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Abstrat

We propose a pratial non-interative key distribution protool based

on pairings and de�ne a notion of seurity for suh a sheme. We prove

the seurity of the system in this setting under the GDBH assumption,

and present some possible realisations using Weil or Tate pairings on su-

persingular and ordinary ellipti urves.
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1 Introdution

A non-interative key distribution protool is a way to reate a shared seret

between two parties, heneforth alled \Alie" and \Bob" as usual to avoid on-

fusion. While interative protools like the lassial DiÆe{Hellman key exhange

require some ommuniation between Alie and Bob to establish the ommon

seret, this is not the ase for non-interative systems, hene the name.

Without further ommuniation, the only information Alie and Bob have on

eah other are their respetive identities, so that non-interative ryptography is

neessarily identity based, a onept introdued by Shamir in [Sha85℄. In suh a

system, Alie derives the shared seret from her private key and Bob's identity,

whih an be seen as his publi key, and Bob does likewise. Publi keys being

�xed by the partiipants' identities, Alie is learly unable to determine her

private key by herself; otherwise, Bob would be able to dedue Alie's private

key as well, sine he possesses the very same information on Alie's identity

as herself. Thus, the help of a trusted third party is needed, the Private Key

Generator (PKG), who possesses additional privileged information in the form

of a master-key. The role of the PKG is preisely to derive private keys from

publi identities using the master-key and to issue these private keys to their

legitimate holders. Hene, another way of seeing the information ow in a non-

interative system is that the synhronous ommuniation between Alie and

Bob is replaed by asynhronous ommuniation with the PKG.
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In [Sha85℄, Shamir proposes only an identity based signature sheme, leav-

ing open among others the problem of key distribution. Maurer and Yaobi

in [MY92℄ suggest the �rst non-interative key distribution sheme, based on

disrete logarithms in (Z=nZ)

�

with omposite n. However, some version of the

protool is soon shown to be inseure [LL92℄. Even with the improvements of

[MY96℄ it an be broken by two olluding partiipants who with a high proba-

bility an retrieve the PKG's seret information, that is the fatorisation of n

[KM99℄. In the unbroken version, the modulus m is hosen as the produt of

two primes p suh that the maximal prime fator q of p� 1 is of medium size.

To determine a private key, the PKG omputes disrete logarithms modulo the

prime fators of the p � 1, whih by Pollard's � algorithm an be done with a

omplexity of O(

p

q). An attaker may also pro�t from the speial struture

of the primes and fator n by Pollard's p � 1-method in time essentially O(q).

The relatively small di�erene between the omplexities for reating a key and

for breaking the system indue an impratially high omputational load on the

PKG (f. [LL92℄).

An alternative protool, suggested by H�uhnlein, Jaobson and Weber in

[HJW00℄, uses non-maximal imaginary quadrati orders. The PKG has to solve

disrete logarithm problems in the lass group of an imaginary quadrati �eld

and in a �nite �eld, and the fastest algorithm for the lass group step known to

date has a subexponential omplexity with exponent 1=2. A potential attaker

is assumed to have to fator the disriminant, whih an also be done in subex-

ponential time with exponent 1=2 by the ellipti urve method. Hene, this

sheme also requires that the PKG disposes of an enormous omputing power,

and the margin between instanes not manageable by the PKG and instanes

vulnerable by attaks is very small. Furthermore, it is unertain how well a

hoie of parameters falling into today's small margin of seurity will resist the

exponential growth of omputing power predited by Moore's law.

In his diploma thesis [K�ug98℄, K�ugler develops a key distribution system

based on the disrete logarithm problem in (Z=nZ)

�

for omposite n, in whih

the PKG an ompute private keys in polynomial time.

None of the above protools ome with a formal proof of seurity.

The Weil and Tate pairings on ellipti urves have originally been intro-

dued into ryptology to break ertain ellipti urve ryptosystems [MOV93,

FR94℄. Joux has reently shown in [Jou00℄ that these pairings also present a

onstrutive faet. Numerous appliations have sine then emerged, ranging

from identity based enryption [BF01℄ over interative key agreement protools

[Sma01, ARP02℄ to short [BLS01℄ or identity based signatures [CC02, Hes℄.

