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Abstrat

In order to deide on advertisement fees for web servers, Naor and Pinkas introdued

metering shemes seure against oalition of orrupt servers and lients. In their shemes

any server is able to onstrut a proof to be sent to an audit ageny if and only if it has

been visited by at least a ertain number of lients. Several researhers have generalized

the idea of Naor and Pinkas: �rst metering sheme with priing and dynami multi-

threshold metering shemes have been proposed; later the solution has been extended to

allow for general aess strutures and an approah on linear algebra has been introdued.

In this paper we are interested in the eÆieny of applying general aess strutures

and linear algebra tehniques to metering shemes. We propose a new model onsidering

general aess strutures for lients, orrupted lients and servers. Then we bind the aess

strutures for lients and orrupted lients into one. We propose a new metering sheme,

whih is more eÆient w.r.t. ommuniation omplexity and memory requirements than

the sheme of Blundo et al.

1 Introdution

A metering sheme is a protool to measure the interation between lients and servers in a

network. The time is divided into time frames and the audit ageny is interested in ounting

the number of visits reeived by eah server in any time frame. Metering shemes are useful

in order to deide the amount of money to be paid to web servers hosting adds, as well as

in appliations suh as network aounting and eletroni oupon management [14℄. Franklin

and Malkhi [9℄ were the �rst to onsider a rigorous approah to the metering problem. Their

solutions only o�er \lightweight seurity", whih annot be applied if there are strong om-

merial interests to falsify the metering result. Naor and Pinkas [14℄, subsequently introdued

metering shemes seure against fraud attempts by servers and lients. In their sheme any

server whih has been visited by any set of r or more lients in a time frame, where r is a

�xed threshold, is able to ompute a proof, whereas any server reeiving visits from less than

r lients has no information about the proof. In this threshold ase senario for both lients
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and servers, the threshold refers to the maximum number of olluding players (server, lients).

In order to have a more exible payment system Masui and Stinson [1, 12℄ introdued me-

tering sheme with priing. To be able to measure the number of visits in any granularity

Blundo et al. in [2℄ introdued dynami multi-threshold metering shemes whih are metering

shemes with assoiated threshold for any server and for any time frame. In [13℄, Masui

and Stinson onsider the general aess strutures for the lients and a threshold sheme for

servers, where the aess struture is the family of all subsets of lients enabling a server

to ompute its proof. They proved also a lower bound on the ommuniation omplexity of

metering shemes realizing suh aess strutures. A linear algebra approah (i.e., appliable

for any general monotone aess struture) to metering shemes is presented in [3℄ by Blundo

et al. More spei�ally, given any aess struture for the lients, they propose a method

to onstrut a metering sheme realizing it from any linear seret sharing sheme with the

same aess struture. Besides, they proved some properties about the relationship between

metering shemes and seret sharing shemes. They also present some new bounds on the

information distributed to lients and servers in a metering sheme. The main di�erene

between the sheme in [3℄ and the sheme in [13℄ is that the seond one is not optimal with

respet to the ommuniation omplexity.

We will onsider only metering shemes that provide information theoreti seurity. Com-

putationally seure metering sheme based on the Deisional Di�e-Hellman Assumption have

been presented in [14℄. Sine we want to protet against general adversary strutures, we

need to start from general Linear Seret Sharing Shemes (rather than from Shamir's poly-

nomial sheme, [16℄). It is well known that LSSSs are in natural 1 − 1 orrespondene with

Monotone Span Program MSP, introdued by Karhmer and Wigderson [11℄. MSPs an be

viewed as a linear algebra model for omputing a monotone (aess) funtion. Moreover, suh

an MSP always exists beause MSPs an ompute any monotone funtion. Threshold-based

seret sharing and metering make sense only in environment where one assumes that trust

is \uniformly distributed" over the players (lients and servers): any subset of players of a

ertain ardinality is equally likely (or unlikely) to heat. In many natural senarios this

assumption is not very realisti; and moreover, in more realisti model no threshold solution

will work. Why do we need to introdue a general aess struture on the set of servers? In

the model proposed by Naor and Pinkas the audit ageny deals with servers, but in fat the

servers are owned by ompanies, where eah ompany posses a di�erent number of servers. In

this senario the uniformly distributed trust on the set of servers is not very realisti either.

