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Abstrat

This note desribes a tehnique for generating large non-singular matri-

es with bloks of full rank. While this may be of independent interest,

our motivation arises in the white-box implementation of ryptographi

algorithms with S-boxes.

1 Introdution and Notation

This note desribes a tehnique for generating large non-singular matries with

bloks of full rank. One motivation is the following. For iphers suh as aes[4℄,

des[5℄, and ast[6℄ involving linear transformations and substitution boxes

(S-boxes), white-box ryptographi implementations[7℄ attempt to hide linear

transformations in the non-linear S-box lookups by bloking the matries for the

linear transformations, and then non-linearly enoding the matrix operations by

onverting the bloks into substitution boxes (S-boxes) with arbitrary bijetive

input and output enodings. Seurity onsiderations ditate that the matries

be hard to disover from the S-boxes. A bijetive S-box leaks no information if

its input and output odings are unknown and arbitrary, whereas a lossy S-box

leaks information: distint enoded inputs map to the same enoded output,

reduing the searh spae for enodings. This in turn means that bloks of

redued rank should be avoided.

We now introdue our notation. Let

n

m

M denote an n�m matrix M over

�eld F ;

1 n

M is short for

n

n

M .

n

I denotes an n� n identity matrix.

n

m

0 denotes

an n�m zero matrix;

n

0 is short for

n

n

0. As usual, m

i;j

denotes the matrix M

element in row i and olumn j.

A matrix may be bloked into submatries. For example,
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We refer to this asm inputs (olumns) and n outputs (rows), beause multiplying

n

m

M

m

1

X

yields a vetor

n

1

Y .
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is a bloked matrix with bloks A;B;C;D, eah of whih is itself a matrix.

Horizontally adjaent bloks must have the same number of rows, and vertially

adjaent bloks must have the same number of olumns.

Where a matrix

n

m

M is bloked, and all of the bloks are square and have

the same dimensions p � p with pjm and pjn, we use the notation

n

m

M [

p

B℄ to

denote an n�m matrix M with

mn

p

2

bloks. Here B

i;j

denotes the blok in row

i and olumn j of bloks.

For onveniene we give the following de�nition:

De�nition 1.1 If all the bloks B

i;j

in a blok matrix

n

m

M [

p

B℄ are invertible,

matrix M is alled an (m;n; p) blok invertible matrix. Furthermore, if m = n,

and M is invertible then M is alled an (m; p) blok invertible square matrix.

In this note we desribe a way to reate a blok invertible square matrix

n

n

M [

p

B℄ for p and n natural numbers where pjn and p > 1. One known tehnique

involves the Kroneker produt, or tensor produt of matries[2℄. If we an �nd

an invertible matrix

p

A suh that all entries a

i;j

are not 0 in �eld F , its tensor

produt A 
 B with another invertible matrix

p

B is a (p

2

; p) blok invertible

square matrix. However, this approah fails for ases where the matrix A does

not exist | for example, when onstruting (2

t

; 2) blok invertible matries over

gf(2). We provide a method of onstruting blok invertible matries over any

�eld.

2 Preliminary Result

First we prove the following result.

Lemma 2.1 Let p and r be two integers with p > 1 and p � r � 0. Then there

exists a matrix

p

A suh that

T =

�

r

I

p�r

0

�

+A

is an invertible matrix over �eld F .

Proof: We onstrut a matrix

p

A suh that T is invertible, where

T =

�

r

I

p�r

0

p�r

0

p�r

0

�

+A :

Case 1: If r is even, de�ne

A =

0

B

B

B

B

B

B

B

B

B

B

�

0 1

1 1

0 1

1 1

: : : : : :

0 1

1 1

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A
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with the

r

2

invertible matrix

�

0 1

1 1

�

on the diagonal. Therefore A is invertible.

Sine

2

I+

�

0 1

1 1

�

=

�

1 1

1 2

�

has a determinant of 1, T is invertible as eah diagonal blok is invertible:

T =

0

B

B

B

B

�

2

I

2

I

: : : : : :

2

I

p�r

0

1

C

C

C

C

A

+

0

B

B

B

B

B

B

B

B

B

B

�

0 1

1 1

0 1

1 1

: : : : : :

0 1

1 1

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

�

1 1

1 2

1 1

1 2

: : : : : :

1 1

1 2

p�r

I

1

C

C

C

C

C

C

C

C

C

C

A

:

Case 2: r is odd. For r = 1, A an be de�ned as

A =

0

�

1 1

1 0

p�2

I

1

A

Sine p > 1, we have p� 2 � 0. Note that A is invertible, and

T =

0

�

1 0

0 0

p�2

0

1

A

+A =

0

�

0 1

1 0

p�2

I

1

A

is also invertible.

