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Abstract

In a threshold signature scheme, a group of players share a secret in-
formation in such a way that only those subsets with a minimum num-
ber of players can compute a valid signature. We propose methods to
construct some useful and computationally secure distributed protocols
from threshold signature schemes satisfying some suitable properties.

Namely, we prove that any threshold signature scheme which is non-
interactive can be used to construct a metering scheme. We also design
a distributed key distribution scheme from any deterministic threshold
signature scheme. The security of these news schemes is reduced to the
security of the corresponding threshold signature schemes. Furthermore,
the constructed protocols reach some desirable properties.

1 Introduction

In a threshold signature scheme, some participants share a secret information
that enables some subsets of them (those with a certain number of participants)
to compute valid signatures. Security and reliability increase in collective dig-
ital signatures because the tasks performed by a single party in an individual
signature scheme are now distributed among a set of players. These schemes
must be secure against the action of an adversary who corrupts some dishonest
players. Roughly speaking, a scheme is said to be unforgeable if any subset of
dishonest players can not obtain any information that allows them to compute
a signature. A scheme is said to be robust if it can detect corrupted partici-
pants, and they can not avoid honest players to generate a valid signature. The
result of the process of a threshold signature scheme is a standard signature.
Metering schemes were introduced in [15] in order to measure the number
of interactions between servers and clients (for example, the access of a client
to a web server). Each client that visits a server must send to him some



secret information. When a server has been visited by a certain number (the
threshold) of clients in a period of time, he can compute a valid proof of these
visits from the secret information that he has received. This proof is sent
to a trusted third party, who will take it into account in order to decide on
advertisement fees for web servers, for example. Some proposals of metering
schemes have been done in both the information-theoretic scenario ([14, 3|)
and the computationally secure one ([15, 18]). In this work, we show how any
threshold signature scheme which is secure and non-interactive can be used
to construct a computationally secure metering scheme. In this new scheme,
anyone (for instance, the person who must pay web advertisment fees) can
publicly verify the proofs computed by servers, not only a trusted third party.

Another important primitive in cryptographic protocols is the distribution
and managing of secret keys. Needham and Schroeder [17] introduced a single
server responsible of distributing keys. Later, some improvements of the model
have been done. Naor, Pinkas and Reingold [16] presented a model where the
task of a single server is distributed among a set of servers. These are the so-
called distributed key distribution schemes. Both information theoretic ([1, 2])
and computational models have been widely studied in literature. We focus
on computationally secure distributed key distribution schemes. Previously,
in [16] such a scheme was proposed, based on the Decisional Diffie-Hellman
Assumption. Recently, in [8] a new model, that reduces the computational
effort of the users by means of increasing servers’ computations, has been
proposed. In this paper, we construct general distributed and computationally
secure key distribution schemes following the original model in [16], from any
secure and deterministic threshold signature scheme.

In the extended version of this paper, we will construct explicit metering

and distributed key distribution schemes using these methods from specific
threshold signature schemes.
Organization of the paper. In Section 2, we explain how a threshold signa-
ture scheme works and the requirements that one such scheme must satisfy in
order to be considered secure. In Section 3, we introduce a method to construct
computationally secure metering schemes from any non-interactive threshold
signature scheme. In Section 4, we show how any deterministic threshold sig-
nature scheme can be used to design distributed and computationally secure
key distribution schemes. We sum up the results of the paper and propose
some related future research in Section 5.

2 Threshold Signature Schemes

2.1 Secret Sharing Schemes

Secret sharing schemes play an important role in distributed cryptography.
In these schemes, a secret value is shared among a set P = {P;,...,P,} of
n players in such a way that only qualified subsets of P (those in the access
structure, denoted by I') can reconstruct the secret from their shares. This



family I' C 27 of authorized subsets must be monotone, that is, if A, € I' and
Ay C Ay C P, then A, € I

Shamir’s secret sharing scheme was introduced in [19] and it realizes thresh-
old access structures I' = {A C P : |A| > t}, for some threshold ¢. To
share a secret k£ in a finite field K, the dealer chooses a random polynomial
f(z) =k+ayz+---+a; 12" € K[z] of degree t — 1. The share of participant
P;is s; = f(i), fori=1,... n.

