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Abstra
t

We propose a pra
ti
al non-intera
tive key distribution proto
ol based

on pairings and de�ne a notion of se
urity for su
h a s
heme. We prove

the se
urity of the system in this setting under the GDBH assumption,

and present some possible realisations using Weil or Tate pairings on su-

persingular and ordinary ellipti
 
urves.
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1 Introdu
tion

A non-intera
tive key distribution proto
ol is a way to 
reate a shared se
ret

between two parties, hen
eforth 
alled \Ali
e" and \Bob" as usual to avoid 
on-

fusion. While intera
tive proto
ols like the 
lassi
al DiÆe{Hellman key ex
hange

require some 
ommuni
ation between Ali
e and Bob to establish the 
ommon

se
ret, this is not the 
ase for non-intera
tive systems, hen
e the name.

Without further 
ommuni
ation, the only information Ali
e and Bob have on

ea
h other are their respe
tive identities, so that non-intera
tive 
ryptography is

ne
essarily identity based, a 
on
ept introdu
ed by Shamir in [Sha85℄. In su
h a

system, Ali
e derives the shared se
ret from her private key and Bob's identity,

whi
h 
an be seen as his publi
 key, and Bob does likewise. Publi
 keys being

�xed by the parti
ipants' identities, Ali
e is 
learly unable to determine her

private key by herself; otherwise, Bob would be able to dedu
e Ali
e's private

key as well, sin
e he possesses the very same information on Ali
e's identity

as herself. Thus, the help of a trusted third party is needed, the Private Key

Generator (PKG), who possesses additional privileged information in the form

of a master-key. The role of the PKG is pre
isely to derive private keys from

publi
 identities using the master-key and to issue these private keys to their

legitimate holders. Hen
e, another way of seeing the information 
ow in a non-

intera
tive system is that the syn
hronous 
ommuni
ation between Ali
e and

Bob is repla
ed by asyn
hronous 
ommuni
ation with the PKG.
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In [Sha85℄, Shamir proposes only an identity based signature s
heme, leav-

ing open among others the problem of key distribution. Maurer and Ya
obi

in [MY92℄ suggest the �rst non-intera
tive key distribution s
heme, based on

dis
rete logarithms in (Z=nZ)

�

with 
omposite n. However, some version of the

proto
ol is soon shown to be inse
ure [LL92℄. Even with the improvements of

[MY96℄ it 
an be broken by two 
olluding parti
ipants who with a high proba-

bility 
an retrieve the PKG's se
ret information, that is the fa
torisation of n

[KM99℄. In the unbroken version, the modulus m is 
hosen as the produ
t of

two primes p su
h that the maximal prime fa
tor q of p� 1 is of medium size.

To determine a private key, the PKG 
omputes dis
rete logarithms modulo the

prime fa
tors of the p � 1, whi
h by Pollard's � algorithm 
an be done with a


omplexity of O(

p

q). An atta
ker may also pro�t from the spe
ial stru
ture

of the primes and fa
tor n by Pollard's p � 1-method in time essentially O(q).

The relatively small di�eren
e between the 
omplexities for 
reating a key and

for breaking the system indu
e an impra
ti
ally high 
omputational load on the

PKG (
f. [LL92℄).

An alternative proto
ol, suggested by H�uhnlein, Ja
obson and Weber in

[HJW00℄, uses non-maximal imaginary quadrati
 orders. The PKG has to solve

dis
rete logarithm problems in the 
lass group of an imaginary quadrati
 �eld

and in a �nite �eld, and the fastest algorithm for the 
lass group step known to

date has a subexponential 
omplexity with exponent 1=2. A potential atta
ker

is assumed to have to fa
tor the dis
riminant, whi
h 
an also be done in subex-

ponential time with exponent 1=2 by the ellipti
 
urve method. Hen
e, this

s
heme also requires that the PKG disposes of an enormous 
omputing power,

and the margin between instan
es not manageable by the PKG and instan
es

vulnerable by atta
ks is very small. Furthermore, it is un
ertain how well a


hoi
e of parameters falling into today's small margin of se
urity will resist the

exponential growth of 
omputing power predi
ted by Moore's law.

In his diploma thesis [K�ug98℄, K�ugler develops a key distribution system

based on the dis
rete logarithm problem in (Z=nZ)

�

for 
omposite n, in whi
h

the PKG 
an 
ompute private keys in polynomial time.

None of the above proto
ols 
ome with a formal proof of se
urity.

