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Abstrat. We present an algorithm that speeds exponentiation on

a general ellipti urve by an estimated 3.8% to 8.5% over the best

known general exponentiation methods when using aÆne oordi-

nates. This is ahieved by eliminating a �eld multipliation when

we ompute 2P + Q from given points P , Q on the urve. We

give appliations to simultaneous multiple exponentiation and to

the Ellipti Curve Method of fatorization. We show how this im-

provement together with another idea an speed the omputation

of the Weil and Tate pairings by up to 7:8%.

Keywords: ellipti urve ryptosystem, ellipti urve arithmeti, exponentiation,

ECM, pairing-based ryptosystem.

1. Introdution

This paper presents an algorithm whih an speed exponentiation on a

general ellipti urve, by doing some arithmeti di�erently. Exponentiation

on ellipti urves is used by ryptosystems and signature shemes based on

ellipti urves. Our algorithm saves an estimated 3:8% to 8:5% of the time

to perform an exponentiation on a general ellipti urve, when ompared

to the best-known general methods. This savings is important beause the

ratio of seurity level to omputation time and power required by a system

is an important fator when determining whether a system will be used in

a partiular ontext.

Our main ahievement is that we an eliminate a �eld multipliation

whenever we are given two points P , Q on an ellipti urve and need 2P +Q

(or 2P �Q) but not the intermediate results 2P and P +Q. This sequene

of operations is needed many times when, for example, left-to-right binary

exponentiation is used with a �xed or sliding window size.

Some algorithms for simultaneous multiple exponentiation alternate dou-

bling and addition steps, suh as when omputing k

1

P

1

+ k

2

P

2

+ k

3

P

3

from

given points P

1

, P

2

, and P

3

. Suh algorithms an use our improvement di-

retly. We give appliations of our tehnique to the Ellipti Curve Method

for fatoring and to speeding the evaluation of the Weil and Tate Pairings.

The paper is organized as follows. Setion 2 gives some bakground on

ellipti urves. Setion 3 gives a detailed version of our algorithm. Setion 4
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estimates our savings ompared to ordinary left-to-right exponentiation with

windowing. Setion 5 illustrates the improvement ahieved with an example.

It also desribes appliations to simultaneous multiple exponentiation and

the Ellipti Curve Method for fatoring. Setion 6 adapts our tehnique to

the Weil and Tate pairing algorithms. Setion 7 gives the pseudoode for

implementing the improvement, inluding abnormal ases.

2. Bakground

Ellipti urves are used for several kinds of ryptosystems inluding key

exhange protools and digital signature algorithms (see for example [IEEE℄).

If q is a prime or prime power, we let F

q

denote the �eld with q elements.

When gd(q; 6) = 1, an ellipti urve over the �eld F

q

is given by an equation

of the form

E

simple

: y

2

= x

3

+ ax+ b

with a; b in F

q

and 4a

3

+ 27b

2

6= 0. (See [Silverman, p. 48℄).

A more general urve equation, valid over a �eld of any harateristi, is

onsidered in setion 7. That ase subsumes the equation

E

2

: y

2

+ xy = x

3

+ ax

2

+ b

with a; b in F

q

and b 6= 0, whih is sometimes used when the �eld has

harateristi 2.

In all ases the group used when implementing the ryptosystem is the

group of points on the urve over F

q

. If represented in aÆne oordinates,

the points have the form: (x; y), where x and y are in F

q

and they satisfy

the equation of the urve, plus a distinguished point O (alled the point at

in�nity) whih ats as the identity for the group law. Throughout this paper

we work with aÆne oordinates for the points on the urve.

Points are added using a geometri group law whih an be expressed

algebraially through rational funtions involving x and y. Whenever two

points are added, forming P +Q, or a point is doubled, forming 2P , these

formulae are evaluated at the ost of some number of multipliations, squar-

ings, and divisions in the �eld. For example, using E

simple

, to double a point

in aÆne oordinates osts 1 multipliation, 2 squarings, and 1 division in the

�eld, not ounting multipliation by 2 or 3 [BSS, p. 58℄. To add two distint

points in aÆne oordinates osts 1 multipliation, 1 squaring, and 1 division

in the �eld. Performing a doubling and an addition 2P +Q osts 2 multipli-

ations, 3 squarings and 2 divisions if the points are added as (P + P ) +Q,

i.e., �rst double P and then add Q.

