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Abstract
We propose a practical non-interactive key distribution protocol based
on pairings and define a notion of security for such a scheme. We prove
the security of the system in this setting under the GDBH assumption,
and present some possible realisations using Weil or Tate pairings on su-
persingular and ordinary elliptic curves.

Keywords: key distribution, non-interactive, identity based cryptography,
pairings.

1 Introduction

A non-interactive key distribution protocol is a way to create a shared secret
between two parties, henceforth called “Alice” and “Bob” as usual to avoid con-
fusion. While interactive protocols like the classical Diffie-Hellman key exchange
require some communication between Alice and Bob to establish the common
secret, this is not the case for non-interactive systems, hence the name.

Without further communication, the only information Alice and Bob have on
each other are their respective identities, so that non-interactive cryptography is
necessarily identity based, a concept introduced by Shamir in [Sha85]. In such a
system, Alice derives the shared secret from her private key and Bob’s identity,
which can be seen as his public key, and Bob does likewise. Public keys being
fixed by the participants’ identities, Alice is clearly unable to determine her
private key by herself; otherwise, Bob would be able to deduce Alice’s private
key as well, since he possesses the very same information on Alice’s identity
as herself. Thus, the help of a trusted third party is needed, the Private Key
Generator (PKG), who possesses additional privileged information in the form
of a master-key. The role of the PKG is precisely to derive private keys from
public identities using the master-key and to issue these private keys to their
legitimate holders. Hence, another way of seeing the information flow in a non-
interactive system is that the synchronous communication between Alice and
Bob is replaced by asynchronous communication with the PKG.



In [Sha85], Shamir proposes only an identity based signature scheme, leav-
ing open among others the problem of key distribution. Maurer and Yacobi
in [MY92] suggest the first non-interactive key distribution scheme, based on
discrete logarithms in (7 /n7Z)* with composite n. However, some version of the
protocol is soon shown to be insecure [L192]. Even with the improvements of
[MY96] it can be broken by two colluding participants who with a high proba-
bility can retrieve the PKG’s secret information, that is the factorisation of n
[KM99]. In the unbroken version, the modulus m is chosen as the product of
two primes p such that the maximal prime factor ¢ of p — 1 is of medium size.
To determine a private key, the PKG computes discrete logarithms modulo the
prime factors of the p — 1, which by Pollard’s p algorithm can be done with a
complexity of O(,/q). An attacker may also profit from the special structure
of the primes and factor n by Pollard’s p — 1-method in time essentially O(q).
The relatively small difference between the complexities for creating a key and
for breaking the system induce an impractically high computational load on the
PKG (cf. [LL92]).

An alternative protocol, suggested by Hiihnlein, Jacobson and Weber in
[HJWO00], uses non-maximal imaginary quadratic orders. The PKG has to solve
discrete logarithm problems in the class group of an imaginary quadratic field
and in a finite field, and the fastest algorithm for the class group step known to
date has a subexponential complexity with exponent 1/2. A potential attacker
is assumed to have to factor the discriminant, which can also be done in subex-
ponential time with exponent 1/2 by the elliptic curve method. Hence, this
scheme also requires that the PKG disposes of an enormous computing power,
and the margin between instances not manageable by the PKG and instances
vulnerable by attacks is very small. Furthermore, it is uncertain how well a
choice of parameters falling into today’s small margin of security will resist the
exponential growth of computing power predicted by Moore’s law.

In his diploma thesis [Kiig98], Kiigler develops a key distribution system
based on the discrete logarithm problem in (Z/nZ)™ for composite n, in which
the PKG can compute private keys in polynomial time.

None of the above protocols come with a formal proof of security.

The Weil and Tate pairings on elliptic curves have originally been intro-
duced into cryptology to break certain elliptic curve cryptosystems [MOV93,
FR94]. Joux has recently shown in [Jou0O0] that these pairings also present a
constructive facet. Numerous applications have since then emerged, ranging
from identity based encryption [BF01] over interactive key agreement protocols
[Sma0l, ARP02] to short [BLS01] or identity based signatures [CC02, Hes].

