
Universally Composable Two-Party and Multi-Party Secure

Computation∗

Ran Canetti† Yehuda Lindell‡ Rafail Ostrovsky§ Amit Sahai¶

July 14, 2003

Abstract

We show how to securely realize any two-party and multi-party functionality in a universally

composable way, regardless of the number of corrupted participants. That is, we consider an
asynchronous multi-party network with open communication and an adversary that can adap-
tively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the
parties (with pairs of parties being a special case) to securely realize any desired functionality of
their local inputs, and be guaranteed that security is preserved regardless of the activity in the
rest of the network. This implies that security is preserved under concurrent composition of an
unbounded number of protocol executions, it implies non-malleability with respect to arbitrary
protocols, and more. Our constructions are in the common reference string model and rely on
standard intractability assumptions.

Keywords: Two-party and multi-party cryptographic protocols, secure composition of protocols,
proofs of security.

∗An extended abstract of this work appeared in the 34th STOC, 2002.
†IBM T.J. Watson Research Center, email: canetti@watson.ibm.com.
‡IBM T.J. Watson Research Center, email: lindell@us.ibm.com. Most of this work was carried out while the

author was at the Weizmann Institute of Science, Israel.
§Telcordia Technologies, email: rafail@research.telcordia.com.
¶Princeton University, email: sahai@cs.princeton.edu.

Contents

1 Introduction 1

2 Overview 4
2.1 The Model . 4
2.2 An Outline of the Results and Techniques . 5

2.2.1 Two-party computation in the case of semi-honest adversaries 5
2.2.2 Obtaining two-party computation secure against malicious adversaries 7
2.2.3 Extensions to multi-party computation . 9

3 Preliminaries 11
3.1 Universally Composable Security: The General Framework 11

3.1.1 The basic framework . 11
3.1.2 The composition theorem . 16

3.2 Universal Composition with Joint State . 18
3.3 Well-Formed Functionalities . 21

4 Two-Party Secure Computation for Semi-Honest Adversaries 22
4.1 Universally Composable Oblivious Transfer . 23

4.1.1 Static UC Oblivious Transfer . 23
4.1.2 Adaptive UC Oblivious Transfer . 25

4.2 The General Construction . 29

5 Universally Composable Commitments 38

6 Universally Composable Zero-Knowledge 48

7 The Commit-and-Prove Functionality Fcp 50
7.1 UC Realizing Fcp for Static Adversaries . 50
7.2 UC Realizing Fcp for Adaptive Adversaries . 55

8 Two-Party Secure Computation for Malicious Adversaries 59
8.1 The Protocol Compiler . 59
8.2 Conclusions . 64

9 Multi-Party Secure Computation 65
9.1 Multi-Party Secure Computation for Semi-Honest Adversaries 65
9.2 Authenticated Broadcast . 71
9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove 71
9.4 Multi-Party Secure Computation for Malicious Adversaries 77

9.4.1 Conclusions . 80

1 Introduction

Traditionally, cryptographic protocol problems were considered in a model where the only involved
parties are the actual participants in the protocol, and only a single execution of the protocol takes
place. This model allowed for relatively concise problem statements, and simplified the design and
analysis of protocols. Indeed, this relatively simple model is a natural choice for the initial study
of protocols.

However, this model of “stand-alone computation” does not really capture the security require-
ments from cryptographic protocols in modern computer networks. In such networks, a protocol
execution may run concurrently with an unknown number of other protocols. These arbitrary
protocols may be executed by the same parties or other parties, they may have potentially related
inputs and the scheduling of message delivery may be adversarially coordinated. Furthermore, the
local outputs of a protocol execution may be used by other protocols in an unpredictable way.
These concerns, or “attacks” on a protocol are not captured by the stand-alone model.

One way to guarantee that protocols withstand some specific security threats in multi-execution
environments is to explicitly incorporate these threats into the security model and analysis. Such
an approach was taken, for instance, in the case of non-malleability of protocols [ddn00]. However,
this approach is inherently limited since it needs to explicitly address each new concern, whereas
in a realistic network setting, the threats may be unpredictable. Furthermore, it inevitably results
in definitions with ever-growing complexity.

An alternative, and arguably preferable, approach is to design and analyze protocols as “stand
alone”, and then derive security in a multi-execution environment via a secure composition theorem.

This is the approach taken by the recently proposed framework of universally composable security
[c01]. Here a generic definition is given for what it means for a protocol to “securely realize a given
ideal functionality”, where an “ideal functionality” is a natural algorithmic way of defining the
protocol problem at hand. In addition, it has been shown that security of protocols is preserved
under a general composition operation called universal composition. This essentially means that
any protocol that securely realizes an ideal functionality when considered as stand-alone, continues
to securely realize the same functionality even when composed with any other set of protocols
that may be running concurrently in the same system. A protocol that is secure within the [c01]
framework is called universally composable (UC), and we say that the protocol UC realizes the given
functionality.

It has been shown that any ideal functionality can be UC realized using known constructions,
as long as a majority of the participants are honest [c01] (building upon [bgw88, rb89, cfgn96]).
However, this result does not hold when half or more of the parties may be corrupted. In partic-
ular, it does not hold for the important case of two-party protocols, where each party wishes to
maintain its security even if the other party is corrupted. In fact, it has been shown that in the
plain model (i.e., where no trusted setup phase is assumed), the important two-party commitment
and zero-knowledge functionalities cannot be UC realized by any two-party protocol [c01, cf01].
Nonetheless, protocols that UC realize the commitment and zero-knowledge functionalities in the
common reference string (CRS) model were shown in [cf01, d+01]. (In the CRS model all parties
are given a common, public reference string that is ideally chosen from a given distribution. This
model was originally proposed in the context of non-interactive zero-knowledge proofs [bfm88] and
since then has proved useful in other cases as well.)

Our results. Loosely speaking, we show that any functionality can be UC realized in the CRS
model, regardless of the number of corrupted parties. More specifically, consider an asynchronous

1

multi-party network where the communication is open and delivery of messages is not guaranteed.
(For simplicity, we assume that delivered messages are authenticated. This can be achieved using
standard methods.) The network contains an unspecified number of parties, and any number of
these parties can be adaptively corrupted throughout the computation. In this setting, we show
how arbitrary subsets of parties can UC realize any functionality of their inputs. The functionality
may be reactive, namely it may receive inputs and generate outputs multiple times throughout the
computation. In addition to a common reference string, our protocols assume that the participants
in each protocol execution have access to a broadcast channel among themselves.1

In addition to our general constructions for two-party and multi-party computation, we also
present a new adaptively secure UC commitment scheme in the CRS model, assuming only the
existence of trapdoor permutations. (UC commitment schemes are protocols that UC realize the
ideal commitment functionality [cf01]. Existing constructions of UC commitments [cf01, dn02]
rely on specific cryptographic assumptions.) Since UC zero-knowledge can be obtained given a UC
commitment scheme [cf01], we can plug our new scheme into the UC zero-knowledge protocol of
[cf01] and thereby obtain an adaptively secure UC zero-knowledge protocol in the CRS model,
for any NP relation, and based on any trapdoor permutation. Beyond being interesting in its own
right, we use this commitment scheme in order to base our constructions on general cryptographic
assumptions. A high level outline of our construction appears in Section 2.2.

Adaptive security. Our protocol is the first general construction that guarantees security against
adaptive adversaries in the two-party case and in the case of multi-party protocols with honest
minority. (We note that no adaptively secure general construction was known in these cases even
in the traditional stand-alone model; all previous adaptively secure protocols for general multi-party
computation assumed an honest majority.) We remark that, in contrast to the case of stand-alone
protocols, in our setting, adaptive security is a relevant concern even for protocols with only two
participants. Furthermore, it is important to protect even against adversaries that eventually break
into all the participants in an interaction. This is because we consider multiple interactions that
take place between different sets of parties in the system. Therefore, all the participants in one
interaction may constitute a proper subset of the participants in another interaction. Our results
hold even in a model where no data can ever be erased.

Cryptographic assumptions. Our protocols are based on the following cryptographic assump-
tions. For the static adversarial case (both semi-honest and malicious) we assume the existence of
enhanced trapdoor permutations2 only (this is the same assumption used for known stand-alone
constructions). For the adaptive case we also assume the existence of augmented non-committing
encryption protocols [cfgn96]. The augmentation includes oblivious key generation and invertible
samplability [dn00]. Loosely speaking, oblivious key generation states that public keys can be
generated without knowing the corresponding private keys, and invertible samplability states that
given a public/private key-pair it is possible to obtain the random coin tosses of the key generator

1This broadcast channel is formally modeled by a universally composable broadcast functionality. In subsequent
work to ours, it was shown that in the model where delivery of messages is not guaranteed, universally composable
broadcast can be achieved in O(1) rounds, for any number of corrupted parties, and without any setup assump-
tions [gl02]. Thus, in actuality, we only need to assume a common reference string here.

2Enhanced trapdoor permutations have the property that a random element generated by the domain sampler is
hard to invert, even given the random coins used by the sampler. Note that any trapdoor permutation over {0, 1}k is
clearly enhanced, because this domain can be easily and directly sampled. See [g03, Appendix C] for a full discussion
on enhanced trapdoor permutations and why they are needed.

2

when outputting this key-pair (the oblivious key generator should also be invertible). Such encryp-
tion schemes are known to exist under the RSA and DDH assumptions. We note that in both the
static and adaptive cases, most of our constructions can be obtained assuming (plain) trapdoor
permutations only. The additional assumption of enhanced trapdoor permutations is used for UC
realizing the oblivious transfer functionality in the case of semi-honest, static adversaries, and for
our construction of UC commitments for the case of malicious, adaptive adversaries. The additional
assumption of augmented non-committing encryption is used for UC realizing the oblivious transfer
functionality in the semi-honest, adaptive case.

As we have mentioned, our protocols are in the CRS model. The above assumptions suffice if
we use a common reference string that is not uniformly distributed (but is rather taken from some
different distribution). If a uniformly distributed common reference string is to be used, then we
additionally assume the existence of dense cryptosystems [dp92].

Subsequent work. As we have mentioned, it has previously been shown the commitment and
zero-knowledge functionalities cannot be UC realized in the plain model [c01, cf01]. Subsequently,
broad impossibility results were shown, demonstrating that large classes of two-party functionalities
cannot be UC realized in the plain model [ckl03]. Thus, some setup assumption, like that of
a common reference string assumed here, is essential for obtaining UC security in the case of no
honest majority. Another subsequent work [l03] has shown that the impossibility results of [ckl03]
hold for any definition that implies security under the composition operation considered by the UC
framework. Thus, in the plain model and with no honest majority, it is impossible to obtain security
in a setting where protocols are run concurrently with arbitrary other protocols. Therefore, when
this level of security is desired, some setup assumption is needed. We believe that this provides a
strong justification for assuming a common reference string, as we do in this work.

Organization. In Section 2 we provide an overview of the model of [c01] and an outline of
our construction of UC two-party and multi-party protocols. Section 3 contains a number of
preliminaries: First, in Section 3.1, a more detailed description of the [c01] framework and of the
composition theorem is presented. Then, in Section 3.2, the issue of universal composition with
joint state is discussed (this is important when a common reference string is used, as is the case in
our constructions). Finally, in Section 3.3, we describe the class of ideal functionalities for which
we present UC secure protocols.

We then begin our constructions with the two-party case. First, in Section 4, we show how
to obtain UC two-party secure computation in the presence of semi-honest adversaries. Next we
proceed to the case of malicious adversaries. Here we lead up to the general protocol compiler
in a number of steps: In Section 5 we recall the commitment functionality Fmcom and present
our new UC commitment scheme. In Section 6, the ideal zero-knowledge functionality, Fzk, is
described and known protocols for realizing it (either with ideal access to Fmcom or directly in the
common reference string model) are recalled. In Section 7 we define the two-party commit-and-
prove functionality, Fcp, and show how to realize it given ideal access to Fzk. This is then used in
Section 8 to construct a two-party protocol compiler that transforms the protocol of Section 4 into
a protocol that is secure against malicious adversaries.

Finally, in Section 9, we extend our two-party constructions to the multi-party case. We present
the two-party case separately because it is simpler and most of the cryptographic ideas already arise
in this setting.

3

2 Overview

This section provides a high-level overview of the model and our constructions. Section 2.1 contains
an overview of the general framework of universal composability, the definition of security and the
composition theorem. Then, in Section 2.2 we provide a brief outline of our constructions for two-
party and multi-party computation. The aim of this outline is to provide the reader with the “big
picture”, before delving into details.

2.1 The Model

We begin by outlining the framework for universal composability; for more details see Section 3.1
and [c01]. The framework provides a rigorous method for defining the security of cryptographic
tasks, while ensuring that security is maintained under a general composition operation in which a
secure protocol for the task in question is run in a system concurrently with an unbounded number
of other arbitrary protocols. This composition operation is called universal composition, and tasks
that fulfill the definitions of security in this framework are called universally composable (UC).

