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Abstra
t

In order to de
ide on advertisement fees for web servers, Naor and Pinkas introdu
ed

metering s
hemes se
ure against 
oalition of 
orrupt servers and 
lients. In their s
hemes

any server is able to 
onstru
t a proof to be sent to an audit agen
y if and only if it has

been visited by at least a 
ertain number of 
lients. Several resear
hers have generalized

the idea of Naor and Pinkas: �rst metering s
heme with pri
ing and dynami
 multi-

threshold metering s
hemes have been proposed; later the solution has been extended to

allow for general a

ess stru
tures and an approa
h on linear algebra has been introdu
ed.

In this paper we are interested in the eÆ
ien
y of applying general a

ess stru
tures

and linear algebra te
hniques to metering s
hemes. We propose a new model 
onsidering

general a

ess stru
tures for 
lients, 
orrupted 
lients and servers. Then we bind the a

ess

stru
tures for 
lients and 
orrupted 
lients into one. We propose a new metering s
heme,

whi
h is more eÆ
ient w.r.t. 
ommuni
ation 
omplexity and memory requirements than

the s
heme of Blundo et al.

1 Introdu
tion

A metering s
heme is a proto
ol to measure the intera
tion between 
lients and servers in a

network. The time is divided into time frames and the audit agen
y is interested in 
ounting

the number of visits re
eived by ea
h server in any time frame. Metering s
hemes are useful

in order to de
ide the amount of money to be paid to web servers hosting adds, as well as

in appli
ations su
h as network a

ounting and ele
troni
 
oupon management [14℄. Franklin

and Malkhi [9℄ were the �rst to 
onsider a rigorous approa
h to the metering problem. Their

solutions only o�er \lightweight se
urity", whi
h 
annot be applied if there are strong 
om-

mer
ial interests to falsify the metering result. Naor and Pinkas [14℄, subsequently introdu
ed

metering s
hemes se
ure against fraud attempts by servers and 
lients. In their s
heme any

server whi
h has been visited by any set of r or more 
lients in a time frame, where r is a

�xed threshold, is able to 
ompute a proof, whereas any server re
eiving visits from less than

r 
lients has no information about the proof. In this threshold 
ase s
enario for both 
lients
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and servers, the threshold refers to the maximum number of 
olluding players (server, 
lients).

In order to have a more 
exible payment system Masu

i and Stinson [1, 12℄ introdu
ed me-

tering s
heme with pri
ing. To be able to measure the number of visits in any granularity

Blundo et al. in [2℄ introdu
ed dynami
 multi-threshold metering s
hemes whi
h are metering

s
hemes with asso
iated threshold for any server and for any time frame. In [13℄, Masu

i

and Stinson 
onsider the general a

ess stru
tures for the 
lients and a threshold s
heme for

servers, where the a

ess stru
ture is the family of all subsets of 
lients enabling a server

to 
ompute its proof. They proved also a lower bound on the 
ommuni
ation 
omplexity of

metering s
hemes realizing su
h a

ess stru
tures. A linear algebra approa
h (i.e., appli
able

for any general monotone a

ess stru
ture) to metering s
hemes is presented in [3℄ by Blundo

et al. More spe
i�
ally, given any a

ess stru
ture for the 
lients, they propose a method

to 
onstru
t a metering s
heme realizing it from any linear se
ret sharing s
heme with the

same a

ess stru
ture. Besides, they proved some properties about the relationship between

metering s
hemes and se
ret sharing s
hemes. They also present some new bounds on the

information distributed to 
lients and servers in a metering s
heme. The main di�eren
e

between the s
heme in [3℄ and the s
heme in [13℄ is that the se
ond one is not optimal with

respe
t to the 
ommuni
ation 
omplexity.

