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Abstract. We investigate relations among the discrete logarithm (DL) problem, the Diffie-
Hellman (DH) problem and the bilinear Diffie-Hellman (BDH) problem when we have an
efficient computable non-degenerate bilinear map e : G x G — H. Under a certain assumption
on the order of G, we show that the DH problem on H implies the DH problem on G, and both
of them are equivalent to the BDH problem when e is weak-invertible. Moreover, we show that
given the bilinear map e an injective homomorphism f : H — G enables us to solve the DH
problem on G efficiently, which implies the non-existence a self-bilinear map e : G X G - G
when the DH problem on G is hard. Finally we introduce a sequence of bilinear maps and its
applications.

1 Introduction

The Weil pairing on an elliptic curve have been used to solve cryptographic problems such
as the discrete logarithm (DL) problem, the (computational) Diffie-Hellman (DH) problem,
the decisional Diffie-Hellman (DDH) problem [13]. After Joux proposed tripartite Diffie-
Hellman protocol using the Weil paring, however, the Weil (or Tate) pairing is being used
as a building block of interesting cryptographic protocols including ID-based schemes, a
short signature scheme, and self-blindable credentials [9,4,7, 6, 18, 16].

The bilinear property of the pairings plays an important role on pairing-based protocols.
Given two groups G and H, a map e : G x G — H is said to be bilinear if e(gy*, g5°) =
e(g1,g2)™*2 for all z; € Z and g; € G. Given a quadruple (g, g*, g%, g%) the bilinear Diffie-
Hellman (BDH) problem asks to find e(g,g)*™*. Though security of most paring-based
protocols relies on the BDH problem, the hardness of the BDH problem or its relations
with other well-known problems are not studied well.

In this paper, we investigate relations between the BDH problem and other well-known
problems and how the properties of bilinear maps influence on their strength. More precisely,
we showed that the DH problem on G and H implies the BDH problem. The DH problem
on H implies the DH problem on G if the order of G satisfies a certain condition which is
believed to be true for almost all primes [11, 12].

To show the inverse direction of the above implications, we need to have an invertible
bilinear map. Since a bilinear map is a two-variable function, invertibility can be defined
several ways. A bilinear map is said to be weak-invertible if one can efficiently compute an



inverse image (g1, ¢g2) of h such that e(gy,g2) = h for any h € H. Under the weak-invertible
assumption of a bilinear map, we show that the DH problem on H, and so the DH problem
on (G on a certain assumption, are equivalent to the BDH problem.

We can consider a stronger notion that there exists g € G such that one can efficiently
compute an inverse image g; of h such that e(g1,g) = h for any h € H. In this case the
DH problem on G is efficiently solved, and so is the BDH problem. More generally, we show
that given a bilinear map e : G x G — H, if there is an injective homomorphism f : H — G,
then the DH problem on G is efficiently solved. As a corollary, we show that an efficiently
computable non-degenerate bilinear map e; : G X G — G does not exist on a group G on
which the DH problem is hard. A similar result was introduced by Verheul on the XTR
groups [17].

It is natural to consider n-multilinear maps as an extension of a bilinear map. An n-
multilinear map is a map from n-tuple of a cyclic group to another cyclic group that is
linear on each variable. This map can be used to design many interesting cryptographic
protocols including a non-interactive multiparty Diffie-Hellman, a broadcast encryption,
and a unique signature [5]. One possible approach to find multilinear maps is to have a
sequence of groups and bilinear maps between each consecutive groups. However our result
implies that there should not exist efficiently computable isomorphism between any of two
groups in this chain. The applications of the family includes a forward-secure Diffie-Hellman
as well as all applications of multilinear maps.

The rest of the paper is organized as follows: In Section 2, we introduce bilinear maps
and several DH and BDH related problems. In Section 3, we recall known relations between
the DH related problems and propose a useful lemma for granularity. In Section 4, we
investigate the relations as invertible properties of a bilinear map vary. In Section 5 we
introduce a sequence of bilinear maps and its applications. We conclude in Section 6.

2 Problems related to the DH and the BDH

Let G and H be cyclic groups of prime order p. We use the multiplicative group notations.
We define bilinear maps and several problems related to the DH problem and the BDH
problem.