As in other general definitions (e.g., [gl90, mr91, b91, pw00, c00]), the security requirements
of a given task (i.e., the functionality expected from a protocol that carries out the task) are
captured via a set of instructions for a “trusted party” that obtains the inputs of the participants
and provides them with the desired outputs (in one or more iterations). We call the algorithm run
by the trusted party an ideal functionality. Since the trusted party just runs the ideal functionality,
we do not distinguish between them. Rather, we refer to interaction between the parties and the
functionality. Informally, a protocol securely carries out a given task if no adversary can gain more
from an attack on a real execution of the protocol, than from an attack on an ideal process where
the parties merely hand their inputs to a trusted party with the appropriate functionality and
obtain their outputs from it, without any other interaction. In other words, it is required that
a real execution can be emulated in the above ideal process (where the meaning of emulation is
described below). We stress that in a real execution of the protocol, no trusted party exists and
the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol, plus an adversary A that controls the communication channels
and potentially corrupts parties. Emulation means that for any adversary A attacking a real
protocol execution, there should exist an “ideal process adversary” or simulator S, that causes the
outputs of the parties in the ideal process to be essentially the same as the outputs of the parties in a
real execution. In the universally composable framework, an additional adversarial entity called the
environment Z is introduced. This environment generates the inputs to all parties, reads all outputs,
and in addition interacts with the adversary in an arbitrary way throughout the computation. (As
is hinted by its name, Z represents the external environment that consists of arbitrary protocol
executions that may be running concurrently with the given protocol.) A protocol is said to
UC realize a given ideal functionality F if for any “real-life” adversary A that interacts with the
protocol there exists an “ideal-process adversary” S, such that no environment Z can tell whether
it is interacting with A and parties running the protocol, or with S and parties that interact with F
in the ideal process. (In a sense, here Z serves as an “interactive distinguisher” between a run of the
protocol and the ideal process with access to F . See [c01] for more motivating discussion on the role
of the environment.) Note that the definition requires the “ideal-process adversary” (or simulator)
S to interact with Z throughout the computation. Furthermore, Z cannot be “rewound”.

4

The following universal composition theorem is proven in [c01]: Consider a protocol π that
operates in a hybrid model of computation where parties can communicate as usual, and in addition
have ideal access to an unbounded number of copies of some ideal functionality F . (This model
is called the F-hybrid model.) Furthermore, let ρ be a protocol that UC realizes F as sketched
above, and let πρ be the “composed protocol”. That is, πρ is identical to π with the exception
that each interaction with the ideal functionality F is replaced with a call to (or an activation of)
an appropriate instance of the protocol ρ. Similarly, ρ-outputs are treated as values provided by
the functionality F . The theorem states that in such a case, π and πρ have essentially the same
input/output behavior. Thus, ρ behaves just like the ideal functionality F , even when composed
with an arbitrary protocol π. A special case of this theorem states that if π UC realizes some ideal
functionality G in the F-hybrid model, then πρ UC realizes G from scratch.

We consider a network where the adversary sees all the messages sent, and delivers or blocks
these messages at will. (The fact that message delivery is not guaranteed frees us from the need to
explicitly deal with the “early stopping” problem of protocols run between two parties or amongst
many parties where only a minority may be honest. This is because even the ideal process allows
the adversary to abort the execution at any time.) We note that although the adversary may
block messages, it cannot modify messages sent by honest parties (i.e., the communication lines
are ideally authenticated). Our protocols are cast in a completely asynchronous point-to-point
network (and thus the adversary has full control over when messages are delivered, if at all). Also,
as usual, the adversary is allowed to corrupt parties. In the case of static adversaries the set of
corrupted parties is fixed at the onset of the computation. In the adaptive case the adversary
corrupts parties at will throughout the computation. We also distinguish between malicious and
semi-honest adversaries: If the adversary is malicious then corrupted parties follow the arbitrary
instructions of the adversary. In the semi-honest case, even corrupted parties follow the prescribed
protocol and the adversary essentially only gets read access to the states of corrupted parties.

2.2 An Outline of the Results and Techniques

In this section we provide a high-level description of our protocols for two-party and multi-party
computation, and the techniques used in obtaining them. Our construction is conceptually very
similar to the construction of Goldreich, Micali and Wigderson [gmw87, g98]. This construction
(which we call the GMW construction) is comprised of two stages. First, they present a protocol
for UC realizing any functionality in the semi-honest adversarial model. Next, they construct a
protocol compiler that takes any semi-honest protocol and transforms it into a protocol that has the
same functionality in the malicious adversarial model. (However, as discussed above, they consider
a model where only a single protocol execution takes place in the system. In contrast, we construct
protocols for universally composable secure computation.) We begin by considering the two-party
case.

2.2.1 Two-party computation in the case of semi-honest adversaries

Recall that in the case of semi-honest adversaries, even the corrupted parties follow the protocol
specification. However, the adversary may attempt to learn more information than intended by
examining the transcript of messages that it received during the protocol execution. Despite the
seemingly weak nature of the adversarial model, obtaining protocols secure against semi-honest
adversaries is a non-trivial task.

We begin by briefly recalling the [gmw87, g98] construction for secure two-party computation
in the semi-honest adversarial model. Let f be the two-party functionality that is to be securely

5

computed. Then, the parties are given an arithmetic circuit over GF (2) that computes the function
f . The protocol starts with the parties sharing their inputs with each other using simple bitwise-xor
secret sharing, and thus following this stage, they both hold shares of the input lines of the circuit.
That is, for each input line l, party A holds a value al and party B holds a value bl, such that both
al and bl are random under the constraint that al + bl equals the value of the input into this line.
Next, the parties evaluate the circuit gate-by-gate, computing random shares of the output line of
the gate from the random shares of the input lines to the gate. There are two types of gates in
the circuit: addition gates and multiplication gates. Addition gates are evaluated by each party
locally adding its shares of the input values. Multiplication gates are evaluated using 1-out-of-4
oblivious transfer (the oblivious transfer protocol used is basically that of [egl85]). In the above
way, the parties jointly compute the circuit and obtain shares of the output gates. The protocol
concludes with each party revealing the prescribed shares of the output gates to the other party
(i.e, if a certain output gate provides a bit of A’s input, then B will reveal its share of this output
line to A).

Our general construction is exactly that of GMW, except that the oblivious transfer protocol
used is universally composable. That is, we first define an ideal oblivious transfer functionality, Fot,
and show that in the Fot-hybrid model, the GMW protocol UC realizes any two-party functionality
in the presence of semi-honest, adaptive adversaries. This holds unconditionally and even if the
adversary and environment are computationally unbounded. Of course, computational assumptions
are used for UC realizing Fot itself. (Our overall construction is actually somewhat more general
than that of GMW in that it deals with reactive functionalities that have multiple stages which are
separately activated. This is achieved by having the parties hold shares of the state of the ideal
functionality between activations.)

Next we present protocols that UC realize Fot in the semi-honest case. In the static (i.e.,
non-adaptive) case, the protocol of [egl85, g98] suffices. In the adaptive case, our protocol uses
an augmented version of non-committing encryption [cfgn96]. The augmentation consists of two
additional properties. First, the encryption scheme should have an alternative key generation
algorithm that generates only public encryption keys without the corresponding decryption key.
Second, the standard and additional key generation algorithms should be invertible in the sense
that given the output key or keys, it is possible to find the random coin tosses used in generating
these keys. (Following [dn00], we call these properties oblivious key generation and invertible

samplability.) All known non-committing encryption schemes have this properties. In particular,
such schemes exist under either the RSA assumption or the DDH assumption.) In all, we show:

Proposition 2.1 (semi-honest computation – informal): Assume that enhanced 3 trapdoor permu-

tations exist. Then, for any two-party ideal functionality F , there exists a protocol Π that UC

realizes F in the presence of semi-honest, static adversaries. Furthermore, if two-party augmented

non-committing encryption protocols exist, then there exists a protocol Π that UC realizes F in the

presence of semi-honest, adaptive adversaries.

Proposition 2.1 as stated above is not precise. This is due to two technicalities regarding the model
of computation as defined in [c01]. We therefore define a class of functionalities for which these
technical problems do not arise and then construct secure protocols for any functionality in this
class. See Section 3.3 for more discussion and an exact definition.

Another point where our results formally differ from Proposition 2.1 is due to the fact that,
according to the definitions used here, protocols which do not generate any output are technically

3See Footnote 2.

6

secure (for any functionality). Thus, Proposition 2.1 as stated, can be easily (but un-interestingly)
achieved. In contrast, we prove the existence of protocols which do generate output and UC realize
any functionality (we call such a protocol non-trivial; for more details, see the discussion after
Definition 3.2 in Section 3.1). Proposition 2.1 is formally restated in Section 4.2.

2.2.2 Obtaining two-party computation secure against malicious adversaries

Having constructed a protocol that is universally composable when the adversary is limited to
semi-honest behavior, we construct a protocol compiler that transforms this protocol into one that
is secure even against malicious adversaries. From here on, we refer to the protocol that is secure
against semi-honest adversaries as the “basic protocol”. Recall that the basic protocol is only
secure in the case that even the corrupted parties follow the protocol specification exactly, using
a uniformly chosen random tape. Thus, in order to obtain a protocol secure against malicious
adversaries, we need to enforce potentially malicious corrupted parties to behave in a semi-honest
manner. First and foremost, this involves forcing the parties to follow the prescribed protocol.
However, this only makes sense relative to a given input and random tape. Furthermore, a malicious
party must be forced into using a uniformly chosen random tape. This is because the security of the
basic protocol may depend on the fact that the party has no freedom in setting its own randomness.
We begin with a description of the GMW compiler.

An informal description of the GMW compiler. The GMW compiler begins by having each
party commit to its input. Next, the parties run a coin-tossing protocol in order to fix their random
tapes. A simple coin-tossing protocol in which both parties receive the same uniformly distributed
string is not sufficient here. This is because the parties’ random tapes must remain secret. Instead,
an augmented coin-tossing protocol is used, where one party receives a uniformly distributed string
(to be used as its random tape) and the other party receives a commitment to that string. Now,
following these two steps, each party holds its own input and uniformly distributed random tape,
and a commitment to the other party’s input and random tape.

Next, the commitments to the random tape and to the inputs are used to “enforce” semi-
honest behavior. Observe that a protocol specification is a deterministic function of a party’s view
consisting of its input, random tape and messages received so far. Further observe that each party
holds a commitment to the input and random tape of the other party and that the messages sent so
far are public. Therefore, the assertion that a new message is computed according to the protocol
is an NP statement (and the party sending the message knows an adequate NP-witness to it). This
means that the parties can use zero-knowledge proofs to show that their steps are indeed according
to the protocol specification. Therefore, in the protocol emulation phase, the parties send messages
according to the instructions of the basic protocol, while proving at each step that the messages sent
are correct. The key point is that, due to the soundness of the proofs, even a malicious adversary
cannot deviate from the protocol specification without being detected. Therefore, the adversary is
limited to semi-honest behavior. Furthermore, since the proofs are zero-knowledge, nothing “more”
is revealed in the compiled protocol than in the basic protocol. We conclude that the security of
the compiled protocol (against malicious adversaries) is directly derived from the security of the
basic protocol (against semi-honest adversaries).

In summary, the GMW compiler has three components: input commitment, coin-tossing and
protocol emulation (where the parties prove that their steps are according to the protocol specifi-
cation).

7

Universally composable protocol compilation. A natural way of adapting the GMW com-
piler to the setting of universally composable secure computation would be to take the same
compiler, but rather use universally composable commitments, coin-tossing and zero-knowledge
as sub-protocols. However, such a strategy fails because the receiver of a universally composable
commitment receives no information about the value that was committed to. (Instead, the recipient
receives only a formal “receipt” assuring it that a value was committed to. See Section 5 for more
details.) Thus, there is no NP-statement that a party can prove relative to its input commitment.
This is in contrast to the GMW protocol where standard (perfectly binding) commitments are used
and thus each party holds a string that uniquely determines the other party’s input and random
tape.

A different strategy is therefore required for constructing a universally composable compiler.
Before describing our strategy, observe that in GMW the use of the commitment scheme is not
standard. Specifically, although both parties commit to their inputs etc., they never decommit.
Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive
to use would be a “commit-and-prove” functionality, which is comprised of two phases. In the
first phase, a party “commits” (or is bound) to a specific value. In the second phase, this party
proves NP-statements in zero-knowledge relative to the committed value. This notion is implicit
in the work of [gmw87], and was also discussed by Kilian [k89]. We formulate this notion in a
universally composable commit-and-prove functionality,4 denoted Fcp, and then use this function-
ality to implement all three phases of the compiler. More specifically, our protocol compiler uses
the “commit” phase of the Fcp functionality in order to execute the input and coin-tossing phases
of the compiler. The “prove” phase of the Fcp functionality is then used to force the adversary
to send messages according to the protocol specification and consistent with the committed input
and the random tape resulting from the coin-tossing. The result is a universally composable analog
to the GMW compiler. We remark that in the Fcp-hybrid model the compiler is unconditionally
secure against adaptive adversaries, even if the adversary and the environment are computationally
unbounded.