In this paper we �rst distinguish between three types of general aess strutures: for

lients, orrupted lients and servers. The aess struture for lients onsists of quali�ed

and forbidden sets of lients, i.e., sets whih allow or disallow the server visited by them in

a given time frame to ompute its proof. The orrupted lients aess struture gives us a

possible distribution for the orrupted lients. These two aess strutures are bound into

one aess struture in Lemma 3.3. A general aess struture is onsidered for the set of

servers. In the previous papers all authors onsidered only the threshold ase for them. We

propose simpler metering sheme more eÆient w.r.t. ommuniation omplexity and memory

requirements than the sheme proposed by Blundo et al. [3℄. The di�erene appears in the

publi broadast information to lients and servers, whih is in our sheme smaller. As Naor

and Pinkas [14℄ pointed out it would be nie to detet illegal behavior of lients, i.e., verifying

the shares reeived from lients. This issue is not onsidered in the paper, note however that

it is ignored in [1, 2, 3, 12, 13℄ as well.

The paper is organized as follows: In Set. 2 we present one notation to desribe the
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metering shemes. In Set. 3 we study the relationship between metering shemes and general

aess strutures for lients, orrupt lients and servers. In Set. 4 we �rst present a linear

seret sharing sheme and a linear algebra approah to generalized aess strutures. Then

this approah is used to design a metering sheme. Finally, we examine our sheme for

eÆieny and orretness.

2 Preliminaries

A seret sharing sheme (SSS) allows to share a seret among several partiipants, suh that

only quali�ed subset of them an reover the seret pooling together their information. In

perfet SSSs subsets of partiipants that are not enabled to reover the seret have absolutely

no information about it. Seret sharing has been proposed independently by Shamir [16℄ and

Blakley [4℄. The �rst seret sharing shemes onsidered were (r; k)-threshold shemes, onsider

a sheme with k partiipants, in whih only groups of more than r partiipants (r ≤ k) an

reonstrut the seret. Suh a sheme is alled an (r; k) threshold sheme. Brikell points

out in [5℄ how the linear algebrai view leads naturally to a wider lass of seret sharing

shemes that are not neessarily of threshold type. This have later been generalized to all

possible so-alled monotone aess strutures by Karhmer and Wigderson [11℄ based on a

linear algebrai omputational devie alled Monotone Span Program.

As usual we all the groups whih are allowed to reonstrut the seret quali�ed, and the

groups who should not be able to obtain any information about the seret forbidden. The

olletion of all quali�ed groups is denoted by �, and the olletion of all forbidden groups is

denoted by �. In fat, � is monotone inreasing and � is monotone dereasing. The tuple

(�;�) is alled an aess struture if � ∩ � = ∅. If � ∪ � = 2

P

, where P is the set of

partiipants, then we say that (�;�) is omplete and we denote it by �. Let F be a �nite

�eld. We will onsider a general monotone aess struture (�;�), whih desribes subsets of

partiipants that are quali�ed to reover the seret s ∈ F in the set of possible seret values.

For an arbitrary matrix M over F, with m rows labelled by 1; : : : ;m and for an arbitrary

non-empty subset A of {1; : : : ;m}, let M
A

denote the matrix obtained by keeping only those

rows i with i ∈ A. Consider the set of row-vetors v

i

1

; : : : ; v

i

k

and let A = {i
1

; : : : ; i

k

} be

the set of indies, then we denote by v

A

the matrix onsisting of rows v

i

1

; : : : ; v

i

k

. Instead of

〈"; v
i

〉 for i ∈ A we will write 〈"; v
A

〉.

3 Metering shemes for General Aess Strutures

Consider the following senario: there are n lients, k servers and an audit ageny A whih

is interested in ounting the lient visits to the servers in � di�erent time frames. For any

i = 1; : : : ; n and j = 1; : : : ; k, we denote by C
i

the i−th lient and by S

j

the j−th server.

