
Ef£cient Construction of (Distributed) Veri£able Random Functions

Yevgeniy Dodis∗

October 16, 2002

Abstract

We give the £rst simple and ef£cient construction ofveri£able random functions(VRFs). VRFs,
introduced by Micali et al. [MRV99], combine the properties of regular pseudorandom functions
(PRFs) [GGM86] (i.e., indistinguishability from a random function) and digital signatures [GMR88]
(i.e., one can provide an unforgeable proof that theVRF value is correctly computed). The ef£ciency
of our VRF construction is only slightly worse than that of a regularPRF construction of Naor and
Reingold [NR97]. In contrast to ours, the previousVRF constructions [MRV99, Lys02] all involved
an expensive generic transformation from veri£able unpredictable functions (VUFs), while our con-
struction is simple and direct.

We also provide the £rst construction ofdistributedVRFs. Our construction is more ef£cient than
the only known construction of distributed (non-veri£able)PRFs [Nie02], but has more applications
than the latter. For example, it can be used to distributively implement the randomoracle model
in a publicly veri£ablemanner, which by itself has many applications (e.g., constructing threshold
signature schemes).

Our main construction is based on a new variant of decisional Dif£e-Hellman (DDH) assumption
on certain groups where the regularDDH assumption doesnothold. We do not make any claims about
the validity of our assumption (which we callsum-freeDDH, or sf-DDH). However, this assumption
seems to be plausible based on ourcurrent understanding of certain candidate elliptic and hyper-
elliptic groups which were recently proposed for use in cryptography [JN01, Jou00]. We hope that the
demonstrated power of oursf-DDH assumption will serve as a motivation for its closer study.

∗Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
dodis@cs.nyu.edu

1 Introduction

As a motivating example for our discussion, consider the problem of implementing therandom oracle model[BR93].
Recall that in this model one assumes the existence of a publicly veri£able random functionO (over some suitable
domain and range, e.g.{0, 1}n). Each valueO(x) is random and independent from the other values, and evalu-
atingO on the same input twice yields the same (random) output. This model has found numerous applications
in cryptography, which we do not even attempt to enumerate (for few examples, see [BR93, BR94, BR96, FS86,
GQ88, Sch91, Oka92, Mic94, PS96, BF01]). It was shown by Canettiet al. [CGH98], though, that no £xed public
function can generically replace the random oracle, so more elaborate solutions are needed.

PSEUDORANDOM FUNCTIONS. As the £rst attempt, we may assume the existence of a trusted (but computa-
tionally bounded) partyT . Since a function is an exponential sized object,T cannot store it explicitly. While
maintaining a dynamically growing look-up table is a possibility, it is very inef£cientas it requires large storage
and growing complexity. A slightly better option is to use apseudorandom function(PRF) FSK(·) [GGM86]. As
indicated, this function is fully speci£ed by a short secret key (orseed) SK, and yet, usingFSK (for randomly
generatedSK) is computationallyindistinguishable from using exponential-sizedO. Put differently,FSK is com-
putationally indistinguishable from a truly random function to any polynomial time adversarywho does not know
the secret keySK.

Of course,PRFs have found numerous more practical applications (e.g., see [NR97] andthe references therein),
primarily in the area of symmetric-key cryptography (i.e., when the valueSK can be shared between mutually
trusted parties). For example, they gives very simple constructions of symmetric-key encryption and message
authentication codes. In terms of constructingPRFs, there are several options. In principle,PRFs can be con-
structed from one-way functions [GGM86, HILL99], but this is quite inef£cient. Another alternative is to assume
that one already has aPRF of small or £xed size (e.g., a block cipher), and show how to extend its domain and
range to get a fully functionalPRF. For a simple example, ifH : {0, 1}∗ → {0, 1}ℓ is a collision-resistant hash
function [Dam87] andFSK : {0, 1}ℓ → R is our £xed-sizedPRF, thenFSK ◦ H : {0, 1}∗ → R is also aPRF
(many other constructions are possible too; see [BKR00, BCK96] and thereferences therein). Of course, we are
still left with the question of constructing the needed small-sizedPRF.

The last alternative is to constructPRFs from some well studied number-theoretic assumption. The most pop-
ular such construction is due to Naor and Reingold [NR97] and is based onthe decisional Dif£e-Hellman (DDH)
assumption (for related construction based on factoring, see [NRR00]). This assumption in some groupG of prime
orderq states that given elementsg, ga andgb of (whereg is the generator ofG), it is hard to distinguish the
valuegab from a truly random valuegc (wherea, b, c are random inZq). The PRF of [NR97] is a tree-based
construction similar to thePRF construction of [GGM86] from a pseudorandom generator. Namely, thesecret key
SK = (g, a1, . . . aℓ) consists of a random generatorg of G andℓ random exponents inZq (whereℓ is the length
of the input to ourPRF FSK : {0, 1}ℓ → G). Givenx = x1 . . . xℓ ∈ {0, 1}n, thePRF is de£ned by:

Fg,a1,...,aℓ
(x1 . . . xℓ)

def
= g

∏

{i|xi=1} ai mod q
(1)

VERIFIABLE RANDOM FUNCTIONS. Coming back to our motivating application, replacing random oracle with
a PRF has several problems. The £rst one is the question of veri£ability and transferability. Even if everybody
trustsT (which we will revisit soon),T has to be contacted not only when the value ofF has to be computed
for the £rst time, but even if one party needs to verify that another party has used the correct value ofF . Thus,
it would be much nicer if each value ofFSK(x) would come with a proofπSK(x) of correctness, so that the
recipient and everybody else can use this proof without the need to contact T again. As a side product, the ability
to give such proof will also insure thatT himself cannot “cheat” by giving inconsistent values ofF , or denying
a correctly computed value of the function. This leads to the notion ofveri£able (pseudo)random functions, or
VRFs [MRV99].

1

Slightly more formally, the key generation outputs a public veri£cation keyPK in addition to the secret evalua-
tion keySK, and the function family{FSK} has the following properties: (1) GivenSK, it is easy to compute the
value of the functiony = FSK(x) and the corresponding proofπSK(x); (2) givenPK, x, y, π, one can ef£ciently
verify if y = FSK(x) (and only one such value ofy can be proven for anyx andPK); (3) given onlyPK and
oracle access to bothFSK(·) andπSK(·), no adversary can distinguish the valueFSK(x) from a truly random
value without explicitly asking one of the oracles on inputx (the last property is sometimes calledresidual pseu-
dorandomness). Put differently, the function remains (pseudo)random when restricted to all inputs whose function
values were not previously revealed (and proved).

VRFs already found several applications. For example, usingVRFs one can reduce the number of rounds for
resettable zero-knowledge proofs to3 in the bare model [MR01]. As another interesting application, they can be
used in a non-interactive lottery system used in micropayments [MR02]. Thelottery organizer commits to aVRF
by publishing the public keyPK. Any participant is allowed to choose his lottery ticketx by himself and send it to
the organizer (with the only requirement thatx was not used before). The valuey = FSK(x) somehow determines
whether the user has won the lottery. The organizer sendsy to the user together with the proofπSK(x), which
ensures that the organizer cannot cheat. On the other hand, the unpredictability of y ensures that the participant
cannot bias the lottery in his favor. Another set of applications, given byNaor et al. [NPR99] for the case of regular
PRFs (or their distributed variants; see below), can be also enhanced by the veri£ability property ofVRFs. For
example,VRFs could be used to implement a trusted key distribution center (KDC). For a group of usersS with
“descriptor”xS (which could be the name of the group or a common password), the valuekS = FSK(xS) can be
used as a common random key used by the members ofS. When a party proves his right to get this key (which is
done by some application dependent mechanism), KDC would provide this party with kS together with the proof
of its correctness. Another application in similar spirit is that of long-term encryption of information [NPR99].
Finally, the pseudorandomness and veri£ability of aVRF immediately imply thatVRF by itself is an unforgeable
signature scheme secure against adaptive chosen message attack [GMR88].

