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Abstract. This paper presents a new statistical testing of symmetric ci-
phers and hash functions which allow us to detect biases in a few of these
systems. We first give a complete characterization of the Algebraic Nor-
mal Form (ANF) of random Boolean functions by means of the Mdbius
transform. Output bits of a cryptosystem are here described by a set of
Boolean functions. The new testing is based on the comparison between
their Algebraic Normal Form and those of purely random Boolean func-
tions. Detailed testing results on several cryptosystems are presented. As
a main result we show that AES, DES, Snow, and Lili-128 fail the tests
wholly or partly and thus present strong biases.
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1 Introduction

Randomness is the ground property of cryptography. For the attacker, any quan-
tities produced by a given cryptosystem must look as unpredictable as possible.
It means that these quantities have to be of sufficient size and “be random” in
the sense that the probability of any particular value being selected must be
as weak as possible to preclude a cryptanalyst from gaining advantage through
optimed search strategy based on such probability [15, p 169].

From a general point of view, any symmetric cipher and any hash function
must be designed as a pseudorandom bit generator (PRBG) relatively to each
of its output bits.

Two important requirements are then to be satisfied: the output sequences
of a PRBG must be statistically indistinguishable from truly random sequences
and the output bits must be unpredictable to an attacker with limited computing
facilities. Therefore, many different statistical tests have been proposed and are
usually implemented to evaluate these two requirements. Historically, we must
cite Golomb’s randomness postulates [11]. These tests have been designed as
necessary but not sufficient tests to check if a shift register sequence statistically
behaves properly. Yet statistically good according to these postulates, this kind
of sequence has been shown very predictable when using the Berlekamp-Massey



algorithm [16]. This is the illustration that randomness is uniquely defined rel-
atively to the statistical tests we may use.

Many other statistical tests have been proposed in order to improve what
may be considered as “random”. Among many others, let us cite those that
are mainly implemented: frequency test, serial test, poker test, runs test and
autocorrelation test [8,13], Maurer’s universal statistical test [17], (for a more
detailed bibliography on statistical tests used in cryptography see [15, pp 188-
189]).

All the recently proposed symmetric cryptosystems and hash functions can
be considered as satisfying all the known randomness requirements. Now the
essential part of the cryptanalyst’s work is to find an exploitable bias, due to an
unknown design flaw, that none of the up-to-now known test detected. For that,
the cryptanalyst generally first designs a new hypothesis testing based on a new
test. Let us recall that in fact randomness is a theoretical indeed “philosophical”
concept. Practically speaking, it can only be determined and defined relatively
to the set of statistical tests used to evaluate it.

In this paper we present a new hypothesis testing based on a x? distribu-
tion and called Statistical M6bius Analysis. More precisely, we define as working
statistic X the number of monomials of degree exactly d in the Algebraic Normal
Form (ANF) of all the Boolean functions modeling each of the output bits. The
set of these d-monomials which are effectively represented in the ANF, are prac-
tically computed by means of the M&bius transform. A secure cryptosystem has
a fixed distribution determined by general results on random Boolean functions.
Then one-sided tests allow us to check if the constituent Boolean functions are
truly random.

These tests have been implemented for a few recently proposed stream ciphers
and block ciphers, as well as for the main hash functions. All are known to have
passed the previously known statistical tests and thus are considered as having
very good random properties. Our main results is that famous cryptosystems
such AES, DES, Snow and Lili-128 did not pass our tests, wholly or partly.
Other results as well as detailed data will be found in [5].

This paper is organized as follows. Section 2 presents the necessary prelim-
inaries and gives the characterization of the Algebraic Normal Form (ANF) of
random Boolean functions. In particular, we complete the results presented in
[19], make them more practical and give new results on the total degree of a
Boolean function. Section 3 presents the new test we designed whilst Section
4 gives detailed numerical results that have been obtained for a few stream ci-
phers (Lili-128, Snow, BGML and RC4), block ciphers (DES and AES) and hash
functions (SHA-0, SHA-1, Ripe-MD, Ripemd160, Haval, MD4 and MD5).

2 Characterization of Boolean Functions and Results

In this section, we present a new statistical way of describing a Boolean function
by use of its ANF. This latter can be uniquely computed by means of the Mdbius



transform. We deduce results on the balancedness and correlation properties with
the help of the Walsh transform.

