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Abstra
t. We investigate relations among the dis
rete logarithm (DL) problem, the DiÆe-

Hellman (DH) problem and the bilinear DiÆe-Hellman (BDH) problem when we have an

eÆ
ient 
omputable non-degenerate bilinear map e : G�G! H. Under a 
ertain assumption

on the order of G, we show that the DH problem on H implies the DH problem on G, and both

of them are equivalent to the BDH problem when e is weak-invertible. Moreover, we show that

given the bilinear map e an inje
tive homomorphism f : H ! G enables us to solve the DH

problem on G eÆ
iently, whi
h implies the non-existen
e a self-bilinear map e : G � G ! G

when the DH problem on G is hard. Finally we introdu
e a sequen
e of bilinear maps and its

appli
ations.

1 Introdu
tion

The Weil pairing on an ellipti
 
urve have been used to solve 
ryptographi
 problems su
h

as the dis
rete logarithm (DL) problem, the (
omputational) DiÆe-Hellman (DH) problem,

the de
isional DiÆe-Hellman (DDH) problem [13℄. After Joux proposed tripartite DiÆe-

Hellman proto
ol using the Weil paring, however, the Weil (or Tate) pairing is being used

as a building blo
k of interesting 
ryptographi
 proto
ols in
luding ID-based s
hemes, a

short signature s
heme, and self-blindable 
redentials [9, 4, 7, 6, 18, 16℄.

The bilinear property of the pairings plays an important role on pairing-based proto
ols.

Given two groups G and H, a map e : G � G ! H is said to be bilinear if e(g

x

1

1

; g

x

2

2

) =

e(g

1

; g

2

)

x

1

x

2

for all x

i

2 Z and g

i

2 G. Given a quadruple (g; g

x

; g

y

; g

z

) the bilinear DiÆe-

Hellman (BDH) problem asks to �nd e(g; g)

xyz

. Though se
urity of most paring-based

proto
ols relies on the BDH problem, the hardness of the BDH problem or its relations

with other well-known problems are not studied well.

In this paper, we investigate relations between the BDH problem and other well-known

problems and how the properties of bilinear maps in
uen
e on their strength. More pre
isely,

we showed that the DH problem on G and H implies the BDH problem. The DH problem

on H implies the DH problem on G if the order of G satis�es a 
ertain 
ondition whi
h is

believed to be true for almost all primes [11, 12℄.

To show the inverse dire
tion of the above impli
ations, we need to have an invertible

bilinear map. Sin
e a bilinear map is a two-variable fun
tion, invertibility 
an be de�ned

several ways. A bilinear map is said to be weak-invertible if one 
an eÆ
iently 
ompute an
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inverse image (g

1

; g

2

) of h su
h that e(g

1

; g

2

) = h for any h 2 H. Under the weak-invertible

assumption of a bilinear map, we show that the DH problem on H, and so the DH problem

on G on a 
ertain assumption, are equivalent to the BDH problem.

We 
an 
onsider a stronger notion that there exists g 2 G su
h that one 
an eÆ
iently


ompute an inverse image g

1

of h su
h that e(g

1

; g) = h for any h 2 H. In this 
ase the

DH problem on G is eÆ
iently solved, and so is the BDH problem. More generally, we show

that given a bilinear map e : G�G! H, if there is an inje
tive homomorphism f : H ! G,

then the DH problem on G is eÆ
iently solved. As a 
orollary, we show that an eÆ
iently


omputable non-degenerate bilinear map e

s

: G� G ! G does not exist on a group G on

whi
h the DH problem is hard. A similar result was introdu
ed by Verheul on the XTR

groups [17℄.

It is natural to 
onsider n-multilinear maps as an extension of a bilinear map. An n-

multilinear map is a map from n-tuple of a 
y
li
 group to another 
y
li
 group that is

linear on ea
h variable. This map 
an be used to design many interesting 
ryptographi


proto
ols in
luding a non-intera
tive multiparty DiÆe-Hellman, a broad
ast en
ryption,

and a unique signature [5℄. One possible approa
h to �nd multilinear maps is to have a

sequen
e of groups and bilinear maps between ea
h 
onse
utive groups. However our result

implies that there should not exist eÆ
iently 
omputable isomorphism between any of two

groups in this 
hain. The appli
ations of the family in
ludes a forward-se
ure DiÆe-Hellman

as well as all appli
ations of multilinear maps.

