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Abstrat. This paper presents a new statistial testing of symmetri i-

phers and hash funtions whih allow us to detet biases in a few of these

systems. We �rst give a omplete haraterization of the Algebrai Nor-

mal Form (ANF) of random Boolean funtions by means of the M�obius

transform. Output bits of a ryptosystem are here desribed by a set of

Boolean funtions. The new testing is based on the omparison between

their Algebrai Normal Form and those of purely random Boolean fun-

tions. Detailed testing results on several ryptosystems are presented. As

a main result we show that AES, DES, Snow, and Lili-128 fail the tests

wholly or partly and thus present strong biases.

Keywords: Boolean funtion, statistial testing, symmetri ipher, randomness,

hash funtion, M�obius transform, Walsh Transform.

1 Introdution

Randomness is the ground property of ryptography. For the attaker, any quan-

tities produed by a given ryptosystem must look as unpreditable as possible.

It means that these quantities have to be of suÆient size and \be random" in

the sense that the probability of any partiular value being seleted must be

as weak as possible to prelude a ryptanalyst from gaining advantage through

optimed searh strategy based on suh probability [15, p 169℄.

From a general point of view, any symmetri ipher and any hash funtion

must be designed as a pseudorandom bit generator (PRBG) relatively to eah

of its output bits.

Two important requirements are then to be satis�ed: the output sequenes

of a PRBG must be statistially indistinguishable from truly random sequenes

and the output bits must be unpreditable to an attaker with limited omputing

failities. Therefore, many di�erent statistial tests have been proposed and are

usually implemented to evaluate these two requirements. Historially, we must

ite Golomb's randomness postulates [11℄. These tests have been designed as

neessary but not suÆient tests to hek if a shift register sequene statistially

behaves properly. Yet statistially good aording to these postulates, this kind

of sequene has been shown very preditable when using the Berlekamp-Massey



algorithm [16℄. This is the illustration that randomness is uniquely de�ned rel-

atively to the statistial tests we may use.

Many other statistial tests have been proposed in order to improve what

may be onsidered as \random". Among many others, let us ite those that

are mainly implemented: frequeny test, serial test, poker test, runs test and

autoorrelation test [8, 13℄, Maurer's universal statistial test [17℄, (for a more

detailed bibliography on statistial tests used in ryptography see [15, pp 188-

189℄).

All the reently proposed symmetri ryptosystems and hash funtions an

be onsidered as satisfying all the known randomness requirements. Now the

essential part of the ryptanalyst's work is to �nd an exploitable bias, due to an

unknown design aw, that none of the up-to-now known test deteted. For that,

the ryptanalyst generally �rst designs a new hypothesis testing based on a new

test. Let us reall that in fat randomness is a theoretial indeed \philosophial"

onept. Pratially speaking, it an only be determined and de�ned relatively

to the set of statistial tests used to evaluate it.

In this paper we present a new hypothesis testing based on a �

2

distribu-

tion and alled Statistial M�obius Analysis. More preisely, we de�ne as working

statisti X the number of monomials of degree exatly d in the Algebrai Normal

Form (ANF) of all the Boolean funtions modeling eah of the output bits. The

set of these d-monomials whih are e�etively represented in the ANF, are pra-

tially omputed by means of the M�obius transform. A seure ryptosystem has

a �xed distribution determined by general results on random Boolean funtions.

Then one-sided tests allow us to hek if the onstituent Boolean funtions are

truly random.

These tests have been implemented for a few reently proposed stream iphers

and blok iphers, as well as for the main hash funtions. All are known to have

passed the previously known statistial tests and thus are onsidered as having

very good random properties. Our main results is that famous ryptosystems

suh AES, DES, Snow and Lili-128 did not pass our tests, wholly or partly.

Other results as well as detailed data will be found in [5℄.

This paper is organized as follows. Setion 2 presents the neessary prelim-

inaries and gives the haraterization of the Algebrai Normal Form (ANF) of

random Boolean funtions. In partiular, we omplete the results presented in

[19℄, make them more pratial and give new results on the total degree of a

Boolean funtion. Setion 3 presents the new test we designed whilst Setion

4 gives detailed numerial results that have been obtained for a few stream i-

phers (Lili-128, Snow, BGML and RC4), blok iphers (DES and AES) and hash

funtions (SHA-0, SHA-1, Ripe-MD, Ripemd160, Haval, MD4 and MD5).

