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Abstract. Many stream ciphers are built of a linear sequence generator

and a non-linear output function f . There is an abundant literature on

(fast) correlation attacks, that use linear approximations of f to attack

the cipher. In this paper we explore higher degree approximations, much

less studied. We reduce the cryptanalysis of a stream cipher to solv-

ing a system of multivariate equations that is overde�ned (much more

equations than unknowns). We adapt the XL method, introduced at

Eurocrypt 2000 for overde�ned quadratic systems, to solving equations

of higher degree. Though the exact complexity of XL remains an open

problem, there is no doubt that it works perfectly well for such largely

overde�ned systems as ours, and we con�rm this by computer simula-

tions. We show that using XL, it is possible to break stream ciphers that

were known to be immune to all previously known attacks. For exam-

ple, we cryptanalyse the stream cipher Toyocrypt accepted to the second

phase of the Japanese government Cryptrec program. Our best attack

on Toyocrypt takes 2

92

CPU clocks for a 128-bit cipher. The interesting

feature of our XL-based higher degree correlation attacks is, their very

loose requirements on the known keystream needed. For example they

may work knowing ONLY that the ciphertext is in English.

Key Words: Algebraic cryptanalysis, multivariate equations, overde-

�ned equations, Reed-Muller codes, correlation immunity, XL algorithm,

Gr�obner bases, stream ciphers, pseudo-random generators, nonlinear �l-

tering, ciphertext-only attacks, Toyocrypt, Cryptrec.

1 Introduction

The security of most cryptographic schemes is usually based on impossi-

bility to extract some secret information, given access to some encryption,

signature oracles or other derived information. In most useful cases, there

is no security in information-theoretic setting: the adversary has usu-

ally enough information to uniquely determine the secret (or the ability)

he wants to acquire. Moreover the basic problem is always (in a sense)

overde�ned: the adversary is assumed to have at his disposal, for example,

great many plaintext and cipher text pairs, message and signature pairs,

etc. He usually has available, much more than the information needed to
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just determine the secret key. Thus, one might say, most cryptographic

security relies on the hardness of largely overde�ned problems. In pub-

lic key cryptography, the problem is addressed by provable security, that

will assure that each utilization of the cryptographic scheme does not

leak useful information. The security is guaranteed by a hardness of a

single di�cult problem, and will not degrade with the repetitive use of

the scheme. However unfortunately, there is yet very little provable secu-

rity in secret key cryptography. It is also in secret key cryptography that

the problems become most overde�ned, due to the amounts of data that

are usually encrypted with one single session key. This is especially true

for stream ciphers: designed to be extremely fast in hardware, they can

encrypt astronomic quantities of data, for example on an optical �ber.

In this paper we consider a popular class of stream ciphers, in which

there is a linear part, producing a sequence with a large period (for exam-

ple one or several LFSRs), and a stateless nonlinear part that produces

the output, given the state of the linear part. The security of such stream

ciphers have been studied by many authors. In [11], Golic gives a set of

criteria that should be satis�ed in order to resist to the known attacks

on stream ciphers. For example, a stream cipher should resist to the fast

correlation attack [15], the conditional correlation attack [1] and the in-

version attack [11]. In order to resist di�erent types of correlation attacks,

many authors focused on proposing boolean functions that will have no

good linear approximation and that will be correlation immune with re-

gard to a subset of several input bits, see for example [3]. In this paper

we will exploit rather correlation properties with regard to a non-linear

low degree multivariate functions that use all of the variables, or in other

words, low degree approximations. This kind of correlations has already

been studied, see for example in [12,9] but it seems that their application

to cryptographic attacks did not receive su�cient attention.

In this paper we explain that many constructions of stream ciphers

directly give an overde�ned system of multivariate equations of low de-

gree. Many other can approximated with a good probability by such a

system of equations. All this is not completely new, however only recently

people became aware of the existence of e�cient algorithms for solving

some systems of multivariate equations of low degree, see [24, 6, 7]. The

XL algorithm, proposed by Courtois, Klimov, Patarin and Shamir [24], al-

lows to solve overde�ned systems of equations much faster than expected.

Later, Courtois and Pieprzyk proposed the XSL method [7], to further

improve XL when the equations are sparse. In the same paper [7], authors

propose to use multivariate polynomial equations to attack block ciphers
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such as AES. Unfortunately, these attacks are, to say the least, heuristic.

In this paper we study multivariate algebraic attacks on stream ciphers.

Unlike in [7], our systems of equations will be much more overde�ned.

We show that in this case it is possible to predict the behaviour of the

XL method with precision and con�dence.

In this paper, using XL, we introduce a method to exploit (at least in

theory) any correlation with a function of any degree, to mount an attack

on a class of popular stream ciphers. Moreover we demonstrate that such

attacks can be indeed faster than exhaustive search of the key for some

real stream ciphers, for example for Toyocrypt.

