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Abstract

We give the £rst simple and efEcient constructiovefifable random function®/RFs). VRFs,
introduced by Micali et al. [MRV99], combine the properties of regulaeyskrandom functions
(PRFs) [GGMS8E6] (i.e., indistinguishability from a random function) and digital sigmes [GMR88]
(i.e., one can provide an unforgeable proof that\WiRd- value is correctly computed). The efEciency
of our VRF construction is only slightly worse than that of a reguP®F construction of Naor and
Reingold [NR97]. In contrast to ours, the previddRF constructions [MRV99, Lys02] all involved
an expensive generic transformation from veri£able unpredictabléidasaVUFs), while our con-
struction is simple and direct.

We also provide the £rst constructiondistributedVRFs. Our construction is more efEcient than
the only known construction of distributed (non-verifal®&Fs [Nie02], but has more applications
than the latter. For example, it can be used to distributively implement the randacte model
in a publicly veriEablemanner, which by itself has many applications (e.g., constructing threshold
signature schemes).

Our main construction is based on a new variant of decisional DifEe-HellDBHR] assumption
on certain groups where the regulzibH assumption doasothold. We do not make any claims about
the validity of our assumption (which we callim-freeDDH, or sf-DDH). However, this assumption
seems to be plausible based on current understanding of certain candidate elliptic and hyper-
elliptic groups which were recently proposed for use in cryptograph91J Jou00]. We hope that the
demonstrated power of osf-DDH assumption will serve as a motivation for its closer study.
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1 Introduction

As a motivating example for our discussion, consider the problem of implengghgrandom oracle modéBR93].
Recall that in this model one assumes the existence of a publicly verifabtemdndction© (over some suitable
domain and range, e.d0, 1}"). Each valug)(x) is random and independent from the other values, and evalu-
ating O on the same input twice yields the same (random) output. This model has faoreta@us applications

in cryptography, which we do not even attempt to enumerate (for few deamgee [BR93, BR94, BR96, FS86,
GQ88, Sch9l, Oka92, Mic94, PS96, BF01]). It was shown by Caetedti [CGH98], though, that no £xed public
function can generically replace the random oracle, so more elabotati®ss are needed.

PSEUDORANDOM FUNCTIONS. As the £rst attempt, we may assume the existence of a trusted (but computa-
tionally bounded) partyl’. Since a function is an exponential sized objéctcannot store it explicitly. While
maintaining a dynamically growing look-up table is a possibility, it is very inefEcéanit requires large storage

and growing complexity. A slightly better option is to uspseudorandom functiofiPRF) Fsx (-) [GGM86]. As
indicated, this function is fully specifed by a short secret keys@@d SK, and yet, usingi'si (for randomly
generated K) is computationallyindistinguishable from using exponential-siz8d Put differently,Fs i is com-
putationally indistinguishable from a truly random function to any polynomial ticheeesarywho does not know

the secret key K .

Of course PRFs have found numerous more practical applications (e.g., see [NR9#jareferences therein),
primarily in the area of symmetric-key cryptography (i.e., when the valiecan be shared between mutually
trusted parties). For example, they gives very simple constructions of syitikey encryption and message
authentication codes. In terms of constructiPigFs, there are several options. In principRRFs can be con-
structed from one-way functions [GGM86, HILL99], but this is quite Bwént. Another alternative is to assume
that one already hasRRF of small or £xed size (e.g., a block cipher), and show how to extend its domdin a
range to get a fully functiond?RF. For a simple example, iff : {0,1}* — {0,1}* is a collision-resistant hash
function [Dam87] andFsx : {0,1}* — R is our £xed-sizedRF, thenFsx o H : {0,1}* — R is also aPRF
(many other constructions are possible too; see [BKR00O, BCK96] ancetbeences therein). Of course, we are
still left with the question of constructing the needed small-sRBdF.

The last alternative is to construeRFs from some well studied number-theoretic assumption. The most pop-
ular such construction is due to Naor and Reingold [NR97] and is bas#teatecisional DifEe-HellmarDDH)
assumption (for related construction based on factoring, see [NRRIO#}) assumption in some gro@pof prime
order ¢ states that given elemengs ¢® and g® of (whereg is the generator ofs), it is hard to distinguish the
value g% from a truly random valug® (wherea, b, c are random irZ,). The PRF of [NR97] is a tree-based
construction similar to thBRF construction of [GGM86] from a pseudorandom generator. Namelygeabeet key
SK = (g,a1,...ar) consists of a random generaipof G and/ random exponents ii, (where/ is the length
of the input to OUPRF Fsy : {0,1}f — G). Givenz = 1 ...z, € {0,1}", thePRF is defned by:

Foay,a(T1...20) Al gl iy i mod @ (1)

VERIFIABLE RANDOM FUNCTIONS. Coming back to our motivating application, replacing random oracle with
a PRF has several problems. The £rst one is the question of verifability anddrabgity. Even if everybody
trustsT (which we will revisit soon),T" has to be contacted not only when the valuegFohas to be computed
for the £rst time, but even if one party needs to verify that another pastyibed the correct value éf. Thus,

it would be much nicer if each value dfsx (x) would come with a proofrgx (z) of correctness, so that the
recipient and everybody else can use this proof without the need toct@ngmain. As a side product, the ability
to give such proof will also insure thdt himself cannot “cheat” by giving inconsistent valuestafor denying

a correctly computed value of the function. This leads to the notioredEable (pseudo)random functiqnr
VRFs [MRV99].



Slightly more formally, the key generation outputs a public verifcation/R&yin addition to the secret evalua-
tion key SK, and the function family{ Fisx } has the following properties: (1) Givef¥, it is easy to compute the
value of the functiory = Fsk (x) and the corresponding proofx (x); (2) givenPK, z,y, 7, one can efEciently
verify if y = Fsi(x) (and only one such value gfcan be proven for any and PK); (3) given onlyPK and
oracle access to botAsx (1) and7sk(-), no adversary can distinguish the valHgx () from a truly random
value without explicitly asking one of the oracles on inputhe last property is sometimes callegsidual pseu-
dorandomnegs Put differently, the function remains (pseudo)random when reddriotall inputs whose function
values were not previously revealed (and proved).