2 Charaterization of Boolean Funtions and Results

In this setion, we present a new statistial way of desribing a Boolean funtion

by use of its ANF. This latter an be uniquely omputed by means of the M�obius



transform.We dedue results on the balanedness and orrelation properties with

the help of the Walsh transform.

2.1 Struture of the Algebrai Normal Form

A Boolean funtion is a funtion f from F

n

2

to F

2

. The number of suh funtions

is 2

2

n

. We de�ne a random Boolean funtion as a funtion f whose values are

independent, identially distributed (i.i.d.) random variables that is to say

8(x
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; : : : ; x

n

) 2 F

n
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; P [f(x

1

; : : : ; x

n

) = 0℄ =

1

2

: (1)

In other words, every f(x

1

; : : : ; x

n

) is a Bernoulli random variable of parameter

1

2

. The orresponding probabilisti law will be denoted B(p) whith p =

1

2

in our

present ase

1

.

The weight of a Boolean funtion over F

n

2

is de�ned by wt(f) = jfx 2

F

n

2

jf(x) = 1gj. Then a Boolean funtion will be said to be balaned if wt(f) =

2

n�1

. Note that a random Boolean funtion, as de�ned above, may be not bal-

aned. In fat we will give the general probability for suh a funtion to be

balaned.

The Algebrai Normal Form (ANF) of f is the multivariate polynomial given

by f(x

1

; : : : ; x

n

) =

L

u2F

n

2
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; a
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2 F

2

; where u = (u
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; : : : ; u

n

) and x

u

=

Q

n

i=1

x

u

i

i

. The a

u

are given by the M�obius transform [14℄ of f :

a

u

=

M

x�u

f(x) (2)

where � denotes the partial order on the Boolean lattie, that is to say that

� � � if and only if �

i

� �

i

for all 1 � i � n. A monomial a

u

x

u

of the ANF

will then be said of degree k if a

u

= 1 and if wt(u) = k where wt(:) denotes the

Hamming weight. With these notations we now an state:

Proposition 1 The Algebrai Normal Form (ANF) of a random Boolean fun-

tion f from F

n

2

to F

2

has 2

n�1

monomials in average. For every k suh that

0 � k � n, there are an average of

1

2

�

n

k

�

monomials of degree k.

When k = 0 (resp. k = n), it is equivalent to assert that half of randomly hosen

Boolean funtions ontains a

0

(resp a

(111���11)

) in their ANF.

Proof. A given monomial x

i

1

x

i

2

: : : x

i

k

of degree k will be part of the ANF if

and only if a

u

= 1 where the support of u (that is to say the set of indies j

suh that u

j

= 1 and denoted supp(u)) is fi

1

; i

2

; : : : ; i

k

g. Now we have
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1

Every n-tuple (x

1

; : : : ; x

n

) is randomly and independently hosen, then f(x

1

; : : : ; x

n

)

too. It is equivalent to randomly hoose f from the set of Boolean funtions.



where 0 = (0; 0; : : : ; 0) and e

i

is the n-uple whose only its i-th oordinate is

non zero. The right side of Equation (3) has

P

k

j=1

�

k

j

�

= 2

k

terms. We have

a

u

= 1 if an odd number of terms are all equal to 1. There are 2

k�1

suh odd

on�gurations. Eah of them, aording to (1) has probability

1

2

k

to be equal to

1 sine we onsider i.i.d. variables. Whene we have P [a

u

= 1℄ = 2

k�1

�

1

2

k

=

1

2

:

Thus the number of monomials of degree k in the ANF will be P [a

u

= 1℄�

�

n

k

�

=

1

2

�

�

n

k
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We an in fat generalize this results with the following theorem:

Theorem 1 With the notation of Proposition 1, the number n

k

of monomials

of degree k has normal distribution with mean value E[n

k

℄ =

1

2

�

n

k

�

and variane

V [n

k

℄ =

1

4

�

n

k

�

.

To be mathematially rigorous, we should onsider the binomial distribution in-

stead of the normal distribution. Moreover, we should write \X tends toward

normal distribution" rather than \X has normal distribution". However, proba-

bility theory [4℄ entitle us suh shortuts as soon as the onditions of appliation

for the Central Limit Theorem are ful�lled. It is the ase in our work.

