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Abstract

We present, a fast algorithm for building ordinary elliptic curves
over finite prime fields having arbitrary small MOV degree. The el-
liptic curves are obtained using complex multiplication by any desired
discriminant.

Keywords: elliptic curves over finite fields, MOV degree, complex
multiplication.

1 Introduction

Beginning with the independent works of Sakai, Ohgishi and Kasahara [26]
and Joux [18], the Weil and Tate pairings on elliptic curves have recently
found numerous applications in the design of cryptosystems, such as identity-
based encryption [4], short signatures [5], identity-based signatures [6, 17,
24, 26], non-interactive key distribution [10, 26] or authenticated key agree-
ment [29].

In order to implement such protocols, one needs curves over which the
WEeil or Tate pairings can be efficiently computed, i.e. curves with a suffi-
ciently small MOV degree. Supersingular curves are particularly well suited
since it has been proved [20] that their MOV degree is always less than or
equal to 6. However, the security of these protocols is directly linked to the
MOV degree k, since it assumes that the discrete logarithm problem is hard
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in an extension of degree k of the base field of the curve. It is thus of interest
to be able to generate ordinary elliptic curves with a small MOV degree £,
not restricted to {1,2,3,4,6} (in [5], Boneh, Lynn and Shacham leave it as
an open problem to build curves with & = 10).

In [22] Miyaji, Nakabayashi and Takano give explicit conditions to obtain
ordinary curves with specified k. Their method leads to solving a Diophan-
tine equation whose genus increases with the value of ¢(k). They treat the
case where ¢(k) = 2 (that is k = 3, 4 and 6) by showing that the Diophantine
equation reduces to Pell’s equation.

Recently Barreto, Lynn and Scott [3] proposed an algorithm for building
curves over prime finite fields with any k, using complex multiplication by
a prescribed quadratic order. The curves they obtain have a subgroup of
large prime order ¢, for which the ratio logp/log ¢ can be up to 2.

We present an alternative method achieving the same goal, but using a
different parametrization of (p,£). Our idea is to use mazimal curves built
via complex multiplication. Our curves also suffer from the fact that the
ratio logp/log ¥ can be up to 2. Since their security will depend on ¢ and
not on the cardinality m of the curve, the use of such curves in existing
protocols will often result in an increase in the size of the ciphertexts or
signatures generated.

Section 2 contains classical facts on complex multiplication. In section
3, we present our approach, and we provide numerical examples in section

4.

2 Brief review of complex multiplication

2.1 Theory

We summarise the relevant elements of complex multiplication needed for
our purpose. References are [8, 28] and [1] for more computations.

Let ¢ = p® be a prime power. An elliptic curve E over Fy has m =
q + 1 —t points where ¢ is an integer such that |¢| < 2,/g. Conversely, given
an integer ¢ prime' to p satisfying the bound, there exists a curve E/F,
having cardinality ¢ + 1 — ¢. The only known method for building such a
curve is to use complex multiplication. Precisely, let A = > — 4¢ < 0 be
the discriminant of the order O generated by the Frobenius of E. Write
A = —f2D, where —D is the discriminant of the imaginary quadratic field

!Only a restricted list of ¢ divisible by p can occur, and these lead to supersingular
curves that do not interest us in this article.



containing @. Then E can be built as a curve having complex multiplication
by the principal order Z[(D + v/—D)/2].

Explicit equations for E are derived using the theory of class fields and
singular invariants. The algorithms usually proceed in three steps [1, 19, 12].
In the first step, a class polynomial is constructed. This is an irreducible
polynomial in Z[X] of degree h, the class number of —D, whose roots gener-
ate the Hilbert class field of Q(v/—D). By standard arguments of algebraic
number theory, h is of size D'/2+o(1), Using the class polynomials described
in [11, 12], a class number of a few thousand is tractable. On a Pentium
IIT at 800 MHz, our current implementation computes class polynomials of
degree 1000 in about 20 s, for a degree of 5000 it needs about 40 min. In
the second step, a root of the class polynomial in [, is sought, and this has
in fact become the dominant part of the algorithm already for primes of a
few hundred bits. Finally, the elliptic curve equation is deduced from the
root, which has a negligible cost compared to the previous two steps.

2.2 Building a curve with given cardinality

Suppose we want to build E/F, having g + 1 — ¢ points for given ¢ and
t. TIf 2 is very small compared to ¢, then |A| = Df? is close to 4q. On
average, f will be small and h(A) will be close to /g which makes the
whole computation infeasible. (Note that solving this problem would imply
being able to do primality proving very fast, for instance yielding small
certificates of primality d la Pomerance [25].)