VRFs already found several applications. For example, UgiRgs one can reduce the number of rounds for
resettable zero-knowledge proofs3dn the bare model [MRO1]. As another interesting application, they can be
used in a non-interactive lottery system used in micropayments [MRO2]loTieey organizer commits to ¥RF
by publishing the public key’ K. Any participant is allowed to choose his lottery tickaby himself and send it to
the organizer (with the only requirement thatvas not used before). The valye= Fsx (x) somehow determines
whether the user has won the lottery. The organizer sgridshe user together with the proogx (x), which
ensures that the organizer cannot cheat. On the other hand, thelictadyidity of y ensures that the participant
cannot bias the lottery in his favor. Another set of applications, givekdmy et al. [NPR99] for the case of regular
PRFs (or their distributed variants; see below), can be also enhanced betiiahility property ofVRFs. For
example VRFs could be used to implement a trusted key distribution center (KDC). Forup griousersS with
“descriptor’zg (which could be the name of the group or a common password), the kalaeFsx (zs) can be
used as a common random key used by the membef's \bfhen a party proves his right to get this key (which is
done by some application dependent mechanism), KDC would provide thysvaieti k¢ together with the proof
of its correctness. Another application in similar spirit is that of long-ternrygrion of information [NPR99].
Finally, the pseudorandomness and veri£ability ¥RF immediately imply thaVRF by itself is an unforgeable
sighature scheme secure against adaptive chosen message attad&gGMR

CONSTRUCTIONS OFVRFsS. Unfortunately,VRFs are not very well studied yet. Currently, we have two con-
structions ofVRFs: based ofiRSA [MRV99], and based on a separation between computational and detision
DifEe-Hellman problems in certain groups [Lys02]. Both of these constmgtioughly proceed as follows. First,
they construct a relatively simple and efEcient verifalripredictabldunction (VUF) based on the corresponding
assumption. Roughly, "UF is the same verifable object as8/&F, except each “new” valué'sx (x) is only
unpredictable (i.e., hard to compute) rather than pseudorandom. VAU#e, a generic construction ¥MRFs is
given, as introduced by [MRV99]. Unfortunately, this construction ig/veefEcient and also looses a very large
factor in its exact security. Essentially, £rst one uses the Goldreich-ltkeorem [GL89] to construct ¥RF
with very small (slightly super-logarithmic) input size and output siZend pretty dramatic security loss tobo).
Then one makes enough such computations to amplify the output size to roogfcly that of the input. Then one
follows another rather inefEcient tree-based construction on the resMRfgto get aVRF with arbitrary input
size and small output size. Finally, one evaluates the resulting convd&REdeveral times to increase the output
size to the desired level. In some sense, the inefEciency of the aboveuotiostis expected given its generality
and the fact that it has to convert pure unpredictability into a much strggperty of pseudorandomness. Still,
this means that the resultingRF constructions are very bulky and inelegant. In this work we present #te £r
simple, efEcient and “direcRF construction.

DisTRIBUTED PRFs. Coming back again to our target application of implementing the random otaele,
biggest problem of botPRF/VRF-based solutions is the necessity to fully trust the honest gatiplding the

secret key forF". Of course VRFs slightly reduced this trust level, bilitstill singlehandedly knows all the values
of F'. Clearly, this approach (1) puts to much trust ifitp(2) makesI is bottleneck of all the computations; (3)

For example, one needs to assume a super-polynomial hardnéfss givenVUF to make sure that the resultiMRF is polynomially
secure. Is it an interesting open question to improve this reduction.



makesI is “single point of failure”: compromising’ will break the security of any application which depends on
the random oracle assumption.

The natural solution to this problem is to distribute the rol&’admongn servers. This leads to the notion of
distributedPRFs (DPRFs) anddistributedVRFs (DVRFs). Since the latter concept was not studied prior to our
work, we start withDPRFs, thus ignoring the issue of veri£ability for now. Intuitive@PRFs with threshold
1 <t < nallowany(t + 1) out of n servers to jointly compute the function using their shares, while no coalition
of up tot servers to be in a better situation that any outside party. Namely, the funetiains pseudorandom to
any such coalition. In the most ambitious form, the computatioDRF should benon-interactiveand single-
round. The £rst requirement means that the servers do not need tetiné@raeach other in order to help the
user compute the value of the function. Instead, the only communication gbgsdn the user and the servers.
The second requirement means that the entire computation should proosedrgund: the user gives to (at least)
t + 1 honest servers the needed inpueach server computes the shagg of the outputy = Fsx (x) by using its
secret key shar8 K;, and £nally the user combines the shayeand recoverg.

Not surprisingly, DPRFs have a variety of applications, including distributed KDCs, threshold atiatu of
the Cramer-Shoup cryptosystem [CG99], efEcient metering of the weBgNRsynchronous Byzantine agree-
ment [Nie02] and several others (see [NPR99, NieOZJPRFs £rst originate in the work of Micali and Sid-
ney [MS95]. However, their construction (later improved by [NPR9@I tolerate only a moderate humber of
servers or a small threshold, since its complexity is proportional tarhe next inauential work is that of Naor
et al. [NPR99], who give several efEcient constructions of certamkwariants oDPRFs. Ironically, one of the
constructions (namely, that of distributegakPRF) can be turned into an efEcieDPRF by utilizing random or-
acles. Even though this is non-trivial (since nobody should compute the shaDPRF without the cooperation
of t + 1 servers), we would certainly prefer a solution in the plain model, since elimmafithe random oracle
was one of the main motivation f@PRFs!

The £rst requlaDPRF was recently constructed by Nielsen [Nie02] by distributing a slightly modi£eadmnia
of the Naor-Reingold®RF [NR97], given in Equation (1) (in the £nal version of their work, [NR@I$0 give
essentially the same construction). Unfortunately, the resuiPRF in highly interactiveand requires a lot of
rounds (proportional to the length of the input). Thus, the question ofimenactive (and, hopefully, round-
efEcient)DPRF construction remained open.

DisTRIBUTED VRFs. Even thouglDVRFs were not explicitly studied prior to this work, they seem to provide
the most satisfactory solution to our original problem of implementing the raradante. Indeed, distributing the
secret key ensures that no coalition of upt teervers can compromise the security (i.e., pseudorandomness) of
the resulting random oracle. On the other hand, verif£ability ensures tbatams not need to contact the servers
again once the random oracle was computed once: the proof can ceavipother party of the correctness of the
VRF value. For exampleDVRFs by themselves provide an ordinary threshold signature scheme, winidieca
veri£ed without further involvement of the servers. And, of coursimgiBVRFs is likely to enhance the security,
robustness or functionality of many applications originally designed for pl&Rs, VRFs andDPRFs.

OuR CONTRIBUTIONS. We give the £rst simple and direct constructioV&Fs, based on a newDDH-like” as-
sumption which seems to be plausible on certain recently proposed elliptic padéliptic groups (e.g., [JNO1]).
We call this assumptiosum-free decisional DifEe-Hellmdsf-DDH) assumption. We will comment more on this
assumption below. We mention, however, that in the proposed groupsghareegularDDH assumption is
false(in fact, this is what gives us veri£ability!), and yet thieDDH or some similar assumption seems plausible.
Our construction is similar to the Naor-Reingold (NR) construction givendpyaiEon (1), except we utilize some
carefully chosen encoding before applying the NR-construction. Specifcally'it {0,1}¢ — {0, 1}* is some
injective encoding, we consider the function of the form

Fyay.ap (@1 .. 1) & gHltice =y aimeda 2)



Identifying the properties of the encodiigand constructing’ satisfying these properties will be one of the main
technical challenges we will have to face. At the end we will achieve O(¢) (specifcally,L = 2/ to get a
regularPRF, and . = 3/ + 2 to get aVRF), making our effciency very close to the NR-construction. We also
mention that our construction is very similar “in syntax” to M&F construction of Lysyanskaya [Lys02]. In fact,
the “only” differences are as follows: (1) we build/&RF while [Lys02] builds avUF (which is a weaker notion);
(2) we use different (seemingly orthogonal to each other) assumpéees though suggest the same groups were
these assumptions hold; (3) we use different encoding func@ior&pecifcally, [Lys02] uses any error-correcting
code, but only for the purposes of making a slightly weaker assumptiorideetjty with appended would yield

a VUF under a slightly stronger, but reasonable assumption). On the otherwange a very different kind of
encoding, because the fact thaDH is easy in our group implies that the identignnotbe used, irrespective of
what stronger assumption we make. Accidentally, by using a second (mowcerrecting) code on top of our
encodingC, we can weaken our underling assumption too, similarly to [Lys02].