Let A={P,,...,P;,} be a subset of ¢ participants. They have ¢ different
values of the polynomial f(z), of degree ¢ — 1, so they can obtain the value
k = f(0). We have k = f(0) = >, 4 Agif(i), where Ag; are the Lagrange
interpolation coefficients.

2.2 Definitions and Previous Work

A (t,n)-threshold signature scheme ¥ differs from a regular (individual) one
because the secret information (usually, the secret key) is shared among a set of
n players. This sharing is usually performed by using Shamir’s secret sharing
scheme or some variant of it. No coalition of less than ¢ players can compute
a valid signature. A threshold signature scheme Y consists of three protocols
(see for example [11]):

Thresh-Key-Gen: this protocol can be executed jointly by the n players
themselves, or by a trusted and external authority. The input is a security
parameter. The public outputs are pk (the public key of the scheme) and
some verification key vk, whereas each player P; has as his private output a
share sk; of the secret key related to pk. This protocol must be probabilistic
and polynomial-time.

Thresh-Stg: public inputs of this protocol are the message m to be signed,
the public key pk and the verification key vk. Each player P; uses his private
information to compute and broadcast his partial signature o;(m). In some
schemes, he must also broadcast a proof of correctness of his partial signature.
The correctness of the partial signatures can be verified using the verification
key vk. Finally, a combiner algorithm takes ¢ valid partial signatures and
produces a valid standard signature o(m). This protocol Thresh-Sig must be
polynomial-time.

Verif. this protocol is executed by the recipient of the signature, and is the
same as in a regular signature scheme. The inputs are the public key pk, the
message m and the signature o(m). The output will be “yes” if the result of
the verification is correct, or “no” if o(m) is not a valid signature on message
m. This protocol must be deterministic and polynomial-time.

We say that a threshold signature scheme is non-interactive if, in the execu-
tion of Thresh-Sig, each player can compute his partial signature independently
of the rest of players. Otherwise, the scheme is interactive. Analogously to a
regular signature scheme, a threshold signature scheme can be deterministic



(if each message has a unique valid signature) or probabilistic (multiple valid
signatures).

Some proposals of threshold signature schemes made until now can be
found in [11, 21]; they are probabilistic and interactive, based on the DSS and
Schnorr schemes. On the other hand, some threshold proposals of the RSA
signature scheme, which are deterministic and non-interactive, can be found
in [20, 7, 9]. Finally, threshold versions of two RSA-based signature schemes
[6, 13] are proposed in [5]. They are both interactive; the threshold version
of Cramer-Shoup scheme [6] is probabilistic, whereas the threshold version
of Gennaro-Halevi-Rabin scheme [13] is deterministic. The key generation
protocol of these schemes can be performed by a trusted dealer or jointly by
the own participants, by using some of the protocols in [12, 4, 10].

2.3 Security

A (t,n)-threshold signature scheme must be secure even in the presence of an
adversary who corrupts and controls the behavior of ¢ — 1 players. We say
that such a scheme is secure if it is robust and existentially unforgeable under
chosen-message attacks.

Robustness means that the scheme provides mechanisms to detect cor-
rupted players that broadcast incorrect information. Furthermore, the protocol
must produce always a valid signature from the partial signatures of the hon-
est players. Usually, a necessary condition for robustness in a (¢, n)-threshold
signature scheme is n > 2t — 1.

Unforgeability under chosen-message attacks means that an adversary who
corrupts t — 1 players (that is, he knows their private information and con-
trols their behavior in the protocols) has negligible probability of obtaining in
polynomial time a valid signature on a message m. This happens even if the
adversary knows all the information broadcast by all players (corrupted or not)
during the execution of the protocol Thresh-Sig on input messages my, ..., my
which the adversary adaptively chooses, such that m # m;, Vj =1,... k.