CONSTRUCTIONS OFVRFS. Unfortunately,VRFs are not very well studied yet. Currently, we have two con-
structions ofVRFs: based onRSA [MRV99], and based on a separation between computational and decisional
Dif£e-Hellman problems in certain groups [Lys02]. Both of these constructions roughly proceed as follows. First,
they construct a relatively simple and ef£cient veri£ableunpredictablefunction (VUF) based on the corresponding
assumption. Roughly, aVUF is the same veri£able object as aVRF, except each “new” valueFSK(x) is only
unpredictable (i.e., hard to compute) rather than pseudorandom. FromVUFs, a generic construction toVRFs is
given, as introduced by [MRV99]. Unfortunately, this construction is very inef£cient and also looses a very large
factor in its exact security. Essentially, £rst one uses the Goldreich-Levintheorem [GL89] to construct aVRF
with very small (slightly super-logarithmic) input size and output size1 (and pretty dramatic security loss too).1

Then one makes enough such computations to amplify the output size to roughlymatch that of the input. Then one
follows another rather inef£cient tree-based construction on the resultingVRF to get aVRF with arbitrary input
size and small output size. Finally, one evaluates the resulting convolutedVRF several times to increase the output
size to the desired level. In some sense, the inef£ciency of the above construction is expected given its generality
and the fact that it has to convert pure unpredictability into a much strongerproperty of pseudorandomness. Still,
this means that the resultingVRF constructions are very bulky and inelegant. In this work we present the £rst
simple, ef£cient and “direct”VRF construction.

DISTRIBUTED PRFS. Coming back again to our target application of implementing the random oracle,the
biggest problem of bothPRF/VRF-based solutions is the necessity to fully trust the honest partyT holding the
secret key forF . Of course,VRFs slightly reduced this trust level, butT still singlehandedly knows all the values
of F . Clearly, this approach (1) puts to much trust intoT , (2) makesT is bottleneck of all the computations; (3)

1For example, one needs to assume a super-polynomial hardness forthe givenVUF to make sure that the resultingVRF is polynomially
secure. Is it an interesting open question to improve this reduction.

2

makesT is “single point of failure”: compromisingT will break the security of any application which depends on
the random oracle assumption.

The natural solution to this problem is to distribute the role ofT amongn servers. This leads to the notion of
distributedPRFs (DPRFs) anddistributedVRFs (DVRFs). Since the latter concept was not studied prior to our
work, we start withDPRFs, thus ignoring the issue of veri£ability for now. Intuitively,DPRFs with threshold
1 ≤ t < n allow any(t + 1) out ofn servers to jointly compute the function using their shares, while no coalition
of up tot servers to be in a better situation that any outside party. Namely, the function remains pseudorandom to
any such coalition. In the most ambitious form, the computation ofDPRF should benon-interactiveand single-
round. The £rst requirement means that the servers do not need to interact with each other in order to help the
user compute the value of the function. Instead, the only communication goes between the user and the servers.
The second requirement means that the entire computation should proceed inone round: the user gives to (at least)
t + 1 honest servers the needed inputx, each serveri computes the shareyi of the outputy = FSK(x) by using its
secret key shareSKi, and £nally the user combines the sharesyi and recoversy.

Not surprisingly,DPRFs have a variety of applications, including distributed KDCs, threshold evaluation of
the Cramer-Shoup cryptosystem [CG99], ef£cient metering of the web [NP98], asynchronous Byzantine agree-
ment [Nie02] and several others (see [NPR99, Nie02]).DPRFs £rst originate in the work of Micali and Sid-
ney [MS95]. However, their construction (later improved by [NPR99]) can tolerate only a moderate number of
servers or a small threshold, since its complexity is proportional tont. The next in¤uential work is that of Naor
et al. [NPR99], who give several ef£cient constructions of certain weak variants ofDPRFs. Ironically, one of the
constructions (namely, that of distributedweakPRF) can be turned into an ef£cientDPRF by utilizing random or-
acles. Even though this is non-trivial (since nobody should compute the value of aDPRF without the cooperation
of t + 1 servers), we would certainly prefer a solution in the plain model, since elimination of the random oracle
was one of the main motivation forDPRFs!

The £rst regularDPRF was recently constructed by Nielsen [Nie02] by distributing a slightly modi£ed variant
of the Naor-ReingoldPRF [NR97], given in Equation (1) (in the £nal version of their work, [NR97]also give
essentially the same construction). Unfortunately, the resultingDPRF in highly interactiveand requires a lot of
rounds (proportional to the length of the input). Thus, the question of non-interactive (and, hopefully, round-
ef£cient)DPRF construction remained open.

DISTRIBUTED VRFS. Even thoughDVRFs were not explicitly studied prior to this work, they seem to provide
the most satisfactory solution to our original problem of implementing the randomoracle. Indeed, distributing the
secret key ensures that no coalition of up tot servers can compromise the security (i.e., pseudorandomness) of
the resulting random oracle. On the other hand, veri£ability ensures that one does not need to contact the servers
again once the random oracle was computed once: the proof can convince any other party of the correctness of the
VRF value. For example,DVRFs by themselves provide an ordinary threshold signature scheme, which can be
veri£ed without further involvement of the servers. And, of course, using DVRFs is likely to enhance the security,
robustness or functionality of many applications originally designed for plainPRFs,VRFs andDPRFs.

OUR CONTRIBUTIONS. We give the £rst simple and direct construction ofVRFs, based on a new “DDH-like” as-
sumption which seems to be plausible on certain recently proposed elliptic and hyper-elliptic groups (e.g., [JN01]).
We call this assumptionsum-free decisional Dif£e-Hellman(sf-DDH) assumption. We will comment more on this
assumption below. We mention, however, that in the proposed groups the regular regularDDH assumption is
false(in fact, this is what gives us veri£ability!), and yet thesf-DDH or some similar assumption seems plausible.
Our construction is similar to the Naor-Reingold (NR) construction given by Equation (1), except we utilize some
carefully chosen encodingC before applying the NR-construction. Speci£cally, ifC : {0, 1}ℓ → {0, 1}L is some
injective encoding, we consider the function of the form

Fg,a1,...,aL
(x1 . . . xℓ)

def
= g

∏

{i|C(x)i=1} ai mod q
(2)

3

Identifying the properties of the encodingC and constructingC satisfying these properties will be one of the main
technical challenges we will have to face. At the end we will achieveL = O(ℓ) (speci£cally,L = 2ℓ to get a
regularPRF, andL = 3ℓ + 2 to get aVRF), making our ef£ciency very close to the NR-construction. We also
mention that our construction is very similar “in syntax” to theVUF construction of Lysyanskaya [Lys02]. In fact,
the “only” differences are as follows: (1) we build aVRF while [Lys02] builds aVUF (which is a weaker notion);
(2) we use different (seemingly orthogonal to each other) assumptions,even though suggest the same groups were
these assumptions hold; (3) we use different encoding functionsC. Speci£cally, [Lys02] uses any error-correcting
code, but only for the purposes of making a slightly weaker assumption (i.e.,identity with appended1 would yield
a VUF under a slightly stronger, but reasonable assumption). On the other hand, we use a very different kind of
encoding, because the fact thatDDH is easy in our group implies that the identitycannotbe used, irrespective of
what stronger assumption we make. Accidentally, by using a second (now error-correcting) code on top of our
encodingC, we can weaken our underling assumption too, similarly to [Lys02].

Our second main contribution is the £rst construction of a distributedVRF (DVRF). Namely, we show that
our VRF construction can be made distributed andnon-interactive(although multi-round). This is the £rst
non-interactive construction of a distributedPRF (let aloneVRF), since the only previousDPRF construction
of [Nie02, NR97] is highly interactive among the servers. In fact, ourDVRF construction is more ef£cient than the
above mentionDPRF construction, despite achieving the extra veri£ability. We already mentioned thebig saving
in communication complexity (roughly, fromn2ℓk to nℓk, wherek is the security parameter), since the servers do
not have to interact in our construction. Another important advantage, though, is that we dispense with the need to
perform somewhat expensive (concurrently composable) zero knowledge proofs for the equality of discrete logs.
This is because in our groups theDDH problem is easy, so it can be locally checked by each party without the need
for the proof. In particular, even though we need to apply the encodingC to the message, while the construction
of [Nie02, NR97] does not, the lack of ZK-proofs makes our round complexity again slightly better. We also
remark that our construction can be easily madeproactiveusing standard techniques (see [OY91, HJJ+97]).

Finally, we remark that the same distributed construction can be applied to distribute theVUF of Lysyan-
skaya [Lys02] (which results in a threshold “unique signature” scheme under a different assumption than the one
we propose).