In this article, we propose a non-interactive identity based key distribution
protocol in the setting of a very general pairing, whose properties are reviewed
in Section 3. The protocol itself is described in Section 4. The security of the
scheme is based on the Generalised Bilinear Diffie—Hellman Problem (GBDH),
a natural generalisation of the BDH introduced in the long, online version of
[BF01]. We define a notion of security and prove that the protocol is secure
in the random oracle model assuming that the GBDH problem is hard, see
Section 5. Concrete implementations are obtained, for instance, from the Tate
or Weil pairings on supersingular or ordinary elliptic curves as described in
Section 6. In this setting, the PKG can compute private keys in polynomial
time by a scalar multiplication on the elliptic curve. The effort for an adversary
to solve the GBDH problem, however, even when using the fastest algorithm



known to date, is at least subexponential.
After having finished the present article, we found that the same protocol is
described in [SOK], however, without a formal proof of security.

2 Remarks on non-interactive key distribution

The main motivation for non-interactive key distribution is to use the common
secret existing between two parties as a secret key for a symmetric cipher. The
result is an identity based encryption scheme.

One of the major drawbacks of identity based systems is the need for a Pri-
vate Key Generator, allowing key escrow. A classical way to bypass this problem
is to use a secret sharing scheme such as Shamir one’s to split the master-key
between several PKGs. However, in some cases, a natural authority exists that
can serve as the PKG. For example if the system is to be used between employees
of a company, that company can be the PKG. Other interesting applications in-
clude mobile telephone communication and network routing, where the network
operators are natural PKGs.

One should beware that the amount of secret information shared between
two parties is usually quite limited and that the master-key presents a very
attractive target for a potential attacker, whence it may be important that the
master-key be changed periodically. Of course, the PKG would then have to

keep all the used master-keys in memory, so that users could at any time
obtain their private key corresponding to a past period from the PKG.

3 Pairings and the GBDH problem

In the remaining sections, we let (G, +), (G,+) and (V, x) denote groups of
prime order £. The sets of their non-neutral elements are denoted by G*, G*
and V*, respectively. We suppose that e : G x G- Visa pairing satisfying
the following properties:

e Bilinearity: e(aP,bQ) = e(P,Q)* forall P€ G, Q € G,a,beZ.

e Non-degeneracy: there are P € G and Q € G such that e(P,Q) # 1.
In our setting of prime order groups this is equivalent to e(P,Q) # 1 for
al Pe G*, Q € G*.

e Computability: given P € G and Q € G, e(P,Q) can be efficiently
computed.

For instance, the Tate and Weil pairings on elliptic curves have these prop-
erties, cf. Section 6.

The security of the key exchange protocol relies on the following problem,
baptised the Generalised Bilinear Diffie-Hellman Problem (GBDH):
given (P,Q,aP,bQ,cP,cQ), compute e(P, Q). This is the same problem as
the Bilinear Diffie-Hellman Problem introduced in the extended online version of
[BF01], except that we allow the groups G and G to be different. A probabilistic
algorithm A is said to (t,¢)-solve GBDH in (G, G, V, €) if A runs in time at most
t and correctly solves the problem with probability at least ¢, that is,

Prob (A (P,Q,aP,bQ, cP, cQ) = e(P,Q)"°) > e.



The probability is taken over the uniformly and independently distributed P €
G, Q € G and a, b, c € F; and over the random choices of A.

4 The non-interactive key distribution protocol

The protocol can be naturally divided into four distinct algorithms: Setup,
Master-key generation, Private key distribution and Common secret
computation.

e Setup: choose G, G,V and e as in Section 3, and let H : {0,1}* - G and
H : {0,1}* — G be cryptographic hash functions. All these parameters
are publicly known.

e Master-key generation: the PKG chooses a random master-key s €
[1,¢—1].

e Private key distribution: whenever a user A first wishes to use the
system, he contacts the PKG and asks for his private key pair. Using
A’s identity ID 4, the PKG computes A’s private key pair (SA,S'A) =
(sH(ID4), sH(ID 4)) and sends it to A.

e Common secret computation: suppose that users A and B wish to
create a common secret key. A computes B’s public key

(Pp,Qp) = (H(IDp), H(IDp))
and conversely B computes

(Pa;Qa) = (H(ID4), H(ID 4)).
Then A can compute

(e(Sa,Qp),e(Pp,S4)),

and B can compute .
(e(Pa,SB),e(SB,Q4)).