In this artile, we propose a non-interative identity based key distribution

protool in the setting of a very general pairing, whose properties are reviewed

in Setion 3. The protool itself is desribed in Setion 4. The seurity of the

sheme is based on the Generalised Bilinear DiÆe{Hellman Problem (GBDH),

a natural generalisation of the BDH introdued in the long, online version of

[BF01℄. We de�ne a notion of seurity and prove that the protool is seure

in the random orale model assuming that the GBDH problem is hard, see

Setion 5. Conrete implementations are obtained, for instane, from the Tate

or Weil pairings on supersingular or ordinary ellipti urves as desribed in

Setion 6. In this setting, the PKG an ompute private keys in polynomial

time by a salar multipliation on the ellipti urve. The e�ort for an adversary

to solve the GBDH problem, however, even when using the fastest algorithm
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known to date, is at least subexponential.

After having �nished the present artile, we found that the same protool is

desribed in [SOK℄, however, without a formal proof of seurity.

2 Remarks on non-interative key distribution

The main motivation for non-interative key distribution is to use the ommon

seret existing between two parties as a seret key for a symmetri ipher. The

result is an identity based enryption sheme.

One of the major drawbaks of identity based systems is the need for a Pri-

vate Key Generator, allowing key esrow. A lassial way to bypass this problem

is to use a seret sharing sheme suh as Shamir one's to split the master-key

between several PKGs. However, in some ases, a natural authority exists that

an serve as the PKG. For example if the system is to be used between employees

of a ompany, that ompany an be the PKG. Other interesting appliations in-

lude mobile telephone ommuniation and network routing, where the network

operators are natural PKGs.

One should beware that the amount of seret information shared between

two parties is usually quite limited and that the master-key presents a very

attrative target for a potential attaker, whene it may be important that the

master-key be hanged periodially. Of ourse, the PKG would then have to

keep all the used master-keys in memory, so that users ould at any time

obtain their private key orresponding to a past period from the PKG.

3 Pairings and the GBDH problem

In the remaining setions, we let (G;+), (

^

G;+) and (V;�) denote groups of

prime order `. The sets of their non-neutral elements are denoted by G

�

,

^

G

�

and V

�

, respetively. We suppose that e : G �

^

G ! V is a pairing satisfying

the following properties:

� Bilinearity: e(aP; bQ) = e(P;Q)

ab

for all P 2 G, Q 2

^

G, a, b 2 Z.

� Non-degeneray: there are P 2 G and Q 2

^

G suh that e(P;Q) 6= 1.

In our setting of prime order groups this is equivalent to e(P;Q) 6= 1 for

all P 2 G

�

, Q 2

^

G

�

.

� Computability: given P 2 G and Q 2

^

G, e(P;Q) an be eÆiently

omputed.

For instane, the Tate and Weil pairings on ellipti urves have these prop-

erties, f. Setion 6.

The seurity of the key exhange protool relies on the following problem,

baptised the Generalised Bilinear DiÆe{Hellman Problem (GBDH):

given (P;Q; aP; bQ; P; Q), ompute e(P;Q)

ab

. This is the same problem as

the Bilinear DiÆe{Hellman Problem introdued in the extended online version of

[BF01℄, exept that we allow the groups G and

^

G to be di�erent. A probabilisti

algorithm A is said to (t; ")-solve GBDH in (G;

^

G; V; e) if A runs in time at most

t and orretly solves the problem with probability at least ", that is,

Prob

�

A (P;Q; aP; bQ; P; Q) = e(P;Q)

ab

�

� ":
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The probability is taken over the uniformly and independently distributed P 2

G, Q 2

^

G and a, b,  2 F

�

`

and over the random hoies of A.

4 The non-interative key distribution protool

The protool an be naturally divided into four distint algorithms: Setup,

Master-key generation, Private key distribution and Common seret

omputation.