To circumvent the problem, one has to devise clever methods, finding
parametrisations of (¢,t). One of these methods is presented in [3]. Our
approach is different and uses the fact that if ¢ is close to 4¢, then |A| and
thus D may be small and the method outlined in 2.1 may work. In fact, we
need |t| = |2,/q]. To see why, write |t| = 2,/g — u to obtain

2 — 4q = —du/q + u*.

If w > 1, then the class number associated to A is in O(¢'/*) (this was
already remarked in [23]). Unless we can force A to have a large square
factor, so that D is small nevertheless, we cannot do anything in this case.



3 Curves with small MOV degree

3.1 The problem

Let E/F, have cardinality m and let ¢ be a prime factor of m such that
¢ { q—1. The MOV degree of E/F, relatively to ¢ is defined to be the
smallest integer k such that ¢ | ¢* — 1, i.e. it is the order of ¢ in the group
F,. A theorem by Balasubramanian and Koblitz [2] then states that E/F
contains #? points of /-torsion, which implies that the Weil pairing e, is
defined on the following groups:

ey : E/Fqk [f] X E/Fqk [f] — F;k

Alternatively, the computationally preferable Tate pairing can be defined on
the same groups.

For cryptographic applications, the prime ¢ should be large (typically
the largest factor of m), and from now on we will omit ¢ when talking about
MOYV degrees. For the pairing to be efficiently computable, the MOV degree
k should be relatively small since the algorithm used to compute pairings,
due to Miller [21], runs in time O(M (¢*)¢log¥), where M (q"*) is the time
needed for a multiplication in F.

Now since k is the order of ¢ modulo £ it must divide £ — 1, and in this
case, the probability of ¢ having order k£ should heuristically be proportional
to k/(¢£—1). This means that k& is unlikely to be small, and we have to force
it in some ways.

Writing m = ¢ + 1 — ¢, the problem we have to solve is the following;:
find integers (¢, ¢, t) such that £ is prime, ¢ is a power of a prime, £ | g+ 1 —¢
and q is of order £ modulo ¥.

3.2 Our solution

We suppose k is fixed and explain how we can come up with examples of
curves having this value of k£ as MOV degree.
Any prime power ¢ can be written uniquely as

q:n2+awithn21and0§a§n

or
q:n2+n+awithn21and1§a§n.

As discussed in Section 2.2, we will build curves via the CM method with

lt| = |2,/q], that is,
t=+2nforg=n’+a



and
t=%(2n+1) for ¢ =n’? +n+a,

respectively.

To simplify the exposition, we assume for the time being that ¢ = n?+a
and ¢ = +2n, and come back to the other cases further below. Then m =
q+1—t=(n—1)%2 4+ a, which should be divisible by the unknown ¢. Thus,
the order of ¢ modulo £ being k is equivalent to

Or(t—1) =0 mod 2,

where @ is the k-th cyclotomic polynomial. Combining these equations, we
see that n, a and £ are related by

®r(2n—1) =0mod¥, (1)
(n—124+a =0mod/.

Conversely, any natural numbers n, a and ¢ satisfying this sytem and such
that ¢ is prime and ¢ = n? + a is a prime power lead to a solution of our
problem.

To eliminate one of the three unknowns, we consider the polynomials
P(X) = ®,(2X — 1) and Q(X,a) = (X — 1)? + a and their resultant

Rk(a) = ResX(Pk(X)a Q(Xa a))
The first few values of Ry (a) are given in Table 1.

Proposition 3.1 Ry (X) € Z[X] is irreducible. Its leading term is 4°(F) X %K),
Its constant coefficient is p® if k is a power of the prime p and 1 otherwise.
The content of Ry, is 1, unless k is a power of 2, in which case the content

18 4.

Proof: Suppose that & > 2, since for £ = 2 the assertion is trivial.
Writing the resultant of a polynomial f with leading coefficient ¢ and a
polynomial g as c%89 ], oot of r9(a) (see for instance [15]), we obtain

Ri(X) = (2<P(k))2H (X + (%) >, where ( is a primitive k-th root of

unity and the product is taken over the integers i € {1,...,k — 1} coprime
to k. In particular, Ry is of degree ¢(k), and all of its coefficients, except
possibly for the constant one, are divisible by 4. Furthermore, its constant
coefficient is the square of the norm of ¢ — 1, which equals 1 or p (see [9])
according to the condition given in the proposition.



