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Abstract

We consider the security of multiple and possibly related plaintexts in the context of a chosen

ciphertext attack. That is the attacker in addition and concurrently to obtaining encryptions of

multiple plaintexts under the same key, may issue encryption and decryption queries and partial

information queries. Loosely speaking, an encryption scheme is considered secure under such

attacks if all that the adversary can learn from such attacks about the selected plaintexts can

be obtained from the corresponding partial information queries.

The above de�nition extends the de�nition of semantic security under chosen ciphertext

attacks (CCAs) which is also formulated in this work. The extension is in considering the

security of multiple plaintexts rather than the security of a single plaintext. We prove that

both these formulations are equivalent to the standard formulation of CCA, which refers to

indistinguishability of encryptions. The good news is that any encryption scheme that is secure

in the standard CCA sense is in fact secure in the extended model.

The treatment holds both for public-key and private-key encryption schemes.
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1 Introduction

In order to rigorously treat the security of a cryptographic scheme one must specify two things: (i)

the power of the adversary both in terms of computation (time, memory etc.) and in terms of access

to the system, and (ii) what it means to break the cryptosystem. To be more speci�c, in the context

of an encryption scheme access to the system (as in (i)) means the type of attack (e.g., known or

chosen plaintext, or chosen ciphertext). Breaking the encryption scheme (as in (ii)) should specify

the functionality the adversary can gain with respect to the plaintext. Two examples of de�ning

such functionalities are semantic security (see below) and non-malleability (which will not be the

focus of the paper).

The rigorous treatment of the security of encryption schemes was initiated in the seminal work of

Goldwasser and Micali [15]. Focusing on passive attacks, they introduced two fundamental notions

of security, called semantic security and indistinguishability of encryptions.

Semantic security is a computational analogue of Shannon's de�nition of perfect secrecy [23]. It

requires that whatever information about the plaintext one may compute from the ciphertext

and some a-priori information, can be essentially computed as e�ciently from the a-priori

information alone.
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This de�nition is the natural one, because it directly addresses the user's

concerns (i.e., that nothing be gained by looking at the ciphertext). In retrospect, additional

con�dence in this de�nition may be gained by the fact that it actually follows the simulation

paradigm [16], which underlies much of the later de�nitional work.

Indistinguishability of encryptions is a technical de�nition requiring that, for any two mes-

sages, it is infeasible to distinguish the encryption of the �rst message from the encryption of

the second message.

The importance of the technical de�nition of indistinguishability of encryptions stems from the

fact that it is equivalent to semantic security (cf. [15, 11]) while being easier to work with and

reason about. In particular, it is easier to prove that an encryption scheme has indistinguishable

encryptions and to deduce that it is semantically secure (cf. [15, 11]) than to directly prove that

the encryption scheme is semantically secure. Note that all this discussion as well as the rest of

paper is applicable both to the public-key and private-key models, where the di�erence amounts

to whether or not the adversary is given the encryption-key.

As is well known and documented

2

, it is often the case that the adversary may launch an

active attack on the system. In particular, it might cause the system to decrypt ciphertexts of

its choice for a while, i.e., launch a chosen ciphertext attack. Hence, stronger notions of attacks

were considered

3

, as well as de�nitions of security against such attacks and constructions of cryp-

tosystem satisfying those de�nitions. Goldwasser, Micali, and Tong [17] investigated interactive

public key cryptosystems secure against chosen ciphertext attacks. Naor and Yung [20] de�ned and

constructed

4

schemes secure against a priori chosen ciphertext attacks also known as lunch-break

attack

5

. Racko� and Simon [24] de�ned the stronger type of attack, a posteriori chosen cipher-

text attacks and Dolev, Dwork and Naor [9] constructed cryptosystems resistant to such attacks.

Other constructions where given in [14, 6, 21, 22, 19]. Other works have explored the relationship

1

This speci�c formulation was �rst suggested by Goldreich [10], and is equivalent to the one presented in [15].
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Consider, for instance, the attack Bleichenbacher suggested on PKCS # 1 [3].

3

Also stronger requirements (from the implementation point of view) for breaking the cryptosystem were consid-

ered, namely malleability [9].
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The construction was based on Non-interactive Zero-Knowledge [5, 4].
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See more on the variants of chosen ciphertext attacks in Section 1.1.
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between various types of active attacks [1, 9, 18]. These works have mostly dealt with the security

of a single message and when discussing semantic security or indistinguishability of encryptions

they have done so while referring to the latter, technical de�nition of security Note though that

the non-malleability works have dealt directly with the security functionality.

New Attacks: It is relatively straightforward to generalize these de�nitions to deal with multiple

message chosen simultaneously, and indeed such generalizations were considered in [9]. However,

the main contribution of the current work is in treating the security of multiple messages chosen

adaptively and in a related manner under a chosen ciphertext attack. In this new type of attack

we consider a user holding some secret (as well as a secret key) being attacked by an interactive

adversary as follows. The adversary can ask the user to encrypt (under said key) any partial

information regarding its secret, i.e. the adversary speci�es a function to be applied to the secret.

The adversary can also ask the user to decrypt (under the corresponding key) any string of its choice.

Note that the encryption and decryption requests are made adaptively and can be interleaved.