Usually, unforgeability of a threshold signature scheme is proved by re-
ducing it to the unforgeability of the regular signature scheme in which the
threshold one is based. The reasoning is that a successful forger against the
threshold scheme could be used as a sub-routine by a successful forger against
the regular scheme. Thus, if the regular scheme is assumed to be unforgeable,
then the threshold scheme must be unforgeable, too. The security of some sig-
nature schemes (regular or threshold) is proved in the standard cryptographic
model, whereas other schemes are proved secure in the random oracle model.

3 New Computational Metering Schemes

Metering schemes are designed to measure the interaction between servers and
clients during a certain number of time frames. One application of metering



schemes is the measure of number of web accesses to servers in the Internet,
in order to decide on advertisement fees for web servers.

In a metering scheme, an audit agency distributes some secret information
¢; to each client C; in C = {C4,...,C,}. When a client C; visits a server S
in S ={5,...,5,} during a time frame A = 1,...,7, he gives some piece
of information cf‘j to him. Once a server S; has been visited by a subset of ¢
clients, he can compute the proof p?‘. With this proof, he can demonstrate to
the audit agency that at least ¢ clients have visited him in time frame .

Some proposals of unconditionally secure metering schemes have been given
(15, 14, 3]. These metering schemes are secure against an infinitely powerful
adversary. On the other hand, only few proposals have been done in a com-
putational setting. In [15] Naor and Pinkas propose a computationally secure
scheme under the computational Diffie-Hellman assumption using bivariable
polynomials. Ogata and Kurosawa propose in [18] a computationally secure
scheme based on the same assumption, using polynomials in three variables.

Now we present a new method to construct a computationally secure me-
tering scheme from any threshold signature scheme that is non-interactive
(Section 2.2). This happens in the threshold signature schemes proposed in
120, 7, 9].

3.1 Metering Schemes from Threshold Signature Schemes

Let ¥ be a non-interactive (¢,n)-threshold signature scheme. A metering
scheme is usually divided in three different phases: an initialization phase,
which involves the audit agency and clients; a regular operation, in which
clients visit servers; and the proof computation phase, in which servers ob-
tain the proof that they have been visited by at least ¢ clients. We denote as
Y-metering scheme the metering scheme constructed as follows.

Initialization phase: in this phase, the audit agency executes the protocol
Thresh-Key-Gen of ¥ to generate public outputs pk (the public key of the
signature scheme), verification key vk, and private outputs sk;. Then the
audit agency sends secretly the information ¢; = sk; to each client C;.

Regular operation: the idea behind this protocol is that clients produce
partial signatures on message h(S;, \) when they visit server S; in a time
frame A. Here h must be an injective function whose outputs are valid mes-
sages. Since X is non-interactive, the client C; does not need the other clients
to compute this partial signature ¢; = o;(h(S;, A)) and send it to server Sj,
together with some proof of correctness. Server S; checks if the partial sig-
nature is correct using the public verification key (here X is assumed to be a

robust threshold signature scheme); if not, he denies the access to C;.

Proof computation phase: server S; uses the combiner algorithm of the
protocol Thresh-Sigof ¥ to produce a valid standard signature p?‘ = o(h(S;, \))
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from ¢ valid partial signatures. The audit agency (or anyone) uses the public
key pk to verify the validity of the proof p?‘ using the protocol Verif of 3.

Observe that in our -metering scheme there is not a prefixed number of
time frames for which the scheme can be used. This is true if the map A is an
injection. On the other hand, the amount of the secret information distributed
among clients and servers, and the complexity of the computations are inde-
pendent from the number of time frames. These properties (satisfied also by
other computational metering schemes as the one in [18]) are an improvement
with respect to the unconditionally secure proposals ([15, 14, 3]).

In our proposal, the audit agency is not needed in the verification phase,
because the validity of the proofs (signatures) computed by a server can be
verified publicly by anyone (for example, the advertisers who must pay the
corresponding fees) from the public key of the scheme. So the presence of
the audit agency is only necessary for the generation of the initial secret and
public informations of the scheme. This can be seen as an improvement with
respect to the previous proposals of metering schemes. For example, in the
computational scheme proposed in [18], the audit agency is the only one who
can check the validity of the proofs.