The paper is organized as follows: in Section 2 and in Appendix A

we study the XL algorithm from [24] for solving multivariate quadratic

equations, and extend it to equations of higher degree. In Section 3 we

apply XL to the cryptanalysis of stream ciphers. In Section 4 we discuss

the opportunity to use bent functions in stream ciphers. Then in Section

5 we apply our attack to Toyocrypt stream cipher.

2 The XL Algorithm

In this paper we describe a rather obvious extension of the XL algorithm

[24]. Instead of solving a system of m multivariate quadratic equations

with n variables of degree d = 2 as in [24], we consider also higher degree

equations, i.e. study the general case d � 2. Let D be the parameter of

the XL algorithm. Let l

i

(x

0

; : : : ; x

n�1

) = 0 be the initial m equations,

i = 1 : : :m with n variables x

i

2 GF (2). The XL algorithm consists of

multiplying both sides of these equations by products of variables:

De�nition 2.0.1 (The XL algorithm). Execute the following steps:

1. Multiply: Generate all the products

Q

k

j=1

x

i

j

� l

i

with k � D � d, so

that the total degree in the x

i

of these equations is � D.

2. Linearize: Consider each monomial in the x

i

of degree � D as a new

variable and perform Gaussian elimination on the equations obtained

in 1. The ordering on the monomials must be such that all the terms

containing one variable (say x

1

) are eliminated last.

3. Get a Simpler Equation: Assume

1

that step 2 yields at least one

univariate equation in the powers of x

1

. Solve this equation over the

�nite �eld (e.g., with Berlekamp's algorithm).

4. Final step: It should not be necessary to repeat the whole process.

Once the value of x

1

is known, we expect that all the other variables

will be obtained from the same linear system.

1

Improved versions of the XL algorithm exist in which the system can still be solved

even if this condition is not satis�ed, see the FXL algorithm [24], and XL' and XL2

methods described in [6]. We do not need these improvements here.



4 Nicolas T. Courtois, ICISC 2002, extended version

We expect that to �nd one solution to the system, the complexity of

XL will be essentially the complexity of one single Gaussian reduction in

the step 2.

2.1 The Necessary Condition for XL to Work

The XL algorithm consists of multiplying the initial m equations l

i

by

all possible monomials of degree up to D � d, so that the total degree of

resulting equations is D. Let R be the number of equations generated in

XL, and T be the number of all monomials. We have, (the �rst term is

dominant):

R = m �

 

D�d

X

i=0

 

n

i

!!

� m �

 

n

D � d

!

; T =

D

X

i=0

 

n

i

!

�

 

n

D

!

The main problem in the XL algorithm is that in practice not all the

equations generated are independent. Let Free be the exact number of

equations that are linearly independent in XL. We have Free � R. We

also have necessarily Free � T .

The main heuristics behind XL is the following: it can be seen that

for some D we have always R � T . Then we expect that Free � T ,

as obviously it cannot be bigger than T . More precisely, following [24],

when Free � T �D, it is possible by Gaussian elimination, to obtain one

equation in only one variable, and XL will work. Otherwise, we need a

bigger D, or an improved algorithm

2

.

The Saturation Problem in XL

The exact value of Free in XL is somewhat complex to predict. In [24]

authors demonstrate that XL works with a series of computer simulations

for d = 2 and over GF (127). In [6] authors show that it also works very

well for d = 2 and over GF (2). Moreover they explain how to predict

the exact number Free of linearly independent equations in XL. In this

paper we extend the study of XL for higher degree equations d > 2 (still

over GF (2)), and will also give a formula that allows to compute Free

(see Conjecture A.3.1). This will allow us to say that our (cryptanalytic)

applications of XL should work exactly as predicted.

In order to XL algorithm to work, it is su�cient that for some D, the

number Free of linearly independent equations satis�es Free � T�D. In

[19], Moh states that "From the theory of Hilbert-Serre, we may deduce

that the XL program will work for many interesting cases for D large

enough". In Section 4 Moh shows a very special example on which the

basic version

2

of XL always fails, for any D [19]. This example is very

2

Improved versions of XL exist [24, 6], see the footnote 1 on the previous page.
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interesting, however it seems that such counter-example does not exist

when XL is done over a small �nite �eld, see [13] and [6].

Remark: In Section 3 of [19] Moh gives another misleading argument.

He assumes D � n in a formula in which D = O(

n

p

m

). He shows that,

apparently Free=R �

(n+D)(n+D�1)

D(D�1)m

= w, and it is obvious that w !

1

m

when D !1. However in XL, D is never as big as n, if we assume that

we have D �

n

p

m

as in the previous section, we get w � 1. The conclusion

of Moh is inappropriate, not to say incorrect.

According to [13], when D is su�ciently big, we will always have

Free = T � �, with � being the number of solutions to the system

3

.

Therefore for systems over GF(2) that have one and unique solution we

expect to always achieve Free = T � 1 > T �D, which is called satura-

tion

4

. In all our simulations we observed that this saturation, necessary to

solve the system, is achieved very quickly, and in fact as soon as R > T .