� Setup: hoose G,

^

G, V and e as in Setion 3, and let H : f0; 1g

�

! G and

^

H : f0; 1g

�

!

^

G be ryptographi hash funtions. All these parameters

are publily known.

� Master-key generation: the PKG hooses a random master-key s 2

[1; `� 1℄.

� Private key distribution: whenever a user A �rst wishes to use the

system, he ontats the PKG and asks for his private key pair. Using

A's identity ID

A

, the PKG omputes A's private key pair (S

A

;

^

S

A

) =

(sH(ID

A

); s

^

H(ID

A

)) and sends it to A.

� Common seret omputation: suppose that users A and B wish to

reate a ommon seret key. A omputes B's publi key

(P

B

; Q

B

) = (H(ID

B

);

^

H(ID

B

))

and onversely B omputes

(P

A

; Q

A

) = (H(ID

A

);

^

H(ID

A

)):

Then A an ompute

(e(S

A

; Q

B

); e(P

B

;

^

S

A

));

and B an ompute

(e(P

A

;

^

S

B

); e(S

B

; Q

A

)):

The bilinearity of e makes it easy to see that the omputed tuples are in

fat equal and thus onstitute a seret shared between A and B.

5 Seurity

5.1 Attak senario

In the non-interative ryptographi setting of the previous setion, the only

observable traÆ is the distribution of private keys. It is thus natural to onsider

the protool seure if the orruption of an arbitrary number of private keys does

not reveal the shared seret between two further partiipants. In partiular, a

olluding group of partiipants who reveal their private keys to one another

then does not gain any insight into other people's ommon serets. Preisely,

an adversary A is said to (t; ")-break the protool if it runs in time at most t

and has advantage at least " in the following game.
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� Setup: the hallenger publishes the general system parameters

(G;

^

G; V; `; e;H;

^

H).

� Extration queries: A issues a number of extration queries ID

1

, ID

2

,

: : :, ID

n

to the hallenger, who, upon reeiving the query ID

i

, omputes

the tuple (sH(ID

i

); s

^

H(ID

i

)) and sends it bak to A.

� Guess: One A deides that it has olleted enough information, it piks

two identities ID

A

and ID

B

, di�erent from all the ID

i

, and publishes

a quadruple (ID

A

; ID

B

; �; �).

The attaker A's advantage is de�ned as:

Adv(A) = p

A;1

+ p

A;2

with

p

A;1

= Prob

�

e(H(ID

A

);

^

H(ID

B

))

s

= �

�

and

p

A;2

= Prob

�

e(H(ID

B

);

^

H(ID

A

))

s

= �

�

:

5.2 Seurity proof

In this setion, we show that the GBDH problem and the seurity of the non-

interative key distribution protool of Setion 4 are polynomially equivalent.

Proposition 1 If the GBDH problem in some setting (G;

^

G; V; `; e) an be

(t; ")-solved, then the key distribution protool in the setting (G;

^

G; V; `; e;H;

^

H)

an be (t + Æ; ")-broken, where Æ is the time needed to arry out two extration

queries and to ompute one hash value of H and of

^

H.

Proof: An attaker on the protool may extrat two key pairs (P; sP ) and

(Q; sQ) with randomly hosen P 2 G and Q 2

^

G. He randomly selets two

identitites ID

A

and ID

B

and omputes R = H(ID

A

) = aP and S =

^

H(ID

B

) =

bQ with unknown, but random a and b. The solution to the GBDH instane

(P;Q;R; S; sP; sQ) provides the attaker with the shared seret between A and

B. �

Theorem 2 Let the hash funtions H and

^

H be given by random orales. Sup-

pose that there is some adversary A who (t; ")-breaks the protool with param-

eters (G;

^

G; V; `; e;H;

^

H). Assume furthermore that an upper bound q

E

on the

number of extration queries issued by A is known. Then there is an algorithm

B that (t

0

; "=(2 e

2

(1+ q

E

)

2

))-solves the GBDH problem for (G;

