
Seurity Analysis of IKE's Signature-based Key-Exhange Protool

Ran Canetti

�

Hugo Krawzyk

y

August 26, 2002

Abstrat

We present a seurity analysis of the DiÆe-Hellman key-exhange protools authentiated

with digital signatures used by the Internet Key Exhange (IKE) standard, and of the more

omprehensive SIGMA family of key exhange protools. The analysis is based on an adaptation

of the key-exhange seurity model from [Canetti and Krawzyk, Eurorypt'01℄ to the setting

where peer identities are not neessarily known or dislosed from the start of the protool. This

is a ommon pratial setting, whih inludes the ase of IKE and other protools that provide

on�dentiality of identities over the network. The rigorous study of this \post-spei�ed peer"

model is a further ontribution of this paper.

�

IBM T.J. Watson Researh Center, Yorktown Heights, New York 10598. Email: anetti�watson.ibm.om.

y

EE Department, Tehnion, Haifa, Israel. Email: hugo�ee.tehnion.a.il. Supported by Irwin and Bethea Green

& Detroit Chapter Career Development Chair.

An abridged version of this paper appears in the proeedings of Crypto'2002.

Chek for updates of this work at http://eprint.iar.org.

Contents

1 Introdution 1

2 The seurity model 3

2.1 The SK-seurity de�nition from [4℄ . 3

2.2 Adapting SK-seurity to the post-spei�ed peer setting 5

3 The basi SIGMA protool: �

0

7

4 Proof of Protool �

0

11

4.1 The Statements . 11

4.2 Proof of Property P1 . 12

4.3 Proof of Property P2 . 12

4.3.1 Proof plan . 12

4.3.2 The simulators . 13

4.3.3 Detailed Proof of P2 . 16

5 Variants and Disussions 23

5.1 Eliminating the initiator and responder tags in �

0

. 23

5.2 Putting the MAC under the signature . 24

5.3 Enrypting the identities . 25

5.4 A four message variant: IKE main mode . 26

5.5 Not signing the peer's DH exponent . 27

5.6 Hashing g

xy

: the HDH assumption . 27

A On The Universal Composability of Protool �

0

(preliminary version) 29

A.1 Universally Composable Key Exhange with Post-Spei�ed Peers 30

A.2 Protool �

0

seurely realizes F

post�ke

. 31

A.3 Obtaining UC Seure Channels . 37

A.4 Seurely Realizing F

post�ke

Implies SK-seurity . 38

1 Introdution

The Internet Key-Exhange (IKE) protool [10℄ spei�es the key exhange mehanisms used to

establish seret shared keys for use in the Internet Protool Seurity (IPse) standards [13℄. IKE

provides several key-exhange mehanisms, some based on publi keys and others based on long-

term shared keys. Its design emerged from the Photuris [12℄, SKEME [14℄ and Oakley [20℄ protools.

All the IKE key-exhange options support DiÆe-Hellman exhanges but di�er in the way authen-

tiation is provided. For authentiation based on publi-key tehniques two modes are supported:

one based on publi-key enryption and the other based on digital signatures.

While the enryption-based modes of IKE are studied in [4℄, the seurity of IKE's signature-

based mode has not been ryptographially analyzed so far. (But see [18℄ where the IKE protool

is srutinized under an automated protool analyzer.) This later mode originates with a variant

of the STS protool [7℄ adopted into Photuris. However, this STS variant, in whih the DH key is

signed, is atually inseure and was eventually replaed in IKE with the \sign-and-ma" mehanism

proposed in [15, 17℄. This mehanism forms the basis for a larger family of protools referred to as

SIGMA (\SIGn-and-MA") [17℄ from whih the IKE signature modes are partiular ases.

The main goal of the urrent paper is to provide ryptographi analysis of IKE, and the un-

derlying SIGMA protools. The pratial interest in this analysis work is natural given the wide

deployment and use of IKE and the fat that authentiation via signatures is the most ommon

mode of publi-key authentiation used in the ontext of IKE.

1

Yet, the more basi importane

of this analytial work is in ontributing to a further development of a theory that supports the

analysis of omplex and more funtional protools as required in real-world appliations. Let us

disuss two suh issues, that are diretly relevant to the design of IKE. One suh issue (not dealt

with in previous analysis work of key-exhange protools) is the requirement for identity oneal-

ment. That is, the ability to protet the identities of the peers to a key-exhange session from

eavesdroppers in the network (and, in some ase, from ative attakers as well). While this require-

ment may be pereived at �rst glane as having minor e�ets on the protools, it atually poses

signi�ant hallenges in terms of design and analysis. One piee of evidene pointing out to this

diÆulty is the fat that the STS protool and its variants (see [7, 19℄) that are onsidered as prime

examples of key-exhange protools o�ering identity protetion, are not seure in general (under

ertain irumstanes they fail to ensure an authentiated binding between peers to the session and

the exhanged seret key

2

) The general reason behind this diÆulty is the oniting harater of

the authentiation and identity-onealment requirements.

Another issue arising in the ontext of IKE is the possible unavailability of the peer identity at

the onset of the protool. In previous analytial work (suh as [2, 21, 4℄) the peer identities are

assumed to be spei�ed and given at the onset of a session ativation, and the task of the protool is

to guarantee that it is this partiular pre-spei�ed peer the one whih the key is agreed. In ontrast,

in IKE a party may be ativated to exhange a key with an \address" of a peer but without a

spei�ed identity for that peer. This is a ommon ase in pratial situations. For example, the

1

In partiular, reent suggestions in the IPse working group for variants of the key-exhange protools in IKE

fall also under the family of protools analyzed here.

2

For example, the basi STS protool from [7℄ fails if the attaker an register under its name the publi key of the

attaked party (e.g., if proof of posession is not required for PK registrarion). This failure happens regardless of the

enryption funtion used by the STS protool, and also when a MAC funtion is used to replae (or on top of) the

enryption funtion. The variant in whih the DH key g

xy

is signed [12, 19℄ is inseure if the signature sheme allows

for message reovery (suh as in the ase of RSA signature) even if proof of posession is required for PK registration.

See [17℄.

1

key-exhange session may take plae with any one of a set of servers sitting behind a (url/ip) address

spei�ed in the session ativation. Or, a party may respond to a request for a key exhange oming

from a peer that is not willing to reveal its identity over the network and, sometimes, not even to

the responder before the latter has authentiated itself (e.g., a roaming mobile user onneting from

a temporary address, or a smart ard that authentiates the legitimay of the ard-reader before

dislosing its own identity). So, how do the parties know who they are authentiating? The point

is that eah party learns the peer's identity during the protool. A seure protool in this setting

will detet impersonation and will ensure that the learned identity is authenti (informally, if Alie

ompletes a session with the view \I exhanged the session key k with Bob", then it is guaranteed

that no other party than Bob learns k, and if Bob ompletes the session then it assoiates the key

k with Alie).

3

In this paper we refer to this general setting as the \post-spei�ed peer" model.

Remark. Note the ruial di�erene between this \post-spei�ed peer" model and the \anonymous" model

of protools suh as SSL where the server's identity is publily known from the start of the protool while

the lient's identity remains undislosed even when the key exhange �nishes. In the anonymous ase, the

lient does not authentiate at all to the server; authentiation happens only in the other diretion: the

server authentiates to the lient. A treatment of this anonymous uni-diretional model of authentiation is

presented in [21℄.

The ombination of the requirement for identity protetion and the \post-spei�ed peer" setting

puts additional onstraints on the design of protools. For example, the natural and simple DiÆe-

Hellman protool authentiated with digital signatures de�ned by ISO [11℄ and proven in [4℄, is

not suitable for providing identity protetion in the post-spei�ed peer model. This is so sine this

protool instruts eah party to sign the peer identity, whih in turn implies that the parties must

know the peer identities before a session key is generated. In a setting where the peer identities are

not known in advane, these identities must be sent over the network, in the lear, thus forfeiting

identity onealment. As we will see in Setion 3, the SIGMA protools (in partiular, IKE)

use a signi�antly di�erent approah to authentiation. In partiular, parties never sign other

parties identities; instead a MAC-based mehanism is added to \ompensate" for the unsigned

peer's identity. (See [17℄ for more information on the rationale behind the design of the SIGMA

protools.)

We present a notion of seurity for key exhange protools that is appropriate for the post-

spei�ed peer setting. This notion is a simple relaxation of the key-exhange seurity model of [4℄

that suitably reets the needs of the \post-spei�ed" model as well as allows for a treatment of

identity onealment. After presenting the adaptation of the seurity de�nition of [4℄ to our setting,

we develop a detailed seurity proof for the basi protool (denoted �

0

) underlying the signature-

based modes of IKE. This is a somewhat simpli�ed variant that reets the ore ryptographi

logi of the protool and whih already presents many of the tehnial issues and subtleties that

need to be dealt with in the analysis. One prime example of suh subtleties is the fat that the

IKE protools use the exhanged DiÆe-Hellman key not only to derive a session key at the end of

the session but also to derive keys used inside the key-exhange protool itself to provide essential

authentiation funtionality and for identity enryption. After analyzing and providing a detailed

proof of this simpli�ed protool, we show how to extend the proof to deal with riher-funtionality

variants inluding the IKE protools. The resultant analysis approah and tehniques are appliable

to other protools, in partiular other identity-onealing protools and those that use the DH key

during the session establishment protool.

3

The issue of whether a party may agree to establish a session with the partiular peer whose identity is learned

during the key-exhange proess is an orthogonal issue taken are by a separate \poliy engine" run by the party.

2

An important point to stress is that the present seurity model and de�nition (even if relaxed

with respet to [4℄) guarantees that session keys derived in the protool are seure for use in onjun-

tion with symmetri enryption and authentiation funtions for implementing \seure hannels"

(as de�ned in [4℄) that protet ommuniations over realisti adversarially-ontrolled networks.

Deriving suh keys is the quintessential appliation of key-exhange protools in general, and the

fundamental requirement from the IKE protools.

We also show how to formalize the post-spei�ed peer model in the framework of universally

omposable (UC) seurity [3℄. Spei�ally, we formulate a UC notion of post-spei�ed seure key

exhange and show that protool �

0

presented here satis�es this notion. The UC notion ensures

strong omposability guarantees with other protools. In partiular, it suÆes for implementing

seure hannels, both in the UC formalization of [5℄ and in the formalization of [4℄.

Paper's organization. In Setion 2 we desribe the adaptation of the seurity model of [4℄ to the

post-spei�ed peer setting, and establish the notion of seurity for key-exhange used throughout

this paper. In Setion 3 we desribe �

0

, the basi SIGMA protool underlying all the other variants

inluding the IKE signature-based protools. In Setion 4 we present a proof of seurity of the �

0

protool in the model from Setion 2. In Setion 5 we treat several variants of the basi protool and

extend the analysis from Setion 4 to these ases. In partiular, the two signature authentiation

variants of IKE are analyzed here (Setion 5.2 and 5.4). Finally, Appendix A holds the modeling

and analysis of protool �

0

within the UC framework.

2 The seurity model

Here we present the adaptation of the seurity model for key-exhange protools from [4℄ to the

setting of post-spei�ed peers as desribed above. We start by providing an overview of the model

in [4℄ (refer to that paper for the full details). Then we desribe the relaxation of the seurity

de�nition required to support the post-spei�ed setting.

2.1 The SK-seurity de�nition from [4℄

Following the work of [2, 1℄, Canetti and Krawzyk [4℄ model key-exhange (KE) protools as

multi-party protools where eah party runs one or more opies of the protool. Eah ativation

of the protool at a party results in a loal proedure, alled a session, that loally instantiates

a run of the protool and produes outgoing messages and proesses inoming messages. In the

ase of key-exhange, a session is intended to agree on a \session key" with one other party (the

\peer" to the session) and involves the exhange of messages with that party. Sessions an run

onurrently and inoming messages are direted to its orresponding session via a session identi�er.

The ativation of a KE session at a party has three input parameters (P; s;Q): the loal party at

whih the session is ativated, a unique session identi�er, and the identity of the intended peer

to the session. (There is also a fourth input �eld, speifying whether the party is the initiator or

the responder in the exhange; however this �eld has no bearing on the seurity requirements and

is thus ignored in this overview.) A party an be ativated as initiator (e.g., by an appliation

alling the KE proedure) or as a responder (upon an inoming key-exhange initiation message

arriving from another party). The output of a KE session at a party P onsists of a publi triple

(P; s;Q) that identi�es the session, and of a seret value alled the session key. Sessions an also be

\aborted" without produing a session key value, in whih ase a speial symbol is output instead

of the session key. Sessions maintain a loal state that is erased when the session ompletes (i.e.,

3

when the session produes output). Eah party may have additional state, suh as a long-term

signature key, whih is aessed by di�erent sessions and whih is not part of any partiular session

state.

The attaker model in [4℄ follows the unauthentiated-links model (um) of [1℄ where the attaker

is a (probabilisti) polynomial-time mahine with full ontrol of the ommuniation lines between

parties and free to interept, delay, drop, injet or hange all messages sent over these lines (i.e.,

a full-edge \man-in-the-middle" attaker). The attaker an also shedule session ativations at

will and sees the output of sessions exept for the values of session keys. In addition, the attaker

an have aess to seret information via session exposure attaks of three types: session-state

reveal, session-key queries, and party orruption. The �rst type of attak is direted at a single

session while still inomplete (i.e., before produing output) and its result is that the attaker learns

the session state for that partiular session (whih does not inlude long-term seret information,

suh as private signature keys, shared by all sessions at the party). A session-key query an be

performed against an individual session after ompletion and the result is that the attaker learns

the orresponding session-key (this models leakage on the session key either via usage of the key by

appliations, ryptanalysis, break-ins, known-key attaks, et.). Finally, party orruption means

that the attaker learns all information in the memory of that party (inluding session states

and session-key information and also long-term serets); in addition, from the moment a party is

orrupted all its ations are totally ontrolled by the attaker. (We stress that all attaker's ations

an be deided by the attaker in a fully adaptive way, i.e., as a funtion of its urrent view).

In the model of [4℄ sessions an be expired. From the time a session is expired the attaker

is not allowed to perform a session-key query or a state-reveal attak against the session, but is

allowed to orrupt the party that holds the session (in partiular, it may obtain the long term seret

information at a party). Protools that ensure that expired sessions are proteted even in ase of

party orruption are said to enjoy \perfet forward serey" [19℄ (this is a entral property of the

KE protools analyzed here).

For de�ning the seurity of a KE protool, [4℄ follows the indistinguishability style of de�nitions

as used in [2℄ where the \suess" of an attaker is measured via its ability to distinguish the real

values of session keys from independent random values. In order to be onsidered suessful the

attaker should be able to distinguish session-key values for sessions that were not exposed by any

of the above three types of attaks. (Indeed, the attaker ould always sueed in its distinguishing

task by exposing the orresponding session and learning the session key.) Moreover, [4℄ prohibits

attakers from exposing the \mathing session" either, where two sessions (P; s;Q) and (P

0

; s

0

; Q

0

)

are alled mathing if s = s

0

, P = Q

0

and Q = P

0

(this restrition of the attaker is needed sine

the mathing session ontains the session key as well).