We onsider an aess struture (�;�) of quali�ed and forbidden groups for the set of

lients {C
1

; : : : ; C
n

}.
In a metering sheme realizing the lient aess struture (�;�) any server whih has been

visited by at least a quali�ed subset of lients in � in a �xed time frame is able to provide

the audit ageny with a proof for the visits it has reeived.

A seond (omplete) aess struture �

S

an be onsidered for the set of servers {S
1

; : : : ; S

k

}.
We all the set of subsets of servers orrupt if they are not in �

S

. We also denote he set of
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possible subsets of orrupt lients by �

C

, note that �

C

is monotone dereasing. It is obvious

that � ∩�

C

= ∅.
A orrupt server an be assisted by orrupt lients and other orrupt servers in omputing

its proof without reeiving visits from quali�ed subsets. A orrupt lient an donate to a

orrupt server all the private information reeived by the audit ageny during the initialization

phase. A orrupt server an donate to another orrupt server the private information reeived

from lients in previous time frames and in the atual time frame.

Several phases an be de�ned in the Metering sheme. We will follow the model of [3℄:

a) There is an initialization phase in whih the audit ageny A hooses the aess stru-

tures, omputes the orresponding matries, makes them publi and distributes some

information to eah lient C
i

through a private hannel. For any i = 1; : : : ; n we de-

note by v

(t)

'(i)

the shares that the audit ageny A gives to the lient C
i

for time frames

t = 1; : : : ; � .

b) A regular operation onsists of a lient visit to a server during a time frame. During

suh a visit the lient gives to the visited server a piee of information whih depends

on the private information, on the identity of the server and on the time frame during

whih the lient visits the server. For any i = 1; : : : ; n; j = 1; : : : ; k and t = 1; : : : ; � ,

we denote by 

(t)

'(i);e'(j)

the information that the lient C
i

sends to the server S

j

when

visiting him in time frame t.

) During the proof omputation phase any server S

j

whih has been visited by at least

a subset of quali�ed lients in time frame t is able to ompute its proof. For any

j = 1; : : : ; k and t = 1; : : : ; � we denote by p

(t)

e'(j)

the proof omputed by the server S

j

at

time t when it has been visited by quali�ed set of lients.

d) During the proof veri�ation phase the audit ageny A veri�es the proofs reeived by

servers and deides on the amount of money to be paid to servers. If the proof reeived

from a server at the end of a time frame is orret, then A pays the server for its servies.

De�nition 3.1 [3℄ An (n; k; �) metering sheme realizing the aess strutures (�;�), �

S

and

orrupt set of lients �

C

is a protool to measure the interation between n lients C
1

; : : : ; C
n

with aess struture (�;�) and k servers S

1

; : : : ; S

k

with aess struture �

S

during � time

frames in suh a way that the following properties are satis�ed:

1. For any time frame t any lient is able to ompute the information needed to visit any

server.

2. For any time frame t any server S

j

whih has been visited by a quali�ed subset of lients

G ∈ � in time frame t an ompute its proof for t.

3. Let B

2

be a oalition of orrupt servers, i.e., B

2

=∈ �

S

and let B

1

be a oalition of

orrupt lients, i.e., B

1

∈ �

C

. Assume that in some time frame t eah server in the oalition

has been visited by a subset of forbidden lients B

3

, i.e., B

3

∈ �. Then the servers in the

oalition B

2

have no information about their proofs for time frame t, even if they are helped

by the orrupt lients in B

1

.

In [15℄ we introdued an operation for the aess struture, whih generalize the notion of a

Q

2

(Q

3

) adversary struture introdued by Hirt and Maurer [10℄. We will now expand this

de�nition.
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De�nition 3.2 For the aess struture (�;�) and a monotone dereasing set �

C

we de�ne

the operation ∗ as follows: � ∗�
C

= {A = A

1

∪A
2

;A

1

∈ �; A

2

∈ �

C

}.

The same operation for monotone strutures is de�ned by Fehr and Maurer in [8℄, whih they

all element-wise union.

