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Abstrat. We investigate relations among the disrete logarithm (DL) problem, the DiÆe-

Hellman (DH) problem and the bilinear DiÆe-Hellman (BDH) problem when we have an

eÆient omputable non-degenerate bilinear map e : G�G! H. Under a ertain assumption

on the order of G, we show that the DH problem on H implies the DH problem on G, and both

of them are equivalent to the BDH problem when e is weak-invertible. Moreover, we show that

given the bilinear map e an injetive homomorphism f : H ! G enables us to solve the DH

problem on G eÆiently, whih implies the non-existene a self-bilinear map e : G � G ! G

when the DH problem on G is hard. Finally we introdue a sequene of bilinear maps and its

appliations.

1 Introdution

The Weil pairing on an ellipti urve have been used to solve ryptographi problems suh

as the disrete logarithm (DL) problem, the (omputational) DiÆe-Hellman (DH) problem,

the deisional DiÆe-Hellman (DDH) problem [13℄. After Joux proposed tripartite DiÆe-

Hellman protool using the Weil paring, however, the Weil (or Tate) pairing is being used

as a building blok of interesting ryptographi protools inluding ID-based shemes, a

short signature sheme, and self-blindable redentials [9, 4, 7, 6, 18, 16℄.

The bilinear property of the pairings plays an important role on pairing-based protools.

Given two groups G and H, a map e : G � G ! H is said to be bilinear if e(g

x

1

1

; g

x

2

2

) =

e(g

1

; g

2

)

x

1

x

2

for all x

i

2 Z and g

i

2 G. Given a quadruple (g; g

x

; g

y

; g

z

) the bilinear DiÆe-

Hellman (BDH) problem asks to �nd e(g; g)

xyz

. Though seurity of most paring-based

protools relies on the BDH problem, the hardness of the BDH problem or its relations

with other well-known problems are not studied well.

In this paper, we investigate relations between the BDH problem and other well-known

problems and how the properties of bilinear maps inuene on their strength. More preisely,

we showed that the DH problem on G and H implies the BDH problem. The DH problem

on H implies the DH problem on G if the order of G satis�es a ertain ondition whih is

believed to be true for almost all primes [11, 12℄.

To show the inverse diretion of the above impliations, we need to have an invertible

bilinear map. Sine a bilinear map is a two-variable funtion, invertibility an be de�ned

several ways. A bilinear map is said to be weak-invertible if one an eÆiently ompute an
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inverse image (g

1

; g

2

) of h suh that e(g

1

; g

2

) = h for any h 2 H. Under the weak-invertible

assumption of a bilinear map, we show that the DH problem on H, and so the DH problem

on G on a ertain assumption, are equivalent to the BDH problem.

We an onsider a stronger notion that there exists g 2 G suh that one an eÆiently

ompute an inverse image g

1

of h suh that e(g

1

; g) = h for any h 2 H. In this ase the

DH problem on G is eÆiently solved, and so is the BDH problem. More generally, we show

that given a bilinear map e : G�G! H, if there is an injetive homomorphism f : H ! G,

then the DH problem on G is eÆiently solved. As a orollary, we show that an eÆiently

omputable non-degenerate bilinear map e

s

: G� G ! G does not exist on a group G on

whih the DH problem is hard. A similar result was introdued by Verheul on the XTR

groups [17℄.

It is natural to onsider n-multilinear maps as an extension of a bilinear map. An n-

multilinear map is a map from n-tuple of a yli group to another yli group that is

linear on eah variable. This map an be used to design many interesting ryptographi

protools inluding a non-interative multiparty DiÆe-Hellman, a broadast enryption,

and a unique signature [5℄. One possible approah to �nd multilinear maps is to have a

sequene of groups and bilinear maps between eah onseutive groups. However our result

implies that there should not exist eÆiently omputable isomorphism between any of two

groups in this hain. The appliations of the family inludes a forward-seure DiÆe-Hellman

as well as all appliations of multilinear maps.

The rest of the paper is organized as follows: In Setion 2, we introdue bilinear maps

and several DH and BDH related problems. In Setion 3, we reall known relations between

the DH related problems and propose a useful lemma for granularity. In Setion 4, we

investigate the relations as invertible properties of a bilinear map vary. In Setion 5 we

introdue a sequene of bilinear maps and its appliations. We onlude in Setion 6.