^

G; V; `; e), where

e is Euler's number,

t

0

= Kt(t

1

+ t

2

+ log q

E

) + t

3

;

K is a small onstant and

t

1

is the time needed to arry out a salar multipliation in G

or

^

G or an exponentiation in V

t

2

is the time needed to generate a random bit

log(q

E

) is the time needed to loate an entry in an ordered list

with at most q

E

entries

t

3

is the time required for the extended Eulidean algorithm

on numbers in the interval [1; `� 1℄.
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Notie that in general, t

0

will be t times some polynomial in log `, and log ` �

t sine A's output is an element of V , so that in fat t

0

is polynomial in t. The

assumption that an upper bound q

E

on the number of extration queries of A

or, a forteriori, on its running time t � q

E

be known by B, ertainly shows

limitations of the theorem. However, it seems to be ommonly adopted in the

literature, f. [BF01, BLS01℄.

Proof:

B has as input a random and uniformly distributed instane

(P;Q; P

a

; Q

b

; P



; Q



) = (P;Q; aP; bQ; P; Q) of the GBDH problem. For

�nding the solution e(P;Q)

ab

with A's assistane, B has ontrol over the hash

funtions H and

^

H. Basially, when queried for a hash value of, say, H , it

outputs a random group element, obtained as a random multiple of P or P

a

.

Thus B onforms to the random orale model (to A, the hash funtion appears

as a random funtion) while at the same time keeping trak of additional

information (the disrete logarithms with respet to the bases P or P

a

). Of

ourse, as a is unknown to B, it may ontrol only one of the disrete logarithms.

To be able to answer to extration queries, B should attah multiples of P to

the orresponding identities; to retrieve the solution to the GBDH problem,

it should attah a multiple of P

a

to the identity for whih A �nally emits

its guess. These requirements put B into a dilemma, beause A may request

hash values before deiding to query the private key or to emit a guess for the

orresponding identity. To solve the problem, B randomly goes for multiples of

P or P

a

and delares failure whenever it realises that it has made the wrong

hoie previously. The probabilities of seleting P or P

a

must depend on q

E

,

sine otherwise B's suess probability beomes exponentially small for q

E

tending to in�nity. The more extration queries A makes, the more often B

has to return a multiple of P . This is the reason why B needs to know at least

an upper bound on q

E

, and furthermore its suess probability dereases the

more private keys A extrats. In detail, B implements the following routines:

H queries: B keeps an initially empty list L of tuples (X;R; h; u) 2 f0; 1g

�

�

G� [1; `�1℄�f0; 1g, sorted aording to X . When A queries for the hash value

of some bit string X , B heks if L ontains a tuple (X;R; h; u). If this is not

the ase, then B

� piks uniformly a random h 2 [1; `� 1℄

� piks u 2 f0; 1g with Prob(u = 0) = Æ, where Æ is a parameter to be

determined later

� if u = 0, sets R = hP , otherwise sets R = hP

a

� appends (X;R; h; u) to L

Finally, it sends R to A.

^

H queries: These are handled in the same way, B keeping a list

^

L and returning

a multiple of Q with probability Æ and a multiple of Q

b

with probability 1� Æ.

Extration queries: To answer to a query issued by A upon the string ID,

the algorithm B:

� queries H and

^

H as desribed above to make sure that L ontains a tuple

of the form (ID; R; h; u) and

^

L a tuple of the form (ID; S;

^

h; û)

� heks if u = 1 or û = 1, in whih ase it reports failure
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� omputes the tuple (hP



;

^

hQ



) and sends it to A

Guess: Upon reeiving the guess (ID

A

; ID

B

; �; �) from A, the algorithm B

� proeeds as in the ase of H and

^

H queries to make sure that L ontains

tuples of the form (ID

i

; R

i

; h

i

; u

i

) and

^

L tuples of the form (ID

i

; S

i

;

