any adver-

sary A making a key-update exposure request at period i an be perfetly simulated by an adversary

A

0

who makes key exposure requests at periods i� 1 and i.

This property is desirable in real-world implementations of a key-updating enryption sheme sine

an adversary who gains aess to the user's storage is likely to have aess for several onseutive

time periods (i.e., until the user detets or re-boots), inluding the key updating steps.

We also onsider attaks whih ompromise the physially-seure devie (this inludes attaks

in whih this devie is untrusted). Here, our de�nition requires that the enryption sheme be

seure against an adversary whih is given SK

�

as input. Note that we do not require seurity

against an adversary who ompromises both the user's storage and the seure devie | in our

model this is impossible sine, given SK

�

and SK

i

, an adversary an ompute SK

j

(at least for

j > i) by himself.

De�nition 4 Let � be a key-updating sheme whih is (t;N)-key-insulated. For any adversary B,

de�ne the following:

Su

B;�

(k)

def

= Pr

h

(PK;SK

�

; SK

0

) G(1

k

; N);

~

b f0; 1g

N

;

(i; b

0

) B

LR

PK;

~

b

(�;�;�);O(�)

(PK;SK

�

) : b

0

= b

i

i

;

where O(�) =? for a plaintext-only attak and O(�) = D

�

SK

�

;SK

0

(�) for a hosen-iphertext attak (in

the latter ase the adversary is not allowed to query D

�

(hi; Ci) if hi; Ci was returned by LR(i; �; �)).

� is strongly (t;N)-key-insulated if, for any PPT B, jSu

B;�

(k) � 1=2j is negligible.

3 Generi Semantially-Seure Constrution

Let (G;E;D) be any semantially seure enryption sheme. Rather than giving a separate (by

now, standard) de�nition, we may view it simply as a (0; 1)-key-insulated sheme. Namely, only one

seret key SK is present, and any PPT adversary, given PK and the left-or-right-orale LR

PK;b

,

annot predit b with suess non-negligibly di�erent from 1=2. Hene, our onstrution below an

be viewed as an ampli�ation of a (0; 1)-key-insulated sheme into a general (t;N)-key-insulated

sheme.

We will assume below that t; logN = O(poly(k)), where k is our seurity parameter. Thus, we

allow exponentially-many periods, and an tolerate exposure of any polynomial number of keys.

We assume that E operates on messages of length ` = `(k), and onstrut a (t;N)-key-insulated

sheme operating on messages of length L = L(k).

Auxiliary Definitions. We need two auxiliary de�nitions: that of an all-or-nothing trans-

form [35, 9℄ (AONT) and a over-free family [19, 17℄. Informally, an AONT splits the message M

into n seret shares x

1

; : : : ; x

n

(and possibly one publi share z), and has the property that (1)

the message M an be eÆiently reovered from all the shares x

1

; : : : ; x

n

; z, but (2) missing even a

single share x

j

gives \no information" about M . As suh, it is a generalization of (n� 1; n)-seret

sharing. We formalize this, modifying the onventional de�nitions [9, 10℄ to a form more ompatible

with our prior notation.
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De�nition 5 An eÆient randomized transformation T is alled an (L; `; n)-AONT if: (1) on

input M 2 f0; 1g

L

, T outputs (X; z)

def

= (x

1

; : : : ; x

n

; z), where x

j

2 f0; 1g

`

; (2) there exists an

eÆient inverse funtion I suh that I(X; z) =M ; (3) T satis�es the indistinguishability property

desribed below.

Let X

�j

= (x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

) and T

�j

(M) = (X

�j

; z), where (X; z)  T (M). De�ne the

left-or-right orale LR

b

(j;M

0

;M

1

)

def

= T

�j

(M

b

), where b 2 f0; 1g. For any PPT A, we let

Su

A;T

(k)

def

= Pr[b f0; 1g; b

0

 A

LR

b

(�;�;�)

(1

k

) : b

0

= b℄

We require that jSu

A;T

(k)� 1=2j is negligible.

A family of subsets S

1

; : : : ; S

N

over some universe U is said to be t-over-free if no t subsets

S

i

1

; : : : ; S

i

t

ontain a (di�erent) subset S

i

0

; in other words, for all fi

0

; : : : ; i

t

g with i

0

62 fi

1

; : : : ; i

t

g,

we have S

i

0

6� [

t

j=1

S

i

j

. A family is said to be (t; �)-over-free, where 0 < � < 1, if, for all

fi

0

; : : : ; i

t

g with i

0

62 fi

1

; : : : ; i

t

g, we have jS

i

0

n [

t

j=1

S

i

j

j � �jS

i

0

j. Suh families are well known

and have been used several times in ryptographi appliations [11, 30, 21℄. In what follows, we �x

� = 1=2 for simpliity, and will use the following (essentially optimal) result, non-onstrutively

proven by [19℄ and subsequently made eÆient by [30, 25℄.

Theorem 1 ([19, 30, 25℄) For any N and t, one an eÆiently onstrut a (t;

1

2

)-over-free ol-

letion of N subsets S

1

; : : : ; S

N

of U = f1; : : : ; ug with jS

i

j = n for all i, satisfying u = �(t

2

logN)

and n = �(t logN).

Sine we assumed that t; logN = O(poly(k)), we have u; n = O(poly(k)) as well.