Our second main contribution is the £rst construction of a distribvie& (DVRF). Namely, we show that
our VRF construction can be made distributed amoh-interactive(although multi-round). This is the £rst
non-interactive construction of a distribut®RF (let aloneVRF), since the only previouBDPRF construction
of [Nie02, NR97] is highly interactive among the servers. In fact,[@4RF construction is more efEcient than the
above mentio®PRF construction, despite achieving the extra veri£ability. We already mentiondiigisaving
in communication complexity (roughly, from?¢k to nlk, wherek is the security parameter), since the servers do
not have to interact in our construction. Another important advantagegthds that we dispense with the need to
perform somewhat expensive (concurrently composable) zeroledge proofs for the equality of discrete logs.
This is because in our groups tB®H problem is easy, so it can be locally checked by each party without thik nee
for the proof. In particular, even though we need to apply the encaditgythe message, while the construction
of [Nie02, NR97] does not, the lack of ZK-proofs makes our round derity again slightly better. We also
remark that our construction can be easily mpdmctiveusing standard techniques (see [OY91, ).

Finally, we remark that the same distributed construction can be applied to wlistthe VUF of Lysyan-
skaya [Lys02] (which results in a threshold “unigue signature” schemdera different assumption than the one
we propose).

OuRr NEw sf-DDH AssumMmPTION  Finally, we elaborate on tref-DDH assumption, putting it in comparison to
the other related assumptions. Recently, Joux and Nguyen [JNO1] deatedgthe existence of groups where the
DDH assumption is certainly false, but its computational ver§lbi (i.e., compute® from g, g%, ¢°) still seems

to be hard. These groups with various cavors of the al@ivel/DDH separation have already found numerous
applications, e.g. [Jou00, BF01, Lys02, BLS01]. Intuitively, the faatDDH is easy gives many useful properties
(like veri£ability), while the hardness of some appropriai2H-like assumption can be still put to use in security.
As already observed by [BFO1], our current techniques in suchpgronly allow us to tesSDDH relations by
means of a certain bilinear mapping (details are not important), for which wetlenow a multi-linear variant.

In fact, Boneh and Silverberg [BS02] observe that a multi-linear vaoiatich mapping seems unlikely to exist
in the currently proposed groups, and pose as a major open probletnilbit gxoups where such mappings exist.
This suggests that many natural, but more restrictive cavdd®éf seem to hold in the currently proposed groups
(where regulaDDH is easy). And this is exactly the approach we take. We assume a reastiDalelike”
assumption which seems quite possible even when reqpilét is false. Intuitively (see formal de£nition in
Section 2.2), it states that given elements of the farth) = gllic1 % for various subsets C {1... L}, any other
elementG(J) is pseudorandom unless once can explicitly EnBBHM-tuple” (G(I1), G(I2), G(I3), G(J)) which
would allow to trivially verify G(J). We notice, however, that we do not make a strong claim that this so called
sf-DDH assumption is true. Rather, that it seems plausible given what we knows, @he can view our work as
a strong motivation to study this and relatdetisionalassumptions in the above mentioned “gap groups”.



2 DeEnitions

2.1 Verifable Random Functions and Friends

In this section we give the de£nition of verifable random functiMiBHs). For putting our results in perspective
with prior works, we also give de£nitions of verifable unpredictable funstdtyFs) and a new de£nition of
regular pseudorandom functiorBRFs). Here and everywhereegl(k) refers to some function negligible in the
security parametet.

Degnition 1 A function familyF.(-) : {0, 1H®) — {0,1}™*) is a family of VRFs, if there exists a probabilistic
polynomial time algorithnten and deterministic algorithmBrove and Verify such that:Gen(1*) outputs a pair
of keys(PK, SK); Provesk () outputs a paif Fsk (x), sk ()), wherersy (x) is the proof of correctness; and
Verify p i (x,y, ) verifes thaly = Fsx (x) using the proofr. More formally, we require the following:

1. Uniguenessno values(PK, z,y1,y2, m1,m2) can satisiVerify p (x, y1,m1) = Verify pic(z, y2, m2) When
Y1 7 Yo

2. Provability. if (y, ) = Provegk (), thenVerify pj (x,y, ) = 1.

3. Pseudorandomnesfr any PPT A = (A;, A1) who did not call its oracle on: (see below)

k. Prove(+) . _ .
(PK,SK) « Gen(1%); (x,st) «— A] (PK); yo = Fsk(x); 1+ negl(k)

Pr [b =V Prove(-)
Y1 — {07 1}m(k)’ b— {07 1}; v o— A2 (yba St) T2

Intuitively, the de£nition states that no value of the function can be distinglifsb a random string, even after
seeing any other function values together with the corresponding proofs

Degnition 2 A function familyF.(-) : {0, 11®) — {0,1}™*) is a family of VUFs, if satisEes the same syntax,
uniqueness and provability propertles as the familyBFs, except pseudorandomness is replaced by the following
weaker property:

3. Unpredictability. for any PPT A; who did not call its oracle o (see below)
Pr|y=Fox(@) | (PK SK) < Gen(1%); (a,y) — A[™*V(PK) | < negl(k)

RegularPRFs form the non-verifable analogs ¥RFs. Namely,PK = 0, msx(-) = 0, there is no algortihm
Verify, no uniqueness and provability properties, and pseudorandomnessoislyiremaining property. Specif-
cally, it states

SK «— Gen(lk); (z,st) «— Af(')(lk); yo = Fsg(x);

Prlb=V
[ g1 — {0,13mE); b {0,1}; o — AL (g, st)

} < % + negl(k)

(providedA did not call its oracle or). We notice that the above de£nition is not the typical de£nitiofPiRFs

as given by [GGM86]: namely, that no adversary can distinguish haviagie access to a truly random function
from having oracle access to a pseudorandom function. Howevegasisto see that our de£nition is equivalent
to that usual one, so will we use it as the more convenient in the cont®RB$.



2.2 Diffe-Hellman Assumptions

In what follows, it should be understood that all the objects below will bampatrized by the security parameter
k, but we will not explicitly mention this unless needed. AssiBarip(1*) outputs the description of some cyclic
groupG of prime orderq together with its random generatgr Let L = L(k) be some integer ang . ..a, be
random elements df,. Let[L] denote{l...L}, and given a subset C [L], we denotez; = [],.; a; mod ¢
(Whereay = 1), G(I) = G; = g*'. Also,DLog, stands for the discrete logarithm bas@vhere we often omiy
when clear). For exampl®Log(G) = a;. Finally, we will often view an element € {0, 1} as either a subset
{i | zi = 1}, or anL-dimensional vector ova F'(2) (and vice versa).

