
Se
urity Analysis of IKE's Signature-based Key-Ex
hange Proto
ol

Ran Canetti

�

Hugo Kraw
zyk

y

August 26, 2002

Abstra
t

We present a se
urity analysis of the DiÆe-Hellman key-ex
hange proto
ols authenti
ated

with digital signatures used by the Internet Key Ex
hange (IKE) standard, and of the more

omprehensive SIGMA family of key ex
hange proto
ols. The analysis is based on an adaptation

of the key-ex
hange se
urity model from [Canetti and Kraw
zyk, Euro
rypt'01℄ to the setting

where peer identities are not ne
essarily known or dis
losed from the start of the proto
ol. This

is a
ommon pra
ti
al setting, whi
h in
ludes the
ase of IKE and other proto
ols that provide

on�dentiality of identities over the network. The rigorous study of this \post-spe
i�ed peer"

model is a further
ontribution of this paper.

�

IBM T.J. Watson Resear
h Center, Yorktown Heights, New York 10598. Email:
anetti�watson.ibm.
om.

y

EE Department, Te
hnion, Haifa, Israel. Email: hugo�ee.te
hnion.a
.il. Supported by Irwin and Bethea Green

& Detroit Chapter Career Development Chair.

An abridged version of this paper appears in the pro
eedings of Crypto'2002.

Che
k for updates of this work at http://eprint.ia
r.org.

Contents

1 Introdu
tion 1

2 The se
urity model 3

2.1 The SK-se
urity de�nition from [4℄ . 3

2.2 Adapting SK-se
urity to the post-spe
i�ed peer setting 5

3 The basi
 SIGMA proto
ol: �

0

7

4 Proof of Proto
ol �

0

11

4.1 The Statements . 11

4.2 Proof of Property P1 . 12

4.3 Proof of Property P2 . 12

4.3.1 Proof plan . 12

4.3.2 The simulators . 13

4.3.3 Detailed Proof of P2 . 16

5 Variants and Dis
ussions 23

5.1 Eliminating the initiator and responder tags in �

0

. 23

5.2 Putting the MAC under the signature . 24

5.3 En
rypting the identities . 25

5.4 A four message variant: IKE main mode . 26

5.5 Not signing the peer's DH exponent . 27

5.6 Hashing g

xy

: the HDH assumption . 27

A On The Universal Composability of Proto
ol �

0

(preliminary version) 29

A.1 Universally Composable Key Ex
hange with Post-Spe
i�ed Peers 30

A.2 Proto
ol �

0

se
urely realizes F

post�ke

. 31

A.3 Obtaining UC Se
ure Channels . 37

A.4 Se
urely Realizing F

post�ke

Implies SK-se
urity . 38

1 Introdu
tion

The Internet Key-Ex
hange (IKE) proto
ol [10℄ spe
i�es the key ex
hange me
hanisms used to

establish se
ret shared keys for use in the Internet Proto
ol Se
urity (IPse
) standards [13℄. IKE

provides several key-ex
hange me
hanisms, some based on publi
 keys and others based on long-

term shared keys. Its design emerged from the Photuris [12℄, SKEME [14℄ and Oakley [20℄ proto
ols.

All the IKE key-ex
hange options support DiÆe-Hellman ex
hanges but di�er in the way authen-

ti
ation is provided. For authenti
ation based on publi
-key te
hniques two modes are supported:

one based on publi
-key en
ryption and the other based on digital signatures.

While the en
ryption-based modes of IKE are studied in [4℄, the se
urity of IKE's signature-

based mode has not been
ryptographi
ally analyzed so far. (But see [18℄ where the IKE proto
ol

is s
rutinized under an automated proto
ol analyzer.) This later mode originates with a variant

of the STS proto
ol [7℄ adopted into Photuris. However, this STS variant, in whi
h the DH key is

signed, is a
tually inse
ure and was eventually repla
ed in IKE with the \sign-and-ma
" me
hanism

proposed in [15, 17℄. This me
hanism forms the basis for a larger family of proto
ols referred to as

SIGMA (\SIGn-and-MA
") [17℄ from whi
h the IKE signature modes are parti
ular
ases.

The main goal of the
urrent paper is to provide
ryptographi
 analysis of IKE, and the un-

derlying SIGMA proto
ols. The pra
ti
al interest in this analysis work is natural given the wide

deployment and use of IKE and the fa
t that authenti
ation via signatures is the most
ommon

mode of publi
-key authenti
ation used in the
ontext of IKE.

1

Yet, the more basi
 importan
e

of this analyti
al work is in
ontributing to a further development of a theory that supports the

analysis of
omplex and more fun
tional proto
ols as required in real-world appli
ations. Let us

dis
uss two su
h issues, that are dire
tly relevant to the design of IKE. One su
h issue (not dealt

with in previous analysis work of key-ex
hange proto
ols) is the requirement for identity
on
eal-

ment. That is, the ability to prote
t the identities of the peers to a key-ex
hange session from

eavesdroppers in the network (and, in some
ase, from a
tive atta
kers as well). While this require-

ment may be per
eived at �rst glan
e as having minor e�e
ts on the proto
ols, it a
tually poses

signi�
ant
hallenges in terms of design and analysis. One pie
e of eviden
e pointing out to this

diÆ
ulty is the fa
t that the STS proto
ol and its variants (see [7, 19℄) that are
onsidered as prime

examples of key-ex
hange proto
ols o�ering identity prote
tion, are not se
ure in general (under

ertain
ir
umstan
es they fail to ensure an authenti
ated binding between peers to the session and

the ex
hanged se
ret key

2

) The general reason behind this diÆ
ulty is the
on
i
ting
hara
ter of

the authenti
ation and identity-
on
ealment requirements.

Another issue arising in the
ontext of IKE is the possible unavailability of the peer identity at

the onset of the proto
ol. In previous analyti
al work (su
h as [2, 21, 4℄) the peer identities are

assumed to be spe
i�ed and given at the onset of a session a
tivation, and the task of the proto
ol is

to guarantee that it is this parti
ular pre-spe
i�ed peer the one whi
h the key is agreed. In
ontrast,

in IKE a party may be a
tivated to ex
hange a key with an \address" of a peer but without a

spe
i�ed identity for that peer. This is a
ommon
ase in pra
ti
al situations. For example, the

1

In parti
ular, re
ent suggestions in the IPse
 working group for variants of the key-ex
hange proto
ols in IKE

fall also under the family of proto
ols analyzed here.

2

For example, the basi
 STS proto
ol from [7℄ fails if the atta
ker
an register under its name the publi
 key of the

atta
ked party (e.g., if proof of posession is not required for PK registrarion). This failure happens regardless of the

en
ryption fun
tion used by the STS proto
ol, and also when a MAC fun
tion is used to repla
e (or on top of) the

en
ryption fun
tion. The variant in whi
h the DH key g

xy

is signed [12, 19℄ is inse
ure if the signature s
heme allows

for message re
overy (su
h as in the
ase of RSA signature) even if proof of posession is required for PK registration.

See [17℄.

1

key-ex
hange session may take pla
e with any one of a set of servers sitting behind a (url/ip) address

spe
i�ed in the session a
tivation. Or, a party may respond to a request for a key ex
hange
oming

from a peer that is not willing to reveal its identity over the network and, sometimes, not even to

the responder before the latter has authenti
ated itself (e.g., a roaming mobile user
onne
ting from

a temporary address, or a smart
ard that authenti
ates the legitima
y of the
ard-reader before

dis
losing its own identity). So, how do the parties know who they are authenti
ating? The point

is that ea
h party learns the peer's identity during the proto
ol. A se
ure proto
ol in this setting

will dete
t impersonation and will ensure that the learned identity is authenti
 (informally, if Ali
e

ompletes a session with the view \I ex
hanged the session key k with Bob", then it is guaranteed

that no other party than Bob learns k, and if Bob
ompletes the session then it asso
iates the key

k with Ali
e).

3

In this paper we refer to this general setting as the \post-spe
i�ed peer" model.

Remark. Note the
ru
ial di�eren
e between this \post-spe
i�ed peer" model and the \anonymous" model

of proto
ols su
h as SSL where the server's identity is publi
ly known from the start of the proto
ol while

the
lient's identity remains undis
losed even when the key ex
hange �nishes. In the anonymous
ase, the

lient does not authenti
ate at all to the server; authenti
ation happens only in the other dire
tion: the

server authenti
ates to the
lient. A treatment of this anonymous uni-dire
tional model of authenti
ation is

presented in [21℄.

The
ombination of the requirement for identity prote
tion and the \post-spe
i�ed peer" setting

puts additional
onstraints on the design of proto
ols. For example, the natural and simple DiÆe-

Hellman proto
ol authenti
ated with digital signatures de�ned by ISO [11℄ and proven in [4℄, is

not suitable for providing identity prote
tion in the post-spe
i�ed peer model. This is so sin
e this

proto
ol instru
ts ea
h party to sign the peer identity, whi
h in turn implies that the parties must

know the peer identities before a session key is generated. In a setting where the peer identities are

not known in advan
e, these identities must be sent over the network, in the
lear, thus forfeiting

identity
on
ealment. As we will see in Se
tion 3, the SIGMA proto
ols (in parti
ular, IKE)

use a signi�
antly di�erent approa
h to authenti
ation. In parti
ular, parties never sign other

parties identities; instead a MAC-based me
hanism is added to \
ompensate" for the unsigned

peer's identity. (See [17℄ for more information on the rationale behind the design of the SIGMA

proto
ols.)

We present a notion of se
urity for key ex
hange proto
ols that is appropriate for the post-

spe
i�ed peer setting. This notion is a simple relaxation of the key-ex
hange se
urity model of [4℄

that suitably re
e
ts the needs of the \post-spe
i�ed" model as well as allows for a treatment of

identity
on
ealment. After presenting the adaptation of the se
urity de�nition of [4℄ to our setting,

we develop a detailed se
urity proof for the basi
 proto
ol (denoted �

0

) underlying the signature-

based modes of IKE. This is a somewhat simpli�ed variant that re
e
ts the
ore
ryptographi

logi
 of the proto
ol and whi
h already presents many of the te
hni
al issues and subtleties that

need to be dealt with in the analysis. One prime example of su
h subtleties is the fa
t that the

IKE proto
ols use the ex
hanged DiÆe-Hellman key not only to derive a session key at the end of

the session but also to derive keys used inside the key-ex
hange proto
ol itself to provide essential

authenti
ation fun
tionality and for identity en
ryption. After analyzing and providing a detailed

proof of this simpli�ed proto
ol, we show how to extend the proof to deal with ri
her-fun
tionality

variants in
luding the IKE proto
ols. The resultant analysis approa
h and te
hniques are appli
able

to other proto
ols, in parti
ular other identity-
on
ealing proto
ols and those that use the DH key

during the session establishment proto
ol.

3

The issue of whether a party may agree to establish a session with the parti
ular peer whose identity is learned

during the key-ex
hange pro
ess is an orthogonal issue taken
are by a separate \poli
y engine" run by the party.

2

An important point to stress is that the present se
urity model and de�nition (even if relaxed

with respe
t to [4℄) guarantees that session keys derived in the proto
ol are se
ure for use in
onjun
-

tion with symmetri
 en
ryption and authenti
ation fun
tions for implementing \se
ure
hannels"

(as de�ned in [4℄) that prote
t
ommuni
ations over realisti
 adversarially-
ontrolled networks.

Deriving su
h keys is the quintessential appli
ation of key-ex
hange proto
ols in general, and the

fundamental requirement from the IKE proto
ols.

We also show how to formalize the post-spe
i�ed peer model in the framework of universally

omposable (UC) se
urity [3℄. Spe
i�
ally, we formulate a UC notion of post-spe
i�ed se
ure key

ex
hange and show that proto
ol �

0

presented here satis�es this notion. The UC notion ensures

strong
omposability guarantees with other proto
ols. In parti
ular, it suÆ
es for implementing

se
ure
hannels, both in the UC formalization of [5℄ and in the formalization of [4℄.

Paper's organization. In Se
tion 2 we des
ribe the adaptation of the se
urity model of [4℄ to the

post-spe
i�ed peer setting, and establish the notion of se
urity for key-ex
hange used throughout

this paper. In Se
tion 3 we des
ribe �

0

, the basi
 SIGMA proto
ol underlying all the other variants

in
luding the IKE signature-based proto
ols. In Se
tion 4 we present a proof of se
urity of the �

0

proto
ol in the model from Se
tion 2. In Se
tion 5 we treat several variants of the basi
 proto
ol and

extend the analysis from Se
tion 4 to these
ases. In parti
ular, the two signature authenti
ation

variants of IKE are analyzed here (Se
tion 5.2 and 5.4). Finally, Appendix A holds the modeling

and analysis of proto
ol �

0

within the UC framework.

2 The se
urity model

Here we present the adaptation of the se
urity model for key-ex
hange proto
ols from [4℄ to the

setting of post-spe
i�ed peers as des
ribed above. We start by providing an overview of the model

in [4℄ (refer to that paper for the full details). Then we des
ribe the relaxation of the se
urity

de�nition required to support the post-spe
i�ed setting.

2.1 The SK-se
urity de�nition from [4℄

Following the work of [2, 1℄, Canetti and Kraw
zyk [4℄ model key-ex
hange (KE) proto
ols as

multi-party proto
ols where ea
h party runs one or more
opies of the proto
ol. Ea
h a
tivation

of the proto
ol at a party results in a lo
al pro
edure,
alled a session, that lo
ally instantiates

a run of the proto
ol and produ
es outgoing messages and pro
esses in
oming messages. In the

ase of key-ex
hange, a session is intended to agree on a \session key" with one other party (the

\peer" to the session) and involves the ex
hange of messages with that party. Sessions
an run

on
urrently and in
oming messages are dire
ted to its
orresponding session via a session identi�er.

The a
tivation of a KE session at a party has three input parameters (P; s;Q): the lo
al party at

whi
h the session is a
tivated, a unique session identi�er, and the identity of the intended peer

to the session. (There is also a fourth input �eld, spe
ifying whether the party is the initiator or

the responder in the ex
hange; however this �eld has no bearing on the se
urity requirements and

is thus ignored in this overview.) A party
an be a
tivated as initiator (e.g., by an appli
ation

alling the KE pro
edure) or as a responder (upon an in
oming key-ex
hange initiation message

arriving from another party). The output of a KE session at a party P
onsists of a publi
 triple

(P; s;Q) that identi�es the session, and of a se
ret value
alled the session key. Sessions
an also be

\aborted" without produ
ing a session key value, in whi
h
ase a spe
ial symbol is output instead

of the session key. Sessions maintain a lo
al state that is erased when the session
ompletes (i.e.,

3

when the session produ
es output). Ea
h party may have additional state, su
h as a long-term

signature key, whi
h is a

essed by di�erent sessions and whi
h is not part of any parti
ular session

state.

The atta
ker model in [4℄ follows the unauthenti
ated-links model (um) of [1℄ where the atta
ker

is a (probabilisti
) polynomial-time ma
hine with full
ontrol of the
ommuni
ation lines between

parties and free to inter
ept, delay, drop, inje
t or
hange all messages sent over these lines (i.e.,

a full-
edge \man-in-the-middle" atta
ker). The atta
ker
an also s
hedule session a
tivations at

will and sees the output of sessions ex
ept for the values of session keys. In addition, the atta
ker

an have a

ess to se
ret information via session exposure atta
ks of three types: session-state

reveal, session-key queries, and party
orruption. The �rst type of atta
k is dire
ted at a single

session while still in
omplete (i.e., before produ
ing output) and its result is that the atta
ker learns

the session state for that parti
ular session (whi
h does not in
lude long-term se
ret information,

su
h as private signature keys, shared by all sessions at the party). A session-key query
an be

performed against an individual session after
ompletion and the result is that the atta
ker learns

the
orresponding session-key (this models leakage on the session key either via usage of the key by

appli
ations,
ryptanalysis, break-ins, known-key atta
ks, et
.). Finally, party
orruption means

that the atta
ker learns all information in the memory of that party (in
luding session states

and session-key information and also long-term se
rets); in addition, from the moment a party is

orrupted all its a
tions are totally
ontrolled by the atta
ker. (We stress that all atta
ker's a
tions

an be de
ided by the atta
ker in a fully adaptive way, i.e., as a fun
tion of its
urrent view).

In the model of [4℄ sessions
an be expired. From the time a session is expired the atta
ker

is not allowed to perform a session-key query or a state-reveal atta
k against the session, but is

allowed to
orrupt the party that holds the session (in parti
ular, it may obtain the long term se
ret

information at a party). Proto
ols that ensure that expired sessions are prote
ted even in
ase of

party
orruption are said to enjoy \perfe
t forward se
re
y" [19℄ (this is a
entral property of the

KE proto
ols analyzed here).