2.1 Structure of the Algebraic Normal Form

A Boolean function is a function f from F}' to F». The number of such functions
is 22", We define a random Boolean function as a function f whose values are
independent, identically distributed (i.i.d.) random variables that is to say

1
Y(x1,...,2,) € FY, P[f(:vl,...,a:n)=0]=§. (1)
In other words, every f(z1,...,%,) is a Bernoulli random variable of parameter

%. The corresponding probabilistic law will be denoted B(p) whith p = % in our
present casel.

The weight of a Boolean function over FJ' is defined by wt(f) = |{z €
Fa3|f(z) = 1}|. Then a Boolean function will be said to be balanced if wt(f) =
27~1_ Note that a random Boolean function, as defined above, may be not bal-
anced. In fact we will give the general probability for such a function to be
balanced.

The Algebraic Normal Form (ANF) of f is the multivariate polynomial given
by f(z1,...,2,) = @uew ayz¥, a, € Fy, where v = (uy,...,u,) and z% =

[T, z}. The a, are given by the Mébius transform [14] of f:

an =P f(x) (2)

where < denotes the partial order on the Boolean lattice, that is to say that
a < pif and only if a; < §; for all 1 < i < n. A monomial a,z* of the ANF
will then be said of degree k if a,, = 1 and if wt(u) = k where wt(.) denotes the
Hamming weight. With these notations we now can state:

Proposition 1 The Algebraic Normal Form (ANF) of a random Boolean func-
tion f from F} to F» has 2"~ monomials in average. For every k such that
0 < k < n, there are an average of % (Z) monomials of degree k.

When k£ = 0 (resp. k = n), it is equivalent to assert that half of randomly chosen
Boolean functions contains ag (resp a(i11...11)) in their ANF.

Proof. A given monomial z;, z;, ...z;, of degree k will be part of the ANF if
and only if a,, = 1 where the support of u (that is to say the set of indices j

such that u; =1 and denoted supp(u)) is {i1,42,...,ix}. Now we have
k k k k
=1 I=1 j=1,j =1
! Every n-tuple (21,...,2,) is randomly and independently chosen, then f(z1,...,2)

too. It is equivalent to randomly choose f from the set of Boolean functions.



where 0 = (0,0,...,0) and e; is the n-uple whose only its i-th coordinate is
non zero. The right side of Equation (3) has 25:1 (’;) = 2% terms. We have
a, = 1 if an odd number of terms are all equal to 1. There are 25~ such odd
configurations. Each of them, according to (1) has probability 5 to be equal to
1 since we consider i.i.d. variables. Whence we have Pla, = 1] = 2" x 5 =1

Thus the number of monomials of degree k in the ANF will be Pla, = 1]x (}})
Lx (7).
2 * &

We can in fact generalize this results with the following theorem:

-
a

Theorem 1 With the notation of Proposition 1, the number ny of monomials
of degree k has normal distribution with mean value E[ng] = 1 (%) and variance

Ving = 1(3)-

To be mathematically rigorous, we should consider the binomial distribution in-
stead of the normal distribution. Moreover, we should write “X tends toward
normal distribution” rather than “X has normal distribution”. However, proba-
bility theory [4] entitle us such shortcuts as soon as the conditions of application
for the Central Limit Theorem are fulfilled. It is the case in our work.

Proof. The proof is straightforward when considering that a,,, for all u € F}* is a
Bernouilli random variable with parameter %, where Ela,] = 1 and V{a,] = 1.
Since ng = -4 (u)=k @u, for large enough values of the number of u of weight £,

the Central Limit Theorem gives the result (as soon as ng > 30 [4]). a

This proposition allows to study the randomness properties of a Boolean func-
tion. Let us consider a function f used for the feedback of a shift register of
length L. If f is constant (its ANF has only one monomial), the output will not
be random at all. In the case of the linear feedback (the ANF of f is of degree
1 and has at most n monomials), the randomness properties are limited: the
linearity properties are not suppressed, and combinatorial information is easy to
get (for details see [11]). Moreover, it is very easy to reconstruct the feedback
polynomial with only 2L output bits [16]. This is due to the fact that linear
functions have very limited randomness properties.

In other words, if we consider x = (z1,...,z,) and ¥y = (y1,...,yn) such
that (e.g.) f(z) = f(y) = 1, the less random the function is, the easier is the
extraction of information on z and y.