Loosely speaking, we seek encryption schemes in which the adversary gains nothing by the above

type of attacks (and call them multiple-messages CCA-secure). Our good news
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is that we show

that any encryption scheme that is CCA-secure in the standard sense satis�es the new notion of

multiple-messages CCA-security.

We also provide a de�nition of single-message semantic-security under chosen ciphertext at-

tacks, and show that it coincides with the standard notion of (single-message) CCA-security, which

refers to the indistinguishability of encryptions (Section 3.) We note that independently of this

work Watanabe, Shikata and Imai [26] considered the semantic security of a single message under

chosen ciphertext attacks and showed its equivalence to indistinguishability of encryption. For

methodological reasons, although the treatment of multiple-messages CCA-security is the more im-

portant contribution of this work, we start with a treatment of single-message semantic-security

under CCA.

1.1 Semantic Security Under Chosen Ciphertext Attacks

Our �rst contribution is in suggesting a semantic security de�nition for the context of chosen cipher-

text attacks, and in showing that this de�nition is equivalent to indistinguishability of encryptions

under such attacks. Indeed, this is good news: It means that all schemes proven secure (in the tech-

nical sense) under chosen ciphertext attacks, are actually secure in the (more appealing) semantic

security sense.

We treat both a-priori chosen ciphertext attacks (CCA1) and a-posteriori chosen ciphertext

attacks (CCA2), and refer both to the public-key and private-key models. In all cases the attacker

is given access to two oracles, one for encryption and the other for decryption. The attack is broken

into two stages:

Stage 1: The attacker conducts some computation, using both its oracles, and terminates this

stage by outputting a challenge template. We note that in the technical de�nition (i.e., in-

distinguishability of encryptions) the challenge template consists of a pair of (equal-length)

plaintexts. In our de�nition of semantic security, the challenge template consists of three

circuits (S;L; F ), where S is a sampling circuit, and L (resp. F ) are circuits with a number

of input bits that equals the number of output bits in S. Loosely speaking, S speci�es a

probability space on plaintexts (i.e., by feeding S with a random input), L speci�es partial

6

We have no bad news; this is a good news only paper.
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information (i.e., \information leak") regarding the plaintext that is given to the adversary,

and F speci�es partial information (regarding the plaintext) that the adversary claims to be

able to learn.

Stage 2: In the second stage the adversary is given an encryption of a plaintext x along with L(x),

where x is selected according to S. In case of CCA1, at this stage, the adversary is only given

access to the encryption oracle. In case of CCA2, at this stage, the adversary is also given

access to the decryption oracle, under the restriction that it does not query the latter on the

ciphertext obtained at the beginning of this stage. In both cases, the adversary halts with a

guess for F (x).

(Recall that in the technical de�nition, the adversary is given an encryption of one of the

challenge plaintexts, and is outputting a bit (in attempt to distinguish the two cases).)

Loosely speaking, an encryption scheme is said to be semantically secure under CCAi (where

i 2 f1; 2g) if for every e�cient (i-type) attacker as above, there exists a corresponding benign

adversary that \performs as well" without seeing the ciphertexts. Speci�cally, the benign adversary

is given no oracle access, it produces a challenge template (S;L; F ) (as above), is given only L(x)

(where x is selected according to S), and is supposed to guess F (x). The benign adversary is

required to produce challenge template according to the same distribution as the real adversary,

and to be as successful as the real adversary in its guess of F (x).

Note that the benign adversary models an ideal situation in which the adversary produces the

same challenge template as the real adversary, but is given a \perfectly secure encryption" of the

plaintext x (where given a \perfectly secure encryption" is equivalent to being given nothing).

1.2 Semantic Security Under Multiple-Challenge CCA

The above de�nition of semantic security seems most satisfactory, except that it refers only to the

security of a single encrypted plaintext. Instead, one typically wants to consider the security of many

plaintexts encrypted under the same key

7

. A simple way of addressing this concern is to generalize

the notion of a challenge template, allowing to sample (via S) polynomially-many (possibly related)

plaintexts, and letting L and F be applied to the resulting sequence of plaintexts. It is important

to note that each of the plaintexts will be encrypted independently (i.e. using independent random

bits) of the others. This is the notion considered in [9]. (Note that the de�nition there is for

non-malleability which, in general, is a stronger requirement than semantic security, but the two

notion coincide for CCA2.)

The above simple extension does not seem to provide an ultimate de�nition. The reason being

that, especially in a context in which queries are allowed, producing a single challenge template

(which refers to a sequence of plaintexts) is not equivalent to adaptively producing polynomially-

many challenge template (each referring to a single new plaintext and answered by its encryp-

tion). Thus, the general notion of multiple plaintext security consists of allowing the generation

of polynomially-many challenge templates, each answered analogously to a single challenge tem-

plate, when the generation of these challenge templates may be interleaved with the encryption

and decryption queries. When generalizing CCA1, we do not allow decryption queries after the

�rst challenge template is issued. On the other hand, when generalizing CCA2, we allow arbitrary

interleaving of (encryption and) decryption queries with the generation of challenge templates. (We

7

We note that Bellare et al. [2] have considered the security of the same plaintext when encrypted under di�erent

(independently chosen) keys. Clearly, our treatment can be extended to handle multiple plaintexts each encrypted

under various keys.
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will even allow making a decryption query that refers to a challenge ciphertext; see details below.)

