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Abstra
t

In a threshold signature s
heme, a group of players share a se
ret in-

formation in su
h a way that only those subsets with a minimum num-

ber of players 
an 
ompute a valid signature. We propose methods to


onstru
t some useful and 
omputationally se
ure distributed proto
ols

from threshold signature s
hemes satisfying some suitable properties.

Namely, we prove that any threshold signature s
heme whi
h is non-

intera
tive 
an be used to 
onstru
t a metering s
heme. We also design

a distributed key distribution s
heme from any deterministi
 threshold

signature s
heme. The se
urity of these news s
hemes is redu
ed to the

se
urity of the 
orresponding threshold signature s
hemes. Furthermore,

the 
onstru
ted proto
ols rea
h some desirable properties.

1 Introdu
tion

In a threshold signature s
heme, some parti
ipants share a se
ret information

that enables some subsets of them (those with a 
ertain number of parti
ipants)

to 
ompute valid signatures. Se
urity and reliability in
rease in 
olle
tive dig-

ital signatures be
ause the tasks performed by a single party in an individual

signature s
heme are now distributed among a set of players. These s
hemes

must be se
ure against the a
tion of an adversary who 
orrupts some dishonest

players. Roughly speaking, a s
heme is said to be unforgeable if any subset of

dishonest players 
an not obtain any information that allows them to 
ompute

a signature. A s
heme is said to be robust if it 
an dete
t 
orrupted parti
i-

pants, and they 
an not avoid honest players to generate a valid signature. The

result of the pro
ess of a threshold signature s
heme is a standard signature.

Metering s
hemes were introdu
ed in [15℄ in order to measure the number

of intera
tions between servers and 
lients (for example, the a

ess of a 
lient

to a web server). Ea
h 
lient that visits a server must send to him some
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se
ret information. When a server has been visited by a 
ertain number (the

threshold) of 
lients in a period of time, he 
an 
ompute a valid proof of these

visits from the se
ret information that he has re
eived. This proof is sent

to a trusted third party, who will take it into a

ount in order to de
ide on

advertisement fees for web servers, for example. Some proposals of metering

s
hemes have been done in both the information-theoreti
 s
enario ([14, 3℄)

and the 
omputationally se
ure one ([15, 18℄). In this work, we show how any

threshold signature s
heme whi
h is se
ure and non-intera
tive 
an be used

to 
onstru
t a 
omputationally se
ure metering s
heme. In this new s
heme,

anyone (for instan
e, the person who must pay web advertisment fees) 
an

publi
ly verify the proofs 
omputed by servers, not only a trusted third party.

Another important primitive in 
ryptographi
 proto
ols is the distribution

and managing of se
ret keys. Needham and S
hroeder [17℄ introdu
ed a single

server responsible of distributing keys. Later, some improvements of the model

have been done. Naor, Pinkas and Reingold [16℄ presented a model where the

task of a single server is distributed among a set of servers. These are the so-


alled distributed key distribution s
hemes. Both information theoreti
 ([1, 2℄)

and 
omputational models have been widely studied in literature. We fo
us

on 
omputationally se
ure distributed key distribution s
hemes. Previously,

in [16℄ su
h a s
heme was proposed, based on the De
isional DiÆe-Hellman

Assumption. Re
ently, in [8℄ a new model, that redu
es the 
omputational

e�ort of the users by means of in
reasing servers' 
omputations, has been

proposed. In this paper, we 
onstru
t general distributed and 
omputationally

se
ure key distribution s
hemes following the original model in [16℄, from any

se
ure and deterministi
 threshold signature s
heme.

In the extended version of this paper, we will 
onstru
t expli
it metering

and distributed key distribution s
hemes using these methods from spe
i�


threshold signature s
hemes.

Organization of the paper. In Se
tion 2, we explain how a threshold signa-

ture s
heme works and the requirements that one su
h s
heme must satisfy in

order to be 
onsidered se
ure. In Se
tion 3, we introdu
e a method to 
onstru
t


omputationally se
ure metering s
hemes from any non-intera
tive threshold

signature s
heme. In Se
tion 4, we show how any deterministi
 threshold sig-

nature s
heme 
an be used to design distributed and 
omputationally se
ure

key distribution s
hemes. We sum up the results of the paper and propose

some related future resear
h in Se
tion 5.