GENERALIZED DIFFIE-HELLMAN ASSUMPTIONS The security of ours, as well as the previous related con-
structions [NR97, Lys02], will rely on various assumptions of the followirmgnmon =avor. The adversary

has oracle access (), and tries to “obtain information” about some valG¢.J). The meaning of obtaining
information depends on whether we are making a computational or a detiagmuanption. In the former case,
A has to computé&;/(.J), while in the latter casel has to distinguistiz(.J) from a random element d&. While

the decisional assumption is stronger, it has a potential of yielding a (v&)frmeudorandorfunction, while the
computational assumption can yield at Bestveri£ableunpredictablefunction.

In either case, we require that it should be hard to any polynomial time satyeo succeed. Of course, to make
non-trivial sense of “success”, one has to make some non-trivigiatésns on when the adversary is considered
suceessful. Formally, given that the adversary called its oracle ortsubs. . ., I; and “obtained information”
aboutG(J), we can defne a predica®(J, I1, . . . I;) which indicates whether the adversary’s actions are “legal”.
For example, at the very least the predicate should be false i{ I; . . . I }. We call any such predicaten-trivial.

We will certainly restrict ourselves to non-trivial predicates, but may sones place some more restrictions on
R in order to make a more plausible and weaker assumption (see below).

Defnition 3 GivenL = L(k), we say that the grou@d satisf£es thgeneralized decisional Diffe-HellmégypDDH)
assumption of ordeL relative to a non-trivial predicatR, if for anylegal PP TadversaryA = (A1, A1) we have

(G, q,g) — Setup(1%); (ay...ar) — Zq, (J,st) — AYY(G, g);

Prib=V ANl
yo=G(J); y1 — G; b—{0,1}; ' — A" (wp, st)

} < % + negl(k)

whereA is legal if it called its oracle on subsefs . .. I; satisfyingR(J, I1,...,1;) = 1.
Very similarly, the groufi> satises thgeneralized computational DifEe-HellmégCDH) assumption of ordef
relative toR, if for any legal (see above) P TadversaryA; we have

Pr [G(J) —y ‘ (G, q,g) — Setup(1¥); (a1 ...ar) — Zy, (J,y) — A, q) | < negl(k)

We notice that the more restrictiofis places on thd;’s and the “target” sef/, the harder it is for the adversary
to succeed, so the assumption becomes weaker (and more preferails).tlle strongest possible assumption
of the above type is to put no further restrictions Brother than non-triviality (i.e.J & {I,...;}). We call

the two resulting assumptions simggoDH andgCDH (without specifyingR). A slightly weaker assumption
results when we require that the target set is equal to the fulllset [L], i.e. the adversary has to obtain
information abougy?-“£. We call the resulting assumptiohdl targetgDDH/gCDH (whereL = 2 yields regular
DDH/CDH). We remark that these full target assumptions are the “standard” wagtedyeneralized (aka group)
Diffe-Hellman assumptions (e.g., in [STW96, BCP01, BCPQO1, LysO2})weeuwwill £nd our distinction (and,
therefore, terminology) more convenient. Finally, makintarger generally makes the assumption stronger (e.g.,

2Unless a generic inefEcient conversion is used, or one assumes ttemesisf a random oracle, in which case applying the random
oracle to a computationally hard object trivially gives a pseudorandqgetbb



for unrestricted or full targegCDH/gCDH), since the adversary can always choose to concentrate on soreé subs
of L. Thus, it is preferable to base the security of some contsruction on aslsaradl as restrictivi&k as possible.

Before moving to our new sum-frg@DH assumption, let us brieay state some simple facts afioDtH/gCDH.
It was already observed by [STW96] ttgiDDH assumption of any polynomial ordér k) (with or without full
target) follows from the regulddDH assumption (which correspondsio= 2). Unfortunately, we do not know of
the same result for thgCDH problem. The best analog of this result was implicitly obtained by [Lys02% mbre
or less showed that the requCDH assumption of logarithmic ordé?(log k) (even with full target) implies the
gCDH assumption of any polynomial ordéx k), providedin the latter we restrict the adversary to operate on the
codewords of any good error-correcting code (iel; ... I; C [L] must be all “far” from each other in order to
satisfyR).

SuM-FREeEgDDH. We already saw that the regulaDH assumption is a very strong security assumption in that
itimplies thegDDH assumption. This useful fact almost immediately implies, for example, that theRé&ngold
construction in Equation (1) isRRF underDDH, illustrating the power oDDH for proving pseudorandomness.
Unfortunately, groups wer®DH is true are not convenient for makingri€ablerandom functions, since nobody
can verify the equality of discrete logs. On the other hand, we will sedlghloat it is very easy to obtain veri£a-
bility in groups wherddDH is solvable in polynomial time (such as the group suggested by [JNO1]prtungtely,
such groups certainly do not satisfy tgpDH assumption too, which seems to imply that we have to settle for
the computational assumption (lig€€DH) in such groups, which in turn implies that we settle only for WiéF
construction rather than the desirg®F. Indeed, obtaining such @UF is exactly what was recently done by
Lysyanskaya [Lys02] in groups wheB®H is easy bugCDH is hard.

However, we make the curcial observation that the fact BaH is easy doesot mean that no version of
gDDH assumption can be true: it only meams might have to put more restrictions on the predic@ten order
to make it hard for the adversary to break tfieDH assumption relative t&®. Indeed, for the current elliptic
groups for which we believe in a separation betw&&H and CDH, we only know how to test ifh, u, v, w)
is of the formu = h% v = h®,w = he (this is called aDDH-tuple). For example, as was mentioned by
Boneh and Franklin [BF01], it seems reasonable to assume that it is hdigdibguidh a tupléh, h?, h®, h¢, hav¢)
from a random tupléh, h®, h®, h¢, h?). Put differently, whenu, ... ar, are chosen at random and given a sample
g = G(0),G(I)...G(I;), the only way we know how to distinguisi(./) from a random element of such
groups is by exhibiting three sefs,, I,,, I, (where0 < m,p,s < t, andl, denotes the empty set) such that
aj-ar, = ay, - aj, mod ¢.2 The last equation implies that’“+ I,,, = I, + 1", where we view the sets ds-bit
0/1-vectors, and the addition is bitwise over the integers. In other wordshaséo explicitly £nd &DH-tuple
among the sampleS(7;)’s and the targe6 (/).

We formalize this intuition into the following predicaf®(J, I, . .., I;). Let us denotd, = (). We say that/ is
DDH-dependentn/; ... I; ifthere are indice® < m, p, s < t satisfyingJ+1,, = I,+I, (see explanation above).
For example 10101 is DDH-dependent 061010,00001 and11111, since10101 + 01011 = 11111 + 00001 =
11112. Then we de£ne thBDH-freerelation’R to be true if and only if/ is DDH-independent frond; . . . I;.