For sake of concreteness, in the rest of this paper, we focus on the CCA2 case.

We now sketch our de�nition of multiple-challenge CCA2 security. The attack proceeds in

iterations, where each iteration is of the following two types:

1. Based on the information it has gathered so far, the attacker makes either an encryption or

a decryption query, which is answered by the corresponding oracle.

2. Based on the information it has gathered so far, the attacker issues a challenge template, of

the form (S;L), which is answered as follows. As before, S is a sampling circuit, but here

S takes as input the random choices made when answering previous challenge templates as

well as a new sequence of random bits. Analogously, L is a circuit that computes information

regarding all challenge plaintext produced so far (including the current one). Denoting the

ith challenge template by (S

i

; L

i

) and the fresh coins it uses by r

i

, this template is answered

with the encryption of x

i

along with L

i

(x

1

; :::; x

i

), where x

i

= S

i

(r

1

; :::; r

i

). That is, x

i

is

generated by invoking S

i

with the coins used in previous challenges (i.e., r

1

; :::; r

i�1

) along

with the fresh coins r

i

, and the \clear" information obtained (i.e., L

i

(x

1

; :::; x

i

)) refers to all

challenge plaintext produced so far.

After completing polynomially-many iterations of the above type, the adversary outputs a function

F and a guess v of the value of F when applied to all challenge plaintexts (i.e., it tries to guess

F (x

1

; :::; x

t

), where t is the number of challenge plaintexts).

Loosely speaking, an encryption scheme will be said to be semantically secure under multiple-

challenge CCA2 if for every e�cient attacker as above, there exists a corresponding benign adversary

that \performs as well" without seeing the ciphertexts. Speci�cally, the benign adversary is given

no oracle access, it produces challenge templates (S

i

; L

i

)'s (as above), is given only L

i

(x

1

; :::; x

i

)

(where the x

i

are selected as above), and is supposed to guess F (x

1

; :::; x

t

), for F of its choice. The

benign adversary is required to produce the challenge templates and the function F according to

the same distribution as the real adversary, and to be as successful as the real adversary in its guess

of F (x

1

; :::; x

t

).

Again, there are good news: We prove that an encryption schemes is semantically secure under

multiple-challenge CCA2 if and only if it is secure under ordinary CCA2. Thus, all schemes proven

secure under CCA2, are actually secure under multiple-challenge CCA2.

2 Preliminaries: Chosen Ciphertext Attacks

Chosen ciphertext attacks are attacks in which the adversary may obtain (from some legitimate

user) plaintexts corresponding to ciphertexts of its choice (as well as ciphertexts corresponding to

plaintexts of its choice). We consider two types of such attacks: In the milder type (cf. [20]), called

a-priori chosen ciphertext attacks, decryption requests can be made only before the challenge

ciphertext (for which the adversary should gain knowledge) is presented. In the stronger type

(cf. [24, 9]), called a-posteriori chosen ciphertext attacks, decryption requests can be made also

after the challenge ciphertext is presented, as long as one does not request to decrypt this very

(challenge) ciphertext.

Following the outline provided in Section 1.1, we recall the technical de�nition of indistinguisha-

bility of encryptions under chosen ciphertext attacks. A few introductory technical comments are

in place. Firstly, the attacker is decoupled into two parts, denoted A

1

and A

2

, which correspond to

the two stages in the discussion provided in Section 1.1. The string � (below) is used for passing

4



state information from A

1

to A

2

. (Thus, also in the public-key case, it is unnecessary to provide

A

2

with the encryption-key e, because A

1

may pass e to A

2

as part of �.) The string z encodes

(non-uniform) auxiliary information that may be a-priori known to the adversary (which is an im-

portant issue enabling modular composition).

8

The challenge template produced by A

1

, denoted

(x

(1)

; x

(2)

), consists of a pair of (equal-length) strings, and the challenge ciphertext is an encryption

of one of these strings.

De�nition 2.1 (indistinguishability of encryptions under chosen ciphertext attacks):

For public-key schemes: A public-key encryption scheme, (G;E;D), is said to have indistin-

guishable encryptions under a-priori chosen ciphertext attacks (CCA1) if for every pair of prob-

abilistic polynomial-time oracle machines, A

1

and A

2

, for every positive polynomial p(�), and

all su�ciently large n and z 2 f0; 1g

poly(n)

:

jp

(1)

n;z

� p

(2)

n;z

j <

1

p(n)

where

p

(i)

n;z

def

= Pr

2

6

6

6

6

6

4

v = 1 where

(e; d) G(1

n

)

((x

(1)

; x

(2)

); �) A

E

e

;D

d

1

(e; z), where jx

(1)

j = jx

(2)

j.

c E

e

(x

(i)

)

v  A

E

e

2

(�; c)

3

7

7

7

7

7

5

Indistinguishability of encryptions under a-posteriori chosen ciphertext attacks (CCA2) is de�ned

analogously, except that A

2

is given oracle access to both E

e

and D

d

with the restriction that

when given the challenge c, machine A

2

is not allowed to make the query c to the oracle D

d

.

For private-key schemes: The de�nition is identical except that A

1

gets the security parameter

1

n

instead of the encryption-key e.

Clearly, the a-posteriori version of De�nition 2.1 implies its a-priori version, which in turn implies

the standard notion of security under passive attacks. All implications are strict [1, 18].