2 Threshold Signature S
hemes

2.1 Se
ret Sharing S
hemes

Se
ret sharing s
hemes play an important role in distributed 
ryptography.

In these s
hemes, a se
ret value is shared among a set P = fP

1

; : : : ; P

n

g of

n players in su
h a way that only quali�ed subsets of P (those in the a

ess

stru
ture, denoted by �) 
an re
onstru
t the se
ret from their shares. This
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family � � 2

P

of authorized subsets must be monotone, that is, if A

1

2 � and

A

1

� A

2

� P, then A

2

2 �.

Shamir's se
ret sharing s
hemewas introdu
ed in [19℄ and it realizes thresh-

old a

ess stru
tures � = fA � P : jAj � tg, for some threshold t. To

share a se
ret k in a �nite �eld K, the dealer 
hooses a random polynomial

f(z) = k+a

1

z+ � � �+a

t�1

z

t�1

2 K[z℄ of degree t�1. The share of parti
ipant

P

i

is s

i

= f(i), for i = 1; : : : ; n.

Let A = fP

i

1

; : : : ; P

i

t

g be a subset of t parti
ipants. They have t di�erent

values of the polynomial f(z), of degree t � 1, so they 
an obtain the value

k = f(0). We have k = f(0) =

P

P

i

2A

�

A

0;i

f(i), where �

A

0;i

are the Lagrange

interpolation 
oeÆ
ients.

2.2 De�nitions and Previous Work

A (t; n)-threshold signature s
heme � di�ers from a regular (individual) one

be
ause the se
ret information (usually, the se
ret key) is shared among a set of

n players. This sharing is usually performed by using Shamir's se
ret sharing

s
heme or some variant of it. No 
oalition of less than t players 
an 
ompute

a valid signature. A threshold signature s
heme � 
onsists of three proto
ols

(see for example [11℄):

Thresh-Key-Gen: this proto
ol 
an be exe
uted jointly by the n players

themselves, or by a trusted and external authority. The input is a se
urity

parameter. The publi
 outputs are pk (the publi
 key of the s
heme) and

some veri�
ation key vk, whereas ea
h player P

i

has as his private output a

share sk

i

of the se
ret key related to pk. This proto
ol must be probabilisti


and polynomial-time.

Thresh-Sig: publi
 inputs of this proto
ol are the message m to be signed,

the publi
 key pk and the veri�
ation key vk. Ea
h player P

i

uses his private

information to 
ompute and broad
ast his partial signature �

i

(m). In some

s
hemes, he must also broad
ast a proof of 
orre
tness of his partial signature.

The 
orre
tness of the partial signatures 
an be veri�ed using the veri�
ation

key vk. Finally, a 
ombiner algorithm takes t valid partial signatures and

produ
es a valid standard signature �(m). This proto
ol Thresh-Sig must be

polynomial-time.

Verif: this proto
ol is exe
uted by the re
ipient of the signature, and is the

same as in a regular signature s
heme. The inputs are the publi
 key pk, the

message m and the signature �(m). The output will be \yes" if the result of

the veri�
ation is 
orre
t, or \no" if �(m) is not a valid signature on message

m. This proto
ol must be deterministi
 and polynomial-time.

We say that a threshold signature s
heme is non-intera
tive if, in the exe
u-

tion of Thresh-Sig, ea
h player 
an 
ompute his partial signature independently

of the rest of players. Otherwise, the s
heme is intera
tive. Analogously to a

regular signature s
heme, a threshold signature s
heme 
an be deterministi
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(if ea
h message has a unique valid signature) or probabilisti
 (multiple valid

signatures).

Some proposals of threshold signature s
hemes made until now 
an be

found in [11, 21℄; they are probabilisti
 and intera
tive, based on the DSS and

S
hnorr s
hemes. On the other hand, some threshold proposals of the RSA

signature s
heme, whi
h are deterministi
 and non-intera
tive, 
an be found

in [20, 7, 9℄. Finally, threshold versions of two RSA-based signature s
hemes

[6, 13℄ are proposed in [5℄. They are both intera
tive; the threshold version

of Cramer-Shoup s
heme [6℄ is probabilisti
, whereas the threshold version

of Gennaro-Halevi-Rabin s
heme [13℄ is deterministi
. The key generation

proto
ol of these s
hemes 
an be performed by a trusted dealer or jointly by

the own parti
ipants, by using some of the proto
ols in [12, 4, 10℄.

