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Abstrat

In a threshold signature sheme, a group of players share a seret in-

formation in suh a way that only those subsets with a minimum num-

ber of players an ompute a valid signature. We propose methods to

onstrut some useful and omputationally seure distributed protools

from threshold signature shemes satisfying some suitable properties.

Namely, we prove that any threshold signature sheme whih is non-

interative an be used to onstrut a metering sheme. We also design

a distributed key distribution sheme from any deterministi threshold

signature sheme. The seurity of these news shemes is redued to the

seurity of the orresponding threshold signature shemes. Furthermore,

the onstruted protools reah some desirable properties.

1 Introdution

In a threshold signature sheme, some partiipants share a seret information

that enables some subsets of them (those with a ertain number of partiipants)

to ompute valid signatures. Seurity and reliability inrease in olletive dig-

ital signatures beause the tasks performed by a single party in an individual

signature sheme are now distributed among a set of players. These shemes

must be seure against the ation of an adversary who orrupts some dishonest

players. Roughly speaking, a sheme is said to be unforgeable if any subset of

dishonest players an not obtain any information that allows them to ompute

a signature. A sheme is said to be robust if it an detet orrupted partii-

pants, and they an not avoid honest players to generate a valid signature. The

result of the proess of a threshold signature sheme is a standard signature.

Metering shemes were introdued in [15℄ in order to measure the number

of interations between servers and lients (for example, the aess of a lient

to a web server). Eah lient that visits a server must send to him some
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seret information. When a server has been visited by a ertain number (the

threshold) of lients in a period of time, he an ompute a valid proof of these

visits from the seret information that he has reeived. This proof is sent

to a trusted third party, who will take it into aount in order to deide on

advertisement fees for web servers, for example. Some proposals of metering

shemes have been done in both the information-theoreti senario ([14, 3℄)

and the omputationally seure one ([15, 18℄). In this work, we show how any

threshold signature sheme whih is seure and non-interative an be used

to onstrut a omputationally seure metering sheme. In this new sheme,

anyone (for instane, the person who must pay web advertisment fees) an

publily verify the proofs omputed by servers, not only a trusted third party.

Another important primitive in ryptographi protools is the distribution

and managing of seret keys. Needham and Shroeder [17℄ introdued a single

server responsible of distributing keys. Later, some improvements of the model

have been done. Naor, Pinkas and Reingold [16℄ presented a model where the

task of a single server is distributed among a set of servers. These are the so-

alled distributed key distribution shemes. Both information theoreti ([1, 2℄)

and omputational models have been widely studied in literature. We fous

on omputationally seure distributed key distribution shemes. Previously,

in [16℄ suh a sheme was proposed, based on the Deisional DiÆe-Hellman

Assumption. Reently, in [8℄ a new model, that redues the omputational

e�ort of the users by means of inreasing servers' omputations, has been

proposed. In this paper, we onstrut general distributed and omputationally

seure key distribution shemes following the original model in [16℄, from any

seure and deterministi threshold signature sheme.

In the extended version of this paper, we will onstrut expliit metering

and distributed key distribution shemes using these methods from spei�

threshold signature shemes.

Organization of the paper. In Setion 2, we explain how a threshold signa-

ture sheme works and the requirements that one suh sheme must satisfy in

order to be onsidered seure. In Setion 3, we introdue a method to onstrut

omputationally seure metering shemes from any non-interative threshold

signature sheme. In Setion 4, we show how any deterministi threshold sig-

nature sheme an be used to design distributed and omputationally seure

key distribution shemes. We sum up the results of the paper and propose

some related future researh in Setion 5.

2 Threshold Signature Shemes

2.1 Seret Sharing Shemes

Seret sharing shemes play an important role in distributed ryptography.

In these shemes, a seret value is shared among a set P = fP

1

; : : : ; P

n

g of

n players in suh a way that only quali�ed subsets of P (those in the aess

struture, denoted by �) an reonstrut the seret from their shares. This
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family � � 2

P

of authorized subsets must be monotone, that is, if A

1

2 � and

A

1

� A

2

� P, then A

2

2 �.

Shamir's seret sharing shemewas introdued in [19℄ and it realizes thresh-

old aess strutures � = fA � P : jAj � tg, for some threshold t. To

share a seret k in a �nite �eld K, the dealer hooses a random polynomial

f(z) = k+a

1

z+ � � �+a

t�1

z

t�1

2 K[z℄ of degree t�1. The share of partiipant

P

i

is s

i

= f(i), for i = 1; : : : ; n.