The rest of the paper is organized as follows: In Se
tion 2, we introdu
e bilinear maps

and several DH and BDH related problems. In Se
tion 3, we re
all known relations between

the DH related problems and propose a useful lemma for granularity. In Se
tion 4, we

investigate the relations as invertible properties of a bilinear map vary. In Se
tion 5 we

introdu
e a sequen
e of bilinear maps and its appli
ations. We 
on
lude in Se
tion 6.

2 Problems related to the DH and the BDH

Let G and H be 
y
li
 groups of prime order p. We use the multipli
ative group notations.

We de�ne bilinear maps and several problems related to the DH problem and the BDH

problem.

2.1 Problems related to the DH

De�nition 1. For ea
h g 2 G the DL

g

problem is de�ned as follows: Given (g; g

x

), 
ompute

x 2 Z

p

. The DL

G

problem asks to solve the DL

g

problem for arbitrary g 2 G. We 
all by

the DL

g

ora
le a probabilisti
 algorithm to give a solution of the DL

g

problem. By notation,

we set DL

g

(g; g

x

) = x.

De�nition 2. For ea
h g 2 G the DH

g

problem is de�ned as follows: Given (g; g

x

; g

y

),


ompute g

xy

. The DH

G

problem asks to solve the DH

g

problem for arbitrary g 2 G. We
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all by the DH

g

ora
le a probabilisti
 algorithm to give a solution of the DH

g

problem. By

notation, we set DH

g

(g; g

x

; g

y

) = g

xy

.

De�nition 3. For ea
h g 2 G the DDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

),

de
ide if xy = z mod p. The DDH

G

problem asks to solve the DDH

g

problem for arbitrary

g 2 G. We 
all by the DDH

g

ora
le a probabilisti
 algorithm to give a de
ision of the DDH

g

problem. By notation, we set DDH

g

(g; g

x

; g

y

; g

z

) = 1 if xy = z mod p and 0 otherwise.

Notation. Suppose A and B are problems. Throughout this paper, `A �! B' means

that A is a strong problem than B, that is if there is a polynomially-bounded algorithm

A

A

solving the problem A then we 
an build another polynomially-bounded algorithm A

B

with polynomially-bounded a

ess to A

A

whi
h solves the problem B. `A  ! B' means

`A �! B' and `B �! A'. It is trivial that DL

g

�! DH

g

and DH

g

�! DDH

g

.

2.2 Problems related to the BDH

A map e : G�G! H is said to be bilinear provided that e(g

x

1

1

; g

x

2

2

) = e(g

1

; g

2

)

x

1

x

2

for all

x

i

2 Z=pZ and g

i

2 G . We denote Z=pZ by Z

p

. The Weil pairing for an ellipti
 
urve is

a good example of a bilinear map from an ellipti
 
urve to a �nite �eld. In this paper, we

assume that the bilinear map e has the following properties for pra
ti
al purposes:

1. Non-degenerate: There exists a g 2 G su
h that e(g; g) 6= 1

H

.

2. EÆ
ient 
omputable: There is an eÆ
ient algorithm to 
ompute e(g

1

; g

2

) for any g

1

; g

2

2

G.

In fa
t, the original Weil pairing does not satisfy the non-degenera
y, but a modi�ed

Weil pairing de�ned over supersingular 
urve has the above properties. A modi�ed Weil

paring is des
ribed in [4℄.

De�nition 4. For ea
h g 2 G the BDL

g

problem is de�ned as follows: Given (g; g

x

; g

y

),


ompute t su
h that e(g

x

; g

y

) = e(g; g)

t

. The BDL

G

problem asks to solve the BDL

g

problem

for arbitrary g 2 G. We 
all by the BDL

g

ora
le a probabilisti
 algorithm to give a solution

of the BDL

g

problem. By notation, we set BDL

g

(g; g

x

; g

y

) = xy.