2.3 Se
urity

A (t; n)-threshold signature s
heme must be se
ure even in the presen
e of an

adversary who 
orrupts and 
ontrols the behavior of t � 1 players. We say

that su
h a s
heme is se
ure if it is robust and existentially unforgeable under


hosen-message atta
ks.

Robustness means that the s
heme provides me
hanisms to dete
t 
or-

rupted players that broad
ast in
orre
t information. Furthermore, the proto
ol

must produ
e always a valid signature from the partial signatures of the hon-

est players. Usually, a ne
essary 
ondition for robustness in a (t; n)-threshold

signature s
heme is n � 2t� 1.

Unforgeability under 
hosen-message atta
ks means that an adversary who


orrupts t � 1 players (that is, he knows their private information and 
on-

trols their behavior in the proto
ols) has negligible probability of obtaining in

polynomial time a valid signature on a message m. This happens even if the

adversary knows all the information broad
ast by all players (
orrupted or not)

during the exe
ution of the proto
ol Thresh-Sig on input messages m

1

; : : : ; m

k

whi
h the adversary adaptively 
hooses, su
h that m 6= m

j

, 8j = 1; : : : ; k.

Usually, unforgeability of a threshold signature s
heme is proved by re-

du
ing it to the unforgeability of the regular signature s
heme in whi
h the

threshold one is based. The reasoning is that a su

essful forger against the

threshold s
heme 
ould be used as a sub-routine by a su

essful forger against

the regular s
heme. Thus, if the regular s
heme is assumed to be unforgeable,

then the threshold s
heme must be unforgeable, too. The se
urity of some sig-

nature s
hemes (regular or threshold) is proved in the standard 
ryptographi


model, whereas other s
hemes are proved se
ure in the random ora
le model.

3 New Computational Metering S
hemes

Metering s
hemes are designed to measure the intera
tion between servers and


lients during a 
ertain number of time frames. One appli
ation of metering
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s
hemes is the measure of number of web a

esses to servers in the Internet,

in order to de
ide on advertisement fees for web servers.

In a metering s
heme, an audit agen
y distributes some se
ret information




i

to ea
h 
lient C

i

in C = fC

1

; : : : ; C

n

g. When a 
lient C

i

visits a server S

j

in S = fS

1

; : : : ; S

m

g during a time frame � = 1; : : : ; � , he gives some pie
e

of information 


�

ij

to him. On
e a server S

j

has been visited by a subset of t


lients, he 
an 
ompute the proof p

�

j

. With this proof, he 
an demonstrate to

the audit agen
y that at least t 
lients have visited him in time frame �.

Some proposals of un
onditionally se
ure metering s
hemes have been given

[15, 14, 3℄. These metering s
hemes are se
ure against an in�nitely powerful

adversary. On the other hand, only few proposals have been done in a 
om-

putational setting. In [15℄ Naor and Pinkas propose a 
omputationally se
ure

s
heme under the 
omputational DiÆe-Hellman assumption using bivariable

polynomials. Ogata and Kurosawa propose in [18℄ a 
omputationally se
ure

s
heme based on the same assumption, using polynomials in three variables.

Now we present a new method to 
onstru
t a 
omputationally se
ure me-

tering s
heme from any threshold signature s
heme that is non-intera
tive

(Se
tion 2.2). This happens in the threshold signature s
hemes proposed in

[20, 7, 9℄.

3.1 Metering S
hemes from Threshold Signature S
hemes

Let � be a non-intera
tive (t; n)-threshold signature s
heme. A metering

s
heme is usually divided in three di�erent phases: an initialization phase,

whi
h involves the audit agen
y and 
lients; a regular operation, in whi
h


lients visit servers; and the proof 
omputation phase, in whi
h servers ob-

tain the proof that they have been visited by at least t 
lients. We denote as

�-metering s
heme the metering s
heme 
onstru
ted as follows.

Initialization phase: in this phase, the audit agen
y exe
utes the proto
ol

Thresh-Key-Gen of � to generate publi
 outputs pk (the publi
 key of the

signature s
heme), veri�
ation key vk, and private outputs sk

i

. Then the

audit agen
y sends se
retly the information 


i

= sk

i

to ea
h 
lient C

i

.

