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Abstra
t

This note des
ribes a te
hnique for generating large non-singular matri-


es with blo
ks of full rank. While this may be of independent interest,

our motivation arises in the white-box implementation of 
ryptographi


algorithms with S-boxes.

1 Introdu
tion and Notation

This note des
ribes a te
hnique for generating large non-singular matri
es with

blo
ks of full rank. One motivation is the following. For 
iphers su
h as aes[4℄,

des[5℄, and 
ast[6℄ involving linear transformations and substitution boxes

(S-boxes), white-box 
ryptographi
 implementations[7℄ attempt to hide linear

transformations in the non-linear S-box lookups by blo
king the matri
es for the

linear transformations, and then non-linearly en
oding the matrix operations by


onverting the blo
ks into substitution boxes (S-boxes) with arbitrary bije
tive

input and output en
odings. Se
urity 
onsiderations di
tate that the matri
es

be hard to dis
over from the S-boxes. A bije
tive S-box leaks no information if

its input and output 
odings are unknown and arbitrary, whereas a lossy S-box

leaks information: distin
t en
oded inputs map to the same en
oded output,

redu
ing the sear
h spa
e for en
odings. This in turn means that blo
ks of

redu
ed rank should be avoided.

We now introdu
e our notation. Let

n

m

M denote an n�m matrix M over

�eld F ;

1 n

M is short for

n

n

M .

n

I denotes an n� n identity matrix.

n

m

0 denotes

an n�m zero matrix;

n

0 is short for

n

n

0. As usual, m

i;j

denotes the matrix M

element in row i and 
olumn j.

A matrix may be blo
ked into submatri
es. For example,
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We refer to this asm inputs (
olumns) and n outputs (rows), be
ause multiplying

n

m

M

m

1

X

yields a ve
tor

n

1

Y .
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is a blo
ked matrix with blo
ks A;B;C;D, ea
h of whi
h is itself a matrix.

Horizontally adja
ent blo
ks must have the same number of rows, and verti
ally

adja
ent blo
ks must have the same number of 
olumns.

Where a matrix

n

m

M is blo
ked, and all of the blo
ks are square and have

the same dimensions p � p with pjm and pjn, we use the notation

n

m

M [

p

B℄ to

denote an n�m matrix M with

mn

p

2

blo
ks. Here B

i;j

denotes the blo
k in row

i and 
olumn j of blo
ks.

For 
onvenien
e we give the following de�nition:

De�nition 1.1 If all the blo
ks B

i;j

in a blo
k matrix

n

m

M [

p

B℄ are invertible,

matrix M is 
alled an (m;n; p) blo
k invertible matrix. Furthermore, if m = n,

and M is invertible then M is 
alled an (m; p) blo
k invertible square matrix.

In this note we des
ribe a way to 
reate a blo
k invertible square matrix

n

n

M [

p

B℄ for p and n natural numbers where pjn and p > 1. One known te
hnique

involves the Krone
ker produ
t, or tensor produ
t of matri
es[2℄. If we 
an �nd

an invertible matrix

p

A su
h that all entries a

i;j

are not 0 in �eld F , its tensor

produ
t A 
 B with another invertible matrix

p

B is a (p

2

; p) blo
k invertible

square matrix. However, this approa
h fails for 
ases where the matrix A does

not exist | for example, when 
onstru
ting (2

t

; 2) blo
k invertible matri
es over

gf(2). We provide a method of 
onstru
ting blo
k invertible matri
es over any

�eld.

2 Preliminary Result

First we prove the following result.

Lemma 2.1 Let p and r be two integers with p > 1 and p � r � 0. Then there

exists a matrix

p

A su
h that

T =

�

r

I

p�r

0

�

+A

is an invertible matrix over �eld F .

Proof: We 
onstru
t a matrix

p

A su
h that T is invertible, where

T =

�

r

I

p�r

0

p�r

0

p�r

0

�

+A :

Case 1: If r is even, de�ne

A =

0

B

B

B

B

B

B

B

B

B

B

�

0 1

1 1

0 1

1 1

: : : : : :

0 1

1 1

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A
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with the

r

2

invertible matrix

�

0 1

1 1

�

on the diagonal. Therefore A is invertible.

Sin
e

2

I+

�

0 1

1 1

�

=

�

1 1

1 2

�

has a determinant of 1, T is invertible as ea
h diagonal blo
k is invertible:

T =

0

B

B

B

B

�

2

I

2

I

: : : : : :

2

I

p�r

0

1

C

C

C

C

A

+

0

B

B

B

B

B

B

B

B

B

B

�

0 1

1 1

0 1

1 1

: : : : : :

0 1

1 1

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

�

1 1

1 2

1 1

1 2

: : : : : :

1 1

1 2

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A

:

Case 2: r is odd. For r = 1, A 
an be de�ned as

A =

0

�

1 1

1 0

p�2

I

1

A

Sin
e p > 1, we have p� 2 � 0. Note that A is invertible, and

T =

0

�

1 0

0 0

p�2

0

1

A

+A =

0

�

0 1

1 0

p�2

I

1

A

is also invertible.