We show how to UC realize Fcp in the Fzk-hybrid model, i.e. in a hybrid model with ideal access
to an ideal zero-knowledge functionality, Fzk. (Functionality Fzk expects to receive a statement
x and a witness w from the prover. It then forwards x to the verifier, together with an assertion
whether R(x,w) holds, where R is a predetermined relation.) Essentially, in the commit phase of the
commit-and-prove protocol, the committer commits to its input value w using some commitment
scheme C, and in addition it proves to the receiver, using Fzk with an appropriate relation, that it
“knows” the committed value. In the prove phase, where the committer wishes to assert that the
committed value w stands in relation R with some public value x, the committer presents x and
w to Fzk again — but this time the relation used by Fzk asserts two properties: first that R(x,w)
holds, and second that w is the same value that was previously committed to.

To guarantee security against static adversaries, the commitment scheme of Naor [n91] is suf-
ficient as an instantiation of the scheme C. We thus obtain a protocol for UC realizing Fcp in
the Fzk-hybrid model, based on any one-way function. To guarantee security against adaptive ad-
versaries we need “adaptively secure” commitment schemes, namely commitment schemes where a
simulator can generate “dummy commitments” which can be later opened in multiple ways. (In
fact, a slightly stronger property is needed here, see details within.) Such commitments exist as-

4In a concurrent and independent work [dn02], Damgard and Nielsen consider a functionality that has great
resemblance to our commit-and-prove functionality, and construct universally composable protocols that realize this
functionality under specific number-theoretic assumptions. Our commit-and-prove protocol is based on more general
assumptions, whereas their protocol is considerably more efficient.

8

suming the existence of enhanced trapdoor permutations, as is demonstrated by our construction
of universally composable commitments in Section 5. In all we obtain:

Theorem 2.2 (two-party computation in the malicious model – informal): Assume that enhanced

trapdoor permutations exist. Then, for any two-party ideal functionality F , there exists a protocol

Π that UC realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries.

Furthermore, if augmented two-party non-committing encryption protocols also exist, then there

exists a protocol Π that UC realizes F in the Fzk-hybrid model in the presence of malicious, adaptive
adversaries.

As with Proposition 2.1, Theorem 2.2 is not stated exactly. It is formally restated in Section 8.2.
Let Fcrs denote the common random string functionality (that is, Fcrs provides all parties with

a common, public string drawn from a predefined distribution). Then, as we show in Section 5,
universally composable commitments can be UC realized in the Fcrs-hybrid model, assuming the
existence of enhanced trapdoor permutations. Furthermore, [cf01] showed that the Fzk func-
tionality can be UC realized given universally composable commitments. Combining these results
together, we have that Fzk can be UC realized in the Fcrs-hybrid model, assuming the existence
of enhanced trapdoor permutations. Using the composition theorem we obtain a similar result to
Theorem 2.2, with the exception that F is realized in the Fcrs-hybrid model (rather than in the
Fzk-hybrid model).

On the distribution of the reference string. In obtaining the above corollary, the common
reference string is used only in the construction of the universally composable commitment scheme
(which is used for obtaining Fzk). As we have mentioned, in the Fcrs-hybrid model, universally com-
posable commitments can be obtained assuming the existence of enhanced trapdoor permutations
only. However, in this case, the common reference string is not uniformly distributed. Neverthe-
less, a uniformly distributed string can be used, under the additional assumption of the existence
of dense cryptosystems [dp92]. We therefore conclude that universally composable two-party com-
putation can be obtained with a uniformly distributed reference string, under the assumption that
the following primitives exist: enhanced trapdoor permutations, dense cryptosystems and, in the
adaptive case, augmented two-party non-committing encryption protocols.

2.2.3 Extensions to multi-party computation

We now describe how the two-party construction of Theorem 2.2 is extended to the setting of
multi-party computation, where any number of parties may be corrupt. Recall that in this setting,
each set of interacting parties is assumed to have access to an authenticated broadcast channel.

The outline of our construction is as follows. Similarly to the two-party case, we first construct
a multi-party protocol that is secure against semi-honest adversaries (as above, this protocol is
essentially that of GMW). Then, we construct a protocol compiler (again, like that of GMW),
that transforms semi-honest protocols into ones that are secure even against malicious adversaries.
This protocol compiler is constructed using a one-to-many extension of the commit-and-prove
functionality, denoted F1:M

cp . (In the one-to-many extension, a single party commits and proves
to many receivers/verifiers.) The extension of the protocol that UC realizes two-party Fcp to a
protocol that UC realizes one-to-many F1:M

cp constitutes the main difference between the two-party
and multi-party constructions. Therefore, in this outline, we focus exclusively on how this extension
is achieved.

9

The first step in realizing F1:M
cp , is to construct one-to-many extensions of universal commitments

and zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment
(and the committer is bound to the same value for all parties). Likewise, in one-to-many zero-
knowledge, all parties verify the proof (and they either all accept or all reject the proof). Now, any
non-interactive commitment scheme can be transformed into a one-to-many equivalent by simply
having the committer broadcast its message to all parties. Thus, this functionality is immediately
obtained from our commitment scheme in Section 5 or from the scheme of [cf01] (both of these con-
structions are non-interactive). However, obtaining one-to-many zero-knowledge is more involved,
since we do not know how to construct non-interactive adaptively-secure universally composable
zero-knowledge.5 Nevertheless, a one-to-many zero-knowledge protocol can be constructed based
on the universally-composable zero-knowledge protocol of [cf01] and the methodology of [g98] for
obtaining a multi-party extension of zero-knowledge. Specifically, [cf01] show that parallel exe-
cutions of the 3-round zero-knowledge protocol of Hamiltonicity is universally composable, when
a universally composable commitment scheme is used for the prover’s commitments. Thus, as in
[g98], the prover runs a copy of the above zero-knowledge protocol with each receiver over the
broadcast channel, using the one-to-many commitment scheme for its commitments. Furthermore,
each verifying party checks that the proofs of all the other parties are accepting (this is possible
because the proof of Hamiltonicity is publicly verifiable and because all parties view all the com-
munication). Thus, at the end of the protocol, all honest parties agree (without any additional
communication) on whether the proof was successful or not. (Note also that the adversary cannot
cause an honest prover’s proof to be rejected.)

It remains to describe how to realize F1:M
cp in the F1:M

zk -hybrid model. The basic idea is to
generalize the Fcp protocol. As with zero-knowledge, this is not straightforward because in the
protocol for adaptive adversaries, the Fcp commit-phase is interactive. Nevertheless, this problem
is solved by having the committer commit to its input value w by separately running the protocol for
the commit-phase of (two-party) Fcp with every party over the broadcast channel. Following this,
the committer uses one-to-many zero-knowledge to prove that it committed to the same value in all
of these commitments. (Since each party views the communication from all the commitments, every
party can verify this zero-knowledge proof.) The prove phase is similar to the two-party case, except
that the one-to-many extension of zero-knowledge is used (instead of two-party zero-knowledge).

Finally, we note that, as in the two-party case, a multi-party protocol compiler can be con-
structed in the F1:M

cp -hybrid model, with no further assumptions. Denoting the ideal broadcast
functionality used by the parties by Fbc, we have the following theorem:

Theorem 2.3 (multi-party computation in the malicious model – informal): Assume that en-

hanced trapdoor permutations exist. Then, for any multi-party ideal functionality F , there exists

a protocol Π that UC realizes F in the (Fbc,Fcrs)-hybrid model in the presence of malicious,
static adversaries, and for any number of corruptions. Furthermore, if augmented two-party non-

committing encryption protocols also exist, then there exists a protocol Π that UC realizes F in the

(Fbc,Fcrs)-hybrid model in the presence of malicious, adaptive adversaries, and for any number of

corruptions.

As with Proposition 2.1, Theorem 2.3 is not stated exactly. It is formally restated in Section 9.4.

5In the case of static adversaries, the non-interactive zero-knowledge protocol of [d+01] suffices. Thus, here too,
the prover message can simply be broadcast and one-to-many zero-knowledge is obtained.

10

3 Preliminaries

Section 3.1 reviews the framework of [c01] and the universal composition theorem. In Section 3.2 we
discuss issues that arise regarding universal composition when some amount of joint state between
protocols is desired. Finally, Section 3.3 presents the class of functionalities which we will show how
to UC realize. Before proceeding, we recall the definition of computational indistinguishability. A
distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ is an infinite set of probability distributions, where
a distribution X(k, a) is associated with each k ∈ N and a ∈ {0, 1}∗. The ensembles considered in
this work describe outputs where the parameter a represents input, and the parameter k is taken to
be the security parameter. A distribution ensemble is called binary if it consists only of distributions
over {0, 1}. Then,

Definition 3.1 Two binary distribution ensembles X and Y are indistinguishable (written X
c
≈ Y)

if for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c.

3.1 Universally Composable Security: The General Framework

We start by reviewing the syntax of message-driven protocols in asynchronous networks. We then
present the real-life model of computation, the ideal process, and the general definition of UC
realizing an ideal functionality. Next, we present the hybrid model and the composition theorem.
The text is somewhat informal for clarity and brevity, and is mostly taken from the Overview
section of [c01]. For full details see there.

Protocol syntax. Following [gmr89, g01], a protocol is represented as a system of probabilistic
interactive Turing machines (ITMs), where each ITM represents the program to be run within a
different party. Specifically, the input and output tapes model inputs and outputs that are received
from and given to other programs running on the same machine, and the communication tapes
model messages sent to and received from the network. Adversarial entities are also modeled as
ITMs. We concentrate on a model where the adversaries have an arbitrary additional input, or an
“advice” string. From a complexity-theoretic point of view, this essentially implies that adversaries
are non-uniform ITMs.

In order to simplify the exposition, we introduce the following convention. We assume that all
protocols are such that the parties read their input tapes only at the onset of a protocol execution.
This can easily be achieved by having the parties copy their input tape onto an internal work tape.
This convention prevents problems that may occur when parties’ input tapes are modified in the
middle of a protocol execution (as is allowed in the model).

3.1.1 The basic framework

As sketched in Section 2, protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in the presence of
an adversary and in a given computational environment is formalized. This is called the real-life

model. Next, an ideal process for carrying out the task at hand is formalized. In the ideal process the
parties do not communicate with each other. Instead they have access to an “ideal functionality”,
which is essentially an incorruptible “trusted party” that is programmed to capture the desired
functionality of the given task. A protocol is said to UC realize an ideal functionality if the process
of running the protocol amounts to “emulating” the ideal process for that ideal functionality. We

11

overview the model for protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

We concentrate on the following model of computation, aimed at representing current realis-
tic communication networks (such as the Internet). The communication takes place in an asyn-
chronous, public network, without guaranteed delivery of messages. We assume that the commu-
nication is authenticated and thus the adversary cannot modify messages sent by honest parties.6

Furthermore, the adversary may only deliver messages that were previously sent by parties, and
may deliver each message sent only once. The fact that the network is asynchronous means that
the messages are not necessarily delivered in the order which they are sent. Parties may be broken
into (i.e., become corrupted) throughout the computation, and once corrupted their behavior is
arbitrary (or, malicious). (Thus, our main consideration is that of malicious, adaptive adversaries.
However, below we present the modifications necessary for modeling static and semi-honest ad-
versaries.) We do not trust data erasures; rather, we postulate that all past states are available
to the adversary upon corruption. Finally, all the involved entities are restricted to probabilistic
polynomial time (or “feasible”) computation.

Protocol execution in the real-life model. We sketch the process of executing a given protocol
π (run by parties P1, ..., Pn) with some adversary A and an environment machine Z with input
z. All parties have a security parameter k ∈ N and are polynomial in k. The execution consists
of a sequence of activations, where in each activation a single participant (either Z, A, or some
Pi) is activated. The environment is activated first. In each activation it may read the contents of
the output tapes of all the uncorrupted parties7 and the adversary, and may write information on
the input tape of one of the parties or of the adversary. Once the activation of the environment
is complete (i,e, once the environment enters a special waiting state), the entity whose input tape
was written on is activated next.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or corrupt a party. Only messages that were sent in the past
by some party can be delivered, and each message can be delivered at most once. Upon corrupting
a party, the adversary gains access to all the tapes of that party and controls all the party’s future
actions. (We assume that the adversary also learns all the past internal states of the corrupted
party. This means that the model does not assume effective cryptographic erasure of data.) In
addition, whenever a party is corrupted the environment is notified (say, via a message that is added
to the output tape of the adversary). If the adversary delivered a message to some uncorrupted
party in its activation then this party is activated once the activation of the adversary is complete.
Otherwise the environment is activated next.

Once a party is activated (either due to an input given by the environment or due to a message
delivered by the adversary), it follows its code and possibly writes local outputs on its output
tape and outgoing messages on its outgoing communication tape. Once the activation of the
party is complete the environment is activated. The protocol execution ends when the environment
completes an activation without writing on the input tape of any entity. The output of the protocol

6We remark that the basic model in [c01] postulates unauthenticated communication, i.e. the adversary may
delete, modify, and generate messages at wish. Here we concentrate on authenticated networks for sake of simplicity.
Authentication can be added in standard ways. Formally, the model here corresponds to the Fauth-hybrid model in
[c01].