In order to build an (n; k; �) metering sheme realizing the aess strutures (�;�), �

S

and orrupt set of lients �

C

, we onsider the tuple (�;� ∗�
C

). It is obvious that � ∗�
C

is monotone dereasing.

Lemma 3.3 An (n; k; �) metering sheme realizing the aess strutures (�;�), �

S

and

orrupt set of lients �

C

exists if and only if (�;� ∗ �

C

) is an aess struture (i.e.,

� ∩� ∗�
C

= ∅).

In the next setion we will present a metering sheme satisfying the onditions of Lemma 3.3.

We will all suh shemes (n; k; �) metering shemes realizing the aess strutures (�;�∗�
C

)

and �

S

.

4 Linear SSS and Metering Shemes

4.1 LSSS and MSP

As mentioned earlier, MSPs are essentially equivalent to LSSSs.

De�nition 4.1 [11, 6℄ The quadruple M = (F;M; ";  ) is alled a monotone span program,

where F is a �nite �eld, M is a matrix (with m rows and d ≤ m olumns) over F,  :

{1; : : : ;m} → {1; : : : ; n} is a surjetive funtion and " is a �xed vetor, alled target vetor,

e.g. the olumn vetor (1; 0; :::; 0) ∈ F
d

: The size of M is the number m of rows.

Here  labels eah row with a number from [1; : : : ;m℄ orresponding to a �xed player, so we

an think of eah player as being the \owner" of one or more rows. And for eah player we

onsider a funtion ' whih gives the set of rows owned by the player. In some sense ' is

inverse of  . It is well known that the number d of olumns an be hosen to be smaller than

the number m of rows, without hanging the aess struture that is omputed by an MSP.

An MSP is said to ompute an aess struture � when " ∈ Im(M

T

'(G)

) if and only if G is a

member of �. It is well known that the vetor " =∈ Im(M

T

A

) if and only if there exists z ∈ F
d

suh that M

A

z = 0 and z

1

= 1. Now we will onsider any aess struture, as long as it

admits a linear seret sharing sheme.

4.2 Metering Sheme for General Aess Struture

Let M be the matrix obtained from an MSP (De�nition 4.1) omputing the aess struture

(�;� ∗�
C

).

Conjeture: For any generalized omplete aess struture � there exists a \speial"

matrix N with the following property:

(i) G =∈ � if and only if the rows in N

'(G)

are linearly independent.

Note that if � is a (r; k) threshold aess struture with a (k; r)-Vandermonde matrix the

requirement (i) is satis�ed. In some ases the matrix N an be derived from the matrix M

by removing the �rst olumn in M , but this annot be used as a general rule.
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For the aess struture �

S

we onsider suh a kind of \speial" matrix N as in the

onjeture above. Analogously to the MSP we will denote by

e

 the surjetive funtion whih

labels eah row of N with a orresponding player, and e' is the \inverse" of

e

 :

4.2.1 Initialization:

The audit ageny A hooses aess strutures (�;�∗�
C

) and �

S

. Using an MSP these aess

strutures are onneted with matries M and N . Let M have m rows and d olumns and N

have em rows and

e

d olumns. These matries are made publi.

Next A hooses � random d × e

d matries R

(t)

. We an onsider them as one \big" d� × e

d

matrix R, whih is kept seret.

Hene A gives to eah lient C
i

row vetors v

(t)

'(i)

= M

'(i)

R

(t)

for t = 1; : : : ; � . These are the

shares of lient C
i

in time frame t.

4.2.2 Regular Operation:

When a lient C
i

visits a server S

j

during a time frame t, C
i

omputes the values 

(t)

'(i);e'(j)

=

N

e'(j)

(v

(t)

'(i)

)

T

and sends them to the server S

j

.

4.2.3 Proof Computation:

Assume that the server S

j

has been visited by a quali�ed set G ∈ � of lients during a time

frame t. Thus, it omputes � s.t. M

T

'(G)

� = ". With � it omputes p

(t)

e'(j)

= 〈
(t)

'(G);e'(j)

; �

T 〉
whih are the desired proofs and sends them to A.

