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Abstract

We show that any scheme to encrypt m blocks of size n bits while assuring message

integrity, that apart from using m + k invocations of random functions (from n bits to n

bits) and vn bits of randomness, is linear in (GF2)

n

, must have k + v at least 
(logm).

This lower bound is proved in a very general model which rules out many promising linear

modes of operations for encryption with message integrity. This lower bound is tight as [8]

shows a linear scheme to encrypt m blocks while assuring message integrity by using only

m+ 2 + logm invocations of random permutations.

1. Introduction

Recently new modes of operation for block ciphers (IAPM, IACBC) were described in [8], which

in addition to assuring con�dentiality of the plaintext, also assure message integrity. A related

new mode of operation (XCBC-XOR) which accomplished simultaneous encryption and authen-

tication was independently described in [5]. Prior to this, two separate passes were required;

�rst to compute a cryptographic MAC (e.g. CBC-MAC [2]) and then to encrypt the plaintext

with the MAC appended to the plaintext (e.g. using CBC [15]). Following up on works of [8],

and [5], another authenticated encryption mode (OCB) was described in [17].

Before the modes in [8] and [5] many unsuccessful attempts were made to do authenticated

encryption in one pass ( e.g. [4]). Most of these attempts try to use a simple checksum (or not

so non-linear code) instead of a cryptographic MAC as the tag appended to the plaintext before

encryption. Other attempts try to do additional chaining, on top of the cipher block chaining

in CBC (see �gure 2 for one such mode called PCBC - plaintext ciphertext block chaining). In

essence, all these proposed modes try to do authenticated encryption by using only exclusive-or

operations (i.e. operations linear in (GF2)

n

, where n is the block cipher size), or operations

which can be approximated by such operations with reasonably high probability, and without

1



generating any extra randomness using the block cipher or some pseudo-random function. A

successful mode for authenticated encryption was described in [9], however it increased the

length of the ciphertext by a constant factor.

The mode in [8] is proven to be secure for both encryption and authentication even though

it only uses operations linear in (GF2)

n

(apart from block cipher invocations), but it actually

generates logm extra blocks of randomness (where m is the number of blocks to be encrypted)

by logm extra block cipher invocations.

In this paper we show a matching lower bound to the construction in [8] (see Figure 1). In other

words, we show that the logm additional cryptographic operations in IAPM/IACBC scheme

are essentially the least one has to do to assure message integrity along with message secrecy in

any scheme linear in (GF2)

n

.

We prove our lower bound in a very general model. We assume that the block cipher is modeled

as a length preserving random function on n bits. Any invocation of such a random function

constitutes one application of a cryptographic function. The only other operations allowed

are linear operations over (GF2)

n

(i.e. n-bit exclusive-or), or testing an n bit quantity for zero.

There is no other restriction on the scheme, apart from it being one to one (i.e. no two plaintexts

generate the same ciphertext). There is no assumption about whether the scheme is actually

invertible (which is the surprising part). The scheme is also allowed to be probabilistic with v

blocks of randomness.

As our main result, we prove that any such linear scheme which encrypts m blocks of plaintext

while assuring message integrity, using v blocks of randomness, and only m + k cryptographic

operations, must have k + v at least 
(logm).

We use well known theorems from linear algebra to prove our lower bound. Speci�cally we

analyze the ranks of matrices and solution spaces of linear system of equations to prove the lower

bound. Such a linear algebra technique like analysis of rank of matrices has been used previously

by [11] to show attacks on a whole class of schemes (double block length hash functions), although

the matrices involved in [11] were of constant ranks (three or four).

We again emphasize that our lower bound is a very general result, as it rules out many potential

schemes for authenticated encryption by just an inspection of the number of cryptographic

operations, and the mixing operations used (i.e. regardless of the structure of the scheme).

Figures 3 and 4 (in addition to Figure 2) describe some other modes which by this lower bound

turn out to be insecure for authenticated encryption. The mode in Figure 3 tries to use the

structure of both the counter mode[14], and the CBC mode. All mixing operations in Figure 1
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Figure 1: Authenticated Encryption Mode IAPM

to 4 are n-bit exclusive or operations.

Note that there are versions of IAPM/IACBC in [8], and modes for authenticated encryption

in [5],[17] which are proven secure while using only one or two extra cryptographic operations.