3 Semantic Security Under Chosen Ciphertext Attacks

In this section we provide a de�nition of semantic security under chosen ciphertext attacks and show

that it is equivalent to the existing technical de�nition of security under chosen ciphertext attacks

(i.e., De�nition 2.1). Our de�nition is a natural extension of the de�nition of semantic security for

passive attacks (cf. [15, 11]), alas the formulation is slightly more complex in the current context.

3.1 De�nition

When de�ning the adversary, we follow the framework used in the technical de�nition (i.e., De�ni-

tion 2.1), while adapting it to the adequate notion of a challenge template. Speci�cally, following

the outline provided in Section 1.1, a challenge template consists of a triplet of circuits, denoted

8

Indeed, in a uniform-complexity treatment, the string z must be taken from a polynomially-sampleable ensemble.
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(S;L; F ). Such a challenge is answered by selecting a plaintext x according to the distribution

speci�ed by S (i.e., x = S(r) where r is uniformly selected in the set of strings of adequate length),

and providing its encryption along with the leakage L(x). The adversary's goal is to guess F (x),

and semantic security amount to saying that the adversary's success probability can be matched

by a corresponding benign algorithm that is only given L(x). It is crucial to require that the chal-

lenge template produced by the corresponding algorithm is distributed similarly to the challenge

template produced by the adversary.

9

For simplicity, we require below that these distributions be

identical, but it would have su�ced to require that they be computationally indistinguishable. (As

in De�nition 2.1, both the real adversary and its benign simulator are decoupled into two part (and

the �rst part passes state information to the second part).)

De�nition 3.1 (semantic security under chosen ciphertext attacks):

For public-key schemes: A public-key encryption scheme, (G;E;D), is said to be semantically

secure under a-priori chosen ciphertext attacks (CCA1) if for every pair of probabilistic polynomial-

time oracle machines, A

1

and A

2

, there exists a pair of probabilistic polynomial-time algo-

rithms, A

0

1

and A

0

2

, such that the following two conditions hold:

1. For every positive polynomial p(�), and all su�ciently large n and z 2 f0; 1g

poly(n)

:

Pr

2

6

6

6

6

6

4

v = F (x) where

(e; d) G(1

n

)

((S;L; F ); �)  A

E

e

;D

d

1

(e; z)

c (E

e

(x); L(x)) ; where x S(U

poly(n)

)

v  A

E

e

2

(�; c)

3

7

7

7

7

7

5

< Pr

2

6

6

6

4

v = F (x) where

((S;L; F ); �)  A

0

1

(1

n

; z)

x S(U

poly(n)

)

v  A

0

2

(�;L(x))

3

7

7

7

5

+

1

p(n)

where U

m

denotes the uniform distribution over f0; 1g

m

.

2. For every n and z, the �rst element (i.e., the (S;L; F ) part) in the random variables

A

0

1

(1

n

; z) and A

E

G

1

(1

n

)

;D

G

2

(1

n

)

1

(G

1

(1

n

); z) are identically distributed.

Semantic security under a-posteriori chosen ciphertext attacks (CCA2) is de�ned analogously,

except that A

2

is given oracle access to both E

e

and D

d

with the restriction that when given

the challenge c = (c

0

; c

00

), machine A

2

is not allowed to make the query c

0

to the oracle D

d

.

For private-key schemes: The de�nition is identical except that algorithm A

1

gets the security

parameter 1

n

instead of the encryption-key e.

Clearly, the a-posteriori version of De�nition 3.1 implies its a-priori version, which in turn implies

standard passive security.

9

Thus if the real adversary asks for (and obtains) very informative leaks then the same is allowed to the cor-

responding benign algorithm, but if the real adversary asks for no informative leaks then the corresponding benign

algorithm cannot ask for very informative leaks.

6



3.2 Equivalence of semantic security and ciphertext-indistinguishability

We show that the two formulations of CCA-security (i.e., semantic security and indistinguishable

encryptions) are in fact equivalent.

Theorem 3.2 (equivalence of de�nitions for CCA): A public-key (resp., private-key) encryption

scheme (G;E;D) is semantically secure under a-priori CCA if and only if it has indistinguishable

encryptions under a-priori CCA. An analogous claim holds for a-posteriori CCA.

Proof Sketch: We adapt the known proof for the case of passive attacks (cf. [15, 11]) to the current

setting. The adaptation is quite easy, and we focus on the case of a-posteriori CCA security (while

commenting on the case of a-priori CCA security).

We start by showing that indistinguishable encryptions implies semantic security. Speci�cally,

given an CCA-adversary (A

1

; A

2

) we construct the following matching algorithm A

0

1

; A

0

2

:

1. A

0

1

(1

n

; z)

def

= (�; �

0

), where (�; �

0

) is generated as follows:

First, A

0

1

generates an instance of the encryption scheme; that is, A

0

1

lets (e; d)  

G(1

n

). Next, A

0

1

invokes A

1

, while emulating the oracles E

e

and D

d

, and obtains

((S;L; F ); �)  A

E

e

;D

d

1

(1

n

; z). Finally, A

0

1

sets �

0

def

= (�; e; d; 1

m

), where m equals

the number of output bits in S.