2.2 Asymptotic Analysis of XL for Equations of Degree d

We assume that D � n. XL algorithm is expected to succeed when

R � T , i.e. when

m

 

n

D � d

!

�

 

n

D

!

) m �

(n�D + d) � � �(n�D + 1)

D(D� 1) � � �(D � d+ 1)

Thus (assuming that D� n) we get:

D �

n

m

1=d

; and T

!

�

 

n

D

!

!

�

 

n

n

�

m

1=d

!

!

Asymptotically this is expected to be a good evaluation, when m =

"n

d

with a constant " > 0.

The Complexity of XL and Gaussian Reduction

Let ! be the exponent of the Gaussian reduction. In theory it is at most

! � 2:376, see [4]. However the (neglected) constant factor in this algo-

rithm is expected to be very big. The fastest practical algorithm we are

aware of, is Strassen's algorithm that requires about 7 �T

log

2

7

operations.

Since our basic operations are over GF (2), we expect that a careful bit-

slice implementation of this algorithm on a modern CPU can handle 64

such operations in one single CPU clock. To summarize, we evaluate the

complexity of the Gaussian reduction to be 7=64 � T

log

2

7

CPU clocks.

3

Here however one should include also the solutions at in�nity. Such solutions do not

exist when the equations of the �eld x

2

i

= x

i

are included in XL, see [6] and [13].

4

It is easy to show that Free = T is impossible for a system that has a solution, and

more generally if � is the number of solutions (including points at in�nity, see the

footnote 3), one always has Free � T � � in XL, cf. [13].
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The Exact Behaviour of XL for Interesting Cases d � 2. In

this paper we do not use any of the estimations given above. We study

the exact behaviour of XL, and compute the exact values of Free for the

interesting values of d and D. This part is in Appendix A.

3 Application of XL to Stream Ciphers

In this part we outline a general strategy to apply XL in cryptanalysis of

a general class of stream ciphers. Later we will apply it to Toyocrypt.

3.1 The Stream Ciphers that May be Attacked

We consider only synchronous stream ciphers, in which each state is gen-

erated from the previous state independently of the plaintext, see for

example [17]. We consider regularly clocked stream ciphers, and also (it

makes no di�erence) stream ciphers that are clocked in a known way

5

.

For simplicity we restrict to binary stream ciphers in which the state

and keystream are composed of a sequence of bits b

i

. Let L be the "con-

nection function" that computes the next state. We restrict to the (very

popular) case of cipher with linear feedback, i.e. when L is linear over

GF (2). We assume that L is public, and only the state is secret. We also

assume that the function f that computes the output bit from the state

is public and does not depend on the secret key of the cipher. The only

no-linear component of the cipher is f and this way of building stream

ciphers is sometimes called "nonlinear �ltering". It includes the very pop-

ular �lter generator, in which the state of a single LFSR

6

is transformed

by a boolean function, and also not less popular scenarios, in which out-

puts of several LFSR are combined by a boolean function (combinatorial

function generators or nonlinear function generators).

The problem of cryptanalysis of such a stream cipher can be described

as follows. Let (k

0

; : : : ; k

n�1

) be the initial state, then the output of the

cipher (i.e. the keystream) is given by:

8

>

>

>

<

>

>

>

:

b

0

= f (k

0

; : : : ; k

n�1

)

b

1

= f (L (k

0

; : : : ; k

n�1

))

b

2

= f

�

L

2

(k

0

; : : : ; k

n�1

)

�

.

.

.

The problem we consider

7

is to recover (k

0

; : : : ; k

n�1

) given some b

i

.

5

This condition can sometimes be relaxed, see the attacks on LILI-128 in [5].

6

A Linear Feedback Shift Register, see for example [17]. It is also possible to use a

Modular LFSR, i.e. a MLFSR, which is equivalent in theory, see, [18], but may be

better in practice. A MLFSR is used in the Toyocrypt cipher that we study later.

7

We do not consider attacks in which one can predict the future keystream, given

some information on the current keystream, and without computing the key.
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3.2 The Attack Scenario

We are going to design a partially known plaintext attack, i.e. we know

some bits of the plaintext, and the corresponding ciphertext bits. These

bits does not need to be consecutive. For example if the plaintext is

written with latin alphabet and does not use too much special characters,

it is very likely that all the characters have their most signi�cant bit equal

to 0. This will be enough for us, if the text is su�ciently long. In our later

attacks we just assume that we have somem bits of the keystream at some

known positions: f(t

1

; b

t

1

); : : : ; (t

m

; b

t

m

)g.

Remark: Even if no bit of plaintext is known, there are many cases in

which our attack can be extended. For example if the plaintext contains

parity bits.