Proof. The proof is straightforward when onsidering that a

u

, for all u 2 F

n

2

is a

Bernouilli random variable with parameter

1

2

, where E[a

u

℄ =

1

2

and V [a

u

℄ =

1

4

.

Sine n

k

=

P

wt(u)=k

a

u

, for large enough values of the number of u of weight k,

the Central Limit Theorem gives the result (as soon as n

k

� 30 [4℄). ut

This proposition allows to study the randomness properties of a Boolean fun-

tion. Let us onsider a funtion f used for the feedbak of a shift register of

length L. If f is onstant (its ANF has only one monomial), the output will not

be random at all. In the ase of the linear feedbak (the ANF of f is of degree

1 and has at most n monomials), the randomness properties are limited: the

linearity properties are not suppressed, and ombinatorial information is easy to

get (for details see [11℄). Moreover, it is very easy to reonstrut the feedbak

polynomial with only 2L output bits [16℄. This is due to the fat that linear

funtions have very limited randomness properties.

In other words, if we onsider x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

) suh

that (e.g.) f(x) = f(y) = 1, the less random the funtion is, the easier is the

extration of information on x and y.

Example 1 Let us take f(x

1

; x

2

) = x

1

� x

2

. Any x = (x

1

; x

2

) and y = (y

1

; y

2

)

with x 6= y suh that f(x) = f(y) = 1 will satisfy x

1

� y

1

= 1. This omes from

the fat that the values of the truth table are \strutured" and not \randomly

spread" into this table.

Proposition 1 gives us the following riterion:

Corollary 1 A Boolean funtion used for ryptographi appliations and pre-

senting the best trade-o� in terms of its ryptographi properties must have a

degree as high as possible.



Proof. This diretly omes from the fat that a n-variable random Boolean fun-

tion in average has its term of degree n with probability

1

2

and will ontain

n

2

terms of degree n�1. Aording to the upper bound of the degree [23℄ of a fun-

tion presenting the best trade-o� in terms of orrelation immunity, balanedness,

..., we have for a t-orrelation immune funtion: deg(f(x

1

; : : : ; x

n

)) � n� t� 1.

Constraining the funtion with given properties lowers the algebrai degree.

Combinatorial strutures are introdued while randomness is lessened. In the

searh for the best possible trade-o�, to keep good randomness properties by

forbidding to get ombinatorial information on the funtion inputs, the funtion

should have the highest possible degree. ut

2.2 Charaterization of the Walsh CoeÆients

The Walsh Hadamard transform of a Boolean funtion f refers to the following

transformation: 8u 2 F

n

2

; �

f

(u) =

P

x2F

n

2

(�1)

f(x)+<x;u>

, where < x; u > de-

notes the usual salar produt omputed over F

n

2

. A well-known result allows to

haraterize the orrelation immunity of f with the Walsh Hadamard transform:

Proposition 2 [24℄ A Boolean funtion f is t-order orrelation immune if and

only if 8u 2 F

n

2

; 1 � wt(u) � t �

f

(u) = 0.

Moreover f is balaned if and only if �

f

(0; 0; : : : ; 0) = 0.

Proposition 3 Let f be a random Boolean funtion over F

n

2

with n � 5. For

all u 2 F

n

2

, �

f

(u) is a random variable whih has Gaussian distribution with

mean value 0 and variane 2

n

.

Proof. First we an write �

f
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P

x2F

n

2

(�1)

f(x)+<x;u>

= (2

n

�2)�

P

x2F

n

2

(f(x)

+ < x; u >). Sine x and f(x) are independent, we an onsider < x; u > +f(x)

as independent, identially distributed random variables for all x as well. Let us

note Y =

P

x2F

n

2

(f(x)+ < x; u >). For n > 5 (that is to say 2

n

> 30), due to

the entral limit theorem [4℄, Y has a Gaussian distribution LG(E; �

2

) with

E[Y ℄ = 2

n

P [f(x)+ < x; u >= 1℄ = 2

n�1

(�

Y

)

2

= 2

n

P [f(x)+ < x; u >= 1℄P [f(x)+ < x; u >6= 1℄ = 2
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:

Hene �

f

(u) has Gaussian distribution with mean value E[�

f

(u)℄ = 2

n

(1 �

2P [f(x)+ < x; u >= 1℄) = 0 and variane �

2

= 4:2

n

P [f(x)+ < x; u >=

1℄P [f(x)+ < x; u >6= 1℄ = 2

n
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If � denotes the normal distribution funtion, �(x) =

1

p

2�

R

x

�1

exp

�

�

t

2

2

�

dt

and if p

0

= �(

1

2

n

2

�1

)�

1

2

, we then an state

Lemma 1

P [f balaned ℄ = p

0

:



Proof. For a balaned Boolean funtion, we have �

f

(0; : : : ; 0) = 0. By de�nition,

�

f

(u); 8u 2 F

n

2

is even. Then we have P [�

f

(u) = 0℄ = P [0 < �

f

(u) < 2℄. The

rest is straightforward to proove with Proposition 3. ut

Remark.- This result is an aurate approximation of the \exat" probability

for a funtion to be balaned given by p =

(

2

n

2

n�1

)

2

2

n

. Table 1 ompares exat

probability with that omputed with Theorem 1 for 5 � n � 19. Note that

omputing exat probability p is highly time onsuming while omputation time

is negligible for p

0

.

Table 1. Exat and approximate probabilities for a funtion to be balaned

n p p

0

n p p

0

n p p

0

5 0.1399 0.1381 10 0.02493 0.02491 15 0.004408 0.004407

6 0.09935 0.09870 11 0.01763 0.01762 16 0.003117 0.003116

7 0.07039 0.07015 12 0.01247 0.01246 17 0.002204 0.002203

8 0.04982 0.49738 13 0.008815 0.008814 18 0.001558 0.001558

9 0.03524 0.03521 14 0.006233 0.006233 19 0.001102 0.001101

3 The New Statistial Testing

We now present the di�erent tests we built up to evaluate new statistial prop-

erties of symmetri ryptosystems and hash funtions. Let us now onsider suh

a ryptosystem and speify the ontext we hoose. Let there be a seret key

K = (k

0

; : : : ; k

n�1

). A stream ipher an be seen as follows: every output bits i

generated from the seret key K an be expressed by a unique ANF (by means

of the M�obius transform de�ned by Equation (2)).

In other words, the N -bits output sequene an be desribed by a family of N

Boolean funtions (f

t

(K))

0�t<N

= (f

0

(K); : : : ; f

N�1

(K)) where f

i

(K) denotes

the i-th bit produed by the system and modelled as a polynomial in variables

k

i

(ANF). Eah output bit is a Boolean funtion f

t

: F

n

2

7! F

2

.

Similarly, let us represent a blok ipher with n-bit key K working on m-bit

bloks. In the same way, but with the di�erent output funtions being evaluated

on the key spae and the plaintext spae P = (p

0

; : : : ; p

m�1

), for a blok ipher

C, we then have C = (

0

; : : : ; 

m�1

) = (f

0

(K;P ); : : : ; f

m�1

(K;P )). Eah of the

m iphertext bits is a Boolean funtion f

t

: F

n+m

2

7! F

2

.

A hash funtion H : F

n

2

7! F

m

2

will have its m-bit message digest of blok

B = (b

0

; : : : ; b

n�1

) represented by (h

t

(B))

0�t<m

= (h

0

(B); : : : ; h

m�1

(B)). In the

rest of this paper we will use indi�erently the term output bits and output Boolean

Funtions (or output ANFs for short) to desribe the quantities produed by

the ryptosystem we onsider. At last we will onsider that the di�erent output

Boolean funtions (or bits) are statistially independant. It is preisely the result

stated by previous usual, known tests.

The omplete output ANF annot be omputed sine it ontains in aver-

age 2

n�1

monomials. It would require exponential memory and omputing time

omplexity. For our tests we only fous on the monomials of degree at most 3



and need only to ompute the 3-trunated ANF, that is to say the partial ANF

whose oeÆients are e�etively omputed up to degree 3. For a few ases, 5-

trunated ANFs have been omputed when neessary. From a pratial point

of view, we use Formula (3) to produe them. As a result, we observe in every

ANF, n̂

d

monomials of degree exatly d.

Let us now note H

d

0

the statistial hypothesis that the number n̂

d

of mono-

mials of degree exatly d is distributed aording to the Theorem 1. In other

words, the ryptosystem passes our tests and thus exhibits no partiuliar stru-

tural, statistial bias for the aspet we onsider when satisfying this hypothesis.