Let A = fP

i

1

; : : : ; P

i

t

g be a subset of t partiipants. They have t di�erent

values of the polynomial f(z), of degree t � 1, so they an obtain the value

k = f(0). We have k = f(0) =

P

P

i

2A

�

A

0;i

f(i), where �

A

0;i

are the Lagrange

interpolation oeÆients.

2.2 De�nitions and Previous Work

A (t; n)-threshold signature sheme � di�ers from a regular (individual) one

beause the seret information (usually, the seret key) is shared among a set of

n players. This sharing is usually performed by using Shamir's seret sharing

sheme or some variant of it. No oalition of less than t players an ompute

a valid signature. A threshold signature sheme � onsists of three protools

(see for example [11℄):

Thresh-Key-Gen: this protool an be exeuted jointly by the n players

themselves, or by a trusted and external authority. The input is a seurity

parameter. The publi outputs are pk (the publi key of the sheme) and

some veri�ation key vk, whereas eah player P

i

has as his private output a

share sk

i

of the seret key related to pk. This protool must be probabilisti

and polynomial-time.

Thresh-Sig: publi inputs of this protool are the message m to be signed,

the publi key pk and the veri�ation key vk. Eah player P

i

uses his private

information to ompute and broadast his partial signature �

i

(m). In some

shemes, he must also broadast a proof of orretness of his partial signature.

The orretness of the partial signatures an be veri�ed using the veri�ation

key vk. Finally, a ombiner algorithm takes t valid partial signatures and

produes a valid standard signature �(m). This protool Thresh-Sig must be

polynomial-time.

Verif: this protool is exeuted by the reipient of the signature, and is the

same as in a regular signature sheme. The inputs are the publi key pk, the

message m and the signature �(m). The output will be \yes" if the result of

the veri�ation is orret, or \no" if �(m) is not a valid signature on message

m. This protool must be deterministi and polynomial-time.

We say that a threshold signature sheme is non-interative if, in the exeu-

tion of Thresh-Sig, eah player an ompute his partial signature independently

of the rest of players. Otherwise, the sheme is interative. Analogously to a

regular signature sheme, a threshold signature sheme an be deterministi
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(if eah message has a unique valid signature) or probabilisti (multiple valid

signatures).

Some proposals of threshold signature shemes made until now an be

found in [11, 21℄; they are probabilisti and interative, based on the DSS and

Shnorr shemes. On the other hand, some threshold proposals of the RSA

signature sheme, whih are deterministi and non-interative, an be found

in [20, 7, 9℄. Finally, threshold versions of two RSA-based signature shemes

[6, 13℄ are proposed in [5℄. They are both interative; the threshold version

of Cramer-Shoup sheme [6℄ is probabilisti, whereas the threshold version

of Gennaro-Halevi-Rabin sheme [13℄ is deterministi. The key generation

protool of these shemes an be performed by a trusted dealer or jointly by

the own partiipants, by using some of the protools in [12, 4, 10℄.

2.3 Seurity

A (t; n)-threshold signature sheme must be seure even in the presene of an

adversary who orrupts and ontrols the behavior of t � 1 players. We say

that suh a sheme is seure if it is robust and existentially unforgeable under

hosen-message attaks.

Robustness means that the sheme provides mehanisms to detet or-

rupted players that broadast inorret information. Furthermore, the protool

must produe always a valid signature from the partial signatures of the hon-

est players. Usually, a neessary ondition for robustness in a (t; n)-threshold

signature sheme is n � 2t� 1.

Unforgeability under hosen-message attaks means that an adversary who

orrupts t � 1 players (that is, he knows their private information and on-

trols their behavior in the protools) has negligible probability of obtaining in

polynomial time a valid signature on a message m. This happens even if the

adversary knows all the information broadast by all players (orrupted or not)

during the exeution of the protool Thresh-Sig on input messages m

1

; : : : ; m

k

whih the adversary adaptively hooses, suh that m 6= m

j

, 8j = 1; : : : ; k.