However, these schemes are not linear in (GF2)

n

. In fact, the main theorem in [8] shows

that authenticated encryption can be achieved by generating and using (linearly) a sequence of

random numbers which are only pairwise -di�erentially uniform (or XOR-universal, a property

slightly weaker than pairwise independence). Such a sequence can be generated by only one

additional cryptographic operation if additional operations in GFp or GF (2

n

) are allowed, but

such a sequence does indeed require logm extra cryptographic operations, if only linear in

(GF2)

n

operations are allowed.

The rest of the paper is organized as follows. In section 2 we state some lemma from linear

algebra which are used in proving the main theorem. In section 3 we describe the model of

authenticated encryption. In section 4 we prove the main lower bound theorem.
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2. Linear Algebra Basics

Proofs of the following lemmas of linear algebra can be found in any basic linear algebra book

(e.g. [10]).

Lemma 2.1: Let

[X

1

:::X

q

] �A = [Y

1

:::Y

m

]

where A is a q�m binary matrix of rank m, and all the variables represent elements of (GF2)

n

.

If for some subset B of rows of A, rank(B) < m, then there is a non-trivial linear (over GF2)

relation between the variables Y

1

:::Y

m

, and variables fX

i

ji 2 [1::q], and i not index of some row

in Bg.

Lemma 2.2: Let

[X

1

:::X

q

] �A = [Y

1

:::Y

m

]

where A is a q �m binary matrix of rank m

0

� m, and m � q, and all the variables represent

elements from (GF2)

n

. Then for a �xed Y = [Y

1

:::Y

m

] the solution space of [X

1

:::X

q

] is a q�m

0

dimensional a�ne space, namely

[X

1

:::X

q

] = [< f(Y ) >] + �

1

� V

1

+ :::+ �

q�m

0

� V

q�m

0

where < f(Y ) > is a row of q linear functions determined by A, each of �

1

:::�

q�m

0

is a scalar

ranging over all elements in (GF2)

n

, and V

1

:::V

q�m

0

are q�m

0

linearly independent binary row

vectors determined by A.
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3. Authenticated Encryption Model

We consider the following model. We assume a �xed block size n for a block cipher (or random

permutations or length preserving random functions). Any application of one of these will

constitute one application of a cryptographic operation. From now on we will assume that the

block cipher is modeled as a length preserving n bit random function, although a scheme may use

many di�erent random functions. The only other operations allowed are linear operations over

(GF2)

n

, i.e. bit-wise exclusive-or. Of course, operations of testing whether an n bit quantity is

zero is also allowed. Since, the scheme could be probabilistic, as IACBC/IAPM [8] is, we also

allow v blocks of randomness, r

1

; :::; r

v

.

Let the message P to be encrypted be of size m blocks, i.e. mn bits. Call the input blocks

P

1

; :::; P

m

. Let there be m+k invocations of random functions, and let the inputs to these func-

tions beM

1

;M

2

; :::;M

m+k

. Similarly, let the outputs of these random functions beN

1

; N

2

; :::; N

m+k

.

Let, C = C

1

; C

2

; :::C

m+t

be linear functions of P 's, r's, and N 's. Here t � 0.

Our aim is to show that either the scheme is not secrecy secure, or it is not message integrity

secure, or it is not one to one (not just not invertible), or k + v= 
(logm). More formally, the

scheme is not secrecy secure if an adversary can correctly predict a non-trivial linear combination

of the plaintext blocks, given the corresponding ciphertext, with probability more than 1 �

O(2

�n

), in time polynomial in m and n. Note that we do not need an epsilon-delta de�nition

of security, as we will always be able to demonstrate attacks which work with high probability.

Also, the adversary need not see many ciphertexts before predicting the plaintext. Thus, we

have a weak adversarial model.

For message integrity, let there be u > 0 MDC functions �

1

; :::; �

u

. Without loss of generality

assume that they are linearly independent. During encryption of plaintext P , using randomness

r, each �

i

is computed as a linear combination of P 's, M 's, N 's, and r's. During decryption of

the corresponding ciphertext C, another set of functions �

0

1

; :::; �

0

u

is computed as a function of

C's, M 's, and N 's. The decryption process passes the message integrity test if for all i, �

i

= �

0

i

.

For example in IAPM (�g 1), �

1

= �P , and �

0

1

=M

z

�S

z

, where S

z

is some linear combination

of N

�1

:::N

�t

. Thus, de�ne D

i

= �

i

� �

0

i

, a linear function of P ,M ,N ,r, and C. Since C can be

written as a linear combination of P , N , and r, each D

i

is a linear function of P ,M ,N , and r.

On a valid decryption all the D

i

should evaluate to zero.