7The environment is not given read access to the corrupted parties’ output tapes because once a party is corrupted,
it is no longer activated. Rather, the adversary sends messages in its name. Therefore, the output tapes of corrupted
parties are not relevant.

12

execution is the output of the environment. We assume that this output consists of only a single
bit.

In summary, the order of activations is as follows. The environment Z is always activated first.
The environment then either activates the adversary A or some party Pi by writing on an input
tape. If the adversary is activated, it may return control to the environment, or it may activate
some party Pi by delivery a message to Pi. After Pi is activated, control is always returned to
Z. We stress that at any point, only a single party is activated. Furthermore, Z and A can only
activate one other entity (thus only a single input is written by Z per activation and likewise A
can deliver only message per activation).

Let realπ,A,Z(k, z, r) denote the output of environment Z when interacting with adversary A
and parties running protocol π on security parameter k, input z and random tapes r = rZ , rA, r1, . . . , rn

as described above (z and rZ for Z, rA for A; ri for party Pi). Let realπ,A,Z(k, z) denote the
random variable describing realπ,A,Z(k, z, r) when r is uniformly chosen. Let realπ,A,Z denote
the ensemble {realπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out (a single instance of) the task at hand. A key
ingredient in the ideal process is the ideal functionality that captures the desired functionality, or
the specification, of the task. The ideal functionality is modeled as another ITM that interacts
with the environment and the adversary via a process described below. More specifically, the ideal
process involves an ideal functionality F , an ideal process adversary (simulator) S, an environment
Z with input z, and a set of dummy parties P̃1, ..., P̃n.

As in the process of protocol execution in the real-life model, the environment is activated first.
As there, in each activation it may read the contents of the output tapes of all (dummy) parties and
the adversary, and may write information on the input tape of either one of the (dummy) parties
or of the adversary. Once the activation of the environment is completed the entity whose input
tape was written on is activated next.

The dummy parties are fixed and simple ITMs: Whenever a dummy party is activated with an
input, it writes it on its outgoing communication tape for the ideal functionality F . Furthermore,
whenever a dummy party is activated due to delivery of some message (from F), it copies this
message to its output. At the conclusion of a dummy party’s activation, the environment Z is
activated. The communication by the dummy parties is with the ideal functionality F only. In
principle, these messages sent between the dummy parties and F are secret and cannot be read
by the adversary S. However, these messages are actually comprised of two parts: a header and
contents. The header is public and can be read by S, whereas the contents is private and cannot
be read by S. The definition of the functionality states which information is in the “header” and
which is in the “contents”. Some information must clearly be in the public header; for example,
the identity of the party to whom the functionality wishes to send output must be public so that it
can be delivered. Beyond that, the functionality definition should specify what is in the “header”
and what is in the “contents”. However, for all the functionalities considered in this paper, there is
a fixed format for the header. Specifically, the header contains the type of action being taken, the
session identifier and the participating parties. For example, a commit message is of the following
format: (commit, sid, Pi, Pj , b), where “commit” states that the party is committing to a new value,
sid is the session identifier, Pi is the committing party, Pj is the receiving party and b is the value
being committed to. In this case, the header consists of (commit, sid, Pi, Pj) and the contents
consists of (b) only. We adopt this format by convention for all (but one of) the functionalities
defined in this paper. We therefore omit specific reference to the header and contents in our

13

definitions of functionalities (and explicitly describe the difference for the one functionality which
does not have this format).

When the ideal functionality F is activated, it reads the contents of its incoming communication
tape, and potentially sends messages to the parties and to the adversary by writing these messages
on its outgoing communication tape. Once the activation of F is complete, the environment Z is
activated next.

When the adversary S is activated, it may read its own input tape and in addition it can read
the public headers of the messages on the outgoing communication tape of F . In contrast, S cannot
read the private contents of these messages (unless the recipient of the message is S or a corrupted
party8). Likewise, S can read the public headers of the messages intended for F that appear on
the outgoing communication tapes of the dummy parties. Then, S can execute one of the following
four actions: It may either write a message from itself on F ’s incoming communication tape9,
deliver a message to F from some party Pi by copying it from Pi’s outgoing communication tape
to Z’s incoming communication tape, deliver a message from F to Pi by copying the appropriate
message from Z’s outgoing communication tape to Pi’s incoming communication tape, or corrupt
a party. Upon corrupting a party, both Z and F learn the identity of the corrupted party (say, a
special message is written on their respective incoming communication tapes).10 In addition, the
adversary learns all the past inputs and outputs of the party. Finally, the adversary controls the
party’s actions from the time that the corruption takes place.

If the adversary delivered a message to some uncorrupted (dummy) party Pi or to the func-
tionality F in an activation, then this entity (i.e., Pi or F) is activated once the activation of the
adversary S is complete. Otherwise the environment Z is activated next.

As in the real-life model, the protocol execution ends when the environment completes an
activation without writing on the input tape of any entity. The output of the protocol execution is
the (one bit) output of Z.

In summary, the order of activations in the ideal model is as follows. As in the real model, the
environment Z is always activated first, and then activates either the adversary S or some dummy
party Pi by writing an input. If the adversary S is activated, then it either activates a dummy
party Pi or the ideal functionality F by delivering the entity a message, or it returns control to
the environment. After the activation of a dummy party or the functionality, the environment is
always activated next.

Let idealF ,S,Z(k, z, r) denote the output of environment Z after interacting in the ideal process
with adversary S and ideal functionality F , on security parameter k, input z, and random input
r = rZ , rS , rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ,S,Z(k, z) denote
the random variable describing idealF ,S,Z(k, z, r) when r is uniformly chosen. Let idealF ,S,Z

denote the ensemble {idealF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

8Note that the ideal process allows S to obtain the output values sent by F to the corrupted parties as soon as
they are generated. Furthermore, if at the time that S corrupts some party Pi there are messages sent from F to Pi,
then S immediately obtains the contents of these messages.

9Many natural ideal functionalities indeed send messages to the adversary S (see the commitments and zero-
knowledge functionalities of Sections 5 and 6 for examples). On the other hand, having the adversary send messages
to F is less common. Nevertheless, this option can be useful in order to relax the requirements on protocols that
realize the functionality. For example, it may be easier to obtain coin-tossing if the adversary is allowed to bias some
of the bits of the result. If this is acceptable for the application in mind, we can allow the adversary this capability
by having it send its desired bias to F .

10Allowing F to know which parties are corrupted gives it considerable power. This power provides greater freedom
in formulating ideal functionalities for capturing the requirements of given tasks. On the other hand, it also inherently
limits the scope of general realizability theorems. See more discussion in Section 3.3.

14

Remark. The above definition of the ideal model slightly differs from that of [c01]. Specifically, in
[c01] messages between the dummy parties and ideal functionality are delivered immediately. In
contrast, in our presentation, this message delivery is carried out by the adversary. Thus, in both
the real and ideal models, all message delivery is the responsibility of the adversary alone. We
note that our results can also be stated in the model of “immediate delivery” as defined in [c01].
However, in such a case, the functionality should always ask the adversary whether or not to accept
an input and send an output. This has the same effect as when the adversary is responsible for the
delivery of these messages. Therefore, the final result is the same.

UC realizing an ideal functionality. We say that a protocol π UC realizes an ideal functionality
F if for any real-life adversary A there exists an ideal-process adversary S such that no environment
Z, on any input, can tell with non-negligible probability whether it is interacting with A and parties
running π in the real-life process, or with S and F in the ideal process. This means that, from the
point of view of the environment, running protocol π is ‘just as good’ as interacting with an ideal
process for F . (In a way, Z serves as an “interactive distinguisher” between the two processes. Here
it is important that Z can provide the process in question with adaptively chosen inputs throughout
the computation.) We have:

Definition 3.2 Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol. We

say that π UC realizes F if for any adversary A there exists an ideal-process adversary S such that

for any environment Z,

idealF ,S,Z
c
≈ realπ,A,Z . (1)

Non-trivial protocols and the requirement to generate output. Recall that the ideal
process does not require the ideal-process adversary to deliver messages that are sent by the ideal
functionality to the dummy parties. Consequently, the definition provides no guarantee that a
protocol will ever generate output or “return” to the calling protocol. Indeed, in our setting where
message delivery is not guaranteed, it is impossible to ensure that a protocol “terminates” or
generates output. Rather, the definition concentrates on the security requirements in the case that

the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends any messages and
never generates output, UC realizes any ideal functionality. Thus, in order to obtain a meaningful
feasibility result, we introduce the notion of a non-trivial protocol. Such a protocol has the property
that if the real-life adversary delivers all messages and does not corrupt any parties, then the
ideal-process adversary also delivers all messages and does not corrupt any parties. Note that in
a non-trivial protocol, a party may not necessarily receive output. However, this only happens if
either the functionality does not specify output for this party, or if the real-life adversary actively
interferes in the execution (by either corrupting parties or refusing to deliver some messages). Our
main result is to show the existence of non-trivial protocols for UC realizing any ideal functionality.
All our protocols are in fact clearly non-trivial; therefore, we ignore this issue from here on.

Relaxations of Definition 3.2. We recall two standard relaxations of the definition:

• Static (non-adaptive) adversaries. Definition 3.2 allows the adversary to corrupt parties through-
out the computation. A simpler (and somewhat weaker) variant forces the real-life adversary to
corrupt parties only at the onset of the computation, before any uncorrupted party is activated.
We call such adversaries static.

15

• Passive (semi-honest) adversaries. Definition 3.2 gives the adversary complete control over
corrupted parties (such an adversary is called malicious). Specifically, the model states that
from the time of corruption the corrupted party is no longer activated, and instead the adversary
sends messages in the name of that party. In contrast, when a semi-honest adversary corrupts a
party, the party continues to follow the prescribed protocol. Nevertheless, the adversary is given
read access to the internal state of the party at all times, and is also able to modify the values
that the environment writes on the corrupted parties’ input tapes.11 Formally, if in a given
activation, the environment wishes to write information on the input tape of a corrupted party,
then the environment first passes the adversary the value x that it wishes to write (along with
the identity of the party whose input tape it wishes to write to). The adversary then passes a
(possibly different) value x′ back to the environment. Finally, the environment writes x′ on the
input tape of the corrupted party, following which the corrupted party is activated. We stress
that when the environment writes on the input tape of an honest party, the adversary learns
nothing of the value and cannot modify it. Everything else remains the same as in the above-
described malicious model. We say that protocol π UC realizes functionality F for semi-honest

adversaries, if for any semi-honest real-life adversary A there exists an ideal-process semi-honest
adversary S such that Eq. (1) holds for any environment Z.

3.1.2 The composition theorem

The hybrid model. In order to state the composition theorem, and in particular in order to
formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,
the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybrid
model) is formulated. This model is identical to the real-life model, with the following additions.
On top of sending messages to each other, the parties may send messages to and receive messages
from an unbounded number of copies of F . Each copy of F is identified via a unique session
identifier (SID); all messages addressed to this copy and all message sent by this copy carry the
corresponding SID. (Sometimes a copy of F will interact only with a subset of the parties. The
identities of these parties is determined by the protocol in the F-hybrid model.)

The communication between the parties and each one of the copies of F mimics the ideal process.
That is, when the adversary delivers a message from a party to a copy of F with a particular SID,
that copy of F is the next entity to be activated. (If no such copy of F exists then a new copy
of F is created and activated to receive the message.) Furthermore, although the adversary in the
hybrid model is responsible for delivering the messages between the copies of F and the parties, it
does not have access to the contents of these messages.

The hybrid model does not specify how the SIDs are generated, nor does it specify how parties
“agree” on the SID of a certain protocol copy that is to be run by them. These tasks are left to
the protocol in the hybrid model. This convention simplifies formulating ideal functionalities, and
designing protocols that UC realize them, by freeing the functionality from the need to choose the
SIDs and guarantee their uniqueness. In addition, it seems to reflect common practice of protocol
design in existing networks. See more discussion following Theorem 3.3 below.

Let execF
π,A,Z(k, z) denote the random variable describing the output of environment machine Z

on input z, after interacting in the F-hybrid model with protocol π and adversary A, analogously to

11Allowing a semi-honest adversary to modify a corrupted party’s input is somewhat non-standard. However, this
simplifies the presentation of this work (and in particular the protocol compiler). All the protocols presented for the
semi-honest model in this paper are secure both when the adversary can modify a corrupted party’s input tape and
when it cannot.

16

the definition of realπ,A,Z(k, z). (We stress that here π is a hybrid of a real-life protocol with ideal
evaluation calls to F .) Let execF

π,A,Z denote the distribution ensemble {execF
π,A,Z}k∈N,z∈{0,1}∗ .

