Security Analysis of IKE’s Signature-based Key-Exchange Protocol

Ran Canetti* Hugo Krawczyk!

August 26, 2002

Abstract

We present a security analysis of the Diffie-Hellman key-exchange protocols authenticated
with digital signatures used by the Internet Key Exchange (IKE) standard, and of the more
comprehensive SIGMA family of key exchange protocols. The analysis is based on an adaptation
of the key-exchange security model from [Canetti and Krawczyk, Eurocrypt’01] to the setting
where peer identities are not necessarily known or disclosed from the start of the protocol. This
is a common practical setting, which includes the case of IKE and other protocols that provide
confidentiality of identities over the network. The rigorous study of this “post-specified peer”
model is a further contribution of this paper.

“IBM T.J. Watson Research Center, Yorktown Heights, New York 10598. Email: canetti@watson.ibm.com.

'EE Department, Technion, Haifa, Isracl. Email: hugo@ee.technion.ac.il. Supported by Irwin and Bethea Green
& Detroit Chapter Career Development Chair.

An abridged version of this paper appears in the proceedings of Crypto’2002.

Check for updates of this work at http://eprint.iacr.org.

Contents
1 Introduction

2 The security model
2.1 The SK-security definition from [4] L
2.2 Adapting SK-security to the post-specified peer setting

3 The basic SIGMA protocol: 3,

4 Proof of Protocol X,
4.1 The Statements L e e e e e e e e e e
4.2 Proof of Property P1 e
4.3 Proof of Property P2
4.3.1 Proofplan. e
4.3.2 Thesimulators e e
4.3.3 Detailed Proofof P2

5 Variants and Discussions
5.1 Eliminating the initiator and responder tags in 39
5.2 Putting the MAC under the signature
5.3 Encrypting the identities L o o o
5.4 A four message variant: IKE mainmode 0oL
5.5 Not signing the peer’'s DH exponent
5.6 Hashing ¢g™: the HDH assumption,

A On The Universal Composability of Protocol ¥y (preliminary version)
A.1 Universally Composable Key Exchange with Post-Specified Peers
A.2 Protocol Xg securely realizes Fposr ki « « « « « « v o e e e e e e e e e e e e e e e
A.3 Obtaining UC Secure Channels
A4 Securely Realizing Fposr—xr Implies SK-security oo,

11
11
12
12
12
13
16

23
23
24
25
26
27
27

1 Introduction

The Internet Key-Exchange (IKE) protocol [10] specifies the key exchange mechanisms used to
establish secret shared keys for use in the Internet Protocol Security (IPsec) standards [13]. IKE
provides several key-exchange mechanisms, some based on public keys and others based on long-
term shared keys. Its design emerged from the Photuris [12], SKEME [14] and Oakley [20] protocols.
All the IKE key-exchange options support Diffie-Hellman exchanges but differ in the way authen-
tication is provided. For authentication based on public-key techniques two modes are supported:
one based on public-key encryption and the other based on digital signatures.

While the encryption-based modes of IKE are studied in [4], the security of IKE’s signature-
based mode has not been cryptographically analyzed so far. (But see [18] where the IKE protocol
is scrutinized under an automated protocol analyzer.) This later mode originates with a variant
of the STS protocol [7] adopted into Photuris. However, this STS variant, in which the DH key is
signed, is actually insecure and was eventually replaced in IKE with the “sign-and-mac” mechanism
proposed in [15, 17]. This mechanism forms the basis for a larger family of protocols referred to as
SIGMA (“SIGn-and-MAc”) [17] from which the IKE signature modes are particular cases.

The main goal of the current paper is to provide cryptographic analysis of IKE, and the un-
derlying SIGMA protocols. The practical interest in this analysis work is natural given the wide
deployment and use of IKE and the fact that authentication via signatures is the most common
mode of public-key authentication used in the context of IKE.! Yet, the more basic importance
of this analytical work is in contributing to a further development of a theory that supports the
analysis of complex and more functional protocols as required in real-world applications. Let us
discuss two such issues, that are directly relevant to the design of IKE. One such issue (not dealt
with in previous analysis work of key-exchange protocols) is the requirement for identity conceal-
ment. That is, the ability to protect the identities of the peers to a key-exchange session from
eavesdroppers in the network (and, in some case, from active attackers as well). While this require-
ment may be perceived at first glance as having minor effects on the protocols, it actually poses
significant challenges in terms of design and analysis. One piece of evidence pointing out to this
difficulty is the fact that the STS protocol and its variants (see [7, 19]) that are considered as prime
examples of key-exchange protocols offering identity protection, are not secure in general (under
certain circumstances they fail to ensure an authenticated binding between peers to the session and
the exchanged secret key?) The general reason behind this difficulty is the conflicting character of
the authentication and identity-concealment requirements.

Another issue arising in the context of IKE is the possible unavailability of the peer identity at
the onset of the protocol. In previous analytical work (such as [2, 21, 4]) the peer identities are
assumed to be specified and given at the onset of a session activation, and the task of the protocol is
to guarantee that it is this particular pre-specified peer the one which the key is agreed. In contrast,
in IKE a party may be activated to exchange a key with an “address” of a peer but without a
specified identity for that peer. This is a common case in practical situations. For example, the

n particular, recent suggestions in the IPsec working group for variants of the key-exchange protocols in TKE
fall also under the family of protocols analyzed here.

2For example, the basic STS protocol from [7] fails if the attacker can register under its name the public key of the
attacked party (e.g., if proof of posession is not required for PK registrarion). This failure happens regardless of the
encryption function used by the STS protocol, and also when a MAC function is used to replace (or on top of) the
encryption function. The variant in which the DH key gV is signed [12, 19] is insecure if the signature scheme allows
for message recovery (such as in the case of RSA signature) even if proof of posession is required for PK registration.
See [17].

key-exchange session may take place with any one of a set of servers sitting behind a (url/ip) address
specified in the session activation. Or, a party may respond to a request for a key exchange coming
from a peer that is not willing to reveal its identity over the network and, sometimes, not even to
the responder before the latter has authenticated itself (e.g., a roaming mobile user connecting from
a temporary address, or a smart card that authenticates the legitimacy of the card-reader before
disclosing its own identity). So, how do the parties know who they are authenticating? The point
is that each party learns the peer’s identity during the protocol. A secure protocol in this setting
will detect impersonation and will ensure that the learned identity is authentic (informally, if Alice
completes a session with the view “I exchanged the session key k& with Bob”, then it is guaranteed
that no other party than Bob learns k, and if Bob completes the session then it associates the key
k with Alice).? In this paper we refer to this general setting as the “post-specified peer” model.

Remark. Note the crucial difference between this “post-specified peer” model and the “anonymous” model
of protocols such as SSL where the server’s identity is publicly known from the start of the protocol while
the client’s identity remains undisclosed even when the key exchange finishes. In the anonymous case, the
client does not authenticate at all to the server; authentication happens only in the other direction: the
server authenticates to the client. A treatment of this anonymous uni-directional model of authentication is
presented in [21].

The combination of the requirement for identity protection and the “post-specified peer” setting
puts additional constraints on the design of protocols. For example, the natural and simple Diffie-
Hellman protocol authenticated with digital signatures defined by ISO [11] and proven in [4], is
not suitable for providing identity protection in the post-specified peer model. This is so since this
protocol instructs each party to sign the peer identity, which in turn implies that the parties must
know the peer identities before a session key is generated. In a setting where the peer identities are
not known in advance, these identities must be sent over the network, in the clear, thus forfeiting
identity concealment. As we will see in Section 3, the SIGMA protocols (in particular, TKE)
use a significantly different approach to authentication. In particular, parties never sign other
parties identities; instead a MAC-based mechanism is added to “compensate” for the unsigned
peer’s identity. (See [17] for more information on the rationale behind the design of the SIGMA
protocols.)

We present a notion of security for key exchange protocols that is appropriate for the post-
specified peer setting. This notion is a simple relaxation of the key-exchange security model of [4]
that suitably reflects the needs of the “post-specified” model as well as allows for a treatment of
identity concealment. After presenting the adaptation of the security definition of [4] to our setting,
we develop a detailed security proof for the basic protocol (denoted ¥y) underlying the signature-
based modes of IKE. This is a somewhat simplified variant that reflects the core cryptographic
logic of the protocol and which already presents many of the technical issues and subtleties that
need to be dealt with in the analysis. One prime example of such subtleties is the fact that the
IKE protocols use the exchanged Diffie-Hellman key not only to derive a session key at the end of
the session but also to derive keys used inside the key-exchange protocol itself to provide essential
authentication functionality and for identity encryption. After analyzing and providing a detailed
proof of this simplified protocol, we show how to extend the proof to deal with richer-functionality
variants including the IKE protocols. The resultant analysis approach and techniques are applicable
to other protocols, in particular other identity-concealing protocols and those that use the DH key
during the session establishment protocol.

3The issue of whether a party may agree to establish a session with the particular peer whose identity is learned
during the key-exchange process is an orthogonal issue taken care by a separate “policy engine” run by the party.

An important point to stress is that the present security model and definition (even if relaxed
with respect to [4]) guarantees that session keys derived in the protocol are secure for use in conjunc-
tion with symmetric encryption and authentication functions for implementing “secure channels”
(as defined in [4]) that protect communications over realistic adversarially-controlled networks.
Deriving such keys is the quintessential application of key-exchange protocols in general, and the
fundamental requirement from the IKE protocols.

We also show how to formalize the post-specified peer model in the framework of universally
composable (UC) security [3]. Specifically, we formulate a UC notion of post-specified secure key
exchange and show that protocol ¥ presented here satisfies this notion. The UC notion ensures
strong composability guarantees with other protocols. In particular, it suffices for implementing
secure channels, both in the UC formalization of [5] and in the formalization of [4].

Paper’s organization. In Section 2 we describe the adaptation of the security model of [4] to the
post-specified peer setting, and establish the notion of security for key-exchange used throughout
this paper. In Section 3 we describe Yy, the basic SIGMA protocol underlying all the other variants
including the IKE signature-based protocols. In Section 4 we present a proof of security of the X
protocol in the model from Section 2. In Section 5 we treat several variants of the basic protocol and
extend the analysis from Section 4 to these cases. In particular, the two signature authentication
variants of IKE are analyzed here (Section 5.2 and 5.4). Finally, Appendix A holds the modeling
and analysis of protocol ¥y within the UC framework.

2 The security model

Here we present the adaptation of the security model for key-exchange protocols from [4] to the
setting of post-specified peers as described above. We start by providing an overview of the model
in [4] (refer to that paper for the full details). Then we describe the relaxation of the security
definition required to support the post-specified setting.

2.1 The SK-security definition from [4]

Following the work of [2, 1], Canetti and Krawczyk [4] model key-exchange (KE) protocols as
multi-party protocols where each party runs one or more copies of the protocol. Each activation
of the protocol at a party results in a local procedure, called a session, that locally instantiates
a run of the protocol and produces outgoing messages and processes incoming messages. In the
case of key-exchange, a session is intended to agree on a “session key” with one other party (the
“peer” to the session) and involves the exchange of messages with that party. Sessions can run
concurrently and incoming messages are directed to its corresponding session via a session identifier.
The activation of a KE session at a party has three input parameters (P, s,@): the local party at
which the session is activated, a unique session identifier, and the identity of the intended peer
to the session. (There is also a fourth input field, specifying whether the party is the initiator or
the responder in the exchange; however this field has no bearing on the security requirements and
is thus ignored in this overview.) A party can be activated as initiator (e.g., by an application
calling the KE procedure) or as a responder (upon an incoming key-exchange initiation message
arriving from another party). The output of a KE session at a party P consists of a public triple
(P, s, Q) that identifies the session, and of a secret value called the session key. Sessions can also be
“aborted” without producing a session key value, in which case a special symbol is output instead
of the session key. Sessions maintain a local state that is erased when the session completes (i.e.,

when the session produces output). Each party may have additional state, such as a long-term
signature key, which is accessed by different sessions and which is not part of any particular session
state.

The attacker model in [4] follows the unauthenticated-links model (UM) of [1] where the attacker
is a (probabilistic) polynomial-time machine with full control of the communication lines between
parties and free to intercept, delay, drop, inject or change all messages sent over these lines (i.e.,
a full-fledge “man-in-the-middle” attacker). The attacker can also schedule session activations at
will and sees the output of sessions except for the values of session keys. In addition, the attacker
can have access to secret information via session ezposure attacks of three types: session-state
reveal, session-key queries, and party corruption. The first type of attack is directed at a single
session while still incomplete (i.e., before producing output) and its result is that the attacker learns
the session state for that particular session (which does not include long-term secret information,
such as private signature keys, shared by all sessions at the party). A session-key query can be
performed against an individual session after completion and the result is that the attacker learns
the corresponding session-key (this models leakage on the session key either via usage of the key by
applications, cryptanalysis, break-ins, known-key attacks, etc.). Finally, party corruption means
that the attacker learns all information in the memory of that party (including session states
and session-key information and also long-term secrets); in addition, from the moment a party is
corrupted all its actions are totally controlled by the attacker. (We stress that all attacker’s actions
can be decided by the attacker in a fully adaptive way, i.e., as a function of its current view).

In the model of [4] sessions can be expired. From the time a session is expired the attacker
is not allowed to perform a session-key query or a state-reveal attack against the session, but is
allowed to corrupt the party that holds the session (in particular, it may obtain the long term secret
information at a party). Protocols that ensure that expired sessions are protected even in case of
party corruption are said to enjoy “perfect forward secrecy” [19] (this is a central property of the
KE protocols analyzed here).

For defining the security of a KE protocol, [4] follows the indistinguishability style of definitions
as used in [2] where the “success” of an attacker is measured via its ability to distinguish the real
values of session keys from independent random values. In order to be considered successful the
attacker should be able to distinguish session-key values for sessions that were not exposed by any
of the above three types of attacks. (Indeed, the attacker could always succeed in its distinguishing
task by exposing the corresponding session and learning the session key.) Moreover, [4] prohibits
attackers from exposing the “matching session” either, where two sessions (P, s, Q) and (P, s, Q")
are called matching if s = ', P = @' and Q = P’ (this restriction of the attacker is needed since
the matching session contains the session key as well).

