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Abstra
t

We present a fast algorithm for building ordinary ellipti
 
urves

over �nite prime �elds having arbitrary small MOV degree. The el-

lipti
 
urves are obtained using 
omplex multipli
ation by any desired

dis
riminant.
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1 Introdu
tion

Beginning with the independent works of Sakai, Ohgishi and Kasahara [26℄

and Joux [18℄, the Weil and Tate pairings on ellipti
 
urves have re
ently

found numerous appli
ations in the design of 
ryptosystems, su
h as identity-

based en
ryption [4℄, short signatures [5℄, identity-based signatures [6, 17,

24, 26℄, non-intera
tive key distribution [10, 26℄ or authenti
ated key agree-

ment [29℄.

In order to implement su
h proto
ols, one needs 
urves over whi
h the

Weil or Tate pairings 
an be eÆ
iently 
omputed, i.e. 
urves with a suÆ-


iently small MOV degree. Supersingular 
urves are parti
ularly well suited

sin
e it has been proved [20℄ that their MOV degree is always less than or

equal to 6. However, the se
urity of these proto
ols is dire
tly linked to the

MOV degree k, sin
e it assumes that the dis
rete logarithm problem is hard

�

The author is on leave from the Fren
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in an extension of degree k of the base �eld of the 
urve. It is thus of interest

to be able to generate ordinary ellipti
 
urves with a small MOV degree k,

not restri
ted to f1; 2; 3; 4; 6g (in [5℄, Boneh, Lynn and Sha
ham leave it as

an open problem to build 
urves with k = 10).

In [22℄ Miyaji, Nakabayashi and Takano give expli
it 
onditions to obtain

ordinary 
urves with spe
i�ed k. Their method leads to solving a Diophan-

tine equation whose genus in
reases with the value of '(k). They treat the


ase where '(k) = 2 (that is k = 3, 4 and 6) by showing that the Diophantine

equation redu
es to Pell's equation.

Re
ently Barreto, Lynn and S
ott [3℄ proposed an algorithm for building


urves over prime �nite �elds with any k, using 
omplex multipli
ation by

a pres
ribed quadrati
 order. The 
urves they obtain have a subgroup of

large prime order `, for whi
h the ratio log p= log ` 
an be up to 2.

We present an alternative method a
hieving the same goal, but using a

di�erent parametrization of (p; `). Our idea is to use maximal 
urves built

via 
omplex multipli
ation. Our 
urves also su�er from the fa
t that the

ratio log p= log ` 
an be up to 2. Sin
e their se
urity will depend on ` and

not on the 
ardinality m of the 
urve, the use of su
h 
urves in existing

proto
ols will often result in an in
rease in the size of the 
iphertexts or

signatures generated.

Se
tion 2 
ontains 
lassi
al fa
ts on 
omplex multipli
ation. In se
tion

3, we present our approa
h, and we provide numeri
al examples in se
tion

4.

2 Brief review of 
omplex multipli
ation

2.1 Theory

We summarise the relevant elements of 
omplex multipli
ation needed for

our purpose. Referen
es are [8, 28℄ and [1℄ for more 
omputations.

Let q = p

d

be a prime power. An ellipti
 
urve E over F

q

has m =

q+1� t points where t is an integer su
h that jtj � 2

p

q. Conversely, given

an integer t prime

1

to p satisfying the bound, there exists a 
urve E=F

q

having 
ardinality q + 1 � t. The only known method for building su
h a


urve is to use 
omplex multipli
ation. Pre
isely, let � = t

2

� 4q < 0 be

the dis
riminant of the order O generated by the Frobenius of E. Write

� = �f

2

D, where �D is the dis
riminant of the imaginary quadrati
 �eld

1

Only a restri
ted list of t divisible by p 
an o

ur, and these lead to supersingular


urves that do not interest us in this arti
le.
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ontaining O. Then E 
an be built as a 
urve having 
omplex multipli
ation

by the prin
ipal order Z[(D+

p

�D)=2℄.

Expli
it equations for E are derived using the theory of 
lass �elds and

singular invariants. The algorithms usually pro
eed in three steps [1, 19, 12℄.