The Weil and Tate pairings on ellipti
 
urves have originally been intro-

du
ed into 
ryptology to break 
ertain ellipti
 
urve 
ryptosystems [MOV93,

FR94℄. Joux has re
ently shown in [Jou00℄ that these pairings also present a


onstru
tive fa
et. Numerous appli
ations have sin
e then emerged, ranging

from identity based en
ryption [BF01℄ over intera
tive key agreement proto
ols

[Sma01, ARP02℄ to short [BLS01℄ or identity based signatures [CC02, Hes℄.

In this arti
le, we propose a non-intera
tive identity based key distribution

proto
ol in the setting of a very general pairing, whose properties are reviewed

in Se
tion 3. The proto
ol itself is des
ribed in Se
tion 4. The se
urity of the

s
heme is based on the Generalised Bilinear DiÆe{Hellman Problem (GBDH),

a natural generalisation of the BDH introdu
ed in the long, online version of

[BF01℄. We de�ne a notion of se
urity and prove that the proto
ol is se
ure

in the random ora
le model assuming that the GBDH problem is hard, see

Se
tion 5. Con
rete implementations are obtained, for instan
e, from the Tate

or Weil pairings on supersingular or ordinary ellipti
 
urves as des
ribed in

Se
tion 6. In this setting, the PKG 
an 
ompute private keys in polynomial

time by a s
alar multipli
ation on the ellipti
 
urve. The e�ort for an adversary

to solve the GBDH problem, however, even when using the fastest algorithm
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known to date, is at least subexponential.

After having �nished the present arti
le, we found that the same proto
ol is

des
ribed in [SOK℄, however, without a formal proof of se
urity.

2 Remarks on non-intera
tive key distribution

The main motivation for non-intera
tive key distribution is to use the 
ommon

se
ret existing between two parties as a se
ret key for a symmetri
 
ipher. The

result is an identity based en
ryption s
heme.

One of the major drawba
ks of identity based systems is the need for a Pri-

vate Key Generator, allowing key es
row. A 
lassi
al way to bypass this problem

is to use a se
ret sharing s
heme su
h as Shamir one's to split the master-key

between several PKGs. However, in some 
ases, a natural authority exists that


an serve as the PKG. For example if the system is to be used between employees

of a 
ompany, that 
ompany 
an be the PKG. Other interesting appli
ations in-


lude mobile telephone 
ommuni
ation and network routing, where the network

operators are natural PKGs.

One should beware that the amount of se
ret information shared between

two parties is usually quite limited and that the master-key presents a very

attra
tive target for a potential atta
ker, when
e it may be important that the

master-key be 
hanged periodi
ally. Of 
ourse, the PKG would then have to

keep all the used master-keys in memory, so that users 
ould at any time

obtain their private key 
orresponding to a past period from the PKG.

3 Pairings and the GBDH problem

In the remaining se
tions, we let (G;+), (

^

G;+) and (V;�) denote groups of

prime order `. The sets of their non-neutral elements are denoted by G

�

,

^

G

�

and V

�

, respe
tively. We suppose that e : G �

^

G ! V is a pairing satisfying

the following properties:

� Bilinearity: e(aP; bQ) = e(P;Q)

ab

for all P 2 G, Q 2

^

G, a, b 2 Z.

� Non-degenera
y: there are P 2 G and Q 2

^

G su
h that e(P;Q) 6= 1.

In our setting of prime order groups this is equivalent to e(P;Q) 6= 1 for

all P 2 G

�

, Q 2

^

G

�

.

� Computability: given P 2 G and Q 2

^

G, e(P;Q) 
an be eÆ
iently


omputed.

For instan
e, the Tate and Weil pairings on ellipti
 
urves have these prop-

erties, 
f. Se
tion 6.

The se
urity of the key ex
hange proto
ol relies on the following problem,

baptised the Generalised Bilinear DiÆe{Hellman Problem (GBDH):

given (P;Q; aP; bQ; 
P; 
Q), 
ompute e(P;Q)

ab


. This is the same problem as

the Bilinear DiÆe{Hellman Problem introdu
ed in the extended online version of

[BF01℄, ex
ept that we allow the groups G and

^

G to be di�erent. A probabilisti


algorithm A is said to (t; ")-solve GBDH in (G;

^

G; V; e) if A runs in time at most

t and 
orre
tly solves the problem with probability at least ", that is,

Prob

�

A (P;Q; aP; bQ; 
P; 
Q) = e(P;Q)

ab


�

� ":
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The probability is taken over the uniformly and independently distributed P 2

G, Q 2

^

G and a, b, 
 2 F

�

`

and over the random 
hoi
es of A.