Constrution. For simpliity, we �rst desribe the sheme whih is not strongly seure (see

De�nition 4), and then show a modi�ation making it strongly seure. Let S

1

; : : : ; S

N

� [u℄

def

=

f1; : : : ; ug be the (t;

1

2

)-over-free family of n-element sets, as given by Theorem 1. Also, let T

be a seure (L; `; n)-AONT. Our (t;N)-key-insulated sheme will have a set of u independent

enryption/deryption keys (sk

r

; pk

r

) for our basi enryption E, of whih only the subset S

i

will

be used at time period i. Spei�ally, the publi key of the sheme will be PK = fpk

1

; : : : ; pk

u

g,

the seret key at time i will be SK

i

= fsk

r

: r 2 S

i

g, and the master key (for now) will be

SK

�

= fsk

1

; : : : ; sk

u

g. We de�ne the enryption of M 2 f0; 1g

L

at time period i as:

E

PK

(i;M) = h i; (E

pk

r

1

(x

1

); : : : ; E

pk

r

n

(x

n

); z) i;

where (x

1

; : : : ; x

n

; z)  T (M) and S

i

= fr

1

; : : : ; r

n

g. To derypt hi; (y

1

; : : : ; y

n

; z)i using SK

i

=

fsk

r

: r 2 S

i

g, the user �rst reovers the x

j

's from the y

j

's using D, and then reovers the

message M = I(x

1

; : : : ; x

n

; z). Key updates are trivial: the devie sends the new key SK

i

and

the user erases the old key SK

i�1

. Obviously, the sheme supports seure key updates as well as

random-aess key updates.

Seurity. We sketh the intuition for (t;N)-key-insulated seurity of this sheme. The de�nition

of the AONT implies that the system is seure at time period i provided the adversary misses at least

one key sk

r

, where r 2 S

i

. Indeed, semanti seurity of E implies that the adversary ompletely

misses the shares enrypted with sk

r

in this ase, and hene has no information about the message

M . On the other hand, if the adversary learn any t keys SK

i

1

; : : : ; SK

i

t

, he learns the auxiliary keys

fsk

r

: r 2 S

i

1

[S

i

2

: : :[S

i

t

g. Hene, the neessary and suÆient ondition for (t;N)-key-insulated

seurity is exatly the t-over freeness of the S

i

's! The parameter � =

1

2

is used to improve the

exat seurity of our redution.
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Theorem 2 The generi sheme � desribed above is (t;N)-key-insulated with seure key updates,

provided (G;E;D) is semantially-seure, T is a seure (L; `; n)-AONT, and the family S

1

; : : : ; S

N

is (t;

1

2

)-over-free. Spei�ally, breaking the seurity of � with advantage " implies the same for

either (G;E;D) or T with advantage at least 
("=t).

Proof: Let A be the adversary for � with Su

A;�

(k) =

1

2

+ ". First, we reate the following

adversary A

0

suh that Su

A

0

;�

�

1

2

+ " �

�n

u

=

1

2

+ 
(

"

t

). A

0

�rst piks a random index r 2 [u℄.

Then it runs A up to the point when A outputs (i; b

0

). At this stage, A

0

looks at indies i

1

; : : : ; i

t

of the t exposed time periods, and heks if r 2 S

i

n [

t

j=1

S

i

j

. If this test sueeds, A

0

also outputs

(i; b

0

). Else, it outputs (i; ), where  is a random bit. In other words, A

0

uses the output of

A provided the guess r is suh that sk

r

is used at period i but A did not learn sk

r

. Sine A

annot output i 2 fi

1

: : : i

t

g and sine our family is (t;

1

2

)-over-free, there are at least �jS

i

j = n=2

indies r

0

2 S

i

n [

t

j=1

S

i

j

. Also, sine A

0

hose r 2 [u℄ at random and independently of the run

of A, with probability at least q =

n

2u

= 
(

1

t

) we get that A

0

will use the output of A, so that

Su

A

0

;�

� (1� q)

1

2

+ q(

1

2

+ ") �

1

2

+
(

"

t

), as laimed.

Next, we reate a more favorable environment for A

0

to simplify the proof. Right after A

0

piks

its random r, we give A

0

the seret keys sk

p

for all p 6= r. At this point, there is no need to

enrypt with any keys other than pk

r

(A

0

an derypt anyway). Moreover, there is no need for

our environment to pik a full-edged N -bit vetor

~

b; rather, only b

i

's suh that r 2 S

i

should be

hosen. In fat, rather than hoosing the b

i

's (where r 2 S

i

) independently, we hoose only one

random bit b and set b

i

= b for all i s.t. r 2 S

i

. Clearly, this only helps A

0

.

2

Sine A

0

is ommitted

to output a non-random bit b

0

only for period i suh that r 2 S

i

and the original adversary A did

not learn sk

r

, we get that Pr(b

0

= b) �

1

2

+
(

"

t

) in the modi�ed environment.

To summarize, we an assume A

0

runs in the following environment Env

0

. A

0

piks a random

r 2 [u℄. We pik a random key pair (sk

r

; pk

r

) for E and a random bit b 2 f0; 1g. We give A

0

the publi key pk

r

, and aess to the \redued" left-or-right orale LR

0

pk

r

;b

(i;M

0

;M

1

) whih an

be alled only for i satisfying r 2 S

i

. The orale runs (X; z)  T (M

b

), and returns the following:

(T

�j

(M

b

); E

pk

r

(x

j

)), where j 2 [n℄ is the position of r inside S

i

. The goal of A

0

is to predit b, and

we assumed that it does so orretly with probability q

0

= Pr(b = b

0

j Env

0

) �

1

2

+
(

"

t

).

Next, we run A

0

in a di�erent environment Env

1

. It is idential to Env

0

exept that on left-

or-right query (i;M

0

;M

1

) (where r 2 S

i

), rather than returning (T

�j

(M

b

); E

pk

r

(x

j

)), Env

1

instead

returns (T

�j

(M

b

); E

pk

r

(0)). Namely, it enrypts the all-zero string 0 instead of the share x

j

. We

let q

1

= Pr(b = b

0

j Env

1

).

The proof is now almost omplete. The fat that q

0

�

1

2

+ 
(

"

t

) implies that either: (a)

q

0

� q

1

� 
(

"

t

); or (b) q

1

�

1

2

+
(

"

t

). We show that either ase is a ontradition: ase (a) to the

indistinguishability of enryption E, while ase (b) to the indistinguishability of AONT T .