3.3 Criteria on the Function f

Let f be the boolean function

8

that is used to combine the bits of the

linear part of a stream cipher (the entries of the function are for example

some bits of the state of some LFSRs). There are many design criteria

known on boolean functions. For example f should be balanced and have

high algebraic degree. In order to resist di�erent types of correlation at-

tacks, many authors focused on proposing boolean functions that will

have no good linear approximation and that will be correlation immune

with regard to a subset of several input bits, see for example [3]. In this

paper we will exploit rather correlation properties with regard to a non-

linear low degree multivariate functions that use all of the variables, or

in other words, low degree approximations. This kind of correlations has

already been studied, see for example in [12, 9] but it seems that their

application to cryptographic attacks did not receive su�cient attention.

Our attack works in two cases:

S1 When the boolean function f has a low algebraic degree d.

S2 When f can be approximated

9

with good probability, by a function g

that has a low algebraic degree d.

More precisely, we assume that:

f(s

0

; ::; s

n�1

) = g(s

0

; ::; s

n�1

) holds:

�

1. with probability � 1� "

2. and with g of degree d.

8

We describe an attack with a single boolean function f , still it is easy to extend it

to stream ciphers using several di�erent boolean functions.

9

If such a (su�ciently good) approximation exists, there are e�cient algorithms to

�nd it. This problem is also known as "learning polynomials in the presence of

noise", or as "decoding Reed-Muller codes". See for example [12, 9].
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Note: In the �rst scenario S1, when f has just a low algebraic degree,

it is known that the system can be easily broken given

�

n

d

�

keystream

bits. A successful example of this attack is described for example in [2].

In this paper we show that, since in S2, we do not need for the function

to have a low algebraic degree (S1), successful attacks can be mounted

given much less keystream bits, and with much smaller complexities. For

example in Toyocrypt the degree of f is 63, but in our attacks, it will be

approximated by a function of degree 2 or 4.

3.4 The Actual Attack

Given m bits of the keystream, we have the following m equations to

solve:

8i = 1 : : :m; b

t

i

= f

�

L

t

i

(k

0

; : : : ; k

n�1

)

�

We recall that f , and all the L

t

i

are public, and only the k

j

are secret

10

.

Each of the keystream bits gives one multivariate equation of degree d,

with n variables (k

0

; ::; k

n�1

) and being true with probability (1� "):

8i = 1 : : :m; b

t

i

= g

�

L

t

i

(k

0

; : : : ; k

n�1

)

�

with probability � 1� "

If we choose m such that (1� ")

m

�

1

2

, we may assume that all these

equations are true and we have to �nd a solution to our system of m

multivariate equations of degree d with n variables. More generally, even

if (1�")

m

<

1

2

, the attack still works, if we repeat it about (1�")

�m

times,

each time for a di�erent subset of m keystream bits, and until it succeeds.

The complexity of this attack will be the complexity of generalized XL

obtained in Section 2.2, multiplied by the number of repetitions necessary

to succeed:

WF = T

!

(1� ")

�m

�

 

n

n

�

m

1=d

!

!

(1� ")

�m

The above attack requires about m keystream bits, out of which we

choose m at each iteration of the attack. We also need to choose m that

minimizes the complexity given above. In practice, since the XL algorithm

complexity increases increases by big leaps, with the value of D, we will

in fact choose D and determine a minimal m for which the attack works.

4 Non-linear Filtering using Bent Functions

In order to prevent the numerous known fast correlation attacks, ciphers

such as we described above (for example �lter generators) should use a

function f that is highly non-linear. For this, Meier and Sta�elbach sug-

gested at Eurocrypt'89 to use so called perfect non-linear functions, also

10

Important: if L is not public, as it is may be the case in Toyocrypt, our later attacks

will not work. Nevertheless they show that Toyocrypt is cryptographically weak.
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known as "bent functions" [16,22]. These functions achieve optimal resis-

tance to the correlation attacks, because they have a minimum (possible)

correlation to all a�ne functions, see Theorem 3.5. in [16]. It is therefore

tempting to use a bent function as a combiner in a stream cipher. And in-

deed many cryptographic designs (e.g. Toyocrypt, and not only in stream

ciphers) use such functions, or modi�ed versions of such functions

11

.

Unfortunately optimality against one attack does not guarantee the secu-

rity against other attacks. Following Anderson [1], any criteria on f itself

cannot be su�cient. The author of [1] claims that "attacking a �lter gen-

erator using a bent or almost bent function would be easy" and shows why

on small examples. He considers "an augmented function" that consists

of � copies of the function f applied to consecutive windows of n consecu-

tive bits, among the n+� consecutive bits of an LFSR output stream. He

shows explicit examples in which even if f : GF (2)

n

! GF (2) is a bent

function, still the augmented function GF (2)

n+�

! GF (2)

�

will have

very poor statistic properties, and thus will be cryptographically weak.

For real ciphers, it is di�cult to see if Anderson's remark is really

dangerous. For example in Toyocrypt, an MLFSR is used instead of an

LFSR, which greatly decreases the number of common bits between two

consecutive states, and more importantly, only a carefully selected subset

of state bits is used in each application of f . Thus it seems that Toyocrypt

makes any version of the attacks described by Anderson in [1] completely

impractical.

