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Abstra
t. This paper presents a new statisti
al testing of symmetri
 
i-

phers and hash fun
tions whi
h allow us to dete
t biases in a few of these

systems. We �rst give a 
omplete 
hara
terization of the Algebrai
 Nor-

mal Form (ANF) of random Boolean fun
tions by means of the M�obius

transform. Output bits of a 
ryptosystem are here des
ribed by a set of

Boolean fun
tions. The new testing is based on the 
omparison between

their Algebrai
 Normal Form and those of purely random Boolean fun
-

tions. Detailed testing results on several 
ryptosystems are presented. As

a main result we show that AES, DES, Snow, and Lili-128 fail the tests

wholly or partly and thus present strong biases.
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1 Introdu
tion

Randomness is the ground property of 
ryptography. For the atta
ker, any quan-

tities produ
ed by a given 
ryptosystem must look as unpredi
table as possible.

It means that these quantities have to be of suÆ
ient size and \be random" in

the sense that the probability of any parti
ular value being sele
ted must be

as weak as possible to pre
lude a 
ryptanalyst from gaining advantage through

optimed sear
h strategy based on su
h probability [15, p 169℄.

From a general point of view, any symmetri
 
ipher and any hash fun
tion

must be designed as a pseudorandom bit generator (PRBG) relatively to ea
h

of its output bits.

Two important requirements are then to be satis�ed: the output sequen
es

of a PRBG must be statisti
ally indistinguishable from truly random sequen
es

and the output bits must be unpredi
table to an atta
ker with limited 
omputing

fa
ilities. Therefore, many di�erent statisti
al tests have been proposed and are

usually implemented to evaluate these two requirements. Histori
ally, we must


ite Golomb's randomness postulates [11℄. These tests have been designed as

ne
essary but not suÆ
ient tests to 
he
k if a shift register sequen
e statisti
ally

behaves properly. Yet statisti
ally good a

ording to these postulates, this kind

of sequen
e has been shown very predi
table when using the Berlekamp-Massey



algorithm [16℄. This is the illustration that randomness is uniquely de�ned rel-

atively to the statisti
al tests we may use.

Many other statisti
al tests have been proposed in order to improve what

may be 
onsidered as \random". Among many others, let us 
ite those that

are mainly implemented: frequen
y test, serial test, poker test, runs test and

auto
orrelation test [8, 13℄, Maurer's universal statisti
al test [17℄, (for a more

detailed bibliography on statisti
al tests used in 
ryptography see [15, pp 188-

189℄).

All the re
ently proposed symmetri
 
ryptosystems and hash fun
tions 
an

be 
onsidered as satisfying all the known randomness requirements. Now the

essential part of the 
ryptanalyst's work is to �nd an exploitable bias, due to an

unknown design 
aw, that none of the up-to-now known test dete
ted. For that,

the 
ryptanalyst generally �rst designs a new hypothesis testing based on a new

test. Let us re
all that in fa
t randomness is a theoreti
al indeed \philosophi
al"


on
ept. Pra
ti
ally speaking, it 
an only be determined and de�ned relatively

to the set of statisti
al tests used to evaluate it.

In this paper we present a new hypothesis testing based on a �

2

distribu-

tion and 
alled Statisti
al M�obius Analysis. More pre
isely, we de�ne as working

statisti
 X the number of monomials of degree exa
tly d in the Algebrai
 Normal

Form (ANF) of all the Boolean fun
tions modeling ea
h of the output bits. The

set of these d-monomials whi
h are e�e
tively represented in the ANF, are pra
-

ti
ally 
omputed by means of the M�obius transform. A se
ure 
ryptosystem has

a �xed distribution determined by general results on random Boolean fun
tions.

Then one-sided tests allow us to 
he
k if the 
onstituent Boolean fun
tions are

truly random.

These tests have been implemented for a few re
ently proposed stream 
iphers

and blo
k 
iphers, as well as for the main hash fun
tions. All are known to have

passed the previously known statisti
al tests and thus are 
onsidered as having

very good random properties. Our main results is that famous 
ryptosystems

su
h AES, DES, Snow and Lili-128 did not pass our tests, wholly or partly.