As is ustomary, the ability of the attaker to distinguish between real and random values of the

session key is formalized via the notion of a test session that the attaker is free to hoose among

all omplete sessions in the protool. When the attaker hooses the test session it is provided with

a value v whih is hosen as follows: a random bit b is tossed, if b = 0 then v is the real value

of the output session key, otherwise v is a random value hosen under the same distribution of

session-keys produed by the protool but independent of the value of the real session key. After

reeiving v the attaker may ontinue with the regular ations against the protool; at the end of

its run the attaker outputs a bit b

0

. The attaker sueeds in its attak if (1) the test session is

not exposed, and (2) the probability that b = b

0

is signi�antly larger than 1/2. We note that in

the model of [4℄ the attaker is allowed to orrupt a peer to the test session one the test session

expires at that peer (this aptures perfet forward serey). The resultant seurity notion for KE

4

protools is alled SK-seurity and is stated as follows:

De�nition 1 (SK-seurity [4℄) An attaker with the above apabilities is alled an SK-attaker. A

key-exhange protool � is alled SK-seure if for all SK-attakers A running against � it holds:

1. If two unorrupted parties omplete mathing sessions in a run of protool � under attaker A

then, exept for a negligible probability, the session key output in these sessions is the same.

2. A sueeds (in its test-session distinguishing attak) with probability not more that 1/2 plus

a negligible fration.

(The term `negligible' represents any funtion (in the seurity parameter) that diminishes asymp-

totially faster than any polynomial fration, or a small spei� quantity in a onrete seurity

treatment).

Remark. In [4℄ there are two additional notions that play a entral role in the analysis of KE

protools: the \authentiated-links model" (am) and \authentiators" [1℄. While these notions

ould have been used in our analysis too, they would have required their re-formulation to adapt

to the post-spei�ed peer setting treated here. We have hosen to save de�nitional omplexity and

develop our protool analysis in the urrent paper diretly in the um model.

2.2 Adapting SK-seurity to the post-spei�ed peer setting

The model of [4℄ makes a signi�ant assumption: a party that is ativated with a new session knows

already at ativation the identity of the intended peer to the session. That is, the authentiation

proess in [4℄ is direted to verify that the \intended peer" is the party we are atually talking

to. In ontrast, in the \post-spei�ed setting" analyzed here (in partiular in the setting of the

IKE protool) the information of who the other party is does not neessarily exist at the session

initiation stage. It may be learned by the parties only after the protool run evolves.

Adapting the seurity model from [4℄ to the post-spei�ed peer setting requires: (A) generalizing

the formalism of key-exhange protools to allow for unspei�ed peers at the start of the protool;

and (B) relaxing the seurity de�nition to aept protools where the peer of a session may be

deided (or learned) only after a session evolves (possibly not earlier than the last protool message

as is the ase of IKE). Fortunately this adaptation requires only small tehnial hanges whih

we desribe next; all the other de�nitional elements remain unhanged from [4℄. In partiular, we

keep the um model and most of the key-exhange formalism unhanged (inluding full adversarial

ontrol of the ommuniation lines and the three types of session exposure: session-state reveal,

session-key queries, and party orruption).

(A) Session ativation and identi�ation. Instead of ativating sessions with input a triple

(P; s;Q) as in [4℄ (where P is the identity of the loal party, s a session identi�er, and Q the identity

of the intended peer for the session), in the post-spei�ed ase a session at a party P is ativated

with a triple (P; s; d) where d represents a \destination address" that may have no impliations

regarding the peer's identity sitting behind this address, and is used only as information for delivery

of messages related to this session. This may be, for example, a temporary address used by arbitrary

parties, or an address that may identify a set of parties, et. Note that the above (P; s; d) formalism

represents a generalization of the formalism from [4℄; in the latter, d is uniquely assoiated with

(and identi�es) a spei� party. We keep the onvention from [4℄ that session id's are assumed

to be unique among all the session id's used by party P (this is a simple abstration of the pratie

5

where parties provide unique session id's for their own loal sessions; we an see the identi�er s as

a onatenation of these loal identi�ers { see [4℄ for more disussion on this topi). We use the

pair of entity identity and session-id (P; s) to uniquely name sessions for the purpose of attaker

ations (as well as for identi�ation of sessions for the purpose of protool analysis). The output of

a session (P; s) onsists of a publi triple (P; s;Q) where Q is the peer to the session, and the seret

value of the session key. When the session produes suh an output it is alled ompleted and its

state is erased (only the session output persists after the session ompletes and until the session

expires). Sessions an abort without produing a session-key output in whih ase the session is

referred to as aborted (and not ompleted).

(B) SK seurity and mathing sessions. The formalism used in [2, 4℄ to de�ne the seurity of

key-exhange protools via a test session is preserved in our work. The signi�ant (and neessary)

hange here is in the de�nition of \mathing sessions" whih in turn inuenes the limitations on

the attaker's ations against the \test session" and its peers (reall, that the attaker is allowed to

attak any session exept for the test-session and its mathing session). In [4℄ the mathing session

of a (omplete) session (P; s;Q) within party P is de�ned as (Q; s; P) (running within Q). This is

well-de�ned in the pre-spei�ed setting where both peer identities are �xed from the start of the

session. In our ase, however, the peer of a session may only be deided (or learned) just before

the ompletion of that session. In partiular, a session (P; s) may omplete with peer Q, while

the session (Q; s) may not have ompleted and therefore its peer is not determined. In this ase,

orrupting Q or learning the state of (Q; s) ould obviously provide the attaker with information

about the session key output by (P; s;Q). We thus introdue the following modi�ed de�nition of

mathing session.

De�nition 2 Let (P; s) be a ompleted session with publi output (P; s;Q). The session (Q; s) is

alled the mathing session of (P; s) if either

1. (Q; s) is not ompleted; or

2. (Q; s) is ompleted and its publi output is (Q; s; P).

Note that by this de�nition only ompleted sessions have a mathing session; in partiular the

\mathing" relation de�ned above is not symmetri (exept if the mathing session is ompleted

too | in whih ase the above de�nition of mathing session oinides with the de�nition in [4℄).

Also, note that if Q is unorrupted then the mathing session of (P; s) is unique.

De�nition 3 (SK-seurity in the post-spei�ed setting) SK-seurity in the post-spei�ed peer set-

ting is de�ned identially as in De�nition 1 but with the notion of mathing sessions re-formulated

via De�nition 2.

Notes on the de�nition: 1. We argue that the ombination of the two mathing onditions

in De�nition 2 above results in a sound de�nition of SK-seurity. In partiular, it is suÆient

to preserve the proof from [4℄ that SK-seurity guarantees seure hannels (see below). On the

other hand, none of the two mathing onditions in isolation indues a satisfatory de�nition of

seurity. In partiular, de�ning the session (Q; s) to always be the mathing session of (P; s) without

requiring that the determined peer is orret (in ondition (2)) would result in an over-restrition

of the ations of the attaker against the test session to the point that suh a de�nition would

allow weak protools to be alled seure. An example of suh an inseure protool is obtained by

modifying protool �

0

from Setion 3 by deleting from it the MAC applied to the parties identities.

6

This modi�ed protool an be shown to suumb to a key-identity mis-binding (or \unknown key

share") attak as in [7℄, yet it would be onsidered seure without the onditioning on the output

of session (Q; s) as formulated in (2). On the other hand, ondition (2) alone is too permissive for

the attaker, thus resulting in a too strong de�nition that would exlude many natural protools.

Spei�ally, if we eliminate (1) then an attaker ould perform a state-reveal query against (Q; s)

and reveal the seret key (e.g., g

xy

) when this information is still in the session's state memory.

This would allow the attaker a strategy in whih it hooses (P; s;Q) at the test session and fores

(Q; s) to be inomplete, and then learn the test session key through a state-reveal attak against

(Q; s).

2. The above de�nition of seure key-exhange in the post-spei�ed peer setting implies a strit

relaxation of the SK-seurity de�nition in [4℄. On the one hand, any SK-seure protool aording

to [4℄ is also post-spei�ed seure provided that we take are of the following formalities. First,

we use the \address �eld" d in the input to the session to speify the identity of a party. Then,

before ompleting a session, the protool heks that the identity to be output is the same as the

identity spei�ed in the \address �eld" (if not, the session is aborted). On the other hand, there

are protools that are seure aording to De�nition 3 in the post-spei�ed model but are not

seure in the pre-spei�ed setting of [4℄. The IKE protools studied here (in partiular, protools

�

0

and �

1

presented in the following setions) onstitute suh examples (see Remark 1 at the end

of Setion 3).

3. A natural question is whether the relaxation of SK-seurity adopted here is adequate. One

strong evidene supporting the appropriateness of the de�nition is the fat that the proof in [4℄

that SK-seurity implies seure hannels applies also for SK-seurity in the post-spei�ed peer

setting (De�nition 3). One tehnial issue that arises when applying the notion of seure hannels

from [4℄ in our ontext is that this notion is formulated in the \pre-spei�ed peer" model. Yet, one

an use a post-spei�ed SK-seure KE protool also in this setting. All is needed is that eah peer

veri�es, before ompleting a KE session, that the authentiated peer (i.e., the identity to be output

as the session's peer) is the same as the identity spei�ed in the ativation of the seure hannels

protool. If this veri�ation fails, then the party aborts the KE session and the seure-hannels

session. Alternatively, one an easily adapt the model of seure hannels in [4℄ to the post-spei�ed

peer setting. Also in this ase an SK-seure KE protool in the post-spei�ed model suÆes for

onstruting (post-spei�ed) seure hannels. In all we have:

Theorem 4 SK-seurity in the post-spei�ed peer setting implies seure hannels in the formulation

of [4℄ (either with pre-spei�ed or post-spei�ed seure-hannel peers).

3 The basi SIGMA protool: �

0

Here we provide a desription of a key-exhange protool, denoted �

0

, that represents a simpli�ed

version of the signature-mode of IKE. The protool ontains most of the ore ryptographi elements

and properties found in the full-edge IKE and SIGMA protools. In the next setion we provide

a proof of this basi protool, and in the subsequent setion we will treat some variants and the

hanges they require in the seurity analysis. These variants will inlude the atual IKE protools

(see Setions 5.2 and 5.4). The �

0

protool is presented in Figure 1. Further notes and lari�ations

on the protool follow.

7

Protool �

0

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. Eah player has a private key for a

signature algorithm sig, and all have the publi veri�ation keys of the other players. The protool

also uses a message authentiation family ma, and a pseudorandom funtion family prf.

The protool messages

Start message (I!R): s; g

x

Response message (R!I): s; g

y

; ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)

Finish message (I!R): s; ID

i

; sig

i

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s; ID

i

)

The protool ations

1. The start message is sent by the initiator ID

i

upon ativation with session-id s (after heking

that no previous session at ID

i

was initiated with identi�er s); the DH exponent g

x

is omputed

with x

R

 Z

q

and x is stored in the state of session (ID

i

; s).

2. When a start message with session-id s is delivered to a party ID

r

the (if session-id s did

not exist before at ID

r

) ID

r

ativates a loal session s (as responder). It now generates the

response message where the DH exponent g

y

is omputed with y

R

 Z

q

, the signature sig

r

is

omputed under the signature key of ID

r

, and the value g

x

plaed under the signature is the

DH exponent reeived by ID

r

in the inoming start message. The ma

k

1

value is produed

with k

1

= prf

g

xy

(1) where g

xy

is omputed by ID

r

as (g

x

)

y

. Finally, the value k

0

= prf

g

xy

(0)

is omputed and kept in memory, and the values y and g

xy

are erased.

3. Upon reeiving a (�rst) response message with session-id s, ID

i

retrieves the publi key of the

party whose identity ID

r

appears in this message and uses this key to verify the signature

on the quadruple (\1"; s; g

x

; g

y

) where g

x

is the value sent by ID

r

in the start message, and

g

y

the value reeived in this response message. ID

i

also heks the reeived ma under key

k

1

= prf

g

xy

(1) (where g

xy

is omputed as (g

y

)

x

) and on the identity ID

r

as it appears in

the response message. If any of these veri�ation steps fails the session is aborted and a

session output of \aborted (ID

i

; s)" is generated; the session state is erased. If veri�ation

sueeds then ID

i

ompletes the session with publi output (ID

i

; s; ID

r

) and seret session key

k

0

omputed as k

0

= prf

g

xy

(0). The �nish message is sent and the session state erased.

4. Upon reeiving the �nish message of session s, ID

r

veri�es the signature (under the publi

key of party ID

i

and with g

y

being the DH value that ID

r

sent in the response message), and

veri�es the ma under key k

1

omputed in step 2. If any of the veri�ations steps fails the

session is aborted (with the \aborted (ID

r

; s)" output), otherwise ID

r

ompletes the session

with publi output (ID

r

; s; ID

i

) and seret session key k

0

. The session state is erased.

Figure 1: The basi SIGMA protool

Notes on the desription and ations of the protool

� For simpliity we desribe the protool under a spei� type of DiÆe-Hellman groups, namely,

a sub-group of Z

�

p

of prime order. However, the protool and subsequent analysis apply to

any DiÆe-Hellman group for whih the DDH assumption holds (see Setion 4).

� The notation I !R and R! I is intended just to indiate the diretion between initiator

and responser of the messages. The protool as desribed here does not speify where the

8

messages are sent to. They an be sent to a pool of messages, to a loal broadast network, to

a physial or logial address, et. The protool and its analysis aommodate any of these (or

other) possibilities. What is important is that the protool does not make any assumption on

who will eventually get a message, how many times, and when (these are all ations deided

by the attaker). Also, there is no assumption on the logial onnetion between the address

where a message is delivered and the identity (either ID

i

or ID

r

) behind that address. This

allows us to design the protool (and prove its seurity) in the \post-spei�ed peer" model

introdued in Setion 2.

� ID

i

and ID

r

represent the real identities of the parties to the exhange. In our model we

assume that every party knows the other's party publi key before hand. However, one an

think of the above identities as full erti�ates signed by a trusted CA and veri�ed by the

reipient. (In this ase, the full erti�ate may be inluded as the peer's identity under the

ma or just the identity in the erti�ate { e.g. the \distinguished name"). Our proofs work

under this erti�ation-based model as well.

� The strings \0" and \1" are intended to separate between authentiation information reated

by the initiator and responder in the protool. They serve as \symmetry breakers" in the

protool. However, in the ase of �

0

these tags are not stritly needed for seurity; we will

see later (Setion 5.1) that the protool is seure even without them. Yet, we inlude them

here for two reasons. First, they simplify analysis; seond, they make the protool's seurity

more robust to hanges as we will also disuss later (e.g., they defeat reetion attaks in

some of the protool's variants).

� Reall the uniqueness of session-id's assumed by our model. We use this assumption in order

to simplify the model and to aommodate di�erent implementations of this assumption. A

typial way to ahieve this is to require eah party in the exhange to hoose a random number

(say, s

i

and s

r

respetively) and then de�ne s to be the onatenation of these values. In

this ase the values s

i

and s

r

an be exhanged before the protool, or s

i

an replae s in the

start message, and (s

i

; s

r

) replae s in the response message.

� Parties use the session id's to bind inoming messages to existing (inomplete) sessions. How-

ever, only the �rst message of eah type is proessed. For example if a response message arrives

with session id s at the initiator of session s, then the message is proessed only if no previous

response message under this session was reeived. Otherwise the message is disarded. Same

for the other message types, or if a message arrives after the session is ompleted or aborted.

� In the above desription of �

0

the session identi�ers serve a dual funtionality: they serve

to identify sessions and diret inoming messages to these sessions, but they also serve as

\freshness guarantees" against replay attaks. In reality, the two funtionalities may be

implemented via di�erent mehanisms. (In partiular, in order to prevent replay, the seond

funtionality requires uniqueness of the session identi�ers throughout the life time of long-

term keys. In ontrast, if one is interested only in direting inoming messages to the orret

session then it may suÆe to have identi�ers that repeat one old sessions are ompleted.)