Regular operation: the idea behind this proto
ol is that 
lients produ
e

partial signatures on message h(S

j

; �) when they visit server S

j

in a time

frame �. Here h must be an inje
tive fun
tion whose outputs are valid mes-

sages. Sin
e � is non-intera
tive, the 
lient C

i

does not need the other 
lients

to 
ompute this partial signature 


�

ij

= �

i

(h(S

j

; �)) and send it to server S

j

,

together with some proof of 
orre
tness. Server S

j


he
ks if the partial sig-

nature is 
orre
t using the publi
 veri�
ation key (here � is assumed to be a

robust threshold signature s
heme); if not, he denies the a

ess to C

i

.

Proof 
omputation phase: server S

j

uses the 
ombiner algorithm of the

proto
olThresh-Sig of � to produ
e a valid standard signature p

�

j

= �(h(S

j

; �))
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from t valid partial signatures. The audit agen
y (or anyone) uses the publi


key pk to verify the validity of the proof p

�

j

using the proto
ol Verif of �.

Observe that in our �-metering s
heme there is not a pre�xed number of

time frames for whi
h the s
heme 
an be used. This is true if the map h is an

inje
tion. On the other hand, the amount of the se
ret information distributed

among 
lients and servers, and the 
omplexity of the 
omputations are inde-

pendent from the number of time frames. These properties (satis�ed also by

other 
omputational metering s
hemes as the one in [18℄) are an improvement

with respe
t to the un
onditionally se
ure proposals ([15, 14, 3℄).

In our proposal, the audit agen
y is not needed in the veri�
ation phase,

be
ause the validity of the proofs (signatures) 
omputed by a server 
an be

veri�ed publi
ly by anyone (for example, the advertisers who must pay the


orresponding fees) from the publi
 key of the s
heme. So the presen
e of

the audit agen
y is only ne
essary for the generation of the initial se
ret and

publi
 informations of the s
heme. This 
an be seen as an improvement with

respe
t to the previous proposals of metering s
hemes. For example, in the


omputational s
heme proposed in [18℄, the audit agen
y is the only one who


an 
he
k the validity of the proofs.

3.2 Se
urity of �-metering s
hemes

First of all we will de�ne the se
urity of a 
omputational metering s
heme,

and then we will proof the se
urity of �-metering s
heme, a

ording to this

de�nition. The idea is that a server will not be able to 
ompute a valid proof

for a time frame if he has been visited by less than t 
lients during this period

of time, even if he re
eives information from the other servers.

De�nition 1. We say that a metering s
heme is 
omputationally se
ure if

any 
omputationally bounded (polynomial time) adversary who 
orrupts at

most t� 1 
lients and all servers, is not able to obtain a valid proof p

T

j

0


orre-

sponding to a server S

j

0

who has not been visited during time frame T by any


lient distin
t from the 
orrupted 
lients. This must happen even if all 
lients

C

i

have visited all servers S

j

in all previous time frames � � T , ex
luding

obviously the 
ase (j; �) = (j

0

; T ).

Theorem 2. If � is a non-intera
tive threshold signature s
heme existentially

unforgeable under 
hosen-message atta
ks, then �-metering s
heme is 
ompu-

tationally se
ure.

Proof. We prove this theorem by assuming that the �-metering s
heme is

not 
omputationally se
ure and then proving that � is existentially forgeable

against a 
hosen-message atta
k.

Let us assume, therefore, that the �-metering s
heme is not 
omputa-

tionally se
ure. That is, there exist t � 1 
lients (we suppose without loss of

generality that they are C

1

; : : : ; C

t�1

), a server S

j

0

, a time frame T and a forger

algorithm F

1

that takes as input the se
ret information of 
lients C

1

; : : : ; C

t�1

6



and all the information that all 
lients C

i

2 C give when they visit all servers

S

j

2 S in all previous time frames � � T , ex
luding the 
ase (j; �) = (j

0

; T ).