As is customary, the ability of the attacker to distinguish between real and random values of the
session key is formalized via the notion of a test session that the attacker is free to choose among
all complete sessions in the protocol. When the attacker chooses the test session it is provided with
a value v which is chosen as follows: a random bit b is tossed, if b = 0 then v is the real value
of the output session key, otherwise v is a random value chosen under the same distribution of
session-keys produced by the protocol but independent of the value of the real session key. After
receiving v the attacker may continue with the regular actions against the protocol; at the end of
its run the attacker outputs a bit b'. The attacker succeeds in its attack if (1) the test session is
not exposed, and (2) the probability that b = V' is significantly larger than 1/2. We note that in
the model of [4] the attacker is allowed to corrupt a peer to the test session once the test session
expires at that peer (this captures perfect forward secrecy). The resultant security notion for KE

protocols is called SK-security and is stated as follows:

Definition 1 (SK-security [4]) An attacker with the above capabilities is called an SK-attacker. A
key-exchange protocol 7 is called SK-secure if for all SK-attackers A running against w it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol ™ under attacker A
then, except for a negligible probability, the session key output in these sessions is the same.

2. A succeeds (in its test-session distinguishing attack) with probability not more that 1/2 plus
a negligible fraction.

(The term ‘negligible’ represents any function (in the security parameter) that diminishes asymp-
totically faster than any polynomial fraction, or a small specific quantity in a concrete security
treatment).

Remark. In [4] there are two additional notions that play a central role in the analysis of KE
protocols: the “authenticated-links model” (AM) and “authenticators” [1]. While these notions
could have been used in our analysis too, they would have required their re-formulation to adapt
to the post-specified peer setting treated here. We have chosen to save definitional complexity and
develop our protocol analysis in the current paper directly in the UM model.

2.2 Adapting SK-security to the post-specified peer setting

The model of [4] makes a significant assumption: a party that is activated with a new session knows
already at activation the identity of the intended peer to the session. That is, the authentication
process in [4] is directed to verify that the “intended peer” is the party we are actually talking
to. In contrast, in the “post-specified setting” analyzed here (in particular in the setting of the
IKE protocol) the information of who the other party is does not necessarily exist at the session
initiation stage. It may be learned by the parties only after the protocol run evolves.

Adapting the security model from [4] to the post-specified peer setting requires: (A) generalizing
the formalism of key-exchange protocols to allow for unspecified peers at the start of the protocol;
and (B) relaxing the security definition to accept protocols where the peer of a session may be
decided (or learned) only after a session evolves (possibly not earlier than the last protocol message
as is the case of IKE). Fortunately this adaptation requires only small technical changes which
we describe next; all the other definitional elements remain unchanged from [4]. In particular, we
keep the UM model and most of the key-exchange formalism unchanged (including full adversarial
control of the communication lines and the three types of session exposure: session-state reveal,
session-key queries, and party corruption).

(A) Session activation and identification. Instead of activating sessions with input a triple
(P, s,Q) as in [4] (where P is the identity of the local party, s a session identifier, and @ the identity
of the intended peer for the session), in the post-specified case a session at a party P is activated
with a triple (P, s,d) where d represents a “destination address” that may have no implications
regarding the peer’s identity sitting behind this address, and is used only as information for delivery
of messages related to this session. This may be, for example, a temporary address used by arbitrary
parties, or an address that may identify a set of parties, etc. Note that the above (P, s, d) formalism
represents a generalization of the formalism from [4]; in the latter, d is uniquely associated with
(and identifies) a specific party. ~ We keep the convention from [4] that session id’s are assumed
to be unique among all the session id’s used by party P (this is a simple abstraction of the practice

where parties provide unique session id’s for their own local sessions; we can see the identifier s as
a concatenation of these local identifiers — see [4] for more discussion on this topic). We use the
pair of entity identity and session-id (P, s) to uniquely name sessions for the purpose of attacker
actions (as well as for identification of sessions for the purpose of protocol analysis). The output of
a session (P, s) consists of a public triple (P, s, Q) where @ is the peer to the session, and the secret
value of the session key. When the session produces such an output it is called completed and its
state is erased (only the session output persists after the session completes and until the session
expires). Sessions can abort without producing a session-key output in which case the session is
referred to as aborted (and not completed).

(B) SK security and matching sessions. The formalism used in [2, 4] to define the security of
key-exchange protocols via a test session is preserved in our work. The significant (and necessary)
change here is in the definition of “matching sessions” which in turn influences the limitations on
the attacker’s actions against the “test session” and its peers (recall, that the attacker is allowed to
attack any session except for the test-session and its matching session). In [4] the matching session
of a (complete) session (P, s, Q) within party P is defined as (@, s, P) (running within Q). This is
well-defined in the pre-specified setting where both peer identities are fixed from the start of the
session. In our case, however, the peer of a session may only be decided (or learned) just before
the completion of that session. In particular, a session (P,s) may complete with peer @, while
the session (@, s) may not have completed and therefore its peer is not determined. In this case,
corrupting @ or learning the state of (@, s) could obviously provide the attacker with information
about the session key output by (P,s, Q). We thus introduce the following modified definition of
matching session.

Definition 2 Let (P, s) be a completed session with public output (P, s, Q). The session (Q,s) is
called the matching session of (P, s) if either

1. (@, s) is not completed; or
2. (Q, s) is completed and its public output is (Q, s, P).

Note that by this definition only completed sessions have a matching session; in particular the
“matching” relation defined above is not symmetric (except if the matching session is completed
too — in which case the above definition of matching session coincides with the definition in [4]).
Also, note that if @ is uncorrupted then the matching session of (P, s) is unique.

Definition 3 (SK-security in the post-specified setting) SK-security in the post-specified peer set-
ting is defined identically as in Definition 1 but with the notion of matching sessions re-formulated
via Definition 2.

Notes on the definition: 1. We argue that the combination of the two matching conditions
in Definition 2 above results in a sound definition of SK-security. In particular, it is sufficient
to preserve the proof from [4] that SK-security guarantees secure channels (see below). On the
other hand, none of the two matching conditions in isolation induces a satisfactory definition of
security. In particular, defining the session (Q, s) to always be the matching session of (P, s) without
requiring that the determined peer is correct (in condition (2)) would result in an over-restriction
of the actions of the attacker against the test session to the point that such a definition would
allow weak protocols to be called secure. An example of such an insecure protocol is obtained by
modifying protocol ¥y from Section 3 by deleting from it the MAC applied to the parties identities.

This modified protocol can be shown to succumb to a key-identity mis-binding (or “unknown key
share”) attack as in [7], yet it would be considered secure without the conditioning on the output
of session (@, s) as formulated in (2). On the other hand, condition (2) alone is too permissive for
the attacker, thus resulting in a too strong definition that would exclude many natural protocols.
Specifically, if we eliminate (1) then an attacker could perform a state-reveal query against (@, s)
and reveal the secret key (e.g., ¢g*¥) when this information is still in the session’s state memory.
This would allow the attacker a strategy in which it chooses (P, s, Q) at the test session and forces
(Q, s) to be incomplete, and then learn the test session key through a state-reveal attack against
(@Q,s).

2. The above definition of secure key-exchange in the post-specified peer setting implies a strict
relaxation of the SK-security definition in [4]. On the one hand, any SK-secure protocol according
to [4] is also post-specified secure provided that we take care of the following formalities. First,
we use the “address field” d in the input to the session to specify the identity of a party. Then,
before completing a session, the protocol checks that the identity to be output is the same as the
identity specified in the “address field” (if not, the session is aborted). On the other hand, there
are protocols that are secure according to Definition 3 in the post-specified model but are not
secure in the pre-specified setting of [4]. The IKE protocols studied here (in particular, protocols
Yo and X; presented in the following sections) constitute such examples (see Remark 1 at the end
of Section 3).

3. A natural question is whether the relaxation of SK-security adopted here is adequate. One
strong evidence supporting the appropriateness of the definition is the fact that the proof in [4]
that SK-security implies secure channels applies also for SK-security in the post-specified peer
setting (Definition 3). One technical issue that arises when applying the notion of secure channels
from [4] in our context is that this notion is formulated in the “pre-specified peer” model. Yet, one
can use a post-specified SK-secure KE protocol also in this setting. All is needed is that each peer
verifies, before completing a KE session, that the authenticated peer (i.e., the identity to be output
as the session’s peer) is the same as the identity specified in the activation of the secure channels
protocol. If this verification fails, then the party aborts the KE session and the secure-channels
session. Alternatively, one can easily adapt the model of secure channels in [4] to the post-specified
peer setting. Also in this case an SK-secure KE protocol in the post-specified model suffices for
constructing (post-specified) secure channels. In all we have:

Theorem 4 SK-security in the post-specified peer setting implies secure channels in the formulation
of [4] (either with pre-specified or post-specified secure-channel peers).

3 The basic SIGMA protocol:

Here we provide a description of a key-exchange protocol, denoted ¥y, that represents a simplified
version of the signature-mode of IKE. The protocol contains most of the core cryptographic elements
and properties found in the full-fledge IKE and SIGMA protocols. In the next section we provide
a proof of this basic protocol, and in the subsequent section we will treat some variants and the
changes they require in the security analysis. These variants will include the actual IKE protocols
(see Sections 5.2 and 5.4). The ¥, protocol is presented in Figure 1. Further notes and clarifications
on the protocol follow.

Protocol %

Initial information: Primes p, g, ¢/p-1, and g of order ¢ in Z;. Each player has a private key for a
signature algorithm SIG, and all have the public verification keys of the other players. The protocol
also uses a message authentication family MAC, and a pseudorandom function family PRF.

The protocol messages

Start message (I = R): 5,9°

Response message (R—I): s,g¢Y,ID,,s1G.(“1",s, g%, g¥), MACk, (“1”, s, ID,)
Finish message (I — R): s, ID;, s1G;(“07, s, 9Y, g%), MACy, (“0”, s, ID;)
The protocol actions

1. The start message is sent by the initiator ID; upon activation with session-id s (after checking
that no previous session at ID; was initiated with identifier s); the DH exponent g* is computed

with z & Z4 and z is stored in the state of session (ID;, s).

2. When a start message with session-id s is delivered to a party ID, the (if session-id s did
not exist before at ID,.) ID, activates a local session s (as responder). It now generates the

response message where the DH exponent ¢g¥ is computed with y & Z,, the signature SIG, is
computed under the signature key of ID,, and the value g* placed under the signature is the
DH exponent received by ID, in the incoming start message. The MACy, value is produced
with ky = PRF =y (1) where ¢"¥ is computed by ID, as (¢”)¥. Finally, the value ky = PRF g=v (0)
is computed and kept in memory, and the values y and ¢*¥ are erased.

3. Upon receiving a (first) response message with session-id s, ID; retrieves the public key of the
party whose identity ID, appears in this message and uses this key to verify the signature
on the quadruple (“17,s, g%, ¢g¥) where ¢g® is the value sent by ID, in the start message, and
g¥ the value received in this response message. ID; also checks the received MAC under key
ki1 = PRFgey (1) (where ¢™¥ is computed as (¢¥)”) and on the identity ID, as it appears in
the response message. If any of these verification steps fails the session is aborted and a
session output of “aborted (ID;,s)” is generated; the session state is erased. If verification
succeeds then ID; completes the session with public output (ID;, s, ID,.) and secret session key
ko computed as kg = PRF4=y(0). The finish message is sent and the session state erased.

4. Upon receiving the finish message of session s, ID, verifies the signature (under the public
key of party ID; and with ¢g¥ being the DH value that ID, sent in the response message), and
verifies the MAC under key k; computed in step 2. If any of the verifications steps fails the
session is aborted (with the “aborted (ID,,s)” output), otherwise ID, completes the session
with public output (ID,, s, ID;) and secret session key ko. The session state is erased.

Figure 1: The basic SIGMA protocol

Notes on the description and actions of the protocol

e For simplicity we describe the protocol under a specific type of Diffie-Hellman groups, namely,
a sub-group of Z; of prime order. However, the protocol and subsequent analysis apply to
any Diffie-Hellman group for which the DDH assumption holds (see Section 4).

e The notation I — R and R — I is intended just to indicate the direction between initiator
and responser of the messages. The protocol as described here does not specify where the

messages are sent to. They can be sent to a pool of messages, to a local broadcast network, to
a physical or logical address, etc. The protocol and its analysis accommodate any of these (or
other) possibilities. What is important is that the protocol does not make any assumption on
who will eventually get a message, how many times, and when (these are all actions decided
by the attacker). Also, there is no assumption on the logical connection between the address
where a message is delivered and the identity (either ID; or ID,) behind that address. This
allows us to design the protocol (and prove its security) in the “post-specified peer” model
introduced in Section 2.

ID; and ID, represent the real identities of the parties to the exchange. In our model we
assume that every party knows the other’s party public key before hand. However, one can
think of the above identities as full certificates signed by a trusted CA and verified by the
recipient. (In this case, the full certificate may be included as the peer’s identity under the
MAC or just the identity in the certificate — e.g. the “distinguished name”). Our proofs work
under this certification-based model as well.

The strings “0” and “1” are intended to separate between authentication information created
by the initiator and responder in the protocol. They serve as “symmetry breakers” in the
protocol. However, in the case of 3 these tags are not strictly needed for security; we will
see later (Section 5.1) that the protocol is secure even without them. Yet, we include them
here for two reasons. First, they simplify analysis; second, they make the protocol’s security
more robust to changes as we will also discuss later (e.g., they defeat reflection attacks in
some of the protocol’s variants).

Recall the uniqueness of session-id’s assumed by our model. We use this assumption in order
to simplify the model and to accommodate different implementations of this assumption. A
typical way to achieve this is to require each party in the exchange to choose a random number
(say, s; and s, respectively) and then define s to be the concatenation of these values. In
this case the values s; and s, can be exchanged before the protocol, or s; can replace s in the
start message, and (s;, s,) replace s in the response message.

Parties use the session id’s to bind incoming messages to existing (incomplete) sessions. How-
ever, only the first message of each type is processed. For example if a response message arrives
with session id s at the initiator of session s, then the message is processed only if no previous
response message under this session was received. Otherwise the message is discarded. Same
for the other message types, or if a message arrives after the session is completed or aborted.