3.2 Security of Y-metering schemes

First of all we will define the security of a computational metering scheme,
and then we will proof the security of X-metering scheme, according to this
definition. The idea is that a server will not be able to compute a valid proof
for a time frame if he has been visited by less than ¢ clients during this period
of time, even if he receives information from the other servers.

Definition 1. We say that a metering scheme is computationally secure uf
any computationally bounded (polynomial time) adversary who corrupts at
most t — 1 clients and all servers, is not able to obtain a valid proofp% corre-
sponding to a server Sj, who has not been visited during time frame T by any
client distinct from the corrupted clients. This must happen even if all clients
C; have wvisited all servers S; in all previous time frames X < T, excluding
obuviously the case (j,\) = (jo, ).

Theorem 2. If Y is a non-interactive threshold signature scheme existentially
unforgeable under chosen-message attacks, then X-metering scheme is compu-
tationally secure.

Proof. We prove this theorem by assuming that the Y-metering scheme is
not computationally secure and then proving that ¥ is existentially forgeable
against a chosen-message attack.

Let us assume, therefore, that the »-metering scheme is not computa-
tionally secure. That is, there exist ¢ — 1 clients (we suppose without loss of
generality that they are C4,...,C;_;), aserver S;, a time frame 7" and a forger
algorithm F; that takes as input the secret information of clients C,...,Cy



and all the information that all clients C; € C give when they visit all servers
S; € S in all previous time frames A < T, excluding the case (j, ) = (jo,1').
With non-negligible probability and in polynomial time, F; outputs a valid
proof pl' = o(h(S;,,T))). Next, we construct a forger algorithm F; that can
be used by an adversary who corrupts the clients C4,...,C; ; to forge the
threshold signature scheme ¥ with a chosen-message attack.

When the initialization phase of the YX-metering scheme is executed, the
adversary knows the real shares ¢; = sk;, forv=1,...,t — 1, of the secret key
of the threshold signature scheme . In order to perform a chosen-message
attack, the adversary chooses the messages h(S;,A), for j =1,...,m, A < T,
and (7, A) # (jo, T), to be signed with the protocol Thresh-Sig of ¥, obtaining
all the public information (signatures and partial signatures) broadcast during
these executions. This information is exactly the information that all servers
S; would obtain from Y-metering scheme if they were visited by all clients in
time frames A < T, provided (4, \) # (jo, 7).

The adversary runs the forger algorithm F; with inputs the information
obtained from these executions of the protocol Thresh-Sig of ¥ and the secret
information of clients Ci,...,Cy_y. Since Fy outputs pj = o(h(S;,,T))),
F5 obtains, in polynomial time and with non-negligible probability, a valid
signature for a message h(Sj,,7T") different from the messages h(S;,\) that
were signed in the chosen executions of the threshold signature protocol. This
completes the proof. O

Note that if the threshold signature scheme X is proved to be secure in the
random oracle model, then Y-metering scheme is computationally secure in
the same model.

Ogata and Kurosawa propose in [18] a computationally secure metering
scheme basing its security on the computational Diffie-Hellman assumption.
They prove that an adversary who corrupts ¢ — 1 clients and d servers can not
compute the proof p?‘, where d is a security parameter. Since a Y-metering
scheme is secure even if the adversary corrupts all the servers, we can in some
way assure that it is more secure than the scheme in [18].

4 New Computational and Distributed Key
Distribution Schemes

First of all, we briefly describe how the threshold and computationally secure
key distribution scheme proposed in [16] works. They consider a set of servers
S ={S1,...,S,} and a group of users U = {Uy,...,U,} (they also refer to
them as clients). Let C C 2¥ be a family of sets of users, the conferences,
who want to communicate securely among them. In the initialization phase,
each server S; receives a share «; of some random secret «, shared (jointly or
using a trusted authority) among the servers by means of Shamir secret sharing
scheme. When a user U in a conference C' € C needs the key of this conference



(each conference C' is related to a public value h¢), he contacts with at least
2t —1 servers and asks them for the key of the conference C. Afterwards, every
contacted server verifies that U belongs to C' and, if so, computes the value
h¢i and sends it to him through their private channel.