4.2.4 Proof Veri�ation:

When the audit ageny A reeives these values p

(t)

e'(j)

it an easily verify if this is the orret

proof for the server S

j

for time t. A alulates the value ep

(t)

e'(j)

= 〈N
'(j)

; (R

(t)

)

1

〉, (by (R

(t)

)

1

we denote the �rst row of matrix R

(t)

) and it ompares whether p

(t)

e'(j)

= ep

(t)

e'(j)

. We will prove

that if the server S

j

has been visited by a quali�ed set G ∈ � of lients during a time frame

t the equality holds.

p

(t)

e'(j)

= 〈
(t)

'(G);e'(j)

; �

T 〉 = 〈N
e'(j)

(v

(t)

'(G)

)

T

; �

T 〉

= 〈N
e'(j)

(M

'(G)

R

(t)

)

T

; �

T 〉 = 〈N
e'(j)

(R

(t)

)

T

M

T

'(G)

; �

T 〉

= 〈N
e'(j)

(R

(t)

)

T

; �

T

M

'(G)

〉 = 〈N
e'(j)

(R

(t)

)

T

; "

T 〉

= 〈N
e'(j)

; "

T

R

(t)〉 = 〈N
e'(j)

; (R

(t)

)

1

〉

= ep

(t)

e'(j)

:

4.3 Analysis of the Sheme

It is obvious that Property 1 and Property 2 of De�nition 3.1 are satis�ed. Now we prove

that Property 3 is satis�ed. We onsider the worst possible ase, in whih a subset of lients

D ∈ � ∗�
C

helps a oalition of orrupt servers B

2

=∈ �

S

in omputing their proofs for time

frame � . The total information known to the oalition of orrupt servers is onstituted by
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the maximum information olleted in time frames 1; : : : ; � −1. That is, we assume that eah

server in the oalition has been visited by all lients C
1

; : : : ; C
n

in these time frames plus the

information reeived in time frame � .

Sine the audit ageny A hooses the matries R

(t)

randomly and keep them seret the

lients have di�erent shares for di�erent time frames, so the information they give visiting the

server S

j

is di�erent. Hene all information olleted during previous visits is not onsistent

with the urrent information and the oalition of orrupt servers annot use it.

Let us onsider the value p

(t)

e'(j)

= 〈
(t)

'(G);e'(j)

; �

T 〉. Assume that the group of lients D ∈

� ∗�
C

helps S

j

to ompute his proof. It is easy to prove (see [6, 7℄ or [15, Theorem 2℄) that

from the point of view of the lients in D, the information 

(t)

'(D);e'(j)

an be onsistent with

any seret matrix

e

R

(t)

. So, the lients in D have no information about the seret matrix R

(t)

and hene about the value 

(t)

'(G);e'(j)

for some G ∈ �.

Finally, onsider the value ep

(t)

e'(j)

= 〈N
e'(j)

; (R

(t)

)

1

〉. The oalition B

2

=∈ �

s

an try to

guess (R

(t)

)

1

or, if there is a linear dependene between the row-vetors N

e'(j)

for j ∈ B

2

, to

ompute ep

(t)

e'(j)

provided that they already know all values ep

(t)

e'(j

1

)

for j

1

∈ B

2

\ {j}. Consider
the seond possibility for a server S

j

whih is visited only by lients D ∈ � ∗�
C

. We an

prove a stronger requirement in addition to the requirements of De�nition 3.1.

De�nition 4.2 An (n; k; �) metering sheme realizing the aess strutures (�;�), �

S

and

orrupt set of lients �

C

is a protool to measure the interation between n lients C
1

; : : : ; C
n

with aess struture (�;�) and k servers S

1

; : : : ; S

k

with aess struture �

S

during � time

frames in suh a way that the following properties are satis�ed:

1. - 3. As in De�nition 3.1

4. Let B

2

be a oalition of orrupt servers, i.e., B

2

=∈ �

S

and let B

1

be a oalition of

orrupt lients, i.e., B

1

∈ �

C

. Assume that in some time frame t the �xed server in the

oalition (e.g. S

j

and j ∈ B

2

) has been visited by a subset of forbidden lients B

3

, i.e.,

B

3

∈ �. Assume that in the same time frame t eah other server in the oalition B

2

has

been visited by a subset of quali�ed lients B

4

, i.e., B

4

∈ �. Then the servers in the oalition

B

2

\ {j} are able to ompute their proofs for time frame t, but they are unable to \help" the

server S

j

with the omputation of its proofs, even if they are helped by the orrupt lients in

B

1

.