Other results as well as detailed data will be found in [5℄.

This paper is organized as follows. Se
tion 2 presents the ne
essary prelim-

inaries and gives the 
hara
terization of the Algebrai
 Normal Form (ANF) of

random Boolean fun
tions. In parti
ular, we 
omplete the results presented in

[19℄, make them more pra
ti
al and give new results on the total degree of a

Boolean fun
tion. Se
tion 3 presents the new test we designed whilst Se
tion

4 gives detailed numeri
al results that have been obtained for a few stream 
i-

phers (Lili-128, Snow, BGML and RC4), blo
k 
iphers (DES and AES) and hash

fun
tions (SHA-0, SHA-1, Ripe-MD, Ripemd160, Haval, MD4 and MD5).

2 Chara
terization of Boolean Fun
tions and Results

In this se
tion, we present a new statisti
al way of des
ribing a Boolean fun
tion

by use of its ANF. This latter 
an be uniquely 
omputed by means of the M�obius



transform.We dedu
e results on the balan
edness and 
orrelation properties with

the help of the Walsh transform.

2.1 Stru
ture of the Algebrai
 Normal Form

A Boolean fun
tion is a fun
tion f from F

n

2

to F

2

. The number of su
h fun
tions

is 2

2

n

. We de�ne a random Boolean fun
tion as a fun
tion f whose values are

independent, identi
ally distributed (i.i.d.) random variables that is to say

8(x

1

; : : : ; x

n

) 2 F

n

2

; P [f(x

1

; : : : ; x

n

) = 0℄ =

1

2

: (1)

In other words, every f(x

1

; : : : ; x

n

) is a Bernoulli random variable of parameter

1

2

. The 
orresponding probabilisti
 law will be denoted B(p) whith p =

1

2

in our

present 
ase

1

.

The weight of a Boolean fun
tion over F

n

2

is de�ned by wt(f) = jfx 2

F

n

2

jf(x) = 1gj. Then a Boolean fun
tion will be said to be balan
ed if wt(f) =

2

n�1

. Note that a random Boolean fun
tion, as de�ned above, may be not bal-

an
ed. In fa
t we will give the general probability for su
h a fun
tion to be

balan
ed.

The Algebrai
 Normal Form (ANF) of f is the multivariate polynomial given

by f(x

1

; : : : ; x

n

) =

L

u2F

n

2

a

u

x

u

; a

u

2 F

2

; where u = (u

1

; : : : ; u

n

) and x

u

=

Q

n

i=1

x

u

i

i

. The a

u

are given by the M�obius transform [14℄ of f :

a

u

=

M

x�u

f(x) (2)

where � denotes the partial order on the Boolean latti
e, that is to say that

� � � if and only if �

i

� �

i

for all 1 � i � n. A monomial a

u

x

u

of the ANF

will then be said of degree k if a

u

= 1 and if wt(u) = k where wt(:) denotes the

Hamming weight. With these notations we now 
an state:

Proposition 1 The Algebrai
 Normal Form (ANF) of a random Boolean fun
-

tion f from F

n

2

to F

2

has 2

n�1

monomials in average. For every k su
h that

0 � k � n, there are an average of

1

2

�

n

k

�

monomials of degree k.

When k = 0 (resp. k = n), it is equivalent to assert that half of randomly 
hosen

Boolean fun
tions 
ontains a

0

(resp a

(111���11)

) in their ANF.

Proof. A given monomial x

i

1

x

i

2

: : : x

i

k

of degree k will be part of the ANF if

and only if a

u

= 1 where the support of u (that is to say the set of indi
es j

su
h that u

j

= 1 and denoted supp(u)) is fi

1

; i

2

; : : : ; i

k

g. Now we have

a

u

= f(0))�

k

M

j=1

f(e

i

j

)�

0

�

k

M

l=1

k

M

j=1;j 6=l

f(e

i

j

� e

i

l

)

1

A

� : : :� f(

k

M

j=1

e

i

j

); (3)

1

Every n-tuple (x

1

; : : : ; x

n

) is randomly and independently 
hosen, then f(x

1

; : : : ; x

n

)

too. It is equivalent to randomly 
hoose f from the set of Boolean fun
tions.