(In case of a-priori CCA security, we may also set �

0

def

= (�; e; 1

m

). Note that the generated

key-pair (e; d) allows A

0

1

to emulate the encryption and decryption oracles E

e

and D

d

.)

2. A

0

2

((�; e; d; 1

m

); 
)

def

= A

E

e

;D

d

2

(�; (E

e

(1

m

); 
)), where typically 
 = L(x), m = jxj and x  

S(U

poly(n)

). Again, A

0

2

uses the key-pair (e; d) in order to emulate the oracles E

e

and D

d

.

(As in the previous item, in case of a-priori CCA security, we may also let A

0

2

((�; e; 1

m

); 
)

def

=

A

E

e

2

(�; (E

e

(1

m

); 
)).)

Since A

0

1

merely emulates the generation of a key-pair and the actions of A

1

with respect to such

a pair, the equal distribution condition (i.e., Item 2 in De�nition 3.1) holds. Using the (corre-

sponding) indistinguishability of encryption hypothesis, we show that (even in the presence of the

encryption oracle E

e

and a restricted decryption oracle D

d

) the distributions (�; (E

e

(x); L(x))) and

(�; (E

e

(1

jxj

); L(x))) are indistinguishable (in particular byA

2

), where (e; d) G(1

n

), ((S;L; F ); �)  

A

E

e

;D

d

1

(y; z) (with y = e or y = 1

n

depending on the model), and x S(U

poly(n)

). The main thing

to notice is that the oracle queries made by a possible distinguisher of the above distributions can

be handled by a distinguisher of encryptions (as in De�nition 2.1), by passing these queries to its

own oracles.

10

It follows that indistinguishable encryptions (as per De�nition 2.1) implies semantic

security (as per De�nition 3.1).

10

Suppose that given ((S; L; F ); �) generated by A

E

e

;D

d

1

(y; z) and oracle access to E

e

and D

d

, where (e; d) G(1

n

)

(and y is as above), one can distinguish (�; (E

e

(x); L(x))) and (�; (E

e

(1

jxj

); L(x))), where x S(U

poly(n)

) (and one

does not query D

d

on the input ciphertext). Then we obtain a distinguisher as in De�nition 2.1 as follows. The �rst

part of the distinguisher invokes A

1

(while answering its oracle queries by forwarding these queries to its own E

e

and D

d

oracle), and obtains ((S; L; F ); �) A

E

e

;D

d

1

(y; z). It sets x

(1)

 S(U

poly(n)

) and x

(2)

= 1

jx

(1)

j

. and outputs

((x

(1)

; x

(2)

); (�; L(x

(1)

))). That is, (x

(1)

; x

(2)

) is the challenge template, and it is answered with E

e

(x

(i)

), where i is

either 1 or 2. The second part of the new distinguisher, gets as input a challenge ciphertext �  E

e

(x

(i)

) and the

state generated by the �rst part (�; L(x

(1)

)), and invokes the distinguisher of the contradiction hypothesis with input

(�; (�; L(x

(1)

))), while answering its oracle queries by forwarding these queries to its own E

e

and D

d

oracles. Indeed,

the new distinguisher does not query D

d

on �, because the original distinguisher was guaranteed not to do so. Thus,

the new distinguisher violates the condition in De�nition 2.1, in contradiction to the hypothesis that (G;E;D) has

indistinguishable encryptions.

7



We now turn to the opposite direction. Here the construction of a challenge template (as per

De�nition 3.1) is analogous to the corresponding construction in passive attack case. Speci�cally,

using the \indistinguishable-encryptions challenge template" (x

(1)

; x

(2)

), we construct the following

\semantic security challenge" (S;H; F ):

� The circuit S samples uniformly in fx

(1)

; x

(2)

g.

� The function F satis�es F (x

(1)

) = 1 and F (x

(2)

) = 0.

� The function L is de�ned arbitrarily subject to L(x

(1)

) = L(x

(2)

).

Again, the thing to notice is that the oracle queries made by a possible distinguisher of encryptions

(as in De�nition 2.1) can be handled by the semantic-security adversary, by passing these queries to

its own oracles. We derive a contradiction to the hypothesis that (G;E;D) satis�es De�nition 3.1,

and the theorem follows.

4 Semantic Security Under Multiple-Challenge CCA2

We now consider general attacks during which several challenge templates may be produced at

arbitrary times and possibly interleaved with decryption queries, continuing the discussion in Sec-

tion 1.2, Each of these challenge templates will be answered similarly to the way such templates

were answered above (i.e., by selecting a plaintext from the speci�ed distribution and providing its

encryption together with the speci�ed partial information). Unlike Section 3, we will even allow

attacks that make decryption queries regarding ciphertexts obtained as (part of the) answer to

previous challenge templates. After such an attack, the adversary will try to obtain information

about the unrevealed plaintexts, and security holds if its success probability can be met by a corre-

sponding benign adversary that does not see the ciphertexts. Indeed, the above discussion requires

clari�cation and careful formulation, provided next.

4.1 De�nition of Multiple Message Attacks

We start with a description of the actual attacks. It will be convenient to change the formalism

and consider the generation of challenge templates as challenge queries that are answered by a

special oracle called the tester, and denoted T

e;r

, where e is an encryption-key and r is a random

string of adequate length.