Replacing a call to F with a protocol invocation. Let π be a protocol in the F-hybrid
model, and let ρ be a protocol that UC realizes F (with respect to some class of adversaries).
The composed protocol πρ is constructed by modifying the code of each ITM in π so that the
first message sent to each copy of F is replaced with an invocation of a new copy of ρ with fresh
random input, with the same SID, and with the contents of that message as input. Each subsequent
message to that copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message given to ρ as new input. Each output value generated by a copy of ρ is
treated as a message received from the corresponding copy of F . (See [c01] for more details on the
operation of “composed protocols”, where a party, i.e. an ITM, runs multiple protocol-instances
concurrently.)

If protocol ρ is a protocol in the real-life model then so is πρ. If ρ is a protocol in some G-hybrid
model (i.e., ρ uses ideal evaluation calls to some functionality G) then so is πρ.

Theorem statement. In its general form, the composition theorem basically says that if ρ UC
realizes F in the G-hybrid model for some functionality G, then an execution of the composed
protocol πρ, running in the G-hybrid model, “emulates” an execution of protocol π in the F-hybrid
model. That is, for any adversary A in the G-hybrid model there exists an adversary S in the F-
hybrid model such that no environment machine Z can tell with non-negligible probability whether
it is interacting with A and πρ in the G-hybrid model or it is interacting with S and π in the
F-hybrid model.

A corollary of the general theorem states that if π UC realizes some functionality I in the
F-hybrid model, and ρ UC realizes F in the G-hybrid model, then πρ UC realizes I in the G-hybrid
model. (Here one has to define what it means to UC realize functionality I in the F-hybrid model.
This is done in the natural way.) That is:

Theorem 3.3 ([c01]) Let F ,G,I be ideal functionalities. Let π be an n-party protocol in the F-

hybrid model, and let ρ be an n-party protocol that UC realizes F in the G-hybrid model. Then for

any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid model such that

for any environment machine Z we have:

execG
πρ,A,Z

c
≈ execF

π,S,Z .

In particular, if π UC realizes functionality I in the F-hybrid model then πρ UC realizes I in the

G-hybrid model.

Consider the case that G is the empty functionality, and so the G-hybrid model is actually the real

model. Then, Theorem 3.3 states that ρ remains secure when run concurrently with any protocol
π. We note that although π technically seems to be a “calling protocol”, it can also represent
arbitrary network activity. Thus, we obtain that ρ remains secure when run concurrently in an
arbitrary network.

On the uniqueness of the session IDs. The session IDs play a central role in the hybrid model
and the composition operation, in that they enable the parties to distinguish different instances
of a protocol. Indeed, differentiating protocol instances via session IDs is a natural and common
mechanism in protocol design.

17

Yet, the current formulation of the hybrid model provides a somewhat over-idealized treatment
of session IDs. Specifically, it is assumed that the session IDs are globally unique and common to

all parties. That is, it is assumed that no two copies of an ideal functionality with the same session
ID exist, even if the two copies have different (and even disjoint) sets of participants. Furthermore,
all parties are assumed to hold the same SID (and they must somehow have agreed upon it). This
treatment greatly simplifies the exposition of the model and the definition of ideal functionalities
and protocols that realize them. Nonetheless, it is somewhat restrictive in that it requires the
protocol in the hybrid model to guarantee global uniqueness of common session IDs. This may
be hard (or even impossible) to achieve in the case that the protocol in the hybrid model is truly
distributed and does not involve global coordination. See [llr02] for more discussion on this point.

3.2 Universal Composition with Joint State

Traditionally, composition operations among protocols assume that the composed protocol in-
stances have disjoint states, and in particular independent local randomness. The universal com-
position operation is no exception: if protocol ρ UC realizes some ideal functionality F , and protocol
π in the F-hybrid model uses m copies of F , then the composed protocol πρ uses m independent
copies of ρ, and no two copies of ρ share any amount of state.

This property of universal composition (and of protocol composition in general) is bothersome
in our context, where we wish to construct and analyze protocols in the common reference string
(CRS) model. Let us elaborate. Assume that we follow the natural formalization of the CRS
model as the Fcrs-hybrid model, where Fcrs is the functionality that chooses a string from the
specified distribution and hands it to all parties. Now, assume that we construct a protocol ρ that
UC realizes some ideal functionality F in the Fcrs-hybrid model (say, let F be the commitment
functionality, Fcom). Assume further that some higher level protocol π (in the F-hybrid model)
uses multiple copies of F , and that we use the universal composition operation to replace each
copy of F with an instance of ρ. We now obtain a protocol πρ that runs in the Fcrs-hybrid model
and emulates π. However, this protocol is highly wasteful of the reference string. Specifically, each
instance of ρ in πρ has its own separate copy of Fcrs, or in other words each instance of ρ requires
its own independent copy of the reference string. This stands in sharp contrast with our common
view of the CRS model, where an unbounded number of protocol instances should be able to use
the same copy of the reference string.

One way to get around this limitation of universal composition (and composition theorems in
general) is to treat the entire, multi-session interaction as a single instance of a more complex
protocol, and then to explicitly require that all sessions use the same copy of the reference string.
More specifically, proceed as follows. First, given a functionality F as described above, define a
functionality, F̂ , called the “multi-session extension of F”. Functionality F̂ will run multiple copies
of F , where each copy will be identified by a special “sub-session identifier”, ssid. Upon receiving
a message for the copy associated with ssid, F̂ activates the appropriate copy of F (running within
F̂), and forwards the incoming message to that copy. If no such copy of F exists then a new copy is
invoked and is given that ssid. Outputs generated by the copies of F are copied to F̂ ’s output. The
next step after having defined F̂ is to construct protocols that directly realize F̂ in the Fcrs-hybrid
model, while making sure that the constructed protocols use only a single copy of Fcrs.

This approach works, in the sense that it allows constructing and analyzing universally com-
posable protocols that are efficient in their use of the reference string. However, it results in
a cumbersome and non-modular formalization of ideal functionalities and protocols in the CRS
model. Specifically, if we want to make sure that multiple sessions of some protocol (or set of

18

protocols) use the same copy of the reference string, then we must treat all of these sessions (that
may take place among different sets of parties) as a single instance of some more complex proto-
col. For example, assume that we want to construct commitments in the CRS model, then use
these commitments to construct UC zero-knowledge protocols, and then use these protocols in yet
higher-level protocols. Then, in any level of protocol design, we must design functionalities and
protocols that explicitly deal with multiple sessions. Furthermore, we must prove the security of
these protocols within this multi-session setting. This complexity obviates much of the advantages
of universal composition (and protocol composition in general).

In contrast, we would like to be able to formulate a functionality that captures only a single
instance of some interaction, realize this functionality by some protocol π in the CRS model, and
then securely compose multiple copies of π in spite of the fact that all copies use the same copy of
the reference string. This approach is, in general, dangerous, since it can lead to insecure protocols.
However, there are conditions under which such “composition with joint state” maintains security.
This section describes a general tool that enables the composition of protocols even when they
have some amount of joint state, under some conditions. Using this tool, suggested in [cr02]
and called universal composition with joint state (JUC), we are able to state and realize most of the
functionalities in this work as functionalities for a single session, while still ending up with protocols
where an unbounded number of instances use the same copy of the common reference string. This
greatly simplifies the presentation while not detracting from the composability and efficiency of the
presented protocols.

In a nutshell, universal composition with joint state is a new composition operation that can
be sketched as follows. Let F be an ideal functionality, and let π be a protocol in the F-hybrid
model. Let F̂ denote the “multi-session extension of F” sketched above, and let ρ̂ be a protocol
that UC realizes F̂ . Then construct the composed protocol π[ρ̂] by replacing all copies of F in π by
a single copy of ρ̂. (We stress that π assumes that it has access to multiple independent copies of
F . Still, we replace all copies of F with a single copy of some protocol.) The JUC theorem states
that protocol π[ρ̂], running in the real-life model, “emulates” π in the usual sense. A more detailed
presentation follows.

The multi-session extension of an ideal functionality. We formalize the notion of a multi-
session extension of an ideal functionality, sketched above. Let F be an ideal functionality. Recall
that F expects each incoming message to contain a special field consisting of its session ID (SID).
All messages received by F are expected to have the same SID. (Messages that have different SIDs
than that of the first message are ignored.) Similarly, all outgoing messages generated by F carry
the same SID.

The multi-session extension of F , denoted F̂ , is defined as follows. F̂ expects each incoming
message to contain two special fields. The first is the usual SID field as in any ideal functionality.
The second field is called the sub-session ID (SSID) field. Upon receiving a message (sid, ssid, v)
(where sid is the SID, ssid is the SSID, and v is an arbitrary value or list of values), F̂ first verifies
that sid is the same as that of the first message, otherwise the message is ignored. Next, F̂ checks
if there is a running copy of F whose session ID is ssid. If so, then F̂ activates that copy of F with
incoming message (ssid, v), and follows the instructions of this copy. Otherwise, a new copy of F
is invoked (within F̂) and immediately activated with input (ssid, v). From now on, this copy is
associated with sub-session ID ssid. Whenever a copy of F sends a message (ssid, v′) to some party
Pi, F̂ sends (sid, ssid, v′) to Pi, and sends ssid to the adversary. (Sending ssid to the adversary
implies that F̂ does not hide which copy of F is being activated within F̂ .)

19

The composition operation. Let F be an ideal functionality. The composition operation,
called universal composition with joint state (JUC), takes two protocols as arguments: a protocol π
in the F-hybrid model and a protocol ρ̂ that UC realizes F̂ . Notice that π utilizes calls to F , and
not to F̂ . Nevertheless, the JUC operation shows how to compose these together. The result is a
composed protocol denoted π[ρ̂] and described as follows.

Recall that the F-hybrid model is identical to the real-life model of computation, with the
exception that the parties have access to multiple copies of F . The different copies of F are
identified via their SIDs as described above. Let F(sid) denote the copy of functionality F with SID

sid. Protocol π[ρ̂] behaves like π with the following exceptions:12

1. When activated for the first time within party Pi, π[ρ̂] invokes a copy of protocol ρ̂ with SID
sid0. That is, a copy of the ith Interactive Turing Machine in ρ̂ is invoked as a subroutine
within Pi, and is (locally) given identifier sid0. No activation of ρ̂ occurs yet. (sid0 is some
fixed, predefined value. For instance, set sid0 = 0.)

2. Whenever π instructs party Pi to send a message (sid, v) to F(sid), protocol π[ρ̂] instructs Pi

to activate ρ̂ with input value (sid0, sid, v).

3. Whenever protocol ρ̂ instructs Pi to send a message m to some party Pj , Pi writes the message
(ρ̂, sid, Pj ,m) on its outgoing communication tape.

4. Whenever activated due to delivery of a message (ρ̂, sid, Pi,m) from Pj , Pi activates ρ̂ with
incoming message (sid, Pj ,m).

5. Whenever (the single copy of) ρ̂ generates an output value (sid0, sid, v), proceed just as π
proceeds with incoming message (sid, v) from F(sid).

In short, whenever π makes an ideal call to F with a given identifier sid, protocol ρ̂ is called with
identifier sid0 and sub-session identifier sid. This is consistent with the fact that ρ̂ is a multi-session
protocol. Conversely, whenever ρ̂ returns a value associated with identifiers (sid0, sid), this value
is returned to π with (the single) identifier sid. This is consistent with the fact that π “thinks”
that it is interacting with a single-session functionality F .

Theorem statement. The JUC theorem asserts that if ρ̂ UC realizes F̂ , then protocol π[ρ̂]

behaves essentially like π with ideal access to multiple independent copies of F . More precisely,

Theorem 3.4 (universal composition with joint state [cr02]): Let F ,G be ideal functionalities.

Let π be a protocol in the F-hybrid model, and let ρ̂ be a protocol that UC realizes F̂ , the multi-

session extension of F , in the G-hybrid model. Then the composed protocol π[ρ̂] in the G-hybrid
model emulates protocol π in the F-hybrid model. That is, for any adversary A there exists an

adversary S such that for any environment Z we have

execF
π,S,Z

c
≈ execG

π[ρ],A,Z
.

In particular, if π UC realizes some functionality I in the F-hybrid model then π[ρ̂] UC realizes I
in the G-hybrid model.

12For simplicity, we assume that ρ̂ UC realizes F̂ in the real-life model of computation. The composition operation
and theorem can be extended in a natural way to account for protocols ρ̂ that UC realize F̂ in the G-hybrid model
for some ideal functionality G.

20

Discussion. Jumping ahead, we sketch our use of the JUC theorem. Recall the commitment
functionality, Fcom, formalized in [cf01]. This functionality captures the process of commitment
and decommitment to a single value, performed by two parties. In addition, [cf01] show how to
realize F̂com in the CRS model, using a single copy of the CRS for all commitments. (In [cf01]
the multi-session extension functionality F̂com is called Fmcom.) An alternative protocol that UC
realizes F̂com is also presented here.