2.1 Problems related to the DH

Definition 1. For each g € G the DLy problem is defined as follows: Given (g, g"), compute
x € Zy. The DLg problem asks to solve the DLy problem for arbitrary g € G. We call by
the DLy oracle a probabilistic algorithm to give a solution of the DL, problem. By notation,
we set DLg(g,9%) = .

Definition 2. For each g € G the DH, problem is defined as follows: Given (g,9",gY),
compute g*¥. The DH¢g problem asks to solve the DHy problem for arbitrary g € G. We



call by the DH, oracle a probabilistic algorithm to give a solution of the DH, problem. By
notation, we set DHy(g,9%,9%) = g"Y.

Definition 3. For each g € G the DD H, problem is defined as follows: Given (g, 9", 9", 9%),
decide if xy = z mod p. The DDHg problem asks to solve the DDH, problem for arbitrary
g € G. We call by the DDH,, oracle a probabilistic algorithm to give a decision of the DDH,
problem. By notation, we set DDHy(g,9%,9%,9%°) =1 if xy = z mod p and 0 otherwise.

Notation. Suppose A and B are problems. Throughout this paper, ‘A — B’ means
that A is a strong problem than B, that is if there is a polynomially-bounded algorithm
A 4 solving the problem A then we can build another polynomially-bounded algorithm Ap
with polynomially-bounded access to A4 which solves the problem B. ‘A +— B’ means
‘A — B’ and ‘B — A’. 1t is trivial that DL, — DH, and DH, — DDH,,.

2.2 Problems related to the BDH

A map e: G x G — H is said to be bilinear provided that e(g{', g5?) = e(g1, g2)™**> for all
z; € Z/pZ and ¢g; € G . We denote Z/pZ by Z,. The Weil pairing for an elliptic curve is
a good example of a bilinear map from an elliptic curve to a finite field. In this paper, we
assume that the bilinear map e has the following properties for practical purposes:

1. Non-degenerate: There exists a g € G such that e(g,g) # 1g.
2. Efficient computable: There is an efficient algorithm to compute e(g1, g2) for any g1, g2 €
G.

In fact, the original Weil pairing does not satisfy the non-degeneracy, but a modified
WEeil pairing defined over supersingular curve has the above properties. A modified Weil
paring is described in [4].

Definition 4. For each g € G the BDL, problem is defined as follows: Given (g,9",4Y),
compute t such that e(g”, g¥) = e(g,g)'. The BDL¢ problem asks to solve the BD L, problem
for arbitrary g € G. We call by the BDL, oracle a probabilistic algorithm to give a solution
of the BDL, problem. By notation, we set BDLy(g,9",9") = zy.

Definition 5. For each g € G the BDH, problem is defined as follows: Given (g, 9", 9", 9%),
compute e(g,q)"™*. The BDHg problem asks to solve the BDH, problem for arbitrary
g € G. We call by the BDH, oracle a probabilistic algorithm to give a solution of the
BDH, problem. By notation, we set BDHy(g,9",9",9%) = e(g,9)"¥*.

Definition 6. For each g € G the DBDH,, problem is defined as follows: Given (g,9",g",9%,h")
where h = e(g,g), decide if xyz = w mod p. The DBD H¢ problem asks to solve the DBDH,,
problem for arbitrary g € G. We call by the DBD H, oracle a probabilistic algorithm to give

a solution of the DBDH, problem. By notation, we set DBDH,(g,9%,9%,9%,h") = 1 if
zyz = w mod p and 0 otherwise.



Remark. It is easy to show that the DL, problem is equivalent to the BDL, problem.
Clearly, BDL, — BDH, and BDH, — DBDH, hold.

3 Relations between DH-related Problems

We defined three DH-related problems. Roughly speaking, the DL problem is equivalent to
the DH problem, but the DDH problem is different from either one on most cyclic groups.
We briefly summarize known results on these relations [11, 12]. Moreover we will present a
useful lemma on relations between problems according to granularity.

DL versus DH. It is trivial that the DH problem is solved using the DL oracle. For the
converse, Maurer and Wolf showed the DL problem is reduced to the DH problem for some
special class of groups [11, 12]. Let p be an order of a group G. According to their result, if
one can construct an elliptic curve over [, such that the elliptic curve variant DL problem
on the curve is feasible (such curves always exist e.g. anomalous curves and smooth curves),
then the DL problem can be solved by O(log?® p) calls DH oracle.