Example 1 Let us take f(x1,22) = 21 ® x2. Any x = (z1,22) and y = (y1,y2)
with © # y such that f(x) = f(y) = 1 will satisfy v1 ® y1 = 1. This comes from
the fact that the values of the truth table are “structured” and not “randomly
spread” into this table.

Proposition 1 gives us the following criterion:

Corollary 1 A Boolean function used for cryptographic applications and pre-
senting the best trade-off in terms of its cryptographic properties must have a
degree as high as possible.



Proof. This directly comes from the fact that a n-variable random Boolean func-
tion in average has its term of degree n with probability % and will contain &
terms of degree n — 1. According to the upper bound of the degree [23] of a func-
tion presenting the best trade-off in terms of correlation immunity, balancedness,
..., we have for a t-correlation immune function: deg(f(z1,...,2z,)) <n—t—1.
Constraining the function with given properties lowers the algebraic degree.
Combinatorial structures are introduced while randomness is lessened. In the
search for the best possible trade-off, to keep good randomness properties by
forbidding to get combinatorial information on the function inputs, the function

should have the highest possible degree. O

2.2 Characterization of the Walsh Coefficients

The Walsh Hadamard transform of a Boolean function f refers to the following
transformation: Yu € F)*,  xj(u) = ZIGF;(—I)f(””)+<’”7“>, where < z,u > de-
notes the usual scalar product computed over F)'. A well-known result allows to
characterize the correlation immunity of f with the Walsh Hadamard transform:

Proposition 2 [2/] A Boolean function f is t-order correlation immune if and
only if Vvu e T3, 1 <wt(u) <t Xr(u) =0.

Moreover f is balanced if and only if x7(0,0,...,0) = 0.

Proposition 3 Let f be a random Boolean function over F3' with n > 5. For
all w € Fy, X7 (u) is a random variable which has Gaussian distribution with
mean value 0 and variance 2".

Proof. First we can write x(u) = ZZGF; (—1)f @) +<zu> — (2”—2)-21@; (f(x)
+ < x,u >). Since z and f(z) are independent, we can consider < x,u > + f ()
as independent, identically distributed random variables for all  as well. Let us
note ¥ = er]}?; (f(z)+ < z,u >). For n > 5 (that is to say 2" > 30), due to

the central limit theorem [4], Y has a Gaussian distribution £G(E, 0?) with

E[Y] = 2 Plf ()4 < a,u >=1] = 2!
(0y)? = 2"P[f(2)+ < z,u >= 1|P[f(z)+ < z,u ># 1] = 2" 2.

Hence x7(u) has Gaussian distribution with mean value E[xf(u)] = 2™(1 —
2P[f(z)+ < z,u >= 1]) = 0 and variance 0> = 4.2"P[f(z)+ < z,u >=
1P[f(z)+ < z,u ># 1] = 2™, o

If & denotes the normal distribution function, &(z) = \/%7 ffoo exp (—%) dt

and if py = 45(2%%1) — 1, we then can state

Lemma 1

P[f balanced | = po.



Proof. For a balanced Boolean function, we have x7(0,...,0) = 0. By definition,
X7(u), Yu € F}' is even. Then we have P[xf(u) = 0] = P[0 < Xf(u) < 2]. The
rest is straightforward to proove with Proposition 3. O

Remark.- This result is an accurate approximation of the “exact” probability

on
for a function to be balanced given by p = (22"211). Table 1 compares exact

probability with that computed with Theorem 1 for 5 < n < 19. Note that
computing exact probability p is highly time consuming while computation time
is negligible for py.

Table 1. Exact and approximate probabilities for a function to be balanced

Wl » | po o] » [ po [[n] p [ p |
0.1399 | 0.1381 |[10]| 0.02493 | 0.02491 |{15[0.004408{0.004407
0.09935(0.098701((11| 0.01763 | 0.01762 |[{16{0.003117|0.003116
0.07039(0.07015((12] 0.01247 | 0.01246 |[17{0.002204|0.002203
0.04982(0.49738(/13|0.008815(0.008814({18({0.001558{0.001558
0.03524|0.035211{{14|0.006233{0.006233((19{0.001102{0.001101
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3 The New Statistical Testing

We now present the different tests we built up to evaluate new statistical prop-
erties of symmetric cryptosystems and hash functions. Let us now consider such
a cryptosystem and specify the context we choose. Let there be a secret key
K = (ko,-..,kn—1). A stream cipher can be seen as follows: every output bits 7
generated from the secret key K can be expressed by a unique ANF (by means
of the M6bius transform defined by Equation (2)).