For de�ning the se
urity of a KE proto
ol, [4℄ follows the indistinguishability style of de�nitions

as used in [2℄ where the \su

ess" of an atta
ker is measured via its ability to distinguish the real

values of session keys from independent random values. In order to be
onsidered su

essful the

atta
ker should be able to distinguish session-key values for sessions that were not exposed by any

of the above three types of atta
ks. (Indeed, the atta
ker
ould always su

eed in its distinguishing

task by exposing the
orresponding session and learning the session key.) Moreover, [4℄ prohibits

atta
kers from exposing the \mat
hing session" either, where two sessions (P; s;Q) and (P

0

; s

0

; Q

0

)

are
alled mat
hing if s = s

0

, P = Q

0

and Q = P

0

(this restri
tion of the atta
ker is needed sin
e

the mat
hing session
ontains the session key as well).

As is
ustomary, the ability of the atta
ker to distinguish between real and random values of the

session key is formalized via the notion of a test session that the atta
ker is free to
hoose among

all
omplete sessions in the proto
ol. When the atta
ker
hooses the test session it is provided with

a value v whi
h is
hosen as follows: a random bit b is tossed, if b = 0 then v is the real value

of the output session key, otherwise v is a random value
hosen under the same distribution of

session-keys produ
ed by the proto
ol but independent of the value of the real session key. After

re
eiving v the atta
ker may
ontinue with the regular a
tions against the proto
ol; at the end of

its run the atta
ker outputs a bit b

0

. The atta
ker su

eeds in its atta
k if (1) the test session is

not exposed, and (2) the probability that b = b

0

is signi�
antly larger than 1/2. We note that in

the model of [4℄ the atta
ker is allowed to
orrupt a peer to the test session on
e the test session

expires at that peer (this
aptures perfe
t forward se
re
y). The resultant se
urity notion for KE

4

proto
ols is
alled SK-se
urity and is stated as follows:

De�nition 1 (SK-se
urity [4℄) An atta
ker with the above
apabilities is
alled an SK-atta
ker. A

key-ex
hange proto
ol � is
alled SK-se
ure if for all SK-atta
kers A running against � it holds:

1. If two un
orrupted parties
omplete mat
hing sessions in a run of proto
ol � under atta
ker A

then, ex
ept for a negligible probability, the session key output in these sessions is the same.

2. A su

eeds (in its test-session distinguishing atta
k) with probability not more that 1/2 plus

a negligible fra
tion.

(The term `negligible' represents any fun
tion (in the se
urity parameter) that diminishes asymp-

toti
ally faster than any polynomial fra
tion, or a small spe
i�
 quantity in a
on
rete se
urity

treatment).

Remark. In [4℄ there are two additional notions that play a
entral role in the analysis of KE

proto
ols: the \authenti
ated-links model" (am) and \authenti
ators" [1℄. While these notions

ould have been used in our analysis too, they would have required their re-formulation to adapt

to the post-spe
i�ed peer setting treated here. We have
hosen to save de�nitional
omplexity and

develop our proto
ol analysis in the
urrent paper dire
tly in the um model.

2.2 Adapting SK-se
urity to the post-spe
i�ed peer setting

The model of [4℄ makes a signi�
ant assumption: a party that is a
tivated with a new session knows

already at a
tivation the identity of the intended peer to the session. That is, the authenti
ation

pro
ess in [4℄ is dire
ted to verify that the \intended peer" is the party we are a
tually talking

to. In
ontrast, in the \post-spe
i�ed setting" analyzed here (in parti
ular in the setting of the

IKE proto
ol) the information of who the other party is does not ne
essarily exist at the session

initiation stage. It may be learned by the parties only after the proto
ol run evolves.

Adapting the se
urity model from [4℄ to the post-spe
i�ed peer setting requires: (A) generalizing

the formalism of key-ex
hange proto
ols to allow for unspe
i�ed peers at the start of the proto
ol;

and (B) relaxing the se
urity de�nition to a

ept proto
ols where the peer of a session may be

de
ided (or learned) only after a session evolves (possibly not earlier than the last proto
ol message

as is the
ase of IKE). Fortunately this adaptation requires only small te
hni
al
hanges whi
h

we des
ribe next; all the other de�nitional elements remain un
hanged from [4℄. In parti
ular, we

keep the um model and most of the key-ex
hange formalism un
hanged (in
luding full adversarial

ontrol of the
ommuni
ation lines and the three types of session exposure: session-state reveal,

session-key queries, and party
orruption).

(A) Session a
tivation and identi�
ation. Instead of a
tivating sessions with input a triple

(P; s;Q) as in [4℄ (where P is the identity of the lo
al party, s a session identi�er, and Q the identity

of the intended peer for the session), in the post-spe
i�ed
ase a session at a party P is a
tivated

with a triple (P; s; d) where d represents a \destination address" that may have no impli
ations

regarding the peer's identity sitting behind this address, and is used only as information for delivery

of messages related to this session. This may be, for example, a temporary address used by arbitrary

parties, or an address that may identify a set of parties, et
. Note that the above (P; s; d) formalism

represents a generalization of the formalism from [4℄; in the latter, d is uniquely asso
iated with

(and identi�es) a spe
i�
 party. We keep the
onvention from [4℄ that session id's are assumed

to be unique among all the session id's used by party P (this is a simple abstra
tion of the pra
ti
e

5

where parties provide unique session id's for their own lo
al sessions; we
an see the identi�er s as

a
on
atenation of these lo
al identi�ers { see [4℄ for more dis
ussion on this topi
). We use the

pair of entity identity and session-id (P; s) to uniquely name sessions for the purpose of atta
ker

a
tions (as well as for identi�
ation of sessions for the purpose of proto
ol analysis). The output of

a session (P; s)
onsists of a publi
 triple (P; s;Q) where Q is the peer to the session, and the se
ret

value of the session key. When the session produ
es su
h an output it is
alled
ompleted and its

state is erased (only the session output persists after the session
ompletes and until the session

expires). Sessions
an abort without produ
ing a session-key output in whi
h
ase the session is

referred to as aborted (and not
ompleted).

(B) SK se
urity and mat
hing sessions. The formalism used in [2, 4℄ to de�ne the se
urity of

key-ex
hange proto
ols via a test session is preserved in our work. The signi�
ant (and ne
essary)

hange here is in the de�nition of \mat
hing sessions" whi
h in turn in
uen
es the limitations on

the atta
ker's a
tions against the \test session" and its peers (re
all, that the atta
ker is allowed to

atta
k any session ex
ept for the test-session and its mat
hing session). In [4℄ the mat
hing session

of a (
omplete) session (P; s;Q) within party P is de�ned as (Q; s; P) (running within Q). This is

well-de�ned in the pre-spe
i�ed setting where both peer identities are �xed from the start of the

session. In our
ase, however, the peer of a session may only be de
ided (or learned) just before

the
ompletion of that session. In parti
ular, a session (P; s) may
omplete with peer Q, while

the session (Q; s) may not have
ompleted and therefore its peer is not determined. In this
ase,

orrupting Q or learning the state of (Q; s)
ould obviously provide the atta
ker with information

about the session key output by (P; s;Q). We thus introdu
e the following modi�ed de�nition of

mat
hing session.

De�nition 2 Let (P; s) be a
ompleted session with publi
 output (P; s;Q). The session (Q; s) is

alled the mat
hing session of (P; s) if either

1. (Q; s) is not
ompleted; or

2. (Q; s) is
ompleted and its publi
 output is (Q; s; P).

Note that by this de�nition only
ompleted sessions have a mat
hing session; in parti
ular the

\mat
hing" relation de�ned above is not symmetri
 (ex
ept if the mat
hing session is
ompleted

too | in whi
h
ase the above de�nition of mat
hing session
oin
ides with the de�nition in [4℄).

Also, note that if Q is un
orrupted then the mat
hing session of (P; s) is unique.

De�nition 3 (SK-se
urity in the post-spe
i�ed setting) SK-se
urity in the post-spe
i�ed peer set-

ting is de�ned identi
ally as in De�nition 1 but with the notion of mat
hing sessions re-formulated

via De�nition 2.

Notes on the de�nition: 1. We argue that the
ombination of the two mat
hing
onditions

in De�nition 2 above results in a sound de�nition of SK-se
urity. In parti
ular, it is suÆ
ient

to preserve the proof from [4℄ that SK-se
urity guarantees se
ure
hannels (see below). On the

other hand, none of the two mat
hing
onditions in isolation indu
es a satisfa
tory de�nition of

se
urity. In parti
ular, de�ning the session (Q; s) to always be the mat
hing session of (P; s) without

requiring that the determined peer is
orre
t (in
ondition (2)) would result in an over-restri
tion

of the a
tions of the atta
ker against the test session to the point that su
h a de�nition would

allow weak proto
ols to be
alled se
ure. An example of su
h an inse
ure proto
ol is obtained by

modifying proto
ol �

0

from Se
tion 3 by deleting from it the MAC applied to the parties identities.

6

This modi�ed proto
ol
an be shown to su

umb to a key-identity mis-binding (or \unknown key

share") atta
k as in [7℄, yet it would be
onsidered se
ure without the
onditioning on the output

of session (Q; s) as formulated in (2). On the other hand,
ondition (2) alone is too permissive for

the atta
ker, thus resulting in a too strong de�nition that would ex
lude many natural proto
ols.

Spe
i�
ally, if we eliminate (1) then an atta
ker
ould perform a state-reveal query against (Q; s)

and reveal the se
ret key (e.g., g

xy

) when this information is still in the session's state memory.

This would allow the atta
ker a strategy in whi
h it
hooses (P; s;Q) at the test session and for
es

(Q; s) to be in
omplete, and then learn the test session key through a state-reveal atta
k against

(Q; s).

2. The above de�nition of se
ure key-ex
hange in the post-spe
i�ed peer setting implies a stri
t

relaxation of the SK-se
urity de�nition in [4℄. On the one hand, any SK-se
ure proto
ol a

ording

to [4℄ is also post-spe
i�ed se
ure provided that we take
are of the following formalities. First,

we use the \address �eld" d in the input to the session to spe
ify the identity of a party. Then,

before
ompleting a session, the proto
ol
he
ks that the identity to be output is the same as the

identity spe
i�ed in the \address �eld" (if not, the session is aborted). On the other hand, there

are proto
ols that are se
ure a

ording to De�nition 3 in the post-spe
i�ed model but are not

se
ure in the pre-spe
i�ed setting of [4℄. The IKE proto
ols studied here (in parti
ular, proto
ols

�

0

and �

1

presented in the following se
tions)
onstitute su
h examples (see Remark 1 at the end

of Se
tion 3).

3. A natural question is whether the relaxation of SK-se
urity adopted here is adequate. One

strong eviden
e supporting the appropriateness of the de�nition is the fa
t that the proof in [4℄

that SK-se
urity implies se
ure
hannels applies also for SK-se
urity in the post-spe
i�ed peer

setting (De�nition 3). One te
hni
al issue that arises when applying the notion of se
ure
hannels

from [4℄ in our
ontext is that this notion is formulated in the \pre-spe
i�ed peer" model. Yet, one

an use a post-spe
i�ed SK-se
ure KE proto
ol also in this setting. All is needed is that ea
h peer

veri�es, before
ompleting a KE session, that the authenti
ated peer (i.e., the identity to be output

as the session's peer) is the same as the identity spe
i�ed in the a
tivation of the se
ure
hannels

proto
ol. If this veri�
ation fails, then the party aborts the KE session and the se
ure-
hannels

session. Alternatively, one
an easily adapt the model of se
ure
hannels in [4℄ to the post-spe
i�ed

peer setting. Also in this
ase an SK-se
ure KE proto
ol in the post-spe
i�ed model suÆ
es for

onstru
ting (post-spe
i�ed) se
ure
hannels. In all we have:

Theorem 4 SK-se
urity in the post-spe
i�ed peer setting implies se
ure
hannels in the formulation

of [4℄ (either with pre-spe
i�ed or post-spe
i�ed se
ure-
hannel peers).

3 The basi
 SIGMA proto
ol: �

0

Here we provide a des
ription of a key-ex
hange proto
ol, denoted �

0

, that represents a simpli�ed

version of the signature-mode of IKE. The proto
ol
ontains most of the
ore
ryptographi
 elements

and properties found in the full-
edge IKE and SIGMA proto
ols. In the next se
tion we provide

a proof of this basi
 proto
ol, and in the subsequent se
tion we will treat some variants and the

hanges they require in the se
urity analysis. These variants will in
lude the a
tual IKE proto
ols

(see Se
tions 5.2 and 5.4). The �

0

proto
ol is presented in Figure 1. Further notes and
lari�
ations

on the proto
ol follow.

7

Proto
ol �

0

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. Ea
h player has a private key for a

signature algorithm sig, and all have the publi
 veri�
ation keys of the other players. The proto
ol

also uses a message authenti
ation family ma
, and a pseudorandom fun
tion family prf.

The proto
ol messages

Start message (I!R): s; g

x

Response message (R!I): s; g

y

; ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)

Finish message (I!R): s; ID

i

; sig

i

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s; ID

i

)

The proto
ol a
tions

1. The start message is sent by the initiator ID

i

upon a
tivation with session-id s (after
he
king

that no previous session at ID

i

was initiated with identi�er s); the DH exponent g

x

is
omputed

with x

R

 Z

q

and x is stored in the state of session (ID

i

; s).

2. When a start message with session-id s is delivered to a party ID

r

the (if session-id s did

not exist before at ID

r

) ID

r

a
tivates a lo
al session s (as responder). It now generates the

response message where the DH exponent g

y

is
omputed with y

R

 Z

q

, the signature sig

r

is

omputed under the signature key of ID

r

, and the value g

x

pla
ed under the signature is the

DH exponent re
eived by ID

r

in the in
oming start message. The ma

k

1

value is produ
ed

with k

1

= prf

g

xy

(1) where g

xy

is
omputed by ID

r

as (g

x

)

y

. Finally, the value k

0

= prf

g

xy

(0)

is
omputed and kept in memory, and the values y and g

xy

are erased.

3. Upon re
eiving a (�rst) response message with session-id s, ID

i

retrieves the publi
 key of the

party whose identity ID

r

appears in this message and uses this key to verify the signature

on the quadruple (\1"; s; g

x

; g

y

) where g

x

is the value sent by ID

r

in the start message, and

g

y

the value re
eived in this response message. ID

i

also
he
ks the re
eived ma
 under key

k

1

= prf

g

xy

(1) (where g

xy

is
omputed as (g

y

)

x

) and on the identity ID

r

as it appears in

the response message. If any of these veri�
ation steps fails the session is aborted and a

session output of \aborted (ID

i

; s)" is generated; the session state is erased. If veri�
ation

su

eeds then ID

i

ompletes the session with publi
 output (ID

i

; s; ID

r

) and se
ret session key

k

0

omputed as k

0

= prf

g

xy

(0). The �nish message is sent and the session state erased.

4. Upon re
eiving the �nish message of session s, ID

r

veri�es the signature (under the publi

key of party ID

i

and with g

y

being the DH value that ID

r

sent in the response message), and

veri�es the ma
 under key k

1

omputed in step 2. If any of the veri�
ations steps fails the

session is aborted (with the \aborted (ID

r

; s)" output), otherwise ID

r

ompletes the session

with publi
 output (ID

r

; s; ID

i

) and se
ret session key k

0

. The session state is erased.

Figure 1: The basi
 SIGMA proto
ol

Notes on the des
ription and a
tions of the proto
ol

� For simpli
ity we des
ribe the proto
ol under a spe
i�
 type of DiÆe-Hellman groups, namely,

a sub-group of Z

�

p

of prime order. However, the proto
ol and subsequent analysis apply to

any DiÆe-Hellman group for whi
h the DDH assumption holds (see Se
tion 4).

� The notation I !R and R! I is intended just to indi
ate the dire
tion between initiator

and responser of the messages. The proto
ol as des
ribed here does not spe
ify where the

8

messages are sent to. They
an be sent to a pool of messages, to a lo
al broad
ast network, to

a physi
al or logi
al address, et
. The proto
ol and its analysis a

ommodate any of these (or

other) possibilities. What is important is that the proto
ol does not make any assumption on

who will eventually get a message, how many times, and when (these are all a
tions de
ided

by the atta
ker). Also, there is no assumption on the logi
al
onne
tion between the address

where a message is delivered and the identity (either ID

i

or ID

r

) behind that address. This

allows us to design the proto
ol (and prove its se
urity) in the \post-spe
i�ed peer" model

introdu
ed in Se
tion 2.

� ID

i

and ID

r

represent the real identities of the parties to the ex
hange. In our model we

assume that every party knows the other's party publi
 key before hand. However, one
an

think of the above identities as full
erti�
ates signed by a trusted CA and veri�ed by the

re
ipient. (In this
ase, the full
erti�
ate may be in
luded as the peer's identity under the

ma
 or just the identity in the
erti�
ate { e.g. the \distinguished name"). Our proofs work

under this
erti�
ation-based model as well.

� The strings \0" and \1" are intended to separate between authenti
ation information
reated

by the initiator and responder in the proto
ol. They serve as \symmetry breakers" in the

proto
ol. However, in the
ase of �

0

these tags are not stri
tly needed for se
urity; we will

see later (Se
tion 5.1) that the proto
ol is se
ure even without them. Yet, we in
lude them

here for two reasons. First, they simplify analysis; se
ond, they make the proto
ol's se
urity

more robust to
hanges as we will also dis
uss later (e.g., they defeat re
e
tion atta
ks in

some of the proto
ol's variants).