OUR NEW sf-DDH ASSUMPTION. Finally, we elaborate on thesf-DDH assumption, putting it in comparison to
the other related assumptions. Recently, Joux and Nguyen [JN01] demonstrated the existence of groups where the
DDH assumption is certainly false, but its computational versionCDH (i.e., computegab from g, ga, gb) still seems
to be hard. These groups with various ¤avors of the aboveCDH/DDH separation have already found numerous
applications, e.g. [Jou00, BF01, Lys02, BLS01]. Intuitively, the factthatDDH is easy gives many useful properties
(like veri£ability), while the hardness of some appropriateCDH-like assumption can be still put to use in security.
As already observed by [BF01], our current techniques in such groups only allow us to testDDH relations by
means of a certain bilinear mapping (details are not important), for which we donot know a multi-linear variant.
In fact, Boneh and Silverberg [BS02] observe that a multi-linear variantof such mapping seems unlikely to exist
in the currently proposed groups, and pose as a major open problem to exhibit groups where such mappings exist.
This suggests that many natural, but more restrictive ¤avors ofDDH seem to hold in the currently proposed groups
(where regularDDH is easy). And this is exactly the approach we take. We assume a reasonable“DDH-like”
assumption which seems quite possible even when regularDDH is false. Intuitively (see formal de£nition in
Section 2.2), it states that given elements of the formG(I) = g

∏

i∈I ai for various subsetsI ⊆ {1 . . . L}, any other
elementG(J) is pseudorandom unless once can explicitly £nd a “DDH-tuple” (G(I1), G(I2), G(I3), G(J)) which
would allow to trivially verify G(J). We notice, however, that we do not make a strong claim that this so called
sf-DDH assumption is true. Rather, that it seems plausible given what we know. Thus, one can view our work as
a strong motivation to study this and relateddecisionalassumptions in the above mentioned “gap groups”.

4

2 De£nitions

2.1 Veri£able Random Functions and Friends

In this section we give the de£nition of veri£able random functions (VRFs). For putting our results in perspective
with prior works, we also give de£nitions of veri£able unpredictable functions (VUFs) and a new de£nition of
regular pseudorandom functions (PRFs). Here and everywhere,negl(k) refers to some function negligible in the
security parameterk.

De£nition 1 A function familyF(·)(·) : {0, 1}ℓ(k) → {0, 1}m(k) is a family of VRFs, if there exists a probabilistic
polynomial time algorithmGen and deterministic algorithmsProve andVerify such that:Gen(1k) outputs a pair
of keys(PK, SK); ProveSK(x) outputs a pair〈FSK(x), πSK(x)〉, whereπSK(x) is the proof of correctness; and
VerifyPK(x, y, π) veri£es thaty = FSK(x) using the proofπ. More formally, we require the following:

1. Uniqueness: no values(PK, x, y1, y2, π1, π2) can satisfyVerifyPK(x, y1, π1) = VerifyPK(x, y2, π2) when
y1 6= y2.

2. Provability: if (y, π) = ProveSK(x), thenVerifyPK(x, y, π) = 1.

3. Pseudorandomness: for any PPTA = (A1, A1) who did not call its oracle onx (see below)

Pr
[

b = b′
∣

∣

∣

(PK, SK) ← Gen(1k); (x, st) ← A
Prove(·)
1 (PK); y0 = FSK(x);

y1 ← {0, 1}m(k); b ← {0, 1}; b′ ← A
Prove(·)
2 (yb, st)

]

≤
1

2
+ negl(k)

Intuitively, the de£nition states that no value of the function can be distinguished from a random string, even after
seeing any other function values together with the corresponding proofs.

De£nition 2 A function familyF(·)(·) : {0, 1}ℓ(k) → {0, 1}m(k) is a family of VUFs, if satis£es the same syntax,
uniqueness and provability properties as the family ofVRFs, except pseudorandomness is replaced by the following
weaker property:

3’. Unpredictability: for any PPTA1 who did not call its oracle onx (see below)

Pr
[

y = FSK(x)
∣

∣

∣
(PK, SK) ← Gen(1k); (x, y) ← A

Prove(·)
1 (PK)

]

≤ negl(k)

RegularPRFs form the non-veri£able analogs ofVRFs. Namely,PK = ∅, πSK(·) = ∅, there is no algortihm
Verify, no uniqueness and provability properties, and pseudorandomness is the only remaining property. Speci£-
cally, it states

Pr
[

b = b′
∣

∣

∣

SK ← Gen(1k); (x, st) ← A
F (·)
1 (1k); y0 = FSK(x);

y1 ← {0, 1}m(k); b ← {0, 1}; b′ ← A
F (·)
2 (yb, st)

]

≤
1

2
+ negl(k)

(providedA did not call its oracle onx). We notice that the above de£nition is not the typical de£nition forPRFs
as given by [GGM86]: namely, that no adversary can distinguish havingoracle access to a truly random function
from having oracle access to a pseudorandom function. However, it iseasy to see that our de£nition is equivalent
to that usual one, so will we use it as the more convenient in the context ofVRFs.

5

2.2 Dif£e-Hellman Assumptions

In what follows, it should be understood that all the objects below will be parametrized by the security parameter
k, but we will not explicitly mention this unless needed. AssumeSetup(1k) outputs the description of some cyclic
groupG of prime orderq together with its random generatorg. Let L = L(k) be some integer anda1 . . . aL be
random elements ofZq. Let [L] denote{1 . . . L}, and given a subsetI ⊆ [L], we denoteaI =

∏

i∈I ai mod q
(wherea∅ = 1), G(I) = GI = gaI . Also, DLogg stands for the discrete logarithm baseg (where we often omitg
when clear). For example,DLog(GI) = aI . Finally, we will often view an elementz ∈ {0, 1}L as either a subset
{i | zi = 1}, or anL-dimensional vector overGF (2) (and vice versa).

GENERALIZED DIFFIE-HELLMAN ASSUMPTIONS. The security of ours, as well as the previous related con-
structions [NR97, Lys02], will rely on various assumptions of the followingcommon ¤avor. The adversaryA
has oracle access toG(·), and tries to “obtain information” about some valueG(J). The meaning of obtaining
information depends on whether we are making a computational or a decisional assumption. In the former case,
A has to computeG(J), while in the latter caseA has to distinguishG(J) from a random element ofG. While
the decisional assumption is stronger, it has a potential of yielding a (veri£able) pseudorandomfunction, while the
computational assumption can yield at best2 a (veri£able)unpredictablefunction.

In either case, we require that it should be hard to any polynomial time adversary to succeed. Of course, to make
non-trivial sense of “success”, one has to make some non-trivial restrictions on when the adversary is considered
suceessful. Formally, given that the adversary called its oracle on subsetsI1, . . . , It and “obtained information”
aboutG(J), we can de£ne a predicateR(J, I1, . . . It) which indicates whether the adversary’s actions are “legal”.
For example, at the very least the predicate should be false ifJ ∈ {I1 . . . It}. We call any such predicatenon-trivial.
We will certainly restrict ourselves to non-trivial predicates, but may sometimes place some more restrictions on
R in order to make a more plausible and weaker assumption (see below).

De£nition 3 GivenL = L(k), we say that the groupG satis£es thegeneralized decisional Dif£e-Hellman(gDDH)
assumption of orderL relative to a non-trivial predicateR, if for any legal PPTadversaryA = (A1, A1) we have

Pr
[

b = b′
∣

∣

∣

(G, q, g) ← Setup(1k); (a1 . . . aL) ← Zq, (J, st) ← A
G(·)
1 (G, q);

y0 = G(J); y1 ← G; b ← {0, 1}; b′ ← A
G(·)
2 (yb, st)

]

≤
1

2
+ negl(k)

whereA is legal if it called its oracle on subsetsI1 . . . It satisfyingR(J, I1, . . . , It) = 1.
Very similarly, the groupG satis£es thegeneralized computational Dif£e-Hellman(gCDH) assumption of orderL
relative toR, if for any legal (see above)PPTadversaryA1 we have

Pr
[

G(J) = y
∣

∣

∣
(G, q, g) ← Setup(1k); (a1 . . . aL) ← Zq, (J, y) ← A

G(·)
1 (G, q)

]

≤ negl(k)

We notice that the more restrictionsR places on theIi’s and the “target” setJ , the harder it is for the adversary
to succeed, so the assumption becomes weaker (and more preferable). Thus, the strongest possible assumption
of the above type is to put no further restrictions onR other than non-triviality (i.e.,J 6∈ {I1, . . . It}). We call
the two resulting assumptions simplygDDH andgCDH (without specifyingR). A slightly weaker assumption
results when we require that the target set is equal to the full setJ = [L], i.e. the adversary has to obtain
information aboutga1...aL . We call the resulting assumptionsfull targetgDDH/gCDH (whereL = 2 yields regular
DDH/CDH). We remark that these full target assumptions are the “standard” way to de£ne generalized (aka group)
Dif£e-Hellman assumptions (e.g., in [STW96, BCP01, BCPQ01, Lys02]), but we will £nd our distinction (and,
therefore, terminology) more convenient. Finally, makingL larger generally makes the assumption stronger (e.g.,

2Unless a generic inef£cient conversion is used, or one assumes the existence of a random oracle, in which case applying the random
oracle to a computationally hard object trivially gives a pseudorandom object.