3. The Algorithm

Our algorithm performs a doubling and an addition, 2P+Q, on an ellipti

urve E

simple

using only 1 multipliation, 2 squarings, and 2 divisions (plus

an extra squaring when P = Q). This is ahieved as follows: to form 2P+Q,

where P = (x

1

; y

1

) and Q = (x

2

; y

2

), we �rst �nd (P +Q), exept we omit
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its y-oordinate, beause we will not need that for the next stage. This saves

a �eld multipliation. Next we form (P + Q) + P . So we have done two

point additions and saved one multipliation. This trik also works when

P = Q, i.e., when tripling a point. One additional squaring is saved when

P 6= Q beause then the order of our operations avoids a point doubling.

Ellipti urve ryptosystems require multiplying a point P by a large

exponent k. If we write k in binary form and ompute kP using the left-to-

right method of binary exponentiation, we an repeatedly apply our trik at

eah stage of the partial omputations.

EÆient algorithms for group exponentiation have a long history (see

[Knuth℄ and [Gordon1998℄), and optimal exponentiation routines typially

use a ombination of the left-to-right or right-to-left m-ary exponentiation

with sliding window methods, addition-subtration hains, signed represen-

tations, et. Our proedure an be used on top of these methods for m = 2

to obtain a savings of up to 8:5% of the total ost of the exponentiation for

urves over large prime �elds, depending upon the window size and form

whih is used. This is desribed in detail in Setion 4.

3.1. Detailed Desription of the Algorithm. Here are the detailed for-

mulae for our proedure when the urve has the form E

simple

and all the

points are distint, none equal to O. Figure 1 in Setion 7 gives details for

all harateristis. That �gure also overs speial ases, where an input or

an intermediate result is the point at in�nity.

Suppose P = (x

1

; y

1

) and Q = (x

2

; y

2

) are distint points on E

simple

,

and x

1

6= x

2

. The point P +Q will have oordinates (x

3

; y

3

), where

�

1

= (y

2

� y

1

)=(x

2

� x

1

);

x

3

= �

2

1

� x

1

� x

2

; and

y

3

= (x

1

� x

3

)�

1

� y

1

:

Now suppose we want to add (P + Q) to P . We must add (x

1

; y

1

)

to (x

3

; y

3

) using the above rule. Assume x

3

6= x

1

. The result will have

oordinates (x

4

; y

4

), where

�

2

= (y

3

� y

1

)=(x

3

� x

1

);

x

4

= �

2

2

� x

1

� x

3

; and

y

4

= (x

1

� x

4

)�

2

� y

1

:

We an omit the y

3

omputation, beause it is used only in the ompu-

tation of �

2

, whih an be omputed without knowing y

3

as follows:

�

2

= ��

1

� 2y

1

=(x

3

� x

1

):

Omitting the y

3

omputation saves a �eld multipliation. Eah �

2

formula

requires a �eld division, so the overall saving is this �eld multipliation.

This trik an also be applied to save one multipliation when omputing

3P , the triple of a point P 6= O, where the �

2

omputation will need the

slope of a line through two distint points 2P and P .
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This trik an be used twie to save 2 multipliations when omputing

3P + Q = ((P + Q) + P ) + P . Thus 3P + Q an be omputed using

1 multipliation, 3 squarings, and 3 divisions. Suh a sequene of operations

would be performed repeatedly if an exponent were written in ternary form

and left-to-right exponentiation were used. Ternary representation performs

worse than binary representation for large random exponents k, but the

operation of triple and add might be useful in another ontext.

A similar trik works for ellipti urve arithmeti in harateristi 2, as is

shown in the pseudoode for this routine given in Figure 1.

Table 1 summarizes the osts of some operations on E

simple

.