� Re
all the uniqueness of session-id's assumed by our model. We use this assumption in order

to simplify the model and to a

ommodate di�erent implementations of this assumption. A

typi
al way to a
hieve this is to require ea
h party in the ex
hange to
hoose a random number

(say, s

i

and s

r

respe
tively) and then de�ne s to be the
on
atenation of these values. In

this
ase the values s

i

and s

r

an be ex
hanged before the proto
ol, or s

i

an repla
e s in the

start message, and (s

i

; s

r

) repla
e s in the response message.

� Parties use the session id's to bind in
oming messages to existing (in
omplete) sessions. How-

ever, only the �rst message of ea
h type is pro
essed. For example if a response message arrives

with session id s at the initiator of session s, then the message is pro
essed only if no previous

response message under this session was re
eived. Otherwise the message is dis
arded. Same

for the other message types, or if a message arrives after the session is
ompleted or aborted.

� In the above des
ription of �

0

the session identi�ers serve a dual fun
tionality: they serve

to identify sessions and dire
t in
oming messages to these sessions, but they also serve as

\freshness guarantees" against replay atta
ks. In reality, the two fun
tionalities may be

implemented via di�erent me
hanisms. (In parti
ular, in order to prevent replay, the se
ond

fun
tionality requires uniqueness of the session identi�ers throughout the life time of long-

term keys. In
ontrast, if one is interested only in dire
ting in
oming messages to the
orre
t

session then it may suÆ
e to have identi�ers that repeat on
e old sessions are
ompleted.)

Nonetheless, for simpli
ity we
hoose to \overload" session id's with the two fun
tionalities.

� In pra
ti
e, it is re
ommended not to use the plain value g

xy

of the DH key but a hashed

value H(g

xy

) where H is a hash fun
tion (e.g. a
ryptographi
 hash fun
tion su
h as SHA or

a universal hash fun
tion, et
.). This has the e�e
t of produ
ing a number of bits as required

9

to key the prf, and (depending on the properties of the hash fun
tion) may also help to

\extra
ting the se
urity entropy" from the g

xy

output. If the plain g

xy

is used, our se
urity

results hold under the DDH assumption. Using a hashed value of g

xy

is se
ure under the

(possibly weaker) HDH assumption [8℄. See Se
tion 5.6.

� As we will see in Se
tion 5 the above proto
ol
an be simpli�ed by eliminating some of its

elements (e.g., the 0/1 tags under the MAC and signatures, and the signing of the peer's DH

exponent
an be eliminated without
ompromising se
urity). However, this is not ne
essarily

re
ommended. One bene�t of these elements is in simplifying analysis, the other is making

se
urity of the proto
ol more robust to
hanges (yet, anyone making su
h
hanges needs to

verify that the se
urity and analysis of the proto
ol are preserved { we show several su
h

ases in Se
tion 5).

Remark 1 As mentioned in Se
tion 2 it is illustrative to note that proto
ol �

0

is not se
ure in the

original (pre-spe
i�ed) model of [4℄. In that model an atta
ker
ould apply the following strategy:

(1) initiate a session (P; s;Q) at P ; (2) a
tivate a session (Q; s;Eve) at Q as responder with the

start message from (P; s;Q) where Eve is a
orrupted party (let g

x

be the DH exponent in this

message); (3) deliver the response message produ
ed by Q to P (let g

y

be the DH exponent in

this message). The result is that P
ompletes (P; s;Q) with a session key derived from g

xy

, while

the session (Q; s;Eve) is still in
omplete and its state
ontains the value g

xy

. Therefore, in the [4℄

model, the atta
ker
an
hoose (P; s;Q) as the test session and expose (Q; s;Eve) via a state-reveal

atta
k to learn g

xy

. This is allowed in [4℄ sin
e (Q; s;Eve) is not a mat
hing session to the test

session (only (Q; s; P) is mat
hing to the test session). In our post-spe
i�ed model, however, the

atta
ker is not allowed to expose (Q; s) whi
h is in
omplete and then by De�nition 2 it is mat
hing

to the test session (P; s). This restri
tion of the adversary is needed in the post-spe
i�ed setting

sin
e from the point of view of Q there is no information about who the peer is until the very

end of the proto
ol and then its temporary internal state (before re
eiving the �nish message) is

identi
al whether its session is
ontrolled by the adversary (via Eve as in the above example) or

it is a regular run with a honest peer P . What is
ru
ial to note is that proto
ol �

0

(and any

SK-se
ure proto
ol in the post-spe
i�ed model) guarantees that if Q
ompletes the session (Q; s)

then its view of the peer's identity is
orre
t and
onsistent with the view in the mat
hing session

(e.g., in the above example it is guaranteed that if Q
ompletes the session, it outputs P as the

peer, and only P
an
ompute the key g

xy

).

Remark 2 A stronger property of se
urity
an be a
hieved if we add to �

0

a fourth message in

whi
h the responder sends an \a
k" message authenti
ated under ma

k

1

. In this
ase, the initiator

does not
omplete the session until it gets (and veri�es) this fourth message. The resultant proto
ol

has the property that when a party
ompletes the session it has a guarantee that the peer (either

if it
ompleted or not the session) already has a
onsistent view of who the session's peer is. In

the SIGMA and IKE proto
ols this is not the
ase (in these proto
ols this
onsisten
y is ensured

only when both peers
omplete the session { a
ondition that suÆ
es for guaranteeing the se
ure

hannels appli
ation). The above \peer
onsisten
y" property is stronger than the guarantees of

SK-se
urity from [4℄ and may be signi�
ant in some s
enarios.

10

4 Proof of Proto
ol �

0

4.1 The Statements

We start by formulating the De
isional DiÆe-Hellman (DDH) assumption whi
h is the assumption

underlying the se
urity of the DH key ex
hange against passive atta
kers. For simpli
ity, we

formulate this assumption for a spe
i�
 family of DH groups, but analogous assumptions
an be

formulated for other groups (e.g., based on ellipti

urves).

Assumption 5 Let � be a se
urity parameter. Let p; q be primes, where q is of length � bits and

q=p�1, and g be of order q in Z

�

p

. Then the probability distributions of quintuples

Q

0

= fhp; g; g

x

; g

y

; g

xy

i : x; y

R

 Z

q

g and Q

1

= fhp; g; g

x

; g

y

; g

r

i : x; y; r

R

 Z

q

g are
omputationally

indistinguishable.

In addition to the DDH assumption we will assume the se
urity of the other underlying
rypto-

graphi
 primitives in the proto
ol (digital signatures, message authenti
ation
odes, and pseudo-

random fun
tions) under the standard se
urity notions in the
ryptographi
 literature.

Theorem 6 (Main Theorem) Assuming DDH and the se
urity of the underlying
ryptographi

fun
tions sig, ma
, prf, the �

0

proto
ol is SK-se
ure in the post-spe
i�ed model, as de�ned in

Se
tion 2.

Proving the theorem requires proving the two de�ning properties of SK-se
ure proto
ols (we use

the term �

0

-atta
ker to denote an SK-atta
ker working against the �

0

proto
ol):

P1. If two un
orrupted parties ID

i

and ID

r

omplete mat
hing sessions ((ID

i

; s; ID

r

) and (ID

r

; s; ID

i

),

respe
tively) under proto
ol �

0

then, ex
ept for a negligible probability, the session key output in

these sessions is the same.

P2. No eÆ
ient �

0

-atta
ker
an distinguish a real response to the test-session query from a random

response with non-negligible advantage. More pre
isely, if for a given �

0

-atta
ker we de�ne:

� P

real

(A) = Prob(A outputs 1 when given the real test session key)

� P

rand

(A) = Prob(A outputs 1 when given a random test session key)

then we need to prove that for any �

0

-atta
ker A: jP

real

(A)� P

rand

(A)j is negligible.

Remark on A. We assume wlog that a �

0

-atta
ker always
hooses a test session and queries it,

and does not expose the test session or its mat
hing session before expiration. (That is, we do not

onsider super
uous atta
kers that halt without querying a test session, or invalid atta
kers that

expose the test session.)

Remark (on the term \negligible"). We use the term `negligible' to represent any fun
tion

(in the se
urity parameter) that diminishes asymptoti
ally faster than any polynomial fra
tion.

(The atta
ker is assumed to be polynomial-time in the se
urity parameter of the proto
ol.) We

note that the analysis presented here
an be used to obtain more quanti�ed se
urity bounds via a

on
rete se
urity treatment. This requires assuming expli
it \("; t) bounds" on the se
urity of the

di�erent
ryptographi
 primitives used throughout the analysis, and then representing our results

as a fun
tion of these parti
ular values. Completing these details given our analysis is standard;

we
hoose not to do this expli
itly for the sake of simpli�ed presentation.

11

4.2 Proof of Property P1

Proof: Let A be a �

0

atta
ker, and let ID

i

and ID

r

be two un
orrupted parties that
omplete

mat
hing sessions (ID

i

; s; ID

r

) and (ID

r

; s; ID

i

). We want to prove that regardless of A's operations

both sessions output the same session key. Clearly, it suÆ
es to show that both
ompute the same

DH value g

xy

(from whi
h the session key k

0

is deterministi
ally derived). Let us denote by u

i

the DH exponent sent in the start message by ID

i

where u

i

= g

x

i

with x

i

hosen by ID

i

, and

let v

i

denote the DH exponent that ID

i

re
eived in the response message of session s (sin
e ID

i

ompletes the session s then it ne
essarily re
eives su
h a response message). Similarly, let u

r

be

the DH exponent re
eived by ID

r

in the in
oming start message for session s, and by by v

r

the DH

exponent sent by ID

r

in its response message where v

r

= g

x

r

with x

r

hosen by ID

r

.

The signature produ
ed by ID

r

during session s is sig

r

(\1"; s; u

r

; v

r

), while the signature that

ID

i

veri�es in the response message is sig

r

(\1"; s; u

i

; v

i

). Sin
e the �rst signature is the only one

that ID

r

ever produ
es with the value s as the session id, then it must be that either all arguments

to the �rst and se
ond signature are the same, or a valid signature
ontaining the se
ond (and

di�erent) pair (u

i

; v

i

) was produ
ed by the atta
ker even though ID

r

did not generated su
h a

signature. If the later
ase happens with non-negligible probability then we
an use the atta
ker A

under a simulation of proto
ol �

0

to produ
e a forger for the signature s
heme sig (note that ID

r

is not
orrupted so the forgery would be a real forgery against the s
heme). Sin
e we assume sig

to be a se
ure signature s
heme this event must have negligible probability. Therefore, we get that

ex
ept for su
h a negligible probability, u

r

= u

i

and v

r

= v

i

.

Now the DH key
omputed by ID

i

is v

x

i

i

= v

x

i

r

= (g

x

r

)

x

i

= g

x

i

x

r

, while the DH key
omputed

by ID

r

is u

x

r

r

= u

x

r

i

= (g

x

i

)

x

r

= g

x

i

x

r

. And therefore both
ompute the same session key.

(Note that we have only used the uniqueness of s and ID

r

's signature in this argument, and have

not used the ma
 or the tags \0" or \1".) 2

4.3 Proof of Property P2

4.3.1 Proof plan

We prove property P2 by showing that if a �

0

-atta
ker A
an win the \real vs. random" game with

signi�
ant advantage then we
an build an atta
ker against one of the underlying
ryptographi

primitives used in the proto
ol: the DiÆe-Hellman ex
hange (DDH assumption), the signature

s
heme sig, the MAC s
heme ma
, or the pseudorandom family prf.

More spe
i�
ally we will show that from any �

0

-atta
ker A that su

eeds in distinguishing

between a real and a random response to the test-session query we
an build a DDH distinguisherD

that distinguishes triples g

x

; g

y

; g

xy

from random triples g

x

; g

y

; g

r

with the same su

ess advantage

as A, or there is an algorithm (that we
an
onstru
t expli
itly) that breaks one of the other

underlying
ryptographi
 primitives. This distinguisher D gets as input a triple (g

x

; g

y

; z) where

z is either g

xy

or g

r

for r

R

 Z

q

. D starts by simulating a run of A on a virtual instantiation of

proto
ol �

0

and uses the values g

x

and g

y

from the input triple as the DH exponents in the start

and response message of one randomly
hosen session, say s

0

, initiated by A in this run of proto
ol

�

0

. The idea is that if A happens to
hoose this session s

0

(or the
orresponding responder's

session) as its test session then D
an provide A with z as the response to the test-session query.

In this
ase, if A outputs that the response was real then D will de
ide that z = g

xy

, otherwise

D will de
ide that z is random. One diÆ
ulty here is that sin
e D a
tually
hanges the regular

behavior of the parties in session s

0

(e.g. it uses the value z to derive the key k

1

used in the ma

12

fun
tion) then we still have to show that D has a good probability to guess the right test session,

and that the original ability of A to distinguish between \real" and \random" is not signi�
antly

redu
ed by the simulation
hanges. Proving this involves showing several properties of the proto
ol

that relate to the authenti
ation elements su
h as signatures (Lemma 7) and MAC (Lemma 11).

In order to spe
ify the distinguisher D we need to de�ne the above simulation pro
ess and the

exa
t rules on how to
hoose session s

0

and how to
hange the behavior of the parties to that session.

In Se
tion 4.3.2 we de�ne this simulation pro
ess. However, in order to fa
ilitate our analysis we

will a
tually de�ne a sequen
e of several simulators whi
h di�er from ea
h other by the way they

hoose the keys (k

0

and k

1

) used in the pro
essing of the s

0

session. Ea
h of these simulators

will de�ne a probability distribution on the runs of atta
ker A. At one end of the sequen
e of

simulators will be one that
orresponds to a \real" run of A while at the other end the simulation

orresponds to a \random" experiment where the session key in session s

0

provided to A is
hosen

as a random and independent value k

0

. In between, there will be several \hybrid" simulators.

We will show that either all the distributions generated by these simulators are
omputationally

indistinguishable, or that a su

essful distinguisher against DDH or against the prf family exists.

From this we get a proof that the \real" and \random" simulators at the ends of the sequen
e

are a
tually indistinguishable, and from this that the values P

rand

and P

real

di�er by at most a

negligible quantity (this negligible di�eren
e will depend on the quanti�ed se
urity of DDH and of

the
ryptographi
 fun
tions).

4.3.2 The simulators

We de�ne a simulator S = S(A) that on parameters n (number of parties) and � (se
urity param-

eter) and a given �

0

atta
ker A, simulates a run of proto
ol �

0

against atta
ker A. Simulator S

starts by
hoosing the initialization information for ea
h of the n parties (private signature keys

and their
orresponding publi
 veri�
ation keys). Then upon any a
tivation by A the simulator S

performs the �

0

operations on behalf of the parties and provides to A with the outgoing messages

and publi
 outputs generated in ea
h session.

If at any point A
orrupts a party, S hands out to A all the internal information of that

party (in
luding private signature key, session state for in
omplete sessions, and session keys for

unexpired sessions) and S stops operating that party (whi
h is now under full
ontrol of A). Upon

a state-reveal query against a spe
i�
 (in
omplete) session, S provides A with the internal state

information for that session; similarly, if A performs a session-key query against a (
omplete and

unexpired) session then S provides A with the
orresponding se
ret key output by that session.

Note that at any point in its run S has full information to answer all of A's queries or perform the

proto
ol a
tions on behalf of the un
orrupted parties. When A
hooses a test session and performs

its test query, S responds with the value of the session key as output by the test session. When A

stops, S stops too with the same output (0 or 1) as A.

We introdu
e several variants of the above simulator S whi
h by now we generi
ally denote by

^

S (we will des
ribe spe
i�
 variants later). An

^

S simulator is similar to S ex
ept for the following

di�eren
es.

1. Let m be an a-priori upper bound on the number of sessions that A initiates (i.e., sessions for

whi
h A issues an initiation a
tivation upon whi
h a party outputs a start message) during

its run with se
urity parameter � and n parties. At the beginning of its run

^

S
hooses the

following values: a number t
hosen uniformly between 1 and m, an identity R

0

randomly

hosen among the identities of the n parties in the proto
ol, two elements x; y 2 Z

q

, and two

13

values k

0

and k

1

of the same length as the output of the prf fun
tions. (The spe
i�
ation of

the ways in whi
h k

0

and k

1

are
hosen will determine the di�erent variants of simulators

^

S

that we will de�ne later.)

2.

^

S performs a usual simulation of A like S does ex
ept that it takes two types of spe
ial

a
tions:

(a) the a
tions related to the t-th session initiated by A as des
ribed in step 3 below; and

(b) stopping its run upon the o

urren
e of any of the \abort events" that we list below, in

whi
h
ase

^

S stops with output 0.