11

On query a challenge template of the form (S;L), where S is a

sampling circuit and L is a function (evaluation circuit), the (randomized) oracle T

e;r

returns the

pair (E

e

(S(r)); L(r)). (Indeed, we are further generalizing the attack by allowing the leak L to be

an arbitrary function of r, rather only a function of the plaintext S(r) (or all prior plaintexts).)

Note that r is not known to the adversary, and that this formalism generalizes the one in Section 1.2.

A multiple-challenge CCA is allowed queries to T

e;r

as well as unrestricted queries to both E

e

and the corresponding D

d

, including decryption queries referring to previously obtained challenge

ciphertexts. It terminates by outputting a function F and a value v, hoping that F (r) = v. (Again,

this generalizes the description in Section 1.2, where F was applied to the sequence of generated

plaintexts (x

1

; :::; x

t

).) Note that the description of F may encode various information gathered by

the adversary during its attack (e.g., it may even encode its entire computation transcript).

11

The formulation of Section 1.2 is obtained by letting r = (r

1

; :::; r

t

), and making the i

th

sampling circuit only

refer to (r

1

; :::; r

i

). Similarly, the i

th

leak circuit should be restricted to depend only on S

1

(r

1

); :::; S

i

(r

1

; :::; r

i

).

Actually, given the independence of S from L, one could have replaced the challenge queries by two types of queries:

leak queries that correspond to the L's, and encrypted leak queries that correspond to the S's.
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We now turn to describe the benign adversary (which does not see the ciphertexts). Such an

adversary is given oracle access to a corresponding oracle, T

r

, that behave as follows. On query

a challenge template of the form (S;L), the oracle returns L(r). (Again, r is not known to the

adversary.) Like the real adversary, the benign adversary also terminates by outputting a function

F and a value v, hoping that F (r) = v.

Security amounts to asserting that the e�ect of any e�cient multiple-challenge CCA can be

simulated by a e�cient benign adversary that does not see the ciphertexts. As in De�nition 3.1,

the simulation has to satisfy two conditions:

1. The probability that F (r) = v in the CCA must be met by the probability that a correspond-

ing event holds in the benign model (where the adversary does not see the ciphertexts).

2. The challenge queries as well as the function F should be distributed similarly in the two

models. Actually, each decryption query (of the real attacker) that refers to a ciphertext c

that is contained in the answer given to a challenge query (S;L) is considered (or counted)

as a (�ctitious) challenge query (S; S). Note that this convention is justi�ed by the fact that

the challenge query (S; S) is equivalent to the decryption query c (followed by the encryption

query x = D

d

(c)). Put in other words, if the real adversary made a decryption query that

refers to a ciphertext c contained in the answer given to the challenge (S;L) (and thus obtained

D

d

(c) = D

d

(E

e

(S(r))) = S(r)), then it is only fair that we allow the benign adversary (which

sees no ciphertexts) to make the challenge query (S; S) and so obtain S(r).

In order to obtain the actual de�nition, we need to de�ne the trace of the execution of the above

two types of adversaries. For a multiple-challenge CCA adversary, denoted A, the trace is de�ned

as the sequence of challenge queries made during the attack, augmented by (�ctitious) challenge

queries such that the (�ctitious challenge) query (S; S) is included if and only if the adversary made

a decryption query c such that (c; �) is the answer given to a previous challenge query of the form

(S; �). For the benign adversary, denoted B, the trace is de�ned as the sequence of challenge queries

made during the attack.

De�nition 4.1 (multiple-challenge CCA security):

For public-key schemes: A public-key encryption scheme, (G;E;D), is said to be secure under

multiple-challenge chosen ciphertext attacks if for every probabilistic polynomial-time oracle

machine A there exists a probabilistic polynomial-time oracle machine B such that the follow-

ing two conditions hold:

1. For every positive polynomial p(�), and all su�ciently large n and z 2 f0; 1g

poly(n)

:

Pr

2

6

4

v = F (r) where

(e; d) G(1

n

) and r  U

poly(n)

(F; v) A

E

e

;D

d

;T

e;r

(e; z)

3

7

5

< Pr

2

6

4

v = F (r) where

r  U

poly(n)

(F; v) B

T

r

(1

n

; z)

3

7

5

+

1

p(n)

2. The following two probability ensembles, indexed by n 2 N and z 2 f0; 1g

poly(n)

, are

computationally indistinguishable:

(a) The trace of A

E

G

1

(1

n

)

;D

G

2

(1

n

)

;T

G

1

(1

n

);U

poly(n)

(G

1

(1

n

); z), augmented by its output.

9



(b) The trace of B

T

U

poly(n)

(1

n

; z) augmented by its output.

For private-key schemes: The de�nition is identical except that machine A gets the security

parameter 1

n

instead of the encryption-key e.

To get more comfortable with De�nition 4.1, consider the special case in which the real CCA

adversary does not make decryption queries to ciphertexts obtained as part of answers to challenge

queries. (In the proof of Theorem 4.2, such adversaries will be called canonical and will be shown to

be as powerful as the general ones.) The trace of such adversaries equals the sequence of challenge

queries made during the attack, which simpli�es Condition 2.

4.2 Relation to ordinary CCA2-security

It is easy to see that De�nition 4.1 implies ordinary CCA2-security (e.g., De�nition 2.1).

