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Abstra
t. We present an algorithm that speeds exponentiation on

a general ellipti
 
urve by an estimated 3.8% to 8.5% over the best

known general exponentiation methods when using aÆne 
oordi-

nates. This is a
hieved by eliminating a �eld multipli
ation when

we 
ompute 2P + Q from given points P , Q on the 
urve. We

give appli
ations to simultaneous multiple exponentiation and to

the Ellipti
 Curve Method of fa
torization. We show how this im-

provement together with another idea 
an speed the 
omputation

of the Weil and Tate pairings by up to 7:8%.
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1. Introdu
tion

This paper presents an algorithm whi
h 
an speed exponentiation on a

general ellipti
 
urve, by doing some arithmeti
 di�erently. Exponentiation

on ellipti
 
urves is used by 
ryptosystems and signature s
hemes based on

ellipti
 
urves. Our algorithm saves an estimated 3:8% to 8:5% of the time

to perform an exponentiation on a general ellipti
 
urve, when 
ompared

to the best-known general methods. This savings is important be
ause the

ratio of se
urity level to 
omputation time and power required by a system

is an important fa
tor when determining whether a system will be used in

a parti
ular 
ontext.

Our main a
hievement is that we 
an eliminate a �eld multipli
ation

whenever we are given two points P , Q on an ellipti
 
urve and need 2P +Q

(or 2P �Q) but not the intermediate results 2P and P +Q. This sequen
e

of operations is needed many times when, for example, left-to-right binary

exponentiation is used with a �xed or sliding window size.

Some algorithms for simultaneous multiple exponentiation alternate dou-

bling and addition steps, su
h as when 
omputing k

1

P

1

+ k

2

P

2

+ k

3

P

3

from

given points P

1

, P

2

, and P

3

. Su
h algorithms 
an use our improvement di-

re
tly. We give appli
ations of our te
hnique to the Ellipti
 Curve Method

for fa
toring and to speeding the evaluation of the Weil and Tate Pairings.

The paper is organized as follows. Se
tion 2 gives some ba
kground on

ellipti
 
urves. Se
tion 3 gives a detailed version of our algorithm. Se
tion 4
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estimates our savings 
ompared to ordinary left-to-right exponentiation with

windowing. Se
tion 5 illustrates the improvement a
hieved with an example.

It also des
ribes appli
ations to simultaneous multiple exponentiation and

the Ellipti
 Curve Method for fa
toring. Se
tion 6 adapts our te
hnique to

the Weil and Tate pairing algorithms. Se
tion 7 gives the pseudo
ode for

implementing the improvement, in
luding abnormal 
ases.

2. Ba
kground

Ellipti
 
urves are used for several kinds of 
ryptosystems in
luding key

ex
hange proto
ols and digital signature algorithms (see for example [IEEE℄).

If q is a prime or prime power, we let F

q

denote the �eld with q elements.

When g
d(q; 6) = 1, an ellipti
 
urve over the �eld F

q

is given by an equation

of the form

E

simple

: y

2

= x

3

+ ax+ b

with a; b in F

q

and 4a

3

+ 27b

2

6= 0. (See [Silverman, p. 48℄).

A more general 
urve equation, valid over a �eld of any 
hara
teristi
, is


onsidered in se
tion 7. That 
ase subsumes the equation

E

2

: y

2

+ xy = x

3

+ ax

2

+ b

with a; b in F

q

and b 6= 0, whi
h is sometimes used when the �eld has


hara
teristi
 2.

In all 
ases the group used when implementing the 
ryptosystem is the

group of points on the 
urve over F

q

. If represented in aÆne 
oordinates,

the points have the form: (x; y), where x and y are in F

q

and they satisfy

the equation of the 
urve, plus a distinguished point O (
alled the point at

in�nity) whi
h a
ts as the identity for the group law. Throughout this paper

we work with aÆne 
oordinates for the points on the 
urve.