De�nition 5. For ea
h g 2 G the BDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

),


ompute e(g; g)

xyz

. The BDH

G

problem asks to solve the BDH

g

problem for arbitrary

g 2 G. We 
all by the BDH

g

ora
le a probabilisti
 algorithm to give a solution of the

BDH

g

problem. By notation, we set BDH

g

(g; g

x

; g

y

; g

z

) = e(g; g)

xyz

.

De�nition 6. For ea
h g 2 G the DBDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

; h

w

)

where h = e(g; g), de
ide if xyz = w mod p. The DBDH

G

problem asks to solve the DBDH

g

problem for arbitrary g 2 G. We 
all by the DBDH

g

ora
le a probabilisti
 algorithm to give

a solution of the DBDH

g

problem. By notation, we set DBDH

g

(g; g

x

; g

y

; g

z

; h

w

) = 1 if

xyz = w mod p and 0 otherwise.
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Remark. It is easy to show that the DL

g

problem is equivalent to the BDL

g

problem.

Clearly, BDL

g

�! BDH

g

and BDH

g

�! DBDH

g

hold.

3 Relations between DH-related Problems

We de�ned three DH-related problems. Roughly speaking, the DL problem is equivalent to

the DH problem, but the DDH problem is di�erent from either one on most 
y
li
 groups.

We brie
y summarize known results on these relations [11, 12℄. Moreover we will present a

useful lemma on relations between problems a

ording to granularity.

DL versus DH. It is trivial that the DH problem is solved using the DL ora
le. For the


onverse, Maurer and Wolf showed the DL problem is redu
ed to the DH problem for some

spe
ial 
lass of groups [11, 12℄. Let p be an order of a group G. A

ording to their result, if

one 
an 
onstru
t an ellipti
 
urve over F

p

su
h that the ellipti
 
urve variant DL problem

on the 
urve is feasible (su
h 
urves always exist e.g. anomalous 
urves and smooth 
urves),

then the DL problem 
an be solved by O(log

3

p) 
alls DH ora
le.

Unfortunately it is not 
lear how to 
onstru
t an ellipti
 
urve over F

p

whi
h has a given

order. There are a few 
lasses of 
urves, whose order is known, su
h as supersingular 
urves

and 
urves with 
omplex multipli
ations. For 
onvenien
e, we de�ne the following 
ondition

on a prime p.

Condition (�). There exists an ellipti
 
urve over F

p

on whi
h the DL problem is solvable.

Consequently, if G has an order p satisfying the 
ondition (�), then the DL problem is

equivalent to the DH problem.

DH versus DDH. Many 
ryptographi
 proto
ols rely on the hardness of the DDH problem

for their se
urity. However the DDH problem is not diÆ
ult for some groups, espe
ially for

supersingular ellipti
 
urves [3℄. Moreover Joux and Nguyen 
onstru
ted ellipti
 
urve groups

where the DDH problem is easy while the DH problem is equivalent to the DL problem in

[10℄.

A
tually, if there is an eÆ
ient 
omputable bilinear map e : G�G! H, then the DDH

problem on G is easy. For given (g; g

x

; g

y

; g

z

), we 
an de
ide whether z = xy mod p by


he
king the equality between e(g; g

z

) and e(g

x

; g

y

). For example, the DDH problem on

supersingular 
urves is easy sin
e the modi�ed Weil pairing for supersingular 
urves is an

eÆ
ient 
omputable bilinear map.

Granularity of DL and DH.

Lemma 1. Let G be a 
y
li
 group of prime order p and g 2 G. We have DL

G

 ! DL

g

and DH

G

 ! DH

g

. More pre
isely, for any g

1

2 G we have
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1. If we have a DL

g

ora
le with su

ess probability �, we 
an build a DL

g

1

ora
le with

su

ess probability �

2

by two 
alls of the DL

g

ora
le.