Ry(a)

4a + 4

16a® +12a + 9

16a® + 4

256a* + 32043 + 160a® + 25

164 — 4a + 1

409605 + 7168a® + 5376a* 4 224003 + 7840 — 196a + 49
256a* + 256a3 + 12842 — 32a + 4

4096a5 + 6144a® + 2304a* + 192a® + 57642 — 108a + 9
256a* + 64a> + 964> — 16a + 1

104857600 + 28835844° + 3604480a® + 2703360a"
+1351680a° + 473088a° + 123904a* + 174244 — 2420a + 121

—_
— O © 00 O Uk WwNT

[a—y

Table 1: Values of the resultant Ry

2
Let a = (%) be a root of Ri(X). Then either « still generates

Q(¢)/Q, in which case Ry is irreducible, or Q(«) is a subfield of index 2
of Q(¢). In the latter case, « is of degree ¢(k)/2 over QQ, whence there
exists a monic polynomial P € Q[X] of degree ¢(k)/2 such that P(4a) =
P ((¢ —1)?) =0. Since P((X —1)?) is monic and of degree ¢(k), it follows
that

(X)) =P ((X - 1)%).

But the coefficient of X¥(*)=1 of P((X — 1)) is —p(k), while the same
coefficient of @y, is the negative sum of k roots of unity different from 1 and
—1 for k£ > 2, a contradiction. |

To obtain a solution to (1), we now fix values of a. Notice that this
leads to A = t?> — 4qg = —4a = — f?D with some fundamental discriminant
—D, and a must be chosen such that D is not too large. We try to factor
Ry (a) and to obtain sufficiently large prime factors £. If we succeed, we
compute ged(Py(X), Q(X,a)) mod £ to get n. Then we test whether n% + a
is a prime (obtaining a non-trivial prime power seems hopeless), in which
case we build the CM curve over [, having complex multiplication by the
fundamental discriminant —D.

The other possible choices for ¢ and the sign of ¢ lead to the following



systems:

O.(2n+1) = Omod/
(n+1)24+a = Omod/
t = —2n (2)
qg = n?+a
A = —4a
( ®r(2n) = Omod/
n?—n+a = 0mod/
t = +(@2n+1) (3)
q = n’+n+a
L A = —4a+1
(( Dp(2n+2) = Omod/
n?—n+a = 0mod/
X t = —(2n+1) (4)
q = n’+n+a
L A = —4a+1

The corresponding resultants have the same properties as found for Ry
in Proposition 3.1, and the algorithm is completely analogous.

3.3 Algorithm

Our procedure takes as input k and a security parameter L, corresponding
to the minimal size of an elliptic curve subgroup for which the discrete
logarithm problem is computationally untractable.

procedure SMALLK(k, L)
for a := 1..amax do
1. factor Ry (a);
2. if Ri(a) has a prime factor £ > L then
2.1 compute a root n of ged(Pr(X), Q(X,a)) mod ¢;
2.2 for s := 0..5yax do
if a <n + s then
— compute p = (n+ sf)%2 +a or p= (n+ sf)? + (n + sf) + a,
respectively, depending on the choice of Ry;
— if p is prime then compute F;

Remarks:

e Any number congruent to n» modulo £ can be used in its place, this is
why we consider small values of s in 2.2.



e At point 2.2, we do not need a to be squarefree. Indeed, we may write
4a = f2D where —D is some fundamental discriminant and build F
having CM by the principal order. This means that we could loop over
(D, f) rather than over a, so as to keep D in a desired range.

e At 2.1, we do not really need # to be prime. Replacing by a multiple
of it works as well.

e Factoring Ry(a) can be done with a large sieve, reminiscent of the
NFS algorithm. In practice, we are happy with using a bound B and
finding values of Rj(a) which are composed of small primes below B
and a large prime cofactor.

e We generally do not start at a = 1; as a matter of fact, since Ry(a) ~
(4a)#*) and Ry, is increasing, we first compute the smallest a such
that Ri(a) > L. We would like to keep Rj(a) close to L. This can
be impossible when ¢(k) is too large. For instance, if 12¢%) > L,
then all values of a larger than 3 will yield huge values of Ry(a) for
which finding prime factors of size log L would be very difficult (see
the example with & = 50 below).

3.4 Heuristics

Let us sketch a rough analysis of our algorithm. We assume in a restricted
model that we require Ri(a) to be prime and assume this happens with
probability O(1/log L). The integer n has a size of roughly L and p will
be prime with probability O(1/log L), too. This means that we should find
suitable solutions with probability O(1/log? L).