In the �rst step, a 
lass polynomial is 
onstru
ted. This is an irredu
ible

polynomial in Z[X℄ of degree h, the 
lass number of �D, whose roots gener-

ate the Hilbert 
lass �eld of Q(

p

�D). By standard arguments of algebrai


number theory, h is of size D

1=2+o(1)

. Using the 
lass polynomials des
ribed

in [11, 12℄, a 
lass number of a few thousand is tra
table. On a Pentium

III at 800 MHz, our 
urrent implementation 
omputes 
lass polynomials of

degree 1000 in about 20 s, for a degree of 5000 it needs about 40 min. In

the se
ond step, a root of the 
lass polynomial in F

q

is sought, and this has

in fa
t be
ome the dominant part of the algorithm already for primes of a

few hundred bits. Finally, the ellipti
 
urve equation is dedu
ed from the

root, whi
h has a negligible 
ost 
ompared to the previous two steps.

2.2 Building a 
urve with given 
ardinality

Suppose we want to build E=F

q

having q + 1 � t points for given q and

t. If t

2

is very small 
ompared to q, then j�j = Df

2

is 
lose to 4q. On

average, f will be small and h(�) will be 
lose to

p

q whi
h makes the

whole 
omputation infeasible. (Note that solving this problem would imply

being able to do primality proving very fast, for instan
e yielding small


erti�
ates of primality �a la Pomeran
e [25℄.)

To 
ir
umvent the problem, one has to devise 
lever methods, �nding

parametrisations of (q; t). One of these methods is presented in [3℄. Our

approa
h is di�erent and uses the fa
t that if t

2

is 
lose to 4q, then j�j and

thus D may be small and the method outlined in 2.1 may work. In fa
t, we

need jtj = b2

p

q
. To see why, write jtj = 2

p

q � u to obtain

t

2

� 4q = �4u

p

q + u

2

:

If u � 1, then the 
lass number asso
iated to � is in O(q

1=4

) (this was

already remarked in [23℄). Unless we 
an for
e � to have a large square

fa
tor, so that D is small nevertheless, we 
annot do anything in this 
ase.
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3 Curves with small MOV degree

3.1 The problem

Let E=F

q

have 
ardinality m and let ` be a prime fa
tor of m su
h that

` - q � 1. The MOV degree of E=F

q

relatively to ` is de�ned to be the

smallest integer k su
h that ` j q

k

� 1, i.e. it is the order of q in the group

F

�

`

. A theorem by Balasubramanian and Koblitz [2℄ then states that E=F

q

k


ontains `

2

points of `-torsion, whi
h implies that the Weil pairing e

`

is

de�ned on the following groups:

e

`

: E=F

q

k

[`℄�E=F

q

k

[`℄! F

�

q

k

Alternatively, the 
omputationally preferable Tate pairing 
an be de�ned on

the same groups.

For 
ryptographi
 appli
ations, the prime ` should be large (typi
ally

the largest fa
tor of m), and from now on we will omit ` when talking about

MOV degrees. For the pairing to be eÆ
iently 
omputable, the MOV degree

k should be relatively small sin
e the algorithm used to 
ompute pairings,

due to Miller [21℄, runs in time O(M(q

k

)` log `), where M(q

k

) is the time

needed for a multipli
ation in F

q

k

.

Now sin
e k is the order of q modulo ` it must divide `� 1, and in this


ase, the probability of q having order k should heuristi
ally be proportional

to k=(`�1). This means that k is unlikely to be small, and we have to for
e

it in some ways.

Writing m = q + 1 � t, the problem we have to solve is the following:

�nd integers (`; q; t) su
h that ` is prime, q is a power of a prime, ` j q+1� t

and q is of order k modulo `.

3.2 Our solution

We suppose k is �xed and explain how we 
an 
ome up with examples of


urves having this value of k as MOV degree.

Any prime power q 
an be written uniquely as

q = n

2

+ a with n � 1 and 0 � a � n

or

q = n

2

+ n+ a with n � 1 and 1 � a � n:

As dis
ussed in Se
tion 2.2, we will build 
urves via the CM method with

jtj = b2

p

q
, that is,

t = �2n for q = n

2

+ a
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and

t = �(2n+ 1) for q = n

2

+ n+ a;

respe
tively.