In other words, the N-bits output sequence can be described by a family of N
Boolean functions (fi(K))o<i<n = (fo(K),..., fn—1(K)) where f;(K) denotes
the i-th bit produced by the system and modelled as a polynomial in variables
k; (ANF). Each output bit is a Boolean function f; : FJ* — Fy.

Similarly, let us represent a block cipher with n-bit key K working on m-bit
blocks. In the same way, but with the different output functions being evaluated
on the key space and the plaintext space P = (pg,...,Ppm—1), for a block cipher
C, we then have C' = (co,...,cm-1) = (fo(K, P),..., fm—1(K, P)). Each of the
m ciphertext bits is a Boolean function f; : Fy"™ s Fy.

A hash function H : F' — F3* will have its m-bit message digest of block
B = (bo,...,bp—1) represented by (hi(B))o<t<m = (ho(B),...,hm—1(B)). In the
rest of this paper we will use indifferently the term output bits and output Boolean
Functions (or output ANFs for short) to describe the quantities produced by
the cryptosystem we consider. At last we will consider that the different output
Boolean functions (or bits) are statistically independant. It is precisely the result
stated by previous usual, known tests.

The complete output ANF cannot be computed since it contains in aver-
age 2"~ ! monomials. It would require exponential memory and computing time
complexity. For our tests we only focus on the monomials of degree at most 3



and need only to compute the 3-truncated ANF, that is to say the partial ANF
whose coefficients are effectively computed up to degree 3. For a few cases, 5-
truncated ANFs have been computed when necessary. From a practical point
of view, we use Formula (3) to produce them. As a result, we observe in every
ANF, 4y monomials of degree exactly d.

Let us now note H¢ the statistical hypothesis that the number 74 of mono-
mials of degree exactly d is distributed according to the Theorem 1. In other
words, the cryptosystem passes our tests and thus exhibits no particuliar struc-
tural, statistical bias for the aspect we consider when satisfying this hypothesis.

We suppose the reader is familiar with basic probability and statistics theories
(for a detailed presentation see [4] and [15, Chap 5.4]).

3.1 The Affine Constant Test

Our hypothesis is then denoted HJ. According to Theorem 1, the probability for
the affine constant ag to be represented in each of the output ANFs is p = %
Equivalently, it means that the number of output Boolean functions having

ap = 1 in their ANF has normal distribution /\/’(%, @) where N is the total
number of output ANFs.

If Xg, the number of times ay = 1, is the statistic we consider over the sample
output S of N ANFs, we can now describe the following two-sided test, called
the Affine Constant Test:

1. Compute Xg over S.

2. Let us fix a significance level a (i.e. probability of rejecting H{ when it is
true) and choose a threshold z,, so that for a statistic X of normal standard
distribution we have P[X > z,] = P[X < z,] = §.

Xs-

3. If the value X'S = —%% > 1, or if X'g < —m, then HJ is rejected (the

2
system fails the test) otherwise H{ is kept (the system passes the test).

3.2 The d-monomial Tests

We are now considering the monomials of degree exactly d in the output ANFs.
Our testing is now denoted Hg.
With the notation of Theorem 1, the number of monomials of degree d in a

Random Boolean Function ANF is a random variable which is V(3 (%), 54/ (%))
distributed. We now consider two goodness-of-fit, one-sided tests between the
expected frequencies (denoted ng) and those (denoted 7i4) we observe for the
considered cryptosystem.

The first test, T} consider every different ANF and thus has a rather local
scope by giving more weight to very weak output ANFs. The second one, Ty,
groups the N output ANFs according to a few numbers of sets or classes. So
to summarize, we will use the y? distribution with v degrees of freedom by
(ng—ng)

na

considering the sum of the v squared, independent random variables

(1 < v) which have by definition standard normal distribution.



In T{ we have v = N — 1 (i.e. the number of output ANFs) while for T3 we
choose 2 <v <9

1. Compute for each of the v random variables n’, and 7} (nf is given by
applying Theorem 1).

2. Let us fix a significance level o and a threshold value z, (computed directly
from the cumulative density function of the x? distribution) so that for a
statistic X over a random sample we would have P[X > z,] = a (when X
follows a x? distribution with v degrees of freedom).

i ~7\2

3. Compute the statistics D? given by D* =7 | %
4. If D? > z, then we must reject HY (the system fails the test and thus
presents a statistical bias) otherwise we keep H¢ (the system does not present

any significative bias).