After receiving the information from the servers, the user detects corrupted
servers. As these dishonest servers are assumed to be less than ¢, the user is
able to compute the conference key k¢ by using the correct values received
from t or more honest servers. Without loss of generality, we assume these
honest servers are Si,...,S;. The computation of k¢ is performed as follows:
ko = he = [[_ (k%) where )\; are the Lagrange interpolation coefficients.

Recently, a new model has been proposed [8] in order to reduce the amount
of computations the user must perform to obtain the key. The usefulness
of this model relies on those situations where servers have main part of the
computational power.

Next, we present a new method to construct computationally secure and
distributed key distribution schemes, following the model introduced in [16],
from a threshold signature scheme. This construction will be possible as long
as the considered signature scheme is deterministic (Section 2.2), as it happens
in the proposals of [20, 7, 9] and the threshold version of the Gennaro-Halevi-
Rabin scheme [13] proposed in [5].

4.1 Distributed Key Distribution Schemes from Thresh-
old Signature Schemes

Let ¥ be a deterministic (t,n)-threshold signature scheme. As it has been
done in some other recent works [2], we divide a distributed key distribution
scheme in three different phases: an initialization phase, which involves only
the servers; a key-request phase, in which users ask for keys to servers; and a
key-computation phase, in which users retrieve keys from the messages received
from the servers contacted during the key request phase. We refer to the
distributed key distribution scheme constructed as follows as X-DKDS.

Initialization phase: in this phase, the protocol Thresh-Key-Gen of the
signature scheme Y is performed, taking as participants the set of servers.
The protocol can be executed jointly by the n servers themselves, or by a
trusted and external authority. At the end of this phase, each server S; has a
share sk; of the secret key.

Key request phase: a user U; in a conference C' € C contacts with a group
of at least 2t — 1 servers requiring a key for the conference C'. We denote such
a key r¢. After checking for membership of U; in C, every contacted server
S; performs first part of the Thresh-Sig protocol of ¥. In this way, he uses
his private information to compute the partial signature o;(h(C')) and sends



it privately to the user. Here h is a public cryptographic hash function. The
server must also send to the user a proof of correctness of his partial signature.

Key computation phase: once having received the answers from the con-
tacted servers, user U; checks the proof of correctness of partial signatures he
has received in the previous phase (here we are assuming that the threshold
scheme ¥ is robust). By means of using the combiner algorithm of ¥, U; takes
t valid partial signatures (where by valid we refer to those signatures that pass
the checking of the proof of correctness) and produce a standard signature
o(h(C)) on the message h(C'). The key for the conference C'is ko = o(h(C)).
The user can verify the correctness of this key by using the protocol Verif of
Y., checking therefore if k¢ is a valid signature of message h(C).

Note that all users in the conference (' obtain the same key k¢, since the
threshold signature scheme X is deterministic.

4.2 Security of X-DKDS

We base the security of the scheme >-DKDS on the security of the yielding
threshold signature scheme ¥ under chosen-message attacks.

Before giving a formal definition of the security of a distributed and com-
putational key distribution scheme, we introduce some notation that will be
useful throughout the rest of the section. Given a conference C' € C, let
We = U — C be the set of users not in the conference C'. We also de-
fine the sets of pairs of users and conferences Po = {(U,C) | U € C} and
Ne ={(U,C") |U € Weg and U € C'}.

Definition 3. We say that a distributed key distribution scheme is computa-
tionally secure if for every conference C € C, any computationally bounded
(polynomial time) adversary who corrupts at most t — 1 servers and all users
in We, 1s not able to obtain k¢, even if the protocol is previously performed
for all pairs in Pe and Ne¢.