Table 1. Costs of simple operations on E

simple

Doubling 2P 2 squarings, 1 multipliation, 1 division

Add P �Q 1 squaring, 1 multipliation, 1 division

Double-add 2P �Q 2 squarings, 1 multipliation, 2 divisions

Tripling 3P 3 squarings, 1 multipliation, 2 divisions

Triple-add 3P �Q 3 squarings, 1 multipliation, 3 divisions

4. Comparison to Conventional Exponentiation

In this setion we analyze the performane of our algorithm ompared

to onventional left-to-right exponentiation. We will refer to adding two

distint points on the urve E as ellipti urve addition, and to adding a

point to itself as ellipti urve doubling. Suppose we would like to ompute

kP

0

given k and P

0

, where the exponent k has n bits and n is at least 160.

Assume that the relative osts of �eld operations are 1 unit per squaring

or general multipliation and � units per inversion. [BSS, p. 72℄ assumes

that the ost of an inversion is between 3 and 10 multipliations. In some

implementations the relative ost of an inversion depends on the size of the

underlying �eld. Our own timings on a Pentium II give a ratio of 3.8 for a

160-bit prime �eld and 4.8 for a 256-bit prime �eld when not using Mont-

gomery multipliation. Some hardware implementions for fast exeution

of inversion in binary �elds yield inversion/multipliation ratios of 4:18 for

160-bit exponents and 6:23 for 256-bit exponents [Ko�Sav2002℄.

The straightforward left-to-right binary method of exponentiation needs

about n ellipti urve doublings. If the window size is one, then for every

1-bit in the binary representation, we perform an ellipti urve doubling

followed diretly by an ellipti urve addition. Suppose about half of the

bits in the binary representation of k are 1's. Then forming kP onsists of

performing n=2 ellipti urve doublings and n=2 ellipti urve additions.

In general, independent of the window size, the number of ellipti urve

doublings to be performed will be about n asymptotially, whereas the num-

ber of ellipti urve additions to be performed will depend on the window
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size. De�ne the value 0 < " < 1 for a given window size to be suh that

the number of ellipti urve additions to be performed is "n on average. For

example with window size 1, " is 1=2.

If we �x a window size and its orresponding ", then the onventional

algorithm for exponentiation needs about 2n + "n �eld squarings, n + "n

�eld general multipliations, and n+"n �eld divisions. If one inversion osts

� multipliations, then the ost of a division is (� + 1) multipliations. So

the overall ost in �eld multipliations is

(2n+ "n) + (n+ "n) + (�+ 1)(n+ "n) = (4 + �)n+ (3 + �)"n:

Now we analyze the perentage savings obtained by our algorithm, not

inluding preomputation osts. The above omputation inludes "n sub-

omputations of the form 2P

1

+ P

2

. Writing eah as P

1

+ (P

1

+ P

2

) saves

one squaring per sub-omputation, reduing the overall ost to (4 + �)n +

(2+�)"n. The tehnique in Setion 3 saves another multipliation per sub-

omputation, dropping the overall ost to (4+�)n+(1+�)"n. This means

we get a savings of

2"=((4 + �) + (3 + �)"):

When the window size is 1 and the inversion/multipliation ratio � is

assumed to be 4:18, this gives a savings of 8.5%. When � is assumed to be

6:23, we still obtain a savings of 6:7%. When the window size is 2 and 2P

and 3P have been preomputed, we �nd that " = 3=8. So when � is 4:18, we

get a savings of 6.9%, and when � is 6:23, we still obtain a savings of 5:5%.

Similarly if the window size is 4, and we have preomputed small multiples

of P , we still ahieve a savings of 3:8% to 4:8%, depending on �.

Another possibility is using addition/subtration hains and higher-radix

methods. The binary method desribed in [IEEE, setion A.10.3℄ utilizes

addition/subtration hains and does about 2n=3 doublings and n=3 double-

adds (or double-subtrats), so " = 1=3 in this ase. (See [Gordon1998,

setion 2.3℄ for an explanation of how we obtain " = 1=3 in this ase.) With

� = 4:18, we get a 6:3% improvement.

Exponentiation algorithms that use both addition/subtration hains and

sliding window size may have lower ", but we still obtain at least a 4:2%

savings if " > 0:2 and � = 4:18.

[SaSa2001, Setion 3.3℄ presents some possible trade-o�s arising from dif-

ferent inversion/multipliation ratios. We disuss this further in Setion 5.3.