2 Problems related to the DH and the BDH

Let G and H be yli groups of prime order p. We use the multipliative group notations.

We de�ne bilinear maps and several problems related to the DH problem and the BDH

problem.

2.1 Problems related to the DH

De�nition 1. For eah g 2 G the DL

g

problem is de�ned as follows: Given (g; g

x

), ompute

x 2 Z

p

. The DL

G

problem asks to solve the DL

g

problem for arbitrary g 2 G. We all by

the DL

g

orale a probabilisti algorithm to give a solution of the DL

g

problem. By notation,

we set DL

g

(g; g

x

) = x.

De�nition 2. For eah g 2 G the DH

g

problem is de�ned as follows: Given (g; g

x

; g

y

),

ompute g

xy

. The DH

G

problem asks to solve the DH

g

problem for arbitrary g 2 G. We
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all by the DH

g

orale a probabilisti algorithm to give a solution of the DH

g

problem. By

notation, we set DH

g

(g; g

x

; g

y

) = g

xy

.

De�nition 3. For eah g 2 G the DDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

),

deide if xy = z mod p. The DDH

G

problem asks to solve the DDH

g

problem for arbitrary

g 2 G. We all by the DDH

g

orale a probabilisti algorithm to give a deision of the DDH

g

problem. By notation, we set DDH

g

(g; g

x

; g

y

; g

z

) = 1 if xy = z mod p and 0 otherwise.

Notation. Suppose A and B are problems. Throughout this paper, `A �! B' means

that A is a strong problem than B, that is if there is a polynomially-bounded algorithm

A

A

solving the problem A then we an build another polynomially-bounded algorithm A

B

with polynomially-bounded aess to A

A

whih solves the problem B. `A  ! B' means

`A �! B' and `B �! A'. It is trivial that DL

g

�! DH

g

and DH

g

�! DDH

g

.

2.2 Problems related to the BDH

A map e : G�G! H is said to be bilinear provided that e(g

x

1

1

; g

x

2

2

) = e(g

1

; g

2

)

x

1

x

2

for all

x

i

2 Z=pZ and g

i

2 G . We denote Z=pZ by Z

p

. The Weil pairing for an ellipti urve is

a good example of a bilinear map from an ellipti urve to a �nite �eld. In this paper, we

assume that the bilinear map e has the following properties for pratial purposes:

1. Non-degenerate: There exists a g 2 G suh that e(g; g) 6= 1

H

.

2. EÆient omputable: There is an eÆient algorithm to ompute e(g

1

; g

2

) for any g

1

; g

2

2

G.

In fat, the original Weil pairing does not satisfy the non-degeneray, but a modi�ed

Weil pairing de�ned over supersingular urve has the above properties. A modi�ed Weil

paring is desribed in [4℄.

De�nition 4. For eah g 2 G the BDL

g

problem is de�ned as follows: Given (g; g

x

; g

y

),

ompute t suh that e(g

x

; g

y

) = e(g; g)

t

. The BDL

G

problem asks to solve the BDL

g

problem

for arbitrary g 2 G. We all by the BDL

g

orale a probabilisti algorithm to give a solution

of the BDL

g

problem. By notation, we set BDL

g

(g; g

x

; g

y

) = xy.

De�nition 5. For eah g 2 G the BDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

),

ompute e(g; g)

xyz

. The BDH

G

problem asks to solve the BDH

g

problem for arbitrary

g 2 G. We all by the BDH

g

orale a probabilisti algorithm to give a solution of the

BDH

g

problem. By notation, we set BDH

g

(g; g

x

; g

y

; g

z

) = e(g; g)

xyz

.

De�nition 6. For eah g 2 G the DBDH

g

problem is de�ned as follows: Given (g; g

x

; g

y

; g

z

; h

w

)

where h = e(g; g), deide if xyz = w mod p. The DBDH

G

problem asks to solve the DBDH

g

problem for arbitrary g 2 G. We all by the DBDH

g

orale a probabilisti algorithm to give

a solution of the DBDH

g

problem. By notation, we set DBDH

g

(g; g

x

; g

y

; g

z

; h

w

) = 1 if

xyz = w mod p and 0 otherwise.
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Remark. It is easy to show that the DL

g

problem is equivalent to the BDL

g

problem.