Defnition 4 Given L = L(k), we say that the groufz (where regularDDH is easy) satisEes theum-free
decisional Diffe-Hellmaiisf-DDH) assumption of ordekL if if satisEes thggDDH assumption of ordef relative
to theDDH-free relationR above.G satis£es théull targetsf-DDH assumption if we additionally requite = [L].

For our purposes we notice thaDH-dependence also implies thatp I,,, = I, ® I,, whered indicates the
bitwise addition modua (i.e., we make 2 = 0”), or J & I,,, ® I,, ® I, = 0. Let us callJ 4-wise independeritom
I, ... I  if no three setd,,, I;, I, yield J & I,,, & I, & I, = 0. Hence, if we letR/(J, I, ..., I;) = 1 if and only

30ne can also try to £nd the additive relations, but since:tfseare all random, it seems that the only such relations one can £nd would
trivially follow from some multiplicative relations.



if J is 4-wise independent from thg’s, we get thafR’ is a stricter relation that ouDDH-free R. But this means
thatgDDH assumption relative t®’ is aweakerassumption thasf-DDH, so we call itweaksf-DDH. Our actual
construction will in fact be based on weskDDH.

To summarizesf-DDH is the strongest possible assumption which is conceivable in the groupsegrar
DDH is false. We chose this assumption to get the simplest and most efE@&ntonstruction possible when
DDH is false (in fact, we only need weak-DDH in our case). However, even if the ambiti@isDDH assumption
we propose turns out to be false in the current groups wbBxd is easy — which we currently have no indication
of — it seems plausible that some reasonable wegkdd)H assumptions (relative to more restricti® might
still hold. And our approach seems to be general enough to allow someneak§cation to our construction (at
slight efEciency loss) meet many such weafPDH assumptions.

3 Constructions

AssumeG is the group wher®DH is easy while some version ef-DDH holds (we will be more specifc soon).
We consider the natural the type of functions given by Equation (2); imew notationF, ,, . ., (z1...2¢) =
G(C(z)),* whereC is some currently unspecifed (but ef£ciently computable) injective mapping{idol} ¢ to
{0,1}*. As we will see, the properties of encodiagwill be crucial in showing the properties of the resulting
function. To emphasize this dependence&gnve will also call the above functioN R (-) when other parameters
are clear form the context.

3.1 Building PRFs

We notice, that the de£nition above already suffces to give a candidatesfgularPRF. As a warm-up towards
VREFs, we £rst determine the conditions ©6rand the kind ojDDH assumption we need in order to get a regular
PRF.

Lemma 1 Given encoding : {0,1}* — {0,1}*, assume predicat® satisEesR (C(w), C(x1),...,C(x;)) = 1
foranyw & {z1,...,2:}. ThenNR¢(-) is aPRF under thegDDH assumption of ordef. relative toR.

Proof: The proof follows almost immediately by comparing the deginitiogbDH relative toR (De£nition 3)
and the de£nition oPRF given in Section 2.1. Indeed, the adversary can quéR(-) at any pointsey, . . . xy,
which corresponds to queryin@(-) on C(x;) ...C(x¢), and has to distinguisiv R¢(w) = G(C(w)) for some
w & {x1...2:}. Since our assumption implies tH&{C(w), C(x1),...,C(z:)) = 1, this adversary is legal for
breakinggDDH (of order L) relative toR, which is a contradiction. L]

As an immediate corollary, usugDDH assumption implies tha¥ R (-) is aPRF for any (injective)C, including
the identity. This in turn gives the result of [NR97], since we mentioned duatlarDDH impliesgDDH [STW96].

More interestingly, we will now determine the propertiesoivhich sufEce to show tha¥ R is aPRF under
the much weakesf-DDH assumption (for now, of the same large ordemve will reduce the order later). In the
following, view every subset dfZ] (or element of{0, 1}%) as anL-dimensional vector ovef F(2). Recall our
de£nition of a vector/ being4-wise independent from the collectidn ... I;. To generalize this notion, we say
that the collection of vectork . . . I; is 4-wise independent, if nd or fewer vectors are linearly dependent.

Theorem 1 Assume” : {0,1}* — {0, 1}* is such that the collectiofiC(z) | z € {0, 1}*} is4-wise independent.
ThenN R (+) is aPRF under the weak (and thus regulasf-DDH assumption of ordeL..

“Notice, we output a (pseudo)random elemenGdhstead of a (pseudo)random-bit string. However, standard hashing techniques
imply we can extract an almost uniform string of length closktg G| from such an output. See [NR97].
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Proof: Obvious from Lemma 1 and the de£nition of wesfkDDH. [l

CONSTRUCTING4-WISE INDEPENDENTENCODINGS.  To get ourPRF under thesf-DDH assumption (i.e., in
groups were regulddDH might be false), it sufEcing to constructavise independent encodirdg Naturally, the
goal is to makel as close td as possible. Such encodings come up quite often in the theory of deraradiomiz
(see [ABI86, AS00]), and are closely related to coding th&ohy.our case, the well known construction is very
simple and efEcient, so we present it in a self-contained manner.

Let us now view any element af € {0,1}¢ as an element of the £eldF(2¢), which can be represented as
an/-dimensional vector ove& F'(2). This gives us the same bitwise addition operatigrbut now we also have
a multiplication operation. Then we sBt= 2¢ and defne’(x) = (z3|z), which is interpreted as follows. We
£rst cuber, which gives us anothekdimentional vector:®, and then we append to it. Notice, the code” is
explicit and extremely efEcient to evaluate. It is also very easy to see that-aise independent encoding we
can come up with must have > 208 so our encoding is optimal. Now, assume there are suonezerodistinct
r1, 20,23, 24 € GF(2%) and constants, oo, a3, g € {0,1} such thath:1 a;C(x;) = 0. We will show that
a1 = as = ag = a4 = 0, which yields4-wise independence.

Since our bitwise addition is the same as in the £eld, WeZg;é:t1 ajz; =0 andZ?:1 a;x? = 0 overGF(2°).
Next, we square the £rst equation. Siri¢&'(2¢) has characteristiz anda? = «;, the only surviving terms are
a;z2, which gives usy;_, a;z? = 0. Similarly, raising the £rst equation to the powegives >} | a;zt = 0.
Thus, we have a linear system (with unknowns as, as, o) saying thatz;‘.‘:1 aixg =0forj=1,23,4. The
system corresponds to the famous Vandermonde matrix whose determinantisz, - HK]-(aci —xzj) # 0,
since all thex;'s are distinct and non-zero. Thus, the only solution to the system is thal @il+zero solution,
completing the proof.

As a small technicality, we get thiewise independent encodirg: {0, 1}*\ {0°} — {0,1}%*, i.e. we explude
the all-zero vector. This implies that we get tRRF whose input domain excludes the all-zero vector too. This is
typically not a problem since we are “loosing” only one ouRbpoints. Of course, one can always increadey
1 and add a “dedicated” random, 1 € Z, to point0, but this seems to be going through too much trouble for
such a small technicality. To summarize,

Theorem 2 The encoding” above def£nes BRF mapping/ bits (except’) to an element ofs, which is secure
under the (weak3f-DDH assumption of orde2/.