Test Ty is intended to describe the considered cryptosystem from a global
point of view. In particular it aims at verifying if local biases (detected with
T{) are still really significative at a more global level. Instead of dealing with
the observed frequencies 7% of d-monomials for each of the N output ANFs we
rather are interested with the number of output ANFs whose number 74 belongs
to a given, predefined intervall [a,b]. The expected frequency for every class is
computed from Theorem 1 by applying basic probability results.

3.3 The d-monomial Tests on a Given Output ANFs Subset

Essentially, we consider the tests of Section 3.1 and 3.2 but on particuliar sub-
sets S of output ANFs. These test are intended to detect subsets of weak output
ANFs. They are denoted T|S where i = 1,2. Accordingly to the probability
and statistics theories, results for which a given cryptosystem exhibits weak-
nesses must be thoroughly examined and inspected. Complementary results on
sampling theory must be taken into account to discriminate “normal but ex-
tremal results” (that is to say samples S for which P[X > ,] = a whilst having
truly random distribution) from “truly non-random behaviour”.

For all these tests and in all our experiments , we considered o = 0.05,0.01
and 0.001.

4 Simulation Results

4.1 Stream Ciphers

We will here mainly focus on two stream ciphers that have been proposed for
the NESSIE Open Call for Cryptographic Primitives [18]: Lili-128 and Snow.
Other stream ciphers have been tested or are currently under testing. Table 2
summarizes results for a few of them. We considered the first N = 6016 output
bits in our experiments.

It is worth noticing that:



Table 2. Stream Ciphers: Tests Results (significance levels o = 0.001)

[T w ] [T E(E
Lili-128| fail | fail |fail|fail|| RC4 [20] |pass|pass|pass|pass
Snow |pass|pass|fail(fail||Bgml [18]|pass|pass|pass|pass

— All the tested stream ciphers pass the Affine Constant test except Lili-128.

— Lili-128 exhibits extremely strong biases. Table 3 presents the results for
this stream cipher. These biases have been analyzed and exploited for an
operational cryptanalysis in [6].

— Snow exhibits strong biases too but only when considering global statisti-
cal behavior. Unfortunately these biases allowed us to design a complete,
operationnal cryptanalysis of Snow [6].

— We can give the following interesting observations based on the comparison
of the tests convergence (that is to say the distance between the estimator
and the threshold value; for details see [12]). The ciphers of Table 2 can
be ranked according to their relative “random” quality. We observe that (>
means “better than”) Bgml > RC4 > Snow => Lili-128.

— Note that the existence of “weak keys” in stream ciphers like Lili-128 (for
example all zero secret key) can only very partly explain these bad statistical
results (it only affects the Affine Constant test). Snow presents bad results
too whilst it does not have any weak key.

— Second version of Snow and Lili-128 exhibit the same weaknesses.

Table 3. Lili128: Experimental results for tests T¢ and T¥.

L 1 & | 7w [ & [ T |
D? 39,344.03[400,839.93]667729.02]1,028,048.45]
Xb.001 6349.15 |

4.2 Block Ciphers

We mainly focus on the DES [7] and the AES [1]. Results for other block ciphers
will be found on [5]. For block ciphers we considered both the encryption ANFs
and the decryption ANFs. Since every output ANF involves both plaintext and
key variables, tests T (d = 1,2) have been replaced by tests T{ relatively to:

— the number n; of plaintext variables from one side and of key variables from
the other side (denoted respectively T} |p and T} |k).

— the number ny of 2-monomials respectively involving plaintext/plaintext
variables, key/key variables and plaintext/key variables (tests denoted re-
spectively T |pp, Tt|kk and T|pk).

The DES.- Table 4 gives detailed experimental results of the estimator D? with
63 degrees of freedom. The critical values are x? = 82.52 (a = 0.05), x? = 92.01
(@ =0.01) and x? = 103.44 (a = 0.001).

It is worth noticing that:



Table 4. DES: Values of Estimator D?

| [ 71 [ 77 [Tilp[ i1k T1 Ipp|TL kK] TY pk]
Encr. + IP[35.06|37.65|34.75(35.57| 35.41| 33.47 | 33.25
Decr. + IP|33.68|33.93|34.75(39.74/ 35.41|39.12 | 20.95

— DES passes the Affine Constant Test in all modes and all significance levels.