5. Examples and Appliations

5.1. Left-to-right binary exponentiation. Suppose we would like to

ompute 1133044P = (100010100100111110100)

2

P with left-to-right binary

exponentiation. We will do this in two ways, the standard way and the way

that uses our improvements. For both methods, we assume that 3P has

been preomputed. The following table ompares the number of operations

needed (a = point additions, d = point doublings, div = �eld divisions, s =
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�eld squarings, m = �eld multiplies)

standard improvements

implementation

1133044P = 4(283261P ) 2d 2d

283261P = 128(2213P ) � 3P 7d+ 1a 6d+ 2a(save 1m)

2213P = 8(277P ) � 3P 3d+ 1a 2d+ 2a(save 1m)

277P = 8(35P ) � 3P 3d+ 1a 2d+ 2a(save 1m)

35P = 8(4P ) + 3P 3d+ 1a 2d+ 2a(save 1m)

4P = P + 3P 1a 1a

Total: 23div + 41s+ 23m 23div + 37s+ 19m

This saves 4 squarings and 4 multipliations. Estimating the division ost

at about 5 multipliations, this savings translates to about 4:47%.

5.2. Simultaneous multiple exponentiation. Another use of our im-

proved ellipti urve double-add tehnique is multiple exponentiation, suh

as k

1

P

1

+ k

2

P

2

+ k

3

P

3

, where the three exponents k

1

, k

2

, and k

3

have ap-

proximately the same length. One algorithm reates an 8-entry table with

O; P

1

; P

2

; P

2

+ P

1

; P

3

; P

3

+ P

1

; P

3

+ P

2

; P

3

+ P

2

+ P

1

:

Subsequently it uses one ellipti urve doubling followed by the addition of

a table entry, for eah bit in the exponents [M�oller2001℄. About 7=8 of the

doublings will be followed by an addition other than O.

To form 29P

1

+ 44P

2

, for example, write the exponents in binary form:

(011101)

2

and (101100)

2

. Sanning these left-to-right, the steps are

Bits Table entry Ation

0; 1 P

2

T := P

2

1; 0 P

1

T := 2T + P

1

= P

1

+ 2P

2

1; 1 P

1

+ P

2

T := 2T + (P

1

+ P

2

) = 3P

1

+ 5P

2

1; 1 P

1

+ P

2

T := 2T + (P

1

+ P

2

) = 7P

1

+ 11P

2

0; 0 O T := 2T = 14P

1

+ 22P

2

1; 0 P

1

T := 2T + P

1

= 29P

1

+ 44P

2

There is one ellipti urve addition (P

1

+ P

2

) to onstrut the four-entry

table, four doublings immediately followed by an addition, and one doubling

without an addition. While doing 10 ellipti urve operations, the tehnique

in this paper is used four times. Doing the exponents separately, say by the

addition-subtration hains

1; 2; 4; 8; 7; 14; 28; 29 and 1; 2; 4; 6; 12; 24; 48; 44

takes seven ellipti urve operations per hain, plus a �nal add (15 total).
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5.3. Ellipti urve method of fatorization. The Ellipti Curve Method

(ECM) of fatoring a omposite integer N hooses an ellipti urve E with

oeÆients modulo N . It does some exponentiation, working in the ring

Z=NZ rather than over a �eld. The algorithm may enounter a zero divisor

while trying to invert a nonzero element, but that is good, beause it leads

to a fatorization of N . In this appliation, only the x-oordinate of the

exponentiation is required.

[Mont1987, pp. 260�℄ proposes a parameterization, By

2

= x

3

+Ax

2

+ x,

whih uses no inversions during an exponentiation but omits the y-oord-

inate of the result. Its assoiated osts for omputing the x-oordinate are

P +Q from P , Q, P �Q 2 squarings, 4 multipliations

2P from P 2 squarings, 3 multipliations

To form kP from P for a large n-bit integer k, this method uses about 4n

squarings and 7n multipliations, working from the binary representation

of k. Some variations [Mont2002℄ use fewer steps but are harder to program.

In ontrast, using the tehnique desribed in this paper ombined with

the method desribed in [IEEE, setion A.10.3℄, we do about 2n=3 doublings

and n=3 double-adds (or double-subtrats). Using our improved tehnique,

by Table 1, the estimated ost of the exponentiation is 2n squarings, n

multipliations and 4n=3 divisions.