The bilinearity of e makes it easy to see that the computed tuples are in
fact equal and thus constitute a secret shared between A and B.

5 Security

5.1 Attack scenario

In the non-interactive cryptographic setting of the previous section, the only
observable traffic is the distribution of private keys. It is thus natural to consider
the protocol secure if the corruption of an arbitrary number of private keys does
not reveal the shared secret between two further participants. In particular, a
colluding group of participants who reveal their private keys to one another
then does not gain any insight into other people’s common secrets. Precisely,
an adversary A is said to (¢,¢)-break the protocol if it runs in time at most ¢
and has advantage at least € in the following game.



e Setup: the challenger publishes the general system parameters
(G7 G) V) g’ e) H7 H)'

e Extraction queries: A issues a number of extraction queries ID¢, IDs,
..., IDp to the challenger, who, upon receiving the query ID;, computes
the tuple (sH (ID;), sH (ID;)) and sends it back to A.

e Guess: Once A decides that it has collected enough information, it picks
two identities ID 4 and ID g, different from all the ID;, and publishes

a quadruple (ID 4,ID g, a, 5).
The attacker A’s advantage is defined as:

Adv(A) =pa1 +paz

with A
pas = Prob (e(H(IDA),H(IDB))S _ a)

and .
pas = Prob (e(H(IDB),H(IDA))S - 5) .

5.2 Security proof

In this section, we show that the GBDH problem and the security of the non-
interactive key distribution protocol of Section 4 are polynomially equivalent.

Proposition 1 If the GBDH problem in some setting (G,G’,V, l,e) can be
(t,€)-solved, then the key distribution protocol in the setting (G, G,V,l,e,H, fI)
can be (t + 0,¢)-broken, where & is the time needed to carry out two extraction
queries and to compute one hash value of H and of H.

Proof: An attacker on the protocol may extract two key pairs (P,sP) and
(@, sQ) with randomly chosen P € G and @ € G. He randomly selects two
identitites ID 4 and IDp and computes R = H(ID4) = aP and S = H(IDp) =
b() with unknown, but random a and b. The solution to the GBDH instance
(P,Q,R, S, sP, sQ) provides the attacker with the shared secret between A and
B. O

Theorem 2 Let the hash functions H and H be given by random oracles. Sup-
pose that there is some adversary A who (t,e)-breaks the protocol with param-
eters (G,G’,V, le H, fI) Assume furthermore that an upper bound qg on the
number of extraction queries issued by A is known. Then there is an algorithm
B that (t',e/(2€ (14 qg)?))-solves the GBDH problem for (G,G,V,(,e), where
e is Fuler’s number,

t' = Kt(t; + t2 + logqp) + 3,

K is a small constant and

t1 is the time needed to carry out a scalar multiplication in G
or G or an exponentiation in V
ta is the time needed to generate a random bit

log(qr) is the time needed to locate an entry in an ordered list
with at most qp entries

t3 is the time required for the extended Euclidean algorithm
on numbers in the interval [1,£ — 1].



Notice that in general, ¢’ will be ¢ times some polynomial in log ¢, and log £ <
t since A’s output is an element of V', so that in fact ¢’ is polynomial in ¢. The
assumption that an upper bound gg on the number of extraction queries of A
or, a forteriori, on its running time ¢t > ¢qr be known by B, certainly shows
limitations of the theorem. However, it seems to be commonly adopted in the
literature, cf. [BF01, BLSO01].