A scheme is not message integrity secure, if given P and corresponding C, an adversary can

produce a C

0

6= C in time polynomial in m and n, such that on inversion, all the functions D

i

evaluate to zero. Once again, we do not require many plaintext, ciphertext combinations before

a forged ciphertext is demonstrated.
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A scheme is one-to-one if it is not the case that there are two plaintext messages P

1

and P

2

, and

two random strings r

1

, and r

2

, such that <r

1

; P

1

> generates ciphertext C, and <r

2

; P

2

> generates

the same ciphertext C.

Since, the ciphertext is a linear combination of P; r and N , and similarly, each M

i

is a linear

combination of P; r and N , let

[P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] �B = [C

1

:::C

m+t

]

[P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] � E = [M

1

:::M

m+k

]

where each of B and E is a binary matrix except for the last row which can have arbitrary

elements in (GF2)

n

.

Clearly, given P , r and N , the resulting C using the �rst set of equations is a valid ciphertext.

However, given C, is every solution of the �rst set of equations a consistent decryption? This is

not to be confused with a valid decryption, which is a consistent decryption with allD

i

evaluating

to zero.

It is not possible in general to determine if a solution in terms of P , r and N (given C) of the

�rst set of equations is consistent, unless we know what each of N 's decrypt to, in which case

we can use the second set of equations to check for consistency.

Formally, let f

i

be a random function modeling the block cipher or a Pseudorandom function

which is used to compute N

i

from M

i

. Then, given C, a solution of the two set of equations (B

and E) is a consistent decryption if f

i

(M

i

) = N

i

(for i 2 [1::m+ k]).

Let

[M

1

:::M

m+k

P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] � F = [D

1

:::D

u

]

We combine these three systems of equations to write a big system as follows:

[M

1

:::M

m+k

P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] �G = [C

1

:::C

m+t

D

1

:::D

u

0:::0]

where there are m+k 0's in the R.H.S vector corresponding to the matrix E (i.e. second system

of equations). More precisely,

G =

"

0

B

F

I

E

#

We will refer to a given authenticated encryption scheme by the matrix G.
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4. Lower Bound

Theorem 1: If the scheme G is secrecy secure, message integrity secure, and one-to-one, then

k + v is at least 
(logm).

We begin by proving some lemmas.

Lemma 1: Either the scheme G is not secrecy secure or k + v � t+ u� 1

Proof: Use the identity matrix in the top right corner of G to zero out the �rst m + k rows

of the the �rst m + t + u columns. We call this new matrix G

0

. We now write the columns

corresponding to D as [0 F

0

>

]

>

. Thus,

G

0

=

"

0

B

0

F

0

I

E

#

We �rst show that w.l.o.g. the rank of the matrix G

0

is m + t + u. Suppose the rank of the

matrix G

0

is m

0

< m+ t+ u. Clearly the columns corresponding to D are linearly independent,

as we assumed earlier. Thus, there are m+ t + u �m

0

columns corresponding to C which are

linear combinations of the other columns corresponding to C, and the columns corresponding

to D. However, on a valid encryption all the D

i

are zero. This means, that these m+ t+u�m

0

C

i

's corresponding to the columns mentioned can be computed by a linear combination of the

other m+ t� (m+ t+ u�m

0

) = m

0

� u C

i

's. Thus, there need only be m

0

� u C

i

s, in the big

equation above. Thus, we can assume w.l.o.g that the rank of the matrix G

0

is indeed m+ t+u.

In fact, the rank of the sub-matrix of G

0

consisting of the �rst m+ t+ u columns is m+ t+ u.

Now, let's focus on the matrixG

00

comprising of the rows ofG

0

excluding the rows corresponding

to P , and only the �rstm+t+u columns. If the rank of the sub-matrixG

00

is less thanm+t+u,

then there is a non-trivial linear relationship between C's, D's, and P . Once again, since on a

valid encryption D's are zero, we would get a non-trivial linear relation between P 's and C's,

contradicting that the scheme is secrecy-secure. Since the m + k rows of the �rst m + t + u

columns of G

00

are zero, we have that (v + (m+ k) + 1) � m+ t+ u, or k + v � t+ u� 1. 2

Going back to G, it is useful to reduce the rows corresponding to P in B and F to zero, if

possible. In other words, we would like to express P in terms of M , N , and r, if possible. So,

by doing column operations, let the the rows in [IE

>

]

>

corresponding to P be reduced to

 

0 X

0 I

!
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where the identity matrix is of size w, 0 � w � m, resulting in the new equation

[M

1

:::M

m+k

P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] �

"

0

B

F E

0

#

= [C

1

:::C

m+t

D

1

:::D

u

0:::0]

Consequently we can assume, w.l.o.g., that the bottom w rows corresponding to P in F

0

are

zero.