where 0 = (0; 0; : : : ; 0) and e

i

is the n-uple whose only its i-th 
oordinate is

non zero. The right side of Equation (3) has

P

k

j=1

�

k

j

�

= 2

k

terms. We have

a

u

= 1 if an odd number of terms are all equal to 1. There are 2

k�1

su
h odd


on�gurations. Ea
h of them, a

ording to (1) has probability

1

2

k

to be equal to

1 sin
e we 
onsider i.i.d. variables. When
e we have P [a

u

= 1℄ = 2

k�1

�

1

2

k

=

1

2

:

Thus the number of monomials of degree k in the ANF will be P [a

u

= 1℄�

�

n

k

�

=

1

2

�

�

n

k

�

. ut

We 
an in fa
t generalize this results with the following theorem:

Theorem 1 With the notation of Proposition 1, the number n

k

of monomials

of degree k has normal distribution with mean value E[n

k

℄ =

1

2

�

n

k

�

and varian
e

V [n

k

℄ =

1

4

�

n

k

�

.

To be mathemati
ally rigorous, we should 
onsider the binomial distribution in-

stead of the normal distribution. Moreover, we should write \X tends toward

normal distribution" rather than \X has normal distribution". However, proba-

bility theory [4℄ entitle us su
h short
uts as soon as the 
onditions of appli
ation

for the Central Limit Theorem are ful�lled. It is the 
ase in our work.

Proof. The proof is straightforward when 
onsidering that a

u

, for all u 2 F

n

2

is a

Bernouilli random variable with parameter

1

2

, where E[a

u

℄ =

1

2

and V [a

u

℄ =

1

4

.

Sin
e n

k

=

P

wt(u)=k

a

u

, for large enough values of the number of u of weight k,

the Central Limit Theorem gives the result (as soon as n

k

� 30 [4℄). ut

This proposition allows to study the randomness properties of a Boolean fun
-

tion. Let us 
onsider a fun
tion f used for the feedba
k of a shift register of

length L. If f is 
onstant (its ANF has only one monomial), the output will not

be random at all. In the 
ase of the linear feedba
k (the ANF of f is of degree

1 and has at most n monomials), the randomness properties are limited: the

linearity properties are not suppressed, and 
ombinatorial information is easy to

get (for details see [11℄). Moreover, it is very easy to re
onstru
t the feedba
k

polynomial with only 2L output bits [16℄. This is due to the fa
t that linear

fun
tions have very limited randomness properties.

In other words, if we 
onsider x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

) su
h

that (e.g.) f(x) = f(y) = 1, the less random the fun
tion is, the easier is the

extra
tion of information on x and y.

Example 1 Let us take f(x

1

; x

2

) = x

1

� x

2

. Any x = (x

1

; x

2

) and y = (y

1

; y

2

)

with x 6= y su
h that f(x) = f(y) = 1 will satisfy x

1

� y

1

= 1. This 
omes from

the fa
t that the values of the truth table are \stru
tured" and not \randomly

spread" into this table.

Proposition 1 gives us the following 
riterion:

Corollary 1 A Boolean fun
tion used for 
ryptographi
 appli
ations and pre-

senting the best trade-o� in terms of its 
ryptographi
 properties must have a

degree as high as possible.



Proof. This dire
tly 
omes from the fa
t that a n-variable random Boolean fun
-

tion in average has its term of degree n with probability

1

2

and will 
ontain

n

2

terms of degree n�1. A

ording to the upper bound of the degree [23℄ of a fun
-

tion presenting the best trade-o� in terms of 
orrelation immunity, balan
edness,

..., we have for a t-
orrelation immune fun
tion: deg(f(x

1

; : : : ; x

n

)) � n� t� 1.

Constraining the fun
tion with given properties lowers the algebrai
 degree.

