
Building urves with arbitrary small MOV degree

over �nite prime �elds

R. Dupont, A. Enge, F. Morain

�

fdupont, enge, moraing�lix.polytehnique.fr

July 18, 2002

Abstrat

We present a fast algorithm for building ordinary ellipti urves

over �nite prime �elds having arbitrary small MOV degree. The el-

lipti urves are obtained using omplex multipliation by any desired

disriminant.
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1 Introdution

Beginning with the independent works of Sakai, Ohgishi and Kasahara [26℄

and Joux [18℄, the Weil and Tate pairings on ellipti urves have reently

found numerous appliations in the design of ryptosystems, suh as identity-

based enryption [4℄, short signatures [5℄, identity-based signatures [6, 17,

24, 26℄, non-interative key distribution [10, 26℄ or authentiated key agree-

ment [29℄.

In order to implement suh protools, one needs urves over whih the

Weil or Tate pairings an be eÆiently omputed, i.e. urves with a suÆ-

iently small MOV degree. Supersingular urves are partiularly well suited

sine it has been proved [20℄ that their MOV degree is always less than or

equal to 6. However, the seurity of these protools is diretly linked to the

MOV degree k, sine it assumes that the disrete logarithm problem is hard

�
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in an extension of degree k of the base �eld of the urve. It is thus of interest

to be able to generate ordinary ellipti urves with a small MOV degree k,

not restrited to f1; 2; 3; 4; 6g (in [5℄, Boneh, Lynn and Shaham leave it as

an open problem to build urves with k = 10).

In [22℄ Miyaji, Nakabayashi and Takano give expliit onditions to obtain

ordinary urves with spei�ed k. Their method leads to solving a Diophan-

tine equation whose genus inreases with the value of '(k). They treat the

ase where '(k) = 2 (that is k = 3, 4 and 6) by showing that the Diophantine

equation redues to Pell's equation.

Reently Barreto, Lynn and Sott [3℄ proposed an algorithm for building

urves over prime �nite �elds with any k, using omplex multipliation by

a presribed quadrati order. The urves they obtain have a subgroup of

large prime order `, for whih the ratio log p= log ` an be up to 2.

We present an alternative method ahieving the same goal, but using a

di�erent parametrization of (p; `). Our idea is to use maximal urves built

via omplex multipliation. Our urves also su�er from the fat that the

ratio log p= log ` an be up to 2. Sine their seurity will depend on ` and

not on the ardinality m of the urve, the use of suh urves in existing

protools will often result in an inrease in the size of the iphertexts or

signatures generated.

Setion 2 ontains lassial fats on omplex multipliation. In setion

3, we present our approah, and we provide numerial examples in setion

4.

2 Brief review of omplex multipliation

2.1 Theory

We summarise the relevant elements of omplex multipliation needed for

our purpose. Referenes are [8, 28℄ and [1℄ for more omputations.

Let q = p

d

be a prime power. An ellipti urve E over F

q

has m =

q+1� t points where t is an integer suh that jtj � 2

p

q. Conversely, given

an integer t prime

1

to p satisfying the bound, there exists a urve E=F

q

having ardinality q + 1 � t. The only known method for building suh a

urve is to use omplex multipliation. Preisely, let � = t

2

� 4q < 0 be

the disriminant of the order O generated by the Frobenius of E. Write

� = �f

2

D, where �D is the disriminant of the imaginary quadrati �eld

1

Only a restrited list of t divisible by p an our, and these lead to supersingular

urves that do not interest us in this artile.
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ontaining O. Then E an be built as a urve having omplex multipliation

by the prinipal order Z[(D+

p

�D)=2℄.

Expliit equations for E are derived using the theory of lass �elds and

singular invariants. The algorithms usually proeed in three steps [1, 19, 12℄.