Note that, in the model that we consider, execution of the protocol for the
pairs in Pc does not give any new information to the adversary, because he
does not control the users of conference C'. Therefore, the information that
the honest servers send secretly to these honest users remains unknown to the
adversary.

Theorem 4. If ¥ is a deterministic threshold signature scheme existentially
unforgeable under chosen-message attacks, then ¥-DKDS is computationally
secure.

Proof. In order to prove this theorem, we will prove that if ¥-DKDS is not
computationally secure, then the threshold signature scheme is existentially
forgeable against a chosen-message attack.

In effect, if X-DKDS is not computationally secure, then there exist a
conference C' € C and a forger algorithm F; that takes as input the secret



information of t — 1 corrupted servers (without loss of generality, Sy,...,S; 1)
and all the new information that users in W¢ and servers Sy,...,S5;_; can
obtain from the executions of X-DKDS for pairs in Pc and N¢ (as we have
said before, in this model only executions for pairs in N¢ could give some
useful information to the adversary). The output of Fy is ke = o(h(C))).
Next, we show how an adversary who corrupts ¢ — 1 servers can construct a
forger algorithm J;, that forges the scheme ¥ with a chosen-message attack.
Once the initialization phase of X-DKDS is performed, the adversary ob-
tains the real shares of the secret key of the threshold signature scheme 3 cor-
responding to servers Sy, ...,S; 1. By definition of chosen-message attack, the
adversary can choose some messages to be signed with the protocol Thresh-Sig
of ¥, obtaining all the public information (signatures and partial signatures)
broadcast during these executions. In this case, the adversary chooses the
messages h(C") for all conferences C" # C' such that there exists some U € W
with (U,C") € Ng. Then the adversary runs the forger algorithm F; with
input the secret information of servers Si,...,S; 1 and the information ob-
tained from these executions of the protocol Thresh-Sig of ¥ (which is exactly
the information that users in W would obtain if ¥-DKDS was executed for
pairs in N¢). F obtains ko = o(h(C')) with non-negligible probability, so F,
obtains, also with non-negligible probability, a signature for a message h(C)
different from the messages h(C") that were signed in the chosen executions of
the threshold signature protocol. O

Again, if the security of the scheme ¥ can be proved only in the random
oracle model, then X-DKDS is computationally secure also in this model.

5 Conclusions and Future Work

In this paper we have proposed two methods to construct computationally
secure metering schemes and distributed key distribution schemes, from any
secure threshold signature scheme. In the case of metering schemes, the con-
sidered threshold signature scheme must be non-interactive, whereas in the
case of distributed key distribution schemes, the threshold signature scheme
must be deterministic. The two constructions provide schemes which are as
secure as the corresponding threshold signatures schemes.

To the best of our knowledge, the only threshold signature schemes pro-
posed until now that satisfy the properties of determinism and non-interaction
are the schemes in [20, 7, 9]. So we can construct from them a metering
scheme as well as a distributed key distribution scheme. On the other hand,
the threshold version in [5] of the signature scheme in [13] is deterministic but
interactive, so we can use it only to construct a distributed key distribution
scheme. In general, the use of non-interactive threshold signature schemes in
our construction of distributed key distribution schemes would be preferable,
because in this case the servers must not communicate among them in the
computation of the conference keys.
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All these proposed schemes run only with threshold structures, so an inter-
esting open problem is to find distributed signature schemes running with more
general access structures, and satisfying some of the properties (determinism
or non-interaction) that are required in this work.

In our new metering schemes, anyone can publicly verify the validity of the
proofs, not only the audit agency. However, this figure is still necessary in the
initialization phase, because a jointly generation of the secret information held
by the clients would be interactive and expensive. This does not fit in with a
real situation where clients are users of the Internet.

With respect to distributed key distribution schemes, a different model
from the one in [16] has been recently proposed in [8], reducing the compu-
tational effort of the users in the calculation of the conference key. Another
open problem is to discuss if we can find methods to construct, from thresh-
old signature schemes, distributed key distribution schemes computationally
secure in this different model.
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