2. If we have a DH

g

ora
le with su

ess probability �, we 
an build a DH

g

1

ora
le with

su

ess probability �

O(log p)

by O(log p) 
alls of the DH

g

ora
le.

Proof. Sin
e the DL

G

(resp. DH

G

) problem implies the DL

g

(resp. DH

g

) problem, the

lemma follows from the two assertions.

1. Suppose that we are given a pair (g

1

; g

x

1

) for any generator g

1

of G. We 
an 
ompute

t = DL

g

(g; g

1

) and y = DL

g

(g; g

x

1

) by two 
alls of theDL

g

ora
le. Then x = yt

�1

mod p.

2. Suppose that we are given a triple (g

1

; g

x

1

; g

y

1

) for any generator g

1

of G. Let g

1

= g

t

for

some t 2 Z

p

. Ea
h of g

t

2i

= DH

g

(g; g

t

i

; g

t

i

) and g

t

i+1

= DH

g

(g; g

t

i

; g

t

) 
an be 
omputed

by one 
all of the DH

g

ora
le. Hen
e g

t

�1

= g

t

p�2

requires O(log p) 
alls of DH

g

ora
le.

Sin
e g

t

2

xy

= DH

g

(g; g

tx

; g

ty

) and g

xy

1

= DH

g

(g; g

t

�1

; g

t

2

xy

), g

xy

1


an also be 
omputed

by O(log p) 
alls.

Consequently, we 
an 
onsider the DL problem or the DH problem without �xing a

generator. However, we do not know whether the DDH

g

ora
le 
an be used to build a

DDH

g

1

ora
le for another g

1

2 G. Let g

1

= g

t

for some t 6= 1. The DDHP

g

(g; g

x

1

; g

y

1

; g

z

1

)

de
ides only whether tx � ty � tz mod p, hen
e this information does not helpful to de
ide

whether xy � z mod p without knowing the t value.

4 Relations between BDH-related Problems with a Bilinear Map

We investigate relations of BDH-related problems when we have a bilinear map. Moreover

we 
onsider the situation the bilinear map is strong or weak-invertible. The notions will be

de�ned later.

4.1 With a Bilinear Map

Suppose we have an eÆ
iently 
omputable non-degenerate bilinear map e : G�G! H.

Theorem 1. Let G and H be 
y
li
 groups of prime order p. We have DL

h

�! DL

g

and

DH

h

9 9 KDH

g

.

3

More pre
isely, for any g

1

2 G we have

1. If we have a DL

h

ora
le with su

ess probability �, we 
an build a DL

g

ora
le with

su

ess probability � by one 
all of the DL

h

ora
le.

2. Assume that p satis�es the 
ondition (�). If we have a DH

h

ora
le with su

ess probability

�, we 
an build a DH

g

ora
le with su

ess probability �

O(log

3

p)

by O(log

3

p) 
alls of the

DH

h

ora
le.

3

Throughout this paper, A 9 9 K B means that the problem A implies the problem B if p satis�es the


ondition (�).
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Proof. 1. Sin
e a given pair (g; g

x

) 2 G�G is redu
ed to a pair (h; h

x

) 2 H �H via the

bilinear map, it is trivial that the �rst part of the theorem follows.

2. Sin
e p satis�es the 
ondition (�), we may assume that we are able to solve the dis
rete

logarithm on H with help of DH

h

ora
le. Suppose that we are given a triple (g; g

x

; g

y

).

Let h = e(g; g), h

1

= e(g; g

x

) and h

2

= e(g; g

y

). A
tually h

1

= h

x

and h

2

= h

y

. By the

assumption, we 
an 
ompute the dis
rete logarithm of h

1

and h

2

as des
ribed in [11, 12℄

by O(log

3

p) 
alls of the DH

h

ora
le. Therefore we have g

xy

.

We don't know whether the 
onverse of Theorem 1 holds in general. However we will

show in Theorem 5 that the 
onverse is true if an inverse image of the bilinear map is

eÆ
iently 
omputable for any element of H.