Bent Function Used in Toyocrypt

The combining function f of Toyocrypt is built according to:

Theorem 4.0.1 (Rothaus 1976 [22]). Let g be any boolean function

g : GF (2)

k

! GF (2). All the functions f : GF (2)

2k

! GF (2) of the

following form are bent:

f (x

1

; x

2

; : : : ; x

2k

) = x

1

x

2

+x

3

x

4

+: : : ;+x

2k�1

x

2k

+ g (x

1

; x

3

; : : : ; x

2k�1

)

Remark: More precisely, the function of Toyocrypt is a XOR of s

127

and a function built according to the above theorem. We must say that

using such a function as a non-linear �lter is not a very good idea. It is

easy to see that if we use a single LFSR or MLFSR, there will be always

a "guess and �nd" attack on such a cipher. This is due to the fact that if

we guess and �x k state bits, here it will be the odd-numbered bits, then

11

In general the authors of [16] did not advocate to use pure bent functions, because it

is known that these functions are not balanced and cannot have a very high degree.

They advise to use modi�ed bent functions, for which it is still possible to guarantee

a high non-linearity, see [16].
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the expression of the output becomes linear in the other state bits. This

can be used to recover the whole state of the cipher given 3k=2 bits of it,

i.e. the e�ective key length in such a scheme is only 3k=2 instead of 2k

bits. This attack is explained in details (on the example of Toyocrypt) in

[18]. In this paper we do not use this property of f , and design a di�erent

attack, based on the low number of higher degree monomials, and thus

being potentially able to break variants of Toyocrypt that are not based

on the above theorem and for which there is no "guess and �nd" attacks.

5 Application of XL to the Cryptanalysis of Toyocrypt

In this section we present a general attack on Toyocrypt [18], a cipher

that was, at the time of the design, believed to resist to all known attacks

on stream ciphers. In Toyocrypt, we have one 128-bit LFSR, and thus

n = 128. The boolean function is as follows:

f(s

0

; ::; s

127

) = s

127

+

62

X

i=0

s

i

s

�

i

+ s

10

s

23

s

32

s

42

+

+s

1

s

2

s

9

s

12

s

18

s

20

s

23

s

25

s

26

s

28

s

33

s

38

s

41

s

42

s

51

s

53

s

59

+

62

Y

i=0

s

i

:

with f�

0

; : : : ; �

62

g being some permutation of the set f63; : : : ; 125g. This

system is quite vulnerable to the XL higher order correlation attack we

described above: there are only a few higher-order monomials, one of de-

gree 4, one of degree 17 and one of degree 63. Everything else is quadratic.

A Quadratic Approximation

Most of the time, the system is quadratic. We put: g(s

0

; ::; s

127

) =

62

P

i=0

s

i

s

�

i

:

Then f(s) = g(s) holds with probability about 1�2

�4

. With the notations

of the Section 3.4 we have d = 2 and " = 2

�4

. Currently, it is an open

problem if this approximation allows any e�cient attacks on Toyocrypt.

An Approximation of Degree d = 4

One can also see that if we put:

g(s

0

; ::; s

127

) =

62

X

i=0

s

i

s

�

i

+ s

10

s

23

s

32

s

42

:

Then f(s) = g(s) holds with probability very close to 1 � 2

�17

. We

have d = 4 and we have approximatively " = 2

�17

.
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5.1 Our Higher Order Correlation Attack on Toyocrypt

The equation (1�")

m

�

1

2

gives m � 2

16

. This is simply to say that if we

consider some 2

16

, not necessarily consecutive bits of the keystream, the

probability that for all of them we have f(s) = g(s) will be about 1=2. A

more precise evaluation shows that if we put m = 1:3 � 2

16

, we still have

(1� ")

m

= 0:52. This is the value we are going to use.

Thus, given some m keystream bits, m = 1:3 � 2

16

, one can write from

Toyocrypt m equations of degree 4 and with 128 variables k

i

. To this

system of equations we apply generalized XL as described in Section 2.

We have n = 128 and let D 2 IN. We multiply each of the m equations by

all products of up toD�4 variables k

i

. The number of generated equations

is: R = m

�

P

D�4

i=0

�

n

i

�

�

We also have T =

�

P

D

i=0

�

n

i

�

�

. We observe that for

D = 9 we get R=T = 1:1401. Following our simulations and their analysis

given in Section A.3, and since D < 3d, we expect that the exact number

of linearly independent equations is Free = min(T;R�

�

m

2

�

�m)�� with a

very small �. This Free is su�cient: we have (R�

�

m

2

�

�m))=T = 1:13998,

and thus R�

�

m

2

�

�m > T and R�

�

m

2

�

�m is not very close to T . From

this, following Conjecture A.3.1 and our simulation results, we expect

that Free = T � � with � = 1. XL works for D=9. The complexity of

the attack is basically the complexity of solving a linear system T�T (we

don't need to take more than T equations). With Strassen's algorithm,

we get:

WF =

7

64

� T

log

2

7

= 2

122

:

6 Improved XL Higher Correlation Attacks

We will now explore the tradeo� described in Section 3.4. The basic idea

is that, if we diminish a little bit a success probability of the attack, we

may use a higher m, the system will be more overde�ned and we will be

able to use a lower value of D. This in turn greatly diminishes the value

of T that may compensate for the necessity to repeat the attack.