Points are added using a geometri
 group law whi
h 
an be expressed

algebrai
ally through rational fun
tions involving x and y. Whenever two

points are added, forming P +Q, or a point is doubled, forming 2P , these

formulae are evaluated at the 
ost of some number of multipli
ations, squar-

ings, and divisions in the �eld. For example, using E

simple

, to double a point

in aÆne 
oordinates 
osts 1 multipli
ation, 2 squarings, and 1 division in the

�eld, not 
ounting multipli
ation by 2 or 3 [BSS, p. 58℄. To add two distin
t

points in aÆne 
oordinates 
osts 1 multipli
ation, 1 squaring, and 1 division

in the �eld. Performing a doubling and an addition 2P +Q 
osts 2 multipli-


ations, 3 squarings and 2 divisions if the points are added as (P + P ) +Q,

i.e., �rst double P and then add Q.

3. The Algorithm

Our algorithm performs a doubling and an addition, 2P+Q, on an ellipti



urve E

simple

using only 1 multipli
ation, 2 squarings, and 2 divisions (plus

an extra squaring when P = Q). This is a
hieved as follows: to form 2P+Q,

where P = (x

1

; y

1

) and Q = (x

2

; y

2

), we �rst �nd (P +Q), ex
ept we omit
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its y-
oordinate, be
ause we will not need that for the next stage. This saves

a �eld multipli
ation. Next we form (P + Q) + P . So we have done two

point additions and saved one multipli
ation. This tri
k also works when

P = Q, i.e., when tripling a point. One additional squaring is saved when

P 6= Q be
ause then the order of our operations avoids a point doubling.

Ellipti
 
urve 
ryptosystems require multiplying a point P by a large

exponent k. If we write k in binary form and 
ompute kP using the left-to-

right method of binary exponentiation, we 
an repeatedly apply our tri
k at

ea
h stage of the partial 
omputations.

EÆ
ient algorithms for group exponentiation have a long history (see

[Knuth℄ and [Gordon1998℄), and optimal exponentiation routines typi
ally

use a 
ombination of the left-to-right or right-to-left m-ary exponentiation

with sliding window methods, addition-subtra
tion 
hains, signed represen-

tations, et
. Our pro
edure 
an be used on top of these methods for m = 2

to obtain a savings of up to 8:5% of the total 
ost of the exponentiation for


urves over large prime �elds, depending upon the window size and form

whi
h is used. This is des
ribed in detail in Se
tion 4.

3.1. Detailed Des
ription of the Algorithm. Here are the detailed for-

mulae for our pro
edure when the 
urve has the form E

simple

and all the

points are distin
t, none equal to O. Figure 1 in Se
tion 7 gives details for

all 
hara
teristi
s. That �gure also 
overs spe
ial 
ases, where an input or

an intermediate result is the point at in�nity.

Suppose P = (x

1

; y

1

) and Q = (x

2

; y

2

) are distin
t points on E

simple

,

and x

1

6= x

2

. The point P +Q will have 
oordinates (x

3

; y

3

), where

�

1

= (y

2

� y

1

)=(x

2

� x

1

);

x

3

= �

2

1

� x

1

� x

2

; and

y

3

= (x

1

� x

3

)�

1

� y

1

:

Now suppose we want to add (P + Q) to P . We must add (x

1

; y

1

)

to (x

3

; y

3

) using the above rule. Assume x

3

6= x

1

. The result will have


oordinates (x

4

; y

4

), where

�

2

= (y

3

� y

1

)=(x

3

� x

1

);

x

4

= �

2

2

� x

1

� x

3

; and

y

4

= (x

1

� x

4

)�

2

� y

1

:

We 
an omit the y

3


omputation, be
ause it is used only in the 
ompu-

tation of �

2

, whi
h 
an be 
omputed without knowing y

3

as follows:

�

2

= ��

1

� 2y

1

=(x

3

� x

1

):

Omitting the y

3


omputation saves a �eld multipli
ation. Ea
h �

2

formula

requires a �eld division, so the overall saving is this �eld multipli
ation.