Combinatorial stru
tures are introdu
ed while randomness is lessened. In the

sear
h for the best possible trade-o�, to keep good randomness properties by

forbidding to get 
ombinatorial information on the fun
tion inputs, the fun
tion

should have the highest possible degree. ut

2.2 Chara
terization of the Walsh CoeÆ
ients

The Walsh Hadamard transform of a Boolean fun
tion f refers to the following

transformation: 8u 2 F

n

2

; 
�

f

(u) =

P

x2F

n

2

(�1)

f(x)+<x;u>

, where < x; u > de-

notes the usual s
alar produ
t 
omputed over F

n

2

. A well-known result allows to


hara
terize the 
orrelation immunity of f with the Walsh Hadamard transform:

Proposition 2 [24℄ A Boolean fun
tion f is t-order 
orrelation immune if and

only if 8u 2 F

n

2

; 1 � wt(u) � t 
�

f

(u) = 0.

Moreover f is balan
ed if and only if 
�

f

(0; 0; : : : ; 0) = 0.

Proposition 3 Let f be a random Boolean fun
tion over F

n

2

with n � 5. For

all u 2 F

n

2

, 
�

f

(u) is a random variable whi
h has Gaussian distribution with

mean value 0 and varian
e 2

n

.

Proof. First we 
an write 
�

f

(u) =

P

x2F

n

2

(�1)

f(x)+<x;u>

= (2

n

�2)�

P

x2F

n

2

(f(x)

+ < x; u >). Sin
e x and f(x) are independent, we 
an 
onsider < x; u > +f(x)

as independent, identi
ally distributed random variables for all x as well. Let us

note Y =

P

x2F

n

2

(f(x)+ < x; u >). For n > 5 (that is to say 2

n

> 30), due to

the 
entral limit theorem [4℄, Y has a Gaussian distribution LG(E; �

2

) with

E[Y ℄ = 2

n

P [f(x)+ < x; u >= 1℄ = 2

n�1

(�

Y

)

2

= 2

n

P [f(x)+ < x; u >= 1℄P [f(x)+ < x; u >6= 1℄ = 2

n�2

:

Hen
e 
�

f

(u) has Gaussian distribution with mean value E[
�

f

(u)℄ = 2

n

(1 �

2P [f(x)+ < x; u >= 1℄) = 0 and varian
e �

2

= 4:2

n

P [f(x)+ < x; u >=

1℄P [f(x)+ < x; u >6= 1℄ = 2

n

. ut

If � denotes the normal distribution fun
tion, �(x) =

1

p

2�

R

x

�1

exp

�

�

t

2

2

�

dt

and if p

0

= �(

1

2

n

2

�1

)�

1

2

, we then 
an state

Lemma 1

P [f balan
ed ℄ = p

0

:



Proof. For a balan
ed Boolean fun
tion, we have 
�

f

(0; : : : ; 0) = 0. By de�nition,


�

f

(u); 8u 2 F

n

2

is even. Then we have P [
�

f

(u) = 0℄ = P [0 < 
�

f

(u) < 2℄. The

rest is straightforward to proove with Proposition 3. ut

Remark.- This result is an a

urate approximation of the \exa
t" probability

for a fun
tion to be balan
ed given by p =

(

2

n

2

n�1

)

2

2

n

. Table 1 
ompares exa
t

probability with that 
omputed with Theorem 1 for 5 � n � 19. Note that


omputing exa
t probability p is highly time 
onsuming while 
omputation time

is negligible for p

0

.

Table 1. Exa
t and approximate probabilities for a fun
tion to be balan
ed

n p p

0

n p p

0

n p p

0

5 0.1399 0.1381 10 0.02493 0.02491 15 0.004408 0.004407

6 0.09935 0.09870 11 0.01763 0.01762 16 0.003117 0.003116

7 0.07039 0.07015 12 0.01247 0.01246 17 0.002204 0.002203

8 0.04982 0.49738 13 0.008815 0.008814 18 0.001558 0.001558

9 0.03524 0.03521 14 0.006233 0.006233 19 0.001102 0.001101

3 The New Statisti
al Testing

We now present the di�erent tests we built up to evaluate new statisti
al prop-

erties of symmetri
 
ryptosystems and hash fun
tions. Let us now 
onsider su
h

a 
ryptosystem and spe
ify the 
ontext we 
hoose. Let there be a se
ret key

K = (k

0

; : : : ; k

n�1

). A stream 
ipher 
an be seen as follows: every output bits i

generated from the se
ret key K 
an be expressed by a unique ANF (by means

of the M�obius transform de�ned by Equation (2)).