In the above description of ¥ the session identifiers serve a dual functionality: they serve
to identify sessions and direct incoming messages to these sessions, but they also serve as
“freshness guarantees” against replay attacks. In reality, the two functionalities may be
implemented via different mechanisms. (In particular, in order to prevent replay, the second
functionality requires uniqueness of the session identifiers throughout the life time of long-
term keys. In contrast, if one is interested only in directing incoming messages to the correct
session then it may suffice to have identifiers that repeat once old sessions are completed.)
Nonetheless, for simplicity we choose to “overload” session id’s with the two functionalities.

In practice, it is recommended not to use the plain value g*¥ of the DH key but a hashed
value H(g"¥) where H is a hash function (e.g. a cryptographic hash function such as SHA or
a universal hash function, etc.). This has the effect of producing a number of bits as required

to key the PRF, and (depending on the properties of the hash function) may also help to
“extracting the security entropy” from the ¢ output. If the plain g™ is used, our security
results hold under the DDH assumption. Using a hashed value of ¢*¥ is secure under the
(possibly weaker) HDH assumption [8]. See Section 5.6.

e As we will see in Section 5 the above protocol can be simplified by eliminating some of its
elements (e.g., the 0/1 tags under the MAC and signatures, and the signing of the peer’s DH
exponent can be eliminated without compromising security). However, this is not necessarily
recommended. One benefit of these elements is in simplifying analysis, the other is making
security of the protocol more robust to changes (yet, anyone making such changes needs to
verify that the security and analysis of the protocol are preserved — we show several such
cases in Section 5).

Remark 1 As mentioned in Section 2 it is illustrative to note that protocol ¥ is not secure in the
original (pre-specified) model of [4]. In that model an attacker could apply the following strategy:
(1) initiate a session (P,s, Q) at P; (2) activate a session (@, s, Eve) at @) as responder with the
start message from (P, s, Q) where Eve is a corrupted party (let ¢g* be the DH exponent in this
message); (3) deliver the response message produced by @ to P (let g be the DH exponent in
this message). The result is that P completes (P, s, Q) with a session key derived from ¢g*¥, while
the session (Q, s, Fve) is still incomplete and its state contains the value g*¥. Therefore, in the [4]
model, the attacker can choose (P, s, Q) as the test session and expose (Q, s, Eve) via a state-reveal
attack to learn g®¥. This is allowed in [4] since (@, s, Eve) is not a matching session to the test
session (only (Q, s, P) is matching to the test session). In our post-specified model, however, the
attacker is not allowed to expose (@, s) which is incomplete and then by Definition 2 it is matching
to the test session (P, s). This restriction of the adversary is needed in the post-specified setting
since from the point of view of () there is no information about who the peer is until the very
end of the protocol and then its temporary internal state (before receiving the finish message) is
identical whether its session is controlled by the adversary (via Fve as in the above example) or
it is a regular run with a honest peer P. What is crucial to note is that protocol ¥y (and any
SK-secure protocol in the post-specified model) guarantees that if @ completes the session (Q, s)
then its view of the peer’s identity is correct and consistent with the view in the matching session
(e.g., in the above example it is guaranteed that if @) completes the session, it outputs P as the
peer, and only P can compute the key g*¥).

Remark 2 A stronger property of security can be achieved if we add to ¥y a fourth message in
which the responder sends an “ack” message authenticated under MACy,. In this case, the initiator
does not complete the session until it gets (and verifies) this fourth message. The resultant protocol
has the property that when a party completes the session it has a guarantee that the peer (either
if it completed or not the session) already has a consistent view of who the session’s peer is. In
the SIGMA and TKE protocols this is not the case (in these protocols this consistency is ensured
only when both peers complete the session — a condition that suffices for guaranteeing the secure
channels application). The above “peer consistency” property is stronger than the guarantees of
SK-security from [4] and may be significant in some scenarios.

10

4 Proof of Protocol

4.1 The Statements

We start by formulating the Decisional Diffie-Hellman (DDH) assumption which is the assumption
underlying the security of the DH key exchange against passive attackers. For simplicity, we
formulate this assumption for a specific family of DH groups, but analogous assumptions can be
formulated for other groups (e.g., based on elliptic curves).

Assumption 5 Let k be a security parameter. Let p,q be primes, where q is of length k bits and
q/p—1, and g be of order q in Zy. Then the probability distributions of quintuples

Qo = {(p,9,9%,9%,9%) : 3,y < Z;} and Q1 = {(p,9,9%, 9%, ¢") : m,y,7 & Z,} are computationally
indistinguishable.

In addition to the DDH assumption we will assume the security of the other underlying crypto-
graphic primitives in the protocol (digital signatures, message authentication codes, and pseudo-
random functions) under the standard security notions in the cryptographic literature.

Theorem 6 (Main Theorem) Assuming DDH and the security of the underlying cryptographic
functions SIG, MAC, PRF, the %o protocol is SK-secure in the post-specified model, as defined in
Section 2.

Proving the theorem requires proving the two defining properties of SK-secure protocols (we use
the term Yg-attacker to denote an SK-attacker working against the ¥y protocol):

P1. If two uncorrupted parties ID; and ID, complete matching sessions ((ID;, s, ID,) and (ID,, s, ID;),
respectively) under protocol ¥y then, except for a negligible probability, the session key output in
these sessions is the same.

P2. No efficient Xp-attacker can distinguish a real response to the test-session query from a random
response with non-negligible advantage. More precisely, if for a given Yy-attacker we define:

o Prpar(A) = Prob(A outputs 1 when given the real test session key)

e Pranp(A) = Prob(A outputs 1 when given a random test session key)

then we need to prove that for any Yg-attacker A: |Prgar(A) — Pranp(A)| is negligible.

Remark on A. We assume wlog that a Yg-attacker always chooses a test session and queries it,
and does not expose the test session or its matching session before expiration. (That is, we do not
consider superfluous attackers that halt without querying a test session, or invalid attackers that
expose the test session.)

Remark (on the term “negligible”). We use the term ‘negligible’ to represent any function
(in the security parameter) that diminishes asymptotically faster than any polynomial fraction.
(The attacker is assumed to be polynomial-time in the security parameter of the protocol.) We
note that the analysis presented here can be used to obtain more quantified security bounds via a
concrete security treatment. This requires assuming explicit “(e,t) bounds” on the security of the
different cryptographic primitives used throughout the analysis, and then representing our results
as a function of these particular values. Completing these details given our analysis is standard;
we choose not to do this explicitly for the sake of simplified presentation.

11

4.2 Proof of Property P1

Proof: Let A be a X attacker, and let ID; and ID, be two uncorrupted parties that complete
matching sessions (ID;, s, ID,) and (ID,, s, ID;). We want to prove that regardless of A’s operations
both sessions output the same session key. Clearly, it suffices to show that both compute the same
DH value ¢*¥ (from which the session key kg is deterministically derived). Let us denote by u;
the DH exponent sent in the start message by ID; where u; = ¢% with x; chosen by ID;, and
let v; denote the DH exponent that ID; received in the response message of session s (since ID;
completes the session s then it necessarily receives such a response message). Similarly, let u, be
the DH exponent received by ID, in the incoming start message for session s, and by by v, the DH
exponent sent by ID, in its response message where v, = ¢g* with z, chosen by ID,.

The signature produced by ID, during session s is SI1G,.(“1”, s, u,,v,), while the signature that
ID; verifies in the response message is SI1G,(“1”, s, u;,v;). Since the first signature is the only one
that ID, ever produces with the value s as the session id, then it must be that either all arguments
to the first and second signature are the same, or a valid signature containing the second (and
different) pair (u;,v;) was produced by the attacker even though ID, did not generated such a
signature. If the later case happens with non-negligible probability then we can use the attacker A
under a simulation of protocol ¥ to produce a forger for the signature scheme SiG (note that ID,
is not corrupted so the forgery would be a real forgery against the scheme). Since we assume SIG
to be a secure signature scheme this event must have negligible probability. Therefore, we get that
except for such a negligible probability, u, = u; and v, = v;.

Now the DH key computed by ID; is vi’ = v¥i = (¢*7)% = ¢, while the DH key computed
by ID, is uf" = u;" = (g™)" = g"*r. And therefore both compute the same session key.

(Note that we have only used the uniqueness of s and ID,’s signature in this argument, and have
not used the MAC or the tags “0” or “1”.) O

4.3 Proof of Property P2
4.3.1 Proof plan

We prove property P2 by showing that if a Yg-attacker A can win the “real vs. random” game with
significant advantage then we can build an attacker against one of the underlying cryptographic
primitives used in the protocol: the Diffie-Hellman exchange (DDH assumption), the signature
scheme s1G, the MAC scheme MAC, or the pseudorandom family PRF.

More specifically we will show that from any Yg-attacker A that succeeds in distinguishing
between a real and a random response to the test-session query we can build a DDH distinguisher D
that distinguishes triples g, g¥, ¢ from random triples ¢, g¥, ¢" with the same success advantage
as A, or there is an algorithm (that we can construct explicitly) that breaks one of the other
underlying cryptographic primitives. This distinguisher D gets as input a triple (g%, ¢¥, z) where
z is either ¢™¥ or ¢g" for r & Z4. D starts by simulating a run of A on a virtual instantiation of
protocol ¥y and uses the values ¢g* and ¢Y from the input triple as the DH exponents in the start
and response message of one randomly chosen session, say s, initiated by A in this run of protocol
Yo. The idea is that if A happens to choose this session sy (or the corresponding responder’s
session) as its test session then D can provide A with z as the response to the test-session query.
In this case, if A outputs that the response was real then D will decide that z = ¢g*¥, otherwise
D will decide that z is random. One difficulty here is that since D actually changes the regular
behavior of the parties in session sy (e.g. it uses the value z to derive the key k; used in the MAC

12

function) then we still have to show that D has a good probability to guess the right test session,
and that the original ability of A to distinguish between “real” and “random” is not significantly
reduced by the simulation changes. Proving this involves showing several properties of the protocol
that relate to the authentication elements such as signatures (Lemma 7) and MAC (Lemma 11).

In order to specify the distinguisher D we need to define the above simulation process and the
exact rules on how to choose session sy and how to change the behavior of the parties to that session.
In Section 4.3.2 we define this simulation process. However, in order to facilitate our analysis we
will actually define a sequence of several simulators which differ from each other by the way they
choose the keys (kg and k1) used in the processing of the sy session. Each of these simulators
will define a probability distribution on the runs of attacker A. At one end of the sequence of
simulators will be one that corresponds to a “real” run of A while at the other end the simulation
corresponds to a “random” experiment where the session key in session sy provided to A is chosen
as a random and independent value ky. In between, there will be several “hybrid” simulators.
We will show that either all the distributions generated by these simulators are computationally
indistinguishable, or that a successful distinguisher against DDH or against the PRF family exists.
From this we get a proof that the “real” and “random” simulators at the ends of the sequence
are actually indistinguishable, and from this that the values Pranp and Prgay differ by at most a
negligible quantity (this negligible difference will depend on the quantified security of DDH and of
the cryptographic functions).

4.3.2 The simulators

We define a simulator S = S(A) that on parameters n (number of parties) and « (security param-
eter) and a given X attacker A4, simulates a run of protocol ¥, against attacker 4. Simulator S
starts by choosing the initialization information for each of the m parties (private signature keys
and their corresponding public verification keys). Then upon any activation by A the simulator S
performs the ¥y operations on behalf of the parties and provides to A with the outgoing messages
and public outputs generated in each session.

If at any point A corrupts a party, S hands out to A all the internal information of that
party (including private signature key, session state for incomplete sessions, and session keys for
unexpired sessions) and S stops operating that party (which is now under full control of 4). Upon
a state-reveal query against a specific (incomplete) session, S provides A with the internal state
information for that session; similarly, if A performs a session-key query against a (complete and
unexpired) session then S provides A with the corresponding secret key output by that session.
Note that at any point in its run S has full information to answer all of A’s queries or perform the
protocol actions on behalf of the uncorrupted parties. When A chooses a test session and performs
its test query, S responds with the value of the session key as output by the test session. When A
stops, S stops too with the same output (0 or 1) as A.

We introduce several variants of the above simulator S which by now we generically denote by
S (we will describe specific variants later). An S simulator is similar to S except for the following
differences.

1. Let m be an a-priori upper bound on the number of sessions that A initiates (i.e., sessions for
which A issues an initiation activation upon which a party outputs a start message) during
its run with security parameter x and n parties. At the beginning of its run S chooses the
following values: a number ¢ chosen uniformly between 1 and m, an identity Ry randomly
chosen among the identities of the n parties in the protocol, two elements z,y € Z,, and two

13

values ko and k; of the same length as the output of the PRF functions. (The specification of
the ways in which kg and k; are chosen will determine the different variants of simulators &
that we will define later.)

2. & performs a usual simulation of A like S does except that it takes two types of special
actions:

(a) the actions related to the ¢-th session initiated by A4 as described in step 3 below; and

(b) stopping its run upon the occurrence of any of the “abort events” that we list below, in
which case S stops with output 0.

3. Let the ¢-th session initiated by A be (Iy, sg). The following actions take place as long as an
abort event does not happen. The start message of session (I, sg) is generated by S using
the value x chosen in step 1 (i.e., the start message output by (Iy, sg) is sg, g%). In case that
session (Ry, sg) is activated by A with Ry as responder then S outputs a response message on
behalf of Ry using the exponent ¢g¥ computed using the value y chosen in step 1. Also the MAC
computation for this message uses the key k; chosen by Sin step 1. If a response message is
delivered to session (I, sg) then the MAC verification operation for this message uses also the
key k1. Similarly, if a finish message is delivered to (Rp, sg) then the MAC verification also
uses key k. If any of the sessions (I, sg) or (Ry, so) complete then the secret session key is
set to kg as chosen by S in step 1.

4. If A chooses (I, sg) or (Rp,so) as its test session then the response to the test query by S is
ko.

5. If A ends its run (without S having aborted) then S outputs the same bit as A outputs.

Now we define the abort events upon which S stops its run and outputs 0. The choice of these
particular events is related to some “bad events” in the cryptographic and probabilistic analysis of
the protocol. Specifically, these events have the property that if A happens to choose one of the
sessions (I, sg) or (R, So) as the test session then these events will not happen (see Lemma 7).
On the other hand, the lack of these events in a run between S and A guarantees a “matching”
between g% and ¢¥ under the (Iy, sg) and (Rp, so) sessions which allows S to carry the actions as
defined in step 3 above.