This tri
k 
an also be applied to save one multipli
ation when 
omputing

3P , the triple of a point P 6= O, where the �

2


omputation will need the

slope of a line through two distin
t points 2P and P .
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This tri
k 
an be used twi
e to save 2 multipli
ations when 
omputing

3P + Q = ((P + Q) + P ) + P . Thus 3P + Q 
an be 
omputed using

1 multipli
ation, 3 squarings, and 3 divisions. Su
h a sequen
e of operations

would be performed repeatedly if an exponent were written in ternary form

and left-to-right exponentiation were used. Ternary representation performs

worse than binary representation for large random exponents k, but the

operation of triple and add might be useful in another 
ontext.

A similar tri
k works for ellipti
 
urve arithmeti
 in 
hara
teristi
 2, as is

shown in the pseudo
ode for this routine given in Figure 1.

Table 1 summarizes the 
osts of some operations on E

simple

.

Table 1. Costs of simple operations on E

simple

Doubling 2P 2 squarings, 1 multipli
ation, 1 division

Add P �Q 1 squaring, 1 multipli
ation, 1 division

Double-add 2P �Q 2 squarings, 1 multipli
ation, 2 divisions

Tripling 3P 3 squarings, 1 multipli
ation, 2 divisions

Triple-add 3P �Q 3 squarings, 1 multipli
ation, 3 divisions

4. Comparison to Conventional Exponentiation

In this se
tion we analyze the performan
e of our algorithm 
ompared

to 
onventional left-to-right exponentiation. We will refer to adding two

distin
t points on the 
urve E as ellipti
 
urve addition, and to adding a

point to itself as ellipti
 
urve doubling. Suppose we would like to 
ompute

kP

0

given k and P

0

, where the exponent k has n bits and n is at least 160.

Assume that the relative 
osts of �eld operations are 1 unit per squaring

or general multipli
ation and � units per inversion. [BSS, p. 72℄ assumes

that the 
ost of an inversion is between 3 and 10 multipli
ations. In some

implementations the relative 
ost of an inversion depends on the size of the

underlying �eld. Our own timings on a Pentium II give a ratio of 3.8 for a

160-bit prime �eld and 4.8 for a 256-bit prime �eld when not using Mont-

gomery multipli
ation. Some hardware implementions for fast exe
ution

of inversion in binary �elds yield inversion/multipli
ation ratios of 4:18 for

160-bit exponents and 6:23 for 256-bit exponents [Ko�
Sav2002℄.

The straightforward left-to-right binary method of exponentiation needs

about n ellipti
 
urve doublings. If the window size is one, then for every

1-bit in the binary representation, we perform an ellipti
 
urve doubling

followed dire
tly by an ellipti
 
urve addition. Suppose about half of the

bits in the binary representation of k are 1's. Then forming kP 
onsists of

performing n=2 ellipti
 
urve doublings and n=2 ellipti
 
urve additions.

In general, independent of the window size, the number of ellipti
 
urve

doublings to be performed will be about n asymptoti
ally, whereas the num-

ber of ellipti
 
urve additions to be performed will depend on the window
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size. De�ne the value 0 < " < 1 for a given window size to be su
h that

the number of ellipti
 
urve additions to be performed is "n on average. For

example with window size 1, " is 1=2.

If we �x a window size and its 
orresponding ", then the 
onventional

algorithm for exponentiation needs about 2n + "n �eld squarings, n + "n

�eld general multipli
ations, and n+"n �eld divisions. If one inversion 
osts

� multipli
ations, then the 
ost of a division is (� + 1) multipli
ations. So

the overall 
ost in �eld multipli
ations is

(2n+ "n) + (n+ "n) + (�+ 1)(n+ "n) = (4 + �)n+ (3 + �)"n:

Now we analyze the per
entage savings obtained by our algorithm, not

in
luding pre
omputation 
osts. The above 
omputation in
ludes "n sub-


omputations of the form 2P

1

+ P

2

. Writing ea
h as P

1

+ (P

1

+ P

2

) saves

one squaring per sub-
omputation, redu
ing the overall 
ost to (4 + �)n +

(2+�)"n. The te
hnique in Se
tion 3 saves another multipli
ation per sub-


omputation, dropping the overall 
ost to (4+�)n+(1+�)"n. This means

we get a savings of

2"=((4 + �) + (3 + �)"):

When the window size is 1 and the inversion/multipli
ation ratio � is

assumed to be 4:18, this gives a savings of 8.5%. When � is assumed to be

6:23, we still obtain a savings of 6:7%. When the window size is 2 and 2P

and 3P have been pre
omputed, we �nd that " = 3=8. So when � is 4:18, we

get a savings of 6.9%, and when � is 6:23, we still obtain a savings of 5:5%.

Similarly if the window size is 4, and we have pre
omputed small multiples

of P , we still a
hieve a savings of 3:8% to 4:8%, depending on �.

Another possibility is using addition/subtra
tion 
hains and higher-radix

methods. The binary method des
ribed in [IEEE, se
tion A.10.3℄ utilizes

addition/subtra
tion 
hains and does about 2n=3 doublings and n=3 double-

adds (or double-subtra
ts), so " = 1=3 in this 
ase. (See [Gordon1998,

se
tion 2.3℄ for an explanation of how we obtain " = 1=3 in this 
ase.) With

� = 4:18, we get a 6:3% improvement.

Exponentiation algorithms that use both addition/subtra
tion 
hains and

sliding window size may have lower ", but we still obtain at least a 4:2%

savings if " > 0:2 and � = 4:18.

[SaSa2001, Se
tion 3.3℄ presents some possible trade-o�s arising from dif-

ferent inversion/multipli
ation ratios. We dis
uss this further in Se
tion 5.3.

5. Examples and Appli
ations

5.1. Left-to-right binary exponentiation. Suppose we would like to


ompute 1133044P = (100010100100111110100)

2

P with left-to-right binary

exponentiation. We will do this in two ways, the standard way and the way

that uses our improvements. For both methods, we assume that 3P has

been pre
omputed. The following table 
ompares the number of operations

needed (a = point additions, d = point doublings, div = �eld divisions, s =
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�eld squarings, m = �eld multiplies)

standard improvements

implementation

1133044P = 4(283261P ) 2d 2d

283261P = 128(2213P ) � 3P 7d+ 1a 6d+ 2a(save 1m)

2213P = 8(277P ) � 3P 3d+ 1a 2d+ 2a(save 1m)

277P = 8(35P ) � 3P 3d+ 1a 2d+ 2a(save 1m)

35P = 8(4P ) + 3P 3d+ 1a 2d+ 2a(save 1m)

4P = P + 3P 1a 1a

Total: 23div + 41s+ 23m 23div + 37s+ 19m

This saves 4 squarings and 4 multipli
ations. Estimating the division 
ost

at about 5 multipli
ations, this savings translates to about 4:47%.

5.2. Simultaneous multiple exponentiation. Another use of our im-

proved ellipti
 
urve double-add te
hnique is multiple exponentiation, su
h

as k

1

P

1

+ k

2

P

2

+ k

3

P

3

, where the three exponents k

1

, k

2

, and k

3

have ap-

proximately the same length. One algorithm 
reates an 8-entry table with

O; P

1

; P

2

; P

2

+ P

1

; P

3

; P

3

+ P

1

; P

3

+ P

2

; P

3

+ P

2

+ P

1

:

Subsequently it uses one ellipti
 
urve doubling followed by the addition of

a table entry, for ea
h bit in the exponents [M�oller2001℄. About 7=8 of the

doublings will be followed by an addition other than O.