Unfortunately it is not clear how to construct an elliptic curve over I, which has a given
order. There are a few classes of curves, whose order is known, such as supersingular curves
and curves with complex multiplications. For convenience, we define the following condition
on a prime p.

Condition (). There exists an elliptic curve over F, on which the DL problem is solvable.

Consequently, if G has an order p satisfying the condition (%), then the DL problem is
equivalent to the DH problem.

DH versus DDH. Many cryptographic protocols rely on the hardness of the DDH problem
for their security. However the DDH problem is not difficult for some groups, especially for
supersingular elliptic curves [3]. Moreover Joux and Nguyen constructed elliptic curve groups
where the DDH problem is easy while the DH problem is equivalent to the DL problem in
[10].

Actually, if there is an efficient computable bilinear map e : G x G — H, then the DDH
problem on G is easy. For given (g, ¢",¢Y,9%), we can decide whether 2 = xy mod p by
checking the equality between e(g,g*) and e(g®, g¥). For example, the DDH problem on
supersingular curves is easy since the modified Weil pairing for supersingular curves is an
efficient computable bilinear map.

Granularity of DL and DH.

Lemma 1. Let G be a cyclic group of prime order p and g € G. We have DLg <— DL,
and DHg <— DH,. More precisely, for any g1 € G we have



1. If we have a DL, oracle with success probability €, we can build a DLy, oracle with
success probability €2 by two calls of the DL, oracle.

2. If we have a DH, oracle with success probability €, we can build a DH,, oracle with
success probability ¢©(1°87) by O(logp) calls of the DH, oracle.

Proof. Since the DLg (resp. DHg) problem implies the DL, (resp. DH,) problem, the
lemma, follows from the two assertions.

1. Suppose that we are given a pair (g1, ¢7) for any generator g; of G. We can compute
t=DLy(g,91) and y = DLy(g, g%) by two calls of the DL, oracle. Then z = yt~" mod p.

2. Suppose that we are given a triple (g1, g7, g7) for any generator g; of G. Let g, = g' for
some ¢ € Zjp. Each of gt = DH,(g, g, g") and g = DH, (g,9", ') can be computed
by one call of the DH, oracle. Hence gf1 = gtp*2 requires O(log p) calls of DH, oracle.
Since ¢t’%¥ = DH,y(g,g",¢") and ¢g7¥ = DHg(g,gt_l,gt2”y), g1¥ can also be computed
by O(log p) calls.

Consequently, we can consider the DL problem or the DH problem without fixing a
generator. However, we do not know whether the DDH, oracle can be used to build a
DDH,, oracle for another g; € G. Let g1 = g* for some t # 1. The DDHP,(g,¢%,9{,9%)
decides only whether tx - ty = tz mod p, hence this information does not helpful to decide
whether xy = 2z mod p without knowing the ¢ value.

4 Relations between BDH-related Problems with a Bilinear Map

We investigate relations of BDH-related problems when we have a bilinear map. Moreover
we consider the situation the bilinear map is strong or weak-invertible. The notions will be
defined later.

4.1 With a Bilinear Map

Suppose we have an efficiently computable non-degenerate bilinear map e: G x G — H.

Theorem 1. Let G and H be cyclic groups of prime order p. We have DL, — DL, and
DHy, -—-» DH,. 3 More precisely, for any g1 € G we have

1. If we have a DLy, oracle with success probability €, we can build a DL, oracle with
success probability € by one call of the DLy, oracle.

2. Assume that p satisfies the condition (x). If we have a D Hy, oracle with success probability
€, we can build a DH, oracle with success probability ¢Olog” p) by O(log3 p) calls of the
DH;, oracle.

3 Throughout this paper, A --» B means that the problem A implies the problem B if p satisfies the
condition (x).



Proof. 1. Since a given pair (g,¢") € G x G is reduced to a pair (h,h”) € H x H via the
bilinear map, it is trivial that the first part of the theorem follows.