Proof:

B has as input a random and uniformly distributed instance
(P,Q, P, Qp, P:,Q:) = (P,Q,aP,bQ,cP,cQ) of the GBDH problem. For
finding the solution e(P, Q)% with A’s assistance, B has control over the hash
functions H and H. Basically, when queried for a hash value of, say, H, it
outputs a random group element, obtained as a random multiple of P or P,.
Thus B conforms to the random oracle model (to A, the hash function appears
as a random function) while at the same time keeping track of additional
information (the discrete logarithms with respect to the bases P or P,). Of
course, as a is unknown to B, it may control only one of the discrete logarithms.
To be able to answer to extraction queries, B should attach multiples of P to
the corresponding identities; to retrieve the solution to the GBDH problem,
it should attach a multiple of P, to the identity for which A finally emits
its guess. These requirements put B into a dilemma, because A may request
hash values before deciding to query the private key or to emit a guess for the
corresponding identity. To solve the problem, B randomly goes for multiples of
P or P, and declares failure whenever it realises that it has made the wrong
choice previously. The probabilities of selecting P or P, must depend on ¢g,
since otherwise B’s success probability becomes exponentially small for ¢g
tending to infinity. The more extraction queries A makes, the more often B
has to return a multiple of P. This is the reason why B needs to know at least
an upper bound on ¢g, and furthermore its success probability decreases the
more private keys A extracts. In detail, B implements the following routines:
H queries: B keeps an initially empty list L of tuples (X, R, h,u) € {0,1}* x
G x[1,0—1] x {0,1}, sorted according to X. When A queries for the hash value
of some bit string X, B checks if L contains a tuple (X, R, h,u). If this is not
the case, then B

e picks uniformly a random h € [1,¢ — 1]

e picks u € {0,1} with Prob(u = 0) = ¢, where § is a parameter to be
determined later

e if u =0, sets R = hP, otherwise sets R = hP,
e appends (X, R, h,u) to L

Finally, it sends R to A.

H queries: These are handled in the same way, B keeping a list L and returning
a multiple of ) with probability § and a multiple of @), with probability 1 — é.
Extraction queries: To answer to a query issued by A upon the string 1D,
the algorithm B:

e queries H and H as described above to make sure that L contains a tuple
of the form (ID, R, h,u) and L a tuple of the form (ID, S, h, )

e checks if u =1 or & = 1, in which case it reports failure



e computes the tuple (hP,, iLQC) and sends it to A
Guess: Upon receiving the guess (ID4,IDp, a, 8) from A, the algorithm B

e proceeds as in the case of H and H queries to make sure that L contains
tuples of the form (ID;, R;, hi,u;) and L tuples of the form (ID;, S;, h;, ;)
fori=A,B

e uniformly picks a random ¢ € {0, 1}

e if t = 0, checks if us = 1 and 4 = 1 (otherwise reports failure), then
outputs a'/(P4hB) a5 a guess

e if t = 1, checks if ug = 1 and 44 = 1 (otherwise reports failure), then
outputs 61/("5"“‘) as a guess

Now, suppose that B does not abort and let 7y be its output. With probability
1/2, we have t = 0, whence uqg = 1, 4p = 1, HID4) = haP, = aha P,

A

H(IDg) = heQ, = bhg Q and v = al/(hahs), Independently, with probability

~

pa,1, we have a = e(H(ID4), H(IDp))¢. Thus, the following event happens
with probability pa i:

. . ¢/(hahg)
v o= a1/<hAhB>=e(H(IDA),H(IDB)) ’

e(ahaPbhg o/ hale)
(aha Pbhn Q)

= e(P, Q)"
where the last equality follows from the bilinearity of the pairing.

A similar analysis for ¢ = 1 shows that B guesses correctly with an additional
probability of p4 /2. Since these two events are disjoint, B’s guess is correct
with a total probability of (pa,1 + pa2)/2 > /2 whenever it does not abort.

We now compute the probability for B to abort. Let gg be the number of
extraction queries issued by A. Then the probability of non-abortion during each
extraction query being 42 and the probability of non-abortion during the guess
phase being (1—6)2, the overall probability of non-abortion is at least (as ¢i has
been taken to be an upper bound on the actual number of extraction queries)
4292 (1—4§)2. Minimising this function, we find the optimal value § = qg/(1+qg)
and an overall probability of non-abortion of at least 1/(e(1 + ¢g))?>. Hence,
the probability that B outputs the correct solution to the GBDH instance is at
least ¢/ (2¢*(1 + qg)?).