The tehnique in this paper is superior if 4n=3 divisions ost less than

2n squarings and 6n multipliations. A division an be implemented as

an inversion plus a multipliation, so the new tehnique is superior if an

inversion is heaper than 1.5 squarings and 3.5 multipliations.

[Mont1987℄ observes that one may trade two independent inversions for

one inversion and three multipliations, using x

�1

= y(xy)

�1

and y

�1

=

(xy)

�1

x. When using many urves to (simultaneously) takle the same om-

posite integer, the asymptoti ost per inversion drops to 3 multipliations.

We antiipate an improvement by using this along with our tehnique.

6. Appliation to Weil and Tate pairings

The Weil and Tate pairings are beoming important for publi-key ryp-

tography [Joux2002℄. The algorithms for these pairings onstrut rational

funtions with a presribed pattern of poles and zeroes. An appendix to

[BoFr2001℄ desribes Miller's algorithm for omputing the Weil pairing on

an ellipti urve in detail.

Fix an integerm > 0 and anm-torsion point P on an ellipti urve E. Let

f

1

be any nonzero �eld element. For an integer  > 1, let f



be a funtion

on E with a -fold zero at P , a simple pole at P , a pole of order  � 1

at O, and no other zeroes or poles. When  = m, this means that f

m

has

an m-fold zero at P and a pole of order m at O. Corollary 3.5 on page 67

of [Silverman℄ asserts that suh a funtion exists. This f



is unique up to a

nonzero multipliative salar. Although f



depends on P , we omit the extra

subsript P unless there is some ambiguity.
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The Tate pairing evaluates a quotient of the form f

m

(Q

1

)=f

m

(Q

2

) for two

points Q

1

; Q

2

on E (see, for example, [BKLS2002℄). (The Weil pairing has

two suh omputations.) Suh evaluations an be done iteratively using an

addition/subtration hain for m, one we know how to onstrut f

b+

and

f

b�

from (f

b

; bP ) and (f



; P ). Let g

b;

be the line passing through the

points bP and P . When bP = P , this is the tangent line to E at bP . Let

g

b+

be the vertial line through (b+ )P and �(b+ )P . Then we have the

useful formulae

f

b+

= f

b

� f



�

g

b;

g

b+

and f

b�

=

f

b

� g

b

f



� g

�b;

:

Denote h

b

= f

b

(Q

1

)=f

b

(Q

2

) for eah integer b. Although f

b

was de�ned

only up to a multipliative onstant, h

b

is well-de�ned. We have

h

b+

= h

b

� h



�

g

b;

(Q

1

) � g

b+

(Q

2

)

g

b;

(Q

2

) � g

b+

(Q

1

)

and h

b�

=

h

b

� g

b

(Q

1

) � g

�b;

(Q

2

)

h



� g

b

(Q

2

) � g

�b;

(Q

1

)

:

(1)

So far in the literature, only the f

b+

formula appears, but the f

b�

formula is

useful if using addition/subtration hains. The addition/subtration hain

iteratively builds h

m

along with mP .

6.1. Using the double/add trik with parabolas. We now desribe

an improved method for obtaining (h

2b+

; (2b + )P ) given (h

b

; bP ) and

(h



; P ). The version of Miller's algorithm desribed in [BKLS2002℄ uses

left-to-right binary exponentiation with window size one. That method

would �rst ompute (h

2b

; 2bP ) and later (h

2b+

; (2b + )P ). We propose

to ompute (h

2b+

; (2b + )P ) diretly, produing only the x-oordinate of

the intermediate point bP + P . To ombine the two steps, we onstrut a

parabola through the points bP , bP , P , �2bP � P .

To form f

2b+

, we ombine forming f

b+

with f

b++b

: the latter an be

expressed as

f

2b+

= f

b+

�

f

b

� g

b+;b

g

2b+

=

f

b

� f



� g

b;

g

b+

�

f

b

� g

b+;b

g

2b+

=

f

b

� f



� f

b

g

2b+

�

g

b;

� g

b+;b

g

b+

:

We replae (g

b;

�g

b+;b

)=g

b+

by the parabola, whose formula is given below.