To simplify the exposition, we assume for the time being that q = n

2

+a

and t = +2n, and 
ome ba
k to the other 
ases further below. Then m =

q+1� t = (n� 1)

2

+ a, whi
h should be divisible by the unknown `. Thus,

the order of q modulo ` being k is equivalent to

�

k

(t� 1) � 0 mod `;

where �

k

is the k-th 
y
lotomi
 polynomial. Combining these equations, we

see that n, a and ` are related by

�

�

k

(2n� 1) � 0 mod `;

(n� 1)

2

+ a � 0 mod `:

(1)

Conversely, any natural numbers n, a and ` satisfying this sytem and su
h

that ` is prime and q = n

2

+ a is a prime power lead to a solution of our

problem.

To eliminate one of the three unknowns, we 
onsider the polynomials

P

k

(X) = �

k

(2X � 1) and Q(X; a) = (X � 1)

2

+ a and their resultant

R

k

(a) = Res

X

(P

k

(X); Q(X; a)):

The �rst few values of R

k

(a) are given in Table 1.

Proposition 3.1 R

k

(X) 2 Z[X℄ is irredu
ible. Its leading term is 4

'(k)

X

'(k)

.

Its 
onstant 
oeÆ
ient is p

2

if k is a power of the prime p and 1 otherwise.

The 
ontent of R

k

is 1, unless k is a power of 2, in whi
h 
ase the 
ontent

is 4.

Proof: Suppose that k > 2, sin
e for k = 2 the assertion is trivial.

Writing the resultant of a polynomial f with leading 
oeÆ
ient 
 and a

polynomial g as 


deg g

Q

� root of f

g(�) (see for instan
e [15℄), we obtain

R

k

(X) =

�

2

'(k)

�

2

Q

�

X +

�

�

i

�1

2

�

2

�

, where � is a primitive k-th root of

unity and the produ
t is taken over the integers i 2 f1; : : : ; k � 1g 
oprime

to k. In parti
ular, R

k

is of degree '(k), and all of its 
oeÆ
ients, ex
ept

possibly for the 
onstant one, are divisible by 4. Furthermore, its 
onstant


oeÆ
ient is the square of the norm of � � 1, whi
h equals 1 or p (see [9℄)

a

ording to the 
ondition given in the proposition.
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k R

k

(a)

2 4a+ 4

3 16a

2

+ 12a+ 9

4 16a

2

+ 4

5 256a

4

+ 320a

3

+ 160a

2

+ 25

6 16a

2

� 4a+ 1

7 4096a

6

+ 7168a

5

+ 5376a

4

+ 2240a

3

+ 784a

2

� 196a+ 49

8 256a

4

+ 256a

3

+ 128a

2

� 32a+ 4

9 4096a

6

+ 6144a

5

+ 2304a

4

+ 192a

3

+ 576a

2

� 108a + 9

10 256a

4

+ 64a

3

+ 96a

2

� 16a+ 1

11 1048576a

10

+ 2883584a

9

+ 3604480a

8

+ 2703360a

7

+1351680a

6

+ 473088a

5

+ 123904a

4

+ 17424a

2

� 2420a + 121

Table 1: Values of the resultant R

k

Let � =

�

��1

2

�

2

be a root of R

k

(X). Then either � still generates

Q(�)=Q , in whi
h 
ase R

k

is irredu
ible, or Q(�) is a sub�eld of index 2

of Q(�). In the latter 
ase, � is of degree '(k)=2 over Q , when
e there

exists a moni
 polynomial P 2 Q [X ℄ of degree '(k)=2 su
h that P (4�) =

P

�

(� � 1)

2

�

= 0. Sin
e P ((X � 1)

2

) is moni
 and of degree '(k), it follows

that

�

k

(X) = P

�

(X � 1)

2

�

:

But the 
oeÆ
ient of X

'(k)�1

of P ((X � 1)

2

) is �'(k), while the same


oeÆ
ient of �

k

is the negative sum of k roots of unity di�erent from 1 and

�1 for k > 2, a 
ontradi
tion. 2

To obtain a solution to (1), we now �x values of a. Noti
e that this

leads to � = t

2

� 4q = �4a = �f

2

D with some fundamental dis
riminant

�D, and a must be 
hosen su
h that D is not too large. We try to fa
tor

R

k

(a) and to obtain suÆ
iently large prime fa
tors `. If we su

eed, we


ompute g
d(P

k

(X); Q(X; a)) mod ` to get n. Then we test whether n

2

+ a

is a prime (obtaining a non-trivial prime power seems hopeless), in whi
h


ase we build the CM 
urve over F

q

having 
omplex multipli
ation by the

fundamental dis
riminant �D.