We will 
onsider only metering s
hemes that provide information theoreti
 se
urity. Com-

putationally se
ure metering s
heme based on the De
isional Di�e-Hellman Assumption have

been presented in [14℄. Sin
e we want to prote
t against general adversary stru
tures, we

need to start from general Linear Se
ret Sharing S
hemes (rather than from Shamir's poly-

nomial s
heme, [16℄). It is well known that LSSSs are in natural 1 − 1 
orresponden
e with

Monotone Span Program MSP, introdu
ed by Kar
hmer and Wigderson [11℄. MSPs 
an be

viewed as a linear algebra model for 
omputing a monotone (a

ess) fun
tion. Moreover, su
h

an MSP always exists be
ause MSPs 
an 
ompute any monotone fun
tion. Threshold-based

se
ret sharing and metering make sense only in environment where one assumes that trust

is \uniformly distributed" over the players (
lients and servers): any subset of players of a


ertain 
ardinality is equally likely (or unlikely) to 
heat. In many natural s
enarios this

assumption is not very realisti
; and moreover, in more realisti
 model no threshold solution

will work. Why do we need to introdu
e a general a

ess stru
ture on the set of servers? In

the model proposed by Naor and Pinkas the audit agen
y deals with servers, but in fa
t the

servers are owned by 
ompanies, where ea
h 
ompany posses a di�erent number of servers. In

this s
enario the uniformly distributed trust on the set of servers is not very realisti
 either.

In this paper we �rst distinguish between three types of general a

ess stru
tures: for


lients, 
orrupted 
lients and servers. The a

ess stru
ture for 
lients 
onsists of quali�ed

and forbidden sets of 
lients, i.e., sets whi
h allow or disallow the server visited by them in

a given time frame to 
ompute its proof. The 
orrupted 
lients a

ess stru
ture gives us a

possible distribution for the 
orrupted 
lients. These two a

ess stru
tures are bound into

one a

ess stru
ture in Lemma 3.3. A general a

ess stru
ture is 
onsidered for the set of

servers. In the previous papers all authors 
onsidered only the threshold 
ase for them. We

propose simpler metering s
heme more eÆ
ient w.r.t. 
ommuni
ation 
omplexity and memory

requirements than the s
heme proposed by Blundo et al. [3℄. The di�eren
e appears in the

publi
 broad
ast information to 
lients and servers, whi
h is in our s
heme smaller. As Naor

and Pinkas [14℄ pointed out it would be ni
e to dete
t illegal behavior of 
lients, i.e., verifying

the shares re
eived from 
lients. This issue is not 
onsidered in the paper, note however that

it is ignored in [1, 2, 3, 12, 13℄ as well.

The paper is organized as follows: In Se
t. 2 we present one notation to des
ribe the
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metering s
hemes. In Se
t. 3 we study the relationship between metering s
hemes and general

a

ess stru
tures for 
lients, 
orrupt 
lients and servers. In Se
t. 4 we �rst present a linear

se
ret sharing s
heme and a linear algebra approa
h to generalized a

ess stru
tures. Then

this approa
h is used to design a metering s
heme. Finally, we examine our s
heme for

eÆ
ien
y and 
orre
tness.

2 Preliminaries

A se
ret sharing s
heme (SSS) allows to share a se
ret among several parti
ipants, su
h that

only quali�ed subset of them 
an re
over the se
ret pooling together their information. In

perfe
t SSSs subsets of parti
ipants that are not enabled to re
over the se
ret have absolutely

no information about it. Se
ret sharing has been proposed independently by Shamir [16℄ and

Blakley [4℄. The �rst se
ret sharing s
hemes 
onsidered were (r; k)-threshold s
hemes, 
onsider

a s
heme with k parti
ipants, in whi
h only groups of more than r parti
ipants (r ≤ k) 
an

re
onstru
t the se
ret. Su
h a s
heme is 
alled an (r; k) threshold s
heme. Bri
kell points

out in [5℄ how the linear algebrai
 view leads naturally to a wider 
lass of se
ret sharing

s
hemes that are not ne
essarily of threshold type. This have later been generalized to all

possible so-
alled monotone a

ess stru
tures by Kar
hmer and Wigderson [11℄ based on a

linear algebrai
 
omputational devi
e 
alled Monotone Span Program.