In other words, the N -bits output sequen
e 
an be des
ribed by a family of N

Boolean fun
tions (f

t

(K))

0�t<N

= (f

0

(K); : : : ; f

N�1

(K)) where f

i

(K) denotes

the i-th bit produ
ed by the system and modelled as a polynomial in variables

k

i

(ANF). Ea
h output bit is a Boolean fun
tion f

t

: F

n

2

7! F

2

.

Similarly, let us represent a blo
k 
ipher with n-bit key K working on m-bit

blo
ks. In the same way, but with the di�erent output fun
tions being evaluated

on the key spa
e and the plaintext spa
e P = (p

0

; : : : ; p

m�1

), for a blo
k 
ipher

C, we then have C = (


0

; : : : ; 


m�1

) = (f

0

(K;P ); : : : ; f

m�1

(K;P )). Ea
h of the

m 
iphertext bits is a Boolean fun
tion f

t

: F

n+m

2

7! F

2

.

A hash fun
tion H : F

n

2

7! F

m

2

will have its m-bit message digest of blo
k

B = (b

0

; : : : ; b

n�1

) represented by (h

t

(B))

0�t<m

= (h

0

(B); : : : ; h

m�1

(B)). In the

rest of this paper we will use indi�erently the term output bits and output Boolean

Fun
tions (or output ANFs for short) to des
ribe the quantities produ
ed by

the 
ryptosystem we 
onsider. At last we will 
onsider that the di�erent output

Boolean fun
tions (or bits) are statisti
ally independant. It is pre
isely the result

stated by previous usual, known tests.

The 
omplete output ANF 
annot be 
omputed sin
e it 
ontains in aver-

age 2

n�1

monomials. It would require exponential memory and 
omputing time


omplexity. For our tests we only fo
us on the monomials of degree at most 3



and need only to 
ompute the 3-trun
ated ANF, that is to say the partial ANF

whose 
oeÆ
ients are e�e
tively 
omputed up to degree 3. For a few 
ases, 5-

trun
ated ANFs have been 
omputed when ne
essary. From a pra
ti
al point

of view, we use Formula (3) to produ
e them. As a result, we observe in every

ANF, n̂

d

monomials of degree exa
tly d.

Let us now note H

d

0

the statisti
al hypothesis that the number n̂

d

of mono-

mials of degree exa
tly d is distributed a

ording to the Theorem 1. In other

words, the 
ryptosystem passes our tests and thus exhibits no parti
uliar stru
-

tural, statisti
al bias for the aspe
t we 
onsider when satisfying this hypothesis.

We suppose the reader is familiar with basi
 probability and statisti
s theories

(for a detailed presentation see [4℄ and [15, Chap 5.4℄).

3.1 The AÆne Constant Test

Our hypothesis is then denoted H

0

0

. A

ording to Theorem 1, the probability for

the aÆne 
onstant a

0

to be represented in ea
h of the output ANFs is p =

1

2

.

Equivalently, it means that the number of output Boolean fun
tions having

a

0

= 1 in their ANF has normal distribution N (

N

2

;

p

N

2

) where N is the total

number of output ANFs.

If X

S

, the number of times a

0

= 1, is the statisti
 we 
onsider over the sample

output S of N ANFs, we 
an now des
ribe the following two-sided test, 
alled

the AÆne Constant Test:

1. Compute X

S

over S.

2. Let us �x a signi�
an
e level � (i.e. probability of reje
ting H

0

0

when it is

true) and 
hoose a threshold x

�

so that for a statisti
 X of normal standard

distribution we have P [X > x

�

℄ = P [X < x

�

℄ =

�

2

:

3. If the value

^

X

S

=

X

S

�

N

2

p

N

2

> x

�

or if

^

X

S

< �x

�

then H

0

0

is reje
ted (the

system fails the test) otherwise H

0

0

is kept (the system passes the test).

3.2 The d-monomial Tests

We are now 
onsidering the monomials of degree exa
tly d in the output ANFs.