3. Let the t-th session initiated by A be (I

0

; s

0

). The following a
tions take pla
e as long as an

abort event does not happen. The start message of session (I

0

; s

0

) is generated by

^

S using

the value x
hosen in step 1 (i.e., the start message output by (I

0

; s

0

) is s

0

; g

x

). In
ase that

session (R

0

; s

0

) is a
tivated by A with R

0

as responder then

^

S outputs a response message on

behalf of R

0

using the exponent g

y

omputed using the value y
hosen in step 1. Also the ma

omputation for this message uses the key k

1

hosen by

^

S in step 1. If a response message is

delivered to session (I

0

; s

0

) then the ma
 veri�
ation operation for this message uses also the

key k

1

. Similarly, if a �nish message is delivered to (R

0

; s

0

) then the ma
 veri�
ation also

uses key k

1

. If any of the sessions (I

0

; s

0

) or (R

0

; s

0

)
omplete then the se
ret session key is

set to k

0

as
hosen by

^

S in step 1.

4. If A
hooses (I

0

; s

0

) or (R

0

; s

0

) as its test session then the response to the test query by

^

S is

k

0

.

5. If A ends its run (without

^

S having aborted) then

^

S outputs the same bit as A outputs.

Now we de�ne the abort events upon whi
h

^

S stops its run and outputs 0. The
hoi
e of these

parti
ular events is related to some \bad events" in the
ryptographi
 and probabilisti
 analysis of

the proto
ol. Spe
i�
ally, these events have the property that if A happens to
hoose one of the

sessions (I

0

; s

0

) or (R

0

; s

0

) as the test session then these events will not happen (see Lemma 7).

On the other hand, the la
k of these events in a run between

^

S and A guarantees a \mat
hing"

between g

x

and g

y

under the (I

0

; s

0

) and (R

0

; s

0

) sessions whi
h allows

^

S to
arry the a
tions as

de�ned in step 3 above.

Abort events: If any of the following events happen

^

S stops its run and outputs 0 (re
all that

we denote by (I

0

; s

0

) the t-th session initiated by A, and by R

0

the identity randomly
hosen by

^

S

in Step 1 above):

� A
orrupts I

0

or R

0

before (I

0

; s

0

) is
ompleted (this in
ludes the
ase that one of these

parties is already
orrupted at the time when the t-th session is initiated).

� A issues a state-reveal query against (I

0

; s

0

) or (R

0

; s

0

)

� Session (R

0

; s

0

) is initiated as responder before (I

0

; s

0

) sent its start message; or (R

0

; s

0

) is

initiated as responder with a start message
ontaining a DH exponent whi
h is di�erent than

the DH exponent in the start message output by (I

0

; s

0

).

� The response message re
eived by (I

0

; s

0

) arrives before (R

0

; s

0

) was a
tivated as responder,

or this response message has a di�erent DH exponent than the DH exponent appearing in

the response message output by session (R

0

; s

0

)

14

� Session (I

0

; s

0

) aborts.

� A
hooses a test session other than (I

0

; s

0

) or (R

0

; s

0

), or it
hooses one of these but the

session
ompletes with a peer di�erent than R

0

; I

0

, respe
tively.

� A
ompletes the game without having
hosen a test session

4

, or A stops before having initiated

t sessions.

The

^

S variants. We introdu
e �ve variants of

^

S whi
h di�er by the way k

0

and k

1

are de�ned.

We use the notation random() to represent a random (and independent)
hoi
e of a string of some

appropriate length; also, in following de�nitions of

^

S, x and y refer to the values
hosen by the

simulator in step 1 above.

^

S-real: k

0

 prf

g

xy

(0); k

1

 prf

g

xy

(1)

^

S-rprf: k

0

 prf

k

(0); k

1

 prf

k

(1); k random()

^

S-allr: k

0

 random(); k

1

 random()

^

S-hybr: k

0

 random(); k

1

 prf

k

(1); k random()

^

S-rand: k

0

 random(); k

1

 prf

g

xy

(1)

Note: in

^

S-allr the values of k

0

and k

1

are independent, and in

^

S-hybr the values of k

0

and k are

independent. The names of the simulators stand for: \real", \random prf", \all random", "hybrid",

and \random", respe
tively. For any of the above simulators

^

S the notation

^

S(A) represents the

distribution of runs of

^

S when intera
ting with A as the �

0

-atta
ker.

Intuitively, the
hoi
e of t in step 1 of

^

S
an be seen as an attempt by the simulator to guess

the test session to be
hosen by A; when this guess su

eeds (i.e., either (I

0

; s

0

) is
hosen by A

as the test session with peer R

0

or (R

0

; s

0

) is
hosen as test session with peer I

0

) then

^

S-real

orresponds to a real exe
ution of A while

^

S-rand
orresponds to a run of A where the test query

is answered with a random key. The other simulators are used as intermediate games to prove that

for any atta
ker A, the outputs of

^

S-real(A) and

^

S-rand(A) are \indistinguishable" (in the sense

of the following de�nition of �).

De�nition (D � D

0

). If D and D

0

are two probabilisti
 algorithms that output 0 or 1, then we

write that D � D

0

if and only if jProb(D outputs 1)� Prob(D

0

outputs 1)j is negligible.

The above \guess" of the test session by

^

S is a
entral element in our proofs and it motivates the

following de�nition.

De�nition (guess event). Let

^

S be one of the simulators de�ned above and A be a �

0

-atta
ker.

We say that a guess event happens in a run of

^

S(A) if the following
onditions are satis�ed:

1. A initiates at least t sessions in this run where t is the parameter
hosen by

^

S in step 1 of its

run (we denote by I

0

the initiator of this session and by s

0

the session id);

2. If R

0

denotes the random party
hosen by

^

S in step 1 of its run then either

(a) A
hooses (I

0

; s

0

) as its test session and this session
ompletes with peer R

0

;

or

4

Note that we have assumed that in a regular run A always
hooses a test session but under the
hanges introdu
ed

by

^

S behavior A
ould, in prin
iple, never
hoose a test session.

15

(b) A
hooses (R

0

; s

0

) as its test session and this session
ompletes with peer I

0

.

Plan of the proof of P2. In the next subse
tion we provide the detailed proof of P2. The plan is

to show that

^

S-real �

^

S-rand via the indistinguishability of ea
h pair of
onse
utive simulators

in the above list (see Lemma 15), and then prove (Theorem 16) that jP

real

(A) � P

rand

(A)j =

poly � jProb(

^

S-real outputs 1) � Prob(

^

S-rand outputs 1)j where \poly" is a quantity that is

polynomial in the number of parties and number of sessions in the proto
ol (spe
i�
ally, \poly" is

the produ
t of these numbers { see Remark 3).

4.3.3 Detailed Proof of P2

The following lemma is
on
erned with the a
tions of A and not dire
tly with the behavior of

the above simulators. However, this lemma will be instrumental later in
laiming that under a

guess event the above simulators do not abort their run (see Lemma 9). It is important to note

that this lemma only uses the se
urity of the underlying signature s
heme; this is possible by the

use of the tags \0" and \1" in �

0

. If these tags are not used the lemma is still valid but requires a

more involved argument that uses the se
urity of DDH, prf, and ma
 in addition to the se
urity

of the signatures. These more involved arguments are presented in Se
tion 5.1.

Lemma 7 For all �

0

-atta
kers A, the following holds ex
ept for negligible probability.

(a) Consider a regular run by A in whi
h A
hooses a test session with output (P; s;Q) where P

is the initiator. Then:

1. P and Q are never
orrupted before expiration of the test session

2. Sessions (P; s) and (Q; s) are never revealed by A

3. (Q; s) is initiated as responder with the start message sent by (P; s)

4. (P; s) re
eives a response message after (Q; s) was a
tivated as responder, and this mes-

sage
arries the same DH exponent as in the response message output by (Q; s)

5. Session (P; s) does not abort.

(b) Consider a regular run by A in whi
h A
hooses a test session with output (Q; s; P) where Q

is the responder. Then:

1. P and Q are never
orrupted before expiration of the test session

2. Sessions (P; s) and (Q; s) are never revealed by A

3. (Q; s) is initiated as responder with the start message sent by (P; s)

4. (P; s) re
eives a response message after (Q; s) was a
tivated as responder, and this mes-

sage
arries the same DH exponent as in the response message output by (Q; s)

5. Session (P; s) does not abort.

Proof: Proof of (a):

1. A is not allowed to
orrupt the peers to the test session and we have assumed (wlog) that it

does not do that.

16

2. (P; s)
annot be revealed by A sin
e A is not allowed to expose the test session. As for (Q; s),

a state-reveal query
an be done only against in
omplete sessions (sin
e upon
ompletion

sessions erase their state). However, while in
omplete, (Q; s) is the mat
hing session to the

test session so A
annot issue a state-reveal query against it

3. Sin
e (P; s;Q)
ompletes, it means that P re
eived a response message with identity Q in it.

In parti
ular, it means that P veri�ed the signature sig

Q

(\1"; s; g

x

; g

y

) under Q's publi
 key

and where g

x

was the value in
luded by (P; s) in its start message. Sin
e the above signature

by Q is the only one Q
ould have generated as responder under session s, then we have that

Q indeed was a
tivated as responder of s under the DH exponent g

x

as output in the start

message by (P; s).

If, however, it happens with non-negligible probability that su
h a signature was veri�ed by

P under Q's publi
 key but Q did not produ
e it then we
an use this non-negligible event to

build a forger against sig

Q

. This is in
ontradi
tion to the assumed se
urity of the signature

s
heme. (Note that by the �rst item above Q
annot be
orrupted at the point that P

veri�ed the above signature, so Q's private key was not available to the atta
ker at the time

of forgery.)

4. (P; s)
ompletes with output (P; s;Q) so it must have re
eived a response message whi
h

in
luded Q as the identity. Moreover, P veri�ed the signature in the response message under

Q's publi
 key, namely sig

Q

(\1"; s; g

x

; g

y

). If (Q; s) was not a
tivated as a responder then Q

would have never generated a signature sig

Q

(\1"; s; :::), so the above signature is a forgery.

If Q generated su
h a signature then we have that g

y

in
luded under that signature was the

DH exponent in the response message generated by (Q; s), and sin
e P veri�ed it using the

DH exponent it re
eived in the response message then we have that either this is the same

exponent generated and sent by Q or the signature is a forgery. If any of the above \forgery

events" happen with non-negligible probability then we
an use atta
ker A to build a forger

against sig

Q

that su

eeds with su
h non-negligible probability.

5. Clearly. session (P; s) does not abort sin
e it
ompletes.

Proof of (b) : Omitted. Similar to (a). 2

We now start proving the indistinguishability of the above de�ned

^

S simulators.

Lemma 8 For all �

0

-atta
kers A,

^

S-rand(A) �

^

S-hybr(A)

Proof: We show that if for an atta
ker A there is a non-negligible di�eren
e (say ") between

Prob(

^

S-rand(A) outputs 1) and Prob(

^

S-hybr(A) outputs 1) then we
an build a distinguisher

for the DDH Assumption (whi
h su

eeds with non-negligible advantage "). We show su
h a

distinguisher D.

Let (g

x

; g

y

; z) be a DDH triple input to D. The distinguisher D follows the a
tion of a

^

S-rand

simulator (in
luding abort a
tions) ex
ept for the following
hanges:

Whenever the session (I

0

; s

0

)
hosen by

^

S-rand is initiated then D repla
es the DH value in the

start message of (I

0

; s

0

) with the value g

x

from the DDH triple. That is, D produ
es s

0

; g

x

as the

start message from (I

0

; s

0

). (Note that D
ontrols I

0

whi
h we may assume to be un
orrupted or

otherwise

^

S-rand, and D, would have aborted; same holds for D
ontrolling R

0

). Later, if (R

0

; s

0

)

ever issues a response message (this means that (R

0

; s

0

) was a
tivated via the start message (s

0

; g

x

);

17

sin
e otherwise

^

S-rand aborts), then D generates a response message from (R

0

; s

0

) of the form

s

0

; g

y

; R

0

; sig

R

0

(\1"; s

0

; g

x

; g

y

);ma

k

1

(\1"; s

0

; R

0

), where g

y

is the se
ond element in the DDH

triple, and k

1

= prf

z

(1) where z is the third element in this triple. If (I

0

; s

0

) re
eives a response

message with a DH exponent di�erent than g

y

(i.e., the se
ond element in the DDH triple) then

D aborts (as

^

S-rand would do). Otherwise, I

0

veri�es the signature in
luded in the in
oming

response message under the publi
 key of the sender (as it appears in the response message), and

he
ks the ma
 under key k

1

= prf

z

(1), where z is the third element in the DDH triple. If the

veri�
ation fails (I

0

; s

0

) aborts the session and D aborts its run (as

^

S-rand does). Otherwise, D

makes (I

0

; s

0

) output a �nish message of the form: s

0

; I

0

; sig

I

0

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s

0

; I

0

),

where k

1

= prf

z

(1) with z being the third element in the DDH triple. On in
oming �nish message

to (R

0

; s

0

) all a
tions are as in a regular run of

^

S-rand but the ma
 in the message is veri�ed

using key k

1

= prf

z

(1). All other a
tions of

^

S-rand, in
luding the
ompletion of sessions (I

0

; s

0

)

and (R

0

; s

0

) follow the regular spe
i�
ations of a run of A under

^

S-rand (in parti
ular, if any of

the sessions (I

0

; s

0

) or (R

0

; s

0

)
omplete then they output the random key k

0

hosen by

^

S-rand as

the session key for these sessions).

We now argue that in
ase that z = g

xy

the probability distribution of runs of the distinguisher

D under atta
ker A is the same as the distribution of runs of

^

S-rand under A. First note that for

sessions other than (I

0

; s

0

) and (R

0

; s

0

) the a
tions of D do not di�er from those of

^

S-rand. As

for sessions (I

0

; s

0

) and (R

0

; s

0

); the values g

x

and g

y

used in the start and response messages of

these sessions are distributed identi
ally as in a regular run of the �

0

proto
ol, namely, they are

hosen independently and uniformly over the group generated by g. (Su
h are the spe
i�
ations of

�

0

and su
h is the way g

x

and g

y

are
hosen under the DDH assumption.)

Moreover, sin
e any event that brings to an asso
iation of g

x

to a di�erent DH exponent than

g

y

(and of g

y

to a di�erent exponent than g

x

)
auses an abort a
tion by

^

S-rand (and then abort

by D) then all ma

omputations in (I

0

; s

0

) and (R

0

; s

0

) that are visible to A are done under the

key z = g

xy

as spe
i�ed by the proto
ol and by

^

S-rand. Finally, the state of sessions (I

0

; s

0

) and

(R

0

; s

0

) is never visible to A (state-reveal queries against these sessions or
orruption of I

0

or R

0

lead to abort by D) therefore the di�eren
es in these states between the run of

^

S-rand and the run

of D do not in
uen
e the view of A. (Note that su
h di�eren
es in the session state do exist: under

the run by D the powers x and y of the DH exponents g

x

and g

y

do not appear in the state of (I

0

; s

0

)

and of (R

0

; s

0

) while in a regular run of

^

S-rand they do appear. However, this would be visible to

A only via state-reveal queries whi
h lead to abort by D and

^

S-rand.) Note that all a
tions of D

after (I

0

; s

0

) sends its �nish message do not deviate from the regular a
tions of

^

S-rand and, by the

above arguments, also the view of A at that point (and then after that) is the same as in a run under

^

S-rand. We therefore have that: Prob(

^

S-rand(A) outputs 1) = Prob(D(A) outputs 1 : z = g

xy

).

In the
ase of z being a random element g

r

, a similar argument as above shows that the runs

of D(A) are distributed exa
tly as the runs of

^

S-hybr(A), that is: Prob(

^

S-hybr(A) outputs 1) =

Prob(D(A) outputs 1 : z = random)

Now, by the DDH assumption it must be that for all A, Prob(D(A) outputs 1 : z = g

xy

) equals

Prob(D(A) outputs1 : z = random) up to a negligible di�eren
e, and therefore we get that for all

atta
kers A,

^

S-rand(A) �

^

S-hybr(A).

2

The next Lemma shows that for any atta
ker A,

^

S-rand(A) has a signi�
ant probability of guess-

ing the test session. This property will \propagate" through our later proofs to all the other

^

S

simulators.

18

Lemma 9 For any �

0

-atta
ker A, the probability of a guess event under a run of

^

S-rand(A) is

at least 1=(m � n) (re
all that m is the number of sessions initiated by A and n is the number of

parties in the proto
ol { also see Remark 3).

Proof: Let S(A) be a regular simulator of proto
ol �

0

under an atta
ker A. Sin
e A always sele
ts

a test session then if one
hooses a random session (I

0

; s

0

) and random peer R

0

the probability

that a run of S(A) ends with (\0"; I

0

; s

0

; R

0

) or (\1"; R

0

; s

0

; I

0

) as the output of the test session is

at least 1=(m � n).

Let

^

S-rand

0

be a simulator that a
ts exa
tly as

^

S-rand ex
ept that it does not stop (neither

outputs 0) in the
ase of abort events. Note that under

^

S-rand

0

(A) the answer to the session-key

query is a random key while under S(A) it is the real session key. However, this di�eren
e does

not in
uen
e the way A
hooses the test session (whi
h obviously happens before the session-key

query is answered). Therefore the probability of a guess event under

^

S-rand'(A) is exa
tly the

same as the probability a guess event under S(A), and then at least 1=(m � n).