To form 29P

1

+ 44P

2

, for example, write the exponents in binary form:

(011101)

2

and (101100)

2

. S
anning these left-to-right, the steps are

Bits Table entry A
tion

0; 1 P

2

T := P

2

1; 0 P

1

T := 2T + P

1

= P

1

+ 2P

2

1; 1 P

1

+ P

2

T := 2T + (P

1

+ P

2

) = 3P

1

+ 5P

2

1; 1 P

1

+ P

2

T := 2T + (P

1

+ P

2

) = 7P

1

+ 11P

2

0; 0 O T := 2T = 14P

1

+ 22P

2

1; 0 P

1

T := 2T + P

1

= 29P

1

+ 44P

2

There is one ellipti
 
urve addition (P

1

+ P

2

) to 
onstru
t the four-entry

table, four doublings immediately followed by an addition, and one doubling

without an addition. While doing 10 ellipti
 
urve operations, the te
hnique

in this paper is used four times. Doing the exponents separately, say by the

addition-subtra
tion 
hains

1; 2; 4; 8; 7; 14; 28; 29 and 1; 2; 4; 6; 12; 24; 48; 44

takes seven ellipti
 
urve operations per 
hain, plus a �nal add (15 total).
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5.3. Ellipti
 
urve method of fa
torization. The Ellipti
 Curve Method

(ECM) of fa
toring a 
omposite integer N 
hooses an ellipti
 
urve E with


oeÆ
ients modulo N . It does some exponentiation, working in the ring

Z=NZ rather than over a �eld. The algorithm may en
ounter a zero divisor

while trying to invert a nonzero element, but that is good, be
ause it leads

to a fa
torization of N . In this appli
ation, only the x-
oordinate of the

exponentiation is required.

[Mont1987, pp. 260�℄ proposes a parameterization, By

2

= x

3

+Ax

2

+ x,

whi
h uses no inversions during an exponentiation but omits the y-
oord-

inate of the result. Its asso
iated 
osts for 
omputing the x-
oordinate are

P +Q from P , Q, P �Q 2 squarings, 4 multipli
ations

2P from P 2 squarings, 3 multipli
ations

To form kP from P for a large n-bit integer k, this method uses about 4n

squarings and 7n multipli
ations, working from the binary representation

of k. Some variations [Mont2002℄ use fewer steps but are harder to program.

In 
ontrast, using the te
hnique des
ribed in this paper 
ombined with

the method des
ribed in [IEEE, se
tion A.10.3℄, we do about 2n=3 doublings

and n=3 double-adds (or double-subtra
ts). Using our improved te
hnique,

by Table 1, the estimated 
ost of the exponentiation is 2n squarings, n

multipli
ations and 4n=3 divisions.

The te
hnique in this paper is superior if 4n=3 divisions 
ost less than

2n squarings and 6n multipli
ations. A division 
an be implemented as

an inversion plus a multipli
ation, so the new te
hnique is superior if an

inversion is 
heaper than 1.5 squarings and 3.5 multipli
ations.

[Mont1987℄ observes that one may trade two independent inversions for

one inversion and three multipli
ations, using x

�1

= y(xy)

�1

and y

�1

=

(xy)

�1

x. When using many 
urves to (simultaneously) ta
kle the same 
om-

posite integer, the asymptoti
 
ost per inversion drops to 3 multipli
ations.

We anti
ipate an improvement by using this along with our te
hnique.

6. Appli
ation to Weil and Tate pairings

The Weil and Tate pairings are be
oming important for publi
-key 
ryp-

tography [Joux2002℄. The algorithms for these pairings 
onstru
t rational

fun
tions with a pres
ribed pattern of poles and zeroes. An appendix to

[BoFr2001℄ des
ribes Miller's algorithm for 
omputing the Weil pairing on

an ellipti
 
urve in detail.