The running time analysis of B is straightforward except for the computation
of the root in V. Notice that for an element « in an arbitrary group of order ¢
and r € [1,£ — 1], the root a'/" can be obtained by computing s = ! mod ¢
via the extended Euclid algorithm and raising « to the power s. O

Proposition 1 and Theorem 2 show that the GBDH problem and the key
distribution protocol are polynomially equivalent, and show accurately how the
running times and success probabilities are transformed during the reductions.
Assuming that the GBDH problem is hard, the security of the protocol is thus
established.

It is possible to furthermore formalise the security notion from a complexity
theoretic point of view. To do so, it is necessary to introduce infinite families of



problem instances. Let thus F = ((Gk, G Vie, Uk, ek)) Lex be a family of GBDH
€

parameters as above. We say that F satisfies the polynomial GBDH assumption
if, for any polynomials P and ) in Z[X], there is no randomised algorithm A that
(P(k),1/Q(k))-solves the GBDH problem for (G, G, Vi, bk, ex) for all k € N.
The above proof shows that under the random oracle model, if F satisfies the
polynomial GBDH assumption, then the protocol with parameters from JF is
secure in the sense that no polynomial time algorithm achieves a polynomial
advantage in breaking the protocol.

Similarly, one might admit adversaries with subexponential computing power
and define in the same way the subexponential GBDH assumption. Then our
security analysis shows that under the subexponential GBDH assumption, no
algorithm of subexponential complexity can break the protocol with a subexpo-
nential advantage.

6 Implementation using elliptic curves

6.1 The Weil and Tate pairings on elliptic curves

In this section we summarise the properties of pairings on elliptic curves. More
detailed descriptions can be found in [Sil86, Men93, Eng99]. Let E(F,) be an
elliptic curve of order m defined over F,, and let £ be a prime factor of m.
Moreover, supposing that ¢ does not divide g — 1, we define k to be the smallest
integer such that

(q¢"—1

(k is often referred to as the MOV degree).

Let E[{] denote the set of ¢-torsion points of E over some closure of F,.
Theorem 1 of [BK98] then states that E[¢{] C E(F, ). The Weil and Tate
pairings on E[{] are maps

e: E[f] x E[f] — quk

which satisfy the properties of bilinearity and non-degeneracy stated above.
Moreover, if the MOV degree k is not too large, then the Weil and Tate pairings
are efficiently computable using an algorithm due to Miller [Mil86].

Note that the non-degeneracy property implies that if P and @) are ¢-torsion
points, then e(P,Q) # 1 if and only if these points are linearly independent
since E[{] is isomorphic to Z /¢Z x Z [ (L.

6.2 Description of the protocol using supersingular elliptic
curves

A remarkable fact about supersingular elliptic curves is that their MOV degree
is always inferior to 6 [MOV93], hence the Weil and Tate pairings are always
efficiently computable. Moreover, when working with supersingular curves, it
is often possible to find an efficiently computable injective endomorphism ¢ :
E(Fy)[{] = E(F,)[¢] which is rational over F,. One may then use a modified
Weil pairing é : E(F,)[{] x E(F,)[{] — IF'qu, obtained from the original Weil
pairing e by é(P,Q) = e(P, #(Q)). This pairing clearly satisfies the bilinearity



and non-degeneracy properties and is efficiently computable. Examples of such
curves with associated morphisms can be found in [BF01, BLS01, Hes].

The protocol described in Section 4 can now be implemented using the
pairing é with G = G = (E/F,)[(]. In this case, only one hash function
H :{0,1}* — G is needed. An extension to higher genus supersingular curves
is also straightforward.

6.3 Description of the protocol using ordinary elliptic
curves

Suppose that we have an ordinary elliptic curve E defined over F,, such that
m = #E(F,) has a large prime factor £ and the MOV degree of E(F,) with
respect to £ is small.