6

for unrestricted or full targetgCDH/gCDH), since the adversary can always choose to concentrate on some subset
of L. Thus, it is preferable to base the security of some contsruction on as smallL and as restrictiveR as possible.

Before moving to our new sum-freegDDH assumption, let us brie¤y state some simple facts aboutgDDH/gCDH.
It was already observed by [STW96] thatgDDH assumption of any polynomial orderL(k) (with or without full
target) follows from the regularDDH assumption (which corresponds toL = 2). Unfortunately, we do not know of
the same result for thegCDH problem. The best analog of this result was implicitly obtained by [Lys02], who more
or less showed that the regulargCDH assumption of logarithmic orderO(log k) (even with full target) implies the
gCDH assumption of any polynomial orderL(k), providedin the latter we restrict the adversary to operate on the
codewords of any good error-correcting code (i.e.,J, I1 . . . It ⊆ [L] must be all “far” from each other in order to
satisfyR).

SUM-FREEgDDH. We already saw that the regularDDH assumption is a very strong security assumption in that
it implies thegDDH assumption. This useful fact almost immediately implies, for example, that the Naor-Reingold
construction in Equation (1) is aPRF underDDH, illustrating the power ofDDH for proving pseudorandomness.
Unfortunately, groups wereDDH is true are not convenient for makingveri£ablerandom functions, since nobody
can verify the equality of discrete logs. On the other hand, we will see shortly that it is very easy to obtain veri£a-
bility in groups whereDDH is solvable in polynomial time (such as the group suggested by [JN01]). Unfortunately,
such groups certainly do not satisfy thegDDH assumption too, which seems to imply that we have to settle for
the computational assumption (likegCDH) in such groups, which in turn implies that we settle only for theVUF
construction rather than the desiredVRF. Indeed, obtaining such aVUF is exactly what was recently done by
Lysyanskaya [Lys02] in groups whereDDH is easy butgCDH is hard.

However, we make the curcial observation that the fact thatDDH is easy doesnot mean that no version of
gDDH assumption can be true: it only meanswe might have to put more restrictions on the predicateR in order
to make it hard for the adversary to break thegDDH assumption relative toR. Indeed, for the current elliptic
groups for which we believe in a separation betweenDDH andCDH, we only know how to test if(h, u, v, w)
is of the formu = ha, v = hb, w = hab (this is called aDDH-tuple). For example, as was mentioned by
Boneh and Franklin [BF01], it seems reasonable to assume that it is hard todistinguidh a tuple(h, ha, hb, hc, habc)
from a random tuple(h, ha, hb, hc, hd). Put differently, whena1 . . . aL are chosen at random and given a sample
g = G(∅), G(I1) . . . G(It), the only way we know how to distinguishG(J) from a random element of such
groups is by exhibiting three setsIm, Ip, Is (where0 ≤ m, p, s ≤ t, andI0 denotes the empty set) such that
aJ · aIm = aIp · aIs mod q.3 The last equation implies that “J + Im = Ip + Is”, where we view the sets asL-bit
0/1-vectors, and the addition is bitwise over the integers. In other words, onehas to explicitly £nd aDDH-tuple
among the samplesG(Ii)’s and the targetG(J).

We formalize this intuition into the following predicateR(J, I1, . . . , It). Let us denoteI0 = ∅. We say thatJ is
DDH-dependentonI1 . . . It if there are indices0 ≤ m, p, s ≤ t satisfyingJ+Im = Ip+Is (see explanation above).
For example,10101 is DDH-dependent on01010, 00001 and11111, since10101 + 01011 = 11111 + 00001 =
11112. Then we de£ne theDDH-freerelationR to be true if and only ifJ is DDH-independent fromI1 . . . It.

De£nition 4 Given L = L(k), we say that the groupG (where regularDDH is easy) satis£es thesum-free
decisional Dif£e-Hellman(sf-DDH) assumption of orderL if if satis£es thegDDH assumption of orderL relative
to theDDH-free relationR above.G satis£es thefull targetsf-DDH assumption if we additionally requireJ = [L].

For our purposes we notice thatDDH-dependence also implies thatJ ⊕ Im = Ip ⊕ Is, where⊕ indicates the
bitwise addition moduo2 (i.e., we make “2 = 0”), or J ⊕ Im ⊕ Ip ⊕ Is = 0. Let us callJ 4-wise independentfrom
I1 . . . It if no three setsIm, Ij , Is yield J ⊕ Im ⊕ Ip ⊕ Is = 0. Hence, if we letR′(J, I1, . . . , It) = 1 if and only

3One can also try to £nd the additive relations, but since theai’s are all random, it seems that the only such relations one can £nd would
trivially follow from some multiplicative relations.

7

if J is 4-wise independent from theIi’s, we get thatR′ is a stricter relation that ourDDH-freeR. But this means
thatgDDH assumption relative toR′ is aweakerassumption thansf-DDH, so we call itweaksf-DDH. Our actual
construction will in fact be based on weaksf-DDH.

To summarize,sf-DDH is the strongest possible assumption which is conceivable in the groups were regular
DDH is false. We chose this assumption to get the simplest and most ef£cientVRF construction possible when
DDH is false (in fact, we only need weaksf-DDH in our case). However, even if the ambitioussf-DDH assumption
we propose turns out to be false in the current groups whereDDH is easy — which we currently have no indication
of — it seems plausible that some reasonable weakergDDH assumptions (relative to more restrictiveR) might
still hold. And our approach seems to be general enough to allow some easymodi£cation to our construction (at
slight ef£ciency loss) meet many such weakergDDH assumptions.

3 Constructions

AssumeG is the group whereDDH is easy while some version ofsf-DDH holds (we will be more speci£c soon).
We consider the natural the type of functions given by Equation (2); in our new notation,Fg,a1,...,aL

(x1 . . . xℓ) =
G(C(x)),4 whereC is some currently unspeci£ed (but ef£ciently computable) injective mapping from {0, 1} ℓ to
{0, 1}L. As we will see, the properties of encodingC will be crucial in showing the properties of the resulting
function. To emphasize this dependence onC, we will also call the above functionNRC(·) when other parameters
are clear form the context.

3.1 Building PRFs

We notice, that the de£nition above already suf£ces to give a candidate for aregularPRF. As a warm-up towards
VRFs, we £rst determine the conditions onC and the kind ofgDDH assumption we need in order to get a regular
PRF.

Lemma 1 Given encodingC : {0, 1}ℓ → {0, 1}L, assume predicateR satis£esR(C(w), C(x1), . . . , C(xt)) = 1
for anyw 6∈ {x1, . . . , xt}. ThenNRC(·) is aPRF under thegDDH assumption of orderL relative toR.

Proof: The proof follows almost immediately by comparing the deginition ofgDDH relative toR (De£nition 3)
and the de£nition ofPRF given in Section 2.1. Indeed, the adversary can queryNRC(·) at any pointsx1, . . . xt,
which corresponds to queryingG(·) on C(x1) . . . C(xt), and has to distinguishNRC(w) = G(C(w)) for some
w 6∈ {x1 . . . xt}. Since our assumption implies thatR(C(w), C(x1), . . . , C(xt)) = 1, this adversary is legal for
breakinggDDH (of orderL) relative toR, which is a contradiction.

As an immediate corollary, usualgDDH assumption implies thatNRC(·) is aPRF for any (injective)C, including
the identity. This in turn gives the result of [NR97], since we mentioned that regularDDH impliesgDDH [STW96].

More interestingly, we will now determine the properties ofC which suf£ce to show thatNRC is aPRF under
the much weakersf-DDH assumption (for now, of the same large orderL; we will reduce the order later). In the
following, view every subset of[L] (or element of{0, 1}L) as anL-dimensional vector overGF (2). Recall our
de£nition of a vectorJ being4-wise independent from the collectionI1 . . . It. To generalize this notion, we say
that the collection of vectorsI1 . . . It is 4-wise independent, if no4 or fewer vectors are linearly dependent.

Theorem 1 AssumeC : {0, 1}ℓ → {0, 1}L is such that the collection
{

C(x) | x ∈ {0, 1}ℓ
}

is4-wise independent.
ThenNRC(·) is aPRF under the weak (and thus regular)sf-DDH assumption of orderL.