4 The non-intera
tive key distribution proto
ol

The proto
ol 
an be naturally divided into four distin
t algorithms: Setup,

Master-key generation, Private key distribution and Common se
ret


omputation.

� Setup: 
hoose G,

^

G, V and e as in Se
tion 3, and let H : f0; 1g

�

! G and

^

H : f0; 1g

�

!

^

G be 
ryptographi
 hash fun
tions. All these parameters

are publi
ly known.

� Master-key generation: the PKG 
hooses a random master-key s 2

[1; `� 1℄.

� Private key distribution: whenever a user A �rst wishes to use the

system, he 
onta
ts the PKG and asks for his private key pair. Using

A's identity ID

A

, the PKG 
omputes A's private key pair (S

A

;

^

S

A

) =

(sH(ID

A

); s

^

H(ID

A

)) and sends it to A.

� Common se
ret 
omputation: suppose that users A and B wish to


reate a 
ommon se
ret key. A 
omputes B's publi
 key

(P

B

; Q

B

) = (H(ID

B

);

^

H(ID

B

))

and 
onversely B 
omputes

(P

A

; Q

A

) = (H(ID

A

);

^

H(ID

A

)):

Then A 
an 
ompute

(e(S

A

; Q

B

); e(P

B

;

^

S

A

));

and B 
an 
ompute

(e(P

A

;

^

S

B

); e(S

B

; Q

A

)):

The bilinearity of e makes it easy to see that the 
omputed tuples are in

fa
t equal and thus 
onstitute a se
ret shared between A and B.

5 Se
urity

5.1 Atta
k s
enario

In the non-intera
tive 
ryptographi
 setting of the previous se
tion, the only

observable traÆ
 is the distribution of private keys. It is thus natural to 
onsider

the proto
ol se
ure if the 
orruption of an arbitrary number of private keys does

not reveal the shared se
ret between two further parti
ipants. In parti
ular, a


olluding group of parti
ipants who reveal their private keys to one another

then does not gain any insight into other people's 
ommon se
rets. Pre
isely,

an adversary A is said to (t; ")-break the proto
ol if it runs in time at most t

and has advantage at least " in the following game.
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� Setup: the 
hallenger publishes the general system parameters

(G;

^

G; V; `; e;H;

^

H).

� Extra
tion queries: A issues a number of extra
tion queries ID

1

, ID

2

,

: : :, ID

n

to the 
hallenger, who, upon re
eiving the query ID

i

, 
omputes

the tuple (sH(ID

i

); s

^

H(ID

i

)) and sends it ba
k to A.

� Guess: On
e A de
ides that it has 
olle
ted enough information, it pi
ks

two identities ID

A

and ID

B

, di�erent from all the ID

i

, and publishes

a quadruple (ID

A

; ID

B

; �; �).

The atta
ker A's advantage is de�ned as:

Adv(A) = p

A;1

+ p

A;2

with

p

A;1

= Prob

�

e(H(ID

A

);

^

H(ID

B

))

s

= �

�

and

p

A;2

= Prob

�

e(H(ID

B

);

^

H(ID

A

))

s

= �

�

:

5.2 Se
urity proof

In this se
tion, we show that the GBDH problem and the se
urity of the non-

intera
tive key distribution proto
ol of Se
tion 4 are polynomially equivalent.

Proposition 1 If the GBDH problem in some setting (G;

^

G; V; `; e) 
an be

(t; ")-solved, then the key distribution proto
ol in the setting (G;

^

G; V; `; e;H;

^

H)


an be (t + Æ; ")-broken, where Æ is the time needed to 
arry out two extra
tion

queries and to 
ompute one hash value of H and of

^

H.