^

h

i

; û

i

)

for i = A;B

� uniformly piks a random t 2 f0; 1g

� if t = 0, heks if u

A

= 1 and û

B

= 1 (otherwise reports failure), then

outputs �

1=(h

A

^

h

B

)

as a guess

� if t = 1, heks if u

B

= 1 and û

A

= 1 (otherwise reports failure), then

outputs �

1=(h

B

^

h

A

)

as a guess

Now, suppose that B does not abort and let  be its output. With probability

1=2, we have t = 0, whene u

A

= 1, û

B

= 1, H(ID

A

) = h

A

P

a

= a h

A

P ,

^

H(ID

B

) =

^

h

B

Q

b

= b

^

h

B

Q and  = �

1=(h

A

^

h

B

)

. Independently, with probability

p

A;1

, we have � = e(H(ID

A

);

^

H(ID

B

))



. Thus, the following event happens

with probability p

A;1

:

 = �

1=(h

A

^

h

B

)

= e

�

H(ID

A

);

^

H(ID

B

)

�

=(h

A

^

h

B

)

= e

�

a h

A

P; b

^

h

B

Q

�

=(h

A

^

h

B

)

= e(P;Q)

ab

;

where the last equality follows from the bilinearity of the pairing.

A similar analysis for t = 1 shows that B guesses orretly with an additional

probability of p

A;2

=2. Sine these two events are disjoint, B's guess is orret

with a total probability of (p

A;1

+ p

A;2

)=2 � "=2 whenever it does not abort.

We now ompute the probability for B to abort. Let q

E

be the number of

extration queries issued byA. Then the probability of non-abortion during eah

extration query being Æ

2

and the probability of non-abortion during the guess

phase being (1�Æ)

2

, the overall probability of non-abortion is at least (as q

E

has

been taken to be an upper bound on the atual number of extration queries)

Æ

2q

E

(1�Æ)

2

. Minimising this funtion, we �nd the optimal value Æ = q

E

=(1+q

E

)

and an overall probability of non-abortion of at least 1=(e(1 + q

E

))

2

. Hene,

the probability that B outputs the orret solution to the GBDH instane is at

least "=

�

2e

2

(1 + q

E

)

2

�

.

The running time analysis of B is straightforward exept for the omputation

of the root in V . Notie that for an element � in an arbitrary group of order `

and r 2 [1; ` � 1℄, the root �

1=r

an be obtained by omputing s = r

�1

mod `

via the extended Eulid algorithm and raising � to the power s. �

Proposition 1 and Theorem 2 show that the GBDH problem and the key

distribution protool are polynomially equivalent, and show aurately how the

running times and suess probabilities are transformed during the redutions.

Assuming that the GBDH problem is hard, the seurity of the protool is thus

established.

It is possible to furthermore formalise the seurity notion from a omplexity

theoreti point of view. To do so, it is neessary to introdue in�nite families of
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problem instanes. Let thus F =

�

(G

k

;

^

G

k

; V

k

; `

k

; e

k

)

�

k2N

be a family of GBDH

parameters as above. We say that F satis�es the polynomial GBDH assumption

if, for any polynomials P andQ in Z[X ℄, there is no randomised algorithmA that

(P (k); 1=Q(k))-solves the GBDH problem for (G

k

;

^

G

k

; V

k

; `

k

; e

k

) for all k 2 N.

The above proof shows that under the random orale model, if F satis�es the

polynomial GBDH assumption, then the protool with parameters from F is

seure in the sense that no polynomial time algorithm ahieves a polynomial

advantage in breaking the protool.

Similarly, one might admit adversaries with subexponential omputing power

and de�ne in the same way the subexponential GBDH assumption. Then our

seurity analysis shows that under the subexponential GBDH assumption, no

algorithm of subexponential omplexity an break the protool with a subexpo-

nential advantage.

6 Implementation using ellipti urves

6.1 The Weil and Tate pairings on ellipti urves

In this setion we summarise the properties of pairings on ellipti urves. More

detailed desriptions an be found in [Sil86, Men93, Eng99℄. Let E(F

q

) be an

ellipti urve of order m de�ned over F

q

, and let ` be a prime fator of m.