Clearly, BDL

g

�! BDH

g

and BDH

g

�! DBDH

g

hold.

3 Relations between DH-related Problems

We de�ned three DH-related problems. Roughly speaking, the DL problem is equivalent to

the DH problem, but the DDH problem is di�erent from either one on most yli groups.

We briey summarize known results on these relations [11, 12℄. Moreover we will present a

useful lemma on relations between problems aording to granularity.

DL versus DH. It is trivial that the DH problem is solved using the DL orale. For the

onverse, Maurer and Wolf showed the DL problem is redued to the DH problem for some

speial lass of groups [11, 12℄. Let p be an order of a group G. Aording to their result, if

one an onstrut an ellipti urve over F

p

suh that the ellipti urve variant DL problem

on the urve is feasible (suh urves always exist e.g. anomalous urves and smooth urves),

then the DL problem an be solved by O(log

3

p) alls DH orale.

Unfortunately it is not lear how to onstrut an ellipti urve over F

p

whih has a given

order. There are a few lasses of urves, whose order is known, suh as supersingular urves

and urves with omplex multipliations. For onveniene, we de�ne the following ondition

on a prime p.

Condition (�). There exists an ellipti urve over F

p

on whih the DL problem is solvable.

Consequently, if G has an order p satisfying the ondition (�), then the DL problem is

equivalent to the DH problem.

DH versus DDH. Many ryptographi protools rely on the hardness of the DDH problem

for their seurity. However the DDH problem is not diÆult for some groups, espeially for

supersingular ellipti urves [3℄. Moreover Joux and Nguyen onstruted ellipti urve groups

where the DDH problem is easy while the DH problem is equivalent to the DL problem in

[10℄.

Atually, if there is an eÆient omputable bilinear map e : G�G! H, then the DDH

problem on G is easy. For given (g; g

x

; g

y

; g

z

), we an deide whether z = xy mod p by

heking the equality between e(g; g

z

) and e(g

x

; g

y

). For example, the DDH problem on

supersingular urves is easy sine the modi�ed Weil pairing for supersingular urves is an

eÆient omputable bilinear map.

Granularity of DL and DH.

Lemma 1. Let G be a yli group of prime order p and g 2 G. We have DL

G

 ! DL

g

and DH

G

 ! DH

g

. More preisely, for any g

1

2 G we have



5

1. If we have a DL

g

orale with suess probability �, we an build a DL

g

1

orale with

suess probability �

2

by two alls of the DL

g

orale.

2. If we have a DH

g

orale with suess probability �, we an build a DH

g

1

orale with

suess probability �

O(log p)

by O(log p) alls of the DH

g

orale.

Proof. Sine the DL

G

(resp. DH

G

) problem implies the DL

g

(resp. DH

g

) problem, the

lemma follows from the two assertions.

1. Suppose that we are given a pair (g

1

; g

x

1

) for any generator g

1

of G. We an ompute

t = DL

g

(g; g

1

) and y = DL

g

(g; g

x

1

) by two alls of theDL

g

orale. Then x = yt

�1

mod p.

2. Suppose that we are given a triple (g

1

; g

x

1

; g

y

1

) for any generator g

1

of G. Let g

1

= g

t

for

some t 2 Z

p

. Eah of g

t

2i

= DH

g

(g; g

t

i

; g

t

i

) and g

t

i+1

= DH

g

(g; g

t

i

; g

t

) an be omputed

by one all of the DH

g

orale. Hene g

t

�1

= g

t

p�2

requires O(log p) alls of DH

g

orale.

Sine g

t

2

xy

= DH

g

(g; g

tx

; g

ty

) and g

xy

1

= DH

g

(g; g

t

�1

; g

t

2

xy

), g

xy

1

an also be omputed

by O(log p) alls.