BDH versus DH.

Theorem 2. Let G and H be 
y
li
 groups of prime order p. Let h = e(g; g) for g 2 G.

We have DH

g

�! BDH

g

and DH

h

9 9 KBDH

g

. More pre
isely, we have

1. If we have a DH

g

ora
le with su

ess probability �, we 
an build a BDH

g

ora
le with

su

ess probability � by one 
all of the DH

g

ora
le.

2. If we have a DH

h

ora
le with su

ess probability �, we 
an build a BDH

g

ora
le with

su

ess probability �

2

by two 
alls of the DH

h

ora
le.

Proof. 1. Assume that we are given (g; g

x

; g

y

; g

z

) for g 2 G. We 
an 
ompute g

xy

=

DH

g

(g; g

x

; g

y

) by one 
all of the DH

g

ora
le. Hen
e we get e(g; g)

xyz

= e(g

xy

; g

z

).

2. Assume that we are given (g; g

x

; g

y

; g

z

) for g 2 G. Let h

1

= e(g; g

x

), h

2

= e(g; g

y

) and

h

3

= e(g; g

z

). We 
an 
ompute h

xy

= DH

h

(h; h

1

; h

2

) by one 
all of the DH

h

ora
le.

Hen
e we 
an get e(g; g)

xyz

= h

xyz

= DH

h

(h; h

xy

; h

3

) by one more 
all of DH

h

ora
le.

DBDH versus DDH. As mentioned before, DDH problem on G has polynomial time


omplexity sin
e there is a bilinear map. However we don't know whether the DDH problem

on H is easy or not in general.

Theorem 3. Let G and H be 
y
li
 groups of prime order p. Let h = e(g; g) for g 2 G.

We have DDH

h

�! DBDH

g

. More pre
isely, if we have a DDH

h

ora
le with su

ess

probability �, we 
an build a DBDH

g

ora
le with su

ess probability � by one 
all of the

DDH

h

ora
le.

Proof. Assume that we are given (g; g

x

; g

y

; g

z

; h

w

) where h = e(g; g). Let h

1

= e(g

x

; g

y

)

and h

2

= e(g; g

z

). We 
an de
ide whether xyz = w mod p by one 
all of DDH

h

ora
le, i.e.

DDH

h

(h; h

1

; h

2

; h

w

).
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DL
g


DH
g


DDH
g
Poly


DL
h


DH
h


DDH
h


BDL
g


BDH
g


DBDH
g


DH
g


BDH
g


DBDH
g


DDH
h


Poly = DDH
g


DH
h
BDL
g
 = DL
g


DL
h


Fig. 1. Problems hierar
hy

Problems Hierar
hy. We 
an obtain the following diagram (�gure 1) from the above

results.

4.2 With a Weak-invertible Bilinear Map

De�nition 7. A bilinear map e : G�G! H is said to be weak-invertible provided that an

inverse image (g

1

; g

2

) of h, that is e(g

1

; g

2

) = h, is eÆ
iently 
omputable for any h 2 H.

Theorem 4. Suppose that e : G�G! H is weak-invertible and h = e(g; g) for g 2 G. We

have BDH

g

�! DH

h

. More pre
isely, if we have a BDH

g

ora
le with su

ess probability

�, we 
an build a DH

h

ora
le with su

ess probability �

2

by two 
alls of the BDH

g

ora
le.

Consequently BDH

g

 ! DH

h

.

Proof. Sin
e e is weak-invertible, we 
an 
ompute (g

0

; g

1

; g

2

; g

3

) su
h that

e(g

0

; g

1

) = h

x

; and e(g

2

; g

3

) = h

y

:

Let g

0

= g

t

and g

i

= g

a

i

0

for a positive integer t and a

i

's. We 
an 
ompute (h

xy

)

t

�1

by

one 
all of BDH

g

ora
le.