Case (a): If q

0

� q

1

� 
(

"

t

), we break the indistiguishability of E by means of the following

adversary A

1

whih in turn runs A

0

as follows. When A

0

hooses r 2 [u℄, A

1

views the publi key

of E as pk

r

and piks a random b 2 f0; 1g. From now on, A

1

runs A

0

and answers the left-or-right

queries (i;M

0

;M

1

) of A

0

as follows. If r 62 S

i

, it ignores it. Else, it sets (X; z) T (M

b

), and gives

its own left-or-right orale the query (x

j

; 0), where j is the position of r inside S

i

. When it gets y

(enryption of either x

j

or 0) bak from its orale, it returns to A

0

the answer (X

�j

; z; y). When

A

0

�nally outputs its guess b

0

, A

1

heks if b = b

0

. If so, it guesses its own bit d was 0 (i.e., x

j

was

always enrypted), else that it was 1 (0 was always enrypted). It is easy to see that if d = 0, we

2

One way to see this is to imagine that we piked all the b

i

's independently, then piked a random b and told A

0

the set of i suh that b

i

= b (and thus, the set of i where b

i

= 1� b), but did not dislose b.
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exatly run A

0

in Env

0

, else | exatly in Env

1

. Hene, A

1

predits d orretly with probability

1

2

(1� q

1

) +

1

2

q

0

�

1

2

+
(

"

t

), ontraditing the seurity of E.

Case (b): If q

1

�

1

2

+ 
(

"

t

), we break the indistingushability of T by means of the following

adversary A

2

whih in turn runs A

0

as follows. A

2

piks a random key (pk

r

; sk

r

) and runs A

0

up

to ompletion, outputting the same b

0

as A

0

does. To answer the left-or-right-query (i;M

0

;M

1

),

where r 2 S

i

, A

2

alls its own orale of (j;M

0

;M

1

), where j is the position of r inside S

i

. It gets

bak T

�j

(M

b

), and returns A

0

the pair (T

�j

(M

b

); E

pk

r

(0)). Clearly, A

2

exatly rereates Env

1

, and

hene predits its own b with probability q

1

�

1

2

+
(

"

t

), ontraditing seurity of T .

Strong Key-Insulated Seurity. The above sheme is not strongly (t;N)-key-insulated sine

the devie stores all the seret keys (sk

1

; : : : ; sk

u

). However, we an easily �x this problem. The user

generates one extra key pair (sk

0

; pk

0

). It publishes pk

0

together with the other publi keys, but

keeps sk

0

for itself (never erasing it). Assuming now that T produes n+1 seret shares x

0

; : : : ; x

n

rather than n, we just enrypt the �rst share x

0

with pk

0

(and the others, as before, with the

orresponding keys in S

i

). Formally, let S

0

i

= S

i

[f0g, the master key is still SK

�

= fsk

1

; : : : ; sk

u

g,

but now PK = fpk

0

; pk

1

; : : : ; pk

u

g and the i-th seret key is SK

i

= fsk

r

: r 2 S

0

i

g. Strong

key-insulated seurity of this sheme follows a similar argument as in Theorem 2.

Effiieny. The main parameters of the sheme are: (1) the size of PK and SK

�

are both u =

O(t

2

logN); and (2) the user's storage and the number of loal enryptions per global enryption

are both n = O(t logN). In partiular, the surprising aspet of our onstrution is that it supports

an exponential number of periods N and the main parameters depend mainly on t, the number

of exposures we allow. Sine t is usually quite small (say, t = O(1) and ertainly t � N), we

obtain good parameters onsidering the generality of the sheme. (In Setion 4 we use a spei�

enryption sheme and ahieve jPKj; jSK

�

j = O(t) and jSK

i

j = O(1).)

Additionally, the hoie of a seure (L; `; n)-AONT de�nes the tradeo� between the number

of enrypted bits L ompared to the total enryption size, whih is (�n` + jzj), where � is the

expansion of E, and jzj is the size of the publi share. In partiular, if L = `, we an use any

traditional (n� 1; n)-seret sharing sheme (e.g., Shamir's sheme [37℄, or even XOR-sharing: pik

random x

j

's subjet to M =

L

x

j

). This way we have no publi part, but the iphertext inreases

by a fator of �n as ompared to the plaintext. Computationally-seure AONT's allow for better

tradeo�s. For example, using either the omputational seret sharing sheme of [28℄, or the AONT

onstrutions of [10℄, we an ahieve jzj = L, while ` an be as small as the seurity parameter

k (in partiular, ` � L). Thus, we get additive inrease �n`, whih is essentially independent of

L. Finally, in the random orale model, we ould use the onstrution of [9℄ ahieving jzj = 0,

L = `(n � 1), so the iphertext size is �`n � �L. Finally, in pratie one would use the above

sheme to enrypt a random key K (whih is muh shorter thanM) for a symmetri-key enryption

sheme, and onatenate to this the symmetri-key enryption of M using K.

Adaptive vs. Non-adaptive adversaries. Theorem 2 holds for an adaptive adversary who

makes key exposure requests based on all information olleted so far. We notie, however, that

both the seurity and the eÆieny of our onstrution ould be somewhat improved for non-

adaptive adversaries, who hoose the key-exposure periods i

1

; : : : ; i

t

at the outset of the protool

(whih is the model of [39, 31, 2℄). For example, it is easy to see that we no longer lose the fator

t in the seurity of our redution in Theorem 2. As for the eÆieny, instead of using an AONT

(whih is essentially an (n � 1; n)-seret sharing sheme), we an now use any (n=2; n)-\ramp"

seret sharing sheme [7℄. This means that n shares reonstrut the seret, but any n=2 shares

yield no information about the seret. Indeed, sine our family is (t;

1

2

)-over-free, any non-exposed

9



period will have the adversary miss more than half of the relevant seret keys. For non-adaptive

adversaries, we know at the outset whih seret keys are non-exposed, and an use a simple hybrid

argument over these keys to prove the seurity of the modi�ed sheme. For example, we an use

the \ramp" generalization of Shamir's seret sharing sheme

3

proposed by Franklin and Yung [20℄,

and ahieve L = `n=2 instead of L = ` resulting from regular Shamir's (n� 1; n)-sheme.

4 Semanti Seurity Based on DDH

In this setion, we present an eÆient strongly (t;N)-key-insulated sheme, whose semanti seurity

an be proved under the DDH assumption.