This implies that the Weil and Tate pairings can be efficiently computed
on E[{], and the protocol described in Section 4 can be directly implemented,
letting G = E(F,)[(], G = E[{]\ G* and V = [+, and using either the Weil or
the Tate pairing.

In [DEMO02] it is shown how to generate ordinary curves over finite prime
fields having a specified MOV degree. For example, the curve E : 4% = 2> +azx+b
defined over F,, with

8453742104228705754710235609812637551131635264943855443867343758048524902903777273508198\
147176417124644956293595473209552577172642870167  (451bits)
22086058416228970361863730695421846214124773102557372485666471903661  (223bits)
6822037327990046413951088439860872817180083404468443210433999681670244654089761251331820\
09338199159143422344825098399502853791427272531
5001926477406250722887108016557836789437239556470766218100447813239589852331179508280006\
080186136238693059913948819068193705028971865159

o
I

Q
o

o
Il

has MOV degree k = 10 and contains a subgroup of prime order /.
7 Conclusion

We have presented a practical non-interactive key distribution protocol based
on pairings and defined a notion of security for such a scheme. This cryptosys-
tem satisfies this notion of security in the random oracle model if the GBDH
assumption holds. In particular, the protocol is secure against an arbitrary
number of colluding attackers.

We have proposed realisations of the protocol using Weil or Tate pairings on
supersingular or ordinary elliptic curves.

Used together with a symmetric cipher such as the AES, the scheme achieves
identity based encryption.

Recently, the concept of hierarchical identity based system has been defined,
and such schemes have been proposed [HL02, GS]. Using the same ideas, it is
easy to see that the protocol can also be transformed into a hierarchical system.

Acknowledgements: We thank Frangois Morain for valuable discussions con-
cerning this work. The second author gratefully acknowledges being supported
by a fellowship within the postdoctoral programme of the German Academic
Exchange Service (DAAD). This research was partially supported by the French
Ministry of Research — ACI Cryptologie.



References

[ARP02]

[BFO1]

[BK98]

[BLSO1]

[CC02]

[DEM02]

[Eng99]

[FR94]

[HIW00]

S. Al-Riyami and K. Paterson. Authenticated three party
key agreement protocols from pairings. Available at
http://www.isg.rhul.ac.uk/“kp/, 2002.

D. Boneh and M. Franklin. Identity-based encryption from the Weil
pairing. In J. Kilian, editor, Advances in Cryptology - CRYPTO
2001, volume 2139 of Lecture Notes in Comput. Sci., pages 213-229.
Springer-Verlag, 2001.

R. Balasubramanian and N. Koblitz. The improbability that an ellip-
tic curve has subexponential discrete log problem under the Menezes-
Okamoto-Vanstone algorithm. J. of Cryptology, 11:141-145, 1998.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In C. Boyd, editor, Advances in Cryptology — ASTACRYPT
2001, volume 2248 of Lecture Notes in Comput. Sci., pages 514-532.
Springer-Verlag, 2001.

J. Cha and J. Cheon. Identity-based sig-
nature  from  the  Weil  pairing. Available  at
http://vega.icu.ac.kr/”jhcheon/publications.html, 2002.

Régis Dupont, Andreas Enge, and Francois Morain. Building curves
with arbitrary small MOV degree over finite prime fields. Avail-
able at http://www.lix.polytechnique.fr/Labo/Andreas.Enge/
vorabdrucke/mov.ps.gz, 2002.

A. Enge. FElliptic Curves and Their Applications to Cryptography —
An Introduction. Kluwer Academic Publishers, 1999.

G. Frey and H.-G. Riick. A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves. Math. Comp.,
62(206):865—874, April 1994.

C. Gentry and A. Silverberg. Hierarchical ID-based cryptogra-
phy. Cryptology ePrint Archive, Report 2002/056, available at
http://www.iacr.org/2002/056/.

F. Hess. Exponent group signature schemes and effi-
cient identity based signature schemes based on pairings.
Cryptology ePrint Archive, Report 2002/012, available at
http://eprint.iacr.org/2002/012/.