In the �rst step, a lass polynomial is onstruted. This is an irreduible

polynomial in Z[X℄ of degree h, the lass number of �D, whose roots gener-

ate the Hilbert lass �eld of Q(

p

�D). By standard arguments of algebrai

number theory, h is of size D

1=2+o(1)

. Using the lass polynomials desribed

in [11, 12℄, a lass number of a few thousand is tratable. On a Pentium

III at 800 MHz, our urrent implementation omputes lass polynomials of

degree 1000 in about 20 s, for a degree of 5000 it needs about 40 min. In

the seond step, a root of the lass polynomial in F

q

is sought, and this has

in fat beome the dominant part of the algorithm already for primes of a

few hundred bits. Finally, the ellipti urve equation is dedued from the

root, whih has a negligible ost ompared to the previous two steps.

2.2 Building a urve with given ardinality

Suppose we want to build E=F

q

having q + 1 � t points for given q and

t. If t

2

is very small ompared to q, then j�j = Df

2

is lose to 4q. On

average, f will be small and h(�) will be lose to

p

q whih makes the

whole omputation infeasible. (Note that solving this problem would imply

being able to do primality proving very fast, for instane yielding small

erti�ates of primality �a la Pomerane [25℄.)

To irumvent the problem, one has to devise lever methods, �nding

parametrisations of (q; t). One of these methods is presented in [3℄. Our

approah is di�erent and uses the fat that if t

2

is lose to 4q, then j�j and

thus D may be small and the method outlined in 2.1 may work. In fat, we

need jtj = b2

p

q. To see why, write jtj = 2

p

q � u to obtain

t

2

� 4q = �4u

p

q + u

2

:

If u � 1, then the lass number assoiated to � is in O(q

1=4

) (this was

already remarked in [23℄). Unless we an fore � to have a large square

fator, so that D is small nevertheless, we annot do anything in this ase.
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3 Curves with small MOV degree

3.1 The problem

Let E=F

q

have ardinality m and let ` be a prime fator of m suh that

` - q � 1. The MOV degree of E=F

q

relatively to ` is de�ned to be the

smallest integer k suh that ` j q

k

� 1, i.e. it is the order of q in the group

F

�

`

. A theorem by Balasubramanian and Koblitz [2℄ then states that E=F

q

k

ontains `

2

points of `-torsion, whih implies that the Weil pairing e

`

is

de�ned on the following groups:

e

`

: E=F

q

k

[`℄�E=F

q

k

[`℄! F

�

q

k

Alternatively, the omputationally preferable Tate pairing an be de�ned on

the same groups.

For ryptographi appliations, the prime ` should be large (typially

the largest fator of m), and from now on we will omit ` when talking about

MOV degrees. For the pairing to be eÆiently omputable, the MOV degree

k should be relatively small sine the algorithm used to ompute pairings,

due to Miller [21℄, runs in time O(M(q

k

)` log `), where M(q

k

) is the time

needed for a multipliation in F

q

k

.

Now sine k is the order of q modulo ` it must divide `� 1, and in this

ase, the probability of q having order k should heuristially be proportional

to k=(`�1). This means that k is unlikely to be small, and we have to fore

it in some ways.

Writing m = q + 1 � t, the problem we have to solve is the following:

�nd integers (`; q; t) suh that ` is prime, q is a power of a prime, ` j q+1� t

and q is of order k modulo `.

3.2 Our solution

We suppose k is �xed and explain how we an ome up with examples of

urves having this value of k as MOV degree.

Any prime power q an be written uniquely as

q = n

2

+ a with n � 1 and 0 � a � n

or

q = n

2

+ n+ a with n � 1 and 1 � a � n:

As disussed in Setion 2.2, we will build urves via the CM method with

jtj = b2

p

q, that is,

t = �2n for q = n

2

+ a
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and

t = �(2n+ 1) for q = n

2

+ n+ a;

respetively.

To simplify the exposition, we assume for the time being that q = n

2

+a

and t = +2n, and ome bak to the other ases further below. Then m =

q+1� t = (n� 1)

2

+ a, whih should be divisible by the unknown `. Thus,

the order of q modulo ` being k is equivalent to

�

k

(t� 1) � 0 mod `;

where �

k

is the k-th ylotomi polynomial. Combining these equations, we

see that n, a and ` are related by

�

�

k

(2n� 1) � 0 mod `;

(n� 1)

2

+ a � 0 mod `:

(1)

Conversely, any natural numbers n, a and ` satisfying this sytem and suh

that ` is prime and q = n

2

+ a is a prime power lead to a solution of our

problem.