Proof: An atta
ker on the proto
ol may extra
t two key pairs (P; sP ) and

(Q; sQ) with randomly 
hosen P 2 G and Q 2

^

G. He randomly sele
ts two

identitites ID

A

and ID

B

and 
omputes R = H(ID

A

) = aP and S =

^

H(ID

B

) =

bQ with unknown, but random a and b. The solution to the GBDH instan
e

(P;Q;R; S; sP; sQ) provides the atta
ker with the shared se
ret between A and

B. �

Theorem 2 Let the hash fun
tions H and

^

H be given by random ora
les. Sup-

pose that there is some adversary A who (t; ")-breaks the proto
ol with param-

eters (G;

^

G; V; `; e;H;

^

H). Assume furthermore that an upper bound q

E

on the

number of extra
tion queries issued by A is known. Then there is an algorithm

B that (t

0

; "=(2 e

2

(1+ q

E

)

2

))-solves the GBDH problem for (G;

^

G; V; `; e), where

e is Euler's number,

t

0

= Kt(t

1

+ t

2

+ log q

E

) + t

3

;

K is a small 
onstant and

t

1

is the time needed to 
arry out a s
alar multipli
ation in G

or

^

G or an exponentiation in V

t

2

is the time needed to generate a random bit

log(q

E

) is the time needed to lo
ate an entry in an ordered list

with at most q

E

entries

t

3

is the time required for the extended Eu
lidean algorithm

on numbers in the interval [1; `� 1℄.
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Noti
e that in general, t

0

will be t times some polynomial in log `, and log ` �

t sin
e A's output is an element of V , so that in fa
t t

0

is polynomial in t. The

assumption that an upper bound q

E

on the number of extra
tion queries of A

or, a forteriori, on its running time t � q

E

be known by B, 
ertainly shows

limitations of the theorem. However, it seems to be 
ommonly adopted in the

literature, 
f. [BF01, BLS01℄.

Proof:

B has as input a random and uniformly distributed instan
e

(P;Q; P

a

; Q

b

; P




; Q




) = (P;Q; aP; bQ; 
P; 
Q) of the GBDH problem. For

�nding the solution e(P;Q)

ab


with A's assistan
e, B has 
ontrol over the hash

fun
tions H and

^

H. Basi
ally, when queried for a hash value of, say, H , it

outputs a random group element, obtained as a random multiple of P or P

a

.

Thus B 
onforms to the random ora
le model (to A, the hash fun
tion appears

as a random fun
tion) while at the same time keeping tra
k of additional

information (the dis
rete logarithms with respe
t to the bases P or P

a

). Of


ourse, as a is unknown to B, it may 
ontrol only one of the dis
rete logarithms.

To be able to answer to extra
tion queries, B should atta
h multiples of P to

the 
orresponding identities; to retrieve the solution to the GBDH problem,

it should atta
h a multiple of P

a

to the identity for whi
h A �nally emits

its guess. These requirements put B into a dilemma, be
ause A may request

hash values before de
iding to query the private key or to emit a guess for the


orresponding identity. To solve the problem, B randomly goes for multiples of

P or P

a

and de
lares failure whenever it realises that it has made the wrong


hoi
e previously. The probabilities of sele
ting P or P

a

must depend on q

E

,

sin
e otherwise B's su

ess probability be
omes exponentially small for q

E

tending to in�nity. The more extra
tion queries A makes, the more often B

has to return a multiple of P . This is the reason why B needs to know at least

an upper bound on q

E

, and furthermore its su

ess probability de
reases the

more private keys A extra
ts. In detail, B implements the following routines:

H queries: B keeps an initially empty list L of tuples (X;R; h; u) 2 f0; 1g

�

�

G� [1; `�1℄�f0; 1g, sorted a

ording to X . When A queries for the hash value

of some bit string X , B 
he
ks if L 
ontains a tuple (X;R; h; u). If this is not

the 
ase, then B

� pi
ks uniformly a random h 2 [1; `� 1℄

� pi
ks u 2 f0; 1g with Prob(u = 0) = Æ, where Æ is a parameter to be

determined later

� if u = 0, sets R = hP , otherwise sets R = hP

a

� appends (X;R; h; u) to L

Finally, it sends R to A.

^

H queries: These are handled in the same way, B keeping a list

^

L and returning

a multiple of Q with probability Æ and a multiple of Q

b

with probability 1� Æ.

Extra
tion queries: To answer to a query issued by A upon the string ID,

the algorithm B:

� queries H and

^

H as des
ribed above to make sure that L 
ontains a tuple

of the form (ID; R; h; u) and

^

L a tuple of the form (ID; S;

^

h; û)

� 
he
ks if u = 1 or û = 1, in whi
h 
ase it reports failure
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� 
omputes the tuple (hP




;

^

hQ




) and sends it to A

Guess: Upon re
eiving the guess (ID

A

; ID

B

; �; �) from A, the algorithm B

� pro
eeds as in the 
ase of H and

^

H queries to make sure that L 
ontains

tuples of the form (ID

i

; R

i

; h

i

; u

i

) and

^

L tuples of the form (ID

i

; S

i

;