As usual we 
all the groups whi
h are allowed to re
onstru
t the se
ret quali�ed, and the

groups who should not be able to obtain any information about the se
ret forbidden. The


olle
tion of all quali�ed groups is denoted by �, and the 
olle
tion of all forbidden groups is

denoted by �. In fa
t, � is monotone in
reasing and � is monotone de
reasing. The tuple

(�;�) is 
alled an a

ess stru
ture if � ∩ � = ∅. If � ∪ � = 2

P

, where P is the set of

parti
ipants, then we say that (�;�) is 
omplete and we denote it by �. Let F be a �nite

�eld. We will 
onsider a general monotone a

ess stru
ture (�;�), whi
h des
ribes subsets of

parti
ipants that are quali�ed to re
over the se
ret s ∈ F in the set of possible se
ret values.

For an arbitrary matrix M over F, with m rows labelled by 1; : : : ;m and for an arbitrary

non-empty subset A of {1; : : : ;m}, let M
A

denote the matrix obtained by keeping only those

rows i with i ∈ A. Consider the set of row-ve
tors v

i

1

; : : : ; v

i

k

and let A = {i
1

; : : : ; i

k

} be

the set of indi
es, then we denote by v

A

the matrix 
onsisting of rows v

i

1

; : : : ; v

i

k

. Instead of

〈"; v
i

〉 for i ∈ A we will write 〈"; v
A

〉.

3 Metering s
hemes for General A

ess Stru
tures

Consider the following s
enario: there are n 
lients, k servers and an audit agen
y A whi
h

is interested in 
ounting the 
lient visits to the servers in � di�erent time frames. For any

i = 1; : : : ; n and j = 1; : : : ; k, we denote by C
i

the i−th 
lient and by S

j

the j−th server.

We 
onsider an a

ess stru
ture (�;�) of quali�ed and forbidden groups for the set of


lients {C
1

; : : : ; C
n

}.
In a metering s
heme realizing the 
lient a

ess stru
ture (�;�) any server whi
h has been

visited by at least a quali�ed subset of 
lients in � in a �xed time frame is able to provide

the audit agen
y with a proof for the visits it has re
eived.

A se
ond (
omplete) a

ess stru
ture �

S


an be 
onsidered for the set of servers {S
1

; : : : ; S

k

}.
We 
all the set of subsets of servers 
orrupt if they are not in �

S

. We also denote he set of
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possible subsets of 
orrupt 
lients by �

C

, note that �

C

is monotone de
reasing. It is obvious

that � ∩�

C

= ∅.
A 
orrupt server 
an be assisted by 
orrupt 
lients and other 
orrupt servers in 
omputing

its proof without re
eiving visits from quali�ed subsets. A 
orrupt 
lient 
an donate to a


orrupt server all the private information re
eived by the audit agen
y during the initialization

phase. A 
orrupt server 
an donate to another 
orrupt server the private information re
eived

from 
lients in previous time frames and in the a
tual time frame.

Several phases 
an be de�ned in the Metering s
heme. We will follow the model of [3℄:

a) There is an initialization phase in whi
h the audit agen
y A 
hooses the a

ess stru
-

tures, 
omputes the 
orresponding matri
es, makes them publi
 and distributes some

information to ea
h 
lient C
i

through a private 
hannel. For any i = 1; : : : ; n we de-

note by v

(t)

'(i)

the shares that the audit agen
y A gives to the 
lient C
i

for time frames

t = 1; : : : ; � .

b) A regular operation 
onsists of a 
lient visit to a server during a time frame. During

su
h a visit the 
lient gives to the visited server a pie
e of information whi
h depends

on the private information, on the identity of the server and on the time frame during

whi
h the 
lient visits the server. For any i = 1; : : : ; n; j = 1; : : : ; k and t = 1; : : : ; � ,

we denote by 


(t)

'(i);e'(j)

the information that the 
lient C
i

sends to the server S

j

when

visiting him in time frame t.