Now
onsider a �xed set of
oins for

^

S-rand

0

and forA that brings

^

S-rand

0

(A) to a guess event.

If now we look ba
k at a regular run of

^

S-rand(A) (i.e., with abort a
tions) with the same set of

oins, the run still will produ
e a guess event sin
e by Lemma 7 none of the abort events happen

with respe
t to the test session (whi
h in this
ase is either (I

0

; s

0

) or (R

0

; s

0

)) and therefore no

abort event happens under

^

S-rand(A) either. That is, under this set of
oins the run of

^

S-rand(A)

is not di�erent than the run of

^

S-rand

0

(A).

Thus ea
h set of
oins that bring

^

S-rand

0

(A) to guess will also bring

^

S-rand(A) to a guess and

thus Prob(guess under

^

S-rand(A)) � Prob(guess under

^

S-rand'(A)) � 1=(m � n). 2

Lemma 10 For any �

0

-atta
ker A, the probability of a guess event under a run of

^

S-hybr(A) is,

up to a negligible di�eren
e, the same as the probability of a guess event under a run of

^

S-rand(A).

Proof: If there is a non-negligible di�eren
e between the guess probability in a run under

^

S-rand

and under

^

S-hybr, then we
an build a distinguisher D

0

for DDH. Let D be the distinguisher from

the proof of Lemma 8. On input a DDH triple (g

x

; g

y

; z) the distinguisher D' runs D ex
ept that

D' outputs 1 if and only if in the run of D a guess event happens (in any other
ase it outputs 0).

Following the proof of Lemma 8 we get that in
ase that z = g

xy

the distinguisher D' outputs 1

with the probability of a guess event under

^

S-rand, while if z = random, it outputs 1 with the

probability of a guess event under

^

S-hybr. 2

The following is a
entral lemma in our analysis; it shows that when a guess event happens

then one of the sessions (I

0

; s

0

) and (R

0

; s

0

) is the test session and the other is its mat
hing

session. Therefore, in this
ase the atta
ker is not allowed to expose any of these two session (until

expiration). This property is used in an essential way to establish the value of P

rand

and P

real

(Lemmas 13 and 14). It is interesting to note that the proof of Lemma 11 uses the se
urity of the

ma
 and prf families but not the se
urity of the signatures (or the DDH assumption). However,

when proving proto
ol �

0

without the \0" and \1" tags (see Se
tion 5.1) the proof is more
omplex

and involves the unforgeability of signature as well.

Lemma 11 For all �

0

-atta
kers A, if a guess event happens under a run of

^

S-hybr(A) then the

following properties hold (ex
ept for negligible probability):

(i) if (I

0

; s

0

) was
hosen by A as the test session then (R

0

; s

0

) (either if
ompleted or not) is its

mat
hing session; (ii) if (R

0

; s

0

) was
hosen by A as the test session then (I

0

; s

0

) is its mat
hing

session.

19

Proof: (i) Sin
e we assume a guess event then if (I

0

; s

0

) is
hosen by A as the test session then

the peer to the session is R

0

. By de�nition of mat
hing session, as long as (R

0

; s

0

) is in
omplete

it is mat
hing to (I

0

; s

0

). If (R

0

; s

0

) is
omplete and its output is (R

0

; s

0

; ID) then by de�nition

(R

0

; s

0

) mat
hes (I

0

; s

0

) if and only if ID = I

0

. We want to prove that if (R

0

; s

0

)
ompletes then

ID = I

0

.

Assume that (R

0

; s

0

)
ompletes with peer ID. This means that in the �nish message re
eived by

(R

0

; s

0

) before the session
ompleted, R

0

veri�ed the value ma

k

1

(\0"; s

0

; ID) under k

1

= prf

k

(1)

where k is a random key
hosen by

^

S-hybr and never provided to the atta
ker. At this point there

ould have been two examples of ma

k

1

output in the proto
ol (and no other use of k)

5

, namely,

ma

k

1

(\1"; s

0

; R

0

) and ma

k

1

(\0"; s

0

; I

0

). Therefore, if based on this information the atta
ker has

non-negligible probability of produ
ing ma

k

1

(\0"; s

0

; ID) for ID 6= I

0

then we
an build, based on

^

S-hybr, a forger to the ma
 fun
tion under key k

1

= prf

k

(1), where k is a random independent

key. This forger
an then be turned into a distinguisher to the prf fun
tion, or into a forger

against the ma
 fun
tion (with random keys). Sin
e we assume these fun
tions to be se
ure then

the probability that (R

0

; s

0

) ends with peer ID 6= I

0

is negligible.

(ii) Sin
e we assume a guess event then if (R

0

; s

0

) is
hosen by A as the test session then the

peer to the session is I

0

. By de�nition of mat
hing session, as long as (I

0

; s

0

) is in
omplete it is

mat
hing to (R

0

; s

0

): If (I

0

; s

0

) is
omplete and its output is (I

0

; s

0

; ID) then by de�nition (I

0

; s

0

)

mat
hes (R

0

; s

0

) if and only if ID = R

0

. Thus, we want to prove that if (I

0

; s

0

)
ompletes then its

peer ID = I

0

.

Assume that (I

0

; s

0

)
ompletes with peer ID. This means that in the response message re
eived

by (I

0

; s

0

) before the session
ompleted, I

0

veri�ed the value ma

k

1

(\1"; s

0

; ID) under k

1

= prf

k

(1)

where k is a random key
hosen by

^

S-hybr and never provided to the atta
ker. At this point

there
ould have been a single example of ma

k

1

use in the proto
ol (and no other use of k),

namely, ma

k

1

(\1"; s

0

; R

0

). Therefore, if based on this information the atta
ker has non-negligible

probability of produ
ing ma

k

1

(\1"; s

0

; ID) for ID 6= R

0

then, as in (i) above, we
an build a

forger for the ma
 fun
tion or a distinguisher for the prf family.

2

Lemma 12 Lemma 11 holds for

^

S-rand as well.

Proof: If in a run of a simulator

^

S the properties (i) and (ii) from Lemma 11 hold then we say

that a mat
h event happened. Lemma 11 proves that under a run of

^

S-hybr, Prob(mat
h :

guess) � 1 (i.e., 1 up to a negligible di�eren
e). Here we want to prove the same property under

a run of

^

S-rand.

For this we build a DDH distinguisher D

0

as follows. D

0

runs D from the proof of Lemma 8

ex
ept that D

0

outputs 1 if and only if in the run of D a guess and a mat
h event happen (we

will
onsider runs of D

0

both under

^

S-hybr and

^

S-rand). We have that:

jProb(D

0

outputs 1 : z = random)� Prob(D

0

outputs 1 : z = g

xy

)j = (by Lemma 8)

= jProb(D

0

outputs 1 under

^

S-hybr)� Prob(D

0

outputs 1 under

^

S-rand)j = (by def of D

0

)

= jProb(guess and mat
h under

^

S-hybr)� Prob(guess and mat
h under

^

S-hybr)j =

= jProb(mat
h under

^

S-hybr : guess under

^

S-hybr)Prob(guess under

^

S-hybr)�

5

Re
all that the session key value from test session (I

0

; s

0

) provided to the atta
ker by

^

S-hybr is a random value

independent from k.

20

�Prob(mat
h under

^

S-rand : guess under

^

S-rand)Prob(guess under

^

S-rand)j � (Lemmas 10,11)

� Prob(guess under

^

S-rand)j1 � Prob(mat
h under

^

S-rand : guess under

^

S-rand)j � (Lemma 9)

� 1=(m � n)Prob(not mat
h under

^

S-rand : guess under

^

S-rand)

That is, we have that up to a negligible probability:

Prob(not mat
h under

^

S-rand : guess under

^

S-rand) �

� (m � n)jProb(D

0

outputs 1 : z = random)� Prob(D

0

outputs 1 : z = g

xy

)j

Sin
e by the DDH assumption the later expression is negligible then we have that under

^

S-rand:

Prob(not mat
h : guess) is negligible, thus proving the lemma.

2

Lemma 13 For all �

0

-atta
kers A, P

rand

(A) = Prob(

^

S-rand(A) outputs 1 : guess event)

Proof: By the same argument as in the proof of Lemma 9 we get that under a run of

^

S-rand a

guess event implies that

^

S-rand does not abort. Thus the run of A under

^

S-rand in the
ase of

a guess event is the same as a regular run of A ex
ept that the se
ret key output by the sessions

(I

0

; s

0

) and (R

0

; s

0

) (if
ompleted) is not the real key but a random key k

0

hosen independently

of the a
tual ex
hange in these sessions. In parti
ular, this means that the value of the test session

key provided to A under

^

S-rand is this random value k

0

. On the other hand, the only other session

that outputs k

0

is, by virtue of Lemma 12, a mat
hing session to the test session so this value is

never revealed to A, and thus it makes no di�eren
e to A's view.

In summary, we have that in
ase of a guess event the output of

^

S-rand is exa
tly the output

of A in a run where the test query is answered with a random key. Or, in other words:

Prob(

^

S-rand(A) outputs 1 : guess event) =

= Prob(A outputs 1 under a

^

S-rand run : guess event) =

= Prob(A outputs 1 under a regular run with test query answered with a random key) =

= P

rand

(A)

2

Lemma 14 For all �

0

-atta
kers A, P

real

(A) = Prob(

^

S-real(A) outputs 1 : guess event)

Proof: This is analogous to Lemma 13. The proof is similar too and it involves the proof of

Lemmas 8 to 12 with the role of

^

S-rand repla
ed with

^

S-real and the role of

^

S-hybr repla
ed

with

^

S-rprf. The proofs of these lemmas require just minor and straightforward adaptations to

the above simulators and are omitted. 2

Lemma 15 For all �

0

-atta
kers A,

^

S-real(A) �

^

S-rand(A)

Proof: We prove that

^

S-real �

^

S-rprf �

^

S-allr �

^

S-hybr �

^

S-rand (for all �

0

-atta
kers).

The indistinguishability of

^

S-hybr and

^

S-rand is proven in Lemma 8. The proof of

^

S-real �

^

S-rprf is similar; the only di�eren
e being that k

0

in

^

S-rprf is
omputed via the pseudorandom

fun
tion rather than
hosen at random. However, this does not
hange the validity of the argument

in the proof of Lemma 8.

21

For proving

^

S-rprf �

^

S-allr one uses the following standard argument based on the se
urity of

the pseudorandom fun
tion family prf. Let A be a �

0

-atta
ker; based on A we build a distinguisher

D against the family prf as follows. The distinguisher D has ora
le a

ess to a fun
tion F (whi
h

may have been sele
ted truly randomly or as a random member of prf); D works exa
tly as a

^

S-rprf(A) simulator, ex
ept that for
omputing k

0

and k

1

it uses the ora
le F rather than a

randomly sele
ted fun
tion from the prf family. It is
lear that if F itself is implemented via a

random member of prf then the a
tions of D

F

are identi
al to those of

^

S-rprf(A). On the other

hand, if F is a truly random fun
tion the a
tions of D are identi
al to those of

^

S-allr. Therefore,

we have that

jProb(

^

S-rprf(A) outputs 1)� Prob(

^

S-allr(A) outputs 1)j =

= jProb(D

F

outputs 1 : F is pseudorandom)� Prob(D

F

outputs 1 : F is random)j

Sin
e the prf family is se
ure then the last di�eren
e is negligible and therefore also

jProb(

^

S-rprf(A) outputs 1)� Prob(

^

S-allr(A) outputs 1)j is negligible, i.e.,

^

S-rprf �

^

S-allr.

For proving

^

S-allr �

^

S-hybr one uses a similar argument as in the previous
ase where the

ora
le F repla
es prf in the
hoi
e of k

1

while k

0

is
hosen at random and independently. 2

We are �nally able to
omplete the proof of property P2 for proto
ol �

0

.

Theorem 16 Proto
ol �

0

satis�es
ondition P2 of SK-se
urity: for all �

0

-atta
ker A,

jP

real

(A)� P

rand

(A)j is negligible.

Proof:

Prob(

^

S-rand(A) outputs 1) =

= Prob(

^

S-rand(A) outputs 1 : guess event) Prob(guess under

^

S-rand) +

+ Prob(

^

S-rand(A) outputs 1 : not guess event) Prob(not guess) =

= Prob(

^

S-rand(A) outputs 1 : guess event) Prob(guess under

^

S-rand) �

� Prob(

^

S-rand(A) outputs 1 : guess event) 1=(m � n)

The se
ond equality is due to the fa
t that if a guess event does not happen then ne
essarily

^

S-rand outputs 0; while the last inequality is from Lemma 9.

Similarly (using the analogous of Lemma 9 in the
ase of

^

S-real) we have that

Prob(

^

S-real(A) outputs 1) � Prob(

^

S-real(A) outputs 1 : guess event) 1=(m � n)

From Lemma 13 and Lemma 14 we have that:

jP

real

(A)� P

rand

(A)j =

= jProb(

^

S-real(A) outputs 1 : guess event)� Prob(

^

S-rand(A) outputs 1 : guess event)j �

� (m � n)jProb(

^

S-real(A) outputs 1)� Prob(

^

S-rand(A) outputs 1)j

Sin
e jProb(

^

S-real(A) outputs 1)�Prob(

^

S-rand(A) outputs 1)j is negligible (Lemma 15) so

is jP

real

(A)� P

rand

(A)j. 2

Remark 3 When doing an exa
t quanti�
ation of the above analysis of the se
urity of proto
ol

�

0

, one
an see that the main \degradation fa
tor" of the se
urity of the proto
ol with respe
t

to the se
urity of the underlying
ryptographi
 fun
tions, is the fa
tor m � n, namely the number

22

of sessions initiated by A in its run times the number of parties in the proto
ol. If one thinks of

key-ex
hange proto
ols that run over the Internet then the numbers for m and n may be huge and

then this fa
tor may seem as a prohibitive loss of se
urity. However, for any given atta
ker that

breaks the proto
ol the real meaning of m and n is not the maximal potential number of sessions or

parties in the Internet but just the minimal number of sessions and parties ne
essary to develop the

atta
k. These numbers are usually very small (single-digit numbers in
urrently known atta
ks).

Therefore, for su
h atta
ks the se
urity of the proto
ol is related to the se
urity of the underlying

ryptographi
 fun
tions by a very small (usually
onstant) degradation fa
tor.

5 Variants and Dis
ussions

At this point we have a full analysis of proto
ol �

0

. We
onsider the se
urity of several variants

of the proto
ol and extensions to its fun
tionality. In parti
ular, we extend the analysis to the

elements found in the IKE proto
ols and not in
luded in the basi
 proto
ol �

0

.

5.1 Eliminating the initiator and responder tags in �

0

In proto
ol �

0

the initiator and responder in
lude under their signatures and ma
 a spe
ial tag

\0" and \1", respe
tively. Here we show that proto
ol �

0

0

de�ned identi
ally to �

0

ex
ept for the

la
k of these tags is still se
ure. (We stress that the signature modes of IKE do not use these tags;

this is one main reason to provide the analysis here without tags.)

The lemmas where we have used these tags as part of the proof arguments are Lemma 7 and

Lemma 11. Here we show how to modify these arguments in order for these lemmas to hold also

for �

0

0

.

Proof of Lemma 7, part (a)(3). In this
ase we used the tag \1" in
luded under the signature of

Q to argue that sig

Q

(\1"; s; g

x

; g

y

) re
eived by P in the response message of session s is the only

signature that Q
ould have produ
ed under session s and then the response message must have

ome from Q. However, if we omit \1" from this signature then this
laim is not ne
essarily
orre
t.

In this
ase the signature re
eived by P in the response message is sig

Q

(s; g

x

; g

y

) whi
h
ould have

been taken from a �nish message sent by Q in a session (Q; s) where Q was a
tivated under

session-id s as initiator! In the later
ase, however, we know that before sending the �nish message

with the above signature (Q; s) should have re
eived a valid response message whi
h in
luded

a legal signature sig

E

(s; g

y

; g

x

) from some party E, as well as a
orresponding ma

k

1

(s;E) for

k

1

= prf

g

xy

(1). Sin
e we know that g

y

was
hosen by Q itself (it appears as last element in the

signature) and g

x

was
hosen by P , then no un
orrupted party
ould have
hosen g

x

ex
ept for

negligible (
ollision) probability. Moreover, E
reated ma

k

1

(s;E) for k

1

omputed under random

g

x

; g

y

not
hosen by E (nor
ould x and y be found by A via session reveals sin
e by parts (a)(2)

of the lemma none of the sessions (P; s), (Q; s)
ould be revealed).

From this we have that if the event in whi
h E produ
es a valid response message for session

(Q; s) happens with non-negligible probability then we
an build a DDH distinguisher in a similar

way to the proof of Lemma 8; this distinguisher just needs to guess the sessions (Q; s) and (P; s)

where this atta
k by E happens. In the guessed sessions the distinguisher uses z from the DDH

triple to
ompute k

1

= prf

z

(1). Now if z = g

xy

then the probability of forgery by E is non-

negligible as assumed above. On the other hand, if the probability of forgery is non-negligible with

z = random then we
an build a breaker to the ma
 or prf as done in the proof of Lemma 11. So

either we
ontradi
t the DDH assumption, or the se
urity of the ma
 or prf fun
tions.