Consequently, we an onsider the DL problem or the DH problem without �xing a

generator. However, we do not know whether the DDH

g

orale an be used to build a

DDH

g

1

orale for another g

1

2 G. Let g

1

= g

t

for some t 6= 1. The DDHP

g

(g; g

x

1

; g

y

1

; g

z

1

)

deides only whether tx � ty � tz mod p, hene this information does not helpful to deide

whether xy � z mod p without knowing the t value.

4 Relations between BDH-related Problems with a Bilinear Map

We investigate relations of BDH-related problems when we have a bilinear map. Moreover

we onsider the situation the bilinear map is strong or weak-invertible. The notions will be

de�ned later.

4.1 With a Bilinear Map

Suppose we have an eÆiently omputable non-degenerate bilinear map e : G�G! H.

Theorem 1. Let G and H be yli groups of prime order p. We have DL

h

�! DL

g

and

DH

h

9 9 KDH

g

.

3

More preisely, for any g

1

2 G we have

1. If we have a DL

h

orale with suess probability �, we an build a DL

g

orale with

suess probability � by one all of the DL

h

orale.

2. Assume that p satis�es the ondition (�). If we have a DH

h

orale with suess probability

�, we an build a DH

g

orale with suess probability �

O(log

3

p)

by O(log

3

p) alls of the

DH

h

orale.

3

Throughout this paper, A 9 9 K B means that the problem A implies the problem B if p satis�es the

ondition (�).
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Proof. 1. Sine a given pair (g; g

x

) 2 G�G is redued to a pair (h; h

x

) 2 H �H via the

bilinear map, it is trivial that the �rst part of the theorem follows.

2. Sine p satis�es the ondition (�), we may assume that we are able to solve the disrete

logarithm on H with help of DH

h

orale. Suppose that we are given a triple (g; g

x

; g

y

).

Let h = e(g; g), h

1

= e(g; g

x

) and h

2

= e(g; g

y

). Atually h

1

= h

x

and h

2

= h

y

. By the

assumption, we an ompute the disrete logarithm of h

1

and h

2

as desribed in [11, 12℄

by O(log

3

p) alls of the DH

h

orale. Therefore we have g

xy

.

We don't know whether the onverse of Theorem 1 holds in general. However we will

show in Theorem 5 that the onverse is true if an inverse image of the bilinear map is

eÆiently omputable for any element of H.

BDH versus DH.

Theorem 2. Let G and H be yli groups of prime order p. Let h = e(g; g) for g 2 G.

We have DH

g

�! BDH

g

and DH

h

9 9 KBDH

g

. More preisely, we have

1. If we have a DH

g

orale with suess probability �, we an build a BDH

g

orale with

suess probability � by one all of the DH

g

orale.

2. If we have a DH

h

orale with suess probability �, we an build a BDH

g

orale with

suess probability �

2

by two alls of the DH

h

orale.

Proof. 1. Assume that we are given (g; g

x

; g

y

; g

z

) for g 2 G. We an ompute g

xy

=

DH

g

(g; g

x

; g

y

) by one all of the DH

g

orale. Hene we get e(g; g)

xyz

= e(g

xy

; g

z

).

2. Assume that we are given (g; g

x

; g

y

; g

z

) for g 2 G. Let h

1

= e(g; g

x

), h

2

= e(g; g

y

) and

h

3

= e(g; g

z

). We an ompute h

xy

= DH

h

(h; h

1

; h

2

) by one all of the DH

h

orale.

Hene we an get e(g; g)

xyz

= h

xyz

= DH

h

(h; h

xy

; h

3

) by one more all of DH

h

orale.

DBDH versus DDH. As mentioned before, DDH problem on G has polynomial time

omplexity sine there is a bilinear map. However we don't know whether the DDH problem

on H is easy or not in general.

Theorem 3. Let G and H be yli groups of prime order p. Let h = e(g; g) for g 2 G.

We have DDH

h

�! DBDH

g

. More preisely, if we have a DDH

h

orale with suess

probability �, we an build a DBDH

g

orale with suess probability � by one all of the

DDH

h

orale.

Proof. Assume that we are given (g; g

x

; g

y

; g

z

; h

w

) where h = e(g; g). Let h

1

= e(g

x

; g

y

)

and h

2

= e(g; g

z

). We an deide whether xyz = w mod p by one all of DDH

h

orale, i.e.