) During the proof 
omputation phase any server S

j

whi
h has been visited by at least

a subset of quali�ed 
lients in time frame t is able to 
ompute its proof. For any

j = 1; : : : ; k and t = 1; : : : ; � we denote by p

(t)

e'(j)

the proof 
omputed by the server S

j

at

time t when it has been visited by quali�ed set of 
lients.

d) During the proof veri�
ation phase the audit agen
y A veri�es the proofs re
eived by

servers and de
ides on the amount of money to be paid to servers. If the proof re
eived

from a server at the end of a time frame is 
orre
t, then A pays the server for its servi
es.

De�nition 3.1 [3℄ An (n; k; �) metering s
heme realizing the a

ess stru
tures (�;�), �

S

and


orrupt set of 
lients �

C

is a proto
ol to measure the intera
tion between n 
lients C
1

; : : : ; C
n

with a

ess stru
ture (�;�) and k servers S

1

; : : : ; S

k

with a

ess stru
ture �

S

during � time

frames in su
h a way that the following properties are satis�ed:

1. For any time frame t any 
lient is able to 
ompute the information needed to visit any

server.

2. For any time frame t any server S

j

whi
h has been visited by a quali�ed subset of 
lients

G ∈ � in time frame t 
an 
ompute its proof for t.

3. Let B

2

be a 
oalition of 
orrupt servers, i.e., B

2

=∈ �

S

and let B

1

be a 
oalition of


orrupt 
lients, i.e., B

1

∈ �

C

. Assume that in some time frame t ea
h server in the 
oalition

has been visited by a subset of forbidden 
lients B

3

, i.e., B

3

∈ �. Then the servers in the


oalition B

2

have no information about their proofs for time frame t, even if they are helped

by the 
orrupt 
lients in B

1

.

In [15℄ we introdu
ed an operation for the a

ess stru
ture, whi
h generalize the notion of a

Q

2

(Q

3

) adversary stru
ture introdu
ed by Hirt and Maurer [10℄. We will now expand this

de�nition.
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De�nition 3.2 For the a

ess stru
ture (�;�) and a monotone de
reasing set �

C

we de�ne

the operation ∗ as follows: � ∗�
C

= {A = A

1

∪A
2

;A

1

∈ �; A

2

∈ �

C

}.

The same operation for monotone stru
tures is de�ned by Fehr and Maurer in [8℄, whi
h they


all element-wise union.

In order to build an (n; k; �) metering s
heme realizing the a

ess stru
tures (�;�), �

S

and 
orrupt set of 
lients �

C

, we 
onsider the tuple (�;� ∗�
C

). It is obvious that � ∗�
C

is monotone de
reasing.

Lemma 3.3 An (n; k; �) metering s
heme realizing the a

ess stru
tures (�;�), �

S

and


orrupt set of 
lients �

C

exists if and only if (�;� ∗ �

C

) is an a

ess stru
ture (i.e.,

� ∩� ∗�
C

= ∅).

In the next se
tion we will present a metering s
heme satisfying the 
onditions of Lemma 3.3.

We will 
all su
h s
hemes (n; k; �) metering s
hemes realizing the a

ess stru
tures (�;�∗�
C

)

and �

S

.

4 Linear SSS and Metering S
hemes

4.1 LSSS and MSP

As mentioned earlier, MSPs are essentially equivalent to LSSSs.

De�nition 4.1 [11, 6℄ The quadruple M = (F;M; ";  ) is 
alled a monotone span program,

where F is a �nite �eld, M is a matrix (with m rows and d ≤ m 
olumns) over F,  :

{1; : : : ;m} → {1; : : : ; n} is a surje
tive fun
tion and " is a �xed ve
tor, 
alled target ve
tor,

e.g. the 
olumn ve
tor (1; 0; :::; 0) ∈ F
d

: The size of M is the number m of rows.

Here  labels ea
h row with a number from [1; : : : ;m℄ 
orresponding to a �xed player, so we


an think of ea
h player as being the \owner" of one or more rows. And for ea
h player we


onsider a fun
tion ' whi
h gives the set of rows owned by the player. In some sense ' is

inverse of  . It is well known that the number d of 
olumns 
an be 
hosen to be smaller than

the number m of rows, without 
hanging the a

ess stru
ture that is 
omputed by an MSP.