23

(Note that this proof involves signature se
urity
onsiderations as well as DDH, MAC and PRF; the

proof of this property in the
ase of �

0

used a signature-only argument; this shows the simplifying

e�e
t for the analysis that the use of a responder's tag has.)

Proof of Lemma 7, part (a)(4). This requires
hanges to the argument in Lemma 7 whi
h are very

similar to the
ase of part (a)(3) proved above.

Proof of Lemma 11, part (i). The proof of this part of Lemma 11 for proto
ol �

0

used in an essential

way the tags \0"and \1"in
luded under the ma
; otherwise the atta
ker
ould have replayed in

the �nish message the value ma

k

1

(s

0

; R

0

) taken from the response message by R

0

. However, we

will show that the proof
an be adapted to the
ase of �

0

0

where the tags are not in
luded. First

note that the
urrent argument in the proof of Lemma 11, part (i) already shows (even without

the tags) that it is not feasible for the atta
ker to make (R

0

; s

0

)
omplete with ID other than I

0

or R

0

(sin
e the only available ma
 values are on I

0

and R

0

).

Thus, if (I

0

; s

0

)
ompletes with peer R

0

6= I

0

then we need to use a signature-based argument to

show that replaying ma

k

1

(s

0

; R

0

) in the �nish message does not help. Indeed, this �nish message

(in order to be valid with ID = R

0

) will also have to
arry a signature sig

R

0

(s

0

; g

y

; g

x

) where g

x

is

the DH exponent re
eived by (R

0

; s

0

) in the start message. On the other hand, the only signature

produ
ed by R

0

in session s

0

is sig

R

0

(s

0

; g

x

; g

y

), where g

y

was
hosen by R

0

itself after re
eiving g

x

and independently of this value. Therefore, ex
ept for a negligible
ollision probability, g

x

6= g

y

and

sig

R

0

(s

0

; g

y

; g

x

) was never produ
ed by R

0

. Thus, if su
h a valid signature appears in the �nish

message re
eived by (R

0

; s

0

) then we have a forgery event against sig

R

0

whi
h
an only happen

with negligible probability or otherwise we have a forgery algorithm against the signature s
heme.

Proof of Lemma 11, part (ii). No
hange required, the presen
e of the tags was not used in the

proof argument of this part for proto
ol �

0

.

5.2 Putting the MAC under the signature

One seemingly signi�
ant di�eren
e between proto
ol �

0

and IKE signature-mode is that in the lat-

ter the ma
 tag is not sent separately but rather it is
omputed under the signature operation. That

is, in the response message of IKE the responder does not send sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

),

as in �

0

, but rather sends the value sig

r

(ma

k

1

(s; g

x

; g

y

; ID

r

)). Similarly, the pair of signature-

ma
 is repla
ed in the �nish message by the value sig

i

(ma

k

1

(s; g

y

; g

x

; ID

i

)). The reason for this

in
lusion of the ma
 under the signature in IKE is twofold: to save the extra spa
e taken by the

ma
 tag and to provide a message format
onsistent with other authenti
ation modes of IKE.

6

Fortunately, the analysis of the proto
ol when the ma
 goes under the signature is essentially

the same as the simpli�ed �

0

version analyzed before. The analysis adaptation is straightforward

and is based in the following simple fa
t.

Lemma 17 If sig is a se
ure signature s
heme and ma
 a se
ure message authenti
ation fun
-

tion then it is infeasible for an atta
ker to �nd di�erent messages M and M

0

su
h that for a

randomly
hosen se
ret ma
-key k

1

the atta
ker
an
ompute sig(ma

k

1

(M

0

)) even after seeing

sig(ma

k

1

(M)).

6

For example, the IKE mode where authenti
ation is provided by a pre-shared key is obtained from the signature

mode by using the same ma
 expression but without applying the signature on it (in this
ase the ma
 key is derived

from the pre-shared key).

24

Indeed, if the atta
ker
an do that then either ma

k

1

(M

0

) 6= ma

k

1

(M) with signi�
ant probability

and this results in a signature forgery strategy, or ma

k

1

(M

0

) = ma

k

1

(M) with signi�
ant proba-

bility in whi
h
ase the atta
ker has a strategy to break the ma
. (Note that the atta
ker
annot

hoose k

1

; if it
ould, the lemma would not hold.)

This lemma implies that all the arguments in our proofs of Se
tion 4 that use the unforgeability

of signatures remain valid in this
ase. More pre
isely, they are extended through the above lemma

to
laim that if an atta
k is su

essful then either the signature s
heme or the ma
 are broken

(the
ases where the weakness
omes from the inse
urity of either the prf family or the DDH

assumption are treated identi
ally as in the proof of �

0

).

IKE's aggressive mode. With the above
hanges, in whi
h the ma
 is in
luded under the

signature and the \0"=\1" tags are not in
luded, �

0

be
omes basi
ally the so
alled \aggressive

mode of signature authenti
ation" whi
h is one of the two IKE's proto
ols based on authenti
ation

via digital signatures. One additional di�eren
e is that the IKE proto
ol uses the fun
tion prf

itself to implement the ma
 fun
tion. Sin
e a pseudorandom family is always a se
ure MAC then

this implementation preserves se
urity (in this
ase the key to the prf is g

xy

itself as in the other

uses of this fun
tion in the proto
ol; the proto
ol also makes sure that the input to prf when used

as MAC is di�erent that the inputs used for key derivation).

5.3 En
rypting the identities

Here we
onsider the augmentation of �

0

for providing identity
on
ealment over the network. We

present the main ideas behind our treatment, and omit mu
h of the formal and te
hni
al issues.

We start by
onsidering the following variant of proto
ol �

0

. Before transmitting the response

message, the responder
omputes a key k

2

= prf

g

xy

(2) and en
rypts under key k

2

the response

message ex
luding s and g

y

. That is, the response message is
hanged to

s; g

y

;en

k

2

(ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)) where en
 is a symmetri
-key en
ryption

algorithm. Upon re
eiving the response message the initiator
omputes the key k

2

as above, de-

rypts the in
oming message with this key, and then follows with the regular veri�
ation operations

of �

0

. If su

essful, it prepares the �nish message as in �

0

but sends it en
rypted under en

k

2

(only s is sent in the
lear). Upon re
eption of this message the responder de
rypts it and follows

with the regular operations of �

0

.

The main goal of this use of en
ryption is to prote
t the identities of the peers from dis
losure

over the network (at least in
ases that these identities are not uniquely derivable from the visible

(say, IP) address from whi
h
ommuni
ation takes pla
e). We �rst argue that the addition of

en
ryption preserves the SK-se
urity of the proto
ol. Then we
laim that the en
ryption provides

semanti
 se
urity of the en
rypted information. For the response message semanti
 se
urity is

provided against passive atta
kers only (indeed, at the point that this en
ryption is applied by ID

r

,

the initiator has not yet authenti
ated to ID

r

so this en
ryption
an be de
rypted by whoever
hose

the DH exponent g

x

). For information en
rypted in the �nish message we
an provide a stronger

guarantee of se
urity, namely, semanti
 se
urity also against a
tive atta
kers.

We start by
laiming that the modi�ed �

0

proto
ol with en
ryption as des
ribed above satis�es

Theorem 6. The basi
 idea is that if we were en
rypting under a random key independent from the

DiÆe-Hellman ex
hange then the se
urity of the proto
ol would be preserved (in parti
ular, sin
e

the atta
ker itself
an simulate su
h an independent en
ryption on top of �

0

). However, sin
e we

are using an en
ryption key that is derived from g

xy

then we need to show that if the en
ryption

helps the atta
ker in breaking the SK-se
urity of (the en
rypted) �

0

then we
an use this atta
ker

25

to distinguish g

xy

from a random value. Te
hni
ally, this requires an adaptation of the proof of

Theorem 6. The main
hange regards the formulation of the hybrid simulators in Se
tion 4.3.2.

Spe
i�
ally, to the spe
i�
ation of how these simulators
hoose k

0

and k

1

we now add the
hoi
e

of a third key k

2

. In the
ase of

^

S-allr k

2

is
hosen at random and independently of k

0

and k

1

;

in all other
ases k

2

is
hosen by applying the prf to the value 2 and with the same key used to

derive k

1

(e.g.

^

S-real will
hoose k

2

= prf

g

xy

(2)). The proofs of lemmas in Se
tion 4.3.3 now

need to be augmented with an extra simulation of the en
ryption fun
tion under a random key.

Any deviation from the atta
ker's advantage from the non-en
ryption
ase results in a break of

DDH (i.e., a
onstru
tion of a distinguisher to the DDH assumption) or a break to the prf family

(i.e., a
onstru
tion of a distinguisher against this family).

In order to show se
re
y prote
tion against a passive atta
ker (note that a passive atta
ker

means an eavesdropper in the network that does not
ollaborate with the SK-atta
ker whi
h is

a
tive by de�nition) we
onsider a run of the proto
ol where k

2

is
hosen randomly (as under

^

S-allr). In this
ase semanti
 se
urity against a passive atta
ker follows from the assumption that

the en
ryption fun
tion (under a random se
ret key) is semanti
ally se
ure against
hosen plaintext

atta
ks. Using the indistinguishability between

^

S-allr and

^

S-real (re-proven as sket
hed before

for the
ase of en
rypted �

0

) we get a guarantee of semanti
 se
urity also under the real runs of

the proto
ol (as represented by

^

S-real).

In the
ase of the �nish message, the se
urity guarantee is stronger and the se
re
y prote
tion

an stand a
tive atta
kers too (assuming a suitable en
ryption fun
tion se
ure against a
tive atta
ks

[4, 16℄). We
an show that for any
omplete session (ID

i

; s; ID

r

) that is not exposed by the atta
ker

(i.e., neither this session or its mat
hing session are
orrupted), breaking the semanti
 se
urity of the

information transmitted under en

k

2

in the �nish message of session (ID

i

; s) implies a distinguishing

test between k

2

and a random (en
ryption) key. This in turn
an be used to build an atta
k against

the SK-se
urity of the proto
ol or against one of its underlying
ryptographi
 primitives.

5.4 A four message variant: IKE main mode

Here we study a four-message variant of the �

0

proto
ol. The interest in this proto
ol is two-fold:

on one hand, if en
ryption is added to it (as dis
ussed below) it allows
on
ealing the responder's

identity from a
tive atta
kers and the initiator's identity from passive atta
ks. This is in
ontrast

to �

0

where the strong a
tive prote
tion is provided to the initiator's identity (see Se
tion 5.3).

The other sour
e of interest for this proto
ol is that it a
tually represents the
ore
ryptographi

skeleton of the so
alled \main mode with signature authenti
ation" in IKE (whi
h is one of the

two signature-based proto
ols in IKE { see Se
tion 5.2 for a dis
ussion of the other IKE variant).

The four-message proto
ol, denoted �

1

, is similar to �

0

ex
ept that the responder delays its

authenti
ation (via sig

r

) to a fourth message. The proto
ol is:

I!R: s; g

x

R!I: s; g

y

I!R: s; ID

i

; sig

i

(\0"; s; g

y

; g

x

);ma

k

1

(\0"; s; ID

i

)

R!I: s; ID

r

; sig

r

(\1"; s; g

x

; g

y

);ma

k

1

(\1"; s; ID

r

)

The se
urity analysis of �

1

is similar to that of �

0

as presented in Se
tion 4. It follows the

same basi
 logi
 and stru
ture of that proof but it requires some
hanges due to the addition of

the fourth message and the fa
t that the responder authenti
ates after the initiator. In parti
ular,

26

this requires some
hanges to the de�nition of the \abort events" related to the

^

S-simulators from

Se
tion 4.3.2 and the statement of Lemma 7. The adaptation, however, of the previous proof to

this new proto
ol is mostly straightforward. The details are omitted. One important point to note

is that in this
ase (as opposed to �

0

{ see Se
tion 5.1) the use of the tags \0" and \1" is essential

for se
urity; at least if one regards re
e
tion atta
ks (where the atta
ker impersonates the initiator

of the ex
hange as responder by just replying to ea
h of the initiator's messages with exa
tly the

same message) as a real se
urity threat (see dis
ussion below).

Providing identity
on
ealment in �

1

is possible via the en
ryption of the last two messages

of the proto
ol (under a key k

2

= prf

g

xy

(2) as in Se
tion 5.3). In this
ase, the identity ID

r

is

prote
ted against a
tive atta
ks, while ID

i

against passive atta
kers.

IKE's main mode. Proto
ol �

1

with the ma
 in
luded under the signature (as in Se
tion 5.2),

with en
ryption of the last two messages (not in
luding the session-id s), and without the \0"; \1"

tags is essentially the \main mode signature authenti
ation" in IKE. (There are some other se
-

ondary di�eren
es su
h as: (i) the session id s equals a pair s

1

; s

2

, where s

1

; s

2

are \
ookies"

ex
hanged between the parties in two additional messages pre
eding the above four-message ex-

hange, and (ii) the MAC fun
tion is implemented using prf

g

xy

). Our analysis here applies to this

IKE proto
ol ex
ept for the fa
t that IKE does not use the \0"; \1" tags and thus it is open to

re
e
tion atta
ks. We note that without the use of these tags the proto
ol
an be proven se
ure

in our model if ex
hanges from a party with itself are
onsidered invalid, or if the initiator veri�es,

for example, that the in
oming DH exponent in the se
ond message di�ers from the one sent in

the initial message. From a pra
ti
al point of view, these potential re
e
tion atta
ks have been

regarded as no real threats in the
ontext of IKE; in parti
ular based on other details of the IKE

spe
i�
ation, su
h as the way en
ryption is spe
i�ed, that make these atta
ks unrealisti
. Yet, the

addition of tags as in �

1

would have been advisable to
lose these \design holes" even if
urrently

onsidered as theoreti
al threats only.

Note: In
ase that the MAC goes under the signature (as in IKE and in Se
tion 5.2) then the

\0"; \1" tags
an go under the MAC only. Moreover, in this
ase one
an dispense of these tags

and use instead di�erent (and
omputationally independent) keys k

1

and k

0

1

to key the MAC going

from ID

i

to ID

r

and from ID

r

to ID

i

, respe
tively.

5.5 Not signing the peer's DH exponent

The proto
ols as presented before take
are of signing ea
h party's own DH exponent as well as

the peer's DH exponent. While the former is stri
tly ne
essary for se
urity (against \man in the

middle" atta
ks), the later is not essential and is used mainly for simplifying the proofs. If the

peer's exponent is not in
luded under the signature then the proofs be
ome more involved sin
e the

essential binding between g

x

and g

y

(for example, in Lemma 7 item 4)
annot be argued dire
tly

but via a binding of these exponents to the session id.

5.6 Hashing g

xy

: the HDH assumption

We mentioned in Se
tion 3 that it is advisable in pra
ti
e to hash the DH value g

xy

to the length

of the prf's key from whi
h further keys are derived. In parti
ular, this may result in better

se
urity of the resultant hashed bits relative to the initial plain string g

xy

. The use of all of g

xy

as if they were all perfe
tly random is generally justi�ed by the DDH assumption (see Assumption

5). However, while this assumption is
onsidered \standard" these days, it a
tually
onstitutes

27

a very strong
onje
ture about the strength of the DH key g

xy

: namely, that all bits in this key

are simultaneously indistinguishable from random for an observer of g

x

and g

y

. Currently, there

is no eviden
e against this strong
onje
ture, yet, whenever possible, it is best to rely on weaker

assumptions. A possible weakening of DDH is to assume the indistinguishability of the distributions

Q

0

and Q

1

de�ned in Assumption 5 when the values g

xy

and g

z

are repla
ed with h(g

xy

) and h(g

z

),

respe
tively; where h is a randomly
hosen element from a family of hash fun
tions (su
h as a

ryptographi
 hash fun
tion family or universal hash fun
tions). This approa
h was re
ently taken

in [8℄ where this weaker assumption is referred to as the \Hashed DiÆe-Hellman Assumption (HDH)".

We point out that the IKE proto
ols use a key derivation te
hnique from g

xy

based on this approa
h

with the \hashing" implemented via a family of pseudorandom fun
tions. A more
ommon pra
ti
e

is to just use a single (idealized) hash fun
tion H (su
h as SHA-1) to hash the DH key.

Referen
es

[1℄ M. Bellare, R. Canetti and H. Kraw
zyk, \A modular approa
h to the design and analysis

of authenti
ation and key-ex
hange proto
ols", 30th STOC, 1998.

[2℄ M. Bellare and P. Rogaway, \Entity authenti
ation and key distribution", Advan
es in

Cryptology, - CRYPTO'93, Le
ture Notes in Computer S
ien
e Vol. 773, D. Stinson ed,

Springer-Verlag, 1994, pp. 232-249.