REDUCING THEORDER. While Theorem 2 gives a simpRRF construction, it is based on tls& DDH assump-

tion of high polynomial orde2/(k). While this assumption is reasonable, we now show how to reduce the order
to O(log k) at only a marginal effciency loss. So tet: {0,1}¢ — {0,1}" be any4-wise independet encoding
satisfying Theorem 1 (like the one we constructied above). The idea, simithiat of [Lys02], is to use an
error-correcting codé : {0, 1} — {0, 1}*V on top of our encoding'. However, since we are dealing with linear
dependence, we will have to restrict ourselveklirtear codes (which was not needed in [Lys02]), and the analysis
will be slightly more involved. Thus, leE be a linear error correcting code of distardd€ (whereé > 0 and

N = O(L)), and defn& = Eo C : {0,1}* — {0,1}.

Theorem 3 Assume (wealgf-DDH assumption holds for any order= O(log k). ThenN R (-) is aPRF.

Proof: Assume some adversary = (A;, A2) breaks the pseudorandomness\ak~(-). We constuct an adver-
saryB = (Bj, B2) which breaksf-DDH assumption of some ordgi(to be specifed later). Assuniehas oracle

5In particular, obtaining the-wise independent encodirgwe need is equivalent to designing a parity check matrix of any linear code
of distances. Our specifc code gives such matrix for the famous (and optimal) B@E cbdesigned distande See [MS77].
®Since all pairwise sums'(z1) @ C(x2) have to be distinct non-zero elements{6f 1}*.



access td7, 5, .5, (H) for any subsetl C [p]. B chooses a random subdet [N] of cardinality exactly, and
implicitly setsa; = b; fori € I. It also picks on its own random for all i € I. B (actuallyB1) how runsA; with
these implicit assignment in mind. Specifcally, whenasks for the valu&v R~ (z), B1 computes: = C(z), the
restrictionz; € {0, 1} of z to the positions in/, and the restriction; of = to the complement of. It asks its
oracle for the valug; = F s, .., (21), and returns tod; the valuey = (yI)HieZI %_ WhenA; output the input
challenge value:’, B; outputs the challenge input valué = C(z');. Next, whenB, gets back the challenge
output value, which we ca}; (the reason will be clear)3; setsy’ = (y’I)HieZI % and passes it as the challenge
output value tad,. ThenB; simulates oracle queries db in the same way aB; did for A;. Finally, B, outputs
the same decision as;.

We notice thatB simulatedA is a completely perfect way. Indeed, when the challengeé3fovas the correct
output value,B translated it to the correct output value fdr Otherwise,B raised a random element to some
(wlog, non-zero) power, which left it a radnom group element. Tiudjstinguishes with the same advantage as
A modulo the problem thaB could be illegal. Namely, assurnaeasked: = poly(k) queriesr?, ..., x! altogether.
ThenB askedt queriesz}, 2%, ... zt and outputted the challengé. Now it could be that/ is 4-wise dependent
onzk 22,... 2t If this happens (say with probability), then we modify the behavior db to stop simulatingd
and letB output a random bit. We will show that it sufEces to set O(log k) in order to makey < 1/2, which
would complete the proof.

And here is the reason. Sinég simulatesA in a perfect way,A gets no information about during its run.
Thus, A cannot choose its actions basedlpso we may assume thdtchose some values = C(z), ..., 2! =
C(at),2' = C(2'), wherez’ ¢ {z',..., '}, and only then (when the above values fxeqd the subsef was
actually chosen. Nowy exactly measures the probability that the randgapfojection”z} is 4-wise dependent on
the other projections!, ..., z1. We will apply the union bound. There are at mést= O(¢3) choices for indices
s,m,r (including0 for the empty set) which can cause the dependence of the projectiors.tdlsthonwn < 1/2
it sufEce to show that for any three (or less, but this will only be easie #xcess, m, r the probability of linear
dependence in the projection is at mbs27. Defnez L rpremes = C)®Ca™) ®C(z®) @ C(a")
andv % C(z') ® C(z™) @ C(z®) @ C(z"). Notice that since our error-correcting codleis linear, we have
zZ = E(v). Also, sinceC' is 4-wise independent, we have that4 0. Thus, it remains to estimate the probability
thatz; = 0, or thatE(v); = 0 whenv # 0. But sincev # 0, E(v) has at least N entries which ard. Since
I picksp out of N entries of E(v) at random, the probability of picking alfs (without replacement) is at most
(1 — 6)P. It remains to pickp so that(1 — 6)? = O(1/t?), and we see that setting= O(log k) suffces indeed
(recall thatk is our security parameterjs polynomial ink andé is a constant). This completes the proof. []

We remark that since error-correcting code can in principle approsaate @f1, using Theorem 2 we can get a
PRF construction with £nal expansial = (2 + ¢)¢ based of thef-DDH assumption of orde®(log k).
3.2 Building VRFs

So far we saw how to construct plaiRFs based osf-DDH assumption. We now show how extend the above
techniques to get WRF. As before the construction is parameterized by some encading, 1}¢ — {0,1}%.

e Gen(1%): runs(G,q,g) « Setup(1%), picks randomuy, ...,ar+1 € Zg, Setsh = g+, y; = h%,. ..,
yr, = h*t. Outputs publickeYP K = (G, q,g,h,y1 = h™, ...,y = h®), secretkeyy K = (g,a1,...,ar).

e Provegk(z): outputs(oy,...oyr), wheresy = g ando; = gH{iSJ'IC(I>:1}ai forj = 1...L. In particular,
the values is Fsi (z), while (o1, ...,01_1) is the proofrgk (x).

e Verifypy(o1,...,0r): setsog = g and checks, forevery < i < L, that(o;_1, 04, h, y;) form aDDH-tuple
(recall,DDH is easy!) wherC(z) = 1, ot thato;_1 = o; is C(z); = 0. Accept if all the tests pass.
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To satisfy the de£nition 0¥RFs (De£nition 1), we need to examine uniqueness, provability and pseuldonan
ness. The £rst two properties are very easy. Uniqueness followstfrerfact that discrete logs are unique in
G (and that our assumed algorithm foDH will never accept an invalid tuple), while provability is obvious by
construction.

Thus, we only need to examine the pseudorandomness property. Laclatypf machinery has been already
developed in Section 3.1. Essentially, the main difference we have is thattvh@dversary ask&ove(x), not
only does he gef'(z) = G(C(x)), but he also gets “for free” the proof valuégI) for all I € Prefixes(C(z)),

where for a sef/ C [L] we de£nePrefixes(.J) wf {0, gn[],JN2],...,JN[L—1],J}. Additionally, the pub-
lic key gives the adversary the value${L + 1}), G({L + 1,1}),...,G({L + 1, L}). We denote this collection
of L+ 1 subsets ofL + 1] involving elementZ + 1 by Pub(L + 1). With these in mind, we easily get the following
analog of Lemma 1.