Fix an integerm > 0 and anm-torsion point P on an ellipti
 
urve E. Let

f

1

be any nonzero �eld element. For an integer 
 > 1, let f




be a fun
tion

on E with a 
-fold zero at P , a simple pole at 
P , a pole of order 
 � 1

at O, and no other zeroes or poles. When 
 = m, this means that f

m

has

an m-fold zero at P and a pole of order m at O. Corollary 3.5 on page 67

of [Silverman℄ asserts that su
h a fun
tion exists. This f




is unique up to a

nonzero multipli
ative s
alar. Although f




depends on P , we omit the extra

subs
ript P unless there is some ambiguity.
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The Tate pairing evaluates a quotient of the form f

m

(Q

1

)=f

m

(Q

2

) for two

points Q

1

; Q

2

on E (see, for example, [BKLS2002℄). (The Weil pairing has

two su
h 
omputations.) Su
h evaluations 
an be done iteratively using an

addition/subtra
tion 
hain for m, on
e we know how to 
onstru
t f

b+


and

f

b�


from (f

b

; bP ) and (f




; 
P ). Let g

b;


be the line passing through the

points bP and 
P . When bP = 
P , this is the tangent line to E at bP . Let

g

b+


be the verti
al line through (b+ 
)P and �(b+ 
)P . Then we have the

useful formulae

f

b+


= f

b

� f




�

g

b;


g

b+


and f

b�


=

f

b

� g

b

f




� g

�b;


:

Denote h

b

= f

b

(Q

1

)=f

b

(Q

2

) for ea
h integer b. Although f

b

was de�ned

only up to a multipli
ative 
onstant, h

b

is well-de�ned. We have

h

b+


= h

b

� h




�

g

b;


(Q

1

) � g

b+


(Q

2

)

g

b;


(Q

2

) � g

b+


(Q

1

)

and h

b�


=

h

b

� g

b

(Q

1

) � g

�b;


(Q

2

)

h




� g

b

(Q

2

) � g

�b;


(Q

1

)

:

(1)

So far in the literature, only the f

b+


formula appears, but the f

b�


formula is

useful if using addition/subtra
tion 
hains. The addition/subtra
tion 
hain

iteratively builds h

m

along with mP .

6.1. Using the double/add tri
k with parabolas. We now des
ribe

an improved method for obtaining (h

2b+


; (2b + 
)P ) given (h

b

; bP ) and

(h




; 
P ). The version of Miller's algorithm des
ribed in [BKLS2002℄ uses

left-to-right binary exponentiation with window size one. That method

would �rst 
ompute (h

2b

; 2bP ) and later (h

2b+


; (2b + 
)P ). We propose

to 
ompute (h

2b+


; (2b + 
)P ) dire
tly, produ
ing only the x-
oordinate of

the intermediate point bP + 
P . To 
ombine the two steps, we 
onstru
t a

parabola through the points bP , bP , 
P , �2bP � 
P .

To form f

2b+


, we 
ombine forming f

b+


with f

b+
+b

: the latter 
an be

expressed as

f

2b+


= f

b+


�

f

b

� g

b+
;b

g

2b+


=

f

b

� f




� g

b;


g

b+


�

f

b

� g

b+
;b

g

2b+


=

f

b

� f




� f

b

g

2b+


�

g

b;


� g

b+
;b

g

b+


:

We repla
e (g

b;


�g

b+
;b

)=g

b+


by the parabola, whose formula is given below.

Evaluate the formula for f

2b+


at Q

1

and Q

2

to get a formula for h

2b+


.

6.2. Equation for parabola through points. If R and S are points on

an ellipti
 
urve E, then there is a (possibly degenerate) paraboli
 equation

passing through R twi
e (i.e., tangent at R) and also passing through S

and �2R � S. Using the notations R = (x

1

; y

1

) and S = (x

2

; y

2

) with

R+ S = (x

3

; y

3

) and 2R+ S = (x

4

; y

4

), a formula for this parabola is

(y + y

3

� �

1

(x� x

3

))(y � y

3

� �

2

(x� x

3

))

x� x

3

:(2)

The left half of the numerator of (2) is a line passing through R, S, and

�R�S whose slope is �

1

. The se
ond half of the numerator is a line passing
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through R + S, R, and �2R � S, whose slope is �

2

. The denominator is a

(verti
al) line through R+ S and �R� S. The quotient has zeros at R, R,

S, �2R� S and a pole of order four at O.