Improved Attacks Exploring the Tradeo�

In the attack above we saw that Free = min(T;R�

�

m

2

�

� m) � � and

that we may in fact neglect

�

m

2

�

� m. Moreover if D becomes smaller,

and when D < 2d = 8, following Section A.3 we expect to have Free =

min(T;R) � 1. Thus we may say that for D < 9, and R > 1:1 � T the

attack does certainly work. It gives the following condition on m:

m

 

D�4

X

i=0

 

n

i

!!

> 1:1 �

 

D

X

i=0

 

n

i

!!
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From this, given D, we put m = 1:1

�

P

D

i=0

�

n

i

�

�

=

�

P

D�4

i=0

�

n

i

�

�

. The prob-

ability that our approximation of degree 4 holds for all m equations is

(1�

1

2

17

)

m

. Finally, the complexity of the whole attack is:

WF = (1�

1

2

17

)

�m

� 7 � T

log

2

7

=64 = (1�

1

2

17

)

�m

�

7

64

�

 

D

X

i=0

 

n

i

!!

log

2

7

The number of keystream bits required in the attack is about m, and

the memory is T

2

bits. In the following table we show possible tradeo�s:

D 4 5 6 7 8 9

Data 2

23

2

21

2

19

2

18

2

17

2

16

Memory 2

89

2

56

2

65

2

73

2

81

2

88

Complexity 2

200

2

102

2

96

2

102

2

112

2

122

Now, our best attack is in 2

96

, requires 2

65

bits of memory and only

82 kilobytes of keystream.

Better Attacks with an Iterated Variant of XL

It is possible to improve this attack slightly by iterating the XL algorithm.

Here is one possible way to do this. We start with m = 1:6 �2

18

keystream

bits. The probability that all the corresponding m approximations of de-

gree 4 are true is (1�

1

2

17

)

m

� 2

�4:62

. This means that the whole attack

should be repeated on average 2

4:62

times. Now we apply the XL algo-

rithm with D = 5, i.e. we multiply each equation by nothing or one of

the variables. We have R = 129 �1:6 �2

18

. The goal is however not to elim-

inate most of the terms, but only all the terms that contain one variable

k

0

. Let T

0

be the number of terms in T that does not contain the �rst

variable k

0

. We have T =

P

D

i=0

�

n

i

�

and T

0

=

P

D

i=0

�

n�1

i

�

. The number of

remaining equations of degree e = 5 that contain only n

0

= 127 variables

is R� (T �T

0

) = 129 �1:6 �2

18

�

P

5

i=0

�

128

i

�

+

P

5

i=0

�

127

i

�

= 2

25:37

. We have

R

0

=(T � T

0

) = 5:06 and the elimination takes the time of 7 � T

log

2

7

=64 =

2

75:5

. Then we re-apply XL for d = 5, n

0

= 127,m

0

= R�(T�T

0

) = 2

25:37

and D = 6. We have R

0

=T

0

= 1:021 and XL works with the complexity

of 2

87:59

.

The complexity of the whole attack is: 2

4:62

�

2

75:5

+ 2

87:6

�

= 2

92:2

CPU

clocks. Our best attack is now in 2

92

, it requires still 2

65

bits of memory,

and now only 51 kilobytes of keystream.

Comparison with Previously Known Attacks

Our new attack is much better than the generic purpose time/memory/data

tradeo� attack described by Shamir and Biryukov in [23], that given the
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same number of keystream bits, about 2

19

, will require about 2

109

com-

putations (in pre-computation phase).

Our attack is sometimes better, and sometimes worse than the Mi-

haljevic and Imai attack from [18]. In [18], given much more data, for

example 2

48

bits, and in particular at least some 32 consecutive bits of

the keystream, and given the same quantity of memory 2

64

, the key can

be recovered with a pre-computation of 2

80

and processing time 2

32

.

However if the keystream available does not contain 32 consecutive

bits, only our attack will work. Similarly, if the keystream available is

limited to 2

19

bits, both the Mihaljevic and Imai attack [18] and the

generic tradeo� attack from [23] will require a pre-computation of about

2

109

. In this case our attack in 2

92

is better.

7 Extensions and Generalizations

Improved Elimination Methods. A careful implementation of

our attack could be substantially faster. It is possible that there are more

careful elimination algorithms, that generate the equations in a speci�c

order and eliminate monomials progressively, so that they are not gener-

ated anymore. We also expect that fast Gr�obner bases algorithms such

as Faug�ere's F5/2 [8] would improve our attack, at least in practice.