We �rst desribe the basi enryption sheme we build upon. The key generation algorithm

Gen(1

k

) selets a random prime q with jqj = k suh that p = 2q+1 is prime. This de�nes a unique

subgroup G � Z

�

p

of size q in whih the DDH assumption is assumed to hold; namely, it is hard

to disinguish a random tuple (g; h; u; v) of four independent elements in G from a random tuple

satisfying log

g

u = log

h

v. Given group G , key generation proeeds by seleting random elements

g; h 2 G and random x; y 2 Z

q

. The publi key onsists of g; h, and the Pedersen ommitment [34℄

to x and y: z = g

x

h

y

. The seret key ontains both x and y. To enrypt M 2 G , hoose random

r 2 Z

q

and ompute (g

r

; h

r

; z

r

M). To derypt (u; v; w), ompute M = w=u

x

v

y

. This sheme is

very similar to El Gamal enryption [18℄, exept it uses two generators. It has been reently used

by [27℄ in a di�erent ontext.

Our Sheme. Our (t;N)-key-insulated sheme builds on the above basi enryption sheme and

is presented in Figure 1. The key di�erene is that, after hoosing G ; g; h; as above, we selet two

random polynomials f

x

(�)

def

=

P

t

j=0

x

�

j

�

j

and f

y

(�)

def

=

P

t

j=0

y

�

j

�

j

over Z

q

of degree t. The publi

key onsists of g; h and Pedersen ommitments fz

�

0

; : : : ; z

�

t

g to the oeÆients of the two polynomials

(see Figure 1). The user stores the onstant terms of the two polynomials (i.e., x

�

0

and y

�

0

) and

the remaining oeÆients are stored by the physially-seure devie. To enrypt during period i,

�rst z

i

is omputed from the publi key as z

i

def

= �

t

j=0

(z

�

j

)

i

j

. Then (similar to the basi sheme),

enryption of message M is done by hoosing r 2 Z

q

at random and omputing hi; (g

r

; h

r

; z

r

i

M)i.

Using our notation from above, it is lear that z

i

= g

f

x

(i)

h

f

y

(i)

. Thus, as long as the user has seret

key SK

i

= (f

x

(i); f

y

(i)) during period i, deryption during that period may be done just as in the

basi sheme. As for key evolution, the user begins with SK

0

= (x

�

0

; y

�

0

) = (f

x

(0); f

y

(0)). At the

start of any period i, the devie transmits partial key SK

0

i

= (x

0

i

; y

0

i

) to the user. Note that (f.

Figure 1) x

0

i

= f

x

(i)� f

x

(i� 1) and y

0

i

= f

y

(i)� f

y

(i� 1). Thus, sine the user already has SK

i�1

,

the user may easily ompute SK

i

from these values. At this point, the user erases SK

i�1

, and uses

SK

i

to derypt for the remainder of the time period.

Theorem 3 Under the DDH assumption, the enryption sheme of Figure 1 is strongly (t;N)-

key-insulated under plaintext-only attaks. Furthermore, it has seure key updates and supports

random-aess key updates.

Proof: Showing seure key updates is trivial, sine an adversary who exposes keys SK

i�1

and

SK

i

an ompute the value SK

0

i

by itself (and thereby perfetly simulate a key-update exposure at

period i). Similarly, random-aess key updates an be done using partial keys SK

0

ij

= (x

0

ij

; y

0

ij

),

3

Here the message length L = `n=2, and the `-bit parts m

1

; : : : ;m

n=2

of M are viewed as the n=2 lower order

oeÆients of an otherwise random polynomial of degree (n � 1) over GF [2

`

℄. This polynomial is then evaluated at

n points of GF [2

`

℄ to give the �nal n shares.
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G(1

k

): (g; h; q)  Gen(1

k

); x

�

0

; y

�

0

; : : : ; x

�

t

; y

�

t

 Z

q

z

�

0

:= g

x

�

0

h

y

�

0

; : : : ; z

�

t

:= g

x

�

t

h

y

�

t

PK := (g; h; q; z

�

0

; : : : ; z

�

t

)

SK

�

:= (x

�

1

; y

�

1

; : : : ; x

�

t

; y

�

t

); SK

0

:= (x

�

0

; y

�

0

)

return PK;SK

�

; SK

0

U

�

(i; SK

�

= (x

�

1

; y

�

1

; : : : ; x

�

t

; y

�

t

)):

x

0

i

:=

P

t

j=1

x

�

j

�

i

j

� (i� 1)

j

�

y

0

i

:=

P

t

j=1

y

�

j

�

i

j

� (i� 1)

j

�

return SK

0

i

= (x

0

i

; y

0

i

)

U(i; SK

i�1

= (x

i�1

; y

i�1

); SK

0

i

= (x

0

i

; y

0

i

)):

x

i

:= x

i�1

+ x

0

i

y

i

:= y

i�1

+ y

0

i

return SK

i

= (x

i

; y

i

)

E

(g;h;q;z

�

0

;:::;z

�

y

)

(i;M):

z

i

:= �

t

j=0

(z

�

j

)

i

j

r  Z

q

C := (g

r

; h

r

; z

r

i

M)

return hi; Ci

D

(x

i

;y

i

)

(hi; C = (u; v; w)i):

M := w=u

x

i

v

y

i

return M

Figure 1: Semantially-seure key-updating enryption sheme based on DDH.

where x

0

ij

= f

x

(i) � f

x

(j), y

0

ij

= f

y

(i) � f

y

(j). The user an then ompute x

i

= x

j

+ x

0

ij

and

y

i

= y

j

+ y

0

ij

.