To eliminate one of the three unknowns, we onsider the polynomials

P

k

(X) = �

k

(2X � 1) and Q(X; a) = (X � 1)

2

+ a and their resultant

R

k

(a) = Res

X

(P

k

(X); Q(X; a)):

The �rst few values of R

k

(a) are given in Table 1.

Proposition 3.1 R

k

(X) 2 Z[X℄ is irreduible. Its leading term is 4

'(k)

X

'(k)

.

Its onstant oeÆient is p

2

if k is a power of the prime p and 1 otherwise.

The ontent of R

k

is 1, unless k is a power of 2, in whih ase the ontent

is 4.

Proof: Suppose that k > 2, sine for k = 2 the assertion is trivial.

Writing the resultant of a polynomial f with leading oeÆient  and a

polynomial g as 

deg g

Q

� root of f

g(�) (see for instane [15℄), we obtain

R

k

(X) =

�

2

'(k)

�

2

Q

�

X +

�

�

i

�1

2

�

2

�

, where � is a primitive k-th root of

unity and the produt is taken over the integers i 2 f1; : : : ; k � 1g oprime

to k. In partiular, R

k

is of degree '(k), and all of its oeÆients, exept

possibly for the onstant one, are divisible by 4. Furthermore, its onstant

oeÆient is the square of the norm of � � 1, whih equals 1 or p (see [9℄)

aording to the ondition given in the proposition.
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k R

k

(a)

2 4a+ 4

3 16a

2

+ 12a+ 9

4 16a

2

+ 4

5 256a

4

+ 320a

3

+ 160a

2

+ 25

6 16a

2

� 4a+ 1

7 4096a

6

+ 7168a

5

+ 5376a

4

+ 2240a

3

+ 784a

2

� 196a+ 49

8 256a

4

+ 256a

3

+ 128a

2

� 32a+ 4

9 4096a

6

+ 6144a

5

+ 2304a

4

+ 192a

3

+ 576a

2

� 108a + 9

10 256a

4

+ 64a

3

+ 96a

2

� 16a+ 1

11 1048576a

10

+ 2883584a

9

+ 3604480a

8

+ 2703360a

7

+1351680a

6

+ 473088a

5

+ 123904a

4

+ 17424a

2

� 2420a + 121

Table 1: Values of the resultant R

k

Let � =

�

��1

2

�

2

be a root of R

k

(X). Then either � still generates

Q(�)=Q , in whih ase R

k

is irreduible, or Q(�) is a sub�eld of index 2

of Q(�). In the latter ase, � is of degree '(k)=2 over Q , whene there

exists a moni polynomial P 2 Q [X ℄ of degree '(k)=2 suh that P (4�) =

P

�

(� � 1)

2

�

= 0. Sine P ((X � 1)

2

) is moni and of degree '(k), it follows

that

�

k

(X) = P

�

(X � 1)

2

�

:

But the oeÆient of X

'(k)�1

of P ((X � 1)

2

) is �'(k), while the same

oeÆient of �

k

is the negative sum of k roots of unity di�erent from 1 and

�1 for k > 2, a ontradition. 2

To obtain a solution to (1), we now �x values of a. Notie that this

leads to � = t

2

� 4q = �4a = �f

2

D with some fundamental disriminant

�D, and a must be hosen suh that D is not too large. We try to fator

R

k

(a) and to obtain suÆiently large prime fators `. If we sueed, we

ompute gd(P

k

(X); Q(X; a)) mod ` to get n. Then we test whether n

2

+ a

is a prime (obtaining a non-trivial prime power seems hopeless), in whih

ase we build the CM urve over F

q

having omplex multipliation by the

fundamental disriminant �D.