We now have the system of equations

[M

1

:::M

m+k

P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] �H = [C

1

:::C

m+t

D

1

:::D

u

0:::0]

where the bottom w rows corresponding to P are zero in the columns corresponding to D.

Lemma 2: Either the scheme G is not message integrity secure or u � (m� w)

Proof: Let c be a ciphertext which is computed based on a given p and r. Consider the sub-

matrix of H which consists of the �rst m�w rows corresponding to the P 's and the u columns

corresponding to D. If this sub-matrix has rank less than m�w, then there is a p

0

6= p (with p

0

di�erent from p only in the �rst m� w indices (blocks)), such that D's remain same, i.e. zero.

Because, of the identity matrix in E

0

we can arrive at a p

00

, which is identical to p

0

in the �rst

m�w blocks, but possibly di�erent in the remaining w blocks, so that none of the M 's and N 's

are a�ected (i.e. p

00

is consistent with same Ms and Ns as computed from p). The new p

00

still

keeps all the Ds zero (as the bottom w rows corresponding to P were zeroed out in F). This

new p

00

results in a new c

00

which is di�erent from c (as the scheme is 1-1). Thus, we have a

di�erent c

00

. Note that, p

00

� p, does not depend on p; and similarly, c

00

� c does not depend on

p (and not even c). Thus, an adversary with access to a valid c, can come up with a c

00

which

on decryption leads to all the D's being zero. Thus, u � m� w. 2

We will need yet another combination of equations to prove the next lemma. This time, using

the identity matrix in E

0

corresponding to the P rows, we now also zero out the corresponding

entries in B and let the new matrix be H

0

. Thus, H

0

is di�erent from H in only the columns

corresponding to C.

Using H

0

let's rewrite the equations for D more conveniently:

For i = 1::u, let

D

i

=

m+k

X

j=1

(a

i

j

�M

j

)�

m+k

X

j=1

(b

i

j

�N

j

)�

v

X

j=1

(c

i

j

� r

j

)�

m�w

X

j=1

(d

i

j

� P

j

)
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In the matrix E

0

, the �rst (m � w) columns have the rows corresponding to P equal to zero.

In a way these columns also work as hidden integrity checks, though not always. So, for i =

u+ 1::u+m� w de�ne D

0

i

similar to above, using the (m� w) columns of E

0

or H.

D

0

i

=

m+k

X

j=1

(a

i

j

�M

j

)�

m+k

X

j=1

(b

i

j

�N

j

)�

v

X

j=1

(c

i

j

� r

j

)

We say that N

i

and N

j

resolve if N

i

� N

j

can be written as a linear combination of only the

C's and P 's. Similarly, we say that M

i

and M

j

resolve if M

i

�M

j

can be written as a linear

combination of only the C's and P 's.

We will later show that there exists a pair i; j; i 6= j; i; j 2 [1::m+ k] such that

1. N

i

and N

j

resolve

2. M

i

and M

j

resolve

3. For all x 2 [1::u+m� w], a

x

i

� a

x

j

= 0, and b

x

i

� b

x

j

= 0

4. exists y 2 [1::m+ t], H

0

2m+k+v+i;y

�H

0

2m+k+v+j;y

= 1

In item (4), H

0

2m+k+v+i;y

is the entry in H

0

in row corresponding to N

i

and in column corre-

sponding to C

y

. Essentially, it says that the rows corresponding to N

i

and N

j

are not identical

(for the �rst m+ t columns).

In the next lemma we show that if such a pair exists with the above four conditions holding

then the scheme G is not message integrity secure.

Lemma 3: If there exists a pair i; j; i 6= j; i; j 2 [1::m + k] such that the above four conditions

hold than the scheme G is not message integrity secure.

Proof: We will show that with probability greater then 1 � O(2

�n

) there exists a c

0

(di�erent

from a given c) which can easily be computed (given c and the corresponding p) such that

� N

0

i

= N

j

� N

0

j

= N

i

� for z di�erent from i; j, N

0

z

= N

z

� the �rst m� w blocks of P remain same
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We have a similar set of relations forM , and hence given (3), all the D functions would evaluate

to zero, leading to G being insecure for message integrity.

To demonstrate such a c

0

, using H

0

, we evaluate �c, for �N and �M , where

� �N

j

= �N

i

= N

i

�N

j

� �M

j

= �M

i

=M

i

�M

j

Because of (3) all the D

0

remain zero, which means there is no change in any other N or M .