Abort events: If any of the following events happen S stops its run and outputs 0 (recall that
we denote by (Iy, sp) the ¢-th session initiated by A, and by Ry the identity randomly chosen by S
in Step 1 above):

e A corrupts Iy or Ry before (Iy,sg) is completed (this includes the case that one of these
parties is already corrupted at the time when the ¢-th session is initiated).

e A issues a state-reveal query against (I, sg) or (Rp, so)

e Session (Ry, sp) is initiated as responder before (Iy, sp) sent its start message; or (Ry, sg) is
initiated as responder with a start message containing a DH exponent which is different than
the DH exponent in the start message output by (I, sg).

e The response message received by (Iy, sg) arrives before (Ry, sg) was activated as responder,
or this response message has a different DH exponent than the DH exponent appearing in
the response message output by session (Rp, sg)

14

e Session (Ip, sg) aborts.

e A chooses a test session other than (Iy, sg) or (R, so), or it chooses one of these but the
session completes with a peer different than Ry, Iy, respectively.

o A completes the game without having chosen a test session?, or A stops before having initiated
t sessions.

The S variants. We introduce five variants of S which differ by the way ky and k; are defined.
We use the notation random() to represent a random (and independent) choice of a string of some
appropriate length; also, in following definitions of S , x and y refer to the values chosen by the
simulator in step 1 above.

S-REAL: kg < PRF;ey(0), ki ¢ PRF (1)
S-RPRF: kg < PRF.(0), ki < PRF(1), k < random()
S-ALLR: kg < random(), ki + random,)
S-HYBR: ko « random(), ki < PRFy(1), k « random()

S-RAND: ko + random(), ki ¢ PRFgey (1)

Note: in S-ALLR the values of ko and k; are independent, and in S-HYBR the values of ko and k are
independent. The names of the simulators stand for: “real”, “random prf”’, “all random”, "hybrid”,
and “random”, respectively. For any of the above simulators S the notation S (A) represents the
distribution of runs of & when interacting with A as the Xy-attacker.

Intuitively, the choice of ¢ in step 1 of S can be seen as an attempt by the simulator to guess
the test session to be chosen by A; when this guess succeeds (i.e., either (I, sp) is chosen by A
as the test session with peer Ry or (Rp,sg) is chosen as test session with peer Ij) then S-REAL
corresponds to a real execution of A while S-RAND corresponds to a run of A4 where the test query
is answered with a random key. The other simulators are used as intermediate games to prove that
for any attacker A, the outputs of S-REAL(A) and S-RAND(A) are “indistinguishable” (in the sense
of the following definition of =).

Definition (D ~ D'). If D and D' are two probabilistic algorithms that output 0 or 1, then we
write that D = D’ if and only if |Prob(D outputs 1) — Prob(D’ outputs 1)| is negligible.

The above “guess” of the test session by S is a central element in our proofs and it motivates the
following definition.

Definition (GUESS event). Let S be one of the simulators defined above and A be a Sy-attacker.
We say that a GUESS event happens in a run of S(.A) if the following conditions are satisfied:

1. A initiates at least t sessions in this run where ¢ is the parameter chosen by Sin step 1 of its
run (we denote by Iy the initiator of this session and by s the session id);

2. If Ry denotes the random party chosen by S in step 1 of its run then either

(a) A chooses (lo, sp) as its test session and this session completes with peer Ry;
or

*Note that we have assumed that in a regular run A always chooses a test session but under the changes introduced
by & behavior A could, in principle, never choose a test session.

15

(b) A chooses (Ry, sg) as its test session and this session completes with peer .

Plan of the proof of P2. In the next subsection we provide the detailed proof of P2. The plan is
to show that S-REAL &~ S-RAND via the indistinguishability of each pair of consecutive simulators
in the above list (see Lemma 15), and then prove (Theorem 16) that |Prpar,(A) — Prann(A)| =
poly * |Prob($’—REAL outputs 1) — Prob(S’—RAND outputs 1)| where “poly” is a quantity that is
polynomial in the number of parties and number of sessions in the protocol (specifically, “poly” is
the product of these numbers — see Remark 3).

4.3.3 Detailed Proof of P2

The following lemma is concerned with the actions of A and not directly with the behavior of
the above simulators. However, this lemma will be instrumental later in claiming that under a
GUESS event the above simulators do not abort their run (see Lemma 9). It is important to note
that this lemma only uses the security of the underlying signature scheme; this is possible by the
use of the tags “0” and “1” in 3. If these tags are not used the lemma is still valid but requires a
more involved argument that uses the security of DDH, PRF, and MAC in addition to the security
of the signatures. These more involved arguments are presented in Section 5.1.

Lemma 7 For all Xg-attackers A, the following holds except for negligible probability.

(a) Consider a regular run by A in which A chooses a test session with output (P, s, Q) where P
is the initiator. Then:

P and @ are never corrupted before expiration of the test session

Sessions (P, s) and (Q,s) are never revealed by A

(Q, s) is initiated as responder with the start message sent by (P, s)

e v o~

(P, s) receives a response message after (Q,s) was activated as responder, and this mes-
sage carries the same DH exponent as in the response message output by (Q, s)

5. Session (P, s) does not abort.
(b) Consider a reqular run by A in which A chooses a test session with output (Q, s, P) where Q
1s the responder. Then:
P and Q are never corrupted before expiration of the test session
Sessions (P,s) and (Q,s) are never revealed by A

(Q, s) is initiated as responder with the start message sent by (P, s)

™ v o=

(P, s) receives a response message after (Q,s) was activated as responder, and this mes-
sage carries the same DH exponent as in the response message output by (Q,)

5. Session (P, s) does not abort.

Proof: Proof of (a):

1. A is not allowed to corrupt the peers to the test session and we have assumed (wlog) that it
does not do that.

16

2. (P, s) cannot be revealed by A since A is not allowed to expose the test session. As for (@, s),
a state-reveal query can be done only against incomplete sessions (since upon completion
sessions erase their state). However, while incomplete, (@, s) is the matching session to the
test session so A cannot issue a state-reveal query against it

3. Since (P, s, Q) completes, it means that P received a response message with identity @ in it.
In particular, it means that P verified the signature SIGg(“1”, s, ¢”, ¢¥) under)’s public key
and where ¢g* was the value included by (P, s) in its start message. Since the above signature
by @ is the only one) could have generated as responder under session s, then we have that
(@ indeed was activated as responder of s under the DH exponent g* as output in the start
message by (P, s).

If, however, it happens with non-negligible probability that such a signature was verified by
P under @Q’s public key but) did not produce it then we can use this non-negligible event to
build a forger against SIGg. This is in contradiction to the assumed security of the signature
scheme. (Note that by the first item above () cannot be corrupted at the point that P
verified the above signature, so ()’s private key was not available to the attacker at the time
of forgery.)

4. (P,s) completes with output (P, s, Q) so it must have received a response message which
included @ as the identity. Moreover, P verified the signature in the response message under
()’s public key, namely SiGg(“1”, s, ¢", g¥). If (@, s) was not activated as a responder then @
would have never generated a signature SIGg(“1”,s,...), so the above signature is a forgery.
If @ generated such a signature then we have that ¢¥ included under that signature was the
DH exponent in the response message generated by (@, s), and since P verified it using the
DH exponent it received in the response message then we have that either this is the same
exponent generated and sent by () or the signature is a forgery. If any of the above “forgery
events” happen with non-negligible probability then we can use attacker A to build a forger
against SIGg that succeeds with such non-negligible probability.

5. Clearly. session (P, s) does not abort since it completes.

Proof of (b) : Omitted. Similar to (a). O

We now start proving the indistinguishability of the above defined S simulators.
Lemma 8 For all $y-attackers A, S-RAND(A) ~ S-HYBR(.A)

Proof: We show that if for an attacker A there is a non-negligible difference (say £) between
Prob(S-RAND(A) outputs 1) and Prob(S-HYBR(A) outputs 1) then we can build a distinguisher
for the DDH Assumption (which succeeds with non-negligible advantage ¢). We show such a
distinguisher D.

Let (¢g*,¢Y, z) be a DDH triple input to D. The distinguisher D follows the action of a S-RAND
simulator (including abort actions) except for the following changes:

Whenever the session (I, sg) chosen by S-RAND is initiated then D replaces the DH value in the
start message of (Iy, sgp) with the value ¢” from the DDH triple. That is, D produces sg, g* as the
start message from (Iy, sg). (Note that D controls Iy which we may assume to be uncorrupted or
otherwise S-RAND, and D, would have aborted; same holds for D controlling Ry). Later, if (Ry, so)
ever issues a response message (this means that (Ryp, s¢) was activated via the start message (s¢, g*),

17

since otherwise S-RAND aborts), then D generates a response message from (Rp,so) of the form
50,97, Ro, SIGR, (“17, 80, 9%, 9Y), MACk, (“17, 59, Rp), where ¢g¥ is the second element in the DDH
triple, and k; = PRF,(1) where z is the third element in this triple. If (I, sg) receives a response
message with a DH exponent different than ¢¥ (i.e., the second element in the DDH triple) then
D aborts (as S-RAND would do). Otherwise, Iy verifies the signature included in the incoming
response message under the public key of the sender (as it appears in the response message), and
checks the MAC under key k; = PRF,(1), where z is the third element in the DDH triple. If the
verification fails (I, so) aborts the session and D aborts its run (as S-RAND does). Otherwise, D
makes (Iy, sp) output a finish message of the form: sg, Iy, S1G,(“0”, s, g, g%), MACk, (“0”, so, lo),
where k1 = PRF,(1) with z being the third element in the DDH triple. On incoming finish message
to (Rp, sg) all actions are as in a regular run of S-RAND but the MAC in the message is verified
using key k; = PRF,(1). All other actions of S-RAND, including the completion of sessions (I, so)
and (Ry, s9) follow the regular specifications of a run of A under S-RAND (in particular, if any of
the sessions (I, sg) or (Rp, sg) complete then they output the random key k¢ chosen by S-RAND as
the session key for these sessions).

We now argue that in case that z = ¢™¥ the probability distribution of runs of the distinguisher
D under attacker A is the same as the distribution of runs of S-RAND under A. First note that for
sessions other than (Iy, sg) and (Rp, so) the actions of D do not differ from those of S-RAND. As
for sessions (I, sg) and (Ry, Sp), the values g” and ¢¥ used in the start and response messages of
these sessions are distributed identically as in a regular run of the Y, protocol, namely, they are
chosen independently and uniformly over the group generated by g. (Such are the specifications of
Yo and such is the way ¢g* and ¢¥ are chosen under the DDH assumption.)

Moreover, since any event that brings to an association of ¢” to a different DH exponent than
g¥ (and of ¢¥ to a different exponent than ¢”) causes an abort action by S-RAND (and then abort
by D) then all MAC computations in (Iy, sg) and (Rp, sg) that are visible to A are done under the
key z = g™ as specified by the protocol and by S-RAND. Finally, the state of sessions (I, s9) and
(Ro, s0) is never visible to A (state-reveal queries against these sessions or corruption of Iy or Ry
lead to abort by D) therefore the differences in these states between the run of S-RAND and the run
of D do not influence the view of A. (Note that such differences in the session state do exist: under
the run by D the powers = and y of the DH exponents g* and g¥ do not appear in the state of (I, so)
and of (Ry, sp) while in a regular run of S-RAND they do appear. However, this would be visible to
A only via state-reveal queries which lead to abort by D and S’—RAND.) Note that all actions of D
after (I, so) sends its finish message do not deviate from the regular actions of S-RAND and, by the
above arguments, also the view of A at that point (and then after that) is the same as in a run under
S-RAND. We therefore have that: Prob(S-RAND(A) outputs 1) = Prob(D(A) outputs 1 : z = ¢g*¥).

In the case of z being a random element ¢", a similar argument as above shows that the runs
of D(A) are distributed exactly as the runs of S-HYBR(.A), that is: Prob(S-HYBR(A) outputs 1) =
Prob(D(A) outputs 1 : z = random)

Now, by the DDH assumption it must be that for all A, Prob(D(A) outputs 1: z = ¢*¥) equals
Prob(D(A) outputsl : z = random) up to a negligible difference, and therefore we get that for all
attackers A, S-RAND(A) ~ S-HYBR(A).

O

The next Lemma shows that for any attacker A, S’—RAND(.A) has a significant probability of guess-
ing the test session. This property will “propagate” through our later proofs to all the other S
simulators.

18

Lemma 9 For any Yp-attacker A, the probability of a GUESS event under a run of S’—RAND(.A) 18
at least 1/(m - n) (recall that m is the number of sessions initiated by A and n is the number of
parties in the protocol — also see Remark 3).

Proof: Let S(A) be a regular simulator of protocol ¥y under an attacker A. Since A always selects
a test session then if one chooses a random session (Iy, sp) and random peer Ry the probability
that a run of S(A) ends with (“0”, Iy, so, Ro) or (“1”, Ry, so, ly) as the output of the test session is
at least 1/(m - n).

Let S-RAND’ be a simulator that acts exactly as S-RAND except that it does not stop (neither
outputs 0) in the case of abort events. Note that under S-RAND' (A) the answer to the session-key
query is a random key while under S(A) it is the real session key. However, this difference does
not influence the way A chooses the test session (which obviously happens before the session-key
query is answered). Therefore the probability of a GUESS event under S-RAND’(A) is exactly the
same as the probability a GUESS event under S(A), and then at least 1/(m - n).

Now consider a fixed set of coins for S-RAND' and for A that brings S-RAND'(A) to a GUESS event.
If now we look back at a regular run of S-RAND(A) (i.e., with abort actions) with the same set of
coins, the run still will produce a GUESS event since by Lemma 7 none of the abort events happen
with respect to the test session (which in this case is either (I, so) or (Rp, sg)) and therefore no
abort event happens under S-RAND(A) either. That is, under this set of coins the run of S-RAND(.A)
is not different than the run of S-RAND'(A).

Thus each set of coins that bring S-RAND'(A) to GUESS will also bring S-RAND(A) to a GUESS and
thus Prob(GUESS under S-RAND(.A)) > Prob(GUESS under S-RAND’(A)) > 1/(m - n). 0

Lemma 10 For any Xg-attacker A, the probability of a GUESS event under a run of S’—HYBR(.A) 18,
up to a negligible difference, the same as the probability of a GUESS event under a run of S-RAND(A).