In this work we construct protocols that use these commitment protocols. However, to preserve
modularity of exposition, we present our protocols in the Fcom-hybrid model, while allowing the
protocols to use multiple copies of Fcom and thus enjoy full modularity. We then use universal
composition with joint state to compose any protocol π in the Fcom-hybrid model with any protocol
ρ̂ that UC realized F̂com using a single copy of the reference string, to obtain a protocol π[ρ̂] that
emulates π and uses only a single copy of the reference string for all the commitments. (We remark
that the same technique is applied also to protocols that use the ideal zero-knowledge functionality,
Fzk. See more details in Section 6.)

3.3 Well-Formed Functionalities

In this section, we define the set of functionalities for which our feasibility results apply. Clearly,
we would like to be able to state a theorem saying that any ideal functionality can be UC realized.
However, for technical reasons, such a claim cannot be made in our model. The first problem
that arises is as follows. Since the ideal functionality is informed of the identities of the corrupted
parties, it can do things that cannot be realized by any protocol. For example, consider the ideal
functionality that lets all parties know which parties are corrupted. Then this functionality cannot
be realized in the face of an adversary that corrupts a single random party but instructs that party
to continue following the prescribed protocol.

In order to bypass this problem, we define a special class of functionalities that do not utilize
their direct knowledge of the identities of the corrupted parties. For the lack of a better name,
we call these functionalities well-formed. A well-formed functionality consists of a main proce-
dure (called the shell) and a subroutine (called the core.) The core is an arbitrary probabilistic
polynomial-time algorithm, while the shell is a simple procedure described as follows. The shell
forwards any incoming message to the core, with the exception that notifications of corruptions
of parties are not forwarded. Outgoing messages generated by the core are copied by the shell to
the outgoing communication tape. The above definition guarantees that the code of a well-formed
ideal functionality “does not depend” on its direct knowledge regarding who is corrupted.

In subsequent sections, we show how to realize any well-formed functionality in the face of
static adversaries. However, another technicality arises when considering adaptive adversaries.
Consider for instance a two-party ideal functionality F that works as follows: Upon activation, it
chooses two large random primes p and q and sends n = pq to both parties. The value n is the
only message output by the functionality; in particular, it never reveals the values p and q. The
important property of this functionality that we wish to focus on is the fact that it has private

randomness that is never revealed. Such a functionality can be UC realized in the static corruption
model. However, consider what happens in a real execution if an adaptive adversary corrupts both

parties after they output n. In this case, all prior randomness is revealed (recall that we assume
no erasures). Therefore, if this randomness explicitly defines the primes p and q (as is the case in
all known protocols for such a problem), these values will necessarily be revealed to the adversary.
On the other hand, in the ideal process, even if both parties are corrupted, p and q are never

21

revealed.13 (We stress that the fact that p and q are revealed in the real model does not cause any
real security concern. This is because when all the participating parties are corrupted, there are
no security requirements on a protocol. In particular, there are no honest parties to “protect”).
In light of the above discussion, we define adaptively well-formed functionalities that do not keep
private randomness when all parties are corrupted. Formally, such functionalities have a shell and
a core, as described above. However, in addition to forwarding messages to and from the core,
the shell keeps track of the parties with whom the functionality interacts. If at some activation
all these parties are corrupted, then the shell sends the random tape of the core to the adversary.
Thus, when all the parties participating in some activation are corrupted, all the randomness is
revealed (even in the ideal process). We show how any adaptively well-formed functionality can be
UC realized in the face of adaptive adversaries.

In order to make sure that the multi-session extension of an adaptively well-formed functionality
remains adaptively well-formed, we slightly modify the definition of the multi-session extension of
an ideal functionality (see Section 3.2) as follows. If the given ideal functionality F is adaptively
well-formed, then F̂ , the multi-session extension of F , is an adaptively well-formed functionality
defined as follows. The core of F̂ consists of the multi-session extension (in the usual sense) of
the core of F . The shell of F̂ is as defined above except that it separately keeps track of the
participating parties of each session. Then, if all the participating parties of some session are
corrupted in some activation, the shell sends the random tape of the core for that session to the
adversary. (Recall that each session of the multi-session functionality uses an independent random
tape.) We note that the JUC theorem (Theorem 3.4) holds even with respect to the modified
definition of multi-session extensions.

4 Two-Party Secure Computation for Semi-Honest Adversaries

This section presents general constructions for UC realizing any two-party ideal functionality in
the presence of semi-honest adversaries. The high-level construction is basically that of Goldreich
et. al. (GMW) [gmw87, g98]. However, there are two differences. First, [gmw87] consider static
adversaries whereas we consider adaptive adversaries. This actually only makes a difference in the
oblivious transfer protocol; the rest of the protocol for circuit evaluation remains unchanged. We
note that although the protocol constructions are very similar, our proof of security is significantly
different. This is due to the fact that we deal with adaptive adversaries and in addition show uni-
versal composability (in contrast with static adversaries and the standard, stand-alone definitions
of security). The second difference between the GMW construction and ours is that while GMW
considered function evaluation, we consider more general reactive functionalities. In this case, par-
ties may receive new inputs during the protocol execution and each new input may depend on the
current adversarial view of the system. In particular, it may depend on previous outputs of this
execution and on the activity in other executions. We note that despite the additional generality,
this makes only a small difference to the construction.

We begin by presenting the oblivious-transfer ideal functionality Fot, and demonstrate how to
UC realize this functionality in the presence of semi-honest adversaries (both static and adaptive).
Following this we present our protocol for UC realizing any two-party functionality, in the Fot-
hybrid model.

13We do not claim that it is impossible to realize this specific functionality. Indeed, it may be possible to sample
the domain {n | n = pq} (or a domain that is computationally indistinguishable from it) without knowing p or q.
Nevertheless, the example clearly demonstrates the problem that arises.

22

4.1 Universally Composable Oblivious Transfer

Oblivious transfer [r81, egl85] is a two-party functionality, involving a sender with input x1, ..., xℓ,
and a receiver with input i ∈ {1, . . . , ℓ}. The receiver should learn xi (and nothing else) and the
sender should learn nothing. An exact definition of the ideal oblivious transfer functionality, denoted
Fℓ

ot, appears in Figure 1. (Using standard terminology, Fℓ
ot captures 1-out-of-ℓ OT.)

Functionality Fℓ
ot

Fℓ
ot proceeds as follows, parameterized with an integer ℓ and running with an oblivious transfer sender

T , a receiver R and an adversary S.

1. Upon receiving a message (sender, sid, x1, ..., xℓ) from T , where each xj ∈ {0, 1}m, record the
tuple (x1, ..., xℓ). (The length of the strings m is fixed and known to all parties.)

2. Upon receiving a message (receiver, sid, i) from R, where i ∈ {1, . . . , ℓ}, send (sid, xi) to R and
(sid) to S, and halt. (If no (sender, . . .) message was previously sent, then send nothing to R.)

Figure 1: The oblivious transfer functionality, Fℓ
ot

Section 4.1.1 presents a protocol that UC realizes Fot for static adversaries. Section 4.1.2
presents our protocol for UC realizing Fot for adaptive adversaries.

4.1.1 Static UC Oblivious Transfer

The oblivious transfer protocol of [gmw87, g98], denoted SOT (for Static Oblivious Transfer) is
presented in Figure 2. For simplicity we present the protocol for the case where each of the ℓ input
values is a single bit. (In the semi-honest case, oblivious transfer for strings can be constructed
from this one via the composition theorem.)

Protocol SOT

Proceed as follows, on security parameter k.

1. Given input (sender, sid, x1, ..., xℓ), party T chooses a trapdoor permutation14f over {0, 1}k,
together with its inverse f−1, and sends (sid, f) to the receiver R. (The permutation f is chosen
uniformly from a given family of trapdoor permutations.)

2. Given input (receiver, sid, i), and having received (sid, f) from T , receiver R chooses
y1, ...yi−1, r, yi+1, ..., yℓ ∈R {0, 1}k, computes yi = f(r), and sends (sid, y1, . . . , yℓ) to T .

3. Having received (sid, y1, . . . , yℓ) from R, the sender T sends (sid, x1 ⊕ B(f−1(y1)), . . . , xℓ ⊕
B(f−1(yℓ))) to R, where B(·) is a hard-core predicate for f .

4. Output: Having received (sid, b1, . . . , bℓ) from T , the receiver R outputs (sid, bi ⊕B(r)).

Figure 2: The static, semi-honest oblivious transfer protocol

Claim 4.1 Assuming that f is an enhanced trapdoor permutation, Protocol SOT UC realizes Fℓ
ot

in the presence of semi-honest, static adversaries.

23

Proof: Let A be a semi-honest, static adversary that interacts with parties running the above
protocol. We construct an adversary S for the ideal process for Fℓ

ot such that no environment Z
can tell with non-negligible probability whether it is interacting with A and the above protocol or
with S in the ideal process for Fℓ

ot. Recall that S interacts with the ideal functionality Fℓ
ot and

with the environment Z. Simulator S starts by invoking a copy of A and running a simulated
interaction of A with Z and parties running the protocol. (We refer to the interaction of S in the
ideal process as external interaction. The interaction of A with the simulated A is called internal

interaction.) S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where the sender T only is corrupted: S simulates a real execution in
which T is corrupted. S begins by activating A and receiving the message (sid, f) that A
(controlling T) would send R in a real execution. Then, S chooses y1, . . . , yℓ ∈R {0, 1}

k and
simulates R sending T the message (sid, y1, . . . , yℓ) in the internal interaction. Finally, when
A sends the message (sid, b1, . . . , bℓ) from T to R in the internal interaction, S externally sends
T ’s input x1, . . . , xℓ to Fℓ

ot and delivers the output from Fℓ
ot to R. (Recall that in the semi-

honest model as defined here, A is able to modify the input tape of T . Therefore, the value
x1, . . . , xℓ sent by S to Fℓ

ot is the (possibly) modified value. Formally this causes no problem
because actually it is the environment who writes the modified value, after “consultation”
with A. Since all communication is forwarded unmodified between A and Z, the value that
Z writes on T ’s input tape is the already-modified value. We ignore this formality in the
subsequent proofs in this section.)

Simulating the case where the receiver R only is corrupted: S begins by activating A and
internally sending it the message that A (controlling R) expects to receive from T in a
real execution. That is, S chooses a random trapdoor permutation f over {0, 1}k and its
inverse f−1, and sends (sid, f) to A. Next, it internally receives a message of the form
(sid, y1, . . . , yℓ) from A. Simulator S then externally sends R’s input i to Fℓ

ot and receives
back the output xi. S concludes the simulation by choosing b1, . . . , bi−1, bi+1, . . . , bℓ uniformly,
setting bi = xi ⊕ B(f−1(yi)), and internally sending A the message (sid, b1, . . . , bℓ). (Recall
that xi is the output as obtained by S from the ideal functionality Fℓ

ot.)

Simulating the case that neither party is corrupted: In this case, S receives a message (sid)
signalling it that T and R concluded an ideal execution with Fot. S then generates a sim-
ulated transcript of messages between the real model parties. That is, S generates T ’s first
message (sid, f) as the real T would, sets R’s reply to be (sid, y1, . . . , yℓ) where yj ∈R {0, 1}

k

for each j, and finally sets T ’s second message to (sid, b1, . . . , bℓ) where bj ∈R {0, 1} for every
j.

Simulating the case that both parties are corrupted: In this case, S knows both parties’
inputs and can therefore simulate a protocol execution by generating the actual messages
that the parties would send in a real execution.

14In actuality, it suffices to use any enhanced trapdoor permutation (see Footnote 2) and not necessarily one whose
domain equals {0, 1}k. For simplicity, we present the protocol for this special case.

24

We demonstrate that idealFot,S,Z
c
≈ realsot,A,Z . This is done by showing that the joint view of

Z and A in the execution of SOT is indistinguishable from the joint view of Z and the simulated
A within S in the ideal process. First, notice that the simulation for the case where T is corrupted
is perfect. This is because in both the ideal simulation and a real execution, the message received
by T consists of ℓ uniformly distributed k-bit strings, and the output of R is the same in both
executions. (Notice that since f is a permutation, choosing r uniformly and computing yi = f(r),
as occurs in a real execution, results in a uniformly distributed yi. Furthermore, the output of R is
bi⊕B(f−1(yi)) where bi is the ith value sent by T .) Second, we claim that the simulation for the case
where R is corrupted is indistinguishable from in a real execution. The only difference between the
two is in the message b1, . . . , bℓ received by R. The bit bi is identically distributed in both cases (in
particular, in both the simulation and a real execution it equals xi ⊕B(f−1(yi))). However, in the
ideal simulation, all the bits bj for j 6= i are uniformly chosen and are not distributed according to
xj⊕B(f−1(yj)). Nevertheless, due to the hard-core properties of B, the bit B(f−1(yj)) for a random
yj is indistinguishable from a random-bit bj ∈R {0, 1}. The same is also true for xj ⊕ B(f−1(yj))
when xj is fixed before yj is chosen. (More precisely, given an environment that distinguishes
with non-negligible probability between the real-life and the ideal interactions, we can construct an
adversary that contradicts the hard-core property of B.) Thus the views are indistinguishable. By
the same argument, we also have that the simulation for the case that neither party is corrupted
results in a view that is indistinguishable from a real execution. This completes the proof.