Nonetheless, for simpliity we hoose to \overload" session id's with the two funtionalities.

� In pratie, it is reommended not to use the plain value g

xy

of the DH key but a hashed

value H(g

xy

) where H is a hash funtion (e.g. a ryptographi hash funtion suh as SHA or

a universal hash funtion, et.). This has the e�et of produing a number of bits as required

9

to key the prf, and (depending on the properties of the hash funtion) may also help to

\extrating the seurity entropy" from the g

xy

output. If the plain g

xy

is used, our seurity

results hold under the DDH assumption. Using a hashed value of g

xy

is seure under the

(possibly weaker) HDH assumption [8℄. See Setion 5.6.

� As we will see in Setion 5 the above protool an be simpli�ed by eliminating some of its

elements (e.g., the 0/1 tags under the MAC and signatures, and the signing of the peer's DH

exponent an be eliminated without ompromising seurity). However, this is not neessarily

reommended. One bene�t of these elements is in simplifying analysis, the other is making

seurity of the protool more robust to hanges (yet, anyone making suh hanges needs to

verify that the seurity and analysis of the protool are preserved { we show several suh

ases in Setion 5).

Remark 1 As mentioned in Setion 2 it is illustrative to note that protool �

0

is not seure in the

original (pre-spei�ed) model of [4℄. In that model an attaker ould apply the following strategy:

(1) initiate a session (P; s;Q) at P ; (2) ativate a session (Q; s;Eve) at Q as responder with the

start message from (P; s;Q) where Eve is a orrupted party (let g

x

be the DH exponent in this

message); (3) deliver the response message produed by Q to P (let g

y

be the DH exponent in

this message). The result is that P ompletes (P; s;Q) with a session key derived from g

xy

, while

the session (Q; s;Eve) is still inomplete and its state ontains the value g

xy

. Therefore, in the [4℄

model, the attaker an hoose (P; s;Q) as the test session and expose (Q; s;Eve) via a state-reveal

attak to learn g

xy

. This is allowed in [4℄ sine (Q; s;Eve) is not a mathing session to the test

session (only (Q; s; P) is mathing to the test session). In our post-spei�ed model, however, the

attaker is not allowed to expose (Q; s) whih is inomplete and then by De�nition 2 it is mathing

to the test session (P; s). This restrition of the adversary is needed in the post-spei�ed setting

sine from the point of view of Q there is no information about who the peer is until the very

end of the protool and then its temporary internal state (before reeiving the �nish message) is

idential whether its session is ontrolled by the adversary (via Eve as in the above example) or

it is a regular run with a honest peer P . What is ruial to note is that protool �

0

(and any

SK-seure protool in the post-spei�ed model) guarantees that if Q ompletes the session (Q; s)

then its view of the peer's identity is orret and onsistent with the view in the mathing session

(e.g., in the above example it is guaranteed that if Q ompletes the session, it outputs P as the

peer, and only P an ompute the key g

xy

).

Remark 2 A stronger property of seurity an be ahieved if we add to �

0

a fourth message in

whih the responder sends an \ak" message authentiated under ma

k

1

. In this ase, the initiator

does not omplete the session until it gets (and veri�es) this fourth message. The resultant protool

has the property that when a party ompletes the session it has a guarantee that the peer (either

if it ompleted or not the session) already has a onsistent view of who the session's peer is. In

the SIGMA and IKE protools this is not the ase (in these protools this onsisteny is ensured

only when both peers omplete the session { a ondition that suÆes for guaranteeing the seure

hannels appliation). The above \peer onsisteny" property is stronger than the guarantees of

SK-seurity from [4℄ and may be signi�ant in some senarios.

10

4 Proof of Protool �

0

4.1 The Statements

We start by formulating the Deisional DiÆe-Hellman (DDH) assumption whih is the assumption

underlying the seurity of the DH key exhange against passive attakers. For simpliity, we

formulate this assumption for a spei� family of DH groups, but analogous assumptions an be

formulated for other groups (e.g., based on ellipti urves).

Assumption 5 Let � be a seurity parameter. Let p; q be primes, where q is of length � bits and

q=p�1, and g be of order q in Z

�

p

. Then the probability distributions of quintuples

Q

0

= fhp; g; g

x

; g

y

; g

xy

i : x; y

R

 Z

q

g and Q

1

= fhp; g; g

x

; g

y

; g

r

i : x; y; r

R

 Z

q

g are omputationally

indistinguishable.

In addition to the DDH assumption we will assume the seurity of the other underlying rypto-

graphi primitives in the protool (digital signatures, message authentiation odes, and pseudo-

random funtions) under the standard seurity notions in the ryptographi literature.

Theorem 6 (Main Theorem) Assuming DDH and the seurity of the underlying ryptographi

funtions sig, ma, prf, the �

0

protool is SK-seure in the post-spei�ed model, as de�ned in

Setion 2.

Proving the theorem requires proving the two de�ning properties of SK-seure protools (we use

the term �

0

-attaker to denote an SK-attaker working against the �

0

protool):

P1. If two unorrupted parties ID

i

and ID

r

omplete mathing sessions ((ID

i

; s; ID

r

) and (ID

r

; s; ID

i

),

respetively) under protool �

0

then, exept for a negligible probability, the session key output in

these sessions is the same.

P2. No eÆient �

0

-attaker an distinguish a real response to the test-session query from a random

response with non-negligible advantage. More preisely, if for a given �

0

-attaker we de�ne:

� P

real

(A) = Prob(A outputs 1 when given the real test session key)

� P

rand

(A) = Prob(A outputs 1 when given a random test session key)

then we need to prove that for any �

0

-attaker A: jP

real

(A)� P

rand

(A)j is negligible.

Remark on A. We assume wlog that a �

0

-attaker always hooses a test session and queries it,

and does not expose the test session or its mathing session before expiration. (That is, we do not

onsider superuous attakers that halt without querying a test session, or invalid attakers that

expose the test session.)

Remark (on the term \negligible"). We use the term `negligible' to represent any funtion

(in the seurity parameter) that diminishes asymptotially faster than any polynomial fration.

(The attaker is assumed to be polynomial-time in the seurity parameter of the protool.) We

note that the analysis presented here an be used to obtain more quanti�ed seurity bounds via a

onrete seurity treatment. This requires assuming expliit \("; t) bounds" on the seurity of the

di�erent ryptographi primitives used throughout the analysis, and then representing our results

as a funtion of these partiular values. Completing these details given our analysis is standard;

we hoose not to do this expliitly for the sake of simpli�ed presentation.

11

4.2 Proof of Property P1

Proof: Let A be a �

0

attaker, and let ID

i

and ID

r

be two unorrupted parties that omplete

mathing sessions (ID

i

; s; ID

r

) and (ID

r

; s; ID

i

). We want to prove that regardless of A's operations

both sessions output the same session key. Clearly, it suÆes to show that both ompute the same

DH value g

xy

(from whih the session key k

0

is deterministially derived). Let us denote by u

i

the DH exponent sent in the start message by ID

i

where u

i

= g

x

i

with x

i

hosen by ID

i

, and

let v

i

denote the DH exponent that ID

i

reeived in the response message of session s (sine ID

i

ompletes the session s then it neessarily reeives suh a response message). Similarly, let u

r

be

the DH exponent reeived by ID

r

in the inoming start message for session s, and by by v

r

the DH

exponent sent by ID

r

in its response message where v

r

= g

x

r

with x

r

hosen by ID

r

.

The signature produed by ID

r

during session s is sig

r

(\1"; s; u

r

; v

r

), while the signature that

ID

i

veri�es in the response message is sig

r

(\1"; s; u

i

; v

i

). Sine the �rst signature is the only one

that ID

r

ever produes with the value s as the session id, then it must be that either all arguments

to the �rst and seond signature are the same, or a valid signature ontaining the seond (and

di�erent) pair (u

i

; v

i

) was produed by the attaker even though ID

r

did not generated suh a

signature. If the later ase happens with non-negligible probability then we an use the attaker A

under a simulation of protool �

0

to produe a forger for the signature sheme sig (note that ID

r

is not orrupted so the forgery would be a real forgery against the sheme). Sine we assume sig

to be a seure signature sheme this event must have negligible probability. Therefore, we get that

exept for suh a negligible probability, u

r

= u

i

and v

r

= v

i

.

Now the DH key omputed by ID

i

is v

x

i

i

= v

x

i

r

= (g

x

r

)

x

i

= g

x

i

x

r

, while the DH key omputed

by ID

r

is u

x

r

r

= u

x

r

i

= (g

x

i

)

x

r

= g

x

i

x

r

. And therefore both ompute the same session key.

(Note that we have only used the uniqueness of s and ID

r

's signature in this argument, and have

not used the ma or the tags \0" or \1".) 2

4.3 Proof of Property P2

4.3.1 Proof plan

We prove property P2 by showing that if a �

0

-attaker A an win the \real vs. random" game with

signi�ant advantage then we an build an attaker against one of the underlying ryptographi

primitives used in the protool: the DiÆe-Hellman exhange (DDH assumption), the signature

sheme sig, the MAC sheme ma, or the pseudorandom family prf.

More spei�ally we will show that from any �

0

-attaker A that sueeds in distinguishing

between a real and a random response to the test-session query we an build a DDH distinguisherD

that distinguishes triples g

x

; g

y

; g

xy

from random triples g

x

; g

y

; g

r

with the same suess advantage

as A, or there is an algorithm (that we an onstrut expliitly) that breaks one of the other

underlying ryptographi primitives. This distinguisher D gets as input a triple (g

x

; g

y

; z) where

z is either g

xy

or g

r

for r

R

 Z

q

. D starts by simulating a run of A on a virtual instantiation of

protool �

0

and uses the values g

x

and g

y

from the input triple as the DH exponents in the start

and response message of one randomly hosen session, say s

0

, initiated by A in this run of protool

�

0

. The idea is that if A happens to hoose this session s

0

(or the orresponding responder's

session) as its test session then D an provide A with z as the response to the test-session query.

In this ase, if A outputs that the response was real then D will deide that z = g

xy

, otherwise

D will deide that z is random. One diÆulty here is that sine D atually hanges the regular

behavior of the parties in session s

0

(e.g. it uses the value z to derive the key k

1

used in the ma

12

funtion) then we still have to show that D has a good probability to guess the right test session,

and that the original ability of A to distinguish between \real" and \random" is not signi�antly

redued by the simulation hanges. Proving this involves showing several properties of the protool

that relate to the authentiation elements suh as signatures (Lemma 7) and MAC (Lemma 11).

In order to speify the distinguisher D we need to de�ne the above simulation proess and the

exat rules on how to hoose session s

0

and how to hange the behavior of the parties to that session.

In Setion 4.3.2 we de�ne this simulation proess. However, in order to failitate our analysis we

will atually de�ne a sequene of several simulators whih di�er from eah other by the way they

hoose the keys (k

0

and k

1

) used in the proessing of the s

0

session. Eah of these simulators

will de�ne a probability distribution on the runs of attaker A. At one end of the sequene of

simulators will be one that orresponds to a \real" run of A while at the other end the simulation

orresponds to a \random" experiment where the session key in session s

0

provided to A is hosen

as a random and independent value k

0

. In between, there will be several \hybrid" simulators.

We will show that either all the distributions generated by these simulators are omputationally

indistinguishable, or that a suessful distinguisher against DDH or against the prf family exists.

From this we get a proof that the \real" and \random" simulators at the ends of the sequene

are atually indistinguishable, and from this that the values P

rand

and P

real

di�er by at most a

negligible quantity (this negligible di�erene will depend on the quanti�ed seurity of DDH and of

the ryptographi funtions).

4.3.2 The simulators

We de�ne a simulator S = S(A) that on parameters n (number of parties) and � (seurity param-

eter) and a given �

0

attaker A, simulates a run of protool �

0

against attaker A. Simulator S

starts by hoosing the initialization information for eah of the n parties (private signature keys

and their orresponding publi veri�ation keys). Then upon any ativation by A the simulator S

performs the �

0

operations on behalf of the parties and provides to A with the outgoing messages

and publi outputs generated in eah session.

If at any point A orrupts a party, S hands out to A all the internal information of that

party (inluding private signature key, session state for inomplete sessions, and session keys for

unexpired sessions) and S stops operating that party (whih is now under full ontrol of A). Upon

a state-reveal query against a spei� (inomplete) session, S provides A with the internal state

information for that session; similarly, if A performs a session-key query against a (omplete and

unexpired) session then S provides A with the orresponding seret key output by that session.

Note that at any point in its run S has full information to answer all of A's queries or perform the

protool ations on behalf of the unorrupted parties. When A hooses a test session and performs

its test query, S responds with the value of the session key as output by the test session. When A

stops, S stops too with the same output (0 or 1) as A.

We introdue several variants of the above simulator S whih by now we generially denote by

^

S (we will desribe spei� variants later). An

^

S simulator is similar to S exept for the following

di�erenes.

1. Let m be an a-priori upper bound on the number of sessions that A initiates (i.e., sessions for

whih A issues an initiation ativation upon whih a party outputs a start message) during

its run with seurity parameter � and n parties. At the beginning of its run

^

S hooses the

following values: a number t hosen uniformly between 1 and m, an identity R

0

randomly

hosen among the identities of the n parties in the protool, two elements x; y 2 Z

q

, and two

13

values k

0

and k

1

of the same length as the output of the prf funtions. (The spei�ation of

the ways in whih k

0

and k

1

are hosen will determine the di�erent variants of simulators

^

S

that we will de�ne later.)

2.

^

S performs a usual simulation of A like S does exept that it takes two types of speial

ations:

(a) the ations related to the t-th session initiated by A as desribed in step 3 below; and

(b) stopping its run upon the ourrene of any of the \abort events" that we list below, in

whih ase

^

S stops with output 0.

3. Let the t-th session initiated by A be (I

0

; s

0

). The following ations take plae as long as an

abort event does not happen. The start message of session (I

0

; s

0

) is generated by

^

S using

the value x hosen in step 1 (i.e., the start message output by (I

0

; s

0

) is s

0

; g

x

). In ase that

session (R

0

; s

0

) is ativated by A with R

0

as responder then

^

S outputs a response message on

behalf of R

0

using the exponent g

y

omputed using the value y hosen in step 1. Also the ma

omputation for this message uses the key k

1

hosen by

^

S in step 1. If a response message is

delivered to session (I

0

; s

0

) then the ma veri�ation operation for this message uses also the

key k

1

. Similarly, if a �nish message is delivered to (R

0

; s

0

) then the ma veri�ation also

uses key k

1

. If any of the sessions (I

0

; s

0

) or (R

0

; s

0

) omplete then the seret session key is

set to k

0

as hosen by

^

S in step 1.

4. If A hooses (I

0

; s

0

) or (R

0

; s

0

) as its test session then the response to the test query by

^

S is

k

0

.

5. If A ends its run (without

^

S having aborted) then

^

S outputs the same bit as A outputs.

Now we de�ne the abort events upon whih

^

S stops its run and outputs 0. The hoie of these

partiular events is related to some \bad events" in the ryptographi and probabilisti analysis of

the protool. Spei�ally, these events have the property that if A happens to hoose one of the

sessions (I

0

; s

0

) or (R

0

; s

0

) as the test session then these events will not happen (see Lemma 7).