Even if all the servers in the orrupted oalition B

2

, exept S

j

, have been visited by a quali�ed

subset of lients B

4

during that time frame (i.e., they are able to ompute their proofs), S

j

annot ompute its proofs by �nding a linear ombination of their proofs p

(t)

e'(j

1

)

for j

1

∈

B

2

\ {j}. This is true sine B

2

is not in �

S

and by requirement (i) of the Conjeture there

is no linear ombination between the row vetors N

e'(j

1

)

for j

1

∈ B

2

\ {j} and N

e'(j)

. Hene

Property 4 of De�nition 4.2 also holds.

4.4 EÆieny of the Sheme

Let |F| = q and denote by dimE

i

the dimension of the vetor spae generated by the vetors

M

'(i)

of lient C
i

over F, i.e., dimE
i

= |'(i)|. We denote by E

0

the set of serets and

by dimE

0

the dimension of E

0

. It is well known that the information rate of a LSSS is

� = dimE

0

=(max

1≤i≤ndimEi

) and this rate is optimal (e.g. � = 1) in the threshold ase.

7



Assume that the matrixM (built by means of an MSP) has a maximum possible information

rate for the given aess struture �: In order to be able to ompare our result with the result

of Blundo et al. in [3℄ we need to onsider �

S

to be a threshold (r; k) aess struture. In

this ase the matrix N is a (k; r)-Vandermonde matrix (i.e., em = k,

e

d = r and

e

 , e' are

bijetions).

In [3℄ the audit ageny broadasts two types of publi information: one is the linear

mappingM

�

that enables the lients in � ∈ � to ompute the seret. The seond is the linear

mapping �

t

j

, i.e., the numbers �

t

j;i

for j = 1; : : : ; k; i = 1; : : : ; r� ; and t = 1; : : : ; �:

The amount of information that a lient C
i

reeives from the audit ageny during the

initialization phase (i.e., the shares of the lient) is equal to r � log(q) dimE

i

, whih is the

same as in [3℄.

The amount of information that a lient sends to a server during a visit is equal to

log(q) dimE

i

, whih is again the same as in [3℄.

In our sheme the publi information broadast by audit ageny A given by the matries

M and N is equal to d log(q)

P

n

i=1

dimE

i

= m d log(q) and k r log(q), respetively. Note

also that in order to perform their duties the lients need to know only the matrix N , and

the servers need to know only the matrix M .

On the other hand the amount of broadast information in [3℄ is the linear mapping M

�

,

whih orresponds to our matrix M , and the numbers �

t

j;i

from the seond linear map �

t

j

.

Hene the amount of information for the seond mapping is �

2

k r log(q): Note also that both

the lients and the servers need to know these numbers �

t

j;i

.

Therefore our sheme is more eÆient w.r.t. the ommuniation omplexity ompared

to the sheme proposed in [3℄, sine it broadasts less (k r log(q) v.s. �

2

k r log(q)) publi

information to the lients and servers. Another onsequenes is that the memory storage

required in our sheme is smaller than the sheme of Blundo et al. [3℄ sheme.

5 Conlusions and Open Problem

Earlier works on this topi onsidered general aess strutures for lients and threshold

aess struture for servers. In this paper we propose a model for metering shemes with fully

general aess struture { for lients, orrupted lients and servers. The sheme is simpler,

with a more eÆient ommuniation omplexity and redued memory requirements ompared

to earlier works. Moreover, we prove that it satis�es stronger seurity requirements.