[3℄ R. Canetti, \Universally Composable Se
urity: A New paradigm for Cryptographi
 Proto-

ols", 42nd FOCS, 2001. Full version available at http://eprint.ia
r.org/2000/067.

[4℄ Canetti, R., and Kraw
zyk, H., \Analysis of Key-Ex
hange Proto
ols and Their Use for

Building Se
ure Channels", Advan
es in Cryptology { EUROCRYPT 2001, Full version in:

http://eprint.ia
r.org/2001/040.

[5℄ Canetti, R., and Kraw
zyk, H., \Universally Composable Notions of Key Ex-

hange and Se
ure Channels", Euro
rypt 02, 2002. Full version available at

http://eprint.ia
r.org/2002/059.

[6℄ R. Cramer and V. Shoup, \A Pra
ti
al Publi
 Key Cryptosystem Provable Se
ure Against

Adaptive Chosen Ciphertext Atta
k", In Crypto '98, LNCS No. 1462, pages 13{25, 1998.

[7℄ W. DiÆe, P. van Oors
hot and M. Wiener, \Authenti
ation and authenti
ated key ex-

hanges", Designs, Codes and Cryptography, 2, 1992, pp. 107{125.

[8℄ Gennaro, R., Kraw
zyk H., and Rabin, T., \Hashed DiÆe-Hellman: A Hierar
hy of DiÆe-

Hellman Assumptions", manus
ript, Feb 2002.

[9℄ O. Goldrei
h, \Foundations of Cryptography: Basi
 Tools", Cambridge Press, 2001.

[10℄ D. Harkins and D. Carrel, ed., \The Internet Key Ex
hange (IKE)", RFC 2409, Nov. 1998.

[11℄ ISO/IEC IS 9798-3, \Entity authenti
ation me
hanisms | Part 3: Entity authenti
ation

using asymmetri
 te
hniques", 1993.

[12℄ Karn, P., and Simpson W.A., \The Photuris Session Key Management Proto
ol", draft-ietf-

ipse
-photuris-03.txt, Sept. 1995.

28

[13℄ S. Kent and R. Atkinson, \Se
urity Ar
hite
ture for the Internet Proto
ol", Request for

Comments 2401, Nov. 1998.

[14℄ Kraw
zyk, H., \SKEME: A Versatile Se
ure Key Ex
hange Me
hanism for Internet,", Pro-

eedings of the 1996 Internet So
iety Symposium on Network and Distributed System Se-

urity, Feb. 1996, pp. 114-127. http://www.ee.te
hnion.a
.il/~hugo/skeme-ln
s.ps

[15℄ Kraw
zyk, H., IPse
 mailing list ar
hives, http://www.vpn
.org/ietf-ipse
/, April-June

1995.

[16℄ Kraw
zyk, H., \The order of en
ryption and authenti
ation for prote
ting
ommuni
a-

tions (Or: how se
ure is SSL?)", Crypto'2001. Full version in: Cryptology ePrint Ar
hive

(http://eprint.ia
r.org/), Report 2001/045.

[17℄ Kraw
zyk, H., \SIGMA: the `SIGn-and-MA
' Approa
h to Authenti
ated DiÆe-Hellman

Proto
ols", http://www.ee.te
hnion.a
.il/~hugo/sigma.html

[18℄ Meadows, C., \Analysis of the Internet Key Ex
hange Proto
ol Using the NRL Proto
ol An-

alyzer", Pro
eedings of the 1999 IEEE Symposium on Se
urity and Priva
y, IEEE Computer

So
iety Press, May 1999.

[19℄ A. Menezes, P. Van Oors
hot and S. Vanstone, \Handbook of Applied Cryptography," CRC

Press, 1996.

[20℄ Orman, H., \The OAKLEY Key Determination Proto
ol", Request for Comments 2412,

Nov. 1998.

[21℄ V. Shoup, \On Formal Models for Se
ure Key Ex
hange", Theory of Cryptography Library,

1999. Available at: http://philby.u
sd.edu/
ryptolib/1999/99-12.html.

A On The Universal Composability of Proto
ol �

0

(preliminary version)

An alternative way for de�ning the se
urity requirements from key ex
hange proto
ols is via the

framework of universally
omposable (UC) se
urity [3℄. Pla
ing the [4℄ notion of SK-se
urity within

the UC framework was done in [5℄. We present a UC de�nition of se
ure key ex
hange in the post-

spe
i�ed peer setting, and show that proto
ol �

0

presented here satis�es this de�nition. We also

argue that the UC notion suÆ
es for realizing se
ure
hannels via standard proto
ols, and that it

implies the notion of SK se
urity in the post-spe
i�ed peer setting (De�nition 3 above).

One advantage of working in the UC framework is that it guarantees strong
omposability

guarantees with arbitrary proto
ols. Another advantage is that the presentation and analysis of

proto
ols
an be done in a simpli�ed setting where only a single generation of a key takes pla
e

between two parties. Se
urity in a general setting where multiple keys are generated in multiple

\pairwise sessions" among many pairs of parties is guaranteed via general
omposition theorems.

This holds even when all \pairwise sessions" use the same instan
e of the signature s
heme. See

[5℄ for more details.

The presentation below assumes familiarity with the UC framework and its use for de�ning

se
urity for key-ex
hange proto
ols. It also assumes familiarity with the ideal signature fun
tion-

ality, F

sig

. All this preliminary material
an be found in Se
tion 3 in [5℄. (For self
ontainment,

fun
tionality F

sig

is presented in Figure 3.) In this se
tion we use I to denote the identity of the

initiator, and use R to denote the identity of the responder.

29

A.1 Universally Composable Key Ex
hange with Post-Spe
i�ed Peers

We present a UC notion of se
ure key ex
hange in the post-spe
i�ed peer setting. This is done be

presenting an ideal key ex
hange fun
tionality that is aimed at
apturing the fa
t that the peer

identity is not known upon proto
ol invo
ation, but it be
omes known via the proto
ol and is part

of the output. This fun
tionality, denoted F

post�ke

, is presented in Figure 2. Several remarks on

the formulation of F

post�ke

follow:

Fun
tionality F

post�ke

F

post�ke

pro
eeds as follows, running on se
urity parameter k. The symbols I; R; P below indi
ate

arbitrary identities of parties.

1. Upon re
eiving a value (Establish-session; I; s; aux) from the �rst party, where I is the

identity of that party, send (s; I; aux) to the adversary. Upon re
eiving a value (Establish-

session; R; s; aux) from the se
ond party, where R is the identity of that party, send

(s;R; aux) to the adversary; then,
hoose a value �

R

 f0; 1g

k

and
ontinue to the next

step.

2. (a) Upon re
eiving a value (Output; s; I; P; �

0

) from the adversary, pro
eed as follows. If

both parties are un
orrupted at this point then ignore (P; �

0

) and send (Output; s; R; �)

to I . If either party is
orrupted then send (Output; s; P; �

0

) to I , unless P is an identity

of an un
orrupted party (in whi
h
ase do nothing).

(b) Upon re
eiving a value (Output; s; R; P; �

0

) from the adversary, pro
eed as follows. If

both parties are un
orrupted at this point then ignore (P; �

0

) and send (Output; s; I; �)

to R. If either party is
orrupted then send (Output; s; P; �

0

) to R, unless P is an

identity of an un
orrupted party (in whi
h
ase do nothing).

3. If the adversary
orrupts a party after � is
hosen and before � is sent to that party, then

hand � to the adversary. Otherwise provide no information to the adversary.

Figure 2: The Post-Spe
i�ed Peer Key Ex
hange fun
tionality

1. The intera
tion takes pla
e among an unbounded number of parties, whose identities are

not known to F

post�ke

in advan
e. Still, F

post�ke

intera
ts only with two parties, whose

identities be
ome known when the inputs arrive. Re
all that the environment determines the

identities of the parties, as well as the inputs of F

post�ke

. In parti
ular, Z
an determine the

identities based on information gathered in other proto
ol exe
utions, et
.

2. The peer identities are not part of the inputs. Nonetheless, they appear as part of the outputs

of both parties. This means that the parties learn the peer identities as part of the proto
ol

exe
ution.

3. When one of the two parties is
orrupted, the adversary is allowed to set the peer identity in

the output of the other party to any arbitrary value, under the
ondition that this value is

not an identity of an existing and un
orrupted party. This last provision makes sure that the

adversary
annot \impersonate" other un
orrupted parties. (Te
hni
ally, we assume that the

ideal pro
ess allows F

post�ke

to know the identities of all un
orrupted parties.)

30

4. Ea
h party has an input �eld aux, in addition to its own identity and the session identi�er.

This �eld represents arbitrary additional information that may help the proto
ol exe
ution;

however it does not play a role in the se
urity requirements. Proto
ol �

0

will use this �eld

to di�erentiate between the initiator and the responder roles. In addition, this �eld may be

used to in
orporate some routing information for message delivery, et
.

5. Fun
tionality F

post�ke

allows the adversary to learn the session key � only if it
orrupts a

party before the output message is sent to that party. On
e the output message is sent, the

adversary does not learn �, even if the party is
orrupted. This re
e
ts the perfe
t forward

se
re
y requirement (see [5℄). Naturally, the fun
tionality
an be relaxed to
apture proto
ols

that guarantee only restri
ted versions of forward se
re
y, or no forward se
re
y at all.

6. If the initiator is
orrupted after it has generated output but before the responder generated

output, then F

post�ke

allows S to
ontrol the output of the responder. We note that proto
ol

�

0

a
tually provides a somewhat stronger guarantee: The proto
ol guarantees that, in this

ase, the responder always outputs the same value as the initiator. Still we
hoose not to

enfor
e this requirement in F

post�ke

, sin
e it is not ne
essary for the main appli
ation, namely

realizing se
ure
hannels.

7. F

post�ke

expli
itly sends the identities I and R to the adversary. This re
e
ts the fa
t that

identity hiding is not guaranteed. Requiring that the identities of the parties remain unknown

to the adversary (unless of
ourse it
orrupts one of the parties)
an be
aptured by modifying

F

post�ke

so that the messages to the adversary in Step 1 will not in
lude the identities.

A.2 Proto
ol �

0

se
urely realizes F

post�ke

We start by re-formulating proto
ol �

0

in the F

sig

-hybrid model (i.e., in the hybrid model with

a

ess to the ideal signature fun
tionality). See Figure 4. For self
ontainment, we also re
all the

signature fun
tionality, F

sig

, in Figure 3. We then show:

Theorem 18 Proto
ol �

0

se
urely realizes F

post�ke

in the F

sig

-hybrid model.

Proof: Let A be an adversary in the F

sig

-hybrid model. We
onstru
t an ideal-pro
ess adversary

(i.e., a simulator) S su
h that no environment Z
an tell whether it is intera
ting with A and

parties running �

0

in the F

sig

-hybrid model, or with S in the ideal pro
ess for F

post�ke

. (Re
all

that the intera
tion takes pla
e between only two parties, I and R, whose identities are a-priori

known only to Z. In fa
t, we
an assume that Z
hooses these identities adaptively during the

intera
tion.)

Simulator S runs a simulated
opy of A, and simulates for A an intera
tion with parties running

(a single pairwise session of) �

0

. This is done with the ex
eption that the generated keys and the

peer identities are the values re
eived by the parties from F

post�ke

in the ideal pro
ess rather than

the values agreed in the simulated proto
ol exe
ution. More pre
isely, S pro
eeds as follows.

1. Communi
ation with the environment: Any input from Z is forwarded to A. Any

output of A is
opied to the output of S (to be read by Z).

2. Simulating the initial a
tivation of an un
orrupted I. When re
eiving (s; I; \init")

from F

post�ke

, S feeds A with a Start message (s; g

x

) sent by I, where x is
hosen randomly

by S. In addition, S feeds A with a message (signer; \0" Æ s; I) from F

sig

(representing the

fa
t that I registered with F

sig

for the appropriate session identi�er).

31

Fun
tionality F

sig

F

sig

pro
eeds as follows, running with an unbounded number of parties and an adversary.

Set-up: In the �rst a
tivation, expe
t to re
eive a value (signer; sid) from some party S. (Note

that S may be a
orrupted party.) Then, send (signer; sid; S) to the adversary. From now

on, ignore all (signer; sid) values. (That is, the fun
tionality serves a single signer.)

Signature generation: Upon re
eiving a value (sign; sid;m) from S, hand (sign; sid;m) to

the adversary. Upon re
eiving (signature; sid;m; �) from the adversary, set s

m

= �, send

(signature; sid;m; �) to S, and request the adversary to deliver this message immediately.

Save the pair (m; s

m

) in memory.

Signature veri�
ation: Upon re
eiving a value (verify; sid; S

0

;m; �) from some party V , do:

1. If S

0

= S (i.e., if the signer identity in the veri�
ation request agrees with the identity of

the a
tual signer) then do: If m was never before signed then let v = 0. If m was signed

before (i.e., s

m

is de�ned) and � = s

m

then let v = 1. If m was signed but s

m

6= � then

let the adversary de
ide on the value of v. (That is, hand (verify; sid; V; S

0

;m; �) to

the adversary. Upon re
eiving � 2 f0; 1g from the adversary, let v = �.)

2. If S

0

6= S then do: If S

0

is un
orrupted then set v = 0. Otherwise, let the adversary

de
ide on the value of v, as in Step 1.

3. On
e the value of v is set, send (verified; sid;m; v) to V , and request the adversary

to deliver this message immediately.

Figure 3: The signature fun
tionality, F

sig

.

3. Simulating the initial a
tivation of an un
orrupted R. When re
eiving (s;R; \resp")

from F

post�ke

, S feeds A with a message (signer; \1" Æ s;R) from F

sig

(representing the

fa
t that R registered with F

sig

for the appropriate session identi�er).

4. Simulating re
eipt of a Start message by and un
orrupted R. When A delivers a

Start message (s; �) to R, S �rst veri�es that in the ideal pro
ess it has re
eived a message

(s;R; \resp") from F

post�ke

(indi
ating that R was a
tivated to ex
hange a key as a respon-

der). Next, S
hooses y randomly, and feeds A with a Response message (s; g

y

; R; �

r

; t

r

) from

R. Here t

r

= ma

k

1

(\1"; s; R), k

1

= prf

�

y

(1), and �

r

is a signature obtained be handing A

the message (sign; \1" Æ s; �; g

y

) in the name of F

sig

, and setting �

r

to the value returned

by A.

5. Simulating re
eipt of a Response message by an un
orrupted I. When A delivers a

Response message (s; �; P; �

r

; t

r

) to an un
orrupted I, S pro
eeds as follows:

(a) S veri�es that in the simulation I has previously sent a Start message (s; g

x

).

(b) S mimi
s the veri�
ation pro
ess of �

r

, by mimi
king the behavior of F

sig

on input

(verify; \1" Æ s; I; P; (g

x

; �); �

r

) from I. (That is, If P = R, then veri�
ation su

eeds

if �

r

was previously generated by A in response to a request, generated by S in the

name of F

sig

, of the form (sign; \1" Æ s; g

x

; �). If P 6= R is an identity of an ex-

isting un
orrupted party then veri�
ation fails. Otherwise, S feeds A with a message

(verify; \1" Æ s; I; P; (g

x

; �); �

r

) in the name of F

sig

, and a

epts �

r

if A says to.)

32

Proto
ol �

0

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. The players have a

ess to multiple

opies of the ideal signature fun
tionality F

sig

. The proto
ol also uses a message authenti
ation

fun
tion ma
, and a pseudorandom fun
tion family prf.

The proto
ol a
tions

1. Upon a
tivation with input (Establish-session; s; I; \init") the party learns that it is an

initiator with identity I . It then sends the Start message (s; g

x

), where the DH exponent g

x

is
omputed with x

R

 Z

q

and x is stored in the state of session (I; s).

In addition, I initializes a
opy of F

sig

with session identi�er \0" Æ s, by sending a message

(signer; \0" Æ s) to F

sig

.

2. When a
tivated with input (Establish-session; s; R; \resp"), the party learns that it is a

responder with identity R. It then initializes a
opy of F

sig

with session identi�er \1" Æ s by

sending a message (signer; \1" Æ s) to F

sig

, and waits for delivery of a Start message.

When a Start message (s; g

x

) is delivered, R generates the response message

s; g

y

; R; �

r

;ma

k

1

(\1"; s; R), where the DH exponent g

y

is
omputed with y

R

 Z

q

, the signa-

ture �

r

is
omputed by sending (sign; \1"Æs; g

x

; g

y

) to F

sig

and re
ording the returned value,

and k

1

= prf

g

xy

(1). (The value g

xy

is
omputed by R as (g

x

)

y

.) Next a value k

0

= prf

g

xy

(0)

is
omputed and kept in memory, and the values y and g

xy

are erased.