Our testing is now denoted H

d

0

.

With the notation of Theorem 1, the number of monomials of degree d in a

Random Boolean Fun
tion ANF is a random variable whi
h is N (

1

2

�

n

d

�

;

1

2

q

�

n

d

�

)

distributed. We now 
onsider two goodness-of-�t, one-sided tests between the

expe
ted frequen
ies (denoted n

d

) and those (denoted n̂

d

) we observe for the


onsidered 
ryptosystem.

The �rst test, T

d

1


onsider every di�erent ANF and thus has a rather lo
al

s
ope by giving more weight to very weak output ANFs. The se
ond one, T

d

2

,

groups the N output ANFs a

ording to a few numbers of sets or 
lasses. So

to summarize, we will use the �

2

distribution with � degrees of freedom by


onsidering the sum of the � squared, independent random variables

(n

i

d

�n̂

i

d

)

p

n

i

d

(i � �) whi
h have by de�nition standard normal distribution.



In T

d

1

we have � = N � 1 (i.e. the number of output ANFs) while for T

d

2

we


hoose 2 � � � 9

1. Compute for ea
h of the � random variables n

i

d

and n̂

i

d

(n

i

d

is given by

applying Theorem 1).

2. Let us �x a signi�
an
e level � and a threshold value x

�

(
omputed dire
tly

from the 
umulative density fun
tion of the �

2

distribution) so that for a

statisti
 X over a random sample we would have P [X > x

�

℄ = � (when X

follows a �

2

distribution with � degrees of freedom).

3. Compute the statisti
s D

2

given by D

2

=

P

�

i=1

(n

i

d

�n̂

i

d

)

2

n

i

d

.

4. If D

2

> x

�

then we must reje
t H

d

0

(the system fails the test and thus

presents a statisti
al bias) otherwise we keepH

d

0

(the system does not present

any signi�
ative bias).

Test T

d

2

is intended to des
ribe the 
onsidered 
ryptosystem from a global

point of view. In parti
ular it aims at verifying if lo
al biases (dete
ted with

T

d

1

) are still really signi�
ative at a more global level. Instead of dealing with

the observed frequen
ies n̂

i

d

of d-monomials for ea
h of the N output ANFs we

rather are interested with the number of output ANFs whose number n̂

d

belongs

to a given, prede�ned intervall [a; b[. The expe
ted frequen
y for every 
lass is


omputed from Theorem 1 by applying basi
 probability results.

3.3 The d-monomial Tests on a Given Output ANFs Subset

Essentially, we 
onsider the tests of Se
tion 3.1 and 3.2 but on parti
uliar sub-

sets S of output ANFs. These test are intended to dete
t subsets of weak output

ANFs. They are denoted T

d

i

jS where i = 1; 2. A

ordingly to the probability

and statisti
s theories, results for whi
h a given 
ryptosystem exhibits weak-

nesses must be thoroughly examined and inspe
ted. Complementary results on

sampling theory must be taken into a

ount to dis
riminate \normal but ex-

tremal results" (that is to say samples S for whi
h P [X > x

�

℄ = � whilst having

truly random distribution) from \truly non-random behaviour".

For all these tests and in all our experiments , we 
onsidered � = 0:05; 0:01

and 0:001.

4 Simulation Results

4.1 Stream Ciphers

We will here mainly fo
us on two stream 
iphers that have been proposed for

the NESSIE Open Call for Cryptographi
 Primitives [18℄: Lili-128 and Snow.

Other stream 
iphers have been tested or are 
urrently under testing. Table 2

summarizes results for a few of them. We 
onsidered the �rst N = 6016 output

bits in our experiments.

It is worth noti
ing that:



Table 2. Stream Ciphers: Tests Results (signi�
an
e levels � = 0:001)

T

1

1

T

2

1

T

1

2

T

2

2

T

1

1

T

2

1

T

1

2

T

2

2

Lili-128 fail fail fail fail RC4 [20℄ pass pass pass pass

Snow pass pass fail fail Bgml [18℄ pass pass pass pass

{ All the tested stream 
iphers pass the AÆne Constant test ex
ept Lili-128.