We now show that the sheme satis�es De�nition 2. By a standard hybrid argument [4℄, it is

suÆient to onsider an adversary A who asks a single query to its left-or-right orale (for some

time period i of A's hoie) and must guess the value b

i

. So we assume A makes only a single query

to the LR orale during period i for whih it did not make a key exposure request. In the original

experiment (f. Figure 1), the output of LR

PK;

~

b

(i;M

0

;M

1

) is de�ned as follows: hoose r 2 Z

q

at

random and output hi; (g

r

; h

r

; z

r

i

M

b

i

)i. Given a tuple (g; h; u; v) whih is either a DDH tuple or

a random tuple, modify the original experiment as follows: the output of LR

PK;

~

b

(i;M

0

;M

1

) will

be hi; (u; v; u

x

i

v

y

i

M

b

)i. Note that if (g; h; u; v) is a DDH tuple, then this is a perfet simulation of

the original experiment. On the other hand, if (g; h; u; v) is a random tuple then, under the DDH

assumption, the suess of any ppt adversary in this modi�ed experiment annot di�er by more

than a negligible amount from its suess in the original experiment. It is important to note that,

in running the experiment, we an answer all of A's key exposure requests orretly sine all seret

keys are known. Thus, in ontrast to [39, 31℄, we may handle an adaptive adversary who hooses

when to make key exposure requests based on all information seen during the experiment.

Assume now that (g; h; u; v) is a random tuple and log

g

h 6= log

u

v (this will our with all

but negligible probability). We laim that the adversary's view in the modi�ed experiment is

independent of

~

b. Indeed, the adversary knows only t values of f

x

(�) and f

y

(�) (at points other than

i), and sine both f

x

(�) and f

y

(�) are random polynomials of degree t, the values x

i

; y

i

(= f

x

(i); f

y

(i))

are information-theoretially uniformly distributed, subjet only to:

log

g

z

i

= x

i

+ y

i

log

g

h: (1)

Consider the output hi; (u; v; u

x

i

v

y

i

M

b

)i of the enryption orale. Sine:

log

u

(u

x

i

v

y

i

) = x

i

+ y

i

log

u

v; (2)

and (1) and (2) are linearly independent, the onditional distribution of u

x

i

v

y

i

(onditioned on b

i

and the adversary's view) is uniform. Thus, the adversary's view is independent of b

i

(and hene

11



~

b). This implies that the suess probability of A in this modi�ed experiment is 1=2, and hene the

suess probability of A in the original experiment is at most negligibly di�erent from 1=2.

We now onsider seurity against (ompromises of) the physially-seure devie; in this ase,

there are no key exposure requests but the adversary learns SK

�

. Again, it is suÆient to onsider

an adversary who asks a single query to its left-or-right orale (for time period i of its hoie)

and must guess the value b

i

. Sine SK

�

only ontains the t highest-order oeÆients of t-degree

polynomials, the pair (x

i

; y

i

) is information-theoretially uniformly distributed (for all i) subjet

to x

i

+ y

i

log

g

h = log

g

z

i

. An argument similar to that given previously shows that the suess

probability of the adversary is at most negligibly better than 1=2, and hene the sheme satis�es

De�nition 4.

5 Chosen-Ciphertext Seurity Based on DDH

We may modify the sheme given in the previous setion so as to be resistant to hosen-iphertext

attaks. In doing so, we build upon the hosen-iphertext-seure (standard) publi-key enryption

sheme of Cramer and Shoup [12℄.

G(1

k

): (g; h; q) Gen(1

k

); H  CRHF(1

k

)

for i = 0 to t and n = 0 to 2:

x

�

i;n

; y

�

i;n

 Z

q

for i = 0 to t:

z

�

i

:= g

x

�

i;0

h

y

�

i;0

; 

�

i

:= g

x

�

i;1

h

y

�

i;1

; d

�

i

:= g

x

�

i;2

h

y

�

i;2

PK := (g; h; q;H; fz

�

i

; 

�

i

; d

�

i

g

0�i�t

)

SK

�

:= (fx

�

i;n

; y

�

i;n

g

1�i�t; 0�n�2

); SK

0

:= (fx

�

0;n

; y

�

0;n

g

0�n�2

)

return PK;SK

�

; SK

0

U

�

(i; SK

�

):

for n = 0 to 2:

x

0

i;n

:=

P

t

j=1

x

�

j;n

�

i

j

� (i� 1)

j

�

y

0

i;n

:=

P

t

j=1

y

�

j;n

�

i

j

� (i� 1)

j

�

return SK

0

i

= (fx

0

i;n

; y

0

i;n

g

0�n�2

)

U(i; SK

i�1

; SK

0

i

):

for n = 0 to 2:

x

i;n

= x

i�1;n

+ x

0

i;n

y

i;n

= y

i�1;n

+ y

0

i;n

return SK

i

= (fx

i;n

; y

i;n

g

0�n�2

)

E

PK

(i;M):

z

i

:= �

t

j=0

(z

�

j

)

i

j

; 

i

:= �

t

j=0

(

�

j

)

i

j

d

i

:= �

t

j=0

(d

�

j

)

i

j

r  Z

q

C := (g

r

; h

r

; z

r

i

M; (

i

d

�

i

)

r

);

where �

def

= H(i; g

r

; h

r

; z

r

i

M)

return hi; Ci

D

SK

i

(hi; (u; v; w; e)i):

� := H(i; u; v; w)

if u

x

i;1

+x

i;2

�

v

y

i;1

+y

i;2

�

6= e

return ?

else M := w=u

x

i;0

v

y

i;0

return M

Figure 2: Chosen-iphertext-seure key-updating enryption sheme based on DDH.

We briey review the \basi" Cramer-Shoup sheme (in part to onform to the notation used

in Figure 2). Given generators g; h of group G (as desribed in the previous setion), seret keys

fx

n

; y

n

g

0�n�2

are hosen randomly from Z

q

. Then, publi-key omponents z = g

x

0

h

y

0

,  = g

x

1

h

y

1

,

and d = g

x

2

h

y

2

are omputed. In addition, a funtion H is randomly hosen from a family of

universal one-way hash funtions (UOWHF's). The publi key is (g; h; q; z; ; d;H).

12



To enrypt a message M 2 G , a random element r 2 Z

q

is hosen and the iphertext is:

(g

r

; h

r

; z

r

M; (d

�

)

r

), where � = H(g

r

; h

r

; z

r

M). To derypt a iphertext (u; v; w; e), we �rst hek

whether u

x

1

+x

2

�

v

y

1

+y

2

�

= e. If not, we output ?. Otherwise, we output M = w=u

x

0

v

y

0

.