12

The

more important fact (proven below) is that CCA2-security implies security under multiple-challenge

CCA (i.e., De�nition 4.1).

Theorem 4.2 (a-posteriori-CCA implies De�nition 4.1): Let (G;E;D) be a public-key (resp.,

private-key) encryption scheme that is secure under a-posteriori CCA. Then (G;E;D) is secure

under multiple-challenge chosen ciphertext attacks.

Proof Sketch: As a bridge between the multiple-challenge CCA and the corresponding benign

adversary that does not see the ciphertext, we consider canonical adversaries that can perfectly

simulate any multiple-challenge CCA without making decryption queries to ciphertexts obtained

as part of answers to challenge queries. Instead, these canonical adversaries make corresponding

queries of the form (S; S), where (S; �) is the challenge-query that was answered with the said

ciphertext. Speci�cally, suppose that a multiple-challenge CCA has made the challenge query (S;L),

which was answered by (c; L(r)), where c = E

e

(S(r)), and at a later stage makes the decryption

query c, which is to be answered by D

d

(c) = S(r). Then, the corresponding canonical adversary

makes the challenge query (S;L) as the original adversary, receiving the same pair (c; L(r)), but

later instead of making the decryption query c the canonical adversary makes the challenge query

(S; S), which is answered by S(r) = D

d

(c). Note that the trace of the corresponding canonical

adversary is identical to the trace of the original CCA adversary (and the same holds with respect

to their outputs).

Thus, given an a-posteriori-CCA secure encryption scheme, it su�ces to establish De�nition 4.1

when the quanti�cation is restricted to canonical adversaries A. Indeed, as in the proof of Theo-

rem 3.2, we construct a benign adversary B in the natural manner: On input (1

n

; z), machine B

generates (e; d)  G(1

n

), and invokes A on input (y; z), where y = e if we are in the public-key

case and y = 1

n

otherwise. Next, B emulates all oracles expected by A, while using its own oracle

T

r

. Speci�cally, the oracles E

e

and D

d

are perfectly emulated by using the corresponding keys

(known to B), and the oracle T

e;r

is (non-perfectly) emulated using the oracle T

r

(i.e., the query

(S;L) is forwarded to T

r

, and the answer L(r) is augmented with E

e

(1

m

), wherem is the number of

output bits in S). Note that the latter emulation (i.e., the answer (E

e

(1

jS(r)j

); L(r))) is non-perfect

since the answer of T

e;r

would have been (E

e

(S(r)); L(r)), yet (as we shall show) A cannot tell the

di�erence.

12

This can be shown by considering the special case (of De�nition 4.1) in which the adversary makes a single

challenge query, and does not make a decryption query that refers to the ciphertext provided as answer. Using ideas

as in the second part of the proof of Theorem 3.2, this special case of De�nition 4.1 implies De�nition 2.1 (as a special

case).
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In order to show that B satis�es both conditions of De�nition 4.1 (w.r.t the above A), we will

show that the following two ensembles are computationally indistinguishable:

1. The global view in real attack of A on (G;E;D). That is, we consider the output of the

following experiment:

(a) (e; d) G(1

n

) and r  U

poly(n)

.

(b) (F; v)  A

E

e

;D

d

;T

e;r

(y; z), where y = e if we are in the public-key case and y = 1

n

otherwise. Furthermore, we let ((S

1

; L

1

); :::; (S

t

; L

t

)) denote the trace of the execution

A

E

e

;D

d

;T

e;r

(y; z).

(c) The output is ((S

1

; L

1

); :::; (S

t

; L

t

)); (F; v); r.

2. The global view in an attack emulated by B. That is, we consider the output of an experiment

as above, except that A

E

e

;D

d

;T

e;r

(y; z) is replaced by A

E

e

;D

d

;T

0

e;r

(y; z), where on query (S;L)

the oracle T

0

e;r

replies with (E

e

(1

jS(r)j

); L(r)) rather than with (E

e

(S(r)); L(r)).

Note that computational indistinguishability of the above ensembles immediately implies Condi-

tion 2 of De�nition 4.1, whereas Condition 1 also follows because using r we can determine whether

or not F (r) = v holds (for (F; v)). Also note that the above ensembles may be computationally

indistinguishable only in case A is canonical (which we have assumed to be the case).

13

The computational indistinguishability of the above ensembles is proven using a hybrid argu-

ment, which in turn relies on the hypothesis that (G;E;D) has indistinguishable encryptions under

a-posteriori-CCAs. Speci�cally, we introduce t + 1 mental experiments that are hybrids of the

above two ensembles (which we wish to relate). Each of these mental experiments is given oracle

access to E

e

and D

d

, where (e; d) G(1

n

) is selected from the outside. The ith hybrid experiment

uses these two oracles (in addition to y which equals e in the public-key case and 1

n

otherwise), in

order to emulate an execution of A

E

e

;D

d

;�

i

e;r

(y; z), where r is selected by the experiment itself and

�

i

e;r

is a hybrid of T

e;r

and T

0

e;r

. Speci�cally, �

i

e;r

is a history-dependent process that answers like

T

e;r

on the �rst i queries and like T

0

e;r

on the rest. Thus, for i = 0; :::; t, we de�ne the ith hybrid

experiment as a process that given y (which equals either e or 1

n

) and oracle access to E

e

and D

d

,

where (e; d) G(1

n

), behaves as follows:

1. The process selects r  U

poly(n)

.