Moreover, supposing that ` does not divide q� 1, we de�ne k to be the smallest

integer suh that

` j q

k

� 1

(k is often referred to as the MOV degree).

Let E[`℄ denote the set of `-torsion points of E over some losure of F

q

.

Theorem 1 of [BK98℄ then states that E[`℄ � E(F

q

k ). The Weil and Tate

pairings on E[`℄ are maps

e : E[`℄�E[`℄! F

�

q

k

whih satisfy the properties of bilinearity and non-degeneray stated above.

Moreover, if the MOV degree k is not too large, then the Weil and Tate pairings

are eÆiently omputable using an algorithm due to Miller [Mil86℄.

Note that the non-degeneray property implies that if P and Q are `-torsion

points, then e(P;Q) 6= 1 if and only if these points are linearly independent

sine E[`℄ is isomorphi to Z=`Z�Z=`Z.

6.2 Desription of the protool using supersingular ellipti

urves

A remarkable fat about supersingular ellipti urves is that their MOV degree

is always inferior to 6 [MOV93℄, hene the Weil and Tate pairings are always

eÆiently omputable. Moreover, when working with supersingular urves, it

is often possible to �nd an eÆiently omputable injetive endomorphism � :

E(F

q

)[`℄ ! E(F

q

k
)[`℄ whih is rational over F

q

. One may then use a modi�ed

Weil pairing ê : E(F

q

)[`℄ � E(F

q

)[`℄ ! F

�

q

k

, obtained from the original Weil

pairing e by ê(P;Q) = e(P; �(Q)). This pairing learly satis�es the bilinearity
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and non-degeneray properties and is eÆiently omputable. Examples of suh

urves with assoiated morphisms an be found in [BF01, BLS01, Hes℄.

The protool desribed in Setion 4 an now be implemented using the

pairing ê with G =

^

G = (E=F

q

)[`℄. In this ase, only one hash funtion

H : f0; 1g

�

! G is needed. An extension to higher genus supersingular urves

is also straightforward.

6.3 Desription of the protool using ordinary ellipti

urves

Suppose that we have an ordinary ellipti urve E de�ned over F

q

, suh that

m = #E(F

q

) has a large prime fator ` and the MOV degree of E(F

q

) with

respet to ` is small.

This implies that the Weil and Tate pairings an be eÆiently omputed

on E[`℄, and the protool desribed in Setion 4 an be diretly implemented,

letting G = E(F

q

)[`℄,

^

G = E[`℄ nG

�

and V = F

q

k
, and using either the Weil or

the Tate pairing.

In [DEM02℄ it is shown how to generate ordinary urves over �nite prime

�elds having a spei�ed MOV degree. For example, the urveE : y

2

= x

3

+ax+b

de�ned over F

p

, with

p = 8453742104228705754710235609812637551131635264943855443867343758048524902903777273508198n

147176417124644956293595473209552577172642870167 (451bits)

` = 22986058416228970361863730695421846214124773102557372485666471903661 (223bits)

a = 6822037327990046413951088439860872817180083404468443210433999681670244654089761251331820n

09338199159143422344825098399502853791427272531

b = 5091926477406250722887108016557836789437239556470766218100447813239589852331179508280006n

080186136238693059913948819068193705028971865159

has MOV degree k = 10 and ontains a subgroup of prime order `.

7 Conlusion

We have presented a pratial non-interative key distribution protool based

on pairings and de�ned a notion of seurity for suh a sheme. This ryptosys-

tem satis�es this notion of seurity in the random orale model if the GBDH

assumption holds. In partiular, the protool is seure against an arbitrary

number of olluding attakers.

We have proposed realisations of the protool using Weil or Tate pairings on

supersingular or ordinary ellipti urves.

Used together with a symmetri ipher suh as the AES, the sheme ahieves

identity based enryption.

Reently, the onept of hierarhial identity based system has been de�ned,

and suh shemes have been proposed [HL02, GS℄. Using the same ideas, it is

easy to see that the protool an also be transformed into a hierarhial system.
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