4Notice, we output a (pseudo)random element ofG instead of a (pseudo)randomm-bit string. However, standard hashing techniques
imply we can extract an almost uniform string of length close tolog |G| from such an output. See [NR97].

8

Proof: Obvious from Lemma 1 and the de£nition of weaksf-DDH.

CONSTRUCTING4-WISE INDEPENDENTENCODINGS. To get ourPRF under thesf-DDH assumption (i.e., in
groups were regularDDH might be false), it suf£cing to construct a4-wise independent encodingC. Naturally, the
goal is to makeL as close toℓ as possible. Such encodings come up quite often in the theory of derandomization
(see [ABI86, AS00]), and are closely related to coding theory.5 In our case, the well known construction is very
simple and ef£cient, so we present it in a self-contained manner.

Let us now view any element ofx ∈ {0, 1}ℓ as an element of the £eldGF (2ℓ), which can be represented as
anℓ-dimensional vector overGF (2). This gives us the same bitwise addition operation⊕, but now we also have
a multiplication operation. Then we setL = 2ℓ and de£neC(x) = (x3‖x), which is interpreted as follows. We
£rst cubex, which gives us anotherℓ-dimentional vectorx3, and then we appendx to it. Notice, the codeC is
explicit and extremely ef£cient to evaluate. It is also very easy to see that any 4-wise independent encoding we
can come up with must haveL ≥ 2ℓ,6 so our encoding is optimal. Now, assume there are somenon-zerodistinct
x1, x2, x3, x4 ∈ GF (2ℓ) and constantsα1, α2, α3, α4 ∈ {0, 1} such that

∑4
i=1 αiC(xi) = 0. We will show that

α1 = α2 = α3 = α4 = 0, which yields4-wise independence.

Since our bitwise addition is the same as in the £eld, we get
∑4

i=1 αixi = 0 and
∑4

i=1 αix
3
i = 0 overGF (2ℓ).

Next, we square the £rst equation. SinceGF (2ℓ) has characteristic2 andα2
i = αi, the only surviving terms are

αix
2
i , which gives us

∑4
i=1 αix

2
i = 0. Similarly, raising the £rst equation to the power4 gives

∑4
i=1 αix

4
i = 0.

Thus, we have a linear system (with unknownsα1, α2, α3, α4) saying that
∑4

i=1 αix
j
i = 0 for j = 1, 2, 3, 4. The

system corresponds to the famous Vandermonde matrix whose determinant isx1x2x3x4 ·
∏

i<j(xi − xj) 6= 0,
since all thexi’s are distinct and non-zero. Thus, the only solution to the system is the trivial all-zero solution,
completing the proof.

As a small technicality, we get the4-wise independent encodingC : {0, 1}ℓ\
{

0ℓ
}

→ {0, 1}2ℓ, i.e. we explude
the all-zero vector. This implies that we get thePRF whose input domain excludes the all-zero vector too. This is
typically not a problem since we are “loosing” only one out of2ℓ points. Of course, one can always increaseL by
1 and add a “dedicated” randomaL+1 ∈ Zq to point0ℓ, but this seems to be going through too much trouble for
such a small technicality. To summarize,

Theorem 2 The encodingC above de£nes aPRF mappingℓ bits (except0ℓ) to an element ofG, which is secure
under the (weak)sf-DDH assumption of order2ℓ.

REDUCING THE ORDER. While Theorem 2 gives a simplePRF construction, it is based on thesf-DDH assump-
tion of high polynomial order2ℓ(k). While this assumption is reasonable, we now show how to reduce the order
to O(log k) at only a marginal ef£ciency loss. So letC : {0, 1}ℓ → {0, 1}L be any4-wise independet encoding
satisfying Theorem 1 (like the one we constructied above). The idea, similarto that of [Lys02], is to use an
error-correcting codeE : {0, 1}L → {0, 1}N on top of our encodingC. However, since we are dealing with linear
dependence, we will have to restrict ourselves tolinear codes (which was not needed in [Lys02]), and the analysis
will be slightly more involved. Thus, letE be a linear error correcting code of distanceδN (whereδ > 0 and
N = O(L)), and de£nẽC = E ◦ C : {0, 1}ℓ → {0, 1}N .

Theorem 3 Assume (weak)sf-DDH assumption holds for any orderp = O(log k). ThenNRC̃(·) is aPRF.

Proof: Assume some adversaryA = (A1, A2) breaks the pseudorandomness ofNRC̃(·). We constuct an adver-
saryB = (B1, B2) which breakssf-DDH assumption of some orderp (to be speci£ed later). AssumeB has oracle

5In particular, obtaining the4-wise independent encodingC we need is equivalent to designing a parity check matrix of any linear code
of distance5. Our speci£c code gives such matrix for the famous (and optimal) BCH code of designed distance5. See [MS77].

6Since all pairwise sumsC(x1) ⊕ C(x2) have to be distinct non-zero elements of{0, 1}L.

9

access toFg,b1,...,bp
(H) for any subsetH ⊆ [p]. B chooses a random subsetI ⊂ [N] of cardinality exactlyp, and

implicitly setsai = bi for i ∈ I. It also picks on its own randomai for all i 6∈ I. B (actuallyB1) now runsA1 with
these implicit assignment in mind. Speci£cally, whenA1 asks for the valueNRC̃(x), B1 computesz = C̃(x), the
restrictionzI ∈ {0, 1}p of z to the positions inI, and the restrictionzĪ of z to the complement ofI. It asks its
oracle for the valueyI = Fg,b1,...,bp

(zI), and returns toA1 the valuey = (yI)
∏

i6∈I ai . WhenA1 output the input
challenge valuex′, B1 outputs the challenge input valuez′I = C̃(x′)I . Next, whenB2 gets back the challenge
output value, which we cally′I (the reason will be clear),B2 setsy′ = (y′I)

∏

i6∈I ai and passes it as the challenge
output value toA2. ThenB2 simulates oracle queries ofA2 in the same way asB1 did for A1. Finally,B2 outputs
the same decision asA2.

We notice thatB simulatedA is a completely perfect way. Indeed, when the challenge forB was the correct
output value,B translated it to the correct output value forA. Otherwise,B raised a random element to some
(wlog, non-zero) power, which left it a radnom group element. Thus,B distinguishes with the same advantage as
A modulo the problem thatB could be illegal. Namely, assumeA askedt = poly(k) queriesx1, . . . , xt altogether.
ThenB askedt queriesz1

I , z
2
I , . . . zt

I and outputted the challengez′I . Now it could be thatz′I is 4-wise dependent
on z1

I , z2
I , . . . z

t
I . If this happens (say with probabilityα), then we modify the behavior ofB to stop simulatingA

and letB output a random bit. We will show that it suf£ces to setp = O(log k) in order to makeα ≤ 1/2, which
would complete the proof.

And here is the reason. SinceB simulatesA in a perfect way,A gets no information aboutI during its run.
Thus,A cannot choose its actions based onI, so we may assume thatA chose some valuesz1 = C̃(x1), . . . , zt =
C̃(xt), z′ = C̃(x′), wherex′ 6∈

{

x1, . . . , xt
}

, and only then (when the above values are£xed) the subsetI was
actually chosen. Now,α exactly measures the probability that the random “p-projection”z′I is 4-wise dependent on
the other projectionsz1

I , . . . , z1
I . We will apply the union bound. There are at mostT = O(t3) choices for indices

s, m, r (including0 for the empty set) which can cause the dependence of the projections. Thus, to showα ≤ 1/2
it suf£ce to show that for any three (or less, but this will only be easier) £xed indicess, m, r the probability of linear

dependence in the projection is at most1/2T . De£nez̃
def
= z′⊕ zs ⊕ zm ⊕ zr = C̃(x′)⊕ C̃(xm)⊕ C̃(xs)⊕ C̃(xr)

andv
def
= C(x′) ⊕ C(xm) ⊕ C(xs) ⊕ C(xr). Notice that since our error-correcting codeE is linear, we have

z̃ = E(v). Also, sinceC is 4-wise independent, we have thatv 6= 0. Thus, it remains to estimate the probability
that z̃I = 0, or thatE(v)I = 0 whenv 6= 0. But sincev 6= 0, E(v) has at leastδN entries which are1. Since
I picksp out of N entries ofE(v) at random, the probability of picking all0’s (without replacement) is at most
(1 − δ)p. It remains to pickp so that(1 − δ)p = O(1/t3), and we see that settingp = O(log k) suf£ces indeed
(recall thatk is our security parameter,t is polynomial ink andδ is a constant). This completes the proof.