Usually, unforgeability of a threshold signature sheme is proved by re-

duing it to the unforgeability of the regular signature sheme in whih the

threshold one is based. The reasoning is that a suessful forger against the

threshold sheme ould be used as a sub-routine by a suessful forger against

the regular sheme. Thus, if the regular sheme is assumed to be unforgeable,

then the threshold sheme must be unforgeable, too. The seurity of some sig-

nature shemes (regular or threshold) is proved in the standard ryptographi

model, whereas other shemes are proved seure in the random orale model.

3 New Computational Metering Shemes

Metering shemes are designed to measure the interation between servers and

lients during a ertain number of time frames. One appliation of metering
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shemes is the measure of number of web aesses to servers in the Internet,

in order to deide on advertisement fees for web servers.

In a metering sheme, an audit ageny distributes some seret information



i

to eah lient C

i

in C = fC

1

; : : : ; C

n

g. When a lient C

i

visits a server S

j

in S = fS

1

; : : : ; S

m

g during a time frame � = 1; : : : ; � , he gives some piee

of information 

�

ij

to him. One a server S

j

has been visited by a subset of t

lients, he an ompute the proof p

�

j

. With this proof, he an demonstrate to

the audit ageny that at least t lients have visited him in time frame �.

Some proposals of unonditionally seure metering shemes have been given

[15, 14, 3℄. These metering shemes are seure against an in�nitely powerful

adversary. On the other hand, only few proposals have been done in a om-

putational setting. In [15℄ Naor and Pinkas propose a omputationally seure

sheme under the omputational DiÆe-Hellman assumption using bivariable

polynomials. Ogata and Kurosawa propose in [18℄ a omputationally seure

sheme based on the same assumption, using polynomials in three variables.

Now we present a new method to onstrut a omputationally seure me-

tering sheme from any threshold signature sheme that is non-interative

(Setion 2.2). This happens in the threshold signature shemes proposed in

[20, 7, 9℄.

3.1 Metering Shemes from Threshold Signature Shemes

Let � be a non-interative (t; n)-threshold signature sheme. A metering

sheme is usually divided in three di�erent phases: an initialization phase,

whih involves the audit ageny and lients; a regular operation, in whih

lients visit servers; and the proof omputation phase, in whih servers ob-

tain the proof that they have been visited by at least t lients. We denote as

�-metering sheme the metering sheme onstruted as follows.

Initialization phase: in this phase, the audit ageny exeutes the protool

Thresh-Key-Gen of � to generate publi outputs pk (the publi key of the

signature sheme), veri�ation key vk, and private outputs sk

i

. Then the

audit ageny sends seretly the information 

i

= sk

i

to eah lient C

i

.

Regular operation: the idea behind this protool is that lients produe

partial signatures on message h(S

j

; �) when they visit server S

j

in a time

frame �. Here h must be an injetive funtion whose outputs are valid mes-

sages. Sine � is non-interative, the lient C

i

does not need the other lients

to ompute this partial signature 

�

ij

= �

i

(h(S

j

; �)) and send it to server S

j

,

together with some proof of orretness. Server S

j

heks if the partial sig-

nature is orret using the publi veri�ation key (here � is assumed to be a

robust threshold signature sheme); if not, he denies the aess to C

i

.

Proof omputation phase: server S

j

uses the ombiner algorithm of the

protoolThresh-Sig of � to produe a valid standard signature p

�

j

= �(h(S

j

; �))
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from t valid partial signatures. The audit ageny (or anyone) uses the publi

key pk to verify the validity of the proof p

�

j

using the protool Verif of �.

Observe that in our �-metering sheme there is not a pre�xed number of

time frames for whih the sheme an be used. This is true if the map h is an

injetion. On the other hand, the amount of the seret information distributed

among lients and servers, and the omplexity of the omputations are inde-

pendent from the number of time frames. These properties (satis�ed also by

other omputational metering shemes as the one in [18℄) are an improvement

with respet to the unonditionally seure proposals ([15, 14, 3℄).

In our proposal, the audit ageny is not needed in the veri�ation phase,

beause the validity of the proofs (signatures) omputed by a server an be

veri�ed publily by anyone (for example, the advertisers who must pay the

orresponding fees) from the publi key of the sheme. So the presene of

the audit ageny is only neessary for the generation of the initial seret and

publi informations of the sheme. This an be seen as an improvement with

respet to the previous proposals of metering shemes. For example, in the

omputational sheme proposed in [18℄, the audit ageny is the only one who

an hek the validity of the proofs.