For r odd and r > 1, let r = 2n+ 3 where n � 0. Now de�ne A to be

3



A =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1

1 1 0

1 0 0

0 1

1 1

: : : : : :

0 1

1 1

p�2n

I

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Note that

3

I+

0

�

1 1 1

1 1 0

1 0 0

1

A

=

0

�

0 1 1

1 0 0

1 0 1

1

A

whih is invertible; and using the same argument as above, both A and T are

invertible.

�

3 Construting a blok invertible square matrix

Before proeeding, we reall an elementary result used in the proof of our main

result.

Lemma 3.1 From Paley and Weihsel[3℄: For a given square matrix

n

M of

rank r � n over �eld F , there exist invertible matries

n

P and

n

Q suh that

M = P

�

r

I

n�r

0

�

Q:

Theorem 3.2 (Main result) For any �eld F , and for any positive integers

n and p suh that n � p and pjn, there exists an (n; p) blok invertible square

matrix.

Proof: We onstrut the matrix indutively. For the �rst step we �nd an in-

vertible square matrix

p

M over F . Note that there are in�nitely many p � p

invertible matries over in�nite �eld F and there are

p�1

Y

i=0

(q

p

� q

i

)

invertible matries over �nite �eld F of order q[1℄. These fats grant us a variety

of hoies of

p

M . This

p

M is a (p; p) blok invertible square matrix.

Now suppose we have found a (t; p) blok invertible square matrix M with

t � p and pjt. The third step is to onstrut a (t+ p; p) blok invertible square

matrix.
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It is not hard to see that there exists a (p; t; p) blok invertible matrix X

and a (t; p; p) blok invertible matrix Y . In fat X and Y an be onstruted

from M beause M is a (t; p) blok invertible square matrix.

Let

p

W be a matrix over F . Observing the following matrix equation:

�

M 0

X W

�

�

�

I M

�1

Y

0 I

�

=

�

M Y

X XM

�1

Y +W

�

we laim that if we an �nd a p�p invertible matrixW suh that XM

�1

Y +W

is invertible, then matrix

N =

�

M Y

X XM

�1

Y +W

�

is a (t+ p; p) invertible square matrix. In fat, if W is invertible, the left-side of

the matrix equation implies N is invertible. Following the assumptions thatM ,

X , Y , and XM

�1

Y +W are (t; p), (p; t; p), (t; p; p) and (p; p) blok invertible

matries, respetively, by de�nition, N is a blok invertible square matrix. Suh

a matrix W an be onstruted in the following way.

>From Lemma 3.1, for the p � p square matrix XM

�1

Y , there exist two

invertible matries

p

P and

p

Q suh that

P (XM

�1

Y )Q =

�

r

I

p�r

0

p�r

0

p�r

0

�

where r is the rank of XM

�1

Y . By Lemma 2.1, an invertible matrix

p

A exists

suh that

�

r

I

p�r

0

p�r

0

p�r

0

�

+A

is invertible. Now we an de�ne W as W = P

�1

AQ

�1

. Then the matrix

XM

�1

Y +W = P

�1

(P (XM

�1

Y )Q+A)Q

�1

= P

�1

(

�

r

I

p�r

0

p�r

0

p�r

0

�

+A)Q

�1

is invertible, ompleting our onstrution.

�

4 Example

In the following example, for F = gf(2), we onstrut an (n; 2) blok invertible

square matrix for any even number n > 0. All bloks mentioned below are of

dimension 2� 2.

Sine any invertible 2�2 matrix is a (2; 2) blok invertible square matrix, we

an safely assume that we already have a (t; 2) blok invertible square matrix

t

M for t � 2. We onstrut a (t+2; 2) blok invertible square matrix

t+2

M

0

as

follows.
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1. Use a row of bloks of matrix M to reate a matrix

2

t

X .

2. Use a olumn of bloks of matrix M to reate a matrix

t

2

Y .

3. Get invertible matries

2

P and

2

Q suh that P (XM

�1

Y )Q =

�

r

I

2�r

0

�

.

4. De�ne matrix

2

A as follows:

(a) if r = 0, A =

2

I;

(b) if r = 1, A =

�

1 1

1 0

�

;

() if r = 2, A =

�

0 1

1 1

�

.

5. Then

�

M Y

X XM

�1

Y + P

�1

AQ

�1

�

is a (t+2; 2) blok invertible matrix.

Repeat for (n� 2)=2 steps to obtain an (n; 2) blok invertible square matrix.
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