Lemma2 Given encoding : {0,1}* — {0, 1}, assume that for any ¢ {x1,...,z;} the predicateR satisEes
R(C(w), Prefixes(C(x1)), . . ., Prefixes(C(z¢)), Pub(L + 1)) = 1. Then our construction is ¥RF, under the
gDDH assumption of ordef. + 1 relative toR.

Next, we can appropriately generalize the notiont-afise independence to that ¢fwise pre£x-independence
Namely, a vector/ is 4-wise pref£x independent from vectofs. .. I; if there exist nol < p,r,s,< ¢t and

I, € Prefixes(I,,), I, € Prefixes(I;), I}, € Prefixes(I,) such that/ © I, & I} @ I = 0. A collection{I; ... I;}

is said to bel-wise pref£x independent if every vecthris 4-wise pre£x independent from the remaining vectors.
Finally, we will say that the above collection hae£x-distanceat least3, if for any i # j ande’- € Prefixes(1}),

we have that; andI]’. differ in at leas positions when viewed as binary vectors of lengtfin particular, every

I; has weight at leas}). Then, we get the following analog of Theorem 1.

Theorem 4 AssumeC' : {0,1} — {0,1}* is such that the collectiod C(z) | = € {0,1}*} is 4-wise pre£x-
independent and has pre£x-distance at I8asthen our construction is ¥RF under the weak (and thus regular)
sf-DDH assumption of ordef, + 1.

Proof: By Lemma 2, we only need to show that no vedféw) is linearly dependent o8 (or fewer) vectors

21, 22, z3 inside the set®refixes(C(z1)),. .., Prefixes(C(x)), Pub(L + 1). Assuming the contrary, if none of
21, 22, z3 comes fromPub(L + 1), we would exactly get that the collectidiC'(z) | = € {0,1}*} is 4-wise pre£x-
dependent, which is a contradiction. Otherwise, seyis€say,z;)isoneof{{L + 1} ,{L + 1,1},...,{L + 1, L}}.
Since these are the only sets containing elemiént 1), in order to “cancel’(L + 1) one otherz; (say, z2) also
comes from this collection, which means that® 2, is some subset of of [L] or cardinalityat most2. The
only way we can now havé/(w) @ I @ z3 = 0, is if somezs was a pre£x of somé€’(x;) (wherez; # w)
which differs fromC(w) in at most2 coordinates. But this is exactly what is ruled out by the fact the collection
{C(z) | x € {0,1}*} has pre£x-distance at ledst O

CONSTRUCTING THEENCODING. It remains again to constructdawise pre£x-independent encoding of pre£x
distance at leas3. We do it by giving a simple generic transformation from any regdlavise independent
encodingC : {0,1} — {0,1}*, such as the encodir{@?|z) considered in the previous section. We will assume
without loss of generality that every two distinct elemefits:) and C(w) differ in at least two positions. For
example, this is true with thé-wise independent encodirig?||x) constructed in the previous section. However,
even if originally false inC', one can always increageby 1 by adding a “parity” bit toC (i.e., the XOR of all the
bits of C'(x)) and get the required distance at leasietween distinct codewords. Also, for a technical reason we
will exclude the zero vectas’ from the domain of our new encoding.

Lemma3 If C is 4-wise independent (and has distance at I&sthenC’(x) = (C(z)||1||z||1) is 4-wise pre£x-
independent and has pre£x-distance at lekast
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Proof: Below we will refer to the twd'’s in the de£nition of”” as “middle” and “last”. We start with showing the
pre£x distance. Take any+# w and consider any pregkof C’(w). This pre£x either “crosses” both the middle
and the last, only the middlel, or none of them. In the £rst case (i.e., we lookCatw) itself), we get distance
three betweed’(x) andC’(w) sinceC(z) differs fromC(w) in at least two locations, anddiffers fromw in at
least one more location. In the second c&se) still differs from C'(w) in at least two locations, and now also
I does not have the lastwhich C’(x) has. Finally, in the last case (¢ are crossed)] does not have both's
thatC’(z) has, and also in between tis 2 is non-zero (this is where we exclu@® while the pre£xi is zero,
giving distance at leastagain.

Next, we show thel-wise pref£x independence. Take anywi,ws,ws wherez ¢ {wi,ws,ws}, and let
21, 22, z3 be some prefxes 6’ (wy), C’'(w2), C'(w2) such tha{C'(z)||1||x]|1) B 21 © 22 ® 23 = 0. Notice, in order
to cancel the last of C’(x), at least one of the pre£xes, sayhas to be full; i.e.z; = C'(wy1) = C(w1)||1|Jw1]|1.
Since the middld’s cancel out inC’(x) @ C’'(w1), we have two possibilities for them to cancel in the full sum
C'(z) ® C'(w1) ® 22 & z3. Either both pre£xes, andz3 cross the middlé, or none does. In the £rst case, taking
the “C-pre£xes” we get that'(x) & C(w;) & C(w2) @ C(w3) = 0, which contradicts the fact that is 4-wise
independent. In the second case, we get that the identity parts betweks yiedd © & w; = 0, i.e. x = wq,
which is again a contradiction. L]

Applying the above Lemma to thewise independent codé(x) = (23| z) used in Theorem 2, we get:

Theorem 5 The encoding’(z) = (z®||z||1]|=||1) defnes &/ RF mapping/ bits (except’) to an element of,
which is secure under the (wead}DDH assumption of ordes? + 3.

REDUCING THEORDER. Similarly to Theorem 3, we apply an “outer” error-correcting code taicedhe order

of the sf-DDH assumption we need for Theorem 5. However, we need to be sure thedrmiruction preserves
pre£x-independence. Here is one direct way of doing it if we start — a®imma 3 — from any regulat-
wise independent (but perhaps not pre£x-independént){0,1}¢ — {0,1}* with minimum distance2. Let
Ey:{0,1}F — {0,131 andE, : {0,1}* — {0, 1}¥2 be two linear error correcting codes, both correcting some
constant fraction of errors. We de£ne the £nal encodiiig) = (E;(C(z))||1||E2(z)||1) which maps non-zero

bits to N1 + N2 + 2 = O(¥) bits. By carefully combining the arguments in Theorem 3 with the technique in
Lemma 3, we get the following corollary whose proof we omit to avoid repetition.

Theorem 6 Assume (wealgf-DDH assumption holds for any ordger= O(log k). Then the codé above defnes
aVRF.

As earlier, we remark that since error-correcting codes can in prinajgeoach a rate df, using Theorem 5 we
can get &/RF construction with £nal expansia¥ = (3 +¢)¢ based of thef-DDH assumption of ordeD (log k).

Finally, we remark that with an extra overhead2dh the expansion of’ (and a large polynomial loss in exact
security), we can reduce oBRF andVRF constructions in both Theorem 3 and Theorem 6 to usinfutharget
sf-DDH assumption of ordeD(log k). Since we have no evidence that full-targeDDH is a signi£cantly better
assumption than regulaf-DDH, it is not clear if losing these overheads is worthwhile. Thus, we leavedtzasl
of this extension to the full version.