An MSP is said to 
ompute an a

ess stru
ture � when " ∈ Im(M

T

'(G)

) if and only if G is a

member of �. It is well known that the ve
tor " =∈ Im(M

T

A

) if and only if there exists z ∈ F
d

su
h that M

A

z = 0 and z

1

= 1. Now we will 
onsider any a

ess stru
ture, as long as it

admits a linear se
ret sharing s
heme.

4.2 Metering S
heme for General A

ess Stru
ture

Let M be the matrix obtained from an MSP (De�nition 4.1) 
omputing the a

ess stru
ture

(�;� ∗�
C

).

Conje
ture: For any generalized 
omplete a

ess stru
ture � there exists a \spe
ial"

matrix N with the following property:

(i) G =∈ � if and only if the rows in N

'(G)

are linearly independent.

Note that if � is a (r; k) threshold a

ess stru
ture with a (k; r)-Vandermonde matrix the

requirement (i) is satis�ed. In some 
ases the matrix N 
an be derived from the matrix M

by removing the �rst 
olumn in M , but this 
annot be used as a general rule.
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For the a

ess stru
ture �

S

we 
onsider su
h a kind of \spe
ial" matrix N as in the


onje
ture above. Analogously to the MSP we will denote by

e

 the surje
tive fun
tion whi
h

labels ea
h row of N with a 
orresponding player, and e' is the \inverse" of

e

 :

4.2.1 Initialization:

The audit agen
y A 
hooses a

ess stru
tures (�;�∗�
C

) and �

S

. Using an MSP these a

ess

stru
tures are 
onne
ted with matri
es M and N . Let M have m rows and d 
olumns and N

have em rows and

e

d 
olumns. These matri
es are made publi
.

Next A 
hooses � random d × e

d matri
es R

(t)

. We 
an 
onsider them as one \big" d� × e

d

matrix R, whi
h is kept se
ret.

Hen
e A gives to ea
h 
lient C
i

row ve
tors v

(t)

'(i)

= M

'(i)

R

(t)

for t = 1; : : : ; � . These are the

shares of 
lient C
i

in time frame t.

4.2.2 Regular Operation:

When a 
lient C
i

visits a server S

j

during a time frame t, C
i


omputes the values 


(t)

'(i);e'(j)

=

N

e'(j)

(v

(t)

'(i)

)

T

and sends them to the server S

j

.

4.2.3 Proof Computation:

Assume that the server S

j

has been visited by a quali�ed set G ∈ � of 
lients during a time

frame t. Thus, it 
omputes � s.t. M

T

'(G)

� = ". With � it 
omputes p

(t)

e'(j)

= 〈

(t)

'(G);e'(j)

; �

T 〉
whi
h are the desired proofs and sends them to A.

4.2.4 Proof Veri�
ation:

When the audit agen
y A re
eives these values p

(t)

e'(j)

it 
an easily verify if this is the 
orre
t

proof for the server S

j

for time t. A 
al
ulates the value ep

(t)

e'(j)

= 〈N
'(j)

; (R

(t)

)

1

〉, (by (R

(t)

)

1

we denote the �rst row of matrix R

(t)

) and it 
ompares whether p

(t)

e'(j)

= ep

(t)

e'(j)

. We will prove

that if the server S

j

has been visited by a quali�ed set G ∈ � of 
lients during a time frame

t the equality holds.

p

(t)

e'(j)

= 〈

(t)

'(G);e'(j)

; �

T 〉 = 〈N
e'(j)

(v

(t)

'(G)

)

T

; �

T 〉

= 〈N
e'(j)

(M

'(G)

R

(t)

)

T

; �

T 〉 = 〈N
e'(j)

(R

(t)

)

T

M

T

'(G)

; �

T 〉

= 〈N
e'(j)

(R

(t)

)

T

; �

T

M

'(G)

〉 = 〈N
e'(j)

(R

(t)

)

T

; "

T 〉

= 〈N
e'(j)

; "

T

R

(t)〉 = 〈N
e'(j)

; (R

(t)

)