We suppose the reader is familiar with basi probability and statistis theories

(for a detailed presentation see [4℄ and [15, Chap 5.4℄).

3.1 The AÆne Constant Test

Our hypothesis is then denoted H

0

0

. Aording to Theorem 1, the probability for

the aÆne onstant a

0

to be represented in eah of the output ANFs is p =

1

2

.

Equivalently, it means that the number of output Boolean funtions having

a

0

= 1 in their ANF has normal distribution N (

N

2

;

p

N

2

) where N is the total

number of output ANFs.

If X

S

, the number of times a

0

= 1, is the statisti we onsider over the sample

output S of N ANFs, we an now desribe the following two-sided test, alled

the AÆne Constant Test:

1. Compute X

S

over S.

2. Let us �x a signi�ane level � (i.e. probability of rejeting H

0

0

when it is

true) and hoose a threshold x

�

so that for a statisti X of normal standard

distribution we have P [X > x

�

℄ = P [X < x

�

℄ =

�

2

:

3. If the value

^

X

S

=

X

S

�

N

2

p

N

2

> x

�

or if

^

X

S

< �x

�

then H

0

0

is rejeted (the

system fails the test) otherwise H

0

0

is kept (the system passes the test).

3.2 The d-monomial Tests

We are now onsidering the monomials of degree exatly d in the output ANFs.

Our testing is now denoted H

d

0

.

With the notation of Theorem 1, the number of monomials of degree d in a

Random Boolean Funtion ANF is a random variable whih is N (

1

2

�

n

d

�

;

1

2

q

�

n

d

�

)

distributed. We now onsider two goodness-of-�t, one-sided tests between the

expeted frequenies (denoted n

d

) and those (denoted n̂

d

) we observe for the

onsidered ryptosystem.

The �rst test, T

d

1

onsider every di�erent ANF and thus has a rather loal

sope by giving more weight to very weak output ANFs. The seond one, T

d

2

,

groups the N output ANFs aording to a few numbers of sets or lasses. So

to summarize, we will use the �

2

distribution with � degrees of freedom by

onsidering the sum of the � squared, independent random variables

(n

i

d

�n̂

i

d

)

p

n

i

d

(i � �) whih have by de�nition standard normal distribution.



In T

d

1

we have � = N � 1 (i.e. the number of output ANFs) while for T

d

2

we

hoose 2 � � � 9

1. Compute for eah of the � random variables n

i

d

and n̂

i

d

(n

i

d

is given by

applying Theorem 1).

2. Let us �x a signi�ane level � and a threshold value x

�

(omputed diretly

from the umulative density funtion of the �

2

distribution) so that for a

statisti X over a random sample we would have P [X > x

�

℄ = � (when X

follows a �

2

distribution with � degrees of freedom).

3. Compute the statistis D

2

given by D

2

=

P

�

i=1

(n

i

d

�n̂

i

d

)

2

n

i

d

.

4. If D

2

> x

�

then we must rejet H

d

0

(the system fails the test and thus

presents a statistial bias) otherwise we keepH

d

0

(the system does not present

any signi�ative bias).

Test T

d

2

is intended to desribe the onsidered ryptosystem from a global

point of view. In partiular it aims at verifying if loal biases (deteted with

T

d

1

) are still really signi�ative at a more global level. Instead of dealing with

the observed frequenies n̂

i

d

of d-monomials for eah of the N output ANFs we

rather are interested with the number of output ANFs whose number n̂

d

belongs

to a given, prede�ned intervall [a; b[. The expeted frequeny for every lass is

omputed from Theorem 1 by applying basi probability results.

3.3 The d-monomial Tests on a Given Output ANFs Subset

Essentially, we onsider the tests of Setion 3.1 and 3.2 but on partiuliar sub-

sets S of output ANFs. These test are intended to detet subsets of weak output

ANFs. They are denoted T

d

i

jS where i = 1; 2. Aordingly to the probability

and statistis theories, results for whih a given ryptosystem exhibits weak-

nesses must be thoroughly examined and inspeted. Complementary results on

sampling theory must be taken into aount to disriminate \normal but ex-

tremal results" (that is to say samples S for whih P [X > x

�

℄ = � whilst having

truly random distribution) from \truly non-random behaviour".