We remark that since error-correcting code can in principle approach arate of1, using Theorem 2 we can get a
PRF construction with £nal expansionN = (2 + ε)ℓ based of thesf-DDH assumption of orderO(log k).

3.2 Building VRFs

So far we saw how to construct plainPRFs based onsf-DDH assumption. We now show how extend the above
techniques to get aVRF. As before the construction is parameterized by some encodingC : {0, 1}ℓ → {0, 1}L.

• Gen(1k): runs(G, q, g) ← Setup(1k), picks randoma1, . . . , aL+1 ∈ Zq, setsh = gaL+1 , y1 = ha1 ,. . .,
yL = haL . Outputs public keyPK = (G, q, g, h, y1 = ha1 , . . . , yL = haL), secret keySK = (g, a1, . . . , aL).

• ProveSK(x): outputs(σ1, . . . σL), whereσ0 = g andσj = g
∏

{i≤j|C(x)=1}ai for j = 1 . . . L. In particular,
the valueσL is FSK(x), while (σ1, . . . , σL−1) is the proofπSK(x).

• VerifyPK(σ1, . . . , σL): setsσ0 = g and checks, for every1 ≤ i ≤ L, that(σi−1, σi, h, yi) form aDDH-tuple
(recall,DDH is easy!) whenC(x) = 1, ot thatσi−1 = σi is C(x)i = 0. Accept if all the tests pass.

10

To satisfy the de£nition ofVRFs (De£nition 1), we need to examine uniqueness, provability and pseudorandom-
ness. The £rst two properties are very easy. Uniqueness follows fromthe fact that discrete logs are unique in
G (and that our assumed algorithm forDDH will never accept an invalid tuple), while provability is obvious by
construction.

Thus, we only need to examine the pseudorandomness property. Luckily,a lot of machinery has been already
developed in Section 3.1. Essentially, the main difference we have is that when the adversary asksProve(x), not
only does he getF (x) = G(C(x)), but he also gets “for free” the proof valuesG(I) for all I ∈ Prefixes(C(x)),

where for a setJ ⊆ [L] we de£nePrefixes(J)
def
= {∅, J ∩ [1], J ∩ [2], . . . , J ∩ [L − 1], J}. Additionally, the pub-

lic key gives the adversary the valuesG({L + 1}), G({L + 1, 1}), . . . , G({L + 1, L}). We denote this collection
of L+1 subsets of[L+1] involving elementL+1 by Pub(L+1). With these in mind, we easily get the following
analog of Lemma 1.

Lemma 2 Given encodingC : {0, 1}ℓ → {0, 1}L, assume that for anyw 6∈ {x1, . . . , xt} the predicateR satis£es
R(C(w), Prefixes(C(x1)), . . . ,Prefixes(C(xt)), Pub(L + 1)) = 1. Then our construction is aVRF, under the
gDDH assumption of orderL + 1 relative toR.

Next, we can appropriately generalize the notion of4-wise independence to that of4-wise pre£x-independence.
Namely, a vectorJ is 4-wise pre£x independent from vectorsI1 . . . It if there exist no1 ≤ p, r, s,≤ t and
I ′p ∈ Prefixes(Ip), I ′r ∈ Prefixes(Ir), I ′s ∈ Prefixes(Is) such thatJ ⊕ I ′p ⊕ I ′r ⊕ I ′s = 0. A collection{I1 . . . It}
is said to be4-wise pre£x independent if every vectorIi is 4-wise pre£x independent from the remaining vectors.
Finally, we will say that the above collection haspre£x-distanceat least3, if for any i 6= j andI ′j ∈ Prefixes(Ij),
we have thatIi andI ′j differ in at least3 positions when viewed as binary vectors of lengthL (in particular, every
Ii has weight at least3). Then, we get the following analog of Theorem 1.

Theorem 4 AssumeC : {0, 1}ℓ → {0, 1}L is such that the collection
{

C(x) | x ∈ {0, 1}ℓ
}

is 4-wise pre£x-
independent and has pre£x-distance at least3. Then our construction is aVRF under the weak (and thus regular)
sf-DDH assumption of orderL + 1.

Proof: By Lemma 2, we only need to show that no vectorC(w) is linearly dependent on3 (or fewer) vectors
z1, z2, z3 inside the setsPrefixes(C(x1)), . . . ,Prefixes(C(xt)), Pub(L + 1). Assuming the contrary, if none of
z1, z2, z3 comes fromPub(L+1), we would exactly get that the collection

{

C(x) | x ∈ {0, 1}ℓ
}

is 4-wise pre£x-
dependent, which is a contradiction. Otherwise, somezi’s (say,z1) is one of{{L + 1} , {L + 1, 1} , . . . , {L + 1, L}}.
Since these are the only sets containing element(L + 1), in order to “cancel”(L + 1) one otherzi (say,z2) also
comes from this collection, which means thatz1 ⊕ z2 is some subset ofI of [L] or cardinalityat most2. The
only way we can now haveC(w) ⊕ I ⊕ z3 = 0, is if somez3 was a pre£x of someC(xj) (wherexj 6= w)
which differs fromC(w) in at most2 coordinates. But this is exactly what is ruled out by the fact the collection
{

C(x) | x ∈ {0, 1}ℓ
}

has pre£x-distance at least3.

CONSTRUCTING THEENCODING. It remains again to construct a4-wise pre£x-independent encoding of pre£x
distance at least3. We do it by giving a simple generic transformation from any regular4-wise independent
encodingC : {0, 1}ℓ → {0, 1}L, such as the encoding(x3‖x) considered in the previous section. We will assume
without loss of generality that every two distinct elementsC(x) andC(w) differ in at least two positions. For
example, this is true with the4-wise independent encoding(x3‖x) constructed in the previous section. However,
even if originally false inC, one can always increaseL by 1 by adding a “parity” bit toC (i.e., the XOR of all the
bits of C(x)) and get the required distance at least2 between distinct codewords. Also, for a technical reason we
will exclude the zero vector0ℓ from the domain of our new encoding.

Lemma 3 If C is 4-wise independent (and has distance at least2), thenC ′(x) = (C(x)‖1‖x‖1) is 4-wise pre£x-
independent and has pre£x-distance at least3.

11

Proof: Below we will refer to the two1’s in the de£nition ofC ′ as “middle” and “last”. We start with showing the
pre£x distance. Take anyx 6= w and consider any pre£xI of C ′(w). This pre£x either “crosses” both the middle
and the last1, only the middle1, or none of them. In the £rst case (i.e., we look atC ′(w) itself), we get distance
three betweenC ′(x) andC ′(w) sinceC(x) differs fromC(w) in at least two locations, andx differs fromw in at
least one more location. In the second case,C(x) still differs from C(w) in at least two locations, and now also
I does not have the last1 which C ′(x) has. Finally, in the last case (no1’s are crossed),I does not have both1’s
thatC ′(x) has, and also in between the1’s x is non-zero (this is where we exclude0ℓ) while the pre£xI is zero,
giving distance at least3 again.

Next, we show the4-wise pre£x independence. Take anyx, w1, w2, w3 wherex 6∈ {w1, w2, w3}, and let
z1, z2, z3 be some pre£xes ofC ′(w1), C

′(w2), C
′(w2) such that(C(x)‖1‖x‖1)⊕z1⊕z2⊕z3 = 0. Notice, in order

to cancel the last1 of C ′(x), at least one of the pre£xes, sayz1 has to be full; i.e.,z1 = C ′(w1) = C(w1)‖1‖w1‖1.
Since the middle1’s cancel out inC ′(x) ⊕ C ′(w1), we have two possibilities for them to cancel in the full sum
C ′(x)⊕C ′(w1)⊕ z2 ⊕ z3. Either both pre£xesz2 andz3 cross the middle1, or none does. In the £rst case, taking
the “C-pre£xes” we get thatC(x) ⊕ C(w1) ⊕ C(w2) ⊕ C(w3) = 0, which contradicts the fact thatC is 4-wise
independent. In the second case, we get that the identity parts between the1’s yield x ⊕ w1 = 0, i.e. x = w1,
which is again a contradiction.

Applying the above Lemma to the4-wise independent codeC(x) = (x3‖x) used in Theorem 2, we get:

Theorem 5 The encodingC ′(x) = (x3‖x‖1‖x‖1) de£nes aVRF mappingℓ bits (except0ℓ) to an element ofG,
which is secure under the (weak)sf-DDH assumption of order3ℓ + 3.