In our extended sheme (f. Figure 2), we hoose six random, degree-t polynomials (over Z

q

) f

x

0

,

f

y

0

, f

x

1

, f

y

1

, f

x

2

, and f

y

2

, where f

x

n

(�)

def

=

P

t

j=0

x

�

j;n

�

j

and f

y

n

(�)

def

=

P

t

j=0

y

�

j;n

�

j

for 0 � n � 2.

The user stores the onstant term of eah of these polynomials, and the remaining oeÆients are

stored by the physially-seure devie. The publi key onsists of g; h;H, and Pedersen ommit-

ments to the oeÆients of these polynomials. Here, H is hosen from a family of ollision-resistant

hash funtions (CRHF's). For suh a funtion H, it is infeasible to �nd two distint inputs m

1

and

m

2

suh that H(m

1

) = H(m

2

).

To enrypt during period i, a user �rst omputes z

i

; 

i

, and d

i

by evaluating the polynomials

\in the exponent" (see Figure 2). Then, similar to the basi sheme, enryption of M is performed

by hoosing random r 2 Z

q

and omputing hi; (g

r

; h

r

; z

r

i

M; (

i

d

�

i

)

r

)i, where �

def

= H(i; g

r

; h

r

; z

r

i

M).

Note that we now inlude the period i in the hash funtion; this will be important in the analysis.

Also notie that z

i

= g

f

x

0

(i)

h

f

y

0

(i)

, 

i

= g

f

x

1

(i)

h

f

y

1

(i)

, and d

i

= g

f

x

2

(i)

h

f

y

2

(i)

. Thus, the user an

derypt (just as in the basi sheme) as long as he has f

x

n

(i); f

y

n

(i) for 0 � n � 2. The period

seret key SK

i

ontains exatly these values.

Theorem 4 Under the DDH assumption, the enryption sheme of Figure 2 is strongly (t;N)-

key-insulated under hosen-iphertext attaks. Furthermore, the sheme has seure key updates and

supports random-aess key updates.

Proof: That the sheme has seure key updates is trivial, sine SK

0

i

may be omputed from

SK

i�1

and SK

i

. Random-aess key updates are done analogously to the sheme of the previous

setion. We now show the key-insulated seurity of the sheme (f. De�nition 2). A standard hybrid

argument [4℄ shows that it is suÆient to onsider an adversary A who makes only a single request

to its left-or-right orale (for time period i of the adversary's hoie) and must guess the value b

i

.

We stress that polynomially-many alls to the deryption orale are allowed.

Assume A makes a single query to the LR orale during period i for whih it did not make a key

exposure request. In the original experiment (f. Figure 2), the output of LR

PK;

~

b

(i;M

0

;M

1

) is as

follows: hoose r  Z

q

and output hi; (g

r

; h

r

; z

r

i

M

b

i

; (

i

d

�

i

)

r

)i, where � is as above. As in the proof

of Theorem 3, we now modify the experiment. Given a tuple (g; h; u; v) whih is either a DDH tuple

or a random tuple, we de�ne the output of LR

PK;

~

b

(i;M

0

;M

1

) to be hi; (u; v; ~w = u

x

i;0

v

y

i;0

M

b

i

; ~e =

u

x

i;1

+x

i;2

�

v

y

i;1

+y

i;2

�

)i, where �

def

= H(i; u; v; ~w). Note that if (g; h; u; v) is a DDH tuple, then this

results in a perfet simulation of the LR orale from the original experiment. On the other hand, if

(g; h; u; v) is a random tuple, then, under the DDH assumption, the suess of any ppt adversary

annot di�er by a non-negligible amount from its suess in the original experiment. As in the

proof of Theorem 3, note that, in running the experiment, we an answer all of A's key exposure

queries. Thus, the proof handles an adaptive adversary whose key exposure requests may be made

based on all information seen up to that point.

Assume now that (g; h; u; v) is a random tuple and log

g

h 6= log

u

v (this happens with all but

negligible probability). We show that, with all but negligible probability, the adversary's view in

the modi�ed experiment is independent of

~

b. The proof parallels [12, Lemma 2℄. Say a iphertext

hi; (u

0

; v

0

; w

0

; e

0

)i is invalid if log

g

u

0

6= log

h

v

0

. Then:

Claim: If the deryption orale outputs ? for all invalid iphertexts during the adversary's attak,

then the value of b

i

(and hene

~

b) is independent of the adversary's view.
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The adversary knows at most t values of f

x

0

(�) and f

y

0

(�) (at points other than i). Sine f

x

0

(�)

and f

y

0

(�) are random polynomials of degree t, the values x

i;0

; y

i;0

(= f

x

0

(i); f

y

0

(i)) are uniformly

distributed subjet only to the onstraint given by the publi key:

log

g

z

i

= x

i;0

+ y

i;0

log

g

h: (3)

Furthermore, when the deryption orale derypts valid iphertexts hi; (u

0

; v

0

; w

0

; e

0

)i, the adversary

only obtains linearly-dependent relations r

0

log

g

z

i

= r

0

x

i;0

+ r

0

y

i;0

log

g

h (where r

0

def

= log

g

u

0

).

Similarly, deryptions of valid iphertexts at other time periods do not further onstrain x

i;0

; y

i;0

.

Now onsider the third omponent u

x

i;0

v

y

i;0

M

b

i

of the enryption orale (the only one whih depends

on b

i

). Spei�ally, onsider the disrete log of the \one-time pad" u

x

i;0

v

y

i;0

:

log

u

(u

x

i;0

v

y

i;0

) = x

i;0

+ y

i;0

log

u

v: (4)

Sine we assumed that log

u

v 6= log

g

h, (3) and (4) are linearly independent and the distribution of

u

x

i;0

v

y

i;0

(onditioned on b

i

and the adversary's view) is uniform. Thus, u

x

i;0

v

y

i;0

ats as a perfet

\one-time pad" and the adversary's view is independent of b

i

. The following laim now ompletes

the proof of key-insulated seurity:

Claim: With all but negligible probability, the deryption orale will output ? for all invalid

iphertexts.