Evaluate the formula for f

2b+

at Q

1

and Q

2

to get a formula for h

2b+

.

6.2. Equation for parabola through points. If R and S are points on

an ellipti urve E, then there is a (possibly degenerate) paraboli equation

passing through R twie (i.e., tangent at R) and also passing through S

and �2R � S. Using the notations R = (x

1

; y

1

) and S = (x

2

; y

2

) with

R+ S = (x

3

; y

3

) and 2R+ S = (x

4

; y

4

), a formula for this parabola is

(y + y

3

� �

1

(x� x

3

))(y � y

3

� �

2

(x� x

3

))

x� x

3

:(2)

The left half of the numerator of (2) is a line passing through R, S, and

�R�S whose slope is �

1

. The seond half of the numerator is a line passing
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through R + S, R, and �2R � S, whose slope is �

2

. The denominator is a

(vertial) line through R+ S and �R� S. The quotient has zeros at R, R,

S, �2R� S and a pole of order four at O.

We simplify (2) by expanding it in powers of x�x

3

. Use the equation for

E to eliminate referenes to y

2

and y

2

3

.

y

2

�y

2

3

x�x

3

� �

1

(y � y

3

)� �

2

(y + y

3

) + �

1

�

2

(x� x

3

)

= x

2

+ xx

3

+ x

2

3

+ a+ �

1

�

2

(x� x

3

)� �

1

(y � y

3

)� �

2

(y + y

3

)

= x

2

+ (x

3

+ �

1

�

2

)x� (�

1

+ �

2

)y + onstant:

(3)

Knowing that (3) passes through R = (x

1

; y

1

), one suint formula for the

parabola is

(x� x

1

)(x+ x

1

+ x

3

+ �

1

�

2

)� (�

1

+ �

2

)(y � y

1

):(4)

In the previous setion we an now replae (g

b;

�g

b+;b

)=g

b+

by the parabola

(4) with R = bP and S = P .

Formula (4) for the parabola does not referene y

3

and is never identially

zero sine its x

2

oeÆient is 1. Figure 1 gives a formula for this parabola

in degenerate ases, as well as for the more general urve (6).

6.3. Savings. We laim the pairing algorithm needs less e�ort to evaluate

a parabola at a point than to evaluate lines and take their produt at that

point. The parabola does not referene y

3

, so we won't need to ompute the

y-oordinate of bP + P and an use the double-add trik.

Here is a preise analysis of the savings we obtain by using the parabola

when omputing the Tate pairing. Again assume that we use the binary

method desribed in [IEEE, setion A.10.3℄ to form mP , where m has n

bits. (It does 2n=3 doublings and n=3 double-adds or double-subtrats.)

We manipulate the numerator and denominator of h

j

separately, doing one

inversion h

j

= h

num;j

=h

denom;j

at the very end.

Analysis of doubling step: The analysis of the doubling step is the

same in the standard and in the new algorithms. Suppose we want to om-

pute (h

2b

; 2bP ) from (h

b

; bP ). We need an ellipti urve doubling to om-

pute 2(bP ), after whih we apply (1). If bP = (x

1

; y

1

) and 2bP = (x

4

; y

4

)

then

g

b;b

g

2b

=

y � y

1

� �

1

(x� x

1

)

x� x

4

:(5)

The omputation of the oeÆients in (5) is free sine �

1

is known. Evaluat-

ing (5) at Q

1

and Q

2

(keeping numerators and denominators separate) osts

two multipliations. Multiplying four frations in (1) osts 6 more multipli-

ations (or squarings). The total ost is 3 + 2 + 6 = 11 �eld multipliations

and one �eld division.

Analysis of double-add step: The standard algorithm performs one

doubling followed by an addition to ompute (h

2b+

; (2b+)P ) from (h

b

; bP )

and (h



; P ). Similar to the above analysis we an ompute the ost as 21
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�eld multipliations and 2 divisions. [The ost would be one multipliation

less if one does two ellipti urve additions: (2b+ )P = (bP + P ) + bP .℄

The new algorithm does one ellipti urve double-add operation. It osts

only one multipliation to onstrut the oeÆients of the parabola (4),

beause we omputed �

1

and �

2

while forming (2b + )P . Evaluating the

parabola (and the vertial line g

2b+

) twie osts four multipliations. Mul-

tiplying �ve frations osts another 8 multipliations. The total ost is

3 + 1 + 4 + 8 = 16 �eld multipliations and 2 �eld divisions.