We simplify (2) by expanding it in powers of x�x

3

. Use the equation for

E to eliminate referen
es to y

2

and y

2

3

.

y

2

�y

2

3

x�x

3

� �

1

(y � y

3

)� �

2

(y + y

3

) + �

1

�

2

(x� x

3

)

= x

2

+ xx

3

+ x

2

3

+ a+ �

1

�

2

(x� x

3

)� �

1

(y � y

3

)� �

2

(y + y

3

)

= x

2

+ (x

3

+ �

1

�

2

)x� (�

1

+ �

2

)y + 
onstant:

(3)

Knowing that (3) passes through R = (x

1

; y

1

), one su

in
t formula for the

parabola is

(x� x

1

)(x+ x

1

+ x

3

+ �

1

�

2

)� (�

1

+ �

2

)(y � y

1

):(4)

In the previous se
tion we 
an now repla
e (g

b;


�g

b+
;b

)=g

b+


by the parabola

(4) with R = bP and S = 
P .

Formula (4) for the parabola does not referen
e y

3

and is never identi
ally

zero sin
e its x

2


oeÆ
ient is 1. Figure 1 gives a formula for this parabola

in degenerate 
ases, as well as for the more general 
urve (6).

6.3. Savings. We 
laim the pairing algorithm needs less e�ort to evaluate

a parabola at a point than to evaluate lines and take their produ
t at that

point. The parabola does not referen
e y

3

, so we won't need to 
ompute the

y-
oordinate of bP + 
P and 
an use the double-add tri
k.

Here is a pre
ise analysis of the savings we obtain by using the parabola

when 
omputing the Tate pairing. Again assume that we use the binary

method des
ribed in [IEEE, se
tion A.10.3℄ to form mP , where m has n

bits. (It does 2n=3 doublings and n=3 double-adds or double-subtra
ts.)

We manipulate the numerator and denominator of h

j

separately, doing one

inversion h

j

= h

num;j

=h

denom;j

at the very end.

Analysis of doubling step: The analysis of the doubling step is the

same in the standard and in the new algorithms. Suppose we want to 
om-

pute (h

2b

; 2bP ) from (h

b

; bP ). We need an ellipti
 
urve doubling to 
om-

pute 2(bP ), after whi
h we apply (1). If bP = (x

1

; y

1

) and 2bP = (x

4

; y

4

)

then

g

b;b

g

2b

=

y � y

1

� �

1

(x� x

1

)

x� x

4

:(5)

The 
omputation of the 
oeÆ
ients in (5) is free sin
e �

1

is known. Evaluat-

ing (5) at Q

1

and Q

2

(keeping numerators and denominators separate) 
osts

two multipli
ations. Multiplying four fra
tions in (1) 
osts 6 more multipli-


ations (or squarings). The total 
ost is 3 + 2 + 6 = 11 �eld multipli
ations

and one �eld division.

Analysis of double-add step: The standard algorithm performs one

doubling followed by an addition to 
ompute (h

2b+


; (2b+
)P ) from (h

b

; bP )

and (h




; 
P ). Similar to the above analysis we 
an 
ompute the 
ost as 21
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�eld multipli
ations and 2 divisions. [The 
ost would be one multipli
ation

less if one does two ellipti
 
urve additions: (2b+ 
)P = (bP + 
P ) + bP .℄

The new algorithm does one ellipti
 
urve double-add operation. It 
osts

only one multipli
ation to 
onstru
t the 
oeÆ
ients of the parabola (4),

be
ause we 
omputed �

1

and �

2

while forming (2b + 
)P . Evaluating the

parabola (and the verti
al line g

2b+


) twi
e 
osts four multipli
ations. Mul-

tiplying �ve fra
tions 
osts another 8 multipli
ations. The total 
ost is

3 + 1 + 4 + 8 = 16 �eld multipli
ations and 2 �eld divisions.