^

h

i

; û

i

)

for i = A;B

� uniformly pi
ks a random t 2 f0; 1g

� if t = 0, 
he
ks if u

A

= 1 and û

B

= 1 (otherwise reports failure), then

outputs �

1=(h

A

^

h

B

)

as a guess

� if t = 1, 
he
ks if u

B

= 1 and û

A

= 1 (otherwise reports failure), then

outputs �

1=(h

B

^

h

A

)

as a guess

Now, suppose that B does not abort and let 
 be its output. With probability

1=2, we have t = 0, when
e u

A

= 1, û

B

= 1, H(ID

A

) = h

A

P

a

= a h

A

P ,

^

H(ID

B

) =

^

h

B

Q

b

= b

^

h

B

Q and 
 = �

1=(h

A

^

h

B

)

. Independently, with probability

p

A;1

, we have � = e(H(ID

A

);

^

H(ID

B

))




. Thus, the following event happens

with probability p

A;1

:


 = �

1=(h

A

^

h

B

)

= e

�

H(ID

A

);

^

H(ID

B

)

�


=(h

A

^

h

B

)

= e

�

a h

A

P; b

^

h

B

Q

�


=(h

A

^

h

B

)

= e(P;Q)

ab


;

where the last equality follows from the bilinearity of the pairing.

A similar analysis for t = 1 shows that B guesses 
orre
tly with an additional

probability of p

A;2

=2. Sin
e these two events are disjoint, B's guess is 
orre
t

with a total probability of (p

A;1

+ p

A;2

)=2 � "=2 whenever it does not abort.

We now 
ompute the probability for B to abort. Let q

E

be the number of

extra
tion queries issued byA. Then the probability of non-abortion during ea
h

extra
tion query being Æ

2

and the probability of non-abortion during the guess

phase being (1�Æ)

2

, the overall probability of non-abortion is at least (as q

E

has

been taken to be an upper bound on the a
tual number of extra
tion queries)

Æ

2q

E

(1�Æ)

2

. Minimising this fun
tion, we �nd the optimal value Æ = q

E

=(1+q

E

)

and an overall probability of non-abortion of at least 1=(e(1 + q

E

))

2

. Hen
e,

the probability that B outputs the 
orre
t solution to the GBDH instan
e is at

least "=

�

2e

2

(1 + q

E

)

2

�

.

The running time analysis of B is straightforward ex
ept for the 
omputation

of the root in V . Noti
e that for an element � in an arbitrary group of order `

and r 2 [1; ` � 1℄, the root �

1=r


an be obtained by 
omputing s = r

�1

mod `

via the extended Eu
lid algorithm and raising � to the power s. �

Proposition 1 and Theorem 2 show that the GBDH problem and the key

distribution proto
ol are polynomially equivalent, and show a

urately how the

running times and su

ess probabilities are transformed during the redu
tions.

Assuming that the GBDH problem is hard, the se
urity of the proto
ol is thus

established.

It is possible to furthermore formalise the se
urity notion from a 
omplexity

theoreti
 point of view. To do so, it is ne
essary to introdu
e in�nite families of
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problem instan
es. Let thus F =

�

(G

k

;

^

G

k

; V

k

; `

k

; e

k

)

�

k2N

be a family of GBDH

parameters as above. We say that F satis�es the polynomial GBDH assumption

if, for any polynomials P andQ in Z[X ℄, there is no randomised algorithmA that

(P (k); 1=Q(k))-solves the GBDH problem for (G

k

;

^

G

k

; V

k

; `

k

; e

k

) for all k 2 N.

The above proof shows that under the random ora
le model, if F satis�es the

polynomial GBDH assumption, then the proto
ol with parameters from F is

se
ure in the sense that no polynomial time algorithm a
hieves a polynomial

advantage in breaking the proto
ol.

Similarly, one might admit adversaries with subexponential 
omputing power

and de�ne in the same way the subexponential GBDH assumption. Then our

se
urity analysis shows that under the subexponential GBDH assumption, no

algorithm of subexponential 
omplexity 
an break the proto
ol with a subexpo-

nential advantage.

6 Implementation using ellipti
 
urves

6.1 The Weil and Tate pairings on ellipti
 
urves

In this se
tion we summarise the properties of pairings on ellipti
 
urves. More

detailed des
riptions 
an be found in [Sil86, Men93, Eng99℄. Let E(F

q

) be an

ellipti
 
urve of order m de�ned over F

q

, and let ` be a prime fa
tor of m.