Consider an invalid iphertext hj; (u

0

; v

0

; w

0

; e

0

)i, where j represents a period during whih a key

exposure request was not made, and let �

0

= H(j; u

0

; v

0

; w

0

). We show that, with all but negligible

probability, this iphertext is rejeted if it is invalid. There are two ases to onsider: (1) j = i

(reall that i is the period during whih the all to the LR orale is made) and (2) j 6= i.

When j = i, the proof of the laim follows the proof of [12, Claim 2℄ exatly. The adversary

knows at most t values of f

x

1

(�); f

y

1

(�); f

x

2

(�), and f

y

2

(�) (at points other than i). Sine these are

all random polynomials of degree t, the values (x

i;1

; y

i;1

; x

i;2

; y

i;2

) are uniformly distributed subjet

only to:

log

g



i

= x

i;1

+ y

i;1

log

g

h (5)

log

g

d

i

= x

i;2

+ y

i;2

log

g

h (6)

log

u

~e = x

i;1

+ �x

i;2

+ (log

u

v) y

i;1

+ (log

u

v)� y

i;2

; (7)

where (5) and (6) ome from the publi key and (7) omes from the output of the enryption

orale. If the submitted iphertext hi; (u

0

; v

0

; w

0

; e

0

)i is invalid and (u

0

; v

0

; w

0

; e

0

) 6= (u; v; ~w; ~e), there

are three possibilities:

Case 1. (u

0

; v

0

; w

0

) = (u; v; ~w). In this ase, e

0

6= ~e ensures that the deryption orale will rejet.

Case 2. (u

0

; v

0

; w

0

) 6= (u; v; ~w) but H(i; u

0

; v

0

; w

0

) = H(i; u; v; ~w). This immediately violates the

ollision-resistane of our hash funtion and hene annot our with non-negligible probability.

Case 3. H(i; u

0

; v

0

; w

0

) 6= H(i; u; v; ~w), i.e. � 6= �

0

. The deryption orale will rejet unless:

log

u

0

e

0

= x

i;1

+ �

0

x

i;2

+ (log

u

0

v

0

) y

i;1

+ (log

u

0

v

0

)�

0

y

i;2

: (8)

But (5){(8) are all linearly independent when � 6= �

0

, log

g

h 6= log

u

v and log

g

h 6= log

u

0

v

0

(the

iphertext is invalid), from whih it follows that the deryption orale rejets exept with probability

1=q. (As in [12℄, eah rejetion further onstrains the values (x

i;1

; y

i;1

; x

i;2

; y

i;2

); however, the k

th

query will be rejeted exept with probability at most 1=(q � k + 1).)
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When j 6= i, the proof is a bit more involved. The 8-tuple (x

i;1

; y

i;1

; x

i;2

; y

i;2

; x

j;1

; y

j;1

; x

j;2

; y

j;2

)

is uniformly distributed subjet to several onstraints. First, we have the three onstraints (5){(7).

Next, we have the following two onstraints arising from the publi key:

log

g



j

= x

j;1

+ y

j;1

log

g

h (9)

log

g

d

j

= x

j;2

+ y

j;2

log

g

h: (10)

Furthermore, sine the adversary ould have made up to t key exposure requests (at periods other

than i and j), it may now know t values of eah of f

x

1

; f

x

2

; f

y

1

; f

y

2

. This means than it knows

a linear relation between eah pair (x

i;1

; x

j;1

), (x

i;2

; x

j;2

), (y

i;1

; y

j;1

), (y

i;2

; y

j;2

). Spei�ally, these

relations are of the form:

x

i;1

+ �x

j;1

= s

1

(11)

x

i;2

+ �x

j;2

= s

2

(12)

y

i;1

+ �y

j;1

= s

3

(13)

y

i;2

+ �y

j;2

= s

4

; (14)

where � is the orresponding Lagrange oeÆient � = (i� i

1

) � � � (i� i

t

)=(j � i

1

) � � � (j � i

t

). Notie

that the same � appears in all four onstraints. On �rst glane, it appears we have more onstraints

than unknowns. However, it is easy to see that (13) is linearly dependent on (5), (9), and (11)

while (14) is linearly dependent on (6), (10), and (12). Hene, we only have 7 linearly independent

onstraints and 8 unknowns.

If the iphertext hj; (u

0

; v

0

; w

0

; e

0

)i submitted by the adversary is invalid, the deryption orale

will rejet unless:

log

u

0

e

0

= x

j;1

+ �

0

x

j;2

+ (log

u

0

v

0

) y

j;1

+ (log

u

0

v

0

)�

0

y

j;2

: (15)

Now, looking at all 8 equations (5){(7), (9){(12), (15), we see that they are linearly independent

preisely when the following three onditions hold:

1. log

g

h 6= log

u

v. This is true with overwhelming probability sine (g; h; u; v) is a random tuple.

2. log

g

h 6= log

u

0

v

0

. This is true sine the iphertext hj; (u

0

; v

0

; w

0

; e

0

)i is invalid.

3. � 6= �

0

, i.e. H(i; u; v; ~w) 6= H(j; u

0

; v

0

; w

0

). This is true sine we assumed that i 6= j and H

is hosen from a family of ollision resistant funtions. Here we require ollision resistane of

H sine the adversary's hoie of i; j is not known in advane.

Thus, (15) is linearly independent from all previous onstraints and thus the iphertext is rejeted

exept with negligible probability at most 1=q (again, the k

th

suh query is rejeted exept with

probability at most 1=(q � k + 1)).

This ompletes the proof of (t;N)-key-insulated seurity. The proof of strong key-insulated

seurity follows exatly the same arguments given above exept the onstraints (11){(14) now have

� = �1, as the adversary knows (x

i;1

� x

j;1

), et. from SK

�

.