DDH

h

(h; h

1

; h

2

; h

w

).
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DLg

DHg

DDHgPoly

DLh

DHh

DDHh

BDLg

BDHg

DBDHg

DHg

BDHg

DBDHg

DDHh

Poly = DDHg

DHhBDLg = DLg

DLh

Fig. 1. Problems hierarhy

Problems Hierarhy. We an obtain the following diagram (�gure 1) from the above

results.

4.2 With a Weak-invertible Bilinear Map

De�nition 7. A bilinear map e : G�G! H is said to be weak-invertible provided that an

inverse image (g

1

; g

2

) of h, that is e(g

1

; g

2

) = h, is eÆiently omputable for any h 2 H.

Theorem 4. Suppose that e : G�G! H is weak-invertible and h = e(g; g) for g 2 G. We

have BDH

g

�! DH

h

. More preisely, if we have a BDH

g

orale with suess probability

�, we an build a DH

h

orale with suess probability �

2

by two alls of the BDH

g

orale.

Consequently BDH

g

 ! DH

h

.

Proof. Sine e is weak-invertible, we an ompute (g

0

; g

1

; g

2

; g

3

) suh that

e(g

0

; g

1

) = h

x

; and e(g

2

; g

3

) = h

y

:

Let g

0

= g

t

and g

i

= g

a

i

0

for a positive integer t and a

i

's. We an ompute (h

xy

)

t

�1

by

one all of BDH

g

orale.

BDH

g

(g; g

1

; g

2

; g

3

) = e(g; g)

t

3

a

1

a

2

a

3

= (h

xy

)

t

�1

:

And let (g

4

; g

5

) be an inverse image of (h

xy

)

t

�1

, i.e. e(g

4

; g

5

) = (h

xy

)

t

�1

. Finally we an

ompute h

xy

by one more all of BDH

g

orale:

BDH

g

(g; g

0

; g

4

; g

5

) = e(g; g)

t

4

a

1

a

2

a

3

= h

xy

:
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Theorem 5. Suppose that e : G�G! H is weak-invertible and h = e(g; g) for g 2 G. We

have DL

g

�! DL

h

and DH

g

�! DH

h

. More preisely,

1. If we have a DL

g

orale with suess probability �, we an build a DL

h

orale with

suess probability �

4

by four alls of the DL

g

orale. Consequently DL

g

 ! DL

h

.

2. if we have a DH

g

orale with suess probability �, we an build a DH

h

orale with

suess probability �

3

by three alls of the DH

g

orale.

Proof. 1. For given (h; h

x

), we ompute g

1

; g

2

; g

3

and g

4

suh that h = e(g

1

; g

2

) and h

x

=

e(g

3

; g

4

) sine e is weak-invertible. Let g

i

= g

a

i

for some a

i

's. We an ompute a

i

=

DL

g

(g; g

i

) by four alls of DL

g

orale. Hene x = (a

3

a

4

)(a

1

a

2

)

�1

.

2. For given (h; h

x

; h

y

), we ompute g

i

, (i = 1; 2; � � � ; 4) suh that h

x

= e(g

1

; g

2

) and

h

y

= e(g

3

; g

4

) sine e is weak-invertible. Then we an ompute g

x

and g

y

by two alls

of DH

g

orale.

DH

g

(g; g

1

; g

2

) = g

x

and DH

g

(g; g

3

; g

4

) = g

y

:

From the triple (g; g

x

; g

y

), we an ompute g

xy

by one more all of DH

g

orale. Therefore

we obtain h

xy

= e(g; g

xy

).

We an obtain the following diagram (�gure 2) from the above results.

DLg

DHg

DDHgPoly

DLh

DHh

DDHh

BDLg

BDHg

DBDHg

DHh = BDHg

DBDHg

DDHh

Poly = DDHg

DHg

BDLg = DLg = DLh

Fig. 2. Problems hierarhy if e is weak-invertible
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4.3 With a Strong-invertible Bilinear Map

De�nition 8. A bilinear map e : G�G ! H is said to be strong-invertible provided that

there is an element g 2 G suh that an inverse g

0

of h with respet to g, that is e(g; g

0

) = h,

is eÆiently omputable for any h 2 H.