REDUCING THE ORDER. Similarly to Theorem 3, we apply an “outer” error-correcting code to reduce the order
of thesf-DDH assumption we need for Theorem 5. However, we need to be sure that our construction preserves
pre£x-independence. Here is one direct way of doing it if we start — as inLemma 3 — from any regular4-
wise independent (but perhaps not pre£x-independent)C : {0, 1}ℓ → {0, 1}L with minimum distance2. Let
E1 : {0, 1}L → {0, 1}N1 andE2 : {0, 1}ℓ → {0, 1}N2 be two linear error correcting codes, both correcting some
constant fraction of errors. We de£ne the £nal encodingC̃(x) = (E1(C(x))‖1‖E2(x)‖1) which mapsℓ non-zero
bits to N1 + N2 + 2 = O(ℓ) bits. By carefully combining the arguments in Theorem 3 with the technique in
Lemma 3, we get the following corollary whose proof we omit to avoid repetition.

Theorem 6 Assume (weak)sf-DDH assumption holds for any orderp = O(log k). Then the codẽC above de£nes
a VRF.

As earlier, we remark that since error-correcting codes can in principleapproach a rate of1, using Theorem 5 we
can get aVRF construction with £nal expansionN = (3+ε)ℓ based of thesf-DDH assumption of orderO(log k).

Finally, we remark that with an extra overhead of2 in the expansion of̃C (and a large polynomial loss in exact
security), we can reduce ourPRF andVRF constructions in both Theorem 3 and Theorem 6 to using thefull target
sf-DDH assumption of orderO(log k). Since we have no evidence that full-targetsf-DDH is a signi£cantly better
assumption than regularsf-DDH, it is not clear if losing these overheads is worthwhile. Thus, we leave the details
of this extension to the full version.

4 Distributed VRF

In this section we show that ourVRF construction can be easily made distributed, which results in the £rstDVRF
construction. Our construction is extremely simple and remindsDPRF construction of Nielsen [Nie02] based
on regularDDH. However, the fact thatDDH is easy implies we can make our construction non-interactive (i.e.,

12

servers do not need to know about each other) and more ef£cient than that of Nielsen. We start by presenting our
model, and then show our simple construction.

THE MODEL. We assume there aren serversS1, . . . , Sn and that we have a regularVRF V = (Gen, Prove, Setup)
which we want to distribute. First, we de£ne the syntax of the new generation algorithmGen′(·) run by the trusted
party. Gen′(1k) not only outputs the public/secret keysPK andSK for V , but also a pair of public/secret key
(PKi, SKi) for each serverSi. The global secret keySK is then erased, each serverSi getsSKi, and the values
(PK, PK1, . . . , PKn) are published. When a userU approaches the serverSi with inputx, the server determines
if the user is quali£ed to learn the value/proof ofF (x). How this is done is specifed by the application at hand
and is unimportant to us. IfU is successful, though, we say thatSi wasinitiated on inputx, andU andSi engage
in a possibly interactive protocol. To successfully complete this protocol, theuser might have to simultaneously
interact with several servers in some possibly prede£ned order (see below), but the servers do not need to interact
to each other or know each other’s state. Given a thresholdt of the systems, the robustness property states that
if U contactss servers on inputx, and at least at least(t + 1) of these servers are honest (plus, of course, each
honest server accepts the user’s request), then at the end of the protocol the user learns the unique correct output
of Prove(x); i.e., the valueF (x) and the proofπ(x). This should hold even if the remaining(s − t − 1) of the
contacted servers are malicious. We notice also that while the userU needs to know the “local’ public keyPKi

of serveri in order to interact with serverSi, any outside party only needs to know the “global” public keyPK in
order to verify the consistency ofF (x) andπ(x). In other words, the veri£cation algortihmVerify does not have
to be changed from the non-distributed setting.

The security property of theDVRF protocol states that for anyt indices i1, . . . , it and for any adversary
A = (A1, A2) who “breaks” the security ofDVRF by “corrupting” serversSi1 , . . . , Sit (see below), there ex-
ists an adversaryB = (B1, B2) which breaks the pseudorandomness property of our originalVRF, as given
by De£nition 1. We now de£ne what it means to break the security ofDVRF. In addition to the public key
(PK, PK1, . . . , PKn), A learns the valuesSKi1 , . . . , SKit of the corrupted servers. Then,A1 runs in the £rst
stage, in which it is given the ability to interact with any honest serversSj on arbitrary inputs and in any manner
thatA1 desires. However, we keep track of the set of inputsI which were initiated byA1. At the end of the phase,
A1 outputs the challenge inputx (and the state information forA2). ThenA2 is given back a challengeyb (for
randomb), which is either the valuey0 = F (x) or a random elementy1 in the range ofF . A2 can then again
interect with honest servers, just likeA1 did. At the end,A2 outputs the guess̃b and succeeds if̃b = b and neither
A1 nor A2 initiated the inputx with any of the servers.A breaks the scheme if it succeeds with non-negligible
advantage over1/2.

CONSTRUCTION. In Section 3.2 we de£ned a general candidate forVRF parametrized by any encodingC.
We now show how to make such construction distributed for anyC for which the basic construction is aVRF.
The construction is quite simple, but it shows how convenient it is to have veri£ability (given by the easiness of
DDH) “for free”. Recall that we hadSK = (g, a1, . . . , aL); PK = (G, q, g, h, y1 = ha1 , . . . , yL = haL); and
ProveSK(x) = (σ1, . . . σL), whereσ0 = g, σj = σ

aj

j−1 if C(x)j = 1 andσj = σj−1 otherwise.

To distribute this process, for everyj = 1 . . . L we use Shamir’s(t + 1, n)-secret sharing [Sha79] overZq to
split eachaj into n shares(aj,1, . . . , aj,n), so that anyt + 1 of these shares suf£ce to recoveraj , while t or fewer
shares give no information aboutaj . We set the secret keySKi of serveri to (a1,i, . . . , aL,i), and its public key
PKi to (y1,i = ha1,i , . . . , yL,i = haL,i). To computeProve(x), the userU needs to contact at least(t + 1) honest
servers. The protocol with the contactedSi’s proceeds in rounds. Assuming inductively that the valueσj−1 is
known to both the user and the servers (with the base beingσ0 = g which is known to everybody), we show how
to computeσj . If C(x)j = 0, σj = σj−1, so we are done. Otherwise, each serverSi sends the valueσj,i = σ

aj,i

j−1

to the user. The user locally checks that(σj−1, σj,i, h, yj,i) form a properDDH-tuple. If they do not,U discards
the share and stops interacting withSi. Upon receiving at least(t + 1) correct shares,U uses the corresponding
Lagrange interpolation in the exponent to compute the (necessarily correct) valueσj , and sendsσj to all the servers

13

it is communicating with. Each serverSi, upon receivingσj , checks if(σj−1, σj , h, yj) form a validDDH-tuple.
If they do not, the server stops the interaction withU . Then the protocol proceeds to the next round until the entire
output is computed.

SECURITY. The security of the above scheme is quite straightforward. Robustness isimmediate since every share
is checked for consistency. As for pseudorandomness, consider any successful distributed adversaryA = (A1, A2)
who corrupts serversi1 . . . it. We buildB = (B1, B2) for our originalVRF as follows.B picks random values
aj,is ∈ Zq for everyj ∈ [L] ands ∈ [t], and gives the resulting secret keysSKi1 , . . . , SKit to A. It then computes
the induced public keysPKi1 , . . . , PKit and uses its own public keyha1 , . . . , haL to compute the remaining
public keysPKi for all non-corrupted users. This is done by performing the appropriate Lagrange interpolation
in the exponent which computes the valueyj,i from yj , yj,i1 , . . . , yj,it . It hands all these public keys toA, after
which B1 starts runningA1. WhenA1 initiates any server on inputx, B1 asks for the valueProve(x), and uses
the response(σ1, . . . , σL), together with the knowledge ofSKi1 , . . . , SKit , to compute all the relevant sharesσj,i

(by again doing straightforward Lagrange interpolation in the exponent; details are obvious and omitted). This
allowsB1 to simulate all the responses toA1. After B1 outputs the same challengex′ asA1, B2 gets the output
challengey′, which it forwards toA2 as well. ThenB2 simulatesA2’s interaction with the servers in exactly the
same wayB1 did it for A1. Finally, B2 outputs the same guessb̃ asA2, which completes the reduction and the
proof of security.

EFFICIENCY. The above protocol is quite ef£cient. The communication complexity isO(t2ℓk), and the round
complexity isL = O(ℓ). This is more ef£cient than the complexity of the (non-veri£able)DPRF construction
of [Nie02] since no server interaction or expensive interactive zero-knowledge proofs are needed.