{ Lili-128 exhibits extremely strong biases. Table 3 presents the results for

this stream 
ipher. These biases have been analyzed and exploited for an

operational 
ryptanalysis in [6℄.

{ Snow exhibits strong biases too but only when 
onsidering global statisti-


al behavior. Unfortunately these biases allowed us to design a 
omplete,

operationnal 
ryptanalysis of Snow [6℄.

{ We 
an give the following interesting observations based on the 
omparison

of the tests 
onvergen
e (that is to say the distan
e between the estimator

and the threshold value; for details see [12℄). The 
iphers of Table 2 
an

be ranked a

ording to their relative \random" quality. We observe that (�

means \better than") Bgml � RC4 � Snow �� Lili-128.

{ Note that the existen
e of \weak keys" in stream 
iphers like Lili-128 (for

example all zero se
ret key) 
an only very partly explain these bad statisti
al

results (it only a�e
ts the AÆne Constant test). Snow presents bad results

too whilst it does not have any weak key.

{ Se
ond version of Snow and Lili-128 exhibit the same weaknesses.

Table 3. Lili128: Experimental results for tests T

d

1

and T

d

2

.

T

1

1

T

2

1

T

1

2

T

2

2

D

2

39,344.03 400,839.93 667729.02 1,028,048.45

�

2

0:001

6349.15

4.2 Blo
k Ciphers

We mainly fo
us on the DES [7℄ and the AES [1℄. Results for other blo
k 
iphers

will be found on [5℄. For blo
k 
iphers we 
onsidered both the en
ryption ANFs

and the de
ryption ANFs. Sin
e every output ANF involves both plaintext and

key variables, tests T

d

2

(d = 1; 2) have been repla
ed by tests T

d

1

relatively to:

{ the number n

1

of plaintext variables from one side and of key variables from

the other side (denoted respe
tively T

1

1

jp and T

1

1

jk).

{ the number n

2

of 2-monomials respe
tively involving plaintext/plaintext

variables, key/key variables and plaintext/key variables (tests denoted re-

spe
tively T

1

1

jpp, T

1

1

jkk and T

1

1

jpk).

The DES.- Table 4 gives detailed experimental results of the estimatorD

2

with

63 degrees of freedom. The 
riti
al values are �

2

= 82:52 (� = 0:05), �

2

= 92:01

(� = 0:01) and �

2

= 103:44 (� = 0:001).

It is worth noti
ing that:



Table 4. DES: Values of Estimator D

2

T

1

1

T

2

1

T

1

1

jp T

1

1

jk T

1

1

jpp T

1

1

jkk T

1

1

jpk

En
r. + IP 35.06 37.65 34.75 35.57 35.41 33.47 33.25

De
r. + IP 33.68 33.93 34.75 39.74 35.41 39.12 29.95

{ DES passes the AÆne Constant Test in all modes and all signi�
an
e levels.

{ The overall statisti
al quality is slightly di�erent for en
ryption and for de-


ryption (in parti
ular the statiti
al results are slightly better for en
ryption

when only the key is 
onsidered).

{ DES fails the tests T

1

1

jS for many subsets S. For example, several 3-uples

in
luding output ANFs 0 and 22 do not pass the test. The overall results

present a signi�
ant di�eren
e for the DES with or without IP. A

ording

to the results for the tests T

1

1

jS and T

2

1

jS, the di�erent modes of DES 
an

be ranked in the following manner ((� means \better than"):

fDES En
r. - IP, DES De
r. + IP, DES De
r. - IPg � DES En
r. + IP.

For these tests, the initial permutation IP improves the overall statisti
al

quality for en
ryption only. Nevertheless IP is usually dis
arded by 
ryptol-

ogy 
ommunity when 
onsidering its 
ryptanalysis.

The AES.- We will fo
us on the algorithm working on 128-bit blo
ks and with

128-bit se
ret key. Table 5 gives detailed experimental results of the estimator

D

2

with 127 degrees of freedom. The 
riti
al values for � = 0:05 is �

2

= 159:59

It is worth noti
ing that:

{ AES passes the AÆne Constant Test in all modes and all signi�
an
e levels.