Variants of Toyocrypt. Our XL-based attacks can cryptanalyse

not only Toyocrypt but also many variants of Toyocrypt that resist to all

known attacks. For example, if in Toyocrypt we replace the bilinear part

of f by a random quadratic form, such "guess-and-�nd" attacks as in [18]

are not possible anymore, still our XL-based higher degree correlation

attack works all the same. The same is true when we leave the quadratic

part unchanged and add to f some terms of degree 3 and 4 in variables

x

2

; x

4

; : : :. It is also possible to see that, if the positions of the known bits

of the keystream are sparsely distributed, and we do not have any known

32 consecutive bits, the attacks from [18] will not work anymore, and our

attack still works.

New Attack Scenarios S3 and S4. Since this paper was written,

there was substantial progress in algebraic attacks on stream ciphers.

Generalizing the attack scenarios S1 and S2 described in this paper, two

new attack scenarios S3 and S4 have been introduced by Courtois and

Meier [5]. The principle of these new attacks is (roughly) to generate new

multivariate equations of substantially lower degree than the original ones,

by multiplying the equations by well-chosen multivariate polynomials.

Thus, the authors are able to break Toyocrypt in 2

49

CPU clocks instead

of 2

92

, and also present an attack in 2

57

for LILI-128.
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8 Conclusion

In this paper we studied higher order correlation attacks on stream ci-

phers. Our approach is to reduce the problem of recovering the (initial)

state of a cipher, to solving an overde�ned system of multivariate equa-

tions. We studied the Toyocrypt stream cipher, accepted to the second

phase of the Japanese government Cryptrec call for cryptographic prim-

itives. It is a 128-bit stream cipher, and at the time of submission of

Toyocrypt, it was claimed to resist to all known attacks on stream ci-

phers. The weakness of Toyocrypt we exploited here is the presence of

only a few higher degree monomials. It has already been identi�ed as

dangerous in Rueppel's book [21], page 79, back in 1986, however the

designers of Toyocrypt ignored this warning.

Having little higher degree monomials, it is possible to approximate

the �ltering function, by a function of a much lower degree with a good

probability. From this we were able to reduce the cryptanalysis of Toy-

ocrypt to solving a system of multivariate equations of degree 4. In order

to solve it, we studied an extension of the XL algorithm proposed at Eu-

rocrypt 2000 for the case of quadratic equations [24]. The problem about

XL is that it is heuristic, not all equations that appear in XL are linearly

independent, and thus it is somewhat di�cult to say to what extent is

works. In this paper we showed that we are always able to explain the

origin of the linear dependencies that appear in XL and to predict the

exact number of non-redundant equations in XL.

Our best higher order correlation attack on Toyocrypt requires 2

92

CPU clocks for a 128-bit cipher. This is achieved using only 51 kilobytes

of the keystream, that does not have to be consecutive, and using 2

65

bits

of memory. This attack will work in many scenarios in which all known

attacks fail, for example when the plaintext in only partially known.

We conclude that higher order correlation immunity, should be taken

more seriously than previously thought, in the design of stream ciphers.
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A The Exact Behaviour of XL for d � 2.

Let Free be the maximum number of equations that are linearly inde-

pendent in XL algorithm. We will show how to compute Free exactly

and compare the results with computer simulations.

In all the simulations that follow, we pick a random system of lin-

early independent equations y

i

= f

i

(x

0

; : : : ; x

n�1

) of degree � d (non-

homogenous). Then we pick a random input x = (x

0

; : : : ; x

n�1

) and we

modify the constants in the system in order to have a system that gives 0

in x, i.e. we write a system to solve as l

i

(x

0

; : : : ; x

n�1

) = 0, for i = 1; : : :m.

A.1 The Behaviour of XL for d = 2 and D = 3.

By de�nition, Free is smaller than R and cannot exceed T , see Section

2.1. Therefore:

Free � min(T;R)

We have done various computer simulations with d = 2 and D = 3. In

the following table we �x n and try XL on a random system of m linearly

independent equations with growing m and with a �xed D.

d 2 2 2 2 2

n 10 10 10 10 10

m 10 14 16 17 18

D 3 3 3 3 3

R 110 154 176 187 198

T 176 176 176 176 176

Free 110 154 174 175 175

2 2 2 2 2

20 20 20 20 20

20 40 50 60 65

3 3 3 3 3

420 840 1050 1260 1365

1351 1351 1351 1351 1351

420 840 1050 1260 1350

2 2

64 64

512 1024

3 3

33280 66560

43745 43745

33280 43744

Figure 1: XL simulations for d = 2 and D = 3.

n number of variables.

m number of equations.

D we generate equations of total degree � D in the x

i

.

R number of equations generated (independent or not).

T number of monomials of degree � D

Free number of linearly independent equations among the R equations.

� XL will work when Free � T �D.

Results: For d = 2 and D = 3 we observe that most of the time

12

Free = min(T;R) and at any rate, we always have Free = min(T;R)� �

with � = 0; 1; 2 or 3.

