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Abstract

Wagner and Magyarik outlined a general construction for public
key cryptosystems based on the hardness of the word problem for
finitely presented groups. At the same time, they gave a specific ex-
ample of such a system. We prove that their approach is vulnerable to
so-called reaction attacks, namely, it is possible to retrieve the private
key just by watching the performance of a legitimate recipient.

1 Introduction

Since the dawning of public key cryptography there have been several at-
tempts to use combinatorial group theory for constructing cryptographic
tools. In particular, the evidenced hardness of the classical problems for
finitely presented groups (the word problem and the conjugacy problem) has
inspired many cryptographic constructions.

Recently, there have been several suggestions for deriving cryptographic
primitives from the hardness of the conjugacy problem in braid groups [1, 2, 3,
5, 10]. The cryptanalytic results in [7, 9, 11] demonstrate that these schemes
still need further exploration before they can represent a realistic potential
alternative to the ‘classical’ number theoretical cryptosystems. Nevertheless,
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the cryptographic results obtained so far are indeed rather interesting and
certainly deserve a closer exploration.

Unfortunately, most of the proposals based on the word problem in finitely
presented groups are merely theoretical ([6, 13, 14]), though some have drawn
a lot of attention from the cryptographic community (see, for instance, the
public key schemes proposed by Yamamura [15, 16] and broken in [4, 12]).

In a seminal work [14] Wagner and Magyarik outlined a construction for
a cryptosystem based on the word problem, and illustrated their proposal
with a concrete suggestion for the choice of the system parameters.

In this contribution we present an attack on Wagner and Magyarik’s
scheme which doesn’t transgress the hardness of the underlying word prob-
lem. The attack is in the spirit of [8] and shows that for any choice of the
finitely presented group it is possible to recover the private key by observ-
ing the reaction of some legitimate recipient. This observation is modelled
by means of an oracle O which recognizes ‘properly ciphered’ texts without
giving further information about the corresponding plaintext. This setting is
far less restrictive than that of a chosen ciphertext attack, in which the ad-
versary selects the ciphertext and is then given the corresponding plaintext.
In our model, the adversary chooses a certain bitstring and is only able to
verify whether it actually is a valid ciphertext.

2 Wagner and Magyarik’s cryptosystem

Let us recall some basic notions on finitely presented groups which will be
necessary in the sequel. A group G is called finitely presented if it can be
specified by means of finite sets of generators and relators, that is, if it has a
finite presentation. Recall that a pair of sets (X, R), where R is a set of finite
words in X UX !, is a presentation of a group G if G is a quotient of the free
group on X by its normal subgroup generated by the set R. Note that the
set of relators R defines an equivalence relation (~) in the set {X U X 1}*
whose classes correspond with the group elements. The group law can be
seen as juxtaposition of words.

Given a finitely presented group G, the word problem for G is the decision
problem of determining whether a given word w is equivalent to the empty
word (usually denoted by e), which represents the identity of the group. The
fact that for several types of groups this problem is undecidable, gives us an
idea of the incredibly complex objects finitely presented groups are. In this



setting, Wagner and Magyarik introduce their general construction.

2.1 The general scheme

Let G be a group defined by the finite presentation (X, R), for which the word
problem is hard to solve. Moreover, suppose S is a set of words in { XUX ' }*
such that for the quotient group @, specified by the presentation (X, RUS),
there exists a polynomial time algorithm A for solving the word problem.
Let ¥ be a finite alphabet and W(X) = {w, | 0 € ¥ } a subset of
{X UX'}* such that if o # 7, then w, and w, are neither equivalent over G

nor over (7. For decrypting ciphertexts one should be able to decide whether
a given word is equivalent in G to a certain w, € W(X). Thus, for most
quotient groups of G with easy word problem all the words in W (X) should
be equivalent to the empty word.

While the presentation (X, R) and the set W (X) are made public, the set
S is kept secret. To encrypt an element o € ¥ we proceed as follows:

1. Set w = w,.
2. Rewrite w using the public relations specified by R.
3. The word w obtained from this rewriting process is the ciphertext.

To decrypt, a recipient runs the algorithm A with inputs ww, ' (o € ¥).

2.2 A concrete proposal

In [14], the authors also propose a concrete method of constructing schemes
based on the aforementioned idea. They suggest the choice of a group G
given by a finite set of generators X = {x;,...,x,} subject to relations of
three types:

(R1) @jwjmpa; = mzjopx; (v, 25, v, 1, € XUX )
(R2) wiwjmy, = mpaja; (14,25, 1, € XUX )
(R3) LT = TjTpT; (ZL’Z', ZTj, Ty € XUX_l)

These relations can all be made trivial imposing a set of relations S of the
types:



Sl)z=e (z€X)
(S2) ;i =x; (wj,z; € XUX T

(Sg) Q?iﬂfj = fL’j.’L'Z' (Ii,fL'j € X)
Namely, by adding that set of relations S, we build a quotient group G
which has a presentation formed by a subset of X and a set of commutativity
relations. There is a polynomial time algorithm for solving the word problem
for such a group, and thus for decrypting.