Proof: If there is a non-negligible difference between the GUESS probability in a run under S-RAND
and under S-HYBR, then we can build a distinguisher D' for DDH. Let D be the distinguisher from
the proof of Lemma 8. On input a DDH triple (g%, ¢¥, z) the distinguisher D’ runs D except that
D’ outputs 1 if and only if in the run of D a guess event happens (in any other case it outputs 0).
Following the proof of Lemma 8 we get that in case that z = ¢™¥ the distinguisher D’ outputs 1
with the probability of a GUESS event under S—RAND, while if z = random, it outputs 1 with the
probability of a GUESS event under S-HYBR. O

The following is a central lemma in our analysis; it shows that when a GUESS event happens
then one of the sessions (lp,so) and (Rp,sp) is the test session and the other is its matching
session. Therefore, in this case the attacker is not allowed to expose any of these two session (until
expiration). This property is used in an essential way to establish the value of Pranp and Prgap
(Lemmas 13 and 14). It is interesting to note that the proof of Lemma 11 uses the security of the
MAC and PRF families but not the security of the signatures (or the DDH assumption). However,
when proving protocol ¥y without the “0” and “1” tags (see Section 5.1) the proof is more complex
and involves the unforgeability of signature as well.

Lemma 11 For oll Xg-attackers A, if a GUESS event happens under a run of S—HYBR(A) then the
following properties hold (except for negligible probability):

(1) if (Lo, so) was chosen by A as the test session then (Ro,sg) (either if completed or not) is its
matching session; (ii) if (Ro,so) was chosen by A as the test session then (Iy,sg) is its matching
session.

19

Proof: (i) Since we assume a GUESS event then if (Ip, sg) is chosen by A as the test session then
the peer to the session is Ry. By definition of matching session, as long as (Rp, sg) is incomplete
it is matching to (Iy, so). If (Ro, so) is complete and its output is (Ry, so, [D) then by definition
(Ro, so) matches (Iy, so) if and only if ID = I,. We want to prove that if (Ry, sg) completes then
ID = Iy.

Assume that (Ry, sg) completes with peer ID. This means that in the finish message received by

(Ry, so) before the session completed, Ry verified the value MAC, (“0”, sg, I D) under k; = PRFy(1)
where £ is a random key chosen by S-HYBR and never provided to the attacker. At this point there
could have been two examples of MACy, output in the protocol (and no other use of k)®, namely,
MACk, (17, s0, Ro) and MAC, (“0”, sg, Ip). Therefore, if based on this information the attacker has
non-negligible probability of producing MACk, (“0”, sg, ID) for ID # I then we can build, based on
S-HYBR, a forger to the MAC function under key k; = PRF; (1), where k is a random independent
key. This forger can then be turned into a distinguisher to the PRF function, or into a forger
against the MAC function (with random keys). Since we assume these functions to be secure then
the probability that (R, so) ends with peer I D # I is negligible.
(ii) Since we assume a GUESS event then if (Rp, sg) is chosen by A as the test session then the
peer to the session is Iy. By definition of matching session, as long as (I, sg) is incomplete it is
matching to (Rg, so). If (Ip, sp) is complete and its output is (Iy, sg, I D) then by definition (Iy, so)
matches (Ry, sg) if and only if ID = Ry. Thus, we want to prove that if (Iy, sp) completes then its
peer ID = I.

Assume that (Ip, sg) completes with peer ID. This means that in the response message received
by (Iy, so) before the session completed, Iy verified the value MACy, (“1”, so, ID) under k; = PRFy(1)
where k£ is a random key chosen by S-HYBR and never provided to the attacker. At this point
there could have been a single example of MACE, use in the protocol (and no other use of k),
namely, MACk, (17, 89, Rp). Therefore, if based on this information the attacker has non-negligible
probability of producing MACy, (“17,s0,ID) for ID # Ry then, as in (i) above, we can build a
forger for the MAC function or a distinguisher for the PRF family.

O

Lemma 12 Lemma 11 holds for S-RAND as well.

Proof: If in a run of a simulator S the properties (i) and (ii) from Lemma 11 hold then we say
that a MATCH event happened. Lemma 11 proves that under a run of S—HYBR, Prob(MATCH
GUESS) = 1 (i.e., 1 up to a negligible difference). Here we want to prove the same property under
a run of S-RAND.

For this we build a DDH distinguisher D’ as follows. D' runs D from the proof of Lemma 8
except that D’ outputs 1 if and only if in the run of D a GUESS and a MATCH event happen (we
will consider runs of D’ both under S-HYBR and S-RAND). We have that:

| Prob(D' outputs 1 : 2 = random) — Prob(D' outputs 1: z = ¢g"¥)| = (by Lemma 8)

= |Prob(D' outputs 1 under S-HYBR) — Prob(D’ outputs 1 under S-RAND)| = (by def of D)
= |Prob(GUESS and MATCH under S-HYBR) — Prob(GUESS and MATCH under S-HYBR)| =
— | Prob(MATCH under S-HYBR : GUESS under S-HYBR) Prob(GUESS under S-HYBR) —

5Recall that the session key value from test session (Io, so) provided to the attacker by S-HYBR is a random value
independent from k.

20

— Prob(MATCH under S-RAND : GUESS under S-RAND) Prob(GUESS under S-RAND)| & (Lemmas 10,11)
~ Prob(GUESS under S-RAND)|1 — Prob(MATCH under S-RAND : GUESS under S-RAND)| > (Lemma 9)
> 1/(m - n) Prob(not MATCH under S-RAND : GUESS under S-RAND)

That is, we have that up to a negligible probability:

Prob(not MATCH under S-RAND : GUESS under S-RAND) <
< (m - n)|Prob(D’ outputs 1 : 2 = random) — Prob(D' outputs 1: z = ¢g"¥)|

Since by the DDH assumption the later expression is negligible then we have that under S-RAND:
Prob(not MATCH : GUESS) is negligible, thus proving the lemma.
O

Lemma 13 For all Sy-attackers A, Paanp(A) = Prob(S-RAND(A) outputs 1 : GUESS event)

Proof: By the same argument as in the proof of Lemma 9 we get that under a run of S-RAND a
GUESS event implies that S-RAND does not abort. Thus the run of A under S-RAND in the case of
a GUESS event is the same as a regular run of A except that the secret key output by the sessions
(I, s0) and (Ro,so) (if completed) is not the real key but a random key ky chosen independently
of the actual exchange in these sessions. In particular, this means that the value of the test session
key provided to A under S-RAND is this random value ky. On the other hand, the only other session
that outputs kg is, by virtue of Lemma 12, a matching session to the test session so this value is
never revealed to A, and thus it makes no difference to A’s view.

In summary, we have that in case of a GUESS event the output of S-RAND is exactly the output
of A in a run where the test query is answered with a random key. Or, in other words:

Prob(S-RAND(A) outputs 1 : GUESS event) =
= Prob(A outputs 1 under a S-RAND run : GUESS event) =

= Prob(A outputs 1 under a regular run with test query answered with a random key) =
= Pranp (-A)

Lemma 14 For all Sg-attackers A, Prpar(A) = Prob(S-REAL(A) outputs 1 : GUESS event)

Proof: This is analogous to Lemma 13. The proof is similar too and it involves the proof of
Lemmas 8 to 12 with the role of S-RAND replaced with S-REAL and the role of S-HYBR replaced
with S-RPRF. The proofs of these lemmas require just minor and straightforward adaptations to
the above simulators and are omitted. O

Lemma 15 For all Sg-attackers A, S-REAL(A) ~ S-RAND(A)

Proof: We prove that S-REAL ~ S-RPRF ~ S-ALLR ~ S-HYBR ~ S-RAND (for all Sg-attackers).

The indistinguishability of S-HYBR and S-RAND is proven in Lemma 8. The proof of S-REAL &~
S-RPRF is similar; the only difference being that kg in S-RPRF is computed via the pseudorandom
function rather than chosen at random. However, this does not change the validity of the argument
in the proof of Lemma 8.

21

For proving S-RPRF &~ S-ALLR one uses the following standard argument based on the security of
the pseudorandom function family PRF. Let A be a ¥g-attacker; based on A we build a distinguisher
D against the family PRF as follows. The distinguisher D has oracle access to a function F' (which
may have been selected truly randomly or as a random member of PRF); D works exactly as a
S-RPRF(A) simulator, except that for computing ko and k; it uses the oracle F rather than a
randomly selected function from the PRF family. It is clear that if F' itself is implemented via a
random member of PRF then the actions of DF are identical to those of S-RPRF(A). On the other
hand, if F is a truly random function the actions of D are identical to those of S-ALLR. Therefore,
we have that

| Prob(S-RPRF(A) outputs 1) — Prob(S-ALLR(A) outputs 1)| =
= |Prob(D" outputs 1 : F is pseudorandom) — Prob(D" outputs 1 : F' is random)|

Since the PRF family is secure then the last difference is negligible and therefore also

| Prob(S-rRPRF(A) outputs 1) — Prob(S-ALLR(A) outputs 1)| is negligible, i.e., S-RPRF ~ S-ALLR.
For proving S-ALLR ~ S-HYBR one uses a similar argument as in the previous case where the

oracle F' replaces PRF in the choice of ki while kg is chosen at random and independently. O

We are finally able to complete the proof of property P2 for protocol .

Theorem 16 Protocol Yy satisfies condition P2 of SK-security: for all Xg-attacker A,
| Prear (A) — Pranp (A)| is negligible.

Proof:

Prob(S-RAND(A) outputs 1) =

= Prob(S-RAND(A) outputs 1 : GUESS event) Prob(GUESS under S-RAND) +
+ Prob(S-RAND(A) outputs 1 : not GUESS event) Prob(not GUESS) =

= Prob(S-RAND(A) outputs 1 : GUESS event) Prob(GUESS under S-RAND) >

> Prob(S-RAND(A) outputs 1 : GUESS event) 1/(m - n)

The second equality is due to the fact that if a GUESS event does not happen then necessarily
S-RAND outputs 0; while the last inequality is from Lemma 9.

Similarly (using the analogous of Lemma 9 in the case of S-REAL) we have that
Prob(S-REAL(A) outputs 1) > Prob(S-REAL(A) outputs 1 : GUESS event) 1/(m - n)

From Lemma 13 and Lemma 14 we have that:

|PREAL (A) — Pranp (A)| =
= | Prob(S-REAL(A) outputs 1 : GUESS event) — Prob(S-RAND(A) outputs 1 : GUESS event)| <
< (m - n)|Prob(S-REAL(A) outputs 1) — Prob(S-RAND(A) outputs 1)

Since |Prob(S-REAL(A) outputs 1) — Prob(S-RAND(A) outputs 1)| is negligible (Lemma 15) so
is |PREAL (-A) — Pranp (-A)| g

Remark 3 When doing an exact quantification of the above analysis of the security of protocol

Yo, one can see that the main “degradation factor” of the security of the protocol with respect
to the security of the underlying cryptographic functions, is the factor m - n, namely the number

22

of sessions initiated by A in its run times the number of parties in the protocol. If one thinks of
key-exchange protocols that run over the Internet then the numbers for m and n may be huge and
then this factor may seem as a prohibitive loss of security. However, for any given attacker that
breaks the protocol the real meaning of m and n is not the maximal potential number of sessions or
parties in the Internet but just the minimal number of sessions and parties necessary to develop the
attack. These numbers are usually very small (single-digit numbers in currently known attacks).
Therefore, for such attacks the security of the protocol is related to the security of the underlying
cryptographic functions by a very small (usually constant) degradation factor.

5 Variants and Discussions

At this point we have a full analysis of protocol Y. We consider the security of several variants
of the protocol and extensions to its functionality. In particular, we extend the analysis to the
elements found in the IKE protocols and not included in the basic protocol .

5.1 Eliminating the initiator and responder tags in ¥,

In protocol ¥y the initiator and responder include under their signatures and MAC a special tag
“0” and “1”, respectively. Here we show that protocol ¥y’ defined identically to ¥y except for the
lack of these tags is still secure. (We stress that the signature modes of IKE do not use these tags;
this is one main reason to provide the analysis here without tags.)

The lemmas where we have used these tags as part of the proof arguments are Lemma 7 and
Lemma 11. Here we show how to modify these arguments in order for these lemmas to hold also
for 20,.

Proof of Lemma 7, part (a)(3). In this case we used the tag “1” included under the signature of
@ to argue that SiGo(“1”,s,g", ¢g¥) received by P in the response message of session s is the only
signature that () could have produced under session s and then the response message must have
come from (). However, if we omit “1” from this signature then this claim is not necessarily correct.
In this case the signature received by P in the response message is SIGg(s, g%, ¢¥) which could have
been taken from a finish message sent by @ in a session (Q,s) where Q was activated under
session-id s as initiator! In the later case, however, we know that before sending the finish message
with the above signature (Q,s) should have received a valid response message which included
a legal signature SIGg(s,gY,g") from some party E, as well as a corresponding MACy, (s, F) for
ki = PRFgy(1). Since we know that g¥ was chosen by @ itself (it appears as last element in the
signature) and ¢g* was chosen by P, then no uncorrupted party could have chosen g* except for
negligible (collision) probability. Moreover, E created MAC, (s, F) for k; computed under random
g*,gY not chosen by E (nor could x and y be found by A via session reveals since by parts (a)(2)
of the lemma none of the sessions (P, s), (Q, s) could be revealed).

From this we have that if the event in which F produces a valid response message for session
(Q, s) happens with non-negligible probability then we can build a DDH distinguisher in a similar
way to the proof of Lemma 8; this distinguisher just needs to guess the sessions (@, s) and (P, s)
where this attack by E happens. In the guessed sessions the distinguisher uses z from the DDH
triple to compute k; = PRF,(1). Now if z = ¢®¥ then the probability of forgery by E is non-
negligible as assumed above. On the other hand, if the probability of forgery is non-negligible with
z = random then we can build a breaker to the MAC or PRF as done in the proof of Lemma 11. So
either we contradict the DDH assumption, or the security of the MAC or PRF functions.

23

(Note that this proof involves signature security considerations as well as DDH, MAC and PRF; the
proof of this property in the case of ¥y used a signature-only argument; this shows the simplifying
effect for the analysis that the use of a responder’s tag has.)

Proof of Lemma 7, part (a)(4). This requires changes to the argument in Lemma 7 which are very
similar to the case of part (a)(3) proved above.