3.2 Seurity of �-metering shemes

First of all we will de�ne the seurity of a omputational metering sheme,

and then we will proof the seurity of �-metering sheme, aording to this

de�nition. The idea is that a server will not be able to ompute a valid proof

for a time frame if he has been visited by less than t lients during this period

of time, even if he reeives information from the other servers.

De�nition 1. We say that a metering sheme is omputationally seure if

any omputationally bounded (polynomial time) adversary who orrupts at

most t� 1 lients and all servers, is not able to obtain a valid proof p

T

j

0

orre-

sponding to a server S

j

0

who has not been visited during time frame T by any

lient distint from the orrupted lients. This must happen even if all lients

C

i

have visited all servers S

j

in all previous time frames � � T , exluding

obviously the ase (j; �) = (j

0

; T ).

Theorem 2. If � is a non-interative threshold signature sheme existentially

unforgeable under hosen-message attaks, then �-metering sheme is ompu-

tationally seure.

Proof. We prove this theorem by assuming that the �-metering sheme is

not omputationally seure and then proving that � is existentially forgeable

against a hosen-message attak.

Let us assume, therefore, that the �-metering sheme is not omputa-

tionally seure. That is, there exist t � 1 lients (we suppose without loss of

generality that they are C

1

; : : : ; C

t�1

), a server S

j

0

, a time frame T and a forger

algorithm F

1

that takes as input the seret information of lients C

1

; : : : ; C

t�1
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and all the information that all lients C

i

2 C give when they visit all servers

S

j

2 S in all previous time frames � � T , exluding the ase (j; �) = (j

0

; T ).

With non-negligible probability and in polynomial time, F

1

outputs a valid

proof p

T

j

0

= �(h(S

j

0

; T ))). Next, we onstrut a forger algorithm F

2

that an

be used by an adversary who orrupts the lients C

1

; : : : ; C

t�1

to forge the

threshold signature sheme � with a hosen-message attak.

When the initialization phase of the �-metering sheme is exeuted, the

adversary knows the real shares 

i

= sk

i

, for i = 1; : : : ; t� 1, of the seret key

of the threshold signature sheme �. In order to perform a hosen-message

attak, the adversary hooses the messages h(S

j

; �), for j = 1; : : : ; m, � � T ,

and (j; �) 6= (j

0

; T ), to be signed with the protool Thresh-Sig of �, obtaining

all the publi information (signatures and partial signatures) broadast during

these exeutions. This information is exatly the information that all servers

S

j

would obtain from �-metering sheme if they were visited by all lients in

time frames � � T , provided (j; �) 6= (j

0

; T ).

The adversary runs the forger algorithm F

1

with inputs the information

obtained from these exeutions of the protool Thresh-Sig of � and the seret

information of lients C

1

; : : : ; C

t�1

. Sine F

1

outputs p

T

j

0

= �(h(S

j

0

; T ))),

F

2

obtains, in polynomial time and with non-negligible probability, a valid

signature for a message h(S

j

0

; T ) di�erent from the messages h(S

j

; �) that

were signed in the hosen exeutions of the threshold signature protool. This

ompletes the proof.

Note that if the threshold signature sheme � is proved to be seure in the

random orale model, then �-metering sheme is omputationally seure in

the same model.

Ogata and Kurosawa propose in [18℄ a omputationally seure metering

sheme basing its seurity on the omputational DiÆe-Hellman assumption.

They prove that an adversary who orrupts t� 1 lients and d servers an not

ompute the proof p

�

j

, where d is a seurity parameter. Sine a �-metering

sheme is seure even if the adversary orrupts all the servers, we an in some

way assure that it is more seure than the sheme in [18℄.

4 New Computational and Distributed Key

Distribution Shemes

First of all, we briey desribe how the threshold and omputationally seure

key distribution sheme proposed in [16℄ works. They onsider a set of servers

S = fS

1

; : : : ; S

n

g and a group of users U = fU

1

; : : : ; U

m

g (they also refer to

them as lients). Let C � 2

U

be a family of sets of users, the onferenes,

who want to ommuniate seurely among them. In the initialization phase,

eah server S

i

reeives a share �

i

of some random seret �, shared (jointly or

using a trusted authority) among the servers by means of Shamir seret sharing

sheme. When a user U in a onferene C 2 C needs the key of this onferene

7



(eah onferene C is related to a publi value h

C

), he ontats with at least

2t�1 servers and asks them for the key of the onferene C. Afterwards, every

ontated server veri�es that U belongs to C and, if so, omputes the value

h

�

i

C

and sends it to him through their private hannel.