2. Since p satisfies the condition (%), we may assume that we are able to solve the discrete
logarithm on H with help of DHj, oracle. Suppose that we are given a triple (g, g%, g¥).
Let h = e(g,9), h1 = e(g,9") and hy = e(g, g¥). Actually hy = h™ and hy = hY. By the
assumption, we can compute the discrete logarithm of h; and hs as described in [11, 12]
by O(log®p) calls of the DH), oracle. Therefore we have g*¥.

We don’t know whether the converse of Theorem 1 holds in general. However we will
show in Theorem 5 that the converse is true if an inverse image of the bilinear map is
efficiently computable for any element of H.

BDH versus DH.

Theorem 2. Let G and H be cyclic groups of prime order p. Let h = e(g,q) for g € G.
We have DHy — BDH, and DH) --» BDH,. More precisely, we have

1. If we have a DH, oracle with success probability €, we can build a BDH, oracle with
success probability € by one call of the DH, oracle.

2. If we have a DHj, oracle with success probability €, we can build a BDH, oracle with
success probability €2 by two calls of the DH), oracle.

Proof. 1. Assume that we are given (g,g%,¢Y,¢%) for ¢ € G. We can compute g*¥ =
DHy(g,9",9") by one call of the DH|, oracle. Hence we get e(g, 9)"Y* = e(¢", g%).

2. Assume that we are given (g, ¢%,¢",g*) for g € G. Let hy = e(g,g%), ho = e(g,¢?) and
hs = e(g,9%). We can compute h™ = DHp(h,hi,hs) by one call of the DH}, oracle.
Hence we can get e(g, g)*™* = h*™* = DHy(h,h™, h3) by one more call of DH}, oracle.

DBDH versus DDH. As mentioned before, DDH problem on G has polynomial time
complexity since there is a bilinear map. However we don’t know whether the DDH problem
on H is easy or not in general.

Theorem 3. Let G and H be cyclic groups of prime order p. Let h = e(g,q) for g € G.
We have DDHy, — DBDH,. More precisely, if we have a DDH), oracle with success
probability €, we can build a DBDH, oracle with success probability € by one call of the
DDH)y, oracle.

Proof. Assume that we are given (g, g%, ¢¥, g% h") where h = e(g,g). Let hy = e(¢9”,¢Y)
and hs = e(g, g*). We can decide whether zyz = w mod p by one call of DD H), oracle, i.e.
DDHy(h,hy,ho,h™).
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Fig. 1. Problems hierarchy

Problems Hierarchy. We can obtain the following diagram (figure 1) from the above
results.

4.2 With a Weak-invertible Bilinear Map

Definition 7. A bilinear map e : G X G — H is said to be weak-invertible provided that an
inverse image (g1,92) of h, that is e(g1,g2) = h, is efficiently computable for any h € H.

Theorem 4. Suppose that e : G x G — H is weak-invertible and h = e(g,g) for g € G. We
have BDH, — DH),. More precisely, if we have a BDH, oracle with success probability
€, we can build a DHj, oracle with success probability €2 by two calls of the BDH, oracle.
Consequently BDH, <— DHj,.

Proof. Since e is weak-invertible, we can compute (go, g1, 92, g3) such that
e(g0,91) = h", and  e(g2,93) = h".

Let go = ¢* and g; = g§’ for a positive integer ¢ and a;’s. We can compute (h"‘gy)f1 by
one call of BDH, oracle.

3. 1
BDH9(9791792793) = e(gag)t 414203 — (hxy)t .

And let (g4, g5) be an inverse image of (h%¥)!™" i.e. e(gs,g5) = (h*¥)!" . Finally we can
compute h*¥ by one more call of BDH, oracle:

t4a1a2a3 — hxy.

BDH,(g,90,94,95) = €(9,9)



Theorem 5. Suppose that e : G x G — H is weak-invertible and h = e(g,g) for g € G. We
have DLy, — DLy, and DH, — DHy. More precisely,

1.

2.

Proof. 1. For given (h,h”), we compute g1, 92,93 and g4 such that h = e(g1,g2) and h”

If we have a DL, oracle with success probability €, we can build a DLy oracle with
success probability €* by four calls of the DL, oracle. Consequently DLy <— DLy,

if we have a DH, oracle with success probability €, we can build a DHj, oracle with
success probability €3 by three calls of the DH, oracle.

e(gs, g4) since e is weak-invertible. Let g; = g% for some a;’s. We can compute a; =

DL,(g,g") by four calls of DL, oracle. Hence = = (aza4)(ajas) .