The other possible hoies for q and the sign of t lead to the following
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systems:

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n+ 1) � 0 mod `

(n+ 1)

2

+ a � 0 mod `

t = �2n

q = n

2

+ a

� = �4a

(2)

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n) � 0 mod `

n

2

� n+ a � 0 mod `

t = +(2n+ 1)

q = n

2

+ n+ a

� = �4a+ 1

(3)

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n+ 2) � 0 mod `

n

2

� n+ a � 0 mod `

t = �(2n+ 1)

q = n

2

+ n+ a

� = �4a+ 1

(4)

The orresponding resultants have the same properties as found for R

k

in Proposition 3.1, and the algorithm is ompletely analogous.

3.3 Algorithm

Our proedure takes as input k and a seurity parameter L, orresponding

to the minimal size of an ellipti urve subgroup for whih the disrete

logarithm problem is omputationally untratable.

proedure SmallK(k; L)

for a := 1::a

max

do

1. fator R

k

(a);

2. if R

k

(a) has a prime fator ` � L then

2.1 ompute a root n of gd(P

k

(X); Q(X; a)) mod `;

2.2 for s := 0::s

max

do

if a � n+ s` then

{ ompute p = (n+ s`)

2

+ a or p = (n+ s`)

2

+ (n+ s`) + a,

respetively, depending on the hoie of R

k

;

{ if p is prime then ompute E;

Remarks:

� Any number ongruent to n modulo ` an be used in its plae, this is

why we onsider small values of s in 2.2.
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� At point 2.2, we do not need a to be squarefree. Indeed, we may write

4a = f

2

D where �D is some fundamental disriminant and build E

having CM by the prinipal order. This means that we ould loop over

(D; f) rather than over a, so as to keep D in a desired range.

� At 2.1, we do not really need ` to be prime. Replaing by a multiple

of it works as well.

� Fatoring R

k

(a) an be done with a large sieve, reminisent of the

NFS algorithm. In pratie, we are happy with using a bound B and

�nding values of R

k

(a) whih are omposed of small primes below B

and a large prime ofator.

� We generally do not start at a = 1; as a matter of fat, sine R

k

(a) �

(4a)

'(k)

and R

k

is inreasing, we �rst ompute the smallest a suh

that R

k

(a) � L. We would like to keep R

k

(a) lose to L. This an

be impossible when '(k) is too large. For instane, if 12

'(k)

� L,

then all values of a larger than 3 will yield huge values of R

k

(a) for

whih �nding prime fators of size logL would be very diÆult (see

the example with k = 50 below).

3.4 Heuristis

Let us sketh a rough analysis of our algorithm. We assume in a restrited

model that we require R

k

(a) to be prime and assume this happens with

probability O(1= logL). The integer n has a size of roughly L and p will

be prime with probability O(1= logL), too. This means that we should �nd

suitable solutions with probability O(1= log

2

L).

4 Numerial examples

To demonstrate our ideas, we have implemented the searh for suitable CM

parameters of ellipti urves in Magma[7℄. The time needed to generate

parameters for a urve of ryptographi size (160 to 200 bits) ranges from

1:5 seonds for k = 12 to about 30 seonds for k = 50, on a Pentium III

running at 450 MHz. The orresponding CM urves Y

2

= X

3

+AX+B were

then onstruted with our own C++ program relying on gmp[14℄, mpfr[16℄,

mp[13℄ and ntl[27℄. The running times r provided in seonds are those for

the urve onstrution on a Pentium III with 800 MHz. Unless otherwise

stated, t = +2n. We �rst give a few small examples for the �rst prime values
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of k. Let us start with k = 5:

a = 26103

D = 26103

h = 88

p = n

2

+ a = 10316095101096156580609884521822230897927

` = 118856368237249643641

A = 6361774565981298467679675481620482961778

B = 7679881411019584505323078495021065607161

r = 1:2 se

With k = 7:

a = 1068

D = 267

h = 2

p = n

2

+ a = 22280215019917539692076037201942564656877

` = 209942810985515700149

A = 20081485727637137786281947313744519173193

B = 19348575963543670484350584017678504011965

r = 0:5 se

The following are examples of ryptographi size parameters:

k = 10

a = 163841

2

� 381535

D = 381535

h = 304

p = n

2

+ a

= 3841473059399107170103126625214956243555849230586730206554319192403126758n

24784619950343423791044836076585229766559410700100854819 (428 bits)