— The overall statistical quality is slightly different for encryption and for de-
cryption (in particular the statitical results are slightly better for encryption
when only the key is considered).

— DES fails the tests T}'|S for many subsets S. For example, several 3-uples
including output ANFs 0 and 22 do not pass the test. The overall results
present a significant difference for the DES with or without IP. According
to the results for the tests T|S and T?|S, the different modes of DES can
be ranked in the following manner ((> means “better than”):

{DES Encr. - IP, DES Decr. + IP, DES Decr. - IP} > DES Encr. + IP.
For these tests, the initial permutation IP improves the overall statistical
quality for encryption only. Nevertheless IP is usually discarded by cryptol-
ogy community when considering its cryptanalysis.

The AES.- We will focus on the algorithm working on 128-bit blocks and with
128-bit secret key. Table 5 gives detailed experimental results of the estimator
D? with 127 degrees of freedom. The critical values for a = 0.05 is 2 = 159.59
It is worth noticing that:

— AES passes the Affine Constant Test in all modes and all significance levels.

— Overall statistical quality of AES (128, 128) is good. Partial results on tests
TP and T3 indicate that AES do not pass the test. Moreover AES (encryption
and decryption) do not pass the tests T}|S and T?|S for many subsets S. As
an example, 3-uples containing output ANFs 52 and 110 are weak subsets
for encryption. These biases are currently exploited to greatly improve the
cryptanalysis of AES.

— Encryption and decryption exhibits quite the same overall statistical prop-

erties.
Table 5. AES (128, 128): Values of Estimator D?

| | Tt [ Tt [Tilp [T11K[T1 |pp] Tt kK| TY [pk|
Encryption|59.61(71.32|57.84|61.51|64.47|72.34|62.39
Decryption|67.38(62.27|67.21|70.70{ 71.26 | 60.11 | 47.27

4.3 Hash Functions

We tested the following hash functions: SHA-0 [9], SHA-1 [10], Ripemd160 [3],
MD¢4 [21], MD5 [22], Ripe-MD [2] and Haval [25] (for this latter we tested all the



different versions). Extensively detailed numerical results (due to lack of space)
are only available in [5]. Tests T}'|S and T{|S are under way.

All the tested hash functions have passed the tests whatever may be the
significance level. However we can once again give the following interesting ob-
servations based on the comparison of the tests convergence.

— The different hash functions can be ranked according to their relative “ran-
dom” quality. For example when considering results of test T} (1-monomials),
which is the most interesting, we have the following ordering (> means “bet-
ter than”):

e 160-bit Message Digest: SHA-1 > (5, 160)-haval > Ripemd160 > (4,
160)-haval > (3, 160)-haval = SHA-0.

e 128-bit Message Digest: (5,128)-haval > Ripe-MD > MD5 > (4,128)-
haval > (3,128)-haval > MDA4.

— SHA-1 has indeed better statistical properties than SHA-0, especially when
considering the degree 1. The inclusion of the 1-bit rotation in the block
expansion from 16 to 80 words really improved the randomness properties
of the hash function.

— For the Haval family, the random quality increases with the number of
rounds.

Table 6 presents the results of the tests 77 and T§ for d = 1,2 and for the
160-bit message digest hash functions (significance level a = 0.05; let us recall
that passing the tests for significance level a imply passing the test for o < a
since x2, > x2).

Table 6. Experimental results for tests T{ and T¢ (d = 1,2, a = 0.05).

. T T? Ty Ty

Hash Functions ok | v ok | v D‘| v D‘| v
SHA-1 76.87 70.89 0.04 0.42
(5,160)-haval (76.34 79.76 0.17 2.02
Ripemd160 |[77.51 166.72 10.24 2.66

(4,160)-haval (83.52 189.53 74.18 189'511.77 5.99 3.51 5.99
(3,160)-haval (83.79 64.28 1.05 5.50
SHA-0 97.08 74.50 3.26 0.42

5 Conclusion

This paper presents a new statistical testing of symmetric ciphers and hash
functions. Where previous known tests did not exhibit particuliar bias, these
new tests reveal structural, statistical biases for DES, AES, Snow and Lili-128.
Other cryptosystems are currently tested and may present unsuspected biases.
These tests are still rather quantitative tests but nonetheless they allow to
detect possible structural weaknesses in the output ANFs. Current research fo-
cuses on more qualitative test involving factorial experiments. It should provide
necessary information to greatly improve previous cryptanalytic techniques.
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