Total savings: Estimating a division as 5:18 multipli
ations, the stan-

dard algorithm for (h

m

; mP ) takes (16:18 � 2n=3) + (31:36 �n=3) = (21:24)n

steps, 
ompared to (16:18 � 2n=3) + (26:36 � n=3) = 19:57n steps for the new

method, a 7:8% improvement. A Weil pairing algorithm using the parabola

will also save 7:8% over Miller's algorithm, be
ause we 
an view the Weil

pairing as \two appli
ations of the Tate pairing", ea
h saving 7:8%.

Sometimes (e.g., [BLS2001℄) one does multiple Tate pairings with P �xed

but varying Q

1

and Q

2

. If one has pre
omputed all 
oeÆ
ients of the lines

and parabolas, then the 
osts of evaluation are 8 multipli
ations per dou-

bling step or addition step, and 12 multipli
ations per 
ombined double-add

step. The overall 
osts are 32n=3 multipli
ations per evaluation with the

traditional method and 28n=3 multipli
ations with the parabolas, a 12:5%

improvement.

7. Pseudo
ode

The general Weierstrass form for the equation of an ellipti
 
urve is:

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

;(6)

subje
t to the 
ondition that the 
oeÆ
ients a

1

, a

2

, a

3

, a

4

, a

6

satisfy a


ertain inequality to prevent singularity [Silverman, p. 46℄. The negative of

a point P = (x

1

; y

1

) on (6) is �P = (x

1

; �a

1

x

3

� a

3

� y

1

). [This seems to

require a multipli
ation a

1

x

3

, but in pra
ti
e a

1

is 0 or 1.℄ If P = (x

1

; y

1

)

is a �nite point on (6), then the tangent line at P has slope

�

1

=

3x

2

1

+ 2a

2

x

1

+ a

4

� a

1

y

1

2y

1

+ a

1

x

1

+ a

3

:(7)

Figure 1 gives the pseudo
ode for implementing the savings for an ellipti



urve of this general form.
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Figure 1.

Algorithm for 
omputing 2P +Q and the equation for a parabola

through P , P , Q, and �(2P +Q), where P = (x

1

; y

1

) and Q = (x

2

; y

2

).

if (P = O) then

if (Q = O) then

parabola = 1;

else

parabola = x� x

2

;

end if

return Q;

else if (Q = O) then

if (denominator of (7) is zero) then

parabola = x� x

1

;

return O;

end if

Get tangent slope �

1

from (7);

parabola = y � y

1

� �

1

(x� x

1

);

x

3

= �

1

(�

1

+ a

1

)� a

2

� 2x

1

;

y

3

= �

1

(x

1

� x

3

)� a

1

x

3

� a

3

� y

1

;

return (x

3

; y

3

);

else

if (x

1

6= x

2

) then

�

1

= (y

1

�y

2

)=(x

1

�x

2

); /* slope of line through P, Q. */

else if (y

1

6= y

2

OR denominator of (7) is zero) then

parabola = (x� x

1

)

2

;

return P ; /* P and Q must be negatives, so 2P +Q = P.*/

else

Get tangent slope �

1

from (7);

end if

x

3

= �

1

(�

1

+ a

1

)� a

2

� x

1

� x

2

;

/* Think y

3

= �

1

(x

1

� x

3

)� a

1

x

3

� a

3

� y

1

. */

if (x

3

= x

1

) then

parabola = y � y

1

� �

1

(x� x

1

);

return O; /* P +Q and P are negatives. */

end if /* Think �

2

= (y

1

� y

3

)=(x

1

� x

3

) */

�

2

= (a

1

x

3

+ a

3

+ 2y

1

)=(x

1

� x

3

)� �

1

;

x

4

= �

2

(�

2

+ a

1

)� a

2

� x

1

� x

3

;

y

4

= �

2

(x

1

� x

4

)� a

1

x

4

� a

3

� y

1

;

parabola = (x� x

1

)(x� x

4

+ (�

1

+ �

2

+ a

1

)�

2

)� (�

1

+ �

2

+ a

1

)(y� y

1

);

return (x

4

; y

4

);

end if
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