3. Upon re
eiving the response message (s; g

y

; R; �

r

; t

r

), I �rst veri�es the signature �

r

by send-

ing (verify; \1" Æ s;R; (g

x

; g

y

); �

r

) to F

sig

. I also veri�es that t

r

= ma

k

1

(\1"; s; R), where

k

1

= prf

g

xy

(1) and g

xy

is
omputed as (g

y

)

x

. If any of these veri�
ation steps fails the

session is aborted, and the session state is erased. If veri�
ation su

eeds then I sends

the �nish message (s; I; �

i

;ma

k

1

(\0"; s; I)) (where the signature �

i

is
omputed by send-

ing (sign; \0" Æ s; g

y

; g

x

) to F

sig

and re
ording the obtained value),
ompletes the session

with lo
al output (Output; s; R; k

0

) where k

0

= prf

g

xy

(0), and erases the session state.

4. Upon re
eiving the �nish message s; I; �

i

; t

i

, R veri�es the signature by sending (verify; \0"Æ

s; I; (g

y

; g

x

); �

i

) toF

sig

, where g

y

is the DH value re
eived from R in the response message, and

veri�es that t

i

= ma

k

1

(\0"; s; I). If any of the veri�
ations steps fails the session is aborted,

otherwise R
ompletes the session with lo
al output (Output; s; I; k

0

) where k

0

= prf

g

xy

(0),

and erases the session state.

Figure 4: The basi
 SIGMA proto
ol, in the F

sig

-hybrid model

(
) S veri�es that t

r

= ma

k

1

(\1"; s; P), where k

1

= prf

�

x

(1).

(d) If all veri�
ations su

eed then S feeds A with a Finish message (s; I; �

i

;ma

k

1

(\0"; s; I))

sent by I, where the signature �

i

is set to A's response after being handed (sign; \0" Æ

s; �; g

x

) in the name of F

sig

.

In addition S sends, in the ideal-pro
ess intera
tion, the message (Output; s; I; (P; �

0

))

to F

post�ke

, where �

0

= prf

�

x

(0). On
e F

post�ke

sends the output message to I, S

delivers this message.

6. Simulating re
eipt of a Finish message by an un
orrupted R. When A delivers a

Finish message (s; P; �

i

; t

i

) to R, S pro
eeds as follows:

(a) S veri�es that in the simulation R has previously re
eived a Start message (s; �) and

33

has sent a Response message (s; g

y

; R; �

r

; t

r

).

(b) S mimi
s the veri�
ation pro
ess of �

r

, by mimi
king the behavior of F

sig

on input

(verify; \0" Æ s;R; P; (g

y

; �); �

i

) from R. (This is done as in Step 5b.) Next S veri�es

that t

i

= ma

k

1

(\0"; s; P), where k

1

= prf

�

y

(1).

(
) If all veri�
ations su

eed then S sends, in the ideal-pro
ess intera
tion, the message

(Output; s; I; (P; �

0

)) to F

post�ke

, where �

0

= prf

�

y

(0). On
e F

post�ke

sends the out-

put message to R, S delivers this message.

7. Simulating party
orruptions. If A
orrupts either I or R then S
orrupts the same party

in the ideal pro
ess and hands A the internal data of that party. Spe
i�
ally:

(a) If I is
orrupted after the Start message is sent but before the Response message is

re
eived then S hands A the se
ret exponent x from the simulation.

(b) If R is
orrupted after the Response message is sent then but before the Finish message

is re
eived then S hands A the value k

1

omputed in Step 4, together with the session

key obtained from F

post�ke

.

(
) If I is
orrupted after the Finish message is sent, or if R is
orrupted after the Finish

message is re
eived, then all internal state of the
orrupted party should be erased and

A obtains nothing.

8. Simulating F

sig

for A. S simulates F

sig

for A, in the natural way. That is, whenever A

generates (in the name of a
orrupted party) some message to F

sig

, S responds as F

sig

would.

The
ommuni
ations between A and the various
opies of F

sig

is also simulated in the obvious

way. (It is stressed that S may need to simulate for A several di�erent
opies of F

sig

.)

Analysis of S. Demonstrating the validity of S, we show that for any environment Z:

exe

F

sig

�

0

;A;Z

� ideal

F

post�ke

;S;Z

(1)

This is done as follows. First we de�ne an event e
 (for \early
orrupt") and demonstrate that,

given event e
, the views of Z in the two intera
tions are identi
ally distributed. (Essentially e

is the event where one of the parties is
orrupted before any of the parties outputs the session

key.) We then
on
entrate on demonstrating (1) under the
ondition that event e
 does not o

ur.

This is done by de�ning two hybrid distributions, H

1

and H

2

, and demonstrating that, given

that event e
 does not o

ur, we have exe

F

sig

�

0

;A;Z

� H

1

� H

2

� ideal

F

post�ke

;S;Z

. The leftmost

similarity is demonstrated base on the De
isional DiÆe-Hellman assumption. The se
ond similarity

is demonstrated based on the se
urity of the prf fun
tion family in use. The rightmost similarity

is demonstrated base on the se
urity of the ma
 fun
tion family in use.

The event e
. Consider an intera
tion of Z with A and parties running �

0

in the F

sig

-hybrid

model. Here event e
 is the event where A
orrupts a party before any of the parties generated an

output value. In an intera
tion of Z with S in the ideal pro
ess for F

post�ke

, event e
 is the event

where the simulated A within S
orrupts a party before S has sent the �rst (Output...) message

to F

post�ke

. We have:

Claim 19 Conditioned on event e
, the distributions exe

F

sig

�

0

;A;Z

and ideal

F

post�ke

;S;Z

are iden-

ti
al.

34

Proof: The
laim follows by inspe
ting the
odes of �

0

and S. Spe
i�
ally,
onsider the joint view

of Z and the simulated A within S in the ideal pro
ess. Sin
e S perfe
tly mimi
s proto
ol �

0

for

the simulated A, we have that this joint view is distributed identi
ally to the joint view of Z and

A in a real intera
tion with �

0

, with the only possible ex
eption that the outputs generated by

F

post�ke

may be in
onsistent with the rest of the intera
tion. However, if event e
 o

urs then,

in the ideal pro
ess, S
orrupts one of the parties before the (Output...) message is sent to

F

post�ke

. In this
ase F

post�ke

sends to both parties the output values generated by S and the

simulation be
omes perfe
t (i.e., the joint view of Z and the simulated A within S is distributed

identi
ally to the joint view of Z and A in a real intera
tion with �

0

in the F

sig

-hybrid model). 2

In th rest of the proof we assume that event e
 o

urs with probability that is non-negligible

bounded away from 1. (Otherwise we
on
lude that the two sides of 1 are statisti
ally indistin-

guishable.)

The hybrid distributions. Let exe
je
 denote the distribution of exe

F

sig

�

0

;A;Z

onditioned on

the event that e
 does not o

ur. Similarly, let idealje
 denote the distribution of ideal

F

post�ke

;S;Z

onditioned on the event that e
 does not o

ur. We de�ne two hybrid distributions H

1

and H

2

,

and demonstrate that exe
je
 � H

1

� H

2

� idealje
. The hybrid distributions are de�ned as

follows:

� H

1

takes the distribution of the output of Z from a hypotheti
al intera
tion whi
h is identi
al

to a real intera
tion with A and parties running �

0

in the F

sig

-hybrid model (
onditioned

on the event that e
 does not o

ur), with the following ex
eption. Whenever �

0

instru
ts

the initiator (resp., the responder) to evaluate the pseudorandom fun
tion prf with the key

�

x

(resp., �

y

), the parties will now evaluate prf with an independently
hosen random key

r

R

 Z

p

. (Both parties use the same value of r.) That is, we now have that the ma
 key is

k

1

= prf

r

(1) and the output key is � = prf

r

(0).

� H

2

is identi
al to distribution H

1

, with the ex
eption that the parties
hoose k

1

and � to be

independent and random values in the range of prf. (Both parties have the same value for

k

1

; similarly both parties have the same value for �.)

Abusing notation, we use H

1

and H

2

also to denote the intera
tions of Z that lead the the
orre-

sponding output distributions. We show:

Claim 20 Assume that the De
isional DiÆe-Hellman assumption holds. Then exe
je
 � H

1

.

Proof: Assume that there exists an environment Z and an adversary A su
h that Z distinguishes

with non-negligible probability between the intera
tions exe
je
 and H

1

. We
onstru
t an adver-

sary D that violates the De
isional DiÆe-Hellman assumption. That is, D is given g

a

; g

b

; g

z

where

a; b

R

 Z

q

, and
an distinguish between the
ase where z = ab and the
ase where z

R

 Z

q

.

Given g

a

; g

b

; g

z

, adversary D runs a
opy of Z on a simulated intera
tion with A and parties

running �

0

in the F

sig

-hybrid model. (D plays for Z the roles of A and the parties.) This is done

with the following ex
eptions. First, when the initiator sends the Start message, D sets the g

x

value

to equal g

a

, the �rst element from its input. Similarly, when the responder sends the Response

message, D set the g

y

value to equal g

b

, the se
ond element from its input. Next, that whenever

the responder (resp., the initiator) instru
ted to run prf

�

y

() (resp., prf

�

x

()), then D repla
es

this evaluation with an evaluation of prf

g

z

(). Finally, if Z
orrupts a party before the initiator

generates output then D aborts and outputs a random bit. Otherwise, D outputs whatever Z

outputs.

35

Consider �rst the
ase where z

R

 Z

q

, independently from a and b. In this
ase, the view of

the simulated Z,
onditioned on the event that D did not abort, is distributed identi
ally to the

view of Z in intera
tion H

1

. This is so sin
e in both intera
tions the values g

x

, g

y

, and the key to

prf are independently and randomly
hosen. Furthermore, in neither intera
tion Z sees the se
ret

exponents x or y.

Next,
onsider the
ase where z = ab. We
laim that in this
ase the view of simulated Z,

onditioned on the event that D did not abort, is distributed identi
ally to the view of Z in

intera
tion exe
je
. Indeed, the only potential mismat
h between the two intera
tions is if, in

exe
je
, the initiator a

epts a Response message with the real peer identity R and a value �

that is di�erent than the value g

y

hosen by the responder, or alternatively the responder a

epts

a Finish message where the value � is di�erent than the value g

x

hosen by the initiator. However,

su
h a mismat
h
annot o

ur due to the properties and use of F

sig

. Spe
i�
ally, the initiator

a

epts the Response message with peer identity R only if the signature �

r

veri�es as a signature

on g

x

; � with session identi�er \1" Æ s and signer R, and the only way for this to o

ur is if the

responder R registered as the signer with session identi�er \1" Æ s and then asked F

sig

to sign

(g

x

; �), or in other words � = g

y

. Similarly, the responder a

epts the Response message with peer

identity I only if the signature �

i

veri�es as a signature on g

y

; � with session identi�er \0" Æ s and

signer I, and the only way for this to o

ur is if the initiator I registered as the signer with session

identi�er \0" Æ s and then asked F

sig

to sign (g

y

; �), or in other words � = g

x

.

We
on
lude thatD distinguishes with non-negligible probability between the
ase where z

R

 Z

q

and the
ase where z = ab. 2

Claim 21 Assume that prf is a se
ure pseudorandom fun
tion family. Then H

1

� H

2

.

Proof: Assume that there exists an environment Z and an adversary A su
h that Z distinguishes

with non-negligible probability between the intera
tionH

1

and the intera
tionH

2

. We
onstru
t an

adversary D that breaks the se
urity of the fun
tion family prf. That is, D has a

ess to an ora
le

fun
tion f , and distinguishes with non-negligible probability between the
ase where f() = prf

r

()

where r is a random value, and the
ase where f is a random fun
tion with the appropriate domain

and range.

Adversary D runs a
opy of Z on a simulated intera
tion with A and parties running �

0

in the

F

sig

-hybrid model. (D plays the roles of A and the parties for Z.) This is done with the ex
eption

that whenever a party is instru
ted to
ompute k

1

(either in generating the Response message or in

generating the Finish message), D instead lets k

1

= f(1). Similarly, whenever a party is instru
ted

to generate the session key �, D sets the value of the session key to � = f(0). If Z
orrupts a

party before the initiator generates output then D aborts and outputs a random bit. Otherwise,

D outputs whatever Z outputs.

It is easy to see that if f is a random fun
tion then the view of the simulated Z (given that D

does not abort) is distributed identi
ally to its view in intera
tion H

2

. Similarly, if f() = prf

r

()

and Z does not abort, then the view of the simulated Z is distributed identi
ally to its view in

intera
tion H

1

. 2

Claim 22 Assume that ma
 is a se
ure message authenti
ation fun
tion family. Then H

2

�

idealje
.

Proof: The intera
tions H

2

and idealje
 are identi
al ex
ept for the following two points. First,

in idealje
 the peer identity in the output of the initiator is the identity R that appears in the

36

input of the responder; In
ontrast, in H

2

that peer identity is the identity P that appears in the

Response message re
eived by the initiator (and this identity may potentially be di�erent than R).

Se
ond, if the responder is un
orrupted and generates output, then in idealje
 the peer identity in

the output of the responder is the identity I that appears in the input of the initiator; In
ontrast,

in H

2

that peer identity is the identity P that appears in the Finish message re
eived by the

responder.

We prove the
laim by demonstrating that in intera
tionH

2

the probability that a party outputs

a peer identity that is di�erent than the identity in the input of the other party is negligible.

This is done via redu
tion to the se
urity of ma
 as a message authenti
ation fun
tion against

hosen message atta
ks. Spe
i�
ally, we
onstru
t an adversary D that, given ora
le a

ess to a

fun
tion ma

r

() where r is a randomly
hosen key, generates a message m

�

and a tag t� su
h that

t

�

= ma

r

(m

�

) and D has not queried the ora
le on m

�

.

Adversary D runs a
opy of Z on a simulated intera
tion with A and parties running �

0

in the

F

sig

-hybrid model. (D plays the roles of A and the parties for Z.) Whenever a party is instru
ted

to
ompute (or verify) t = ma

k

1

(m) for some m, D sets t to the response of its ora
le on query m.

Finally, if the initiator outputs a peer identity P 6= R then D outputs m

�

= (\1"; s; P) together

with the tag t

�

in the Response message re
eived by the initiator. Similarly, if the responder

outputs a peer identity P 6= I then D outputs m

�

= (\0"; s; P) together with the tag t

�

in the

Finish message re
eived by the responder. (If Z
orrupts a party before the initiator generates

output then D aborts with no output.)

Analyzing D, noti
e that m

�

was never generated by either party, thus it was never before

queried by D. (Here we use the fa
t that the text in the ma
 appli
ation by the initiator is

di�erent than the text in the ma
 appli
ation by the responder. This is guaranteed by the \0"/\1"

�eld.) Furthermore, t

�

= ma

r

(m

�

), otherwise the party would not have generated output. Finally,

Z's view when run by D is identi
al to its view in intera
tion H

2

. Thus Z outputs a su

essful

forgery, before
orrupting any party, with non-negligible probability. 2

This
ompletes the analysis of S and the proof of the theorem. 2

A.3 Obtaining UC Se
ure Channels

We argue that standard proto
ols for realizing se
ure
hannels in the F

ke

-hybrid model ex
hange

remain se
ure when the key ex
hange proto
ol in use se
urely realizes F

post�ke

. This is done as

follows. Re
all that in [5℄ a se
ure-
hannels ideal fun
tionality, F

s

, is formulated; next, a proto
ol

is shown that se
urely realizes F

s

in the F

ke

-hybrid model, where F

ke

is the ideal key ex
hange

fun
tionality in the pre-spe
i�ed peer setting. (This proto
ol is the standard proto
ol that �rst

uses the key ex
hange fun
tionality to generate a session key, and then en
rypts and authenti
ates

ea
h message.)

We
laim that a simple modi�
ation of this se
ure
hannels proto
ol results in a proto
ol that

se
urely realizes F

s

in the F

post�ke

-hybrid model. The modi�
ation is as follows: instead of

invoking F

ke

with the pre-spe
i�ed identity of the peer, invoke F

post�ke

with no peer identity

spe
i�ed; next, when F

post�ke

returns the a
tual peer identity, verify that this identity agrees with

the desired peer identity, and abort the session if there is a mis-mat
h. Inspe
ting the proof of [5℄,

it is easy to see that this modi�ed proto
ol se
urely realizes F

s

in the F

post�ke

-hybrid model. We

omit further details.

37

A.4 Se
urely Realizing F

post�ke

Implies SK-se
urity

We argue that the UC notion of key ex
hange in the post-spe
i�ed peer setting implies the
orre-

sponding SK se
urity notion (De�nition 3). More pre
isely, let � be a proto
ol that se
urely realizes

F

post�ke

, and let �̂ denote the multi-session extension of �. (See [5, Se
. 3℄ for a de�nition of the

multi-session extension of a proto
ol.) We
laim that proto
ol �̂ is SK-se
ure in the post-spe
i�ed

peer setting. This is shown following the lines of the treatment in [5℄ for the pre-spe
i�ed peer
ase.

First, we formulate a variant of the test environment, Z

test

, that
aptures the post-spe
i�ed peer

variant of SK-se
urity. (The only di�eren
e is in the way Z

test

de�nes mat
hing sessions.) Next

we use essentially the same argument as in [5℄ to show that no adversary that intera
ts with parties

running �̂ and (the reformulated) Z

test

an skew the output of Z

test

more than negligibly away

from uniform over f0; 1g. Also here, we omit further details.

38