On the other hand, the lak of these events in a run between

^

S and A guarantees a \mathing"

between g

x

and g

y

under the (I

0

; s

0

) and (R

0

; s

0

) sessions whih allows

^

S to arry the ations as

de�ned in step 3 above.

Abort events: If any of the following events happen

^

S stops its run and outputs 0 (reall that

we denote by (I

0

; s

0

) the t-th session initiated by A, and by R

0

the identity randomly hosen by

^

S

in Step 1 above):

� A orrupts I

0

or R

0

before (I

0

; s

0

) is ompleted (this inludes the ase that one of these

parties is already orrupted at the time when the t-th session is initiated).

� A issues a state-reveal query against (I

0

; s

0

) or (R

0

; s

0

)

� Session (R

0

; s

0

) is initiated as responder before (I

0

; s

0

) sent its start message; or (R

0

; s

0

) is

initiated as responder with a start message ontaining a DH exponent whih is di�erent than

the DH exponent in the start message output by (I

0

; s

0

).

� The response message reeived by (I

0

; s

0

) arrives before (R

0

; s

0

) was ativated as responder,

or this response message has a di�erent DH exponent than the DH exponent appearing in

the response message output by session (R

0

; s

0

)

14

� Session (I

0

; s

0

) aborts.

� A hooses a test session other than (I

0

; s

0

) or (R

0

; s

0

), or it hooses one of these but the

session ompletes with a peer di�erent than R

0

; I

0

, respetively.

� A ompletes the game without having hosen a test session

4

, or A stops before having initiated

t sessions.

The

^

S variants. We introdue �ve variants of

^

S whih di�er by the way k

0

and k

1

are de�ned.

We use the notation random() to represent a random (and independent) hoie of a string of some

appropriate length; also, in following de�nitions of

^

S, x and y refer to the values hosen by the

simulator in step 1 above.

^

S-real: k

0

 prf

g

xy

(0); k

1

 prf

g

xy

(1)

^

S-rprf: k

0

 prf

k

(0); k

1

 prf

k

(1); k random()

^

S-allr: k

0

 random(); k

1

 random()

^

S-hybr: k

0

 random(); k

1

 prf

k

(1); k random()

^

S-rand: k

0

 random(); k

1

 prf

g

xy

(1)

Note: in

^

S-allr the values of k

0

and k

1

are independent, and in

^

S-hybr the values of k

0

and k are

independent. The names of the simulators stand for: \real", \random prf", \all random", "hybrid",

and \random", respetively. For any of the above simulators

^

S the notation

^

S(A) represents the

distribution of runs of

^

S when interating with A as the �

0

-attaker.

Intuitively, the hoie of t in step 1 of

^

S an be seen as an attempt by the simulator to guess

the test session to be hosen by A; when this guess sueeds (i.e., either (I

0

; s

0

) is hosen by A

as the test session with peer R

0

or (R

0

; s

0

) is hosen as test session with peer I

0

) then

^

S-real

orresponds to a real exeution of A while

^

S-rand orresponds to a run of A where the test query

is answered with a random key. The other simulators are used as intermediate games to prove that

for any attaker A, the outputs of

^

S-real(A) and

^

S-rand(A) are \indistinguishable" (in the sense

of the following de�nition of �).

De�nition (D � D

0

). If D and D

0

are two probabilisti algorithms that output 0 or 1, then we

write that D � D

0

if and only if jProb(D outputs 1)� Prob(D

0

outputs 1)j is negligible.

The above \guess" of the test session by

^

S is a entral element in our proofs and it motivates the

following de�nition.

De�nition (guess event). Let

^

S be one of the simulators de�ned above and A be a �

0

-attaker.

We say that a guess event happens in a run of

^

S(A) if the following onditions are satis�ed:

1. A initiates at least t sessions in this run where t is the parameter hosen by

^

S in step 1 of its

run (we denote by I

0

the initiator of this session and by s

0

the session id);

2. If R

0

denotes the random party hosen by

^

S in step 1 of its run then either

(a) A hooses (I

0

; s

0

) as its test session and this session ompletes with peer R

0

;

or

4

Note that we have assumed that in a regular run A always hooses a test session but under the hanges introdued

by

^

S behavior A ould, in priniple, never hoose a test session.

15

(b) A hooses (R

0

; s

0

) as its test session and this session ompletes with peer I

0

.

Plan of the proof of P2. In the next subsetion we provide the detailed proof of P2. The plan is

to show that

^

S-real �

^

S-rand via the indistinguishability of eah pair of onseutive simulators

in the above list (see Lemma 15), and then prove (Theorem 16) that jP

real

(A) � P

rand

(A)j =

poly � jProb(

^

S-real outputs 1) � Prob(

^

S-rand outputs 1)j where \poly" is a quantity that is

polynomial in the number of parties and number of sessions in the protool (spei�ally, \poly" is

the produt of these numbers { see Remark 3).

4.3.3 Detailed Proof of P2

The following lemma is onerned with the ations of A and not diretly with the behavior of

the above simulators. However, this lemma will be instrumental later in laiming that under a

guess event the above simulators do not abort their run (see Lemma 9). It is important to note

that this lemma only uses the seurity of the underlying signature sheme; this is possible by the

use of the tags \0" and \1" in �

0

. If these tags are not used the lemma is still valid but requires a

more involved argument that uses the seurity of DDH, prf, and ma in addition to the seurity

of the signatures. These more involved arguments are presented in Setion 5.1.

Lemma 7 For all �

0

-attakers A, the following holds exept for negligible probability.

(a) Consider a regular run by A in whih A hooses a test session with output (P; s;Q) where P

is the initiator. Then:

1. P and Q are never orrupted before expiration of the test session

2. Sessions (P; s) and (Q; s) are never revealed by A

3. (Q; s) is initiated as responder with the start message sent by (P; s)

4. (P; s) reeives a response message after (Q; s) was ativated as responder, and this mes-

sage arries the same DH exponent as in the response message output by (Q; s)

5. Session (P; s) does not abort.

(b) Consider a regular run by A in whih A hooses a test session with output (Q; s; P) where Q

is the responder. Then:

1. P and Q are never orrupted before expiration of the test session

2. Sessions (P; s) and (Q; s) are never revealed by A

3. (Q; s) is initiated as responder with the start message sent by (P; s)

4. (P; s) reeives a response message after (Q; s) was ativated as responder, and this mes-

sage arries the same DH exponent as in the response message output by (Q; s)

5. Session (P; s) does not abort.

Proof: Proof of (a):

1. A is not allowed to orrupt the peers to the test session and we have assumed (wlog) that it

does not do that.

16

2. (P; s) annot be revealed by A sine A is not allowed to expose the test session. As for (Q; s),

a state-reveal query an be done only against inomplete sessions (sine upon ompletion

sessions erase their state). However, while inomplete, (Q; s) is the mathing session to the

test session so A annot issue a state-reveal query against it

3. Sine (P; s;Q) ompletes, it means that P reeived a response message with identity Q in it.

In partiular, it means that P veri�ed the signature sig

Q

(\1"; s; g

x

; g

y

) under Q's publi key

and where g

x

was the value inluded by (P; s) in its start message. Sine the above signature

by Q is the only one Q ould have generated as responder under session s, then we have that

Q indeed was ativated as responder of s under the DH exponent g

x

as output in the start

message by (P; s).

If, however, it happens with non-negligible probability that suh a signature was veri�ed by

P under Q's publi key but Q did not produe it then we an use this non-negligible event to

build a forger against sig

Q

. This is in ontradition to the assumed seurity of the signature

sheme. (Note that by the �rst item above Q annot be orrupted at the point that P

veri�ed the above signature, so Q's private key was not available to the attaker at the time

of forgery.)

4. (P; s) ompletes with output (P; s;Q) so it must have reeived a response message whih

inluded Q as the identity. Moreover, P veri�ed the signature in the response message under

Q's publi key, namely sig

Q

(\1"; s; g

x

; g

y

). If (Q; s) was not ativated as a responder then Q

would have never generated a signature sig

Q

(\1"; s; :::), so the above signature is a forgery.

If Q generated suh a signature then we have that g

y

inluded under that signature was the

DH exponent in the response message generated by (Q; s), and sine P veri�ed it using the

DH exponent it reeived in the response message then we have that either this is the same

exponent generated and sent by Q or the signature is a forgery. If any of the above \forgery

events" happen with non-negligible probability then we an use attaker A to build a forger

against sig

Q

that sueeds with suh non-negligible probability.

5. Clearly. session (P; s) does not abort sine it ompletes.

Proof of (b) : Omitted. Similar to (a). 2

We now start proving the indistinguishability of the above de�ned

^

S simulators.

Lemma 8 For all �

0

-attakers A,

^

S-rand(A) �

^

S-hybr(A)

Proof: We show that if for an attaker A there is a non-negligible di�erene (say ") between

Prob(

^

S-rand(A) outputs 1) and Prob(

^

S-hybr(A) outputs 1) then we an build a distinguisher

for the DDH Assumption (whih sueeds with non-negligible advantage "). We show suh a

distinguisher D.

Let (g

x

; g

y

; z) be a DDH triple input to D. The distinguisher D follows the ation of a

^

S-rand

simulator (inluding abort ations) exept for the following hanges:

Whenever the session (I

0

; s

0

) hosen by

^

S-rand is initiated then D replaes the DH value in the

start message of (I

0

; s

0

) with the value g

x

from the DDH triple. That is, D produes s

0

; g

x

as the

start message from (I

0

; s

0

). (Note that D ontrols I

0

whih we may assume to be unorrupted or

otherwise

^

S-rand, and D, would have aborted; same holds for D ontrolling R

0

). Later, if (R

0

; s

0

)

ever issues a response message (this means that (R

0

; s

0

) was ativated via the start message (s

0

; g

x

);

17

sine otherwise

^

S-rand aborts), then D generates a response message from (R

0

; s

0

) of the form

s

0

; g

y

; R

0

; sig

R

0

(\1"; s

0

; g

x

; g

y

);ma

k

1

(\1"; s

0

; R

0

), where g

y

is the seond element in the DDH

triple, and k

1

= prf

z

(1) where z is the third element in this triple. If (I

0

; s

0

) reeives a response

message with a DH exponent di�erent than g

y

(i.e., the seond element in the DDH triple) then

D aborts (as

^

S-rand would do). Otherwise, I

0

veri�es the signature inluded in the inoming

response message under the publi key of the sender (as it appears in the response message), and

heks the ma under key k

1

= prf

z

(1), where z is the third element in the DDH triple. If the

veri�ation fails (I

0

; s

0

) aborts the session and D aborts its run (as

^

S-rand does). Otherwise, D

makes (I

0

; s

0

) output a �nish message of the form: s

0

; I

0

; sig

I

0

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s

0

; I

0

),

where k

1

= prf

z

(1) with z being the third element in the DDH triple. On inoming �nish message

to (R

0

; s

0

) all ations are as in a regular run of

^

S-rand but the ma in the message is veri�ed

using key k

1

= prf

z

(1). All other ations of

^

S-rand, inluding the ompletion of sessions (I

0

; s

0

)

and (R

0

; s

0

) follow the regular spei�ations of a run of A under

^

S-rand (in partiular, if any of

the sessions (I

0

; s

0

) or (R

0

; s

0

) omplete then they output the random key k

0

hosen by

^

S-rand as

the session key for these sessions).

We now argue that in ase that z = g

xy

the probability distribution of runs of the distinguisher

D under attaker A is the same as the distribution of runs of

^

S-rand under A. First note that for

sessions other than (I

0

; s

0

) and (R

0

; s

0

) the ations of D do not di�er from those of

^

S-rand. As

for sessions (I

0

; s

0

) and (R

0

; s

0

); the values g

x

and g

y

used in the start and response messages of

these sessions are distributed identially as in a regular run of the �

0

protool, namely, they are

hosen independently and uniformly over the group generated by g. (Suh are the spei�ations of

�

0

and suh is the way g

x

and g

y

are hosen under the DDH assumption.)

Moreover, sine any event that brings to an assoiation of g

x

to a di�erent DH exponent than

g

y

(and of g

y

to a di�erent exponent than g

x

) auses an abort ation by

^

S-rand (and then abort

by D) then all ma omputations in (I

0

; s

0

) and (R

0

; s

0

) that are visible to A are done under the

key z = g

xy

as spei�ed by the protool and by

^

S-rand. Finally, the state of sessions (I

0

; s

0

) and

(R

0

; s

0

) is never visible to A (state-reveal queries against these sessions or orruption of I

0

or R

0

lead to abort by D) therefore the di�erenes in these states between the run of

^

S-rand and the run

of D do not inuene the view of A. (Note that suh di�erenes in the session state do exist: under

the run by D the powers x and y of the DH exponents g

x

and g

y

do not appear in the state of (I

0

; s

0

)

and of (R

0

; s

0

) while in a regular run of

^

S-rand they do appear. However, this would be visible to

A only via state-reveal queries whih lead to abort by D and

^

S-rand.) Note that all ations of D

after (I

0

; s

0

) sends its �nish message do not deviate from the regular ations of

^

S-rand and, by the

above arguments, also the view of A at that point (and then after that) is the same as in a run under

^

S-rand. We therefore have that: Prob(

^

S-rand(A) outputs 1) = Prob(D(A) outputs 1 : z = g

xy

).

In the ase of z being a random element g

r

, a similar argument as above shows that the runs

of D(A) are distributed exatly as the runs of

^

S-hybr(A), that is: Prob(

^

S-hybr(A) outputs 1) =

Prob(D(A) outputs 1 : z = random)

Now, by the DDH assumption it must be that for all A, Prob(D(A) outputs 1 : z = g

xy

) equals

Prob(D(A) outputs1 : z = random) up to a negligible di�erene, and therefore we get that for all

attakers A,

^

S-rand(A) �

^

S-hybr(A).

2

The next Lemma shows that for any attaker A,

^

S-rand(A) has a signi�ant probability of guess-

ing the test session. This property will \propagate" through our later proofs to all the other

^

S

simulators.

18

Lemma 9 For any �

0

-attaker A, the probability of a guess event under a run of

^

S-rand(A) is

at least 1=(m � n) (reall that m is the number of sessions initiated by A and n is the number of

parties in the protool { also see Remark 3).

Proof: Let S(A) be a regular simulator of protool �

0

under an attaker A. Sine A always selets

a test session then if one hooses a random session (I

0

; s

0

) and random peer R

0

the probability

that a run of S(A) ends with (\0"; I

0

; s

0

; R

0

) or (\1"; R

0

; s

0

; I

0

) as the output of the test session is

at least 1=(m � n).

Let

^

S-rand

0

be a simulator that ats exatly as

^

S-rand exept that it does not stop (neither

outputs 0) in the ase of abort events. Note that under

^

S-rand

0

(A) the answer to the session-key

query is a random key while under S(A) it is the real session key. However, this di�erene does

not inuene the way A hooses the test session (whih obviously happens before the session-key

query is answered). Therefore the probability of a guess event under

^

S-rand'(A) is exatly the

same as the probability a guess event under S(A), and then at least 1=(m � n).

Now onsider a �xed set of oins for

^

S-rand

0

and forA that brings

^

S-rand

0

(A) to a guess event.

If now we look bak at a regular run of

^

S-rand(A) (i.e., with abort ations) with the same set of

oins, the run still will produe a guess event sine by Lemma 7 none of the abort events happen

with respet to the test session (whih in this ase is either (I

0

; s

0

) or (R

0

; s

0

)) and therefore no

abort event happens under

^

S-rand(A) either. That is, under this set of oins the run of

^

S-rand(A)

is not di�erent than the run of

^

S-rand

0

(A).