For all these tests and in all our experiments , we onsidered � = 0:05; 0:01

and 0:001.

4 Simulation Results

4.1 Stream Ciphers

We will here mainly fous on two stream iphers that have been proposed for

the NESSIE Open Call for Cryptographi Primitives [18℄: Lili-128 and Snow.

Other stream iphers have been tested or are urrently under testing. Table 2

summarizes results for a few of them. We onsidered the �rst N = 6016 output

bits in our experiments.

It is worth notiing that:



Table 2. Stream Ciphers: Tests Results (signi�ane levels � = 0:001)

T

1

1

T

2

1

T

1

2

T

2

2

T

1

1

T

2

1

T

1

2

T

2

2

Lili-128 fail fail fail fail RC4 [20℄ pass pass pass pass

Snow pass pass fail fail Bgml [18℄ pass pass pass pass

{ All the tested stream iphers pass the AÆne Constant test exept Lili-128.

{ Lili-128 exhibits extremely strong biases. Table 3 presents the results for

this stream ipher. These biases have been analyzed and exploited for an

operational ryptanalysis in [6℄.

{ Snow exhibits strong biases too but only when onsidering global statisti-

al behavior. Unfortunately these biases allowed us to design a omplete,

operationnal ryptanalysis of Snow [6℄.

{ We an give the following interesting observations based on the omparison

of the tests onvergene (that is to say the distane between the estimator

and the threshold value; for details see [12℄). The iphers of Table 2 an

be ranked aording to their relative \random" quality. We observe that (�

means \better than") Bgml � RC4 � Snow �� Lili-128.

{ Note that the existene of \weak keys" in stream iphers like Lili-128 (for

example all zero seret key) an only very partly explain these bad statistial

results (it only a�ets the AÆne Constant test). Snow presents bad results

too whilst it does not have any weak key.

{ Seond version of Snow and Lili-128 exhibit the same weaknesses.

Table 3. Lili128: Experimental results for tests T

d

1

and T

d

2

.

T

1

1

T

2

1

T

1

2

T

2

2

D

2

39,344.03 400,839.93 667729.02 1,028,048.45

�

2

0:001

6349.15

4.2 Blok Ciphers

We mainly fous on the DES [7℄ and the AES [1℄. Results for other blok iphers

will be found on [5℄. For blok iphers we onsidered both the enryption ANFs

and the deryption ANFs. Sine every output ANF involves both plaintext and

key variables, tests T

d

2

(d = 1; 2) have been replaed by tests T

d

1

relatively to:

{ the number n

1

of plaintext variables from one side and of key variables from

the other side (denoted respetively T

1

1

jp and T

1

1

jk).

{ the number n

2

of 2-monomials respetively involving plaintext/plaintext

variables, key/key variables and plaintext/key variables (tests denoted re-

spetively T

1

1

jpp, T

1

1

jkk and T

1

1

jpk).

The DES.- Table 4 gives detailed experimental results of the estimatorD

2

with

63 degrees of freedom. The ritial values are �

2

= 82:52 (� = 0:05), �

2

= 92:01

(� = 0:01) and �

2

= 103:44 (� = 0:001).

It is worth notiing that:



Table 4. DES: Values of Estimator D

2

T

1

1

T

2

1

T

1

1

jp T

1

1

jk T

1

1

jpp T

1

1

jkk T

1

1

jpk

Enr. + IP 35.06 37.65 34.75 35.57 35.41 33.47 33.25

Der. + IP 33.68 33.93 34.75 39.74 35.41 39.12 29.95

{ DES passes the AÆne Constant Test in all modes and all signi�ane levels.

{ The overall statistial quality is slightly di�erent for enryption and for de-

ryption (in partiular the statitial results are slightly better for enryption

when only the key is onsidered).

{ DES fails the tests T

1

1

jS for many subsets S. For example, several 3-uples

inluding output ANFs 0 and 22 do not pass the test. The overall results

present a signi�ant di�erene for the DES with or without IP. Aording

to the results for the tests T

1

1

jS and T

2

1

jS, the di�erent modes of DES an

be ranked in the following manner ((� means \better than"):

fDES Enr. - IP, DES Der. + IP, DES Der. - IPg � DES Enr. + IP.