1

〉

= ep

(t)

e'(j)

:

4.3 Analysis of the S
heme

It is obvious that Property 1 and Property 2 of De�nition 3.1 are satis�ed. Now we prove

that Property 3 is satis�ed. We 
onsider the worst possible 
ase, in whi
h a subset of 
lients

D ∈ � ∗�
C

helps a 
oalition of 
orrupt servers B

2

=∈ �

S

in 
omputing their proofs for time

frame � . The total information known to the 
oalition of 
orrupt servers is 
onstituted by

6



the maximum information 
olle
ted in time frames 1; : : : ; � −1. That is, we assume that ea
h

server in the 
oalition has been visited by all 
lients C
1

; : : : ; C
n

in these time frames plus the

information re
eived in time frame � .

Sin
e the audit agen
y A 
hooses the matri
es R

(t)

randomly and keep them se
ret the


lients have di�erent shares for di�erent time frames, so the information they give visiting the

server S

j

is di�erent. Hen
e all information 
olle
ted during previous visits is not 
onsistent

with the 
urrent information and the 
oalition of 
orrupt servers 
annot use it.

Let us 
onsider the value p

(t)

e'(j)

= 〈

(t)

'(G);e'(j)

; �

T 〉. Assume that the group of 
lients D ∈

� ∗�
C

helps S

j

to 
ompute his proof. It is easy to prove (see [6, 7℄ or [15, Theorem 2℄) that

from the point of view of the 
lients in D, the information 


(t)

'(D);e'(j)


an be 
onsistent with

any se
ret matrix

e

R

(t)

. So, the 
lients in D have no information about the se
ret matrix R

(t)

and hen
e about the value 


(t)

'(G);e'(j)

for some G ∈ �.

Finally, 
onsider the value ep

(t)

e'(j)

= 〈N
e'(j)

; (R

(t)

)

1

〉. The 
oalition B

2

=∈ �

s


an try to

guess (R

(t)

)

1

or, if there is a linear dependen
e between the row-ve
tors N

e'(j)

for j ∈ B

2

, to


ompute ep

(t)

e'(j)

provided that they already know all values ep

(t)

e'(j

1

)

for j

1

∈ B

2

\ {j}. Consider
the se
ond possibility for a server S

j

whi
h is visited only by 
lients D ∈ � ∗�
C

. We 
an

prove a stronger requirement in addition to the requirements of De�nition 3.1.

De�nition 4.2 An (n; k; �) metering s
heme realizing the a

ess stru
tures (�;�), �

S

and


orrupt set of 
lients �

C

is a proto
ol to measure the intera
tion between n 
lients C
1

; : : : ; C
n

with a

ess stru
ture (�;�) and k servers S

1

; : : : ; S

k

with a

ess stru
ture �

S

during � time

frames in su
h a way that the following properties are satis�ed:

1. - 3. As in De�nition 3.1

4. Let B

2

be a 
oalition of 
orrupt servers, i.e., B

2

=∈ �

S

and let B

1

be a 
oalition of


orrupt 
lients, i.e., B

1

∈ �

C

. Assume that in some time frame t the �xed server in the


oalition (e.g. S

j

and j ∈ B

2

) has been visited by a subset of forbidden 
lients B

3

, i.e.,

B

3

∈ �. Assume that in the same time frame t ea
h other server in the 
oalition B

2

has

been visited by a subset of quali�ed 
lients B

4

, i.e., B

4

∈ �. Then the servers in the 
oalition

B

2

\ {j} are able to 
ompute their proofs for time frame t, but they are unable to \help" the

server S

j

with the 
omputation of its proofs, even if they are helped by the 
orrupt 
lients in

B

1

.

Even if all the servers in the 
orrupted 
oalition B

2

, ex
ept S

j

, have been visited by a quali�ed

subset of 
lients B

4

during that time frame (i.e., they are able to 
ompute their proofs), S

j


annot 
ompute its proofs by �nding a linear 
ombination of their proofs p

(t)

e'(j

1

)

for j

1

∈

B

2

\ {j}. This is true sin
e B

2

is not in �

S

and by requirement (i) of the Conje
ture there

is no linear 
ombination between the row ve
tors N

e'(j

1

)

for j

1

∈ B

2

\ {j} and N

e'(j)

. Hen
e

Property 4 of De�nition 4.2 also holds.