BDH

g

(g; g

1

; g

2

; g

3

) = e(g; g)

t

3

a

1

a

2

a

3

= (h

xy

)

t

�1

:

And let (g

4

; g

5

) be an inverse image of (h

xy

)

t

�1

, i.e. e(g

4

; g

5

) = (h

xy

)

t

�1

. Finally we 
an


ompute h

xy

by one more 
all of BDH

g

ora
le:

BDH

g

(g; g

0

; g

4

; g

5

) = e(g; g)

t

4

a

1

a

2

a

3

= h

xy

:
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Theorem 5. Suppose that e : G�G! H is weak-invertible and h = e(g; g) for g 2 G. We

have DL

g

�! DL

h

and DH

g

�! DH

h

. More pre
isely,

1. If we have a DL

g

ora
le with su

ess probability �, we 
an build a DL

h

ora
le with

su

ess probability �

4

by four 
alls of the DL

g

ora
le. Consequently DL

g

 ! DL

h

.

2. if we have a DH

g

ora
le with su

ess probability �, we 
an build a DH

h

ora
le with

su

ess probability �

3

by three 
alls of the DH

g

ora
le.

Proof. 1. For given (h; h

x

), we 
ompute g

1

; g

2

; g

3

and g

4

su
h that h = e(g

1

; g

2

) and h

x

=

e(g

3

; g

4

) sin
e e is weak-invertible. Let g

i

= g

a

i

for some a

i

's. We 
an 
ompute a

i

=

DL

g

(g; g

i

) by four 
alls of DL

g

ora
le. Hen
e x = (a

3

a

4

)(a

1

a

2

)

�1

.

2. For given (h; h

x

; h

y

), we 
ompute g

i

, (i = 1; 2; � � � ; 4) su
h that h

x

= e(g

1

; g

2

) and

h

y

= e(g

3

; g

4

) sin
e e is weak-invertible. Then we 
an 
ompute g

x

and g

y

by two 
alls

of DH

g

ora
le.

DH

g

(g; g

1

; g

2

) = g

x

and DH

g

(g; g

3

; g

4

) = g

y

:

From the triple (g; g

x

; g

y

), we 
an 
ompute g

xy

by one more 
all of DH

g

ora
le. Therefore

we obtain h

xy

= e(g; g

xy

).

We 
an obtain the following diagram (�gure 2) from the above results.

DL
g


DH
g


DDH
g
Poly


DL
h


DH
h


DDH
h


BDL
g


BDH
g


DBDH
g


DH
h
 = 
BDH
g


DBDH
g


DDH
h


Poly = DDH
g


DH
g


BDL
g
 = DL
g
 = DL
h


Fig. 2. Problems hierar
hy if e is weak-invertible
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4.3 With a Strong-invertible Bilinear Map

De�nition 8. A bilinear map e : G�G ! H is said to be strong-invertible provided that

there is an element g 2 G su
h that an inverse g

0

of h with respe
t to g, that is e(g; g

0

) = h,

is eÆ
iently 
omputable for any h 2 H.

If e is strong-invertible with respe
t to g 2 G we 
an easily solve the DH

g

problem as

follows:

Theorem 6. If e : G � G ! H is strong-invertible with respe
t to g 2 G , then the DH

g

problem is solved using one evaluation of e and one inverse operation of e.

Proof. For given (g; g

x

; g

y

), we �rst 
ompute e(g

x

; g

y

) = h

1

and the inverse image g

1

of

h

1

su
h that e(g; g

1

) = h

1

by the invertibility of e. Sin
e h

1

= e(g; g)

xy

= h

xy

, we have

g

1

= g

xy

.

If we 
ombine the above result with Lemma 1, we 
an see that a strong-invertible bilinear

map e implies the DH

G

problem. Under the 
ondition (�), the DL

G

problem is also solved

eÆ
iently. More pre
isely, we have

Corollary 1. If we have a strong-invertible bilinear map e : G�G! H, we 
an solve the

DH

G

problem. Under the 
ondition (�), we 
an solve DL

G

problem by O(log

3

p) evaluation

of e and inverse operation of e respe
tively.