Thus eah set of oins that bring

^

S-rand

0

(A) to guess will also bring

^

S-rand(A) to a guess and

thus Prob(guess under

^

S-rand(A)) � Prob(guess under

^

S-rand'(A)) � 1=(m � n). 2

Lemma 10 For any �

0

-attaker A, the probability of a guess event under a run of

^

S-hybr(A) is,

up to a negligible di�erene, the same as the probability of a guess event under a run of

^

S-rand(A).

Proof: If there is a non-negligible di�erene between the guess probability in a run under

^

S-rand

and under

^

S-hybr, then we an build a distinguisher D

0

for DDH. Let D be the distinguisher from

the proof of Lemma 8. On input a DDH triple (g

x

; g

y

; z) the distinguisher D' runs D exept that

D' outputs 1 if and only if in the run of D a guess event happens (in any other ase it outputs 0).

Following the proof of Lemma 8 we get that in ase that z = g

xy

the distinguisher D' outputs 1

with the probability of a guess event under

^

S-rand, while if z = random, it outputs 1 with the

probability of a guess event under

^

S-hybr. 2

The following is a entral lemma in our analysis; it shows that when a guess event happens

then one of the sessions (I

0

; s

0

) and (R

0

; s

0

) is the test session and the other is its mathing

session. Therefore, in this ase the attaker is not allowed to expose any of these two session (until

expiration). This property is used in an essential way to establish the value of P

rand

and P

real

(Lemmas 13 and 14). It is interesting to note that the proof of Lemma 11 uses the seurity of the

ma and prf families but not the seurity of the signatures (or the DDH assumption). However,

when proving protool �

0

without the \0" and \1" tags (see Setion 5.1) the proof is more omplex

and involves the unforgeability of signature as well.

Lemma 11 For all �

0

-attakers A, if a guess event happens under a run of

^

S-hybr(A) then the

following properties hold (exept for negligible probability):

(i) if (I

0

; s

0

) was hosen by A as the test session then (R

0

; s

0

) (either if ompleted or not) is its

mathing session; (ii) if (R

0

; s

0

) was hosen by A as the test session then (I

0

; s

0

) is its mathing

session.

19

Proof: (i) Sine we assume a guess event then if (I

0

; s

0

) is hosen by A as the test session then

the peer to the session is R

0

. By de�nition of mathing session, as long as (R

0

; s

0

) is inomplete

it is mathing to (I

0

; s

0

). If (R

0

; s

0

) is omplete and its output is (R

0

; s

0

; ID) then by de�nition

(R

0

; s

0

) mathes (I

0

; s

0

) if and only if ID = I

0

. We want to prove that if (R

0

; s

0

) ompletes then

ID = I

0

.

Assume that (R

0

; s

0

) ompletes with peer ID. This means that in the �nish message reeived by

(R

0

; s

0

) before the session ompleted, R

0

veri�ed the value ma

k

1

(\0"; s

0

; ID) under k

1

= prf

k

(1)

where k is a random key hosen by

^

S-hybr and never provided to the attaker. At this point there

ould have been two examples of ma

k

1

output in the protool (and no other use of k)

5

, namely,

ma

k

1

(\1"; s

0

; R

0

) and ma

k

1

(\0"; s

0

; I

0

). Therefore, if based on this information the attaker has

non-negligible probability of produing ma

k

1

(\0"; s

0

; ID) for ID 6= I

0

then we an build, based on

^

S-hybr, a forger to the ma funtion under key k

1

= prf

k

(1), where k is a random independent

key. This forger an then be turned into a distinguisher to the prf funtion, or into a forger

against the ma funtion (with random keys). Sine we assume these funtions to be seure then

the probability that (R

0

; s

0

) ends with peer ID 6= I

0

is negligible.

(ii) Sine we assume a guess event then if (R

0

; s

0

) is hosen by A as the test session then the

peer to the session is I

0

. By de�nition of mathing session, as long as (I

0

; s

0

) is inomplete it is

mathing to (R

0

; s

0

): If (I

0

; s

0

) is omplete and its output is (I

0

; s

0

; ID) then by de�nition (I

0

; s

0

)

mathes (R

0

; s

0

) if and only if ID = R

0

. Thus, we want to prove that if (I

0

; s

0

) ompletes then its

peer ID = I

0

.

Assume that (I

0

; s

0

) ompletes with peer ID. This means that in the response message reeived

by (I

0

; s

0

) before the session ompleted, I

0

veri�ed the value ma

k

1

(\1"; s

0

; ID) under k

1

= prf

k

(1)

where k is a random key hosen by

^

S-hybr and never provided to the attaker. At this point

there ould have been a single example of ma

k

1

use in the protool (and no other use of k),

namely, ma

k

1

(\1"; s

0

; R

0

). Therefore, if based on this information the attaker has non-negligible

probability of produing ma

k

1

(\1"; s

0

; ID) for ID 6= R

0

then, as in (i) above, we an build a

forger for the ma funtion or a distinguisher for the prf family.

2

Lemma 12 Lemma 11 holds for

^

S-rand as well.

Proof: If in a run of a simulator

^

S the properties (i) and (ii) from Lemma 11 hold then we say

that a math event happened. Lemma 11 proves that under a run of

^

S-hybr, Prob(math :

guess) � 1 (i.e., 1 up to a negligible di�erene). Here we want to prove the same property under

a run of

^

S-rand.

For this we build a DDH distinguisher D

0

as follows. D

0

runs D from the proof of Lemma 8

exept that D

0

outputs 1 if and only if in the run of D a guess and a math event happen (we

will onsider runs of D

0

both under

^

S-hybr and

^

S-rand). We have that:

jProb(D

0

outputs 1 : z = random)� Prob(D

0

outputs 1 : z = g

xy

)j = (by Lemma 8)

= jProb(D

0

outputs 1 under

^

S-hybr)� Prob(D

0

outputs 1 under

^

S-rand)j = (by def of D

0

)

= jProb(guess and math under

^

S-hybr)� Prob(guess and math under

^

S-hybr)j =

= jProb(math under

^

S-hybr : guess under

^

S-hybr)Prob(guess under

^

S-hybr)�

5

Reall that the session key value from test session (I

0

; s

0

) provided to the attaker by

^

S-hybr is a random value

independent from k.

20

�Prob(math under

^

S-rand : guess under

^

S-rand)Prob(guess under

^

S-rand)j � (Lemmas 10,11)

� Prob(guess under

^

S-rand)j1 � Prob(math under

^

S-rand : guess under

^

S-rand)j � (Lemma 9)

� 1=(m � n)Prob(not math under

^

S-rand : guess under

^

S-rand)

That is, we have that up to a negligible probability:

Prob(not math under

^

S-rand : guess under

^

S-rand) �

� (m � n)jProb(D

0

outputs 1 : z = random)� Prob(D

0

outputs 1 : z = g

xy

)j

Sine by the DDH assumption the later expression is negligible then we have that under

^

S-rand:

Prob(not math : guess) is negligible, thus proving the lemma.

2

Lemma 13 For all �

0

-attakers A, P

rand

(A) = Prob(

^

S-rand(A) outputs 1 : guess event)

Proof: By the same argument as in the proof of Lemma 9 we get that under a run of

^

S-rand a

guess event implies that

^

S-rand does not abort. Thus the run of A under

^

S-rand in the ase of

a guess event is the same as a regular run of A exept that the seret key output by the sessions

(I

0

; s

0

) and (R

0

; s

0

) (if ompleted) is not the real key but a random key k

0

hosen independently

of the atual exhange in these sessions. In partiular, this means that the value of the test session

key provided to A under

^

S-rand is this random value k

0

. On the other hand, the only other session

that outputs k

0

is, by virtue of Lemma 12, a mathing session to the test session so this value is

never revealed to A, and thus it makes no di�erene to A's view.

In summary, we have that in ase of a guess event the output of

^

S-rand is exatly the output

of A in a run where the test query is answered with a random key. Or, in other words:

Prob(

^

S-rand(A) outputs 1 : guess event) =

= Prob(A outputs 1 under a

^

S-rand run : guess event) =

= Prob(A outputs 1 under a regular run with test query answered with a random key) =

= P

rand

(A)

2

Lemma 14 For all �

0

-attakers A, P

real

(A) = Prob(

^

S-real(A) outputs 1 : guess event)

Proof: This is analogous to Lemma 13. The proof is similar too and it involves the proof of

Lemmas 8 to 12 with the role of

^

S-rand replaed with

^

S-real and the role of

^

S-hybr replaed

with

^

S-rprf. The proofs of these lemmas require just minor and straightforward adaptations to

the above simulators and are omitted. 2

Lemma 15 For all �

0

-attakers A,

^

S-real(A) �

^

S-rand(A)

Proof: We prove that

^

S-real �

^

S-rprf �

^

S-allr �

^

S-hybr �

^

S-rand (for all �

0

-attakers).

The indistinguishability of

^

S-hybr and

^

S-rand is proven in Lemma 8. The proof of

^

S-real �

^

S-rprf is similar; the only di�erene being that k

0

in

^

S-rprf is omputed via the pseudorandom

funtion rather than hosen at random. However, this does not hange the validity of the argument

in the proof of Lemma 8.

21

For proving

^

S-rprf �

^

S-allr one uses the following standard argument based on the seurity of

the pseudorandom funtion family prf. Let A be a �

0

-attaker; based on A we build a distinguisher

D against the family prf as follows. The distinguisher D has orale aess to a funtion F (whih

may have been seleted truly randomly or as a random member of prf); D works exatly as a

^

S-rprf(A) simulator, exept that for omputing k

0

and k

1

it uses the orale F rather than a

randomly seleted funtion from the prf family. It is lear that if F itself is implemented via a

random member of prf then the ations of D

F

are idential to those of

^

S-rprf(A). On the other

hand, if F is a truly random funtion the ations of D are idential to those of

^

S-allr. Therefore,

we have that

jProb(

^

S-rprf(A) outputs 1)� Prob(

^

S-allr(A) outputs 1)j =

= jProb(D

F

outputs 1 : F is pseudorandom)� Prob(D

F

outputs 1 : F is random)j

Sine the prf family is seure then the last di�erene is negligible and therefore also

jProb(

^

S-rprf(A) outputs 1)� Prob(

^

S-allr(A) outputs 1)j is negligible, i.e.,

^

S-rprf �

^

S-allr.

For proving

^

S-allr �

^

S-hybr one uses a similar argument as in the previous ase where the

orale F replaes prf in the hoie of k

1

while k

0

is hosen at random and independently. 2

We are �nally able to omplete the proof of property P2 for protool �

0

.

Theorem 16 Protool �

0

satis�es ondition P2 of SK-seurity: for all �

0

-attaker A,

jP

real

(A)� P

rand

(A)j is negligible.

Proof:

Prob(

^

S-rand(A) outputs 1) =

= Prob(

^

S-rand(A) outputs 1 : guess event) Prob(guess under

^

S-rand) +

+ Prob(

^

S-rand(A) outputs 1 : not guess event) Prob(not guess) =

= Prob(

^

S-rand(A) outputs 1 : guess event) Prob(guess under

^

S-rand) �

� Prob(

^

S-rand(A) outputs 1 : guess event) 1=(m � n)

The seond equality is due to the fat that if a guess event does not happen then neessarily

^

S-rand outputs 0; while the last inequality is from Lemma 9.

Similarly (using the analogous of Lemma 9 in the ase of

^

S-real) we have that

Prob(

^

S-real(A) outputs 1) � Prob(

^

S-real(A) outputs 1 : guess event) 1=(m � n)

From Lemma 13 and Lemma 14 we have that:

jP

real

(A)� P

rand

(A)j =

= jProb(

^

S-real(A) outputs 1 : guess event)� Prob(

^

S-rand(A) outputs 1 : guess event)j �

� (m � n)jProb(

^

S-real(A) outputs 1)� Prob(

^

S-rand(A) outputs 1)j

Sine jProb(

^

S-real(A) outputs 1)�Prob(

^

S-rand(A) outputs 1)j is negligible (Lemma 15) so

is jP

real

(A)� P

rand

(A)j. 2

Remark 3 When doing an exat quanti�ation of the above analysis of the seurity of protool

�

0

, one an see that the main \degradation fator" of the seurity of the protool with respet

to the seurity of the underlying ryptographi funtions, is the fator m � n, namely the number

22

of sessions initiated by A in its run times the number of parties in the protool. If one thinks of

key-exhange protools that run over the Internet then the numbers for m and n may be huge and

then this fator may seem as a prohibitive loss of seurity. However, for any given attaker that

breaks the protool the real meaning of m and n is not the maximal potential number of sessions or

parties in the Internet but just the minimal number of sessions and parties neessary to develop the

attak. These numbers are usually very small (single-digit numbers in urrently known attaks).

Therefore, for suh attaks the seurity of the protool is related to the seurity of the underlying

ryptographi funtions by a very small (usually onstant) degradation fator.

5 Variants and Disussions

At this point we have a full analysis of protool �

0

. We onsider the seurity of several variants

of the protool and extensions to its funtionality. In partiular, we extend the analysis to the

elements found in the IKE protools and not inluded in the basi protool �

0

.

5.1 Eliminating the initiator and responder tags in �

0

In protool �

0

the initiator and responder inlude under their signatures and ma a speial tag

\0" and \1", respetively. Here we show that protool �

0

0

de�ned identially to �

0

exept for the

lak of these tags is still seure. (We stress that the signature modes of IKE do not use these tags;

this is one main reason to provide the analysis here without tags.)

The lemmas where we have used these tags as part of the proof arguments are Lemma 7 and

Lemma 11. Here we show how to modify these arguments in order for these lemmas to hold also

for �

0

0

.

Proof of Lemma 7, part (a)(3). In this ase we used the tag \1" inluded under the signature of

Q to argue that sig

Q

(\1"; s; g

x

; g

y

) reeived by P in the response message of session s is the only

signature that Q ould have produed under session s and then the response message must have

ome from Q. However, if we omit \1" from this signature then this laim is not neessarily orret.

In this ase the signature reeived by P in the response message is sig

Q

(s; g

x

; g

y

) whih ould have

been taken from a �nish message sent by Q in a session (Q; s) where Q was ativated under

session-id s as initiator! In the later ase, however, we know that before sending the �nish message

with the above signature (Q; s) should have reeived a valid response message whih inluded

a legal signature sig

E

(s; g

y

; g

x

) from some party E, as well as a orresponding ma

k

1

(s;E) for

k

1

= prf

g

xy

(1). Sine we know that g

y

was hosen by Q itself (it appears as last element in the

signature) and g

x

was hosen by P , then no unorrupted party ould have hosen g

x

exept for

negligible (ollision) probability. Moreover, E reated ma

k

1

(s;E) for k

1

omputed under random

g

x

; g

y

not hosen by E (nor ould x and y be found by A via session reveals sine by parts (a)(2)

of the lemma none of the sessions (P; s), (Q; s) ould be revealed).

From this we have that if the event in whih E produes a valid response message for session

(Q; s) happens with non-negligible probability then we an build a DDH distinguisher in a similar

way to the proof of Lemma 8; this distinguisher just needs to guess the sessions (Q; s) and (P; s)

where this attak by E happens. In the guessed sessions the distinguisher uses z from the DDH

triple to ompute k

1

= prf

z

(1). Now if z = g

xy

then the probability of forgery by E is non-

negligible as assumed above. On the other hand, if the probability of forgery is non-negligible with

z = random then we an build a breaker to the ma or prf as done in the proof of Lemma 11. So

either we ontradit the DDH assumption, or the seurity of the ma or prf funtions.