For these tests, the initial permutation IP improves the overall statistial

quality for enryption only. Nevertheless IP is usually disarded by ryptol-

ogy ommunity when onsidering its ryptanalysis.

The AES.- We will fous on the algorithm working on 128-bit bloks and with

128-bit seret key. Table 5 gives detailed experimental results of the estimator

D

2

with 127 degrees of freedom. The ritial values for � = 0:05 is �

2

= 159:59

It is worth notiing that:

{ AES passes the AÆne Constant Test in all modes and all signi�ane levels.

{ Overall statistial quality of AES (128, 128) is good. Partial results on tests

T

5

1

and T

5

2

indiate that AES do not pass the test. Moreover AES (enryption

and deryption) do not pass the tests T

1

1

jS and T

2

1

jS for many subsets S. As

an example, 3-uples ontaining output ANFs 52 and 110 are weak subsets

for enryption. These biases are urrently exploited to greatly improve the

ryptanalysis of AES.

{ Enryption and deryption exhibits quite the same overall statistial prop-

erties.

Table 5. AES (128, 128): Values of Estimator D

2

T

1

1

T

2

1

T

1

1

jp T

1

1

jk T

1

1

jpp T

1

1

jkk T

1

1

jpk

Enryption 59.61 71.32 57.84 61.51 64.47 72.34 62.39

Deryption 67.38 62.27 67.21 70.70 71.26 60.11 47.27

4.3 Hash Funtions

We tested the following hash funtions: SHA-0 [9℄, SHA-1 [10℄, Ripemd160 [3℄,

MD4 [21℄, MD5 [22℄, Ripe-MD [2℄ and Haval [25℄ (for this latter we tested all the



di�erent versions). Extensively detailed numerial results (due to lak of spae)

are only available in [5℄. Tests T

1

1

jS and T

2

1

jS are under way.

All the tested hash funtions have passed the tests whatever may be the

signi�ane level. However we an one again give the following interesting ob-

servations based on the omparison of the tests onvergene.

{ The di�erent hash funtions an be ranked aording to their relative \ran-

dom" quality. For example when onsidering results of test T

1

1

(1-monomials),

whih is the most interesting, we have the following ordering (� means \bet-

ter than"):

� 160-bit Message Digest: SHA-1 � (5, 160)-haval � Ripemd160 � (4,

160)-haval � (3, 160)-haval � SHA-0.

� 128-bit Message Digest: (5,128)-haval � Ripe-MD � MD5 � (4,128)-

haval � (3,128)-haval � MD4.

{ SHA-1 has indeed better statistial properties than SHA-0, espeially when

onsidering the degree 1. The inlusion of the 1-bit rotation in the blok

expansion from 16 to 80 words really improved the randomness properties

of the hash funtion.

{ For the Haval family, the random quality inreases with the number of

rounds.

Table 6 presents the results of the tests T

d

1

and T

d

2

for d = 1; 2 and for the

160-bit message digest hash funtions (signi�ane level � = 0:05; let us reall

that passing the tests for signi�ane level � imply passing the test for �

0

< �

sine �

2

�

0

> �

2

�

).

Table 6. Experimental results for tests T

d

1

and T

d

2

(d = 1; 2, � = 0:05).

T

1

1

T

2

1

T

1

2

T

2

2

Hash Funtions

D

2

�

2

D

2

�

2

D

2

�

2

D

2

�

2

SHA-1 76.87

189.52

70.89

189.52

0.04

5.99

0.42

5.99

(5,160)-haval 76.34 79.76 0.17 2.02

Ripemd160 77.51 66.72 5.24 2.66

(4,160)-haval 83.52 74.18 1.77 3.51

(3,160)-haval 83.79 64.28 1.05 5.50

SHA-0 97.08 74.50 3.26 0.42

5 Conlusion

This paper presents a new statistial testing of symmetri iphers and hash

funtions. Where previous known tests did not exhibit partiuliar bias, these

new tests reveal strutural, statistial biases for DES, AES, Snow and Lili-128.

Other ryptosystems are urrently tested and may present unsuspeted biases.

These tests are still rather quantitative tests but nonetheless they allow to

detet possible strutural weaknesses in the output ANFs. Current researh fo-

uses on more qualitative test involving fatorial experiments. It should provide

neessary information to greatly improve previous ryptanalyti tehniques.
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