With non-negligible probability and in polynomial time, F

1

outputs a valid

proof p

T

j

0

= �(h(S

j

0

; T ))). Next, we 
onstru
t a forger algorithm F

2

that 
an

be used by an adversary who 
orrupts the 
lients C

1

; : : : ; C

t�1

to forge the

threshold signature s
heme � with a 
hosen-message atta
k.

When the initialization phase of the �-metering s
heme is exe
uted, the

adversary knows the real shares 


i

= sk

i

, for i = 1; : : : ; t� 1, of the se
ret key

of the threshold signature s
heme �. In order to perform a 
hosen-message

atta
k, the adversary 
hooses the messages h(S

j

; �), for j = 1; : : : ; m, � � T ,

and (j; �) 6= (j

0

; T ), to be signed with the proto
ol Thresh-Sig of �, obtaining

all the publi
 information (signatures and partial signatures) broad
ast during

these exe
utions. This information is exa
tly the information that all servers

S

j

would obtain from �-metering s
heme if they were visited by all 
lients in

time frames � � T , provided (j; �) 6= (j

0

; T ).

The adversary runs the forger algorithm F

1

with inputs the information

obtained from these exe
utions of the proto
ol Thresh-Sig of � and the se
ret

information of 
lients C

1

; : : : ; C

t�1

. Sin
e F

1

outputs p

T

j

0

= �(h(S

j

0

; T ))),

F

2

obtains, in polynomial time and with non-negligible probability, a valid

signature for a message h(S

j

0

; T ) di�erent from the messages h(S

j

; �) that

were signed in the 
hosen exe
utions of the threshold signature proto
ol. This


ompletes the proof.

Note that if the threshold signature s
heme � is proved to be se
ure in the

random ora
le model, then �-metering s
heme is 
omputationally se
ure in

the same model.

Ogata and Kurosawa propose in [18℄ a 
omputationally se
ure metering

s
heme basing its se
urity on the 
omputational DiÆe-Hellman assumption.

They prove that an adversary who 
orrupts t� 1 
lients and d servers 
an not


ompute the proof p

�

j

, where d is a se
urity parameter. Sin
e a �-metering

s
heme is se
ure even if the adversary 
orrupts all the servers, we 
an in some

way assure that it is more se
ure than the s
heme in [18℄.

4 New Computational and Distributed Key

Distribution S
hemes

First of all, we brie
y des
ribe how the threshold and 
omputationally se
ure

key distribution s
heme proposed in [16℄ works. They 
onsider a set of servers

S = fS

1

; : : : ; S

n

g and a group of users U = fU

1

; : : : ; U

m

g (they also refer to

them as 
lients). Let C � 2

U

be a family of sets of users, the 
onferen
es,

who want to 
ommuni
ate se
urely among them. In the initialization phase,

ea
h server S

i

re
eives a share �

i

of some random se
ret �, shared (jointly or

using a trusted authority) among the servers by means of Shamir se
ret sharing

s
heme. When a user U in a 
onferen
e C 2 C needs the key of this 
onferen
e

7



(ea
h 
onferen
e C is related to a publi
 value h

C

), he 
onta
ts with at least

2t�1 servers and asks them for the key of the 
onferen
e C. Afterwards, every


onta
ted server veri�es that U belongs to C and, if so, 
omputes the value

h

�

i

C

and sends it to him through their private 
hannel.

After re
eiving the information from the servers, the user dete
ts 
orrupted

servers. As these dishonest servers are assumed to be less than t, the user is

able to 
ompute the 
onferen
e key �

C

by using the 
orre
t values re
eived

from t or more honest servers. Without loss of generality, we assume these

honest servers are S

1

; : : : ; S

t

. The 
omputation of �

C

is performed as follows:

�

C

= h

�

C

=

Q

t

i=1

(h

�

i

C

)

�

i

, where �

i

are the Lagrange interpolation 
oeÆ
ients.

Re
ently, a new model has been proposed [8℄ in order to redu
e the amount

of 
omputations the user must perform to obtain the key. The usefulness

of this model relies on those situations where servers have main part of the


omputational power.

Next, we present a new method to 
onstru
t 
omputationally se
ure and

distributed key distribution s
hemes, following the model introdu
ed in [16℄,

from a threshold signature s
heme. This 
onstru
tion will be possible as long

as the 
onsidered signature s
heme is deterministi
 (Se
tion 2.2), as it happens

in the proposals of [20, 7, 9℄ and the threshold version of the Gennaro-Halevi-

Rabin s
heme [13℄ proposed in [5℄.