D. Hiihnlein, M. J. Jacobson Jr., and D. Weber. Towards practical
non-interactive public-key cryptosystems using non-maximal imag-
inary quadratic orders. In D. R. Stinson and S. Tavares, editors,
Selected Areas in Cryptography 2000, volume 2012 of Lecture Notes
in Comput. Sci., pages 275-287. Springer-Verlag, 2000. 7th Annual
International Workshop, SAC 2000, Waterloo, Ontario, Canada, Au-
gust 14-15, 2000. Proceedings.

10



[HLO2]

[Tou00]

[KMO9]

[Kiig98]

[LL92]

[Men93]

[Mil86]
[MOV93]

[MY92]

[MY96]

[Sha85]

J. Horwitz and B. Lynn. Toward hierarchical identity-based encryp-
tion. In L. Knudsen, editor, Advances in Cryptology — EUROCRYPT
2002, volume 2332 of Lecture Notes in Comput. Sci., pages 466—481.
Springer-Verlag, 2002.

A. Joux. A one round protocol for tripartite Diffie-Hellman. In
W. Bosma, editor, ANTS-IV, volume 1838 of Lecture Notes in Com-
put. Sci., pages 358-394. Springer-Verlag, 2000. 4th International
Symposium, ANTS-IV, Leiden, The Netherlands, July 2-7, 2000. Pro-
ceedings.

D. Kiigler and M. Maurer. A note on the weakness of the
Maurer—Yacobi squaring method. Technical Report TI-15/99,
Fachbereich Informatik, Technische Universitdt Darmstadt, 1999.
Available at ftp://ftp.informatik.tu-darmstadt.de/pub/TI/-
TR/TI-99-15.weaksquaring.ps.gz.

D. Kiigler. Eine Aufwandsanalyse fiir identititsbasierte
Kryptosyteme. Master’s  thesis, Technische  Univer-
sitit ~ Darmstadt, Deutschland, 1998. Available at

ftp://ftp.informatik.tu-darmstadt.de/pub/TI/reports/-
kuegler.IDCS.diplom.ps.gz.

P. J. Lee and C. H. Lim. Modified Maurer-Yacobi’s scheme and its
applications. In J. Seberry and Y. Zheng, editors, Advances in Cryp-
tology — AUSCRYPT’92, volume 718 of Lecture Notes in Comput.
Sci., pages 308-323, 1992. Workshop on the Theory and Application
of Cryptographic Techniques, Gold Coast, Queensland, Australia, De-
cember 13-16, 1992. Proceedings.

A. J. Menezes. Elliptic curve public key cryptosystems. Kluwer Aca-
demic Publishers, 1993.

V. Miller. Short programs for functions on curves. Draft, 1986.

A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves
logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory,
IT-39(5):1639-1646, September 1993.

U. Maurer and Y. Yacobi. Non-interactive public-key cryptogra-
phy. In D. Davies, editor, Advances in Cryptology — EUROCRYPT
’91, volume 547 of Lecture Notes in Comput. Sci., pages 498-507.
Springer—Verlag, 1992. Proceedings of the Workshop on the The-
ory and Application of Cryptographic Techniques, Brighton, United
Kingdom, April 8-11, 1991.

U. Maurer and Y. Yacobi. A non-interactive public-key distribution
system. Des. Codes Cryptogr., 9(3):305-316, 1996.

A. Shamir. Identity-based cryptosystems and signature schemes.
In G. Goos and J. Hartmanis, editors, Advances in Cryptology —
CRYPTO’84, volume 196 of Lecture Notes in Comput. Sci., pages

11



[Si186]

[Sma01]

[SOK]

47-53. Springer-Verlag, 1985. 4th Annual International Cryptogra-
phy Conference, Santa Barbara, Ca, USA, 19-22 August 1984. Pro-
ceedings.

J. H. Silverman. The arithmetic of elliptic curves, volume 106 of
Grad. Texts in Math. Springer, 1986.

N. Smart. An identity based authenticated key agreement protocol
based on the Weil pairing. To appear in Electronics Letters, 2001.

R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on
pairing. SCIS 2000, The 2000 Symposium on Cryptography and In-
formation Security, Okinawa, Japan, January 26—28.

12