If e is strong-invertible with respet to g 2 G we an easily solve the DH

g

problem as

follows:

Theorem 6. If e : G � G ! H is strong-invertible with respet to g 2 G , then the DH

g

problem is solved using one evaluation of e and one inverse operation of e.

Proof. For given (g; g

x

; g

y

), we �rst ompute e(g

x

; g

y

) = h

1

and the inverse image g

1

of

h

1

suh that e(g; g

1

) = h

1

by the invertibility of e. Sine h

1

= e(g; g)

xy

= h

xy

, we have

g

1

= g

xy

.

If we ombine the above result with Lemma 1, we an see that a strong-invertible bilinear

map e implies the DH

G

problem. Under the ondition (�), the DL

G

problem is also solved

eÆiently. More preisely, we have

Corollary 1. If we have a strong-invertible bilinear map e : G�G! H, we an solve the

DH

G

problem. Under the ondition (�), we an solve DL

G

problem by O(log

3

p) evaluation

of e and inverse operation of e respetively.

The above result an be extended to more general situation. Suppose we have an eÆient

omputable injetive homomorphism f : H ! G. By omposition of e and f we an

onstrut a self-bilinear map e

s

: G�G! G. That is,

e

s

(g

1

; g

2

) = f(e(g

1

; g

2

)):

e

s

is learly an eÆient omputable non-degenerate bilinear map sine f is injetive homo-

morphism.

Lemma 2. Consider two funtions on positive integers:

f(i) = 2i+ 1; g(i) = i+ 1:

Any k-bit positive integer an be generated from 1 by at most 2(k � 1) evaluation of f and

g.

Proof. Use mathematial indution on k. When k = 1, it is trivial. When k = 2, it is true

sine 10

2

= g(1) and 11

2

= f(1) where the subsript 2 denotes a binary representation.

Assume the laim holds for any positive integer of at most k � 1 bit. Any k-bit integer i

has the form i = 2j or i = 2j + 1 for a (k � 1)-bit integer j. Then 2j = g(f(j � 1)) and

2j + 1 = f(j). Sine both of j � 1 and j are at most (k � 1)-bit integers, they an be

omputed by at most 2(k � 2) evaluation of f and g. Thus i an be omputed by at most

2(k � 1) evaluation of f and g whih proves the laim for k. By mathematial indution,

the laim holds for any positive integer.
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Theorem 7. Let G be a yli group of prime order p. If we have an eÆiently omputable

non-degenerate bilinear map e : G � G ! G, we an solve the DH

G

problem on G by

O(log p) evaluation of e.

Proof. Let g 2 G and e(g; g) = g

t

for a positive integer t. Using Lemma 2, given a triple

(g; g

x

; g

y

), one an ompute g

t

�2

= g

t

p�3

by at most O(log p) times e-omputations sine

e(g

t

i

; g

t

i

) = g

t

2i+1

and e(g

t

i

; g) = g

t

i+1

. Therefore we an solve the DH

G

as follows.

e(e(g

x

; g

y

); g

t

�2

) = e(g

txy

; g

t

�2

) = g

xy

:

From the above theorem, we an derive the following orollary.

Corollary 2. Assume we have a non-degenerate bilinear map e : G�G! H for two yli

group of prime order p. Then there is no injetive homomorphism from H to G if the DH

G

problem is hard.

Verheul showed in [17℄ that if there is an injetive homomorphism from the XTR sub-

group to the assoiated supersingular urve, then the homomorphism an be utilized to

make an orale whih omputes the DH problem over XTR group. The proof tehnique is

similar, but the above orollary gives the same result in more general situation.

5 A Sequene of Bilinear Maps

A bilinear map an be used to tripartite key agreement protool [9℄. More generally an

(n� 1)-multilinear map an be used to onstrut a non-interative n-party key agreement

protool. This map also an be used to onstrut a broadast enryption with very short

broadasts and private keys and a unique signature sheme [5℄.