The above result 
an be extended to more general situation. Suppose we have an eÆ
ient


omputable inje
tive homomorphism f : H ! G. By 
omposition of e and f we 
an


onstru
t a self-bilinear map e

s

: G�G! G. That is,

e

s

(g

1

; g

2

) = f(e(g

1

; g

2

)):

e

s

is 
learly an eÆ
ient 
omputable non-degenerate bilinear map sin
e f is inje
tive homo-

morphism.

Lemma 2. Consider two fun
tions on positive integers:

f(i) = 2i+ 1; g(i) = i+ 1:

Any k-bit positive integer 
an be generated from 1 by at most 2(k � 1) evaluation of f and

g.

Proof. Use mathemati
al indu
tion on k. When k = 1, it is trivial. When k = 2, it is true

sin
e 10

2

= g(1) and 11

2

= f(1) where the subs
ript 2 denotes a binary representation.

Assume the 
laim holds for any positive integer of at most k � 1 bit. Any k-bit integer i

has the form i = 2j or i = 2j + 1 for a (k � 1)-bit integer j. Then 2j = g(f(j � 1)) and

2j + 1 = f(j). Sin
e both of j � 1 and j are at most (k � 1)-bit integers, they 
an be


omputed by at most 2(k � 2) evaluation of f and g. Thus i 
an be 
omputed by at most

2(k � 1) evaluation of f and g whi
h proves the 
laim for k. By mathemati
al indu
tion,

the 
laim holds for any positive integer.
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Theorem 7. Let G be a 
y
li
 group of prime order p. If we have an eÆ
iently 
omputable

non-degenerate bilinear map e : G � G ! G, we 
an solve the DH

G

problem on G by

O(log p) evaluation of e.

Proof. Let g 2 G and e(g; g) = g

t

for a positive integer t. Using Lemma 2, given a triple

(g; g

x

; g

y

), one 
an 
ompute g

t

�2

= g

t

p�3

by at most O(log p) times e-
omputations sin
e

e(g

t

i

; g

t

i

) = g

t

2i+1

and e(g

t

i

; g) = g

t

i+1

. Therefore we 
an solve the DH

G

as follows.

e(e(g

x

; g

y

); g

t

�2

) = e(g

txy

; g

t

�2

) = g

xy

:

From the above theorem, we 
an derive the following 
orollary.

Corollary 2. Assume we have a non-degenerate bilinear map e : G�G! H for two 
y
li


group of prime order p. Then there is no inje
tive homomorphism from H to G if the DH

G

problem is hard.

Verheul showed in [17℄ that if there is an inje
tive homomorphism from the XTR sub-

group to the asso
iated supersingular 
urve, then the homomorphism 
an be utilized to

make an ora
le whi
h 
omputes the DH problem over XTR group. The proof te
hnique is

similar, but the above 
orollary gives the same result in more general situation.

5 A Sequen
e of Bilinear Maps

A bilinear map 
an be used to tripartite key agreement proto
ol [9℄. More generally an

(n� 1)-multilinear map 
an be used to 
onstru
t a non-intera
tive n-party key agreement

proto
ol. This map also 
an be used to 
onstru
t a broad
ast en
ryption with very short

broad
asts and private keys and a unique signature s
heme [5℄.

One possible approa
h to 
onstru
t a multilinear map is to �nd a sequen
e of 
y
li


groups and bilinear maps between ea
h of 
onse
utive two groups. Suppose that for ea
h

positive integer n we have a 
y
li
 group G

n

of prime order p with a generator g

n

and an

eÆ
iently 
omputable, non-degenerate bilinear map e

n

: G

n

�G

n

! G

n+1

. For ea
h n-tuple

G

n

of G, de�ne f

2

= e

1

: G

2

1

! G

2

and

f

n

: G

n

1

! G

n

; f

n

(x

1

; x

2

; � � � ; x

n

) = e

n�1

(f

n�1

(x

1

; x

2

; � � � ; x

n�1

); f

n�1

(x

n

; g; � � � ; g)):

Then f

n

: G

n

1

! G

n

is n-multilinear map for ea
h positive n.