CRHF's vs. UOWHF's. In the proof we use the fat that H is ollision resistant, while in

the basi Cramer-Shoup sheme [12℄, a universal one-way hash funtion suÆes. We note that this

does not introdue an extra assumption as ollision-resistant hash families an be onstruted based

on the DDH assumption [34, 36℄ (in fat, the disrete logarithm assumption is enough). Seond,

15



UOWHF's suÆe for our onstrution as long as the maximum number of periods N is polynomial

in the seurity parameter (sine a fator of 1=N is lost by \guessing" the period i for whih the

adversary will submit its enryption orale request). Third, if the adversary only makes (t� 1) key

exposure requests and we do not require strong seurity, we no longer have to inlude the period i

inside H and UOWHF's suÆe again. Having said this, using a ollision-resistant H seems a small

prie to pay for the simpliity and additional seurity of our sheme.

Aknowledgment: Shouhuai Xu was partially supported by an NSF grant to the Laboratory for

Information Seurity Tehnology at George Mason University.

Referenes

[1℄ M. Abdalla and L. Reyzin. A New Forward-Seure Digital Signature Sheme. Asiarypt '00.

[2℄ M. Abe and M. Kanda. A Key Esrow Sheme with Time-Limited Monitoring for One-Way

Communiation. ACISP '00.

[3℄ R. Anderson. Invited leture. ACM CCCS '97.

[4℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Conrete Seurity Treatment of Sym-

metri Enryption: Analysis of the DES Modes of Operation. FOCS '97.

[5℄ M. Bellare and S.K. Miner. A Forward-Seure Digital Signature Sheme. Crypto '99.

[6℄ M. Bellare and A. Palaio. Proteting against Key Exposure: Strongly Key-Insulated En-

ryption with Optimal Threshold. Available at http://eprint.iar.org/2002/064/.

[7℄ G. Blakley and C. Meadows. Seurity of Ramp Shemes. Crypto '84.

[8℄ D. Boneh and M. Franklin. Identity-Based Enryption from the Weil Pairing. Crypto '01.

[9℄ V. Boyko. On the Seurity Properties of the OAEP as an All-or-Nothing Transform. Crypto

'99.

[10℄ R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient Funtions

and All-Or-Nothing-Transforms. Eurorypt '00.

[11℄ B. Chor, A. Fiat, and M. Naor. Traing Traitors. Crypto '94.

[12℄ R. Cramer and V. Shoup. A Pratial Publi-Key Cryptosystem Provably Seure against

Adaptive Chosen-Ciphertext Attaks. Crypto '98.

[13℄ A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Funtion Seurely.

STOC '94.

[14℄ Y. Desmedt and Y. Frankel. Threshold ryptosystems. Crypto '89.

[15℄ W. DiÆe, P. van Oorshot and M. Wiener. Authentiation and Authentiated Key Exhanges.

Designs, Codes and Cryptography, 2:107{125, 1992.

[16℄ Y. Dodis, J. Katz, S. Xu and M. Yung. Strong Key-Insulated Signature Shemes. Manusript,

2002.

16



[17℄ A. Dyahkov and V. Rykov. A Survey of Superimposed Code Theory. In Problems of Control

and Information Theory, vol. 12, no. 4, 1983.

[18℄ T. El Gamal. A Publi-Key Cryptosystem and a Signature Sheme Based on the Disrete

Logarithm. IEEE Transations of Information Theory, 31(4): 469{472, 1985.

[19℄ P. Erdos, P. Frankl, and Z. Furedi. Families of Finite Sets in whih no Set is Covered by the

Union of r Others. In Israel J. Math., 51(1{2): 79{89, 1985.

[20℄ M. Franklin, M. Yung. Communiation Complexity of Seure Computation. STOC '92.

[21℄ E. Gafni, J. Staddon, and Y. L. Yin. EÆient Methods for Integrating Traeability and

Broadast Enryption. Crypto '99.

[22℄ M. Girault. Relaxing Tamper-Resistane Requirements for Smart Cards Using (Auto)-Proxy

Signatures. CARDIS '98.

[23℄ O. Goldreih, B. P�tzmann, and R.L. Rivest. Self-Delegation with Controlled Propagation

| or | What if You Lose Your Laptop? Crypto '98.

[24℄ S. Goldwasser, S. Miali, and R.L. Rivest. A Digital Signature Sheme Seure Against Adap-

tive Chosen-Message Attaks. SIAM J. Computing 17(2): 281{308 (1988).

[25℄ P. Indyk. Personal ommuniation.

[26℄ G. Itkis and L. Reyzin. Forward-Seure Signatures with Optimal Signing and Verifying.

Crypto '01.

[27℄ S. Jareki and A. Lysyanskaya. Conurrent and Erasure-Free Models in Adaptively-Seure

Threshold Cryptography. Eurorypt '00.

[28℄ H. Krawzyk. Seret Sharing Made Short. Crypto '93.

[29℄ H. Krawzyk. Simple Forward-Seure Signatures From any Signature Sheme. ACM CCCS

'00.

[30℄ R. Kumar, S. Rajagopalan, and A. Sahai. Coding Construtions for Blaklisting Problems

without Computational Assumptions. Crypto '99.

[31℄ C.-F. Lu and S.W. Shieh. Seure Key-Evolving Protools for Disrete Logarithm Shemes.

RSA 2002, to appear.

[32℄ T. Malkin, D. Miianio, and S. Miner. EÆient Generi Forward-Seure Signatures With

an Unbounded Number of Time Periods. Eurorypt '02, to appear.

[33℄ R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attaks. PODC '91.

[34℄ T. Pedersen. Non-Interative and Information-Theoreti Seure Veri�able Seret Sharing.

Crypto '91.

[35℄ R. Rivest. All-or-Nothing Enryption and the Pakage Transform. FSE '97.

[36℄ A. Russell. Neessary and SuÆient Conditions for Collision-Free Hashing. Journal of Cryp-

tology 8(2): 87{100 (1995).

17



[37℄ A. Shamir. How to share a seret. Comm. ACM, 22(11):612{613, 1979.

[38℄ A. Shamir. Identity-Based Cryptosystems and Signature Shemes. Crypto '84.

[39℄ W.-G. Tzeng and Z.-J. Tzeng. Robust Key-Evolving Publi-Key Enryption Shemes. Avail-

able at http://eprint.iar.org/2001/009/.

18