One possible approah to onstrut a multilinear map is to �nd a sequene of yli

groups and bilinear maps between eah of onseutive two groups. Suppose that for eah

positive integer n we have a yli group G

n

of prime order p with a generator g

n

and an

eÆiently omputable, non-degenerate bilinear map e

n

: G

n

�G

n

! G

n+1

. For eah n-tuple

G

n

of G, de�ne f

2

= e

1

: G

2

1

! G

2

and

f

n

: G

n

1

! G

n

; f

n

(x

1

; x

2

; � � � ; x

n

) = e

n�1

(f

n�1

(x

1

; x

2

; � � � ; x

n�1

); f

n�1

(x

n

; g; � � � ; g)):

Then f

n

: G

n

1

! G

n

is n-multilinear map for eah positive n.

Another appliation of a family of bilinear maps inludes a forward seure DiÆe-Hellman

key agreement sheme. The notion of the forward serey was �rst introdued by Anderson

in 1997 to preserve the seurity even after the seret key has been exposed [1℄. While several

forward-seure signature shemes were proposed [2, 8℄, no forward-seure enryption sheme

was announed. Note that a forward-seure enryption sheme is easily followed from a
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forward-seure DiÆe-Hellman key agreement sheme using ElGamal enryption tehnique

or even using symmetri key enryption sheme.

Choose an integer N whose fatorization is hard and keep the fatorization of N to be

seret. Assume we have a family of yli groups G

n

of order N and eÆiently omputable,

non-degenerate bilinear maps e

n

: G

n

� G

n

! G

n+1

for eah positive integer n. De�ne g

n

to be a generator of G

n

and g

n+1

= e

n

(g

n

; g

n

) 2 G

n+1

for eah positive integer n.

1. Setup Take N and G

n

; e

n

; g

n

for eah positive integer n satisfying the above properties.

2. Initial Keys. A user randomly takes his initial private key sk

1

= a in Z=n. The initial

publi key is pk

1

= g

a

1

.

3. Private Key on the time n. sk

n

� a

2

n�1

mod N .

4. Publi Key on the time n. pk

n

= g

a

2

n�1

n

2 G

n

5. Key Generation on the time n + 1. sk

n+1

is omputed by sk

2

n

� (a

2

n�1

)

2

� a

2

n

mod N . pk

n+1

is omputed by pk

n+1

= e

n+1

(pk

n

; pk

n

) 2 G

n+1

Observe that the private key evolving proedure is easy, but the reverse proedure is

equivalent to fatoring N . The key evolving proedure in this sheme is very eÆient sine

the private key evolving requires one squaring and the publi key evolving requires one

evaluation of e

n

.

If we have an eÆiently omputable injetive homomorphism f from G

j

to G

i

for i < j,

by omposing it with the bilinear maps e

n

for i � n < j we an onstrut a self-bilinear

map e : G

i

�G

i

! G

i

. For example, when i = 1 and j = 4 we an de�ne e : G

1

�G

1

! G

1

by

e(x; y) = f(e

3

(g

3

; e

2

(g

2

; e

1

(x; y)))) for some g

i

2 G

i

:

Sine a self-linear map an be used to solve eÆiently the DH problem on G

i

, our result

implies that there should not exist eÆiently omputable isomorphism between any of two

groups in this hain in order to use the family for ryptographi use.

It is not known yet whether suh sequene of bilinear map inuene on the seurity of

the DiÆe-Hellman problem on the base group G

1

. But obviously the DDH problem on G

n

an be easily solved using a bilinear map e

n

: G

n

�G

n

! G

n+1

.

6 Conlusion

We investigated relations between problems related to the DH problem when we have a

bilinear map e : G�G! H. We showed the BDH problem is equivalent to the DH problem

on H when the bilinear map is weak-invertible. We do not know if the weak invertibility

ondition an be weakened. It is interesting to study how the weak-invertible property of a

bilinear map inuenes on the seurity of the DH problem or the BDH problem.
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We also proposed a use of a sequene of bilinear maps. This sequene has more ap-

pliations than multilinear maps, but it still looks diÆult to �nd suh sequene as muh

as multilinear maps. We pointed out that there should not exist an eÆiently omputable

isomorphism between any of two groups in the family. Hene the �rst step to onstrut suh

sequene is to �nd a family of groups with the same order suh that there does not exist

an eÆiently omputable isomorphism between any two of them.
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