12

Free is bounded by two functions and most of the time it is just the minimum of

their values. However around the point where the two graphics meet, we sometimes

have a "smooth transition": we observe that Free = min(T; R) � � with � = 0; 1; 2

or 3. Here the smooth transition is visible for d = 2, n = 10, m = 16, D = 3.
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A.2 The Behaviour of XL for d = 2 and D = 4.

When D = 4 we do not have Free = min(T;R) anymore. However most

of the equations are still linearly independent.

d 2 2 2

n 10 10 10

m 5 10 11

D 4 4 4

R 280 560 616

T 386 386 386

Free 265 385 385

2 2 2 2 2 2

20 20 20 20 20 20

20 24 28 30 32 36

4 4 4 4 4 4

4220 5064 5908 6330 6752 7596

6196 6196 6196 6196 6196 6196

4010 4764 5502 5865 6195 6195

2

40

128

4

105088

102091

96832

Figure 2: XL with d = 2 and D = 4 (notations as on Fig. 1).

Results: From these simulations, it can be seen that d = 2 and D = 4

we have always:

Free = min

 

T;R�

 

m

2

!

�m

!

� � with � = 0; 1; 2 or 3:

The fact that Free = R�

�

m

2

�

�m�� when R�

�

m

2

�

�m � T , suggests

that, in all cases, there are

�

m

2

�

+ m linear dependencies between the

equations in R. We are able to explain the origin (and the exact number)

of these linear dependencies. Let l

i

be the equations taken formally (not

expanded), and let [l

i

] denote the expanded expression of the left side of

these equations as quadratic polynomials. Then we have:

l

i

[l

j

] = [l

i

]l

j

For each i 6= j, the above equation de�nes a linear dependency be-

tween the equations of XL. This explains the

�

m

2

�

dependencies.

Example: For example if l

1

= x

1

x

3

+ x

4

(which means that the

equation l

1

is x

1

x

3

+ x

4

= 0) and l

5

= x

2

x

1

+ x

4

x

7

then the notation

l

1

[l

5

] = [l

1

]l

5

denotes the following linear dependency between the l

i

x

j

x

k

:

l

1

x

2

x

1

+ l

1

x

4

x

7

= l

5

x

1

x

3

+ l

5

x

4

:

There also other dependencies. They come from the fact that we have:

l

i

[l

i

] = l

i

This explains the remaining m dependencies. For example if l

1

=

x

1

x

3

+ x

4

we obtain that: l

1

= l

1

x

1

x

3

+ l

1

x

4

.

A.3 Tentative Conclusion on XL and More Simulations for

d � 2 and D � 4.

From the above simulations, we see that, at least for simple cases, we are

always able to predict the exact number of linearly independent equations

that will be obtained. From the above simulations we conjecture that:
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Conjecture A.3.1 (Behaviour of XL for D < 3d).

1. For D = d : : :2d � 1 there are no linear dependencies when R � T

and we have Free = min(T;R)� � with � = 0; 1; 2 or 3.

2. For D = 2d : : :3d� 1 there are linear dependencies and we have

Free = min

 

T;R�

 

D�2d

P

i=0

�

n

i

�

!

��

m

2

�

+m

�

!

� � with � = 0; 1; 2 or 3.

The factor

��

m

2

�

+m

�

is due to the linear dependencies of type l

i

[l

j

] =

[l

i

]l

j

and l

i

[l

i

] = l

i

as explained above. Moreover when D > 2d there

are other linear dependencies that are products of these by monomials

in x

i

of degree up to D � 2d, and to count these we have multiplied

their number by a factor

�

P

D�2d

i=0

�

n

i

�

�

.

3. It is also possible to anticipate what happens for D � 3d. However, it

is more complex, and in this paper we do not need to know this.

Theory vs. Practice Here is a series of simulations with di�erent

d > 2 and di�erent values of D to see if our conjecture is veri�ed in

practice.

d 3 3 3 3 3 3

n 10 10 10 10 10 10

m 10 10 10 10 10 10

D 3 4 5 6 7 8

R 10 110 560 1760 3860 6380

T 176 386 638 848 968 1013

Free 10 110 560 846 966 1011

3 3 3 3 3

16 16 16 16 16

16 16 16 16 16

3 4 5 6 7

16 272 2192 11152 40272

697 2517 6885 14893 26333

16 272 2192 11016 26330

Figure 3: XL with d = 3 (notations as on Fig. 1).

d 4 4 4 4 4 4 4

n 10 10 10 10 10 10 10

m 10 10 10 10 10 10 10

D 4 5 6 7 8 9 10

R 10 110 560 1760 3860 6380 8480

T 386 638 848 968 1013 1023 1024

Free 10 110 560 966 1011 1021 1022

4 4 4 4 4

16 16 16 16 16

16 16 16 16 16

4 5 6 7 8

16 272 2192 11152 40272

2517 6885 14893 26333 39202

16 272 2192 11152 39200

Figure 4: XL with d = 4 (notations as on Fig. 1).

By inspection we see that these results, all our previous simulations,

as well as those done in [6], always do con�rm the Conjecture A.3.1.