4.4 EÆ
ien
y of the S
heme

Let |F| = q and denote by dimE

i

the dimension of the ve
tor spa
e generated by the ve
tors

M

'(i)

of 
lient C
i

over F, i.e., dimE
i

= |'(i)|. We denote by E

0

the set of se
rets and

by dimE

0

the dimension of E

0

. It is well known that the information rate of a LSSS is

� = dimE

0

=(max

1≤i≤ndimEi

) and this rate is optimal (e.g. � = 1) in the threshold 
ase.

7



Assume that the matrixM (built by means of an MSP) has a maximum possible information

rate for the given a

ess stru
ture �: In order to be able to 
ompare our result with the result

of Blundo et al. in [3℄ we need to 
onsider �

S

to be a threshold (r; k) a

ess stru
ture. In

this 
ase the matrix N is a (k; r)-Vandermonde matrix (i.e., em = k,

e

d = r and

e

 , e' are

bije
tions).

In [3℄ the audit agen
y broad
asts two types of publi
 information: one is the linear

mappingM

�

that enables the 
lients in � ∈ � to 
ompute the se
ret. The se
ond is the linear

mapping �

t

j

, i.e., the numbers �

t

j;i

for j = 1; : : : ; k; i = 1; : : : ; r� ; and t = 1; : : : ; �:

The amount of information that a 
lient C
i

re
eives from the audit agen
y during the

initialization phase (i.e., the shares of the 
lient) is equal to r � log(q) dimE

i

, whi
h is the

same as in [3℄.

The amount of information that a 
lient sends to a server during a visit is equal to

log(q) dimE

i

, whi
h is again the same as in [3℄.

In our s
heme the publi
 information broad
ast by audit agen
y A given by the matri
es

M and N is equal to d log(q)

P

n

i=1

dimE

i

= m d log(q) and k r log(q), respe
tively. Note

also that in order to perform their duties the 
lients need to know only the matrix N , and

the servers need to know only the matrix M .

On the other hand the amount of broad
ast information in [3℄ is the linear mapping M

�

,

whi
h 
orresponds to our matrix M , and the numbers �

t

j;i

from the se
ond linear map �

t

j

.

Hen
e the amount of information for the se
ond mapping is �

2

k r log(q): Note also that both

the 
lients and the servers need to know these numbers �

t

j;i

.

Therefore our s
heme is more eÆ
ient w.r.t. the 
ommuni
ation 
omplexity 
ompared

to the s
heme proposed in [3℄, sin
e it broad
asts less (k r log(q) v.s. �

2

k r log(q)) publi


information to the 
lients and servers. Another 
onsequen
es is that the memory storage

required in our s
heme is smaller than the s
heme of Blundo et al. [3℄ s
heme.

5 Con
lusions and Open Problem

Earlier works on this topi
 
onsidered general a

ess stru
tures for 
lients and threshold

a

ess stru
ture for servers. In this paper we propose a model for metering s
hemes with fully

general a

ess stru
ture { for 
lients, 
orrupted 
lients and servers. The s
heme is simpler,

with a more eÆ
ient 
ommuni
ation 
omplexity and redu
ed memory requirements 
ompared

to earlier works. Moreover, we prove that it satis�es stronger se
urity requirements.