Another appli
ation of a family of bilinear maps in
ludes a forward se
ure DiÆe-Hellman

key agreement s
heme. The notion of the forward se
re
y was �rst introdu
ed by Anderson

in 1997 to preserve the se
urity even after the se
ret key has been exposed [1℄. While several

forward-se
ure signature s
hemes were proposed [2, 8℄, no forward-se
ure en
ryption s
heme

was announ
ed. Note that a forward-se
ure en
ryption s
heme is easily followed from a
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forward-se
ure DiÆe-Hellman key agreement s
heme using ElGamal en
ryption te
hnique

or even using symmetri
 key en
ryption s
heme.

Choose an integer N whose fa
torization is hard and keep the fa
torization of N to be

se
ret. Assume we have a family of 
y
li
 groups G

n

of order N and eÆ
iently 
omputable,

non-degenerate bilinear maps e

n

: G

n

� G

n

! G

n+1

for ea
h positive integer n. De�ne g

n

to be a generator of G

n

and g

n+1

= e

n

(g

n

; g

n

) 2 G

n+1

for ea
h positive integer n.

1. Setup Take N and G

n

; e

n

; g

n

for ea
h positive integer n satisfying the above properties.

2. Initial Keys. A user randomly takes his initial private key sk

1

= a in Z=n. The initial

publi
 key is pk

1

= g

a

1

.

3. Private Key on the time n. sk

n

� a

2

n�1

mod N .

4. Publi
 Key on the time n. pk

n

= g

a

2

n�1

n

2 G

n

5. Key Generation on the time n + 1. sk

n+1

is 
omputed by sk

2

n

� (a

2

n�1

)

2

� a

2

n

mod N . pk

n+1

is 
omputed by pk

n+1

= e

n+1

(pk

n

; pk

n

) 2 G

n+1

Observe that the private key evolving pro
edure is easy, but the reverse pro
edure is

equivalent to fa
toring N . The key evolving pro
edure in this s
heme is very eÆ
ient sin
e

the private key evolving requires one squaring and the publi
 key evolving requires one

evaluation of e

n

.

If we have an eÆ
iently 
omputable inje
tive homomorphism f from G

j

to G

i

for i < j,

by 
omposing it with the bilinear maps e

n

for i � n < j we 
an 
onstru
t a self-bilinear

map e : G

i

�G

i

! G

i

. For example, when i = 1 and j = 4 we 
an de�ne e : G

1

�G

1

! G

1

by

e(x; y) = f(e

3

(g

3

; e

2

(g

2

; e

1

(x; y)))) for some g

i

2 G

i

:

Sin
e a self-linear map 
an be used to solve eÆ
iently the DH problem on G

i

, our result

implies that there should not exist eÆ
iently 
omputable isomorphism between any of two

groups in this 
hain in order to use the family for 
ryptographi
 use.

It is not known yet whether su
h sequen
e of bilinear map in
uen
e on the se
urity of

the DiÆe-Hellman problem on the base group G

1

. But obviously the DDH problem on G

n


an be easily solved using a bilinear map e

n

: G

n

�G

n

! G

n+1

.

6 Con
lusion

We investigated relations between problems related to the DH problem when we have a

bilinear map e : G�G! H. We showed the BDH problem is equivalent to the DH problem

on H when the bilinear map is weak-invertible. We do not know if the weak invertibility


ondition 
an be weakened. It is interesting to study how the weak-invertible property of a

bilinear map in
uen
es on the se
urity of the DH problem or the BDH problem.
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We also proposed a use of a sequen
e of bilinear maps. This sequen
e has more ap-

pli
ations than multilinear maps, but it still looks diÆ
ult to �nd su
h sequen
e as mu
h

as multilinear maps. We pointed out that there should not exist an eÆ
iently 
omputable

isomorphism between any of two groups in the family. Hen
e the �rst step to 
onstru
t su
h

sequen
e is to �nd a family of groups with the same order su
h that there does not exist

an eÆ
iently 
omputable isomorphism between any two of them.
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