` = 4686879083953795487935291153103592178053824492905821016357311641 (212 bits)

A = 3614578796541747106204758437452623506218014739109496255047150073038238n

74440660375308333064155960208871834107728173994725817706209

B = 9779653359898889715032179580552084314015037548925981335085475716478582n

3429429213794100661750235442419193580537672582267656086793

r = 57 se

9



k = 11

a = 3432987

D = 13731947

h = 675

p = n

2

+ n + a

= 1085821608657960459200424901105246469500036293041071392729642052706715552n

5209414077340531489889487980320059886340361265142418889395568109 (452 bits)

t = +2n+ 1

` = 31868518802410275890234469142066082346142304768132007825950373986651 (225 bits)

A = 1559295546932200357119739705088716590408695933963361975762035466055625821n

563020387825392942383755862763911883552315027999018090902306395

B = 9317871453629336870829152280819931917211836532224958585880327639452271445n

556969901994211583104666470565255768963327547426970047466787266

r = 190 se

The last example, for k = 50, illustrates what happens when k is large.

Then even the smallest values of R

k

(a) will be large, and the prime fators

we an get also. Here, L was hosen to be 2

200

and the �rst a found after a

reasonable amount of time was large (` has more than 800 bits):

a = 3717

2

� 100031

D = 100031

h = 360

p = n

2

+ a

= 20842920653141790940385053839262236837004280380662095237577453898532012669n

12278767168768885649030339687884195002492197984521031047569738948314071100n

64773342975230329862156271117105741739036924127527019193851292166824743040n

17589899857634542271026193590188892808214449620075170944719236203955726821n

03091008498680792490913071883312366613892911615075996269740260732750552134n

81113489724548452173601824251662512835208268883544848406302169193525823153n

208277049189474278273411115309203458121169283108544784074064572363 (1698 bits)

` = 14210994604898071775164903075969042517171313244513507262727016999091734563n

97101469611511374559527389145563061943309339665717829765588496498158653799n

51620732265513327374218277710700404838689258946218747177224943815520597387n

891445377017922059001106955159901 (849 bits)

A = 15156186447228839987528411535043949413637399436346140307909666013896538378n

33638199154685097831592939569911911596361095171494737713670738673420839041n

98380464187218562787156173322534497420510729291725211357401488923884852083n

92637690832825732907154833795541123795821108492581148142533859414554476338n

06424510203094405400342839682820962332173559508836191138073638242725941450n

55370937038111692041774266870745665982011383137805845832451594037089761358n

579795589755763993889692815279314697423641993748584778749607071723

B = 63129681608772593564478461538837746601803456613534569188279187528407093916n

99984207604008733427703596346264187934866615723122962531811589323517379888n

79917235994711971414373836853088354013230229706156023473011237872966407517n

84569878720112823621889826672622365222851782433914168935656550834354839033n

98386746050053455398484049882197053669694716017309240042713438351342205108n

64189229011166212732978063265525460858763315947112288390673459204357997093n

00876086881369139670649676832950624484076469592416515616766380722

r = 1500 se
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5 Cryptographi impliations

Our method yields ellipti urves E de�ned over a prime �eld F

p

having a

subgroup of prime order ` of size O(

p

p), whih is easily seen from equation

(1). Roughly speaking, a seure ` = 2

200

implies a �eld of size 2

400

. Note

that we impliitely assume that our way of onstruting E is not dangerous,

hoping that CM urves are not weak and that solving the disrete logarithm

problem in an ellipti urve subgroup of size ` within a group of size `

2

is

not easier than in an ellipti urve group of size `.

In any ase, we doubt that the problem an be solved for �xed q and

prime urve order m.

6 Conlusions

Our method annot reah a �xed prime power q, but replaes this with a

large variety of primes to show up during the omputations. More work is

needed to improve this situation.
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