4.1 Distributed Key Distribution S
hemes from Thresh-

old Signature S
hemes

Let � be a deterministi
 (t; n)-threshold signature s
heme. As it has been

done in some other re
ent works [2℄, we divide a distributed key distribution

s
heme in three di�erent phases: an initialization phase, whi
h involves only

the servers; a key-request phase, in whi
h users ask for keys to servers; and a

key-
omputation phase, in whi
h users retrieve keys from the messages re
eived

from the servers 
onta
ted during the key request phase. We refer to the

distributed key distribution s
heme 
onstru
ted as follows as �-DKDS.

Initialization phase: in this phase, the proto
ol Thresh-Key-Gen of the

signature s
heme � is performed, taking as parti
ipants the set of servers.

The proto
ol 
an be exe
uted jointly by the n servers themselves, or by a

trusted and external authority. At the end of this phase, ea
h server S

i

has a

share sk

i

of the se
ret key.

Key request phase: a user U

j

in a 
onferen
e C 2 C 
onta
ts with a group

of at least 2t� 1 servers requiring a key for the 
onferen
e C. We denote su
h

a key �

C

. After 
he
king for membership of U

j

in C, every 
onta
ted server

S

i

performs �rst part of the Thresh-Sig proto
ol of �. In this way, he uses

his private information to 
ompute the partial signature �

i

(h(C)) and sends

8



it privately to the user. Here h is a publi
 
ryptographi
 hash fun
tion. The

server must also send to the user a proof of 
orre
tness of his partial signature.

Key 
omputation phase: on
e having re
eived the answers from the 
on-

ta
ted servers, user U

j


he
ks the proof of 
orre
tness of partial signatures he

has re
eived in the previous phase (here we are assuming that the threshold

s
heme � is robust). By means of using the 
ombiner algorithm of �, U

j

takes

t valid partial signatures (where by valid we refer to those signatures that pass

the 
he
king of the proof of 
orre
tness) and produ
e a standard signature

�(h(C)) on the message h(C). The key for the 
onferen
e C is �

C

= �(h(C)).

The user 
an verify the 
orre
tness of this key by using the proto
ol V erif of

�, 
he
king therefore if �

C

is a valid signature of message h(C).

Note that all users in the 
onferen
e C obtain the same key �

C

, sin
e the

threshold signature s
heme � is deterministi
.

4.2 Se
urity of �-DKDS

We base the se
urity of the s
heme �-DKDS on the se
urity of the yielding

threshold signature s
heme � under 
hosen-message atta
ks.

Before giving a formal de�nition of the se
urity of a distributed and 
om-

putational key distribution s
heme, we introdu
e some notation that will be

useful throughout the rest of the se
tion. Given a 
onferen
e C 2 C, let

W

C

= U � C be the set of users not in the 
onferen
e C. We also de-

�ne the sets of pairs of users and 
onferen
es P

C

= f(U;C) j U 2 Cg and

N

C

= f(U;C

0

) j U 2 W

C

and U 2 C

0

g.

De�nition 3. We say that a distributed key distribution s
heme is 
omputa-

tionally se
ure if for every 
onferen
e C 2 C, any 
omputationally bounded

(polynomial time) adversary who 
orrupts at most t� 1 servers and all users

in W

C

, is not able to obtain �

C

, even if the proto
ol is previously performed

for all pairs in P

C

and N

C

.

Note that, in the model that we 
onsider, exe
ution of the proto
ol for the

pairs in P

C

does not give any new information to the adversary, be
ause he

does not 
ontrol the users of 
onferen
e C. Therefore, the information that

the honest servers send se
retly to these honest users remains unknown to the

adversary.

Theorem 4. If � is a deterministi
 threshold signature s
heme existentially

unforgeable under 
hosen-message atta
ks, then �-DKDS is 
omputationally

se
ure.

Proof. In order to prove this theorem, we will prove that if �-DKDS is not


omputationally se
ure, then the threshold signature s
heme is existentially

forgeable against a 
hosen-message atta
k.