For given (h,h®,hY), we compute g;, (i = 1,2,---,4) such that h* = e(g1,92) and
hY = e(g3,g4) since e is weak-invertible. Then we can compute ¢* and ¢g¥ by two calls
of DH, oracle.

DHy(g,91,92) = " and DHy(g,93,94) = g

From the triple (g, g*, g¥), we can compute g®¥ by one more call of DH, oracle. Therefore
we obtain h™ = e(g, g™¥).

We can obtain the following diagram (figure 2) from the above results.

BDLg=DLg=DLh

DHh=BDHg

DDHh

Poly «— DDHg <———————— DBDHq DBlDHg

!

Poly = DDHg

Fig. 2. Problems hierarchy if e is weak-invertible



4.3 With a Strong-invertible Bilinear Map

Definition 8. A bilinear map e : G X G — H s said to be strong-invertible provided that
there is an element g € G such that an inverse g' of h with respect to g, that is e(g,g') = h,
s efficiently computable for any h € H.

If e is strong-invertible with respect to g € G we can easily solve the DH, problem as
follows:

Theorem 6. Ife: G x G — H is strong-invertible with respect to g € G, then the DH,
problem is solved using one evaluation of e and one inverse operation of e.

Proof. For given (g,g%,gY), we first compute e(g”,¢Y) = hy and the inverse image g; of
hi such that e(g,g1) = hy by the invertibility of e. Since hy = e(g,9)™ = h™, we have

g1 =g".
If we combine the above result with Lemma 1, we can see that a strong-invertible bilinear

map e implies the D Hg problem. Under the condition (*), the DLg problem is also solved
efficiently. More precisely, we have

Corollary 1. If we have a strong-invertible bilinear map e : G x G — H, we can solve the
DHg problem. Under the condition (%), we can solve DLg problem by O(log® p) evaluation
of e and inverse operation of e respectively.

The above result can be extended to more general situation. Suppose we have an efficient
computable injective homomorphism f : H — G. By composition of e and f we can
construct a self-bilinear map e; : G X G — G. That is,

es(g1,92) = f(e(g1, g2))-

es is clearly an efficient computable non-degenerate bilinear map since f is injective homo-
morphism.

Lemma 2. Consider two functions on positive integers:
fl)=2i+1, g(i) =i+ 1.

Any k-bit positive integer can be generated from 1 by at most 2(k — 1) evaluation of f and
g.

Proof. Use mathematical induction on k. When k£ = 1, it is trivial. When k£ = 2, it is true
since 105 = ¢(1) and 115 = f(1) where the subscript 2 denotes a binary representation.
Assume the claim holds for any positive integer of at most k£ — 1 bit. Any k-bit integer 4
has the form ¢ = 2j or i = 2j + 1 for a (k — 1)-bit integer j. Then 25 = g(f(j — 1)) and
25 +1 = f(j). Since both of j — 1 and j are at most (k — 1)-bit integers, they can be
computed by at most 2(k — 2) evaluation of f and g. Thus ¢ can be computed by at most

2(k — 1) evaluation of f and g which proves the claim for k. By mathematical induction,
the claim holds for any positive integer.



10

Theorem 7. Let G be a cyclic group of prime order p. If we have an efficiently computable
non-degenerate bilinear map e : G X G — G, we can solve the DHg problem on G by
O(logp) evaluation of e.

Proof. Let g € G and e(g,g) = gt for a p051t1ve integer ¢. Using Lemma 2, given a triple
(9,9 gy), one can compute g = g by at most O(logp) times e-computations since
e(g 1,g ) =g and e(g",g) = g'"" . Therefore we can solve the DH¢ as follows.

-2

e(e(g”,9"),g" ) = e(g™¥

—2
gt ) =g,

From the above theorem, we can derive the following corollary.

Corollary 2. Assume we have a non-degenerate bilinear map e : G x G — H for two cyclic
group of prime order p. Then there is no injective homomorphism from H to G if the DHq
problem 1is hard.