23

(Note that this proof involves signature seurity onsiderations as well as DDH, MAC and PRF; the

proof of this property in the ase of �

0

used a signature-only argument; this shows the simplifying

e�et for the analysis that the use of a responder's tag has.)

Proof of Lemma 7, part (a)(4). This requires hanges to the argument in Lemma 7 whih are very

similar to the ase of part (a)(3) proved above.

Proof of Lemma 11, part (i). The proof of this part of Lemma 11 for protool �

0

used in an essential

way the tags \0"and \1"inluded under the ma; otherwise the attaker ould have replayed in

the �nish message the value ma

k

1

(s

0

; R

0

) taken from the response message by R

0

. However, we

will show that the proof an be adapted to the ase of �

0

0

where the tags are not inluded. First

note that the urrent argument in the proof of Lemma 11, part (i) already shows (even without

the tags) that it is not feasible for the attaker to make (R

0

; s

0

) omplete with ID other than I

0

or R

0

(sine the only available ma values are on I

0

and R

0

).

Thus, if (I

0

; s

0

) ompletes with peer R

0

6= I

0

then we need to use a signature-based argument to

show that replaying ma

k

1

(s

0

; R

0

) in the �nish message does not help. Indeed, this �nish message

(in order to be valid with ID = R

0

) will also have to arry a signature sig

R

0

(s

0

; g

y

; g

x

) where g

x

is

the DH exponent reeived by (R

0

; s

0

) in the start message. On the other hand, the only signature

produed by R

0

in session s

0

is sig

R

0

(s

0

; g

x

; g

y

), where g

y

was hosen by R

0

itself after reeiving g

x

and independently of this value. Therefore, exept for a negligible ollision probability, g

x

6= g

y

and

sig

R

0

(s

0

; g

y

; g

x

) was never produed by R

0

. Thus, if suh a valid signature appears in the �nish

message reeived by (R

0

; s

0

) then we have a forgery event against sig

R

0

whih an only happen

with negligible probability or otherwise we have a forgery algorithm against the signature sheme.

Proof of Lemma 11, part (ii). No hange required, the presene of the tags was not used in the

proof argument of this part for protool �

0

.

5.2 Putting the MAC under the signature

One seemingly signi�ant di�erene between protool �

0

and IKE signature-mode is that in the lat-

ter the ma tag is not sent separately but rather it is omputed under the signature operation. That

is, in the response message of IKE the responder does not send sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

),

as in �

0

, but rather sends the value sig

r

(ma

k

1

(s; g

x

; g

y

; ID

r

)). Similarly, the pair of signature-

ma is replaed in the �nish message by the value sig

i

(ma

k

1

(s; g

y

; g

x

; ID

i

)). The reason for this

inlusion of the ma under the signature in IKE is twofold: to save the extra spae taken by the

ma tag and to provide a message format onsistent with other authentiation modes of IKE.

6

Fortunately, the analysis of the protool when the ma goes under the signature is essentially

the same as the simpli�ed �

0

version analyzed before. The analysis adaptation is straightforward

and is based in the following simple fat.

Lemma 17 If sig is a seure signature sheme and ma a seure message authentiation fun-

tion then it is infeasible for an attaker to �nd di�erent messages M and M

0

suh that for a

randomly hosen seret ma-key k

1

the attaker an ompute sig(ma

k

1

(M

0

)) even after seeing

sig(ma

k

1

(M)).

6

For example, the IKE mode where authentiation is provided by a pre-shared key is obtained from the signature

mode by using the same ma expression but without applying the signature on it (in this ase the ma key is derived

from the pre-shared key).

24

Indeed, if the attaker an do that then either ma

k

1

(M

0

) 6= ma

k

1

(M) with signi�ant probability

and this results in a signature forgery strategy, or ma

k

1

(M

0

) = ma

k

1

(M) with signi�ant proba-

bility in whih ase the attaker has a strategy to break the ma. (Note that the attaker annot

hoose k

1

; if it ould, the lemma would not hold.)

This lemma implies that all the arguments in our proofs of Setion 4 that use the unforgeability

of signatures remain valid in this ase. More preisely, they are extended through the above lemma

to laim that if an attak is suessful then either the signature sheme or the ma are broken

(the ases where the weakness omes from the inseurity of either the prf family or the DDH

assumption are treated identially as in the proof of �

0

).

IKE's aggressive mode. With the above hanges, in whih the ma is inluded under the

signature and the \0"=\1" tags are not inluded, �

0

beomes basially the so alled \aggressive

mode of signature authentiation" whih is one of the two IKE's protools based on authentiation

via digital signatures. One additional di�erene is that the IKE protool uses the funtion prf

itself to implement the ma funtion. Sine a pseudorandom family is always a seure MAC then

this implementation preserves seurity (in this ase the key to the prf is g

xy

itself as in the other

uses of this funtion in the protool; the protool also makes sure that the input to prf when used

as MAC is di�erent that the inputs used for key derivation).

5.3 Enrypting the identities

Here we onsider the augmentation of �

0

for providing identity onealment over the network. We

present the main ideas behind our treatment, and omit muh of the formal and tehnial issues.

We start by onsidering the following variant of protool �

0

. Before transmitting the response

message, the responder omputes a key k

2

= prf

g

xy

(2) and enrypts under key k

2

the response

message exluding s and g

y

. That is, the response message is hanged to

s; g

y

;en

k

2

(ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)) where en is a symmetri-key enryption

algorithm. Upon reeiving the response message the initiator omputes the key k

2

as above, de-

rypts the inoming message with this key, and then follows with the regular veri�ation operations

of �

0

. If suessful, it prepares the �nish message as in �

0

but sends it enrypted under en

k

2

(only s is sent in the lear). Upon reeption of this message the responder derypts it and follows

with the regular operations of �

0

.

The main goal of this use of enryption is to protet the identities of the peers from dislosure

over the network (at least in ases that these identities are not uniquely derivable from the visible

(say, IP) address from whih ommuniation takes plae). We �rst argue that the addition of

enryption preserves the SK-seurity of the protool. Then we laim that the enryption provides

semanti seurity of the enrypted information. For the response message semanti seurity is

provided against passive attakers only (indeed, at the point that this enryption is applied by ID

r

,

the initiator has not yet authentiated to ID

r

so this enryption an be derypted by whoever hose

the DH exponent g

x

). For information enrypted in the �nish message we an provide a stronger

guarantee of seurity, namely, semanti seurity also against ative attakers.

We start by laiming that the modi�ed �

0

protool with enryption as desribed above satis�es

Theorem 6. The basi idea is that if we were enrypting under a random key independent from the

DiÆe-Hellman exhange then the seurity of the protool would be preserved (in partiular, sine

the attaker itself an simulate suh an independent enryption on top of �

0

). However, sine we

are using an enryption key that is derived from g

xy

then we need to show that if the enryption

helps the attaker in breaking the SK-seurity of (the enrypted) �

0

then we an use this attaker

25

to distinguish g

xy

from a random value. Tehnially, this requires an adaptation of the proof of

Theorem 6. The main hange regards the formulation of the hybrid simulators in Setion 4.3.2.

Spei�ally, to the spei�ation of how these simulators hoose k

0

and k

1

we now add the hoie

of a third key k

2

. In the ase of

^

S-allr k

2

is hosen at random and independently of k

0

and k

1

;

in all other ases k

2

is hosen by applying the prf to the value 2 and with the same key used to

derive k

1

(e.g.

^

S-real will hoose k

2

= prf

g

xy

(2)). The proofs of lemmas in Setion 4.3.3 now

need to be augmented with an extra simulation of the enryption funtion under a random key.

Any deviation from the attaker's advantage from the non-enryption ase results in a break of

DDH (i.e., a onstrution of a distinguisher to the DDH assumption) or a break to the prf family

(i.e., a onstrution of a distinguisher against this family).

In order to show serey protetion against a passive attaker (note that a passive attaker

means an eavesdropper in the network that does not ollaborate with the SK-attaker whih is

ative by de�nition) we onsider a run of the protool where k

2

is hosen randomly (as under

^

S-allr). In this ase semanti seurity against a passive attaker follows from the assumption that

the enryption funtion (under a random seret key) is semantially seure against hosen plaintext

attaks. Using the indistinguishability between

^

S-allr and

^

S-real (re-proven as skethed before

for the ase of enrypted �

0

) we get a guarantee of semanti seurity also under the real runs of

the protool (as represented by

^

S-real).

In the ase of the �nish message, the seurity guarantee is stronger and the serey protetion

an stand ative attakers too (assuming a suitable enryption funtion seure against ative attaks

[4, 16℄). We an show that for any omplete session (ID

i

; s; ID

r

) that is not exposed by the attaker

(i.e., neither this session or its mathing session are orrupted), breaking the semanti seurity of the

information transmitted under en

k

2

in the �nish message of session (ID

i

; s) implies a distinguishing

test between k

2

and a random (enryption) key. This in turn an be used to build an attak against

the SK-seurity of the protool or against one of its underlying ryptographi primitives.

5.4 A four message variant: IKE main mode

Here we study a four-message variant of the �

0

protool. The interest in this protool is two-fold:

on one hand, if enryption is added to it (as disussed below) it allows onealing the responder's

identity from ative attakers and the initiator's identity from passive attaks. This is in ontrast

to �

0

where the strong ative protetion is provided to the initiator's identity (see Setion 5.3).

The other soure of interest for this protool is that it atually represents the ore ryptographi

skeleton of the so alled \main mode with signature authentiation" in IKE (whih is one of the

two signature-based protools in IKE { see Setion 5.2 for a disussion of the other IKE variant).

The four-message protool, denoted �

1

, is similar to �

0

exept that the responder delays its

authentiation (via sig

r

) to a fourth message. The protool is:

I!R: s; g

x

R!I: s; g

y

I!R: s; ID

i

; sig

i

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s; ID

i

)

R!I: s; ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)

The seurity analysis of �

1

is similar to that of �

0

as presented in Setion 4. It follows the

same basi logi and struture of that proof but it requires some hanges due to the addition of

the fourth message and the fat that the responder authentiates after the initiator. In partiular,

26

this requires some hanges to the de�nition of the \abort events" related to the

^

S-simulators from

Setion 4.3.2 and the statement of Lemma 7. The adaptation, however, of the previous proof to

this new protool is mostly straightforward. The details are omitted. One important point to note

is that in this ase (as opposed to �

0

{ see Setion 5.1) the use of the tags \0" and \1" is essential

for seurity; at least if one regards reetion attaks (where the attaker impersonates the initiator

of the exhange as responder by just replying to eah of the initiator's messages with exatly the

same message) as a real seurity threat (see disussion below).

Providing identity onealment in �

1

is possible via the enryption of the last two messages

of the protool (under a key k

2

= prf

g

xy

(2) as in Setion 5.3). In this ase, the identity ID

r

is

proteted against ative attaks, while ID

i

against passive attakers.

IKE's main mode. Protool �

1

with the ma inluded under the signature (as in Setion 5.2),

with enryption of the last two messages (not inluding the session-id s), and without the \0"; \1"

tags is essentially the \main mode signature authentiation" in IKE. (There are some other se-

ondary di�erenes suh as: (i) the session id s equals a pair s

1

; s

2

, where s

1

; s

2

are \ookies"

exhanged between the parties in two additional messages preeding the above four-message ex-

hange, and (ii) the MAC funtion is implemented using prf

g

xy

). Our analysis here applies to this

IKE protool exept for the fat that IKE does not use the \0"; \1" tags and thus it is open to

reetion attaks. We note that without the use of these tags the protool an be proven seure

in our model if exhanges from a party with itself are onsidered invalid, or if the initiator veri�es,

for example, that the inoming DH exponent in the seond message di�ers from the one sent in

the initial message. From a pratial point of view, these potential reetion attaks have been

regarded as no real threats in the ontext of IKE; in partiular based on other details of the IKE

spei�ation, suh as the way enryption is spei�ed, that make these attaks unrealisti. Yet, the

addition of tags as in �

1

would have been advisable to lose these \design holes" even if urrently

onsidered as theoretial threats only.

Note: In ase that the MAC goes under the signature (as in IKE and in Setion 5.2) then the

\0"; \1" tags an go under the MAC only. Moreover, in this ase one an dispense of these tags

and use instead di�erent (and omputationally independent) keys k

1

and k

0

1

to key the MAC going

from ID

i

to ID

r

and from ID

r

to ID

i

, respetively.

5.5 Not signing the peer's DH exponent

The protools as presented before take are of signing eah party's own DH exponent as well as

the peer's DH exponent. While the former is stritly neessary for seurity (against \man in the

middle" attaks), the later is not essential and is used mainly for simplifying the proofs. If the

peer's exponent is not inluded under the signature then the proofs beome more involved sine the

essential binding between g

x

and g

y

(for example, in Lemma 7 item 4) annot be argued diretly

but via a binding of these exponents to the session id.

5.6 Hashing g

xy

: the HDH assumption

We mentioned in Setion 3 that it is advisable in pratie to hash the DH value g

xy

to the length

of the prf's key from whih further keys are derived. In partiular, this may result in better

seurity of the resultant hashed bits relative to the initial plain string g

xy

. The use of all of g

xy

as if they were all perfetly random is generally justi�ed by the DDH assumption (see Assumption

5). However, while this assumption is onsidered \standard" these days, it atually onstitutes

27

a very strong onjeture about the strength of the DH key g

xy

: namely, that all bits in this key

are simultaneously indistinguishable from random for an observer of g

x

and g

y

. Currently, there

is no evidene against this strong onjeture, yet, whenever possible, it is best to rely on weaker

assumptions. A possible weakening of DDH is to assume the indistinguishability of the distributions

Q

0

and Q

1

de�ned in Assumption 5 when the values g

xy

and g

z

are replaed with h(g

xy

) and h(g

z

),

respetively; where h is a randomly hosen element from a family of hash funtions (suh as a

ryptographi hash funtion family or universal hash funtions). This approah was reently taken

in [8℄ where this weaker assumption is referred to as the \Hashed DiÆe-Hellman Assumption (HDH)".

We point out that the IKE protools use a key derivation tehnique from g

xy

based on this approah

with the \hashing" implemented via a family of pseudorandom funtions. A more ommon pratie

is to just use a single (idealized) hash funtion H (suh as SHA-1) to hash the DH key.

Referenes

[1℄ M. Bellare, R. Canetti and H. Krawzyk, \A modular approah to the design and analysis

of authentiation and key-exhange protools", 30th STOC, 1998.

[2℄ M. Bellare and P. Rogaway, \Entity authentiation and key distribution", Advanes in

Cryptology, - CRYPTO'93, Leture Notes in Computer Siene Vol. 773, D. Stinson ed,

Springer-Verlag, 1994, pp. 232-249.

[3℄ R. Canetti, \Universally Composable Seurity: A New paradigm for Cryptographi Proto-

ols", 42nd FOCS, 2001. Full version available at http://eprint.iar.org/2000/067.

[4℄ Canetti, R., and Krawzyk, H., \Analysis of Key-Exhange Protools and Their Use for

Building Seure Channels", Advanes in Cryptology { EUROCRYPT 2001, Full version in:

http://eprint.iar.org/2001/040.