There is still an open problem: an we prove the existene of a \speial" matrix N for any

aess struture? It is well known [7℄ that any non-zero vetor an be used as a target vetor

in the MSP. So, the question is whether we an build a matrix with a zero target vetor. We

an restate the onjeture as follows:

Conjeture

′
: A \speial" matrix N is said to ompute a generalized aess struture � when

Ker(N

T

'(G)

) 6= ∅ if and only if G is a member of �.
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Appendix

Toy Example

In order to give to the reader a better idea of the protool, we will onsider the following

example: let F = GF (2) and let onsider the aess strutures �

−
= {123; 145; 245; 235; 135},

(�∗�


)

+

= {124; 125; 134; 234; 345} and �

−
S

= {12; 23; 34}, �+

S

= {14; 13; 24}. Let the publi
matries M and N and the seret random matrix R (i.e., � = t = 1) be as follows:

M =

0

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 1 1

0 0 1 0 1

0 0 0 0 1

1 0 1 1 1

1 1 1 1 1

0 1 0 0 0

1 1 0 1 1

0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

N =

0

B

B

B

B

B

B

�

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

1

C

C

C

C

C

C

A

R =

0

B

B

B

B

�

a

1

b

1



1

a

2

b

2



2

a

3

b

3



3

a

4

b

4



4

a

5

b

5



5

1

C

C

C

C

A

The ageny gives to eah lient the orresponding row vetors:

v

'(1)

=

�

a

4

+ a

5

|b
4

+ b

5

|
4

+ 

5

�

, v

'(2)

=

�

a

3

+ a

5

a

5

�

�

�

�

b

3

+ b

5

b

5

�

�

�

�



3

+ 

5



5

�

,

v

'(3)

=

�

a

1

+ a

3

+ a

4

+ a

5

a

1

+ a

2

+ a

3

+ a

4

+ a

5

�

�

�

�

b

1

+ b

3

+ b

4

+ b

5

b

1

+ b

2

+ b

3

+ b

4

+ b

5

�

�

�

�



1

+ 

3

+ 

4

+ 

5



1

+ 

2

+ 

3

+ 

4

+ 

5

�

,

v

'(4)

=

�

a

2

|b
2

|
2

�

,

v

'(5)

=

�

a

1

+ a

2

+ a

4

+ a

5

a

3

+ a

4

�

�

�

�

b

1

+ b

2

+ b

4

+ b

5

b

3

+ b

4

�

�

�

�



1

+ 

2

+ 

4

+ 

5



3

+ 

4

�

Let the set of quali�ed lients C
1

; C
4

; C
5

visits the server S

3

and the set of forbidden lients

C
1

; C
2

; C
4

visits the servers S

1

; S

2

. The server S

1

reeives the following values from the lients:



'(1);e'(1)

= (a

4

+ a

5

), 

'(2);e'(1)

=

�

a

3

+ a

5

a

5

�

, 

'(4);e'(1)

= (a

2

).

Respetively, for the server S

2

the values are as follows:



'(1);e'(2)

= (a

4

+ a

5

|b
4

+ b

5

), 

'(2);e'(2)

=

�

a

3

+ a

5

a

5

�

�

�

�

b

3

+ b

5

b

5

�

,



'(4);e'(2)

= (a

2

|b
2

).

And for the server S

3

:



'(1);e'(3)

= (b

4

+ b

5

|
4

+ 

5

), 

'(4);e'(3)

= (b

2

|
2

),



'(5);e'(3)

=

�

b

1

+ b

2

+ b

4

+ b

5

b

3

+ b

4

�

�

�

�



1

+ 

2

+ 

4

+ 

5



3

+ 

4

�

.

Sine the server S

3

is visited by the set of quali�ed lients, it omputes � = (1; 1; 1; 0)

suh that M

T

'(1;4;5)

� = " and alulates his proof p

3

=

�

b

1



1

�

.

Finally, the audit ageny veri�es that ep

3

=

�

b

1



1

�

= p

3

. Note that if S

1

and S

2

are

orrupted servers they annot (even together) alulate their proofs ep

1

= (a

1

), ep

2

=

�

a

1

b

1

�

,

respetively. Even more, if one of the orrupted servers is S

3

, whih is visited by the set of

quali�ed lients, the other bad server (e.g. S

1

) is not able to ompute its proof (by Property 4

of De�nition 4.2).
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