4 Distributed VRF

In this section we show that oMRF construction can be easily made distributed, which results in th®ERE
construction. Our construction is extremely simple and remDBE&F construction of Nielsen [Nie02] based
on regularDDH. However, the fact thaDDH is easy implies we can make our construction non-interactive (i.e.,
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servers do not need to know about each other) and more effcient tiasf tielsen. We start by presenting our
model, and then show our simple construction.

THEMODEL. We assume there aneserversSs, . .., S, and that we have aregudRF V' = (Gen, Prove, Setup)
which we want to distribute. First, we de£ne the syntax of the new generdgjoritam Gen’(-) run by the trusted
party. Gen’(1%) not only outputs the public/secret keyX and SK for V, but also a pair of public/secret key
(PK;, SK;) for each servef;. The global secret ke§ K is then erased, each senrgetsSK;, and the values
(PK,PKy,...,PK,) are published. When a usErapproaches the serv€r with inputz, the server determines

if the user is qualifed to learn the value/prooffofz). How this is done is specifed by the application at hand
and is unimportant to us. [¥ is successful, though, we say thfatwasinitiated on inputx, andU andS; engage

in a possibly interactive protocol. To successfully complete this protocoljgbe might have to simultaneously
interact with several servers in some possibly prede£ned order (&&@ beut the servers do not need to interact
to each other or know each other’s state. Given a threshofdhe systems, the robustness property states that
if U contactss servers on inpu, and at least at leagt + 1) of these servers are honest (plus, of course, each
honest server accepts the user’s request), then at the end of tbhegbtbe user learns the unique correct output
of Prove(x); i.e., the valueF'(x) and the proofr(x). This should hold even if the remainirtg — ¢ — 1) of the
contacted servers are malicious. We notice also that while theluseeds to know the “local’ public kel K;

of server; in order to interact with serves;, any outside party only needs to know the “global” public K&k in
order to verify the consistency @f(z) and~(x). In other words, the verifcation algortihverify does not have

to be changed from the non-distributed setting.

The security property of theDVRF protocol states that for any indicesiy,...,i; and for any adversary
A = (A1, Ag) who “breaks” the security oDVRF by “corrupting” serverssS;,, ..., S;, (see below), there ex-
ists an adversary3 = (Bj, B2) which breaks the pseudorandomness property of our ori§yiRdd, as given
by De£nition 1. We now def£ne what it means to break the securiMiRF. In addition to the public key
(PK,PK,,...,PK,), Alearns the valueSK;,, ..., SK;, of the corrupted servers. TheA; runs in the £rst
stage, in which it is given the ability to interact with any honest ser$grsn arbitrary inputs and in any manner
that A; desires. However, we keep track of the set of indutghich were initiated by4,. At the end of the phase,
A; outputs the challenge input (and the state information fafs). Then A is given back a challengg, (for
randomb), which is either the valug, = F(z) or a random elemeny; in the range ofF’. A, can then again
interect with honest servers, just likg did. At the end, A5 outputs the guesfsand succeeds if = b and neither
A1 nor A initiated the inpute with any of the serversA breaks the scheme if it succeeds with non-negligible
advantage over/2.

CONSTRUCTION In Section 3.2 we defned a general candidateVigF parametrized by any encodin@.
We now show how to make such construction distributed for @rfpr which the basic construction is\&RF.
The construction is quite simple, but it shows how convenient it is to hau€akglity (given by the easiness of
DDH) “for free”. Recall that we had K = (g,a1,...,ar); PK = (G,q,9,h,y1 = h™, ...,y = h®); and
Provesi (z) = (01,...0L), Wwhereoy = g, 05 = ;LJ_l if C(x); = 1ando; = 0;_; otherwise.

To distribute this process, for evejy= 1... L we use Shamir't + 1, n)-secret sharing [Sha79] ovér, to
split eacha; into n sharega; 1, ..., a;,), SO that any + 1 of these shares suffce to recower while ¢ or fewer
shares give no information abowf. We set the secret keyK; of serveri to (a1, ...,ar;), and its public key
PK;to (y1; = h**,...,yr; = h®). To computeProve(z), the uselU needs to contact at leagt+ 1) honest
servers. The protocol with the contactégs proceeds in rounds. Assuming inductively that the valtye, is
known to both the user and the servers (with the base hgirg ¢ which is known to everybody), we show how
to computer;. If C(x); = 0, 0; = 0;_1, SO we are done. Otherwise, each selygsends the value;; = ajil
to the user. The user locally checks thaj_1, o;, h, y;;) form a propeDDH-tuple. If they do not[J discards
the share and stops interacting wigh Upon receiving at least + 1) correct shared/ uses the corresponding

Lagrange interpolation in the exponent to compute the (necessarily oakeeo ;, and sends; to all the servers
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it is communicating with. Each servéf, upon receivingr;, checks if(o;_1, 0}, h, y;) form a validDDH-tuple.
If they do not, the server stops the interaction wWithThen the protocol proceeds to the next round until the entire
output is computed.

SECURITY. The security of the above scheme is quite straightforward. Robustrigsaésliate since every share
is checked for consistency. As for pseudorandomness, consigleuacessful distributed adversaty= (A;, As)
who corrupts servers . ..i;. We build B = (B, Bs) for our original VRF as follows. B picks random values
a;i, € Z,foreveryj € [L] ands € [t], and gives the resulting secret key&j; , ..., SK;, to A. It then computes
the induced public key® K, ..., PK;, and uses its own public key*', ..., h*- to compute the remaining
public keysP K, for all non-corrupted users. This is done by performing the appri@pkiagrange interpolation
in the exponent which computes the valyg from y;, y;4,,...,v;4. It hands all these public keys t4, after
which B; starts runningd;. When A; initiates any server on input, B; asks for the valu®rove(z), and uses
the responséo, ..., o), together with the knowledge &K, , ..., SK;,, to compute all the relevant shares;
(by again doing straightforward Lagrange interpolation in the exponeat&ild are obvious and omitted). This
allows B; to simulate all the responses #. After By outputs the same challengéas A, B, gets the output
challengey’, which it forwards toA,; as well. ThenB; simulatesAs’s interaction with the servers in exactly the
same wayB; did it for A;. Finally, By outputs the same guedss A,, which completes the reduction and the
proof of security.

EFFICIENCY. The above protocol is quite efEcient. The communication complexi€y(ig/k), and the round
complexity isL. = O(¢). This is more effcient than the complexity of the (non-verifaBIERF construction
of [Nie02] since no server interaction or expensive interactive kapwledge proofs are needed.

Finally, we remark that we can achieve proactive security as well (i.eégdieally refresh the sharing of the
secret key to withstand “mobile” attacks [OY91]) by using standard stemewal techniques (see [HERY]).
Essentially, each server (verifably) distribuiésto other servers, and all servers locally add these shares to their
old secret shares (also correspondingly updating the public shares).
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