Now, the set of public words W (X) is constructed in such a way that
most sets of relations of the mentioned types which make the public relations
trivial, also force that all words in W (X) become equivalent to the empty
word. The authors of [14] suggest that for that purpose, the designer of
the cryptosystem may select a (small) set P of non-commuting pairs, such
that in each quotient of G for which any pair in P commutes the words in
W (X) vanish to e, while if any other pair of generators commutes those words
remain inequivalent.

3 The attack

For the sake of simplicity, let us suppose the alphabet ¥ is binary and the
public set W(X) consists of two words, w; , i = 1,0 representing the cor-
responding bits. As an extra rather irrelevant assumption, we assume that
not only the words wy and w; are inequivalent in G and G, but also the
strings wow; and wywq (e. g., this assumption is superfluous if the attacker is
allowed to learn for valid chosen ciphertexts whether they decrypt to wqy or
wy). As explained in the introduction, we also suppose having access to an
oracle O such that given a word w € { XUX~'}* O(w) = 1 if w corresponds
to a correct ciphertext, (i.e., if w ~ w; for some i € {0,1},) and O(w) = 0
otherwise.

Another assumption we make (which in particular is met by the concrete
proposal of Wagner and Magyarik) is that we have at hand a set of words
A € {XUX™"'}* such that an exhaustive search over A is feasible. Moreover,

from its subset B _
S={a€A|la~ein G}

one can derive a set S so that (X,S) is a presentation of G (or either of



another quotient of G that also provides a valid private key—see [14, Sec-
tion 4.2, Attack (b)]).

Our goal is to find S by making use of the oracle O. This can be done by
exhaustive search through A; namely, for each a € A we send < 2 queries to
the oracle O (resp. a legitimate recipient) to decide whether a € S:

1. awy:
e If O(awy) = 0, then obviously a € S.
o If O(_ wo) = 1, then a € S or in G we have awy ~ w; (and hence
¢ S). To distinguish these cases, a second query can be used:
ii. woa

e If O(wya) = 0, then obviously a € S.

o If O(wya) = 1, then a € S or in G we have woa ~ w; (and hence
a ¢ S). In the latter case (a ¢ S) we conclude that woawg ~ wywy.
But from the previous query we know that the situation a ¢ S
occurs only if awg ~ wy, i.e., woawy ~ wyw;—in contradiction to
wow; # wiwg. In summary, the situation O(wpa) =1 and a & S
is impossible, and O(wpa) = 1 implies a € S.

Note that for concrete instances of the general Wagner and Magyarik scheme,
there might be much more information at hand which can be used in order
to improve the above explained attack. Let us illustrate how things could be
done for the example described in Section 2.2:

In correspondence with the three types of relations (S1), (S2), and (S3)
we apply the above procedure three times. First we look for relations of type
(S1) by searching through the set

A1:X

(of size n). This yields a subset S; of A; with words (actually generators)
that vanish in G, and we denote by X, = X \ S; the set of remaining ‘non-
vanishing’ generators. Next, we search through the set

Ay = {:rlx;l | z; # x; and z;,2; € Xy U X, 1

(of size O(n?)) to identify relations of type (S2). This yields another set
S, of words vanishing in G, and when looking for relations of type (S3) we
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can restrict our attention to words in those generators which have not been
identified as superfluous so far; we denote this subset of X, by X3. Then the
final exhaustive search covers the set

Az = {xixjxflxgl | z; # x; and z;,z; € X3}

(of size O(n?)) and yields a set S3 of words vanishing in G. Now the desired
set S is given as S = S; U Sy U S3. Namely, (X, R U S) is a presentation of
the secret quotient G' (where G = (X, R)).

4 Conclusion

We have given evidence of the effectiveness of reaction attacks against the
general Wagner and Magyarik public key scheme, and thus against any of its
particular instances. Although the underlying mathematical problem may
be intractable, the above discussion shows that in the current state this
design cannot be considered as a safe theoretical basis for deriving practical
cryptosystems.

Reaction attacks were first presented by Hall, Goldberg, and Schneier [8],
who succeeded in respectively decrypting ciphertexts and recovering the pri-
vate key of the McEliece and Ajtai-Dwork cryptosystems. Our attack on
Wagner and Magyarik’s scheme is in a sense more powerful, as we access fewer
information about the legitimate recipient’s actions, i.e., we know nothing
about the plaintext corresponding to correct ciphertexts. Nevertheless, the
word problem in finitely presented groups remains an interesting candidate
for deriving one way functions.
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