4 Numerical examples

To demonstrate our ideas, we have implemented the search for suitable CM
parameters of elliptic curves in MAGMA[7]. The time needed to generate
parameters for a curve of cryptographic size (160 to 200 bits) ranges from
1.5 seconds for k£ = 12 to about 30 seconds for £ = 50, on a Pentium III
running at 450 MHz. The corresponding CM curves Y? = X3+ AX + B were
then constructed with our own C++ program relying on GMP[14], MPFR[16],
MPC[13] and NTL[27]. The running times r provided in seconds are those for
the curve construction on a Pentium ITIT with 800 MHz. Unless otherwise
stated, t = +2n. We first give a few small examples for the first prime values



of k. Let us start with k& = 5:

= 26103

26103

88

= n®+a=10316095101096156580609884521822230897927
118856368237249643641
6361774565981298467679675481620482961778
7679881411019584505323078495021065607161

= 1.2 sec

S S R W
I

With k =T:

= 1068

267

2

= n? 4 a = 22280215019917539692076037201942564656877
209942810985515700149
20081485727637137786281947313744519173193
19348575963543670484350584017678504011965

= 0.5 sec

s e s =>U0oe
I

The following are examples of cryptographic size parameters:

= 10

1638417 - 381535

381535

= 304

n2-|-a

= 3841473059399107170103126625214956243555849230586730206554319192403126758\

24784619950343423791044836076585229766559410700100854819 (428 bits)

= 4686879083953795487935291153103592178053824492905821016357311641 (212 bits)

A = 3614578796541747106204758437452623506218014739109496255047150073038238\
74440660375308333064155960208871834107728173994725817706209

B = 9779653359898889715032179580552084314015037548925981335085475716478582\

342942921379410066175023544241919358053767258226 7656086793

r = 57 sec

s > 9o =
Il

~
|



= 11
= 3432987
13731947
= 675
= n2 +n+a
= 1085821608657960459200424901105246469500036293041071392729642052706715552\
5209414077340531489889487980320059886340361265142418889395568109 (452 bits)
= +2n+1
£ = 31868518802410275890234469142066082346142304768132007825950373986651 (225 bits)
A = 1559295546932200357119739705088716590408695933963361975762035466055625821\
563020387825392942383755862763911883552315027999018090902306395
B = 9317871453629336870829152280819931917211836532224958585880327639452271445\
556969901994211583104666470565255768963327547426970047466787266

s > U e =
Il

r = 190 sec

The last example, for £ = 50, illustrates what happens when k is large.
Then even the smallest values of Ry (a) will be large, and the prime factors

we can get also. Here, L was chosen to be 2290 and the first a found after a
reasonable amount of time was large (¢ has more than 800 bits):

= 37172 - 100031

100031

= 360

= n2 +a

= 20842920653141790940385053839262236837004280380662095237577453898532012669\
12278767168768885649030339687884195002492197984521031047569738948314071100\
64773342975230329862156271117105741739036924127527019193851292166824743040\
17589899857634542271026193590188892808214449620075170944719236203955726821\
03091008498680792490913071883312366613892911615075996269740260732750552134\
81113489724548452173601824251662512835208268883544848406302169193525823153\
208277049189474278273411115309203458121169283108544784074064572363 (1698 bits)

¢ = 14210994604898071775164903075960042517171313244513507262727016999091734563\
97101469611511374559527389145563061943309339665717829765588496498158653799\
51620732265513327374218277710700404838689258046218747177224943815520597387\
891445377017922059001106955159901 (849 bits)

A = 15156186447228839987528411535043949413637399436346140307909666013896538378\
33638199154685097831592939569911911596361095171494737713670738673420839041\
98380464187218562787156173322534497420510729291725211357401488923884852083\
92637690832825732907154833795541123795821108492581148142533859414554476338\
06424510203094405400342839682820962332173559508836191138073638242725941450\
55370937038111692041774266870745665982011383137805845832451594037089761358\
579795589755763993889692815279314607423641993748584778749607071723

B = 63129681608772593564478461538837746601803456613534569188279187528407093916\
99984207604008733427703596346264187934866615723122962531811589323517379888\
79917235994711971414373836853088354013230229706156023473011237872966407517\
84569878720112823621889826672622365222851782433914168935656550834354839033\
98386746050053455398484049882197053669694716017309240042713438351342205108\
64189229011166212732978063265525460858763315947112288390673459204357997093\
00876086881369139670649676832050624484076469592416515616766380722

r = 1500 sec

s = U e
I
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5 Cryptographic implications

Our method yields elliptic curves E defined over a prime field [, having a
subgroup of prime order / of size O(/p), which is easily seen from equation
(1). Roughly speaking, a secure £ = 2200 implies a field of size 24°°. Note
that we implicitely assume that our way of constructing E is not dangerous,
hoping that CM curves are not weak and that solving the discrete logarithm
problem in an elliptic curve subgroup of size ¢ within a group of size ¢2 is
not easier than in an elliptic curve group of size £.

In any case, we doubt that the problem can be solved for fixed ¢ and
prime curve order m.

6 Conclusions

Our method cannot reach a fixed prime power ¢, but replaces this with a
large variety of primes to show up during the computations. More work is
needed to improve this situation.
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