The other possible 
hoi
es for q and the sign of t lead to the following
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systems:

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n+ 1) � 0 mod `

(n+ 1)

2

+ a � 0 mod `

t = �2n

q = n

2

+ a

� = �4a

(2)

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n) � 0 mod `

n

2

� n+ a � 0 mod `

t = +(2n+ 1)

q = n

2

+ n+ a

� = �4a+ 1

(3)

8

>

>

>

>

<

>

>

>

>

:

�

k

(2n+ 2) � 0 mod `

n

2

� n+ a � 0 mod `

t = �(2n+ 1)

q = n

2

+ n+ a

� = �4a+ 1

(4)

The 
orresponding resultants have the same properties as found for R

k

in Proposition 3.1, and the algorithm is 
ompletely analogous.

3.3 Algorithm

Our pro
edure takes as input k and a se
urity parameter L, 
orresponding

to the minimal size of an ellipti
 
urve subgroup for whi
h the dis
rete

logarithm problem is 
omputationally untra
table.

pro
edure SmallK(k; L)

for a := 1::a

max

do

1. fa
tor R

k

(a);

2. if R

k

(a) has a prime fa
tor ` � L then

2.1 
ompute a root n of g
d(P

k

(X); Q(X; a)) mod `;

2.2 for s := 0::s

max

do

if a � n+ s` then

{ 
ompute p = (n+ s`)

2

+ a or p = (n+ s`)

2

+ (n+ s`) + a,

respe
tively, depending on the 
hoi
e of R

k

;

{ if p is prime then 
ompute E;

Remarks:

� Any number 
ongruent to n modulo ` 
an be used in its pla
e, this is

why we 
onsider small values of s in 2.2.
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� At point 2.2, we do not need a to be squarefree. Indeed, we may write

4a = f

2

D where �D is some fundamental dis
riminant and build E

having CM by the prin
ipal order. This means that we 
ould loop over

(D; f) rather than over a, so as to keep D in a desired range.

� At 2.1, we do not really need ` to be prime. Repla
ing by a multiple

of it works as well.

� Fa
toring R

k

(a) 
an be done with a large sieve, reminis
ent of the

NFS algorithm. In pra
ti
e, we are happy with using a bound B and

�nding values of R

k

(a) whi
h are 
omposed of small primes below B

and a large prime 
ofa
tor.

� We generally do not start at a = 1; as a matter of fa
t, sin
e R

k

(a) �

(4a)

'(k)

and R

k

is in
reasing, we �rst 
ompute the smallest a su
h

that R

k

(a) � L. We would like to keep R

k

(a) 
lose to L. This 
an

be impossible when '(k) is too large. For instan
e, if 12

'(k)

� L,

then all values of a larger than 3 will yield huge values of R

k

(a) for

whi
h �nding prime fa
tors of size logL would be very diÆ
ult (see

the example with k = 50 below).

3.4 Heuristi
s

Let us sket
h a rough analysis of our algorithm. We assume in a restri
ted

model that we require R

k

(a) to be prime and assume this happens with

probability O(1= logL). The integer n has a size of roughly L and p will

be prime with probability O(1= logL), too. This means that we should �nd

suitable solutions with probability O(1= log

2

L).

4 Numeri
al examples

To demonstrate our ideas, we have implemented the sear
h for suitable CM

parameters of ellipti
 
urves in Magma[7℄. The time needed to generate

parameters for a 
urve of 
ryptographi
 size (160 to 200 bits) ranges from

1:5 se
onds for k = 12 to about 30 se
onds for k = 50, on a Pentium III

running at 450 MHz. The 
orresponding CM 
urves Y

2

= X

3

+AX+B were

then 
onstru
ted with our own C++ program relying on gmp[14℄, mpfr[16℄,

mp
[13℄ and ntl[27℄. The running times r provided in se
onds are those for

the 
urve 
onstru
tion on a Pentium III with 800 MHz. Unless otherwise

stated, t = +2n. We �rst give a few small examples for the �rst prime values
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of k. Let us start with k = 5:

a = 26103

D = 26103

h = 88

p = n

2

+ a = 10316095101096156580609884521822230897927

` = 118856368237249643641

A = 6361774565981298467679675481620482961778

B = 7679881411019584505323078495021065607161

r = 1:2 se


With k = 7:

a = 1068

D = 267

h = 2

p = n

2

+ a = 22280215019917539692076037201942564656877

` = 209942810985515700149

A = 20081485727637137786281947313744519173193

B = 19348575963543670484350584017678504011965

r = 0:5 se


The following are examples of 
ryptographi
 size parameters:

k = 10

a = 163841

2

� 381535

D = 381535

h = 304

p = n

2

+ a

= 3841473059399107170103126625214956243555849230586730206554319192403126758n

24784619950343423791044836076585229766559410700100854819 (428 bits)