2. The process emulates an execution of A

E

e

;D

d

;�

i

e;r

(y; z), where y = e if we are in the public-

key case and y = 1

n

otherwise, by using the oracles E

e

and D

d

. Speci�cally, the answers

of �

i

e;r

are emulated using the knowledge of r and oracle access to E

e

: the jth query to

�

i

e;r

, denoted (S

j

; L

j

), is answered by (E

e

(S

j

(r)); L

j

(S

j

(r))) if j � i and is answered by

(E

e

(1

jS

j

(r)j

); L

j

(S

j

(r))) otherwise. (The process answers A's queries to E

e

and D

d

by for-

warding them to its own corresponding oracles.)

3. As before, (F; v) denotes the output of A

E

e

;D

d

;�

i

e;r

(y; z) and ((S

1

; L

1

); :::; (S

t

; L

t

)) denotes its

trace. The process outputs ((S

1

; L

1

); :::; (S

t

; L

t

)); (F; v); r.

13

Non-canonical adversaries can easily distinguish the two types of views by distinguishing the oracle T

e;r

from

oracle T

0

e;r

. For example, suppose we make a challenge query with a sampling-circuit S that generates some distri-

bution over f0; 1g

m

n f1

m

g, next make a decryption query on the ciphertext obtained in the challenge query, and

output the answer. Then, in case we query the oracle T

e;r

, we output D

d

(E

e

(S(r))) 6= 1

m

; whereas in case we query

the oracle T

0

e;r

, we output D

d

(E

e

(1

m

)) = 1

m

. Recall that, at this point, we are guaranteed that A is canonical (and

indeed it might have been derived for perfectly-emulating some non-canonical A

0

). An alternative way of handling

non-canonical adversaries is to let B handled the disallowed (decryption) queries by making the corresponding chal-

lenge query, and returning its answer rather than the decryption value. (Note that B that emulates T

0

r;e

can detect

which queries are disallowed.)

11



Note that that since A is canonical, none of the D

d

-queries equals a ciphertext obtained as part of

the answer of a �

i

e;r

-query.

Clearly, the distribution of the 0-hybrid is identical to the distribution of the global view in

an attack emulated by B, whereas the distribution of the t-hybrid is identical to the distribution

of the global view in a real attack by A. On the other hand, distinguishing the i-hybrid from

the (i+1)-hybrid yields a successful a-posteriori-CCA (in the sense of distinguishing encryptions).

That is, assuming that one can distinguish the i-hybrid from the (i + 1)-hybrid, we construct a

a-posteriori-CCA adversary (as per De�nition 2.1) as follows. For (e; d)  G(1

n

), given y = e if

we are in the public-key case and y = 1

n

otherwise, the attacker (having oracle access to E

e

and

D

d

) behaves as follows

1. The attacker selects r  U

poly(n)

.

2. The attacker emulates an execution of A

E

e

;D

d

;�

j

e;r

(y; z), where j 2 fi; i + 1g (is unknown to

the attacker), as follows. The queries to E

e

and D

d

are answered by using the corresponding

oracles available to the attacker, and the issue is answering the queries to �

j

e;r

. The �rst

i queries to �

j

e;r

are answered as in both �

i

e;r

and �

i+1

e;r

(i.e., query (S;L) is answered by

(E

e

(S(r)); L(r))), and the last t� (i+ 1) queries are also answered as in both �

i

e;r

and �

i+1

e;r

(i.e. by (E

e

(1

jS(r)j

); L(r)), this time). The i + 1 query, denoted (S

i+1

; L

i+1

), is answered

by producing the challenge template (S

i+1

(r); 1

jS

i+1

(r)j

), which is answered by the challenge

ciphertext c (where c 2 fE

e

(S

i+1

(r)); E

e

(1

jS

i+1

(r)j

)g), and replying with (c; L

i+1

(r)).

Note that if c = E

e

(S

i+1

(r)) then we emulate �

i+1

e;r

, whereas if c = E

e

(1

jS

i+1

(r)j

) then we

emulate �

i

e;r

.

3. Again, (F; v) denotes the output of A

E

e

;D

d

;�

j

e;r

(y; z), and ((S

1

; L

1

); :::; (S

t

; L

t

)) denotes its

trace. The attacker feeds ((S

1

; L

1

); :::; (S

t

; L

t

)); (F; v); r to the hybrid distinguisher (which

we have assumed to exist towards the contradiction), and outputs whatever the latter does.

The above is an a-posteriori-CCA as in De�nition 2.1: it produces a single challenge (i.e., the pair of

plaintexts (S

i+1

(r); 1

jS

i+1

(r)j

)), and distinguishes the case it is given the ciphertext c = E

e

(S

i+1

(r))

from the case it is given the ciphertext c = E

e

(1

jS

i+1

(r)j

), without querying D

d

on the challenge

ciphertext c. The last assertion follows by the hypothesis that A is canonical, and so none of the

D

d

-queries that A makes equals the ciphertext c obtained as (part of) the answer to the i + 1st

�

j

e;r

-query. Thus, distinguishing the i + 1st and ith hybrids implies distinguishing encryptions

under an a-posteriori-CCA, which contradicts our hypothesis regarding (G;E;D). The theorem

follows.
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