In e�e
t, if �-DKDS is not 
omputationally se
ure, then there exist a


onferen
e C 2 C and a forger algorithm F

1

that takes as input the se
ret

9



information of t� 1 
orrupted servers (without loss of generality, S

1

; : : : ; S

t�1

)

and all the new information that users in W

C

and servers S

1

; : : : ; S

t�1


an

obtain from the exe
utions of �-DKDS for pairs in P

C

and N

C

(as we have

said before, in this model only exe
utions for pairs in N

C


ould give some

useful information to the adversary). The output of F

1

is �

C

= �(h(C))).

Next, we show how an adversary who 
orrupts t � 1 servers 
an 
onstru
t a

forger algorithm F

2

that forges the s
heme � with a 
hosen-message atta
k.

On
e the initialization phase of �-DKDS is performed, the adversary ob-

tains the real shares of the se
ret key of the threshold signature s
heme � 
or-

responding to servers S

1

; : : : ; S

t�1

. By de�nition of 
hosen-message atta
k, the

adversary 
an 
hoose some messages to be signed with the proto
ol Thresh-Sig

of �, obtaining all the publi
 information (signatures and partial signatures)

broad
ast during these exe
utions. In this 
ase, the adversary 
hooses the

messages h(C

0

) for all 
onferen
es C

0

6= C su
h that there exists some U 2 W

C

with (U;C

0

) 2 N

C

. Then the adversary runs the forger algorithm F

1

with

input the se
ret information of servers S

1

; : : : ; S

t�1

and the information ob-

tained from these exe
utions of the proto
ol Thresh-Sig of � (whi
h is exa
tly

the information that users in W

C

would obtain if �-DKDS was exe
uted for

pairs in N

C

). F

1

obtains �

C

= �(h(C)) with non-negligible probability, so F

2

obtains, also with non-negligible probability, a signature for a message h(C)

di�erent from the messages h(C

0

) that were signed in the 
hosen exe
utions of

the threshold signature proto
ol.

Again, if the se
urity of the s
heme � 
an be proved only in the random

ora
le model, then �-DKDS is 
omputationally se
ure also in this model.

5 Con
lusions and Future Work

In this paper we have proposed two methods to 
onstru
t 
omputationally

se
ure metering s
hemes and distributed key distribution s
hemes, from any

se
ure threshold signature s
heme. In the 
ase of metering s
hemes, the 
on-

sidered threshold signature s
heme must be non-intera
tive, whereas in the


ase of distributed key distribution s
hemes, the threshold signature s
heme

must be deterministi
. The two 
onstru
tions provide s
hemes whi
h are as

se
ure as the 
orresponding threshold signatures s
hemes.

To the best of our knowledge, the only threshold signature s
hemes pro-

posed until now that satisfy the properties of determinism and non-intera
tion

are the s
hemes in [20, 7, 9℄. So we 
an 
onstru
t from them a metering

s
heme as well as a distributed key distribution s
heme. On the other hand,

the threshold version in [5℄ of the signature s
heme in [13℄ is deterministi
 but

intera
tive, so we 
an use it only to 
onstru
t a distributed key distribution

s
heme. In general, the use of non-intera
tive threshold signature s
hemes in

our 
onstru
tion of distributed key distribution s
hemes would be preferable,

be
ause in this 
ase the servers must not 
ommuni
ate among them in the


omputation of the 
onferen
e keys.

10



All these proposed s
hemes run only with threshold stru
tures, so an inter-

esting open problem is to �nd distributed signature s
hemes running with more

general a

ess stru
tures, and satisfying some of the properties (determinism

or non-intera
tion) that are required in this work.

In our new metering s
hemes, anyone 
an publi
ly verify the validity of the

proofs, not only the audit agen
y. However, this �gure is still ne
essary in the

initialization phase, be
ause a jointly generation of the se
ret information held

by the 
lients would be intera
tive and expensive. This does not �t in with a

real situation where 
lients are users of the Internet.

With respe
t to distributed key distribution s
hemes, a di�erent model

from the one in [16℄ has been re
ently proposed in [8℄, redu
ing the 
ompu-

tational e�ort of the users in the 
al
ulation of the 
onferen
e key. Another

open problem is to dis
uss if we 
an �nd methods to 
onstru
t, from thresh-

old signature s
hemes, distributed key distribution s
hemes 
omputationally

se
ure in this di�erent model.
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