After reeiving the information from the servers, the user detets orrupted

servers. As these dishonest servers are assumed to be less than t, the user is

able to ompute the onferene key �

C

by using the orret values reeived

from t or more honest servers. Without loss of generality, we assume these

honest servers are S

1

; : : : ; S

t

. The omputation of �

C

is performed as follows:

�

C

= h

�

C

=

Q

t

i=1

(h

�

i

C

)

�

i

, where �

i

are the Lagrange interpolation oeÆients.

Reently, a new model has been proposed [8℄ in order to redue the amount

of omputations the user must perform to obtain the key. The usefulness

of this model relies on those situations where servers have main part of the

omputational power.

Next, we present a new method to onstrut omputationally seure and

distributed key distribution shemes, following the model introdued in [16℄,

from a threshold signature sheme. This onstrution will be possible as long

as the onsidered signature sheme is deterministi (Setion 2.2), as it happens

in the proposals of [20, 7, 9℄ and the threshold version of the Gennaro-Halevi-

Rabin sheme [13℄ proposed in [5℄.

4.1 Distributed Key Distribution Shemes from Thresh-

old Signature Shemes

Let � be a deterministi (t; n)-threshold signature sheme. As it has been

done in some other reent works [2℄, we divide a distributed key distribution

sheme in three di�erent phases: an initialization phase, whih involves only

the servers; a key-request phase, in whih users ask for keys to servers; and a

key-omputation phase, in whih users retrieve keys from the messages reeived

from the servers ontated during the key request phase. We refer to the

distributed key distribution sheme onstruted as follows as �-DKDS.

Initialization phase: in this phase, the protool Thresh-Key-Gen of the

signature sheme � is performed, taking as partiipants the set of servers.

The protool an be exeuted jointly by the n servers themselves, or by a

trusted and external authority. At the end of this phase, eah server S

i

has a

share sk

i

of the seret key.

Key request phase: a user U

j

in a onferene C 2 C ontats with a group

of at least 2t� 1 servers requiring a key for the onferene C. We denote suh

a key �

C

. After heking for membership of U

j

in C, every ontated server

S

i

performs �rst part of the Thresh-Sig protool of �. In this way, he uses

his private information to ompute the partial signature �

i

(h(C)) and sends

8



it privately to the user. Here h is a publi ryptographi hash funtion. The

server must also send to the user a proof of orretness of his partial signature.

Key omputation phase: one having reeived the answers from the on-

tated servers, user U

j

heks the proof of orretness of partial signatures he

has reeived in the previous phase (here we are assuming that the threshold

sheme � is robust). By means of using the ombiner algorithm of �, U

j

takes

t valid partial signatures (where by valid we refer to those signatures that pass

the heking of the proof of orretness) and produe a standard signature

�(h(C)) on the message h(C). The key for the onferene C is �

C

= �(h(C)).

The user an verify the orretness of this key by using the protool V erif of

�, heking therefore if �

C

is a valid signature of message h(C).

Note that all users in the onferene C obtain the same key �

C

, sine the

threshold signature sheme � is deterministi.

4.2 Seurity of �-DKDS

We base the seurity of the sheme �-DKDS on the seurity of the yielding

threshold signature sheme � under hosen-message attaks.

Before giving a formal de�nition of the seurity of a distributed and om-

putational key distribution sheme, we introdue some notation that will be

useful throughout the rest of the setion. Given a onferene C 2 C, let

W

C

= U � C be the set of users not in the onferene C. We also de-

�ne the sets of pairs of users and onferenes P

C

= f(U;C) j U 2 Cg and

N

C

= f(U;C

0

) j U 2 W

C

and U 2 C

0

g.

De�nition 3. We say that a distributed key distribution sheme is omputa-

tionally seure if for every onferene C 2 C, any omputationally bounded

(polynomial time) adversary who orrupts at most t� 1 servers and all users

in W

C

, is not able to obtain �

C

, even if the protool is previously performed

for all pairs in P

C

and N

C

.