Finally, we remark that we can achieve proactive security as well (i.e., periodically refresh the sharing of the
secret key to withstand “mobile” attacks [OY91]) by using standard sharerenewal techniques (see [HJJ+97]).
Essentially, each server (veri£ably) distributes0’s to other servers, and all servers locally add these shares to their
old secret shares (also correspondingly updating the public shares).

Acknowledgments

I would like to thank Alexander Barg and Venkatesan Guruswami for useful discussions about BCH codes. I
would also like to thank Dan Boneh and Don Coppersmith for their preliminary (positive) evaluation of thesf-
DDH assumption. Finally, I would like to thank Anna Lysyanskaya for inspiring thiswork.

References

[ABI86] Noga Alon, Lászĺo Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem.Journal of Algorithms, 7:567–583, 1986.

[AS00] Noga Alon and Joel Spencer.Probabilistic Method. Wiley, John and Sons, 2000.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keyed hash functions and message authentication.
In Neal Koblitz, editor,Advances in Cryptology—CRYPTO ’96, volume 1109 ofLecture Notes in
Computer Science, pages 1–15. Springer-Verlag, 18–22 August 1996.

[BCP01] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval.Provably authenticated group dif£e-
hellman key exchange — the dynamic case. In Boyd [Boy01], pages 290–309.

14

[BCPQ01] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques Quisquater. Provably
authenticated group dif£e-hellman key exchange. InEighth ACM Conference on Computer and Com-
munication Security, pages 255–264. ACM, November 5–8 2001.

[BF01] Dan Boneh and Matthew Franklin. Identity based encryption fromthe weil pairing. In Kilian [Kil01],
pages 213–229.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message
authentication code.Journal of Computer and System Sciences, 61:3:362–399, 2000.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Boyd [Boy01],
pages 514–532.

[Boy01] Colin Boyd, editor. Advances in Cryptology—ASIACRYPT 2001, volume 2248 ofLecture Notes in
Computer Science, Gold Coast, Australia, 9–13 December 2001. Springer-Verlag.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: Aparadigm for design-
ing ef£cient protocols. InProceedings of the 1st ACM Conference on Computer and Commu-
nication Security, pages 62–73, November 1993. Revised version appears inhttp://www-
cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor,
Advances in Cryptology—EUROCRYPT 94, volume 950 ofLecture Notes in Computer Science, pages
92–111. Springer-Verlag, 1995, 9–12 May 1994. Revised version available fromhttp://www-
cse.ucsd.edu/users/mihir/.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with
RSA and Rabin. In Maurer [Mau96], pages 399–416. Revised version appears inhttp://www-
cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. IACR E-print
Archive. Available fromhttp://eprint.iacr.org/2002/080/, 2002.

[CG99] Ran Canetti and Sha£ Goldwasser. An ef£cient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In Stern [Ste99], pages 90–106.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. InPro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 209–218, Dallas,
Texas, 23–26 May 1998.

[Dam87] Ivan Damgªard. Collision-free hash functions and public-key signature schemes. In David Chaum and
Wyn L. Price, editors,Advances in Cryptology—EUROCRYPT 87, volume 304 ofLecture Notes in
Computer Science. Springer-Verlag, 1988, 13–15 April 1987.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi£cation and signature
problems. In Andrew M. Odlyzko, editor,Advances in Cryptology—CRYPTO ’86, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer-Verlag, 1987, 11–15 August 1986.

[GGM86] Oded Goldreich, Sha£ Goldwasser, and Silvio Micali. How to construct random functions.Journal of
the ACM, 33(4):792–807, October 1986.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. InProceedings of the
Twenty First Annual ACM Symposium on Theory of Computing, pages 25–32, Seattle, Washington,
15–17 May 1989.

15

[GMR88] Sha£ Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks.SIAM Journal on Computing, 17(2):281–308, April 1988.

[GQ88] Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In Sha£ Goldwasser, editor,Advances in Cryptology—CRYPTO ’88,
volume 403 ofLecture Notes in Computer Science, pages 216–231. Springer-Verlag, 1990, 21–25 Au-
gust 1988.

[HILL99] J. Hªastad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom generator from
any one-way function.SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HJJ+97] Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive pub-
lic key and signature systems. InFourth ACM Conference on Computer and Communication Security,
pages 100–110. ACM, April 1–4 1997.

[JN01] Antoine Joux and Kim Nguyen. Separating decision Dif£e-Hellman from
Dif£e-Hellman in cryptographic groups. IACR E-print Archive. Availablefrom
http://eprint.iacr.org/2001/003/, 2001.

[Jou00] Antoine Joux. A one-round protocol for tripartite dif£e-hellman.In ANTS-IV Conference, volume
1838 ofLecture Notes in Computer Science, pages 385–394. Spring-Verlag, 2000.

[Kil01] Joe Kilian, editor. Advances in Cryptology—CRYPTO 2001, volume 2139 ofLecture Notes in Com-
puter Science. Springer-Verlag, 19–23 August 2001.

[Lys02] Anna Lysyanskaya. Unique signatures and veri£able randomfunctions from the dh-ddh separation. In
Yung [Yun02]. Available fromhttp://theory.lcs.mit.edu/ anna/papers/lys02.ps.

[Mau96] Ueli Maurer, editor.Advances in Cryptology—EUROCRYPT 96, volume 1070 ofLecture Notes in
Computer Science. Springer-Verlag, 12–16 May 1996.

[Mic94] Silvio Micali. A secure and ef£cient digital signature algorithm. Technical Report MIT/LCS/TM-501,
Massachusetts Institute of Technology, Cambridge, MA, March 1994.

[MR01] Silvio Micali and Leonid Reyzin. Soundness in the public-key model.In Kilian [Kil01].

[MR02] Silvio Micali and Ronald Rivest. Micropayments revisited. In Bart Preneel, editor,Progress in Cryp-
tology — CT-RSA 2002, volume 2271 ofLecture Notes in Computer Science. Springer-Verlag, Febru-
ary 18-22 2002.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Veri£able random functions. In40th Annual Sympo-
sium on Foundations of Computer Science, pages 120–130, New York, October 1999. IEEE.

[MS77] Jessie MacWilliams and Neil Sloane.The theory of error-correcting codes. North-Holland Publicing
Company, Amsterdam, 1977.

[MS95] Silvio Micali and Ray Sidney. A simple method for generating and sharing pseudo-random functions.
In Don Coppersmith, editor,Advances in Cryptology—CRYPTO ’95, volume 963 ofLecture Notes in
Computer Science, pages 185–196. Springer-Verlag, 27–31 August 1995.

[Nie02] Jesper Nielsen. Threshold pseudorandom function construction and its applications. In Yung [Yun02].

16

[NP98] Moni Naor and Benny Pinkas. Secure and ef£cient metering. InKaisa Nyberg, editor,Advances in
Cryptology—EUROCRYPT 98, volume 1403 ofLecture Notes in Computer Science, pages 576–590.
Springer-Verlag, May 31–June 4 1998.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and KDCs. In
Stern [Ste99], pages 327–346.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions ofef£cient pseudo-random func-
tions. In38th Annual Symposium on Foundations of Computer Science, pages 458–467, Miami Beach,
Florida, 20–22 October 1997. IEEE.

[NRR00] Moni Naor, Omer Reingold, and Alom Rosen. Pseudo-randomfunctions and factoring. InProceed-
ings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 11–20, Portland,
Oregon, 21–23 May 2000.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identi£cation schemes and corresponding signature
schemes. In Ernest F. Brickell, editor,Advances in Cryptology—CRYPTO ’92, volume 740 ofLecture
Notes in Computer Science, pages 31–53. Springer-Verlag, 1993, 16–20 August 1992.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In10-th Annual ACM Symp.
on Principles of Distributed Computing, pages 51–59, 1991.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Maurer [Mau96],
pages 387–398.

[Sch91] Claus-Peter Schnorr. Ef£cient signature generation by smartcards.Journal of Cryptology, 4(3):161–
174, 1991.

[Sha79] Adi Shamir. How to share a secret.Communications of the ACM, 22(11):612–613, 1979.

[Ste99] Jacques Stern, editor.Advances in Cryptology—EUROCRYPT ’99, volume 1592 ofLecture Notes in
Computer Science. Springer-Verlag, 2–6 May 1999.

[STW96] Michael Steiner, Gene Tsudik, and Michael Waidner. Dif£e-hellman key distribution extended to group
communicatio. InThird ACM Conference on Computer and Communication Security, pages 31–37.
ACM, March 14–16 1996.

[Yun02] Moti Yung, editor. Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science.
Springer-Verlag, 18–22 August 2002.

17