[5℄ Canetti, R., and Krawzyk, H., \Universally Composable Notions of Key Ex-

hange and Seure Channels", Eurorypt 02, 2002. Full version available at

http://eprint.iar.org/2002/059.

[6℄ R. Cramer and V. Shoup, \A Pratial Publi Key Cryptosystem Provable Seure Against

Adaptive Chosen Ciphertext Attak", In Crypto '98, LNCS No. 1462, pages 13{25, 1998.

[7℄ W. DiÆe, P. van Oorshot and M. Wiener, \Authentiation and authentiated key ex-

hanges", Designs, Codes and Cryptography, 2, 1992, pp. 107{125.

[8℄ Gennaro, R., Krawzyk H., and Rabin, T., \Hashed DiÆe-Hellman: A Hierarhy of DiÆe-

Hellman Assumptions", manusript, Feb 2002.

[9℄ O. Goldreih, \Foundations of Cryptography: Basi Tools", Cambridge Press, 2001.

[10℄ D. Harkins and D. Carrel, ed., \The Internet Key Exhange (IKE)", RFC 2409, Nov. 1998.

[11℄ ISO/IEC IS 9798-3, \Entity authentiation mehanisms | Part 3: Entity authentiation

using asymmetri tehniques", 1993.

[12℄ Karn, P., and Simpson W.A., \The Photuris Session Key Management Protool", draft-ietf-

ipse-photuris-03.txt, Sept. 1995.

28

[13℄ S. Kent and R. Atkinson, \Seurity Arhiteture for the Internet Protool", Request for

Comments 2401, Nov. 1998.

[14℄ Krawzyk, H., \SKEME: A Versatile Seure Key Exhange Mehanism for Internet,", Pro-

eedings of the 1996 Internet Soiety Symposium on Network and Distributed System Se-

urity, Feb. 1996, pp. 114-127. http://www.ee.tehnion.a.il/~hugo/skeme-lns.ps

[15℄ Krawzyk, H., IPse mailing list arhives, http://www.vpn.org/ietf-ipse/, April-June

1995.

[16℄ Krawzyk, H., \The order of enryption and authentiation for proteting ommunia-

tions (Or: how seure is SSL?)", Crypto'2001. Full version in: Cryptology ePrint Arhive

(http://eprint.iar.org/), Report 2001/045.

[17℄ Krawzyk, H., \SIGMA: the `SIGn-and-MA' Approah to Authentiated DiÆe-Hellman

Protools", http://www.ee.tehnion.a.il/~hugo/sigma.html

[18℄ Meadows, C., \Analysis of the Internet Key Exhange Protool Using the NRL Protool An-

alyzer", Proeedings of the 1999 IEEE Symposium on Seurity and Privay, IEEE Computer

Soiety Press, May 1999.

[19℄ A. Menezes, P. Van Oorshot and S. Vanstone, \Handbook of Applied Cryptography," CRC

Press, 1996.

[20℄ Orman, H., \The OAKLEY Key Determination Protool", Request for Comments 2412,

Nov. 1998.

[21℄ V. Shoup, \On Formal Models for Seure Key Exhange", Theory of Cryptography Library,

1999. Available at: http://philby.usd.edu/ryptolib/1999/99-12.html.

A On The Universal Composability of Protool �

0

(preliminary version)

An alternative way for de�ning the seurity requirements from key exhange protools is via the

framework of universally omposable (UC) seurity [3℄. Plaing the [4℄ notion of SK-seurity within

the UC framework was done in [5℄. We present a UC de�nition of seure key exhange in the post-

spei�ed peer setting, and show that protool �

0

presented here satis�es this de�nition. We also

argue that the UC notion suÆes for realizing seure hannels via standard protools, and that it

implies the notion of SK seurity in the post-spei�ed peer setting (De�nition 3 above).

One advantage of working in the UC framework is that it guarantees strong omposability

guarantees with arbitrary protools. Another advantage is that the presentation and analysis of

protools an be done in a simpli�ed setting where only a single generation of a key takes plae

between two parties. Seurity in a general setting where multiple keys are generated in multiple

\pairwise sessions" among many pairs of parties is guaranteed via general omposition theorems.

This holds even when all \pairwise sessions" use the same instane of the signature sheme. See

[5℄ for more details.

The presentation below assumes familiarity with the UC framework and its use for de�ning

seurity for key-exhange protools. It also assumes familiarity with the ideal signature funtion-

ality, F

sig

. All this preliminary material an be found in Setion 3 in [5℄. (For self ontainment,

funtionality F

sig

is presented in Figure 3.) In this setion we use I to denote the identity of the

initiator, and use R to denote the identity of the responder.

29

A.1 Universally Composable Key Exhange with Post-Spei�ed Peers

We present a UC notion of seure key exhange in the post-spei�ed peer setting. This is done be

presenting an ideal key exhange funtionality that is aimed at apturing the fat that the peer

identity is not known upon protool invoation, but it beomes known via the protool and is part

of the output. This funtionality, denoted F

post�ke

, is presented in Figure 2. Several remarks on

the formulation of F

post�ke

follow:

Funtionality F

post�ke

F

post�ke

proeeds as follows, running on seurity parameter k. The symbols I; R; P below indiate

arbitrary identities of parties.

1. Upon reeiving a value (Establish-session; I; s; aux) from the �rst party, where I is the

identity of that party, send (s; I; aux) to the adversary. Upon reeiving a value (Establish-

session; R; s; aux) from the seond party, where R is the identity of that party, send

(s;R; aux) to the adversary; then, hoose a value �

R

 f0; 1g

k

and ontinue to the next

step.

2. (a) Upon reeiving a value (Output; s; I; P; �

0

) from the adversary, proeed as follows. If

both parties are unorrupted at this point then ignore (P; �

0

) and send (Output; s; R; �)

to I . If either party is orrupted then send (Output; s; P; �

0

) to I , unless P is an identity

of an unorrupted party (in whih ase do nothing).

(b) Upon reeiving a value (Output; s; R; P; �

0

) from the adversary, proeed as follows. If

both parties are unorrupted at this point then ignore (P; �

0

) and send (Output; s; I; �)

to R. If either party is orrupted then send (Output; s; P; �

0

) to R, unless P is an

identity of an unorrupted party (in whih ase do nothing).

3. If the adversary orrupts a party after � is hosen and before � is sent to that party, then

hand � to the adversary. Otherwise provide no information to the adversary.

Figure 2: The Post-Spei�ed Peer Key Exhange funtionality

1. The interation takes plae among an unbounded number of parties, whose identities are

not known to F

post�ke

in advane. Still, F

post�ke

interats only with two parties, whose

identities beome known when the inputs arrive. Reall that the environment determines the

identities of the parties, as well as the inputs of F

post�ke

. In partiular, Z an determine the

identities based on information gathered in other protool exeutions, et.

2. The peer identities are not part of the inputs. Nonetheless, they appear as part of the outputs

of both parties. This means that the parties learn the peer identities as part of the protool

exeution.

3. When one of the two parties is orrupted, the adversary is allowed to set the peer identity in

the output of the other party to any arbitrary value, under the ondition that this value is

not an identity of an existing and unorrupted party. This last provision makes sure that the

adversary annot \impersonate" other unorrupted parties. (Tehnially, we assume that the

ideal proess allows F

post�ke

to know the identities of all unorrupted parties.)

30

4. Eah party has an input �eld aux, in addition to its own identity and the session identi�er.

This �eld represents arbitrary additional information that may help the protool exeution;

however it does not play a role in the seurity requirements. Protool �

0

will use this �eld

to di�erentiate between the initiator and the responder roles. In addition, this �eld may be

used to inorporate some routing information for message delivery, et.

5. Funtionality F

post�ke

allows the adversary to learn the session key � only if it orrupts a

party before the output message is sent to that party. One the output message is sent, the

adversary does not learn �, even if the party is orrupted. This reets the perfet forward

serey requirement (see [5℄). Naturally, the funtionality an be relaxed to apture protools

that guarantee only restrited versions of forward serey, or no forward serey at all.

6. If the initiator is orrupted after it has generated output but before the responder generated

output, then F

post�ke

allows S to ontrol the output of the responder. We note that protool

�

0

atually provides a somewhat stronger guarantee: The protool guarantees that, in this

ase, the responder always outputs the same value as the initiator. Still we hoose not to

enfore this requirement in F

post�ke

, sine it is not neessary for the main appliation, namely

realizing seure hannels.

7. F

post�ke

expliitly sends the identities I and R to the adversary. This reets the fat that

identity hiding is not guaranteed. Requiring that the identities of the parties remain unknown

to the adversary (unless ofourse it orrupts one of the parties) an be aptured by modifying

F

post�ke

so that the messages to the adversary in Step 1 will not inlude the identities.

A.2 Protool �

0

seurely realizes F

post�ke

We start by re-formulating protool �

0

in the F

sig

-hybrid model (i.e., in the hybrid model with

aess to the ideal signature funtionality). See Figure 4. For self ontainment, we also reall the

signature funtionality, F

sig

, in Figure 3. We then show:

Theorem 18 Protool �

0

seurely realizes F

post�ke

in the F

sig

-hybrid model.

Proof: Let A be an adversary in the F

sig

-hybrid model. We onstrut an ideal-proess adversary

(i.e., a simulator) S suh that no environment Z an tell whether it is interating with A and

parties running �

0

in the F

sig

-hybrid model, or with S in the ideal proess for F

post�ke

. (Reall

that the interation takes plae between only two parties, I and R, whose identities are a-priori

known only to Z. In fat, we an assume that Z hooses these identities adaptively during the

interation.)

Simulator S runs a simulated opy of A, and simulates for A an interation with parties running

(a single pairwise session of) �

0

. This is done with the exeption that the generated keys and the

peer identities are the values reeived by the parties from F

post�ke

in the ideal proess rather than

the values agreed in the simulated protool exeution. More preisely, S proeeds as follows.

1. Communiation with the environment: Any input from Z is forwarded to A. Any

output of A is opied to the output of S (to be read by Z).

2. Simulating the initial ativation of an unorrupted I. When reeiving (s; I; \init")

from F

post�ke

, S feeds A with a Start message (s; g

x

) sent by I, where x is hosen randomly

by S. In addition, S feeds A with a message (signer; \0" Æ s; I) from F

sig

(representing the

fat that I registered with F

sig

for the appropriate session identi�er).

31

Funtionality F

sig

F

sig

proeeds as follows, running with an unbounded number of parties and an adversary.

Set-up: In the �rst ativation, expet to reeive a value (signer; sid) from some party S. (Note

that S may be a orrupted party.) Then, send (signer; sid; S) to the adversary. From now

on, ignore all (signer; sid) values. (That is, the funtionality serves a single signer.)

Signature generation: Upon reeiving a value (sign; sid;m) from S, hand (sign; sid;m) to

the adversary. Upon reeiving (signature; sid;m; �) from the adversary, set s

m

= �, send

(signature; sid;m; �) to S, and request the adversary to deliver this message immediately.

Save the pair (m; s

m

) in memory.

Signature veri�ation: Upon reeiving a value (verify; sid; S

0

;m; �) from some party V , do:

1. If S

0

= S (i.e., if the signer identity in the veri�ation request agrees with the identity of

the atual signer) then do: If m was never before signed then let v = 0. If m was signed

before (i.e., s

m

is de�ned) and � = s

m

then let v = 1. If m was signed but s

m

6= � then

let the adversary deide on the value of v. (That is, hand (verify; sid; V; S

0

;m; �) to

the adversary. Upon reeiving � 2 f0; 1g from the adversary, let v = �.)

2. If S

0

6= S then do: If S

0

is unorrupted then set v = 0. Otherwise, let the adversary

deide on the value of v, as in Step 1.

3. One the value of v is set, send (verified; sid;m; v) to V , and request the adversary

to deliver this message immediately.

Figure 3: The signature funtionality, F

sig

.

3. Simulating the initial ativation of an unorrupted R. When reeiving (s;R; \resp")

from F

post�ke

, S feeds A with a message (signer; \1" Æ s;R) from F

sig

(representing the

fat that R registered with F

sig

for the appropriate session identi�er).

4. Simulating reeipt of a Start message by and unorrupted R. When A delivers a

Start message (s; �) to R, S �rst veri�es that in the ideal proess it has reeived a message

(s;R; \resp") from F

post�ke

(indiating that R was ativated to exhange a key as a respon-

der). Next, S hooses y randomly, and feeds A with a Response message (s; g

y

; R; �

r

; t

r

) from

R. Here t

r

= ma

k

1

(\1"; s; R), k

1

= prf

�

y

(1), and �

r

is a signature obtained be handing A

the message (sign; \1" Æ s; �; g

y

) in the name of F

sig

, and setting �

r

to the value returned

by A.

5. Simulating reeipt of a Response message by an unorrupted I. When A delivers a

Response message (s; �; P; �

r

; t

r

) to an unorrupted I, S proeeds as follows:

(a) S veri�es that in the simulation I has previously sent a Start message (s; g

x

).

(b) S mimis the veri�ation proess of �

r

, by mimiking the behavior of F

sig

on input

(verify; \1" Æ s; I; P; (g

x

; �); �

r

) from I. (That is, If P = R, then veri�ation sueeds

if �

r

was previously generated by A in response to a request, generated by S in the

name of F

sig

, of the form (sign; \1" Æ s; g

x

; �). If P 6= R is an identity of an ex-

isting unorrupted party then veri�ation fails. Otherwise, S feeds A with a message

(verify; \1" Æ s; I; P; (g

x

; �); �

r

) in the name of F

sig

, and aepts �

r

if A says to.)

32

Protool �

0

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. The players have aess to multiple

opies of the ideal signature funtionality F

sig

. The protool also uses a message authentiation

funtion ma, and a pseudorandom funtion family prf.

The protool ations

1. Upon ativation with input (Establish-session; s; I; \init") the party learns that it is an

initiator with identity I . It then sends the Start message (s; g

x

), where the DH exponent g

x

is omputed with x

R

 Z

q

and x is stored in the state of session (I; s).

In addition, I initializes a opy of F

sig

with session identi�er \0" Æ s, by sending a message

(signer; \0" Æ s) to F

sig

.

2. When ativated with input (Establish-session; s; R; \resp"), the party learns that it is a

responder with identity R. It then initializes a opy of F

sig

with session identi�er \1" Æ s by

sending a message (signer; \1" Æ s) to F

sig

, and waits for delivery of a Start message.

When a Start message (s; g

x

) is delivered, R generates the response message

s; g

y

; R; �

r

;ma

k

1

(\1"; s; R), where the DH exponent g

y

is omputed with y

R

 Z

q

, the signa-

ture �

r

is omputed by sending (sign; \1"Æs; g

x

; g

y

) to F

sig

and reording the returned value,

and k

1

= prf

g

xy

(1). (The value g

xy

is omputed by R as (g

x

)

y

.) Next a value k

0

= prf

g

xy

(0)

is omputed and kept in memory, and the values y and g

xy

are erased.

3. Upon reeiving the response message (s; g

y

; R; �

r

; t

r

), I �rst veri�es the signature �

r

by send-

ing (verify; \1" Æ s;R; (g

x

; g

y

); �

r

) to F

sig

. I also veri�es that t

r

= ma

k

1

(\1"; s; R), where

k

1

= prf

g

xy

(1) and g

xy

is omputed as (g

y

)

x

. If any of these veri�ation steps fails the

session is aborted, and the session state is erased. If veri�ation sueeds then I sends

the �nish message (s; I; �

i

;ma

k

1

(\0"; s; I)) (where the signature �

i

is omputed by send-

ing (sign; \0" Æ s; g

y

; g

x

) to F

sig

and reording the obtained value), ompletes the session

with loal output (Output; s; R; k

0

) where k

0

= prf

g

xy

(0), and erases the session state.