Verheul showed in [17] that if there is an injective homomorphism from the XTR sub-
group to the associated supersingular curve, then the homomorphism can be utilized to
make an oracle which computes the DH problem over XTR group. The proof technique is
similar, but the above corollary gives the same result in more general situation.

5 A Sequence of Bilinear Maps

A bilinear map can be used to tripartite key agreement protocol [9]. More generally an
(n — 1)-multilinear map can be used to construct a non-interactive n-party key agreement
protocol. This map also can be used to construct a broadcast encryption with very short
broadcasts and private keys and a unique signature scheme [5].

One possible approach to construct a multilinear map is to find a sequence of cyclic
groups and bilinear maps between each of consecutive two groups. Suppose that for each
positive integer n we have a cyclic group G, of prime order p with a generator g, and an
efficiently computable, non-degenerate bilinear map e, : G, X G;, = Gp11. For each n-tuple
G" of G, define fy =e; : G1 — (9 and

fn: G? — Gp; fn(«Tla«TQa T 7In) = en—l(fn—1($1a$27 te a«Tn—l)a fn—1($n797 T 79))'
Then f, : G = G, is n-multilinear map for each positive n.

Another application of a family of bilinear maps includes a forward secure Diffie-Hellman
key agreement scheme. The notion of the forward secrecy was first introduced by Anderson
in 1997 to preserve the security even after the secret key has been exposed [1]. While several
forward-secure signature schemes were proposed [2, 8], no forward-secure encryption scheme
was announced. Note that a forward-secure encryption scheme is easily followed from a
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forward-secure Diffie-Hellman key agreement scheme using ElGamal encryption technique
or even using symmetric key encryption scheme.

Choose an integer N whose factorization is hard and keep the factorization of N to be
secret. Assume we have a family of cyclic groups G, of order N and efficiently computable,
non-degenerate bilinear maps e, : G, X G, — G, for each positive integer n. Define g,
to be a generator of G,, and gp+1 = €,(gn, gn) € Gpy1 for each positive integer n.

1. Setup Take N and G,,, ey, g, for each positive integer n satisfying the above properties.
2. Initial Keys. A user randomly takes his initial private key sk; = a in Z/n. The initial
public key is pk; = gf.

3. Private Key on the time n. sk, = %"

mod N.

n—1
4. Public Key on the time n. pk, = gf;2 e G,
5. Key Generation on the time n + 1. sky; is computed by sk = (a
mod N. pky1 is computed by pky, 1 = 6n+1(pknapkn) € Gny1

2n71)2 on

a

Observe that the private key evolving procedure is easy, but the reverse procedure is
equivalent to factoring N. The key evolving procedure in this scheme is very efficient since
the private key evolving requires one squaring and the public key evolving requires one
evaluation of e,,.

If we have an efficiently computable injective homomorphism f from G; to G; for ¢ < 7,
by composing it with the bilinear maps e, for i < n < j we can construct a self-bilinear
map e : G; X G; — G;. For example, when ¢ =1 and j =4 we can define e : G1 X G1 = G
by

e(z,y) = fles(gs, e2(g2,e1(x,y)))) for some g; € Gi.

Since a self-linear map can be used to solve efficiently the DH problem on G;, our result
implies that there should not exist efficiently computable isomorphism between any of two
groups in this chain in order to use the family for cryptographic use.

It is not known yet whether such sequence of bilinear map influence on the security of
the Diffie-Hellman problem on the base group G. But obviously the DDH problem on G,
can be easily solved using a bilinear map e, : G, X G, = Gpy1.

6 Conclusion

We investigated relations between problems related to the DH problem when we have a
bilinear map e : G x G — H. We showed the BDH problem is equivalent to the DH problem
on H when the bilinear map is weak-invertible. We do not know if the weak invertibility
condition can be weakened. It is interesting to study how the weak-invertible property of a
bilinear map influences on the security of the DH problem or the BDH problem.
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We also proposed a use of a sequence of bilinear maps. This sequence has more ap-

plications than multilinear maps, but it still looks difficult to find such sequence as much
as multilinear maps. We pointed out that there should not exist an efficiently computable
isomorphism between any of two groups in the family. Hence the first step to construct such
sequence is to find a family of groups with the same order such that there does not exist
an efficiently computable isomorphism between any two of them.
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