Note that, in the model that we onsider, exeution of the protool for the

pairs in P

C

does not give any new information to the adversary, beause he

does not ontrol the users of onferene C. Therefore, the information that

the honest servers send seretly to these honest users remains unknown to the

adversary.

Theorem 4. If � is a deterministi threshold signature sheme existentially

unforgeable under hosen-message attaks, then �-DKDS is omputationally

seure.

Proof. In order to prove this theorem, we will prove that if �-DKDS is not

omputationally seure, then the threshold signature sheme is existentially

forgeable against a hosen-message attak.

In e�et, if �-DKDS is not omputationally seure, then there exist a

onferene C 2 C and a forger algorithm F

1

that takes as input the seret

9



information of t� 1 orrupted servers (without loss of generality, S

1

; : : : ; S

t�1

)

and all the new information that users in W

C

and servers S

1

; : : : ; S

t�1

an

obtain from the exeutions of �-DKDS for pairs in P

C

and N

C

(as we have

said before, in this model only exeutions for pairs in N

C

ould give some

useful information to the adversary). The output of F

1

is �

C

= �(h(C))).

Next, we show how an adversary who orrupts t � 1 servers an onstrut a

forger algorithm F

2

that forges the sheme � with a hosen-message attak.

One the initialization phase of �-DKDS is performed, the adversary ob-

tains the real shares of the seret key of the threshold signature sheme � or-

responding to servers S

1

; : : : ; S

t�1

. By de�nition of hosen-message attak, the

adversary an hoose some messages to be signed with the protool Thresh-Sig

of �, obtaining all the publi information (signatures and partial signatures)

broadast during these exeutions. In this ase, the adversary hooses the

messages h(C

0

) for all onferenes C

0

6= C suh that there exists some U 2 W

C

with (U;C

0

) 2 N

C

. Then the adversary runs the forger algorithm F

1

with

input the seret information of servers S

1

; : : : ; S

t�1

and the information ob-

tained from these exeutions of the protool Thresh-Sig of � (whih is exatly

the information that users in W

C

would obtain if �-DKDS was exeuted for

pairs in N

C

). F

1

obtains �

C

= �(h(C)) with non-negligible probability, so F

2

obtains, also with non-negligible probability, a signature for a message h(C)

di�erent from the messages h(C

0

) that were signed in the hosen exeutions of

the threshold signature protool.

Again, if the seurity of the sheme � an be proved only in the random

orale model, then �-DKDS is omputationally seure also in this model.

5 Conlusions and Future Work

In this paper we have proposed two methods to onstrut omputationally

seure metering shemes and distributed key distribution shemes, from any

seure threshold signature sheme. In the ase of metering shemes, the on-

sidered threshold signature sheme must be non-interative, whereas in the

ase of distributed key distribution shemes, the threshold signature sheme

must be deterministi. The two onstrutions provide shemes whih are as

seure as the orresponding threshold signatures shemes.

To the best of our knowledge, the only threshold signature shemes pro-

posed until now that satisfy the properties of determinism and non-interation

are the shemes in [20, 7, 9℄. So we an onstrut from them a metering

sheme as well as a distributed key distribution sheme. On the other hand,

the threshold version in [5℄ of the signature sheme in [13℄ is deterministi but

interative, so we an use it only to onstrut a distributed key distribution

sheme. In general, the use of non-interative threshold signature shemes in

our onstrution of distributed key distribution shemes would be preferable,

beause in this ase the servers must not ommuniate among them in the

omputation of the onferene keys.

10



All these proposed shemes run only with threshold strutures, so an inter-

esting open problem is to �nd distributed signature shemes running with more

general aess strutures, and satisfying some of the properties (determinism

or non-interation) that are required in this work.

In our new metering shemes, anyone an publily verify the validity of the

proofs, not only the audit ageny. However, this �gure is still neessary in the

initialization phase, beause a jointly generation of the seret information held

by the lients would be interative and expensive. This does not �t in with a

real situation where lients are users of the Internet.

With respet to distributed key distribution shemes, a di�erent model

from the one in [16℄ has been reently proposed in [8℄, reduing the ompu-

tational e�ort of the users in the alulation of the onferene key. Another

open problem is to disuss if we an �nd methods to onstrut, from thresh-

old signature shemes, distributed key distribution shemes omputationally

seure in this di�erent model.
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