Our proof of security of the above protocol fails in the case of adaptive adversaries. Intuitively the
reason is that when a party gets corrupted, S cannot present the simulated A with a valid internal
state of the corrupted party. (This internal state should be consistent with the past messages sent by
the party and with the local input and output of that party.) In particular, the messages (sid, f),
(sid, y1, . . . , yℓ) and (sid, b1, . . . , bℓ) fully define the input bits x1, . . . , xℓ. However, in the case
that T is not initially corrupted, S does not know x1, . . . , xℓ and therefore with high probability,
the messages define a different set of input bits. Thus, if A corrupts T after the execution has
concluded, S cannot provide A with an internal state of T that is consistent both with x1, . . . , xℓ

and the simulated transcript that it had previously generated.

4.1.2 Adaptive UC Oblivious Transfer

Due to the above-described problem, we use a different protocol for UC realizing Fℓ
ot for the

case of adaptive, semi-honest adversaries. A main ingredient in this protocol are non-committing
encryptions as defined in [cfgn96] and constructed in [cfgn96, b97, dn00]. In addition to standard
semantic security, such encryption schemes have the property that ciphertexts that can be opened
to both 0 and 1 can be generated. That is, a non-committing (bit) encryption scheme consists of a
tuple (G,E,D, S), where G is a key generation algorithm, E and D are encryption and decryption
algorithms, and S is a simulation algorithm (for generating non-committing ciphertexts). The triple
(G,E,D) satisfies the usual properties of semantically secure encryption. That is, G(1k) = (e, d)
where e and d are the respective encryption and decryption keys, and Dd(Ee(m)) = m except
with negligible probability. Furthermore, {Ee(1)} is indistinguishable from {Ee(0)}. In addition,
the simulator algorithm S is able to generate “dummy ciphertexts” that can be later “opened” as
encryptions of either 0 or 1. More specifically, it is required that S(1k) = (e, c, r0, r1, d0, d1) with
the following properties:

• The tuple (e, c, r0, d0) looks like a normal encryption and decryption process for the bit 0. That
is, (e, c, r0, d0) is indistinguishable from a tuple (e′, c′, r′, d′) where (e′, d′) is a randomly chosen
pair of encryption and decryption keys, r′ is randomly chosen, and c′ = Ee(0; r

′). (In particular,

25

it should hold that Dd0(c) = 0.)

• The tuple (e, c, r1, d1) looks like a normal encryption and decryption process for the bit 1. That
is, (e, c, r1, d1) is indistinguishable from a tuple (e′, c′, r′, d′) where (e′, d′) is a randomly chosen
pair of encryption and decryption keys, r′ is randomly chosen, and c′ = Ee(1; r

′). (In particular,
it should hold that Dd1(c) = 1.)

Thus, given a pair (e, c), it is possible to explain c both as an encryption of 0 (by providing d0

and r0) and as an encryption of 1 (by providing d1 and r1). Here, we actually use augmented

non-committing encryption protocols that have the following two additional properties:

1. Oblivious key generation: It should be possible to choose a public encryption key e “without
knowing” the decryption key d. That is, there should exist a different key generation algorithm
Ĝ such that Ĝ(1k) = ê where ê is indistinguishable from the encryption key e chosen by G,
and in addition {Eê(0)} remains indistinguishable from {Eê(1)} even when the entire random
input of Ĝ is known.

2. Invertible samplability: this property states that the key generation and oblivious key genera-
tion algorithms G and Ĝ should be invertible. That is, we require the existence of an inverting
algorithm who receives any e output by the simulator algorithm S and outputs r such that
Ĝ(r) = e. (This algorithm may receive the coins used by S in computing e in order to find
r.) We also require an algorithm that receives any pair (e, di) for i ∈ {0, 1} from the output
of S, and outputs r such that G(r) = (e, di). (As before, this algorithm may receive the coins
used by S.) The idea here is that in order to “explain” the simulator-generated keys as being
generated in a legal way, it must be possible to find legal random coin tosses for them.15

Augmented two-party non-committing encryption protocols exist under either one of the RSA or
the DDH assumptions. The requirements are also fulfilled in any case that public keys are uniformly
distributed over some public domain and secret keys are defined by the random coins input to G.
See more details in [cfgn96, dn00].

The protocol for UC realizing Fℓ
ot, denoted AOT (for Adaptive Oblivious Transfer) is presented

in Figure 3. As in the static case, the protocol is defined for the case where each of the ℓ input
values is a single bit.

Protocol AOT

Proceed as follows, on security parameter k and using an augmented non-committing encryption scheme
(G, Ĝ, E, D, S).

1. Given input (receiver, sid, i), receiver R runs G(1k) to obtain (e, d), and runs Ĝ(1k) ℓ−1 times
to obtain ê1, ..., êi−1, êi+1, ..., êℓ. Then, R sends (sid, ê1, ..., êi−1, e, êi+1, ..., êℓ) to T .

2. Given input (sender, sid, x1, ..., xℓ), and having received (sid, e1, ..., eℓ) from R, sender T computes
cj = Eej

(xj) for every 1 ≤ j ≤ ℓ, and sends (sid, c1, ..., cℓ) to R.

3. Having received (sid, c1, . . . , cℓ) from T , receiver R computes xi = Dd(ci) and outputs (sid, xi).

Figure 3: The adaptive, semi-honest oblivious transfer protocol

15In its most general form, one can define an invertible sampling algorithm for G that receives any pair (e, d) in
the range of G and S and outputs r such that G(r) = (e, d). However, we actually only need the inverting algorithm
to work for keys output by the simulator S.

26

Claim 4.2 Assume that (G, Ĝ,E,D, S) is an augmented non-committing encryption scheme. Then,

Protocol AOT UC realizes Fℓ
ot in the presence of semi-honest, adaptive adversaries.

Proof: The main difference between this proof and the proof of Claim 4.1 is due to the fact that
the real-model adversary A can corrupt parties during (or after) the simulation. When S receives
such a “corrupt” command, it corrupts the ideal-model party and receives its input (and possibly
its output). Given this information, S must produce random coins for this party such that the
simulated transcript generated so far is consistent with the revealed input (and output).

Let A be a semi-honest, adaptive adversary that interacts with parties running the above
protocol. We construct an adversary S in the ideal process for Fℓ

ot such that no environment Z
can tell with non-negligible advantage whether it is interacting with A and the above protocol or
with S in the ideal process for Fℓ

ot. In describing the simulation here, it is helpful to distinguish
between the ideal (dummy) parties, denoted T̃ and R̃, and the ITMs representing the real model
parties in the internal interaction, denoted T and R. S works as follows: S works as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the receiver: We separately describe the simulation for a corrupted and uncorrupted
receiver.

1. Simulation when the receiver R̃ is not corrupted: In this case, S needs to simulate the real
receiver message. This is done as follows: S runs the encryption simulation algorithm
S(1k) independently ℓ times. For each j, S obtains a tuple (ej , cj , r

j
0, r

j
1, d

j
0, d

j
1); see the

explanation above for the meaning of each element in this tuple. Then, S generates R’s
message to be (sid, e1, . . . , eℓ) and simulates R writing it on its outgoing communication
tape for T .

2. Simulation when the receiver R̃ is corrupted: In this case, S holds the input (receiver, sid, i)
of the ideal receiver R̃ and constructs a virtual real-model receiver R as follows. The
contents of the input tape of R is set to (receiver, sid, i). In order to set the contents of
R’s random tape, S first runs the encryption simulation algorithm S(1k) independently
ℓ times, obtaining tuples (ej , cj , r

j
0, r

j
1, d

j
0, d

j
1). Next, for every j 6= i, S uses the invertible

sampling algorithm in order to find rj so that Ĝ(rj) = ej, where Ĝ is the oblivious key
generator. Furthermore, S uses the invertible sampling algorithm in order to find ri so
that G(ri) = (ei, d

i
xi

). (Recall that xi is the ideal receiver R̃’s output.) Then, S sets the
contents of R’s random tape to equal r1, . . . , rℓ.

S passes the simulated internal state of R (including the contents of its input and
random tapes) to A and waits for A to activate R in the simulation. When this occurs,
S internally obtains the message (sid, e1, . . . , eℓ) that R writes on its outgoing message
tape. Then, when A delivers this message to T in the internal simulation, S externally
delivers the (receiver, sid, i) message from R̃ to Fℓ

ot. (We note that for every j 6= i, it
holds that ej = Ĝ(rj) is the same ej as generated by S(1k). On the other hand, ei is the
encryption key output by G(ri), where G is the standard encryption key generator.)

Simulating the sender: Once again, we separately consider the case that the sender is corrupted
or not corrupted.

27

1. Simulation when the sender T̃ is not corrupted: After A delivers the message from R
to T in the internal simulation, S simulates the real-model T writing (sid, c1, . . . , cℓ)
on its outgoing communication tape, where the ci’s were generated from S(1k) when
simulating the receiver message above. When A delivers this message from T to R in
the internal simulation, then S delivers the output from Fℓ

ot to R̃ in the ideal process.
This is the same whether or not R̃ is corrupted.

2. Simulation when the sender T̃ is corrupted: The simulator S holds the ideal T̃ ’s in-
put (sender, sid, x1, . . . , xℓ) and constructs a virtual real-model sender T by writing
(sender, sid, x1, . . . , xℓ) on its input tape and a uniformly distributed string on its ran-
dom tape. Then, as above, S passes A the simulated internal state of T (consisting
of the contents of its input and random tapes). When A activates T and delivers
the outgoing message from T to R, then simulator S externally delivers the message
(sender, sid, x1, . . . , xℓ) from T̃ to Fℓ

ot.

Dealing with “corrupt” commands: We assume that any corruption of a party occurs after
the adversary has delivered the party’s protocol message in the simulation. (Otherwise, the
corruption essentially occurs before the protocol begins and the instructions above suffice.)
Now, if S receives a command from A to corrupt the real-model R, then it corrupts the ideal
model R̃ and obtains its input i and its output xi. Given i and xi, simulator S passes A the
decryption-key di

xi
(and thus the ciphertext ci given to R in the simulated sender-message is

“decrypted” to xi). Furthermore, for every j 6= i, S runs the invertible sampling algorithm on
ej in order to find rj such that Ĝ(rj) = ej . Finally, S runs the invertible sampling algorithm
on ei in order to find ri such that G(ri) = (ei, d

i
xi

). Notice that these two invertible sampling
algorithms are different. S supplies A with the random tape r1, . . . , rℓ for R.

If S receives a command from A to corrupt real-model T , then it first corrupts the ideal-
model T̃ and obtains x1, . . . , xℓ. Next, it prepares appropriate randomness to make it appear
that for every j, it holds that cj = Eej

(xj) (where the (cj , ej) pairs are taken from the
simulated receiver and sender messages). Since the encryption keys are non-committing and
were generated by running S(1k), we have that for every 1 ≤ j ≤ ℓ simulator S has a string
rxj

such that cj = Eej
(xj; rxj

). Therefore, S writes rx1 , . . . , rxℓ
as T ’s random tape.

As argued in the proof of Claim 4.1, it suffices to show that A’s view in the simulation is indis-
tinguishable from its view in a real execution. (Note that in the adaptive case there is a positive
correctness error. That is, there is non-zero probability that the outputs of the uncorrupted parties
in the real-life interaction will differ from their outputs in the ideal process. This error probability is
due to the fact that encryption schemes can “fail” with negligible probability. Since the probability
of such an event is negligible, we ignore it here.) The indistinguishability of the views is demon-
strated using the properties of the augmented non-committing encryption scheme. In particular, the
non-committing encryption keys, ciphertexts and decommitment strings are all indistinguishable
from those appearing in a real execution. Furthermore, by the oblivious key-generation algorithm,
S supplies only a single decryption key (for the ith encryption key) and this is what a real receiver
would also have. (More precisely, given an environment that distinguishes between the real-life and
ideal interactions we construct an adversary that breaks either the security of the non-committing
encryption or the oblivious key generation property. We omit further details.)

28

4.2 The General Construction

We are now ready to show how to UC realize any (adaptively) well-formed two-party functionality in
the Fot-hybrid model, in the semi-honest case. (Adaptively well-formed functionalities are defined
in Section 3.3. Two-party functionalities are functionalities that interact with the adversary, plus
at most two parties.) The construction is essentially that of [gmw87, g98], although as we have
mentioned, our protocol is actually more general in that it also deals with reactive functionalities.
We begin by formally restating Proposition 2.1:

Proposition 4.3 (Proposition 2.1 – formally restated): Assume that enhanced trapdoor permuta-

tions exist. Then, for any two-party well-formed ideal functionality F , there exists a non-trivial

protocol that UC realizes F in the presence of semi-honest, static adversaries. Furthermore, if

two-party augmented non-committing encryption protocols exist, then for any two-party adaptively

well-formed ideal functionality F , there exists a non-trivial protocol that UC realizes F in the pres-

ence of semi-honest, adaptive adversaries.