Moreover the changes above in M and N do not cause any change in the �rst m� w plaintext

blocks (all the changes can be incorporated in the lower w blocks because of the identity matrix

in E

0

). Since the rows corresponding to the bottom w rows of P in B were zeroed out, these

changes in the plaintext do not a�ect �c.

Now, �N

j

is non-zero with probability 1�2

�n

(at least). SinceM

i

is related to N

i

by a random

function, the probability that �M cancels out �N in computing �c is at most 2

�n

. This leads

to a non-zero �c because of (4) above with probability at least 1�O(2

�n

).

Since conditions (1) and (2) hold as well, an adversary can compute such a c

0

from c and p. 2

Lemma 4: Either k + v + u +m � w is 
(logm), or the scheme G is not secrecy secure, or

there exists a pair i; j satisfying (1),(2), (3) and (4)

Proof: Recall that,

[P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

1] �B = [C

1

:::C

m+t

]

The rank of the matrix B is at least m, say m

0

. Now, we call a pair of rows from the rows

corresponding to N in B dependent if one row can be expressed linearly in terms of other using

the bottom w rows corresponding to P . This is clearly an equivalence relation. From each such

pairwise dependent set (including sets with only one row), pick only one row, and push the

remaining rows to the bottom. Let q be the number of rows so picked. The rank of the top

m+ v + q rows is still at least m

0

.

Now if we also ignore the top m rows (corresponding to P ), the rank of the remaining v+q rows

is still m

0

, for otherwise we have a non-trivial linear relationship between C and P , and hence

the scheme is not secrecy secure.

This implies (by lemma 2.2) that

[r

1

:::r

v

N

1

:::N

q

] = [< f(C;P ) >] + (GF2)

n

� V

1

+ :::+ (GF2)

n

� V

q+v�m

0

11



where < f(C;P ) > is a set of linear functions of C and P , and V

i

are linearly-independent binary

row-vectors. For a subset of N 's with indices a set J � [1::q] to be pair-wise \non-resolving"

thus requires q + v �m

0

� log jJ j. In other words, there exists i; j 2 J; i 6= j, N

i

and N

j

resolve

if q + v �m

0

< log jJ j. Stated di�erently, there is a set J1 of size jJ1j = (q)=2

q+v�m

0

in which

all pairs of N 's resolve with each other.

Now each M

i

can be written as a linear combination of r, N and P (using matrix E). Once

again (using lemma 2.2) we have

[r

1

:::r

v

N

1

:::N

m+k

] = [< f

0

(C;P ) >] + (GF2)

n

� V

0

1

+ :::+ (GF2)

n

� V

0

m+k+v�m

0

where V

0

1

:::V

0

m+k+v�m

0

are linearly-independent binary row vectors. Thus, for any set of indices

J

0

� [1::m+ k], there is a a set J

00

� J

0

of size jJ

00

j at least jJ

0

j=2

m+k+v�m

0

, such that all pairs

of Ms in this set J

00

resolve with each other.

Using J1 for J

0

, thus there is a set J2 of size q=2

q+v�m

0

+m+k+v�m

0

such that for all i; j 2 J2,

M

i

and M

j

resolve, and so do N

i

and N

j

.

Similarly, there is a set J3 of size jJ3j = jJ2j=2

u+m�w

such that

8k 2 [1::u+m� w]; 8i; j 2 J3 : a

k

i

� a

k

j

= 0

Thus, there exists a pair satisfying (1), (2) ,(3) and (4) if 2

m+k+q+2v�2m

0

+u+m�w

< q. Now,

q + v � m

0

� m. Now, either v is 
(logm), or q is at least 
(m). Thus, there exists a pair

satisfying (1..4) if m+ k+ q+2v� 2m

0

+u+m�w < O(logm). Since, q�m < k, the previous

inequality is implied by 2(k+ v) +u+m�w < O(logm) + 2(m

0

�m) , which in turn is implied

by 2(k + v) + 2(u+m� w) < O(logm). Thus, either there exists a pair with (1..4) holding or,

k + v + u+m� w is 
(logm). 2

Finally, we are ready to prove the main theorem.

Proof (Theorem 1): By Lemma 3, since the scheme G is message integrity secure, there does

not exist a pair with conditions (1..4) holding. Thus, by lemma 4, and the fact that G is secrecy

secure, we have k + v + u +m � w > 
(logm). By lemma 1 and 2 it follows that k + v is at

least 
(logm). 2
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