There is still an open problem: 
an we prove the existen
e of a \spe
ial" matrix N for any

a

ess stru
ture? It is well known [7℄ that any non-zero ve
tor 
an be used as a target ve
tor

in the MSP. So, the question is whether we 
an build a matrix with a zero target ve
tor. We


an restate the 
onje
ture as follows:

Conje
ture

′
: A \spe
ial" matrix N is said to 
ompute a generalized a

ess stru
ture � when

Ker(N

T

'(G)

) 6= ∅ if and only if G is a member of �.
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Appendix

Toy Example

In order to give to the reader a better idea of the proto
ol, we will 
onsider the following

example: let F = GF (2) and let 
onsider the a

ess stru
tures �

−
= {123; 145; 245; 235; 135},

(�∗�



)

+

= {124; 125; 134; 234; 345} and �

−
S

= {12; 23; 34}, �+

S

= {14; 13; 24}. Let the publi

matri
es M and N and the se
ret random matrix R (i.e., � = t = 1) be as follows:

M =

0

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 1 1

0 0 1 0 1

0 0 0 0 1

1 0 1 1 1

1 1 1 1 1

0 1 0 0 0

1 1 0 1 1

0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

N =

0

B

B

B

B

B

B

�

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

1

C

C

C

C

C

C

A

R =

0

B

B

B

B

�

a

1

b

1




1

a

2

b

2




2

a

3

b

3




3

a

4

b

4




4

a

5

b

5




5

1

C

C

C

C

A

The agen
y gives to ea
h 
lient the 
orresponding row ve
tors:

v

'(1)

=

�

a

4

+ a

5

|b
4

+ b

5

|

4

+ 


5

�

, v

'(2)

=

�

a

3

+ a

5

a

5

�

�

�

�

b

3

+ b

5

b

5

�

�

�

�




3

+ 


5




5

�

,

v

'(3)

=

�

a

1

+ a

3

+ a

4

+ a

5

a

1

+ a

2

+ a

3

+ a

4

+ a

5

�

�

�

�

b

1

+ b

3

+ b

4

+ b

5

b

1

+ b

2

+ b

3

+ b

4

+ b

5

�

�

�

�




1

+ 


3

+ 


4

+ 


5




1

+ 


2

+ 


3

+ 


4

+ 


5

�

,

v

'(4)

=

�

a

2

|b
2

|

2

�

,

v

'(5)

=

�

a

1

+ a

2

+ a

4

+ a

5

a

3

+ a

4

�

�

�

�

b

1

+ b

2

+ b

4

+ b

5

b

3

+ b

4

�

�

�

�




1

+ 


2

+ 


4

+ 


5




3

+ 


4

�

Let the set of quali�ed 
lients C
1

; C
4

; C
5

visits the server S

3

and the set of forbidden 
lients

C
1

; C
2

; C
4

visits the servers S

1

; S

2

. The server S

1

re
eives the following values from the 
lients:




'(1);e'(1)

= (a

4

+ a

5

), 


'(2);e'(1)

=

�

a

3

+ a

5

a

5

�

, 


'(4);e'(1)

= (a

2

).

Respe
tively, for the server S

2

the values are as follows:




'(1);e'(2)

= (a

4

+ a

5

|b
4

+ b

5

), 


'(2);e'(2)

=

�

a

3

+ a

5

a

5

�

�

�

�

b

3

+ b

5

b

5

�

,




'(4);e'(2)

= (a

2

|b
2

).

And for the server S

3

:




'(1);e'(3)

= (b

4

+ b

5

|

4

+ 


5

), 


'(4);e'(3)

= (b

2

|

2

),




'(5);e'(3)

=

�

b

1

+ b

2

+ b

4

+ b

5

b

3

+ b

4

�

�

�

�




1

+ 


2

+ 


4

+ 


5




3

+ 


4

�

.

Sin
e the server S

3

is visited by the set of quali�ed 
lients, it 
omputes � = (1; 1; 1; 0)

su
h that M

T

'(1;4;5)

� = " and 
al
ulates his proof p

3

=

�

b

1




1

�

.

Finally, the audit agen
y veri�es that ep

3

=

�

b

1




1

�

= p

3

. Note that if S

1

and S

2

are


orrupted servers they 
annot (even together) 
al
ulate their proofs ep

1

= (a

1

), ep

2

=

�

a

1

b

1

�

,

respe
tively. Even more, if one of the 
orrupted servers is S

3

, whi
h is visited by the set of

quali�ed 
lients, the other bad server (e.g. S

1

) is not able to 
ompute its proof (by Property 4

of De�nition 4.2).
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