4. Upon reeiving the �nish message s; I; �

i

; t

i

, R veri�es the signature by sending (verify; \0"Æ

s; I; (g

y

; g

x

); �

i

) toF

sig

, where g

y

is the DH value reeived from R in the response message, and

veri�es that t

i

= ma

k

1

(\0"; s; I). If any of the veri�ations steps fails the session is aborted,

otherwise R ompletes the session with loal output (Output; s; I; k

0

) where k

0

= prf

g

xy

(0),

and erases the session state.

Figure 4: The basi SIGMA protool, in the F

sig

-hybrid model

() S veri�es that t

r

= ma

k

1

(\1"; s; P), where k

1

= prf

�

x

(1).

(d) If all veri�ations sueed then S feeds A with a Finish message (s; I; �

i

;ma

k

1

(\0"; s; I))

sent by I, where the signature �

i

is set to A's response after being handed (sign; \0" Æ

s; �; g

x

) in the name of F

sig

.

In addition S sends, in the ideal-proess interation, the message (Output; s; I; (P; �

0

))

to F

post�ke

, where �

0

= prf

�

x

(0). One F

post�ke

sends the output message to I, S

delivers this message.

6. Simulating reeipt of a Finish message by an unorrupted R. When A delivers a

Finish message (s; P; �

i

; t

i

) to R, S proeeds as follows:

(a) S veri�es that in the simulation R has previously reeived a Start message (s; �) and

33

has sent a Response message (s; g

y

; R; �

r

; t

r

).

(b) S mimis the veri�ation proess of �

r

, by mimiking the behavior of F

sig

on input

(verify; \0" Æ s;R; P; (g

y

; �); �

i

) from R. (This is done as in Step 5b.) Next S veri�es

that t

i

= ma

k

1

(\0"; s; P), where k

1

= prf

�

y

(1).

() If all veri�ations sueed then S sends, in the ideal-proess interation, the message

(Output; s; I; (P; �

0

)) to F

post�ke

, where �

0

= prf

�

y

(0). One F

post�ke

sends the out-

put message to R, S delivers this message.

7. Simulating party orruptions. If A orrupts either I or R then S orrupts the same party

in the ideal proess and hands A the internal data of that party. Spei�ally:

(a) If I is orrupted after the Start message is sent but before the Response message is

reeived then S hands A the seret exponent x from the simulation.

(b) If R is orrupted after the Response message is sent then but before the Finish message

is reeived then S hands A the value k

1

omputed in Step 4, together with the session

key obtained from F

post�ke

.

() If I is orrupted after the Finish message is sent, or if R is orrupted after the Finish

message is reeived, then all internal state of the orrupted party should be erased and

A obtains nothing.

8. Simulating F

sig

for A. S simulates F

sig

for A, in the natural way. That is, whenever A

generates (in the name of a orrupted party) some message to F

sig

, S responds as F

sig

would.

The ommuniations between A and the various opies of F

sig

is also simulated in the obvious

way. (It is stressed that S may need to simulate for A several di�erent opies of F

sig

.)

Analysis of S. Demonstrating the validity of S, we show that for any environment Z:

exe

F

sig

�

0

;A;Z

� ideal

F

post�ke

;S;Z

(1)

This is done as follows. First we de�ne an event e (for \early orrupt") and demonstrate that,

given event e, the views of Z in the two interations are identially distributed. (Essentially e

is the event where one of the parties is orrupted before any of the parties outputs the session

key.) We then onentrate on demonstrating (1) under the ondition that event e does not our.

This is done by de�ning two hybrid distributions, H

1

and H

2

, and demonstrating that, given

that event e does not our, we have exe

F

sig

�

0

;A;Z

� H

1

� H

2

� ideal

F

post�ke

;S;Z

. The leftmost

similarity is demonstrated base on the Deisional DiÆe-Hellman assumption. The seond similarity

is demonstrated based on the seurity of the prf funtion family in use. The rightmost similarity

is demonstrated base on the seurity of the ma funtion family in use.

The event e. Consider an interation of Z with A and parties running �

0

in the F

sig

-hybrid

model. Here event e is the event where A orrupts a party before any of the parties generated an

output value. In an interation of Z with S in the ideal proess for F

post�ke

, event e is the event

where the simulated A within S orrupts a party before S has sent the �rst (Output...) message

to F

post�ke

. We have:

Claim 19 Conditioned on event e, the distributions exe

F

sig

�

0

;A;Z

and ideal

F

post�ke

;S;Z

are iden-

tial.

34

Proof: The laim follows by inspeting the odes of �

0

and S. Spei�ally, onsider the joint view

of Z and the simulated A within S in the ideal proess. Sine S perfetly mimis protool �

0

for

the simulated A, we have that this joint view is distributed identially to the joint view of Z and

A in a real interation with �

0

, with the only possible exeption that the outputs generated by

F

post�ke

may be inonsistent with the rest of the interation. However, if event e ours then,

in the ideal proess, S orrupts one of the parties before the (Output...) message is sent to

F

post�ke

. In this ase F

post�ke

sends to both parties the output values generated by S and the

simulation beomes perfet (i.e., the joint view of Z and the simulated A within S is distributed

identially to the joint view of Z and A in a real interation with �

0

in the F

sig

-hybrid model). 2

In th rest of the proof we assume that event e ours with probability that is non-negligible

bounded away from 1. (Otherwise we onlude that the two sides of 1 are statistially indistin-

guishable.)

The hybrid distributions. Let exeje denote the distribution of exe

F

sig

�

0

;A;Z

onditioned on

the event that e does not our. Similarly, let idealje denote the distribution of ideal

F

post�ke

;S;Z

onditioned on the event that e does not our. We de�ne two hybrid distributions H

1

and H

2

,

and demonstrate that exeje � H

1

� H

2

� idealje. The hybrid distributions are de�ned as

follows:

� H

1

takes the distribution of the output of Z from a hypothetial interation whih is idential

to a real interation with A and parties running �

0

in the F

sig

-hybrid model (onditioned

on the event that e does not our), with the following exeption. Whenever �

0

instruts

the initiator (resp., the responder) to evaluate the pseudorandom funtion prf with the key

�

x

(resp., �

y

), the parties will now evaluate prf with an independently hosen random key

r

R

 Z

p

. (Both parties use the same value of r.) That is, we now have that the ma key is

k

1

= prf

r

(1) and the output key is � = prf

r

(0).

� H

2

is idential to distribution H

1

, with the exeption that the parties hoose k

1

and � to be

independent and random values in the range of prf. (Both parties have the same value for

k

1

; similarly both parties have the same value for �.)

Abusing notation, we use H

1

and H

2

also to denote the interations of Z that lead the the orre-

sponding output distributions. We show:

Claim 20 Assume that the Deisional DiÆe-Hellman assumption holds. Then exeje � H

1

.

Proof: Assume that there exists an environment Z and an adversary A suh that Z distinguishes

with non-negligible probability between the interations exeje and H

1

. We onstrut an adver-

sary D that violates the Deisional DiÆe-Hellman assumption. That is, D is given g

a

; g

b

; g

z

where

a; b

R

 Z

q

, and an distinguish between the ase where z = ab and the ase where z

R

 Z

q

.

Given g

a

; g

b

; g

z

, adversary D runs a opy of Z on a simulated interation with A and parties

running �

0

in the F

sig

-hybrid model. (D plays for Z the roles of A and the parties.) This is done

with the following exeptions. First, when the initiator sends the Start message, D sets the g

x

value

to equal g

a

, the �rst element from its input. Similarly, when the responder sends the Response

message, D set the g

y

value to equal g

b

, the seond element from its input. Next, that whenever

the responder (resp., the initiator) instruted to run prf

�

y

() (resp., prf

�

x

()), then D replaes

this evaluation with an evaluation of prf

g

z

(). Finally, if Z orrupts a party before the initiator

generates output then D aborts and outputs a random bit. Otherwise, D outputs whatever Z

outputs.

35

Consider �rst the ase where z

R

 Z

q

, independently from a and b. In this ase, the view of

the simulated Z, onditioned on the event that D did not abort, is distributed identially to the

view of Z in interation H

1

. This is so sine in both interations the values g

x

, g

y

, and the key to

prf are independently and randomly hosen. Furthermore, in neither interation Z sees the seret

exponents x or y.

Next, onsider the ase where z = ab. We laim that in this ase the view of simulated Z,

onditioned on the event that D did not abort, is distributed identially to the view of Z in

interation exeje. Indeed, the only potential mismath between the two interations is if, in

exeje, the initiator aepts a Response message with the real peer identity R and a value �

that is di�erent than the value g

y

hosen by the responder, or alternatively the responder aepts

a Finish message where the value � is di�erent than the value g

x

hosen by the initiator. However,

suh a mismath annot our due to the properties and use of F

sig

. Spei�ally, the initiator

aepts the Response message with peer identity R only if the signature �

r

veri�es as a signature

on g

x

; � with session identi�er \1" Æ s and signer R, and the only way for this to our is if the

responder R registered as the signer with session identi�er \1" Æ s and then asked F

sig

to sign

(g

x

; �), or in other words � = g

y

. Similarly, the responder aepts the Response message with peer

identity I only if the signature �

i

veri�es as a signature on g

y

; � with session identi�er \0" Æ s and

signer I, and the only way for this to our is if the initiator I registered as the signer with session

identi�er \0" Æ s and then asked F

sig

to sign (g

y

; �), or in other words � = g

x

.

We onlude thatD distinguishes with non-negligible probability between the ase where z

R

 Z

q

and the ase where z = ab. 2

Claim 21 Assume that prf is a seure pseudorandom funtion family. Then H

1

� H

2

.

Proof: Assume that there exists an environment Z and an adversary A suh that Z distinguishes

with non-negligible probability between the interationH

1

and the interationH

2

. We onstrut an

adversary D that breaks the seurity of the funtion family prf. That is, D has aess to an orale

funtion f , and distinguishes with non-negligible probability between the ase where f() = prf

r

()

where r is a random value, and the ase where f is a random funtion with the appropriate domain

and range.

Adversary D runs a opy of Z on a simulated interation with A and parties running �

0

in the

F

sig

-hybrid model. (D plays the roles of A and the parties for Z.) This is done with the exeption

that whenever a party is instruted to ompute k

1

(either in generating the Response message or in

generating the Finish message), D instead lets k

1

= f(1). Similarly, whenever a party is instruted

to generate the session key �, D sets the value of the session key to � = f(0). If Z orrupts a

party before the initiator generates output then D aborts and outputs a random bit. Otherwise,

D outputs whatever Z outputs.

It is easy to see that if f is a random funtion then the view of the simulated Z (given that D

does not abort) is distributed identially to its view in interation H

2

. Similarly, if f() = prf

r

()

and Z does not abort, then the view of the simulated Z is distributed identially to its view in

interation H

1

. 2

Claim 22 Assume that ma is a seure message authentiation funtion family. Then H

2

�

idealje.

Proof: The interations H

2

and idealje are idential exept for the following two points. First,

in idealje the peer identity in the output of the initiator is the identity R that appears in the

36

input of the responder; In ontrast, in H

2

that peer identity is the identity P that appears in the

Response message reeived by the initiator (and this identity may potentially be di�erent than R).

Seond, if the responder is unorrupted and generates output, then in idealje the peer identity in

the output of the responder is the identity I that appears in the input of the initiator; In ontrast,

in H

2

that peer identity is the identity P that appears in the Finish message reeived by the

responder.

We prove the laim by demonstrating that in interationH

2

the probability that a party outputs

a peer identity that is di�erent than the identity in the input of the other party is negligible.

This is done via redution to the seurity of ma as a message authentiation funtion against

hosen message attaks. Spei�ally, we onstrut an adversary D that, given orale aess to a

funtion ma

r

() where r is a randomly hosen key, generates a message m

�

and a tag t� suh that

t

�

= ma

r

(m

�

) and D has not queried the orale on m

�

.

Adversary D runs a opy of Z on a simulated interation with A and parties running �

0

in the

F

sig

-hybrid model. (D plays the roles of A and the parties for Z.) Whenever a party is instruted

to ompute (or verify) t = ma

k

1

(m) for some m, D sets t to the response of its orale on query m.

Finally, if the initiator outputs a peer identity P 6= R then D outputs m

�

= (\1"; s; P) together

with the tag t

�

in the Response message reeived by the initiator. Similarly, if the responder

outputs a peer identity P 6= I then D outputs m

�

= (\0"; s; P) together with the tag t

�

in the

Finish message reeived by the responder. (If Z orrupts a party before the initiator generates

output then D aborts with no output.)

Analyzing D, notie that m

�

was never generated by either party, thus it was never before

queried by D. (Here we use the fat that the text in the ma appliation by the initiator is

di�erent than the text in the ma appliation by the responder. This is guaranteed by the \0"/\1"

�eld.) Furthermore, t

�

= ma

r

(m

�

), otherwise the party would not have generated output. Finally,

Z's view when run by D is idential to its view in interation H

2

. Thus Z outputs a suessful

forgery, before orrupting any party, with non-negligible probability. 2

This ompletes the analysis of S and the proof of the theorem. 2

A.3 Obtaining UC Seure Channels

We argue that standard protools for realizing seure hannels in the F

ke

-hybrid model exhange

remain seure when the key exhange protool in use seurely realizes F

post�ke

. This is done as

follows. Reall that in [5℄ a seure-hannels ideal funtionality, F

s

, is formulated; next, a protool

is shown that seurely realizes F

s

in the F

ke

-hybrid model, where F

ke

is the ideal key exhange

funtionality in the pre-spei�ed peer setting. (This protool is the standard protool that �rst

uses the key exhange funtionality to generate a session key, and then enrypts and authentiates

eah message.)

We laim that a simple modi�ation of this seure hannels protool results in a protool that

seurely realizes F

s

in the F

post�ke

-hybrid model. The modi�ation is as follows: instead of

invoking F

ke

with the pre-spei�ed identity of the peer, invoke F

post�ke

with no peer identity

spei�ed; next, when F

post�ke

returns the atual peer identity, verify that this identity agrees with

the desired peer identity, and abort the session if there is a mis-math. Inspeting the proof of [5℄,

it is easy to see that this modi�ed protool seurely realizes F

s

in the F

post�ke

-hybrid model. We

omit further details.

37

A.4 Seurely Realizing F

post�ke

Implies SK-seurity

We argue that the UC notion of key exhange in the post-spei�ed peer setting implies the orre-

sponding SK seurity notion (De�nition 3). More preisely, let � be a protool that seurely realizes

F

post�ke

, and let �̂ denote the multi-session extension of �. (See [5, Se. 3℄ for a de�nition of the

multi-session extension of a protool.) We laim that protool �̂ is SK-seure in the post-spei�ed

peer setting. This is shown following the lines of the treatment in [5℄ for the pre-spei�ed peer ase.

First, we formulate a variant of the test environment, Z

test

, that aptures the post-spei�ed peer

variant of SK-seurity. (The only di�erene is in the way Z

test

de�nes mathing sessions.) Next

we use essentially the same argument as in [5℄ to show that no adversary that interats with parties

running �̂ and (the reformulated) Z

test

an skew the output of Z

test

more than negligibly away

from uniform over f0; 1g. Also here, we omit further details.

38