Proof of Lemma 11, part (i). The proof of this part of Lemma 11 for protocol ¥y used in an essential
way the tags “0”and “1”included under the MAC; otherwise the attacker could have replayed in
the finish message the value MACy, (so, Rp) taken from the response message by Ry. However, we
will show that the proof can be adapted to the case of ¥y where the tags are not included. First
note that the current argument in the proof of Lemma 11, part (i) already shows (even without
the tags) that it is not feasible for the attacker to make (Ry, sg) complete with ID other than I
or Ry (since the only available MAC values are on Iy and Ry).

Thus, if (I, s9) completes with peer Ry # I then we need to use a signature-based argument to
show that replaying MACy, (so, Ro) in the finish message does not help. Indeed, this finish message
(in order to be valid with ID = Ry) will also have to carry a signature SIGg,(so,¢?, g") where ¢g” is
the DH exponent received by (Ry, sg) in the start message. On the other hand, the only signature
produced by Ry in session sg is SIGg, (S0, 9%, ¢¥), where g¥ was chosen by Ry itself after receiving g
and independently of this value. Therefore, except for a negligible collision probability, g* # ¢g¥ and
SIG R, (s0,9Y,9") was never produced by Ry. Thus, if such a valid signature appears in the finish
message received by (Rp, sg) then we have a forgery event against SIGg, which can only happen
with negligible probability or otherwise we have a forgery algorithm against the signature scheme.

Proof of Lemma 11, part (ii). No change required, the presence of the tags was not used in the
proof argument of this part for protocol .

5.2 Putting the MAC under the signature

One seemingly significant difference between protocol ¥y and IKE signature-mode is that in the lat-
ter the MAC tag is not sent separately but rather it is computed under the signature operation. That
is, in the response message of IKE the responder does not send S1G,(“17, s, g%, ¢¥), MACy, (“17, s, ID,),
as in Yo, but rather sends the value SIG,(MACk, (s, 9", ¢Y, ID;)). Similarly, the pair of signature-
mac is replaced in the finish message by the value S1G;(MACy, (s, ¢Y,¢”, ID;)). The reason for this
inclusion of the MAC under the signature in IKE is twofold: to save the extra space taken by the
MAC tag and to provide a message format consistent with other authentication modes of IKE.S

Fortunately, the analysis of the protocol when the MAC goes under the signature is essentially
the same as the simplified ¥y version analyzed before. The analysis adaptation is straightforward
and is based in the following simple fact.

Lemma 17 If S1G is a secure signature scheme and MAC a secure message authentication func-
tion then it is infeasible for an attacker to find different messages M and M' such that for a
randomly chosen secret MAC-key ki the attacker can compute SIG(MACk, (M')) even after seeing
SIG(MACE, (M)).

SFor example, the IKE mode where authentication is provided by a pre-shared key is obtained from the signature
mode by using the same MAC expression but without applying the signature on it (in this case the MAC key is derived
from the pre-shared key).

24

Indeed, if the attacker can do that then either MACy, (M') # MACk, (M) with significant probability
and this results in a signature forgery strategy, or MAC, (M') = MAC, (M) with significant proba-
bility in which case the attacker has a strategy to break the MAC. (Note that the attacker cannot
choose k1; if it could, the lemma would not hold.)

This lemma implies that all the arguments in our proofs of Section 4 that use the unforgeability
of signatures remain valid in this case. More precisely, they are extended through the above lemma
to claim that if an attack is successful then either the signature scheme or the MAC are broken
(the cases where the weakness comes from the insecurity of either the PRF family or the DDH
assumption are treated identically as in the proof of).

IKE’s aggressive mode. With the above changes, in which the MAC is included under the
signature and the “0”7/“1” tags are not included, ¥y becomes basically the so called “aggressive
mode of signature authentication” which is one of the two IKE’s protocols based on authentication
via digital signatures. One additional difference is that the IKE protocol uses the function PRF
itself to implement the MAC function. Since a pseudorandom family is always a secure MAC then
this implementation preserves security (in this case the key to the PRF is g™ itself as in the other
uses of this function in the protocol; the protocol also makes sure that the input to PRF when used
as MAC is different that the inputs used for key derivation).

5.3 Encrypting the identities

Here we consider the augmentation of ¥ for providing identity concealment over the network. We
present the main ideas behind our treatment, and omit much of the formal and technical issues.

We start by considering the following variant of protocol ¥j. Before transmitting the response
message, the responder computes a key ky = PRFgey(2) and encrypts under key ky the response
message excluding s and ¢¥. That is, the response message is changed to
s,9Y,ENCg, (IDy, S1G,(“17, s, 97, g¥), MACk, (“1”, s, ID;)) where ENC is a symmetric-key encryption
algorithm. Upon receiving the response message the initiator computes the key ks as above, de-
crypts the incoming message with this key, and then follows with the regular verification operations
of ¥y. If successful, it prepares the finish message as in ¥y but sends it encrypted under ENCy,
(only s is sent in the clear). Upon reception of this message the responder decrypts it and follows
with the regular operations of .

The main goal of this use of encryption is to protect the identities of the peers from disclosure
over the network (at least in cases that these identities are not uniquely derivable from the visible
(say, IP) address from which communication takes place). We first argue that the addition of
encryption preserves the SK-security of the protocol. Then we claim that the encryption provides
semantic security of the encrypted information. For the response message semantic security is
provided against passive attackers only (indeed, at the point that this encryption is applied by ID,,
the initiator has not yet authenticated to ID, so this encryption can be decrypted by whoever chose
the DH exponent g*). For information encrypted in the finish message we can provide a stronger
guarantee of security, namely, semantic security also against active attackers.

We start by claiming that the modified ¥y protocol with encryption as described above satisfies
Theorem 6. The basic idea is that if we were encrypting under a random key independent from the
Diffie-Hellman exchange then the security of the protocol would be preserved (in particular, since
the attacker itself can simulate such an independent encryption on top of (). However, since we
are using an encryption key that is derived from ¢g*¥ then we need to show that if the encryption
helps the attacker in breaking the SK-security of (the encrypted) ¥y then we can use this attacker

25

to distinguish ¢®¥ from a random value. Technically, this requires an adaptation of the proof of
Theorem 6. The main change regards the formulation of the hybrid simulators in Section 4.3.2.
Specifically, to the specification of how these simulators choose ky and k; we now add the choice
of a third key k3. In the case of S-ALLR ko is chosen at random and independently of ky and kq;
in all other cases ks is chosen by applying the PRF to the value 2 and with the same key used to
derive ki (e.g. S-REAL will choose kg = PRFyey(2)). The proofs of lemmas in Section 4.3.3 now
need to be augmented with an extra simulation of the encryption function under a random key.
Any deviation from the attacker’s advantage from the non-encryption case results in a break of
DDH (i.e., a construction of a distinguisher to the DDH assumption) or a break to the PRF family
(i.e., a construction of a distinguisher against this family).

In order to show secrecy protection against a passive attacker (note that a passive attacker
means an eavesdropper in the network that does not collaborate with the SK-attacker which is
active by definition) we consider a run of the protocol where ko is chosen randomly (as under
S’—ALLR). In this case semantic security against a passive attacker follows from the assumption that
the encryption function (under a random secret key) is semantically secure against chosen plaintext
attacks. Using the indistinguishability between S-ALLR and S-REAL (re-proven as sketched before
for the case of encrypted () we get a guarantee of semantic security also under the real runs of
the protocol (as represented by S—REAL).

In the case of the finish message, the security guarantee is stronger and the secrecy protection
can stand active attackers too (assuming a suitable encryption function secure against active attacks
[4, 16]). We can show that for any complete session (ID;, s, ID,) that is not exposed by the attacker
(i.e., neither this session or its matching session are corrupted), breaking the semantic security of the
information transmitted under ENCg, in the finish message of session (ID;, s) implies a distinguishing
test between ky and a random (encryption) key. This in turn can be used to build an attack against
the SK-security of the protocol or against one of its underlying cryptographic primitives.

5.4 A four message variant: IKE main mode

Here we study a four-message variant of the 3y protocol. The interest in this protocol is two-fold:
on one hand, if encryption is added to it (as discussed below) it allows concealing the responder’s
identity from active attackers and the initiator’s identity from passive attacks. This is in contrast
to Yo where the strong active protection is provided to the initiator’s identity (see Section 5.3).
The other source of interest for this protocol is that it actually represents the core cryptographic
skeleton of the so called “main mode with signature authentication” in IKE (which is one of the
two signature-based protocols in IKE — see Section 5.2 for a discussion of the other IKE variant).

The four-message protocol, denoted X1, is similar to 3y except that the responder delays its
authentication (via SIG,) to a fourth message. The protocol is:

I—R: s,g°
R—1I: s,¢Y
I—R: s,ID;,s1G;(“0”,s, g, g"), MAC, (“0”, s, ID;)
R—1I: s,ID,,S1G.(“1",s,9%,¢Y), MACk, (“17, s, ID,)
The security analysis of ¥ is similar to that of ¥y as presented in Section 4. It follows the

same basic logic and structure of that proof but it requires some changes due to the addition of
the fourth message and the fact that the responder authenticates after the initiator. In particular,

26

this requires some changes to the definition of the “abort events” related to the S-simulators from
Section 4.3.2 and the statement of Lemma 7. The adaptation, however, of the previous proof to
this new protocol is mostly straightforward. The details are omitted. One important point to note
is that in this case (as opposed to ¥ — see Section 5.1) the use of the tags “0” and “1” is essential
for security; at least if one regards reflection attacks (where the attacker impersonates the initiator
of the exchange as responder by just replying to each of the initiator’s messages with exactly the
same message) as a real security threat (see discussion below).

Providing identity concealment in ¥; is possible via the encryption of the last two messages
of the protocol (under a key ko = PRF4ey(2) as in Section 5.3). In this case, the identity ID, is
protected against active attacks, while ID; against passive attackers.

IKE’s main mode. Protocol ¥; with the MAC included under the signature (as in Section 5.2),
with encryption of the last two messages (not including the session-id s), and without the “07, “1”
tags is essentially the “main mode signature authentication” in IKE. (There are some other sec-
ondary differences such as: (i) the session id s equals a pair s1,s2, where s1,s9 are “cookies”
exchanged between the parties in two additional messages preceding the above four-message ex-
change, and (ii) the MAC function is implemented using PRFgzy). Our analysis here applies to this
IKE protocol except for the fact that IKE does not use the “0”, “1” tags and thus it is open to
reflection attacks. We note that without the use of these tags the protocol can be proven secure
in our model if exchanges from a party with itself are considered invalid, or if the initiator verifies,
for example, that the incoming DH exponent in the second message differs from the one sent in
the initial message. From a practical point of view, these potential reflection attacks have been
regarded as no real threats in the context of IKE; in particular based on other details of the IKE
specification, such as the way encryption is specified, that make these attacks unrealistic. Yet, the
addition of tags as in ¥; would have been advisable to close these “design holes” even if currently
considered as theoretical threats only.

Note: In case that the MAC goes under the signature (as in IKE and in Section 5.2) then the
“0”, “1” tags can go under the MAC only. Moreover, in this case one can dispense of these tags
and use instead different (and computationally independent) keys k; and &} to key the MAC going
from ID; to ID, and from ID, to ID;, respectively.

5.5 Not signing the peer’s DH exponent

The protocols as presented before take care of signing each party’s own DH exponent as well as
the peer’s DH exponent. While the former is strictly necessary for security (against “man in the
middle” attacks), the later is not essential and is used mainly for simplifying the proofs. If the
peer’s exponent is not included under the signature then the proofs become more involved since the
essential binding between ¢g* and ¢¥ (for example, in Lemma 7 item 4) cannot be argued directly
but via a binding of these exponents to the session id.

5.6 Hashing ¢"Y: the HDH assumption

We mentioned in Section 3 that it is advisable in practice to hash the DH value ¢*¥ to the length
of the PRF’s key from which further keys are derived. In particular, this may result in better
security of the resultant hashed bits relative to the initial plain string ¢*¥. The use of all of g*¥
as if they were all perfectly random is generally justified by the DDH assumption (see Assumption
5). However, while this assumption is considered “standard” these days, it actually constitutes

27

a very strong conjecture about the strength of the DH key ¢*¥: namely, that all bits in this key
are simultaneously indistinguishable from random for an observer of g* and ¢¥. Currently, there
is no evidence against this strong conjecture, yet, whenever possible, it is best to rely on weaker
assumptions. A possible weakening of DDH is to assume the indistinguishability of the distributions
Qo and @Q; defined in Assumption 5 when the values g*¥ and g* are replaced with h(g®¥) and h(g?),
respectively; where h is a randomly chosen element from a family of hash functions (such as a
cryptographic hash function family or universal hash functions). This approach was recently taken
in [8] where this weaker assumption is referred to as the “Hashed Diffie-Hellman Assumption (HDH)".
We point out that the IKE protocols use a key derivation technique from ¢g*¥ based on this approach
with the “hashing” implemented via a family of pseudorandom functions. A more common practice
is to just use a single (idealized) hash function H (such as SHA-1) to hash the DH key.

References

[1] M. Bellare, R. Canetti and H. Krawczyk, “A modular approach to the design and analysis
of authentication and key-exchange protocols”, 30th STOC, 1998.

[2] M. Bellare and P. Rogaway, “Entity authentication and key distribution”, Advances in
Cryptology, - CRYPT0’93, Lecture Notes in Computer Science Vol. 773, D. Stinson ed,
Springer-Verlag, 1994, pp. 232-249.

[3] R. Canetti, “Universally Composable Security: A New paradigm for Cryptographic Proto-
cols”, 42nd FOCS, 2001. Full version available at http://eprint.iacr.org/2000/067.

[4] Canetti, R., and Krawczyk, H., “Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels”, Advances in Cryptology — EUROCRYPT 2001, Full version in:
http://eprint.iacr.org/2001/040.

[5] Canetti, R., and Krawczyk, H., “Universally Composable Notions of Key Ex-
change and Secure Channels”, FEurocrypt 02, 2002. Full version available at
http://eprint.iacr.org/2002/059.

[6] R. Cramer and V. Shoup, “A Practical Public Key Cryptosystem Provable Secure Against
Adaptive Chosen Ciphertext Attack”, In Crypto '98, LNCS No. 1462, pages 13-25, 1998.