Total savings: Estimating a division as 5:18 multipliations, the stan-

dard algorithm for (h

m

; mP ) takes (16:18 � 2n=3) + (31:36 �n=3) = (21:24)n

steps, ompared to (16:18 � 2n=3) + (26:36 � n=3) = 19:57n steps for the new

method, a 7:8% improvement. A Weil pairing algorithm using the parabola

will also save 7:8% over Miller's algorithm, beause we an view the Weil

pairing as \two appliations of the Tate pairing", eah saving 7:8%.

Sometimes (e.g., [BLS2001℄) one does multiple Tate pairings with P �xed

but varying Q

1

and Q

2

. If one has preomputed all oeÆients of the lines

and parabolas, then the osts of evaluation are 8 multipliations per dou-

bling step or addition step, and 12 multipliations per ombined double-add

step. The overall osts are 32n=3 multipliations per evaluation with the

traditional method and 28n=3 multipliations with the parabolas, a 12:5%

improvement.

7. Pseudoode

The general Weierstrass form for the equation of an ellipti urve is:

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

;(6)

subjet to the ondition that the oeÆients a

1

, a

2

, a

3

, a

4

, a

6

satisfy a

ertain inequality to prevent singularity [Silverman, p. 46℄. The negative of

a point P = (x

1

; y

1

) on (6) is �P = (x

1

; �a

1

x

3

� a

3

� y

1

). [This seems to

require a multipliation a

1

x

3

, but in pratie a

1

is 0 or 1.℄ If P = (x

1

; y

1

)

is a �nite point on (6), then the tangent line at P has slope

�

1

=

3x

2

1

+ 2a

2

x

1

+ a

4

� a

1

y

1

2y

1

+ a

1

x

1

+ a

3

:(7)

Figure 1 gives the pseudoode for implementing the savings for an ellipti

urve of this general form.
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Figure 1.

Algorithm for omputing 2P +Q and the equation for a parabola

through P , P , Q, and �(2P +Q), where P = (x

1

; y

1

) and Q = (x

2

; y

2

).

if (P = O) then

if (Q = O) then

parabola = 1;

else

parabola = x� x

2

;

end if

return Q;

else if (Q = O) then

if (denominator of (7) is zero) then

parabola = x� x

1

;

return O;

end if

Get tangent slope �

1

from (7);

parabola = y � y

1

� �

1

(x� x

1

);

x

3

= �

1

(�

1

+ a

1

)� a

2

� 2x

1

;

y

3

= �

1

(x

1

� x

3

)� a

1

x

3

� a

3

� y

1

;

return (x

3

; y

3

);

else

if (x

1

6= x

2

) then

�

1

= (y

1

�y

2

)=(x

1

�x

2

); /* slope of line through P, Q. */

else if (y

1

6= y

2

OR denominator of (7) is zero) then

parabola = (x� x

1

)

2

;

return P ; /* P and Q must be negatives, so 2P +Q = P.*/

else

Get tangent slope �

1

from (7);

end if

x

3

= �

1

(�

1

+ a

1

)� a

2

� x

1

� x

2

;

/* Think y

3

= �

1

(x

1

� x

3

)� a

1

x

3

� a

3

� y

1

. */

if (x

3

= x

1

) then

parabola = y � y

1

� �

1

(x� x

1

);

return O; /* P +Q and P are negatives. */

end if /* Think �

2

= (y

1

� y

3

)=(x

1

� x

3

) */

�

2

= (a

1

x

3

+ a

3

+ 2y

1

)=(x

1

� x

3

)� �

1

;

x

4

= �

2

(�

2

+ a

1

)� a

2

� x

1

� x

3

;

y

4

= �

2

(x

1

� x

4

)� a

1

x

4

� a

3

� y

1

;

parabola = (x� x

1

)(x� x

4

+ (�

1

+ �

2

+ a

1

)�

2

)� (�

1

+ �

2

+ a

1

)(y� y

1

);

return (x

4

; y

4

);

end if
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