` = 4686879083953795487935291153103592178053824492905821016357311641 (212 bits)

A = 3614578796541747106204758437452623506218014739109496255047150073038238n

74440660375308333064155960208871834107728173994725817706209

B = 9779653359898889715032179580552084314015037548925981335085475716478582n

3429429213794100661750235442419193580537672582267656086793

r = 57 se
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k = 11

a = 3432987

D = 13731947

h = 675

p = n

2

+ n + a

= 1085821608657960459200424901105246469500036293041071392729642052706715552n

5209414077340531489889487980320059886340361265142418889395568109 (452 bits)

t = +2n+ 1

` = 31868518802410275890234469142066082346142304768132007825950373986651 (225 bits)

A = 1559295546932200357119739705088716590408695933963361975762035466055625821n

563020387825392942383755862763911883552315027999018090902306395

B = 9317871453629336870829152280819931917211836532224958585880327639452271445n

556969901994211583104666470565255768963327547426970047466787266

r = 190 se


The last example, for k = 50, illustrates what happens when k is large.

Then even the smallest values of R

k

(a) will be large, and the prime fa
tors

we 
an get also. Here, L was 
hosen to be 2

200

and the �rst a found after a

reasonable amount of time was large (` has more than 800 bits):

a = 3717

2

� 100031

D = 100031

h = 360

p = n

2

+ a

= 20842920653141790940385053839262236837004280380662095237577453898532012669n

12278767168768885649030339687884195002492197984521031047569738948314071100n

64773342975230329862156271117105741739036924127527019193851292166824743040n

17589899857634542271026193590188892808214449620075170944719236203955726821n

03091008498680792490913071883312366613892911615075996269740260732750552134n

81113489724548452173601824251662512835208268883544848406302169193525823153n

208277049189474278273411115309203458121169283108544784074064572363 (1698 bits)

` = 14210994604898071775164903075969042517171313244513507262727016999091734563n

97101469611511374559527389145563061943309339665717829765588496498158653799n

51620732265513327374218277710700404838689258946218747177224943815520597387n

891445377017922059001106955159901 (849 bits)

A = 15156186447228839987528411535043949413637399436346140307909666013896538378n

33638199154685097831592939569911911596361095171494737713670738673420839041n

98380464187218562787156173322534497420510729291725211357401488923884852083n

92637690832825732907154833795541123795821108492581148142533859414554476338n

06424510203094405400342839682820962332173559508836191138073638242725941450n

55370937038111692041774266870745665982011383137805845832451594037089761358n

579795589755763993889692815279314697423641993748584778749607071723

B = 63129681608772593564478461538837746601803456613534569188279187528407093916n

99984207604008733427703596346264187934866615723122962531811589323517379888n

79917235994711971414373836853088354013230229706156023473011237872966407517n

84569878720112823621889826672622365222851782433914168935656550834354839033n

98386746050053455398484049882197053669694716017309240042713438351342205108n

64189229011166212732978063265525460858763315947112288390673459204357997093n

00876086881369139670649676832950624484076469592416515616766380722

r = 1500 se
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5 Cryptographi
 impli
ations

Our method yields ellipti
 
urves E de�ned over a prime �eld F

p

having a

subgroup of prime order ` of size O(

p

p), whi
h is easily seen from equation

(1). Roughly speaking, a se
ure ` = 2

200

implies a �eld of size 2

400

. Note

that we impli
itely assume that our way of 
onstru
ting E is not dangerous,

hoping that CM 
urves are not weak and that solving the dis
rete logarithm

problem in an ellipti
 
urve subgroup of size ` within a group of size `

2

is

not easier than in an ellipti
 
urve group of size `.

In any 
ase, we doubt that the problem 
an be solved for �xed q and

prime 
urve order m.

6 Con
lusions

Our method 
annot rea
h a �xed prime power q, but repla
es this with a

large variety of primes to show up during the 
omputations. More work is

needed to improve this situation.
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