[7] W. Diffie, P. van Oorschot and M. Wiener, “Authentication and authenticated key ex-
changes”, Designs, Codes and Cryptography, 2, 1992, pp. 107-125.

[8] Gennaro, R., Krawczyk H., and Rabin, T., “Hashed Diffie-Hellman: A Hierarchy of Diffie-
Hellman Assumptions”, manuscript, Feb 2002.

9] O. Goldreich, “Foundations of Cryptography: Basic Tools”, Cambridge Press, 2001.
[10] D. Harkins and D. Carrel, ed., “The Internet Key Exchange (IKE)”, RFC 2409, Nov. 1998.

[11] ISO/IEC IS 9798-3, “Entity authentication mechanisms — Part 3: Entity authentication
using asymmetric techniques”, 1993.

[12] Karn, P., and Simpson W.A., “The Photuris Session Key Management Protocol”, draft-ietf-
ipsec-photuris-03.txt, Sept. 1995.

28

[13] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, Request for
Comments 2401, Nov. 1998.

[14] Krawczyk, H., “SKEME: A Versatile Secure Key Exchange Mechanism for Internet,”, Pro-
ceedings of the 1996 Internet Society Symposium on Network and Distributed System Se-
curity, Feb. 1996, pp. 114-127. http://www.ee.technion.ac.il/ hugo/skeme-1lncs.ps

[15] Krawczyk, H., IPsec mailing list archives, http://www.vpnc.org/ietf-ipsec/, April-June
1995.

[16] Krawczyk, H., “The order of encryption and authentication for protecting communica-
tions (Or: how secure is SSL?7)”, Crypto’2001. Full version in: Cryptology ePrint Archive
(http://eprint.iacr.org/), Report 2001/045.

[17] Krawczyk, H., “SIGMA: the ‘SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman
Protocols”, http://wuw.ee.technion.ac.il/“hugo/sigma.html

[18] Meadows, C., “Analysis of the Internet Key Exchange Protocol Using the NRL Protocol An-
alyzer”, Proceedings of the 1999 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, May 1999.

[19] A. Menezes, P. Van Oorschot and S. Vanstone, “Handbook of Applied Cryptography,” CRC
Press, 1996.

[20] Orman, H., “The OAKLEY Key Determination Protocol”, Request for Comments 2412,
Nov. 1998.

[21] V. Shoup, “On Formal Models for Secure Key Exchange”, Theory of Cryptography Library,
1999. Available at: http://philby.ucsd.edu/cryptolib/1999/99-12.html.

A On The Universal Composability of Protocol Y (preliminary version)

An alternative way for defining the security requirements from key exchange protocols is via the
framework of universally composable (UC) security [3]. Placing the [4] notion of SK-security within
the UC framework was done in [5]. We present a UC definition of secure key exchange in the post-
specified peer setting, and show that protocol ¥y presented here satisfies this definition. We also
argue that the UC notion suffices for realizing secure channels via standard protocols, and that it
implies the notion of SK security in the post-specified peer setting (Definition 3 above).

One advantage of working in the UC framework is that it guarantees strong composability
guarantees with arbitrary protocols. Another advantage is that the presentation and analysis of
protocols can be done in a simplified setting where only a single generation of a key takes place
between two parties. Security in a general setting where multiple keys are generated in multiple
“pairwise sessions” among many pairs of parties is guaranteed via general composition theorems.
This holds even when all “pairwise sessions” use the same instance of the signature scheme. See
[5] for more details.

The presentation below assumes familiarity with the UC framework and its use for defining
security for key-exchange protocols. It also assumes familiarity with the ideal signature function-
ality, Fgg. All this preliminary material can be found in Section 3 in [5]. (For self containment,
functionality Fg is presented in Figure 3.) In this section we use I to denote the identity of the
initiator, and use R to denote the identity of the responder.

29

A.1 Universally Composable Key Exchange with Post-Specified Peers

We present a UC notion of secure key exchange in the post-specified peer setting. This is done be
presenting an ideal key exchange functionality that is aimed at capturing the fact that the peer
identity is not known upon protocol invocation, but it becomes known via the protocol and is part
of the output. This functionality, denoted Fposr— g, 18 presented in Figure 2. Several remarks on
the formulation of Fpogr—_xr follow:

Functionality fPOST—KE

Frosr—xe proceeds as follows, running on security parameter k. The symbols I, R, P below indicate
arbitrary identities of parties.

1. Upon receiving a value (Establish-session,l,s,auz) from the first party, where I is the
identity of that party, send (s, I, auz) to the adversary. Upon receiving a value (Establish-
session, R, s,aux) from the second party, where R is the identity of that party, send
(s, R,aux) to the adversary; then, choose a value s & {0,1}* and continue to the next
step.

2. (a) Upon receiving a value (Output,s, I, P,x') from the adversary, proceed as follows. If
both parties are uncorrupted at this point then ignore (P, ') and send (Output, s, R, k)
to I. If either party is corrupted then send (Output, s, P,&') to I, unless P is an identity
of an uncorrupted party (in which case do nothing).

(b) Upon receiving a value (Output, s, R, P,x’) from the adversary, proceed as follows. If
both parties are uncorrupted at this point then ignore (P, ') and send (Output,s,I, k)
to R. If either party is corrupted then send (Output,s,P,x') to R, unless P is an
identity of an uncorrupted party (in which case do nothing).

3. If the adversary corrupts a party after is chosen and before x is sent to that party, then
hand & to the adversary. Otherwise provide no information to the adversary.

Figure 2: The Post-Specified Peer Key Exchange functionality

1. The interaction takes place among an unbounded number of parties, whose identities are
not known to Fposr—xe in advance. Still, Fposr_ke interacts only with two parties, whose
identities become known when the inputs arrive. Recall that the environment determines the
identities of the parties, as well as the inputs of Fposr—_xr. In particular, Z can determine the
identities based on information gathered in other protocol executions, etc.

2. The peer identities are not part of the inputs. Nonetheless, they appear as part of the outputs
of both parties. This means that the parties learn the peer identities as part of the protocol
execution.

3. When one of the two parties is corrupted, the adversary is allowed to set the peer identity in
the output of the other party to any arbitrary value, under the condition that this value is
not an identity of an existing and uncorrupted party. This last provision makes sure that the
adversary cannot “impersonate” other uncorrupted parties. (Technically, we assume that the
ideal process allows Fposr—xe t0 know the identities of all uncorrupted parties.)

30

4. Each party has an input field auz, in addition to its own identity and the session identifier.
This field represents arbitrary additional information that may help the protocol execution;
however it does not play a role in the security requirements. Protocol ¥ will use this field
to differentiate between the initiator and the responder roles. In addition, this field may be
used to incorporate some routing information for message delivery, etc.

5. Functionality Fposr_xr allows the adversary to learn the session key s only if it corrupts a
party before the output message is sent to that party. Once the output message is sent, the
adversary does not learn k, even if the party is corrupted. This reflects the perfect forward
secrecy requirement (see [5]). Naturally, the functionality can be relaxed to capture protocols
that guarantee only restricted versions of forward secrecy, or no forward secrecy at all.

6. If the initiator is corrupted after it has generated output but before the responder generated
output, then Fposr_xr allows S to control the output of the responder. We note that protocol
Yo actually provides a somewhat stronger guarantee: The protocol guarantees that, in this
case, the responder always outputs the same value as the initiator. Still we choose not to
enforce this requirement in Fposr— g, Since it is not necessary for the main application, namely
realizing secure channels.

7. Frosr—xe explicitly sends the identities I and R to the adversary. This reflects the fact that
identity hiding is not guaranteed. Requiring that the identities of the parties remain unknown
to the adversary (unless ofcourse it corrupts one of the parties) can be captured by modifying
Frost—xe SO that the messages to the adversary in Step 1 will not include the identities.

A.2 Protocol ¥ securely realizes Fposr_xn

We start by re-formulating protocol 3y in the Fgg-hybrid model (i.e., in the hybrid model with
access to the ideal signature functionality). See Figure 4. For self containment, we also recall the
signature functionality, Fgq, in Figure 3. We then show:

Theorem 18 Protocol ¥g securely realizes Fpogr—xg 1 the Fsig-hybrid model.

Proof: Let A be an adversary in the Fgq-hybrid model. We construct an ideal-process adversary
(i.e., a simulator) S such that no environment Z can tell whether it is interacting with A and
parties running Y, in the Fgq-hybrid model, or with S in the ideal process for Fposr—xe- (Recall
that the interaction takes place between only two parties, I and R, whose identities are a-priori
known only to Z. In fact, we can assume that Z chooses these identities adaptively during the
interaction.)

Simulator S runs a simulated copy of A, and simulates for 4 an interaction with parties running
(a single pairwise session of) 3. This is done with the exception that the generated keys and the
peer identities are the values received by the parties from Fposr—xg in the ideal process rather than
the values agreed in the simulated protocol execution. More precisely, S proceeds as follows.

1. Communication with the environment: Any input from Z is forwarded to A. Any
output of A is copied to the output of S (to be read by Z).

2. Simulating the initial activation of an uncorrupted I. When receiving (s, I, “init”)
from Fposr—kr, S feeds A with a Start message (s,¢”) sent by I, where z is chosen randomly
by S. In addition, S feeds A with a message (signer, “0” o s,) from Fg (representing the
fact that I registered with Fg for the appropriate session identifier).

31

Functionality Fy

Fsie proceeds as follows, running with an unbounded number of parties and an adversary.

Set-up: In the first activation, expect to receive a value (signer,sid) from some party S. (Note

that S may be a corrupted party.) Then, send (signer, sid, S) to the adversary. From now
on, ignore all (signer, sid) values. (That is, the functionality serves a single signer.)

Signature generation: Upon receiving a value (sign,sid,m) from S, hand (sign,sid,m) to
the adversary. Upon receiving (signature, sid,m, o) from the adversary, set s, = o, send
(signature, sid,m, o) to S, and request the adversary to deliver this message immediately.
Save the pair (m, s,,) in memory.

Signature verification: Upon receiving a value (verify, sid,S’,m,c) from some party V', do:

1. If S’ = S (i-e., if the signer identity in the verification request agrees with the identity of
the actual signer) then do: If m was never before signed then let v = 0. If m was signed
before (i.e., sy, is defined) and o = s, then let v = 1. If m was signed but s,, # o then
let the adversary decide on the value of v. (That is, hand (verify,sid,V,S',m,o) to
the adversary. Upon receiving ¢ € {0, 1} from the adversary, let v = ¢.)

2. If S’ # S then do: If S’ is uncorrupted then set v = 0. Otherwise, let the adversary
decide on the value of v, as in Step 1.

3. Once the value of v is set, send (verified, sid,m,v) to V, and request the adversary
to deliver this message immediately.

Figure 3: The signature functionality, Fgq.

3. Simulating the initial activation of an uncorrupted R. When receiving (s, R, “resp”)

from Fposr—ke, S feeds A with a message (signer, “1” o s, R) from Fy (representing the
fact that R registered with Fyq for the appropriate session identifier).

. Simulating receipt of a Start message by and uncorrupted R. When A delivers a
Start message (s,«) to R, S first verifies that in the ideal process it has received a message
(s, R, “resp”) from Fposr—xp (indicating that R was activated to exchange a key as a respon-
der). Next, S chooses y randomly, and feeds .4 with a Response message (s, ¢Y, R, 0y, 1) from
R. Here t, = MACy, (“17,s, R), k1 = PRFqu (1), and o, is a signature obtained be handing A
the message (sign, “1” o s,a,¢Y) in the name of Fgq, and setting o, to the value returned

by A.

. Simulating receipt of a Response message by an uncorrupted I. When A delivers a
Response message (s, 3, P,o,,t,) to an uncorrupted I, S proceeds as follows:

(a) S verifies that in the simulation I has previously sent a Start message (s, g").

(b) & mimics the verification process of o,, by mimicking the behavior of Fgq on input
(verify, “1” o s,I, P,(g",f3),0,) from I. (That is, If P = R, then verification succeeds
if o, was previously generated by A in response to a request, generated by S in the
name of Fgq, of the form (sign, “1” 0 s,¢9",8). If P # R is an identity of an ex-
isting uncorrupted party then verification fails. Otherwise, S feeds A with a message
(verify, “17 0 s,I, P,(¢",[),0,) in the name of Fgq, and accepts o, if A says to.)

32

Protocol %

Initial information: Primes p, ¢, ¢/p-1, and g of order ¢ in Z;. The players have access to multiple
copies of the ideal signature functionality Fss. The protocol also uses a message authentication
function MAC, and a pseudorandom function family PRF.

The protocol actions

1. Upon activation with input (Establish-session,s, I, “init”) the party learns that it is an
initiator with identity I. It then sends the Start message (s, g"), where the DH exponent g*

is computed with z & Z, and z is stored in the state of session (I, s).

In addition, I initializes a copy of Fg with session identifier “0” o s, by sending a message
(signer, “0” o s) to Fy-

2. When activated with input (Establish-session,s, R, “resp”), the party learns that it is a
responder with identity R. It then initializes a copy of Fgq with session identifier “1” o s by
sending a message (signer, “1” 0 s) to Fgq, and waits for delivery of a Start message.
When a Start message (s,¢g%) is delivered, R generates the response message
s,9Y, R,0,,MAC, (“1”, s, R), where the DH exponent ¢g¥ is computed with y & Zg, the signa-
ture o, is computed by sending (sign, “1” 0s, g, g¥) to Fs and recording the returned value,
and k1 = PRFz»v(1). (The value ¢g*¥ is computed by R as (¢*)¥.) Next a value ko = PRF = (0)
is computed and kept in memory, and the values y and ¢g*Y are erased.

3. Upon receiving the response message (s, g%, R, 0.,), I first verifies the signature o, by send-
ing (verify, “1” o s, R, (g%, g¥),0,) to Fse. I also verifies that ¢, = MAC, (“17, s, R), where
ki = PRFgey (1) and ¢®¥ is computed as (¢¥)”. If any of these verification steps fails the
session is aborted, and the session state is erased. If verification succeeds then I sends
the finish message (s, I,0;, MACk, (“0”,s,I)) (where the signature o; is computed by send-
ing (sign, “0” o0 s,¢9¥,9%) to Fse and recording the obtained value), completes the session
with local output (Output,s, R, k) where kg = PRFg=y(0), and erases the session state.