{ Overall statisti
al quality of AES (128, 128) is good. Partial results on tests

T

5

1

and T

5

2

indi
ate that AES do not pass the test. Moreover AES (en
ryption

and de
ryption) do not pass the tests T

1

1

jS and T

2

1

jS for many subsets S. As

an example, 3-uples 
ontaining output ANFs 52 and 110 are weak subsets

for en
ryption. These biases are 
urrently exploited to greatly improve the


ryptanalysis of AES.

{ En
ryption and de
ryption exhibits quite the same overall statisti
al prop-

erties.

Table 5. AES (128, 128): Values of Estimator D

2

T

1

1

T

2

1

T

1

1

jp T

1

1

jk T

1

1

jpp T

1

1

jkk T

1

1

jpk

En
ryption 59.61 71.32 57.84 61.51 64.47 72.34 62.39

De
ryption 67.38 62.27 67.21 70.70 71.26 60.11 47.27

4.3 Hash Fun
tions

We tested the following hash fun
tions: SHA-0 [9℄, SHA-1 [10℄, Ripemd160 [3℄,

MD4 [21℄, MD5 [22℄, Ripe-MD [2℄ and Haval [25℄ (for this latter we tested all the



di�erent versions). Extensively detailed numeri
al results (due to la
k of spa
e)

are only available in [5℄. Tests T

1

1

jS and T

2

1

jS are under way.

All the tested hash fun
tions have passed the tests whatever may be the

signi�
an
e level. However we 
an on
e again give the following interesting ob-

servations based on the 
omparison of the tests 
onvergen
e.

{ The di�erent hash fun
tions 
an be ranked a

ording to their relative \ran-

dom" quality. For example when 
onsidering results of test T

1

1

(1-monomials),

whi
h is the most interesting, we have the following ordering (� means \bet-

ter than"):

� 160-bit Message Digest: SHA-1 � (5, 160)-haval � Ripemd160 � (4,

160)-haval � (3, 160)-haval � SHA-0.

� 128-bit Message Digest: (5,128)-haval � Ripe-MD � MD5 � (4,128)-

haval � (3,128)-haval � MD4.

{ SHA-1 has indeed better statisti
al properties than SHA-0, espe
ially when


onsidering the degree 1. The in
lusion of the 1-bit rotation in the blo
k

expansion from 16 to 80 words really improved the randomness properties

of the hash fun
tion.

{ For the Haval family, the random quality in
reases with the number of

rounds.

Table 6 presents the results of the tests T

d

1

and T

d

2

for d = 1; 2 and for the

160-bit message digest hash fun
tions (signi�
an
e level � = 0:05; let us re
all

that passing the tests for signi�
an
e level � imply passing the test for �

0

< �

sin
e �

2

�

0

> �

2

�

).

Table 6. Experimental results for tests T

d

1

and T

d

2

(d = 1; 2, � = 0:05).

T

1

1

T

2

1

T

1

2

T

2

2

Hash Fun
tions

D

2

�

2

D

2

�

2

D

2

�

2

D

2

�

2

SHA-1 76.87

189.52

70.89

189.52

0.04

5.99

0.42

5.99

(5,160)-haval 76.34 79.76 0.17 2.02

Ripemd160 77.51 66.72 5.24 2.66

(4,160)-haval 83.52 74.18 1.77 3.51

(3,160)-haval 83.79 64.28 1.05 5.50

SHA-0 97.08 74.50 3.26 0.42

5 Con
lusion

This paper presents a new statisti
al testing of symmetri
 
iphers and hash

fun
tions. Where previous known tests did not exhibit parti
uliar bias, these

new tests reveal stru
tural, statisti
al biases for DES, AES, Snow and Lili-128.

Other 
ryptosystems are 
urrently tested and may present unsuspe
ted biases.

These tests are still rather quantitative tests but nonetheless they allow to

dete
t possible stru
tural weaknesses in the output ANFs. Current resear
h fo-


uses on more qualitative test involving fa
torial experiments. It should provide

ne
essary information to greatly improve previous 
ryptanalyti
 te
hniques.
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