Moreover, supposing that ` does not divide q� 1, we de�ne k to be the smallest

integer su
h that

` j q

k

� 1

(k is often referred to as the MOV degree).

Let E[`℄ denote the set of `-torsion points of E over some 
losure of F

q

.

Theorem 1 of [BK98℄ then states that E[`℄ � E(F

q

k ). The Weil and Tate

pairings on E[`℄ are maps

e : E[`℄�E[`℄! F

�

q

k

whi
h satisfy the properties of bilinearity and non-degenera
y stated above.

Moreover, if the MOV degree k is not too large, then the Weil and Tate pairings

are eÆ
iently 
omputable using an algorithm due to Miller [Mil86℄.

Note that the non-degenera
y property implies that if P and Q are `-torsion

points, then e(P;Q) 6= 1 if and only if these points are linearly independent

sin
e E[`℄ is isomorphi
 to Z=`Z�Z=`Z.

6.2 Des
ription of the proto
ol using supersingular ellipti



urves

A remarkable fa
t about supersingular ellipti
 
urves is that their MOV degree

is always inferior to 6 [MOV93℄, hen
e the Weil and Tate pairings are always

eÆ
iently 
omputable. Moreover, when working with supersingular 
urves, it

is often possible to �nd an eÆ
iently 
omputable inje
tive endomorphism � :

E(F

q

)[`℄ ! E(F

q

k
)[`℄ whi
h is rational over F

q

. One may then use a modi�ed

Weil pairing ê : E(F

q

)[`℄ � E(F

q

)[`℄ ! F

�

q

k

, obtained from the original Weil

pairing e by ê(P;Q) = e(P; �(Q)). This pairing 
learly satis�es the bilinearity

8



and non-degenera
y properties and is eÆ
iently 
omputable. Examples of su
h


urves with asso
iated morphisms 
an be found in [BF01, BLS01, Hes℄.

The proto
ol des
ribed in Se
tion 4 
an now be implemented using the

pairing ê with G =

^

G = (E=F

q

)[`℄. In this 
ase, only one hash fun
tion

H : f0; 1g

�

! G is needed. An extension to higher genus supersingular 
urves

is also straightforward.

6.3 Des
ription of the proto
ol using ordinary ellipti



urves

Suppose that we have an ordinary ellipti
 
urve E de�ned over F

q

, su
h that

m = #E(F

q

) has a large prime fa
tor ` and the MOV degree of E(F

q

) with

respe
t to ` is small.

This implies that the Weil and Tate pairings 
an be eÆ
iently 
omputed

on E[`℄, and the proto
ol des
ribed in Se
tion 4 
an be dire
tly implemented,

letting G = E(F

q

)[`℄,

^

G = E[`℄ nG

�

and V = F

q

k
, and using either the Weil or

the Tate pairing.

In [DEM02℄ it is shown how to generate ordinary 
urves over �nite prime

�elds having a spe
i�ed MOV degree. For example, the 
urveE : y

2

= x

3

+ax+b

de�ned over F

p

, with

p = 8453742104228705754710235609812637551131635264943855443867343758048524902903777273508198n

147176417124644956293595473209552577172642870167 (451bits)

` = 22986058416228970361863730695421846214124773102557372485666471903661 (223bits)

a = 6822037327990046413951088439860872817180083404468443210433999681670244654089761251331820n

09338199159143422344825098399502853791427272531

b = 5091926477406250722887108016557836789437239556470766218100447813239589852331179508280006n

080186136238693059913948819068193705028971865159

has MOV degree k = 10 and 
ontains a subgroup of prime order `.

7 Con
lusion

We have presented a pra
ti
al non-intera
tive key distribution proto
ol based

on pairings and de�ned a notion of se
urity for su
h a s
heme. This 
ryptosys-

tem satis�es this notion of se
urity in the random ora
le model if the GBDH

assumption holds. In parti
ular, the proto
ol is se
ure against an arbitrary

number of 
olluding atta
kers.

We have proposed realisations of the proto
ol using Weil or Tate pairings on

supersingular or ordinary ellipti
 
urves.

Used together with a symmetri
 
ipher su
h as the AES, the s
heme a
hieves

identity based en
ryption.

Re
ently, the 
on
ept of hierar
hi
al identity based system has been de�ned,

and su
h s
hemes have been proposed [HL02, GS℄. Using the same ideas, it is

easy to see that the proto
ol 
an also be transformed into a hierar
hi
al system.
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