For r odd and r > 1, let r = 2n+ 3 where n � 0. Now de�ne A to be

3



A =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1

1 1 0

1 0 0

0 1

1 1

: : : : : :

0 1

1 1

p�2n

I

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Note that

3

I+

0

�

1 1 1

1 1 0

1 0 0

1

A

=

0

�

0 1 1

1 0 0

1 0 1

1

A

whi
h is invertible; and using the same argument as above, both A and T are

invertible.

�

3 Constru
ting a blo
k invertible square matrix

Before pro
eeding, we re
all an elementary result used in the proof of our main

result.

Lemma 3.1 From Paley and Wei
hsel[3℄: For a given square matrix

n

M of

rank r � n over �eld F , there exist invertible matri
es

n

P and

n

Q su
h that

M = P

�

r

I

n�r

0

�

Q:

Theorem 3.2 (Main result) For any �eld F , and for any positive integers

n and p su
h that n � p and pjn, there exists an (n; p) blo
k invertible square

matrix.

Proof: We 
onstru
t the matrix indu
tively. For the �rst step we �nd an in-

vertible square matrix

p

M over F . Note that there are in�nitely many p � p

invertible matri
es over in�nite �eld F and there are

p�1

Y

i=0

(q

p

� q

i

)

invertible matri
es over �nite �eld F of order q[1℄. These fa
ts grant us a variety

of 
hoi
es of

p

M . This

p

M is a (p; p) blo
k invertible square matrix.

Now suppose we have found a (t; p) blo
k invertible square matrix M with

t � p and pjt. The third step is to 
onstru
t a (t+ p; p) blo
k invertible square

matrix.
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It is not hard to see that there exists a (p; t; p) blo
k invertible matrix X

and a (t; p; p) blo
k invertible matrix Y . In fa
t X and Y 
an be 
onstru
ted

from M be
ause M is a (t; p) blo
k invertible square matrix.

Let

p

W be a matrix over F . Observing the following matrix equation:

�

M 0

X W

�

�

�

I M

�1

Y

0 I

�

=

�

M Y

X XM

�1

Y +W

�

we 
laim that if we 
an �nd a p�p invertible matrixW su
h that XM

�1

Y +W

is invertible, then matrix

N =

�

M Y

X XM

�1

Y +W

�

is a (t+ p; p) invertible square matrix. In fa
t, if W is invertible, the left-side of

the matrix equation implies N is invertible. Following the assumptions thatM ,

X , Y , and XM

�1

Y +W are (t; p), (p; t; p), (t; p; p) and (p; p) blo
k invertible

matri
es, respe
tively, by de�nition, N is a blo
k invertible square matrix. Su
h

a matrix W 
an be 
onstru
ted in the following way.

>From Lemma 3.1, for the p � p square matrix XM

�1

Y , there exist two

invertible matri
es

p

P and

p

Q su
h that

P (XM

�1

Y )Q =

�

r

I

p�r

0

p�r

0

p�r

0

�

where r is the rank of XM

�1

Y . By Lemma 2.1, an invertible matrix

p

A exists

su
h that

�

r

I

p�r

0

p�r

0

p�r

0

�

+A

is invertible. Now we 
an de�ne W as W = P

�1

AQ

�1

. Then the matrix

XM

�1

Y +W = P

�1

(P (XM

�1

Y )Q+A)Q

�1

= P

�1

(

�

r

I

p�r

0

p�r

0

p�r

0

�

+A)Q

�1

is invertible, 
ompleting our 
onstru
tion.

�

4 Example

In the following example, for F = gf(2), we 
onstru
t an (n; 2) blo
k invertible

square matrix for any even number n > 0. All blo
ks mentioned below are of

dimension 2� 2.

Sin
e any invertible 2�2 matrix is a (2; 2) blo
k invertible square matrix, we


an safely assume that we already have a (t; 2) blo
k invertible square matrix

t

M for t � 2. We 
onstru
t a (t+2; 2) blo
k invertible square matrix

t+2

M

0

as

follows.
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1. Use a row of blo
ks of matrix M to 
reate a matrix

2

t

X .

2. Use a 
olumn of blo
ks of matrix M to 
reate a matrix

t

2

Y .

3. Get invertible matri
es

2

P and

2

Q su
h that P (XM

�1

Y )Q =

�

r

I

2�r

0

�

.

4. De�ne matrix

2

A as follows:

(a) if r = 0, A =

2

I;

(b) if r = 1, A =

�

1 1

1 0

�

;

(
) if r = 2, A =

�

0 1

1 1

�

.

5. Then

�

M Y

X XM

�1

Y + P

�1

AQ

�1

�

is a (t+2; 2) blo
k invertible matrix.

Repeat for (n� 2)=2 steps to obtain an (n; 2) blo
k invertible square matrix.
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