4. Upon receiving the finish message s, I, 0;,t;, R verifies the signature by sending (verify, “0” o
s,1,(gY,9%),04) to Fs, where g¥ is the DH value received from R in the response message, and
verifies that ¢; = MACg, (“0”,s,I). If any of the verifications steps fails the session is aborted,
otherwise R completes the session with local output (Output,s,I, ko) where kg = PRF 4=y (0),
and erases the session state.

Figure 4: The basic SIGMA protocol, in the Fgq-hybrid model

(c) S verifies that t, = MACy, (17, s, P), where ki = PRFg=(1).

(d) Ifall verifications succeed then S feeds A with a Finish message (s, I, 05, MAC, (07, s, 1))
sent by I, where the signature o; is set to A’s response after being handed (sign, “0” o
s, 3,¢%) in the name of Fy.
In addition S sends, in the ideal-process interaction, the message (Output,s, I, (P, «'))
to Frost—xe, where & = PRFgz(0). Once Fposr—xr sends the output message to I, S
delivers this message.

6. Simulating receipt of a Finish message by an uncorrupted R. When A delivers a
Finish message (s, P,0;,t;) to R, S proceeds as follows:

(a) S verifies that in the simulation R has previously received a Start message (s, «) and

33

has sent a Response message (s, g%, R, o, 1,).

(b) & mimics the verification process of o,, by mimicking the behavior of Fgq on input
(verify, “0” o s, R, P, (g¥,), 0;) from R. (This is done as in Step 5b.) Next S verifies
that ¢; = MACy, (“0”, s, P), where k; = PRFqy(1).

(c) If all verifications succeed then S sends, in the ideal-process interaction, the message
(Output, s, I, (P, k') to Frosr—xe, where k' = PRF4y (0). Once Fpogr—xg sends the out-
put message to R, S delivers this message.

7. Simulating party corruptions. If A corrupts either I or R then S corrupts the same party
in the ideal process and hands A the internal data of that party. Specifically:

(a) If I is corrupted after the Start message is sent but before the Response message is
received then S hands A the secret exponent z from the simulation.

(b) If R is corrupted after the Response message is sent then but before the Finish message
is received then S hands A the value k; computed in Step 4, together with the session
key obtained from Fposr—xi-

(c) If I is corrupted after the Finish message is sent, or if R is corrupted after the Finish
message is received, then all internal state of the corrupted party should be erased and
A obtains nothing.

8. Simulating Fy¢ for A. S simulates Fy g for A, in the natural way. That is, whenever A
generates (in the name of a corrupted party) some message to Fgq, S responds as Fg would.
The communications between A and the various copies of Fg¢ is also simulated in the obvious
way. (It is stressed that S may need to simulate for A several different copies of Fy.)

Analysis of §. Demonstrating the validity of S, we show that for any environment Z:

-7:SIG

EXEC
E07~'4-72’7

A IDEALZ, o 1,8, 2 (1)
This is done as follows. First we define an event EC (for “early corrupt”) and demonstrate that,
given event EC, the views of Z in the two interactions are identically distributed. (Essentially EC
is the event where one of the parties is corrupted before any of the parties outputs the session
key.) We then concentrate on demonstrating (1) under the condition that event EC does not occur.
This is done by defining two hybrid distributions, #; and H2, and demonstrating that, given
that event EC does not occur, we have EXECQ}‘G Nz R Hi =~ Ho = IDEALF, ,_.r.5,2- Lhe leftmost
similarity is demonstrated base on the Decisional Diffie-Hellman assumption. The second similarity
is demonstrated based on the security of the PRF function family in use. The rightmost similarity
is demonstrated base on the security of the MAC function family in use.

The event EC. Consider an interaction of Z with A and parties running ¥ in the Fgg-hybrid
model. Here event EC is the event where A corrupts a party before any of the parties generated an
output value. In an interaction of Z with S in the ideal process for Fposr_xg, €vent EC is the event
where the simulated A within S corrupts a party before S has sent the first (Qutput...) message
to Fpost_xe. We have:

fSIG
0,5V,

Claim 19 Conditioned on event EC, the distributions EXEC and IDEALfF, ... s,z are iden-

tical.

34

Proof: The claim follows by inspecting the codes of ¥y and S. Specifically, consider the joint view
of Z and the simulated A within S in the ideal process. Since S perfectly mimics protocol % for
the simulated A, we have that this joint view is distributed identically to the joint view of Z and
A in a real interaction with Xy, with the only possible exception that the outputs generated by
Frosr—xe May be inconsistent with the rest of the interaction. However, if event EC occurs then,
in the ideal process, S corrupts one of the parties before the (Output...) message is sent to
Frost—xe- In this case Fposr—xr sends to both parties the output values generated by S and the
simulation becomes perfect (i.e., the joint view of Z and the simulated A within S is distributed
identically to the joint view of Z and A in a real interaction with X in the Fg-hybrid model). O

In th rest of the proof we assume that event EC occurs with probability that is non-negligible
bounded away from 1. (Otherwise we conclude that the two sides of 1 are statistically indistin-
guishable.)

The hybrid distributions. Let EXEC|EC denote the distribution of EXECTS®
0,5/,

the event that EC does not occur. Similarly, let IDEAL|EC denote the distribution of IDEALE, , ., s,z
conditioned on the event that EC does not occur. We define two hybrid distributions H; and Ho,
and demonstrate that EXEC|EC ~ H; ~ Hs ~ IDEAL|EC. The hybrid distributions are defined as
follows:

conditioned on

e 7{; takes the distribution of the output of Z from a hypothetical interaction which is identical
to a real interaction with A and parties running ¥y in the Fgg-hybrid model (conditioned
on the event that EC does not occur), with the following exception. Whenever ¥ instructs
the initiator (resp., the responder) to evaluate the pseudorandom function PRF with the key
B* (resp., a¥), the parties will now evaluate PRF with an independently chosen random key
r & Zp. (Both parties use the same value of r.) That is, we now have that the MAC key is
k1 = PRF,(1) and the output key is K = PRF,(0).

e 75 is identical to distribution H;, with the exception that the parties choose k; and « to be
independent and random values in the range of PRF. (Both parties have the same value for
k1; similarly both parties have the same value for &.)

Abusing notation, we use H; and Hs also to denote the interactions of Z that lead the the corre-
sponding output distributions. We show:

Claim 20 Assume that the Decisional Diffie-Hellman assumption holds. Then EXEC|EC ~ H,.

Proof: Assume that there exists an environment Z and an adversary A such that Z distinguishes
with non-negligible probability between the interactions EXEC|EC and H;. We construct an adver-
sary D that violates the Decisional Diffie-Hellman assumption. That is, D is given g%, g%, g* where
a,b & Zg4, and can distinguish between the case where z = ab and the case where & Zy.

Given g%, ¢°, g%, adversary D runs a copy of Z on a simulated interaction with A and parties
running Y in the Fyge-hybrid model. (D plays for Z the roles of A and the parties.) This is done
with the following exceptions. First, when the initiator sends the Start message, D sets the g” value
to equal g%, the first element from its input. Similarly, when the responder sends the Response
message, D set the ¢¥ value to equal g°, the second element from its input. Next, that whenever
the responder (resp., the initiator) instructed to run PRF,y() (resp., PRFg=()), then D replaces
this evaluation with an evaluation of PRF4: (). Finally, if Z corrupts a party before the initiator
generates output then D aborts and outputs a random bit. Otherwise, D outputs whatever Z
outputs.

35

Consider first the case where z & Z4, independently from @ and b. In this case, the view of
the simulated Z, conditioned on the event that D did not abort, is distributed identically to the
view of Z in interaction H;. This is so since in both interactions the values g%, ¢, and the key to
PRF are independently and randomly chosen. Furthermore, in neither interaction Z sees the secret
exponents x or y.

Next, consider the case where z = ab. We claim that in this case the view of simulated Z,
conditioned on the event that D did not abort, is distributed identically to the view of Z in
interaction EXEC|EC. Indeed, the only potential mismatch between the two interactions is if, in
EXEC|EC, the initiator accepts a Response message with the real peer identity R and a value
that is different than the value ¢¥ chosen by the responder, or alternatively the responder accepts
a Finish message where the value « is different than the value g” chosen by the initiator. However,
such a mismatch cannot occur due to the properties and use of Fg. Specifically, the initiator
accepts the Response message with peer identity R only if the signature o, verifies as a signature
on g7, 3 with session identifier “1” o s and signer R, and the only way for this to occur is if the
responder R registered as the signer with session identifier “1” o s and then asked Fg to sign
(g, B), or in other words 8 = ¢g¥. Similarly, the responder accepts the Response message with peer
identity I only if the signature o; verifies as a signature on ¢¥, a with session identifier “0” o s and
signer I, and the only way for this to occur is if the initiator I registered as the signer with session
identifier “0” o s and then asked Fg to sign (¢¥, a), or in other words a = ¢*.

We conclude that D distinguishes with non-negligible probability between the case where z < Zyq
and the case where z = ab. O

Claim 21 Assume that PRF is a secure pseudorandom function family. Then Hi ~ Ho.

Proof: Assume that there exists an environment Z and an adversary A such that Z distinguishes
with non-negligible probability between the interaction H; and the interaction Hy. We construct an
adversary D that breaks the security of the function family PRF. That is, D has access to an oracle
function f, and distinguishes with non-negligible probability between the case where f() = PRF,()
where r is a random value, and the case where f is a random function with the appropriate domain
and range.

Adversary D runs a copy of Z on a simulated interaction with A and parties running ¥, in the
Fsig-hybrid model. (D plays the roles of A and the parties for Z.) This is done with the exception
that whenever a party is instructed to compute &y (either in generating the Response message or in
generating the Finish message), D instead lets k; = f(1). Similarly, whenever a party is instructed
to generate the session key k, D sets the value of the session key to k = f(0). If Z corrupts a
party before the initiator generates output then D aborts and outputs a random bit. Otherwise,
D outputs whatever Z outputs.

It is easy to see that if f is a random function then the view of the simulated Z (given that D
does not abort) is distributed identically to its view in interaction Ho. Similarly, if f() = PRF,()
and Z does not abort, then the view of the simulated Z is distributed identically to its view in
interaction H;. O

Claim 22 Assume that MAC is a secure message authentication function family. Then Ho =
IDEAL|EC.

Proof: The interactions Hy and IDEAL|EC are identical except for the following two points. First,
in IDEAL|EC the peer identity in the output of the initiator is the identity R that appears in the

36

input of the responder; In contrast, in Hs that peer identity is the identity P that appears in the
Response message received by the initiator (and this identity may potentially be different than R).
Second, if the responder is uncorrupted and generates output, then in IDEAL|EC the peer identity in
the output of the responder is the identity I that appears in the input of the initiator; In contrast,
in Ho that peer identity is the identity P that appears in the Finish message received by the
responder.

We prove the claim by demonstrating that in interaction 2o the probability that a party outputs
a peer identity that is different than the identity in the input of the other party is negligible.
This is done via reduction to the security of MAC as a message authentication function against
chosen message attacks. Specifically, we construct an adversary D that, given oracle access to a
function MAC, () where r is a randomly chosen key, generates a message m* and a tag t+ such that
t* = MAC,(m*) and D has not queried the oracle on m*.

Adversary D runs a copy of Z on a simulated interaction with A and parties running 3, in the
Fsig-hybrid model. (D plays the roles of A and the parties for Z.) Whenever a party is instructed
to compute (or verify) ¢ = MACy, (m) for some m, D sets t to the response of its oracle on query m.
Finally, if the initiator outputs a peer identity P # R then D outputs m* = (17, s, P) together
with the tag ¢* in the Response message received by the initiator. Similarly, if the responder
outputs a peer identity P # I then D outputs m* = (“0”,s, P) together with the tag t* in the
Finish message received by the responder. (If Z corrupts a party before the initiator generates
output then D aborts with no output.)

Analyzing D, notice that m* was never generated by either party, thus it was never before
queried by D. (Here we use the fact that the text in the MAC application by the initiator is
different than the text in the MAC application by the responder. This is guaranteed by the “0”/“1”
field.) Furthermore, t* = MAC, (m*), otherwise the party would not have generated output. Finally,
Z’s view when run by D is identical to its view in interaction Ho. Thus Z outputs a successful
forgery, before corrupting any party, with non-negligible probability. O

This completes the analysis of S and the proof of the theorem. O

A.3 Obtaining UC Secure Channels

We argue that standard protocols for realizing secure channels in the Fyg-hybrid model exchange
remain secure when the key exchange protocol in use securely realizes Fposr—xg- This is done as
follows. Recall that in [5] a secure-channels ideal functionality, Fgc, is formulated; next, a protocol
is shown that securely realizes Fs: in the Fyg-hybrid model, where Fxy is the ideal key exchange
functionality in the pre-specified peer setting. (This protocol is the standard protocol that first
uses the key exchange functionality to generate a session key, and then encrypts and authenticates
each message.)

We claim that a simple modification of this secure channels protocol results in a protocol that
securely realizes Fsc in the Fposr—xr-hybrid model. The modification is as follows: instead of
invoking Fyp with the pre-specified identity of the peer, invoke Fposr—xg With no peer identity
specified; next, when Fpogr_xr returns the actual peer identity, verify that this identity agrees with
the desired peer identity, and abort the session if there is a mis-match. Inspecting the proof of [5],
it is easy to see that this modified protocol securely realizes Fg. in the Fpogr—ke-hybrid model. We
omit further details.

37

A.4 Securely Realizing F;osr_xr Implies SK-security

We argue that the UC notion of key exchange in the post-specified peer setting implies the corre-
sponding SK security notion (Definition 3). More precisely, let m be a protocol that securely realizes
Frosr—xe, and let 7 denote the multi-session extension of 7. (See [5, Sec. 3] for a definition of the
multi-session extension of a protocol.) We claim that protocol 7 is SK-secure in the post-specified
peer setting. This is shown following the lines of the treatment in [5] for the pre-specified peer case.
First, we formulate a variant of the test environment, Zgsr, that captures the post-specified peer
variant of SK-security. (The only difference is in the way Zrpgr defines matching sessions.) Next
we use essentially the same argument as in [5] to show that no adversary that interacts with parties
running 7 and (the reformulated) Zrgsr can skew the output of Zrpsr more than negligibly away
from uniform over {0,1}. Also here, we omit further details.

38