Recall that a protocol is non-trivial if the ideal-process adversary delivers all messages from the
functionality to the parties whenever the real-life adversary delivers all messages and doesn’t corrupt
any parties. This restriction is included to rule out meaningless protocols such as the protocol that
never generates output. (See Section 3.1 for more discussion.)

The construction. Let F be an ideal two-party functionality and let P1 and P2 be the partic-
ipating parties. The first step in constructing a protocol that UC realizes F is to represent (the
core of) F via a family CF of boolean circuits. That is, the mth circuit in the family describes
an activation of F when the security parameter is set to m. Following [gmw87, g98], we use
arithmetic circuits over GF(2) where the operations are addition and multiplication modulo 2.

For simplicity we assume that the input and output of each party in each activation has at most
m bits, the number of random bits used by F in all activations is at most m, and at the end of
each activation the local state of F can be described in at most m bits. Consequently the circuit
has 3m input lines and 3m output lines, with the following interpretation. In each activation, only
one party has input. Therefore, m of the input lines are allocated for this input. The other 2m
input lines describe F ’s m random coins and the length-m internal state of F at the onset of an
activation. The 3m output lines are allocated as follows: m output lines for the output of each of
the two parties and m output lines to describe the state of F following an activation. The circuit
is constructed so that each input from the adversary is set to 0, and outputs to the adversary are
ignored.16 We note that if the input or output of a party in some activation is less than m bits
then this is encoded in a standard way. Also, each party initially sets its shares of the state of F
to 0 (this denotes the empty state).

Protocol Π
F

(for UC realizing F): We state the protocol for an activation in which P1 sends
a message to F ; the case where P2 sends the message is easily derived (essentially by exchanging
the roles of P1 and P2 throughout the protocol). It is assumed that both parties hold the same
session identifier sid as auxiliary input. When activated with input (sid, v) within P1, the protocol
first sends a message to the partner P2, asking it to participate in a joint evaluation of the mth

circuit in CF . Next, P1 and P2 engage in a gate-by-gate evaluation of CF , on inputs that represent

16Thus, we effectively prevent the ideal-model adversary from utilizing its capability of sending and receiving
messages. This simplifies the construction, and only strengthens the result.

29

the incoming message v from P1, the current internal state of F , and a random string. This is done
as follows.

1. Input Preparation Stage:

• Input value: Recall that v is P1’s input for this activation. P1 first pads v to be of length
exactly m (using some standard encoding). Next P1 “shares” its input. That is, P1 chooses
a random string v1 ∈R {0, 1}

m and defines v2 = v1⊕ v. Then, P1 sends (sid, v2) to P2 and
stores v1.

• Internal state: At the onset of each activation, the parties hold shares of the current
internal state of F . That is, let c denote the current internal state of F , where |c| = m.
Then, P1 and P2 hold c1, c2 ∈ {0, 1}

m, respectively, such that c1 and c2 are random under
the restriction that c = c1 ⊕ c2. (In the first activation of F , the internal state is empty
and so the parties’ shares both equal 0m.)

• Random coins: Upon the first activation of F only, parties P1 and P2 choose random
strings r1 ∈R {0, 1}

m and r2 ∈R {0, 1}
m, respectively. These constitute shares of the

random coins r = r1 ⊕ r2 to be used by CF . We stress that r1 and r2 are chosen upon
the first activation only. The same r1 and r2 are then used for each subsequent activation
of F (r1 are r2 are kept the same because the random tape of F does not change from
activation to activation).

At this point, P1 and P2 hold (random) shares of the input message to F , the internal state
of F and the random tape of F . That is, they hold shares of every input line into CF . Note
that the only message sent in the above stage is the input share v2 sent from P1 to P2.

2. Circuit Evaluation: P1 and P2 proceed to evaluate the circuit CF in a gate-by-gate manner.
Let α and β denote the values of the two input lines to a given gate. Then P1 holds bits α1, β1

and P2 holds bits α2, β2 such that α = α1 + α2 and β = β1 + β2. The gates are computed as
follows:

• Addition gates: If the gate is an addition gate, then P1 locally sets its share of the output
line of the gate to be γ1 = α1 + β1. Similarly, P2 locally sets its share of the output line
of the gate to be γ2 = α2 + β2. (Thus γ1 + γ2 = α + β.)

• Multiplication gates: If the gate is a multiplication gate, then the parties use F4
ot in order

to compute their shares of the output line of the gate. That is, the parties wish to compute
random shares γ1 and γ2 such that γ1 + γ2 = α · β = (α1 + α2)(β1 + β2). For this purpose,
P1 chooses a random bit γ1 ∈R {0, 1}, sets its share of the output line of the gate to γ1,
and defines the following table:

Value of (α2, β2) Receiver input i Receiver output γ2

(0,0) 1 o1 = γ1 + (α1 + 0) · (β1 + 0)
(0,1) 2 o2 = γ1 + (α1 + 0) · (β1 + 1)
(1,0) 3 o3 = γ1 + (α1 + 1) · (β1 + 0)
(1,1) 4 o4 = γ1 + (α1 + 1) · (β1 + 1)

Having prepared this table, P1 sends the oblivious transfer functionality F4
ot the message

(sender, sid ◦ j, o1, o2, o3, o4), where this is the jth multiplication gate in the circuit and ◦
denotes concatenation (the index j is included in order to ensure that the inputs of the
parties match to the same gate). P2 sets its input value i for F4

ot according to the above

30

table (e.g., for α2 = 1 and β2 = 0, P2 sets i = 3). Then, P2 sends (receiver, sid ◦ j, i) to
F4

ot and waits to receive (sid ◦ j, γ2) from F4
ot. Upon receiving this output, P2 sets γ2 to

be its share of the output line of the gate. Thus, we have that γ1 +γ2 = (α1 +β1)(α2 +β2)
and the parties hold random shares of the output line of the gate.

3. Output Stage: Following the above stage, the parties P1 and P2 hold shares of all the output
lines of the circuit CF . Each output line of CF is either an output addressed to one of the
parties P1 and P2, or belongs to the internal state of CF after the activation. The activation
concludes as follows:

• P1’s output: P2 sends P1 all of its shares in P1’s output lines. P1 reconstructs every bit
of its output value by adding the appropriate shares, and writes the result on its output
tape. (If the actual output generated by F has less than the full m bits then this will be
encoded in the output in a standard way.)

• P2’s output: Likewise, P1 sends P2 all of its shares in P2’s output lines; P2 reconstructs
the value and writes it on its output tape.

• S’s output: Recall that the outputs of F to S are ignored by CF . Indeed, the protocol
does not provide the real-life adversary with any information on these values. (This only
strengthens the security provided by the protocol.)

• Internal state: Finally, P1 and P2 both locally store the shares that they hold for the
internal state lines of CF . (These shares are to be used in the next activation.)

Recall that there is no guarantee on the order of message delivery, so messages may be delivered
“out of order”. However, to maintain correctness, the protocol must not start some evaluation
of CF before the previous evaluation of CF has completed. Furthermore, evaluating some gate
can take place only after the shares of the input lines of this gate are known. Thus, in order to
guarantee that messages are processed in the correct order, a tagging method is used. Essentially,
the aim of the method is to assign a unique tag to every message sent during all activations of F .
Thus, the adversary can gain nothing by sending messages in different orders. This is achieved in
the following way. Recall that both parties hold the same session-identifier sid. Then, in activation
i, the parties use the session-identifier sid ◦ i. They also attach a tag identifying the stage which
the message sent belongs to. Thus, for example, the message v2 sent by P1 in the input stage of
the ℓth activation is tagged with 〈sid ◦ ℓ ◦ input〉. Likewise, the jth call to Fot in the ith activation
is referenced with the session identifier sid ◦ ℓ ◦ j (and not just sid ◦ j as described above). Now,
given the above tagging method, the ordering guarantees can be dealt with in standard ways by
keeping messages that arrive too early in appropriate buffers until they become relevant (where the
time that a message becomes relevant is self-evident from the labelling). By the above, it makes
no difference whether or not the adversary delivers the messages according to the prescribed order.
From here on we therefore assume that all messages are delivered in order. We also drop explicit
reference to the additional tagging described here. This completes the description of ΠF .

We now prove that the above construction UC realizes any adaptively well-formed functionality.
(We stress that for the case of static adversaries, ΠF UC realizes any well-formed functionality,
and not just those that are adaptively well-formed. Nevertheless, here we prove the claim only for
adaptively well-formed functionalities and adaptive adversaries. The static case with security for
any well-formed functionality is easily derived.)

Notice that each activation of ΠF is due to an input sent by one of the participating parties.
This implicitly assumes that the only messages that the functionality receives are from the parties

31

themselves. This is indeed the case for well-formed functionalities (or, more accurately, the shells
of such functionalities). However, recall that in general, functionalities also receive notification of
the parties that are corrupted. The protocol does not (and cannot) deal with such messages and
therefore does not UC realize functionalities that are not well-formed.

Claim 4.4 Let F be a two-party adaptively well-formed functionality. Then, protocol ΠF UC

realizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.

Note that the claim holds unconditionally. In fact, it holds even if the environment and the
adversary are computationally unbounded. (Of course, computational assumptions are required
for UC realizing the oblivious transfer functionality.) The proof below deals with the security of
reactive functionalities, in the presence of adaptive adversaries. This proof is significantly more
involved than an analogous claim regarding non-reactive functionalities and static adversaries. For
a warm-up, we refer the reader unfamiliar with this more simple case to [g98, Sec. 2.2.4].

Proof: First note that protocol ΠF “correctly” computes F . That is, in each activation, if the
inputs of both parties in the real-life model are identical to their inputs in the ideal process, then the
outputs of the uncorrupted parties are distributed identically as their outputs in the ideal process.
This fact is easily verified and follows inductively from the property that the parties always hold
correct shares of the lines above the gates computed so far. (The base case of the induction relates
to the fact that the parties hold correct shares of the input and internal state lines. In addition,
the lines corresponding to F ’s random tape contain uniformly distributed values.)

We now proceed to show that ΠF UC realizes F . Intuitively, the security of protocol ΠF is
based on the fact that all the intermediate values seen by the parties are uniformly distributed. In
particular, the shares that each party receives of the other party’s input are random. Furthermore,
every output that a party receives from an oblivious transfer is masked by a random bit chosen by
the sender. Throughout the proof, we denote by x and y the outputs of P1 and P2, respectively.

Let A be a semi-honest, adaptive adversary that interacts with parties running Protocol ΠF

in the Fot-hybrid model. We construct an adversary S for the ideal process for F such that no
environment Z can tell whether it interacts with A and ΠF in the Fot-hybrid model, or with S in
the ideal process for F . S internally runs a simulated copy of A, and proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulation of the input stage: We first describe the simulation in the case that P1 is corrupted
before the protocol begins. In this case, S holds the contents of P1’s input tape (sid, v) and
therefore externally sends the value to the ideal functionality F . Now, the input stage of ΠF

consists only of P1 sending a random string v2 to P2. In the case that P1 is corrupted, this
string is already determined by the specified uniform random tape of P1, and thus no further
simulation is required. In the case that P1 is not corrupted, S chooses a uniformly distributed
string v2 and simulates P1 sending this string to P2.

Simulation of the circuit evaluation stage: The computation of addition gates consists only
of local computation and therefore requires no simulation. In contrast, each multiplication
gate is computed using an ideal call to Fot, where P1 plays the sender and P2 plays the
receiver. We describe the simulation of these calls to Fot separately for each corruption case:

32

1. Simulation when both P1 and P2 are not corrupted: In this case, the only message seen
by A in the evaluation of the jth gate is the (sid ◦ j) message from the corresponding
copy of Fot. Thus, S simulates this stage by merely simulating for A an (sid◦j) message
sent from Fot to the recipient P2.

2. Simulation when P1 is corrupted and P2 is not corrupted: The simulation in this case
is the same as in the previous (P1 obtains no output from Fot and therefore A receives
(sid ◦ j) only).

3. Simulation when P1 is not corrupted and P2 is corrupted: The receiver P2 obtains a
uniformly distributed bit γ2 as output from each call to Fot. Therefore, S merely
chooses γ2 ∈R {0, 1} and simulates P2 receiving γ2 from Fot.

4. Simulation when both P1 and P2 are corrupted: Since all input and random tapes are
already defined when both parties are corrupted, simulation is straightforward.

Simulation of the output stage: S simulates P1 and P2 sending each other their shares of the
output lines. As above, we separately describe the simulation for each corruption case:

1. Simulation when both P1 and P2 are not corrupted: In this case, all A sees is P1 and P2

sending each other random m-bit strings. Therefore, S chooses y1, x2 ∈R {0, 1}
m and

simulates P1 sending y1 to P2 and P2 sending x2 to P1 (y1 is P1’s share in P2’s output
y and vice versa for x2).

2. Simulation when P1 is corrupted and P2 is not corrupted: First, notice that the output
shares of a corrupted party are already defined (because A holds the view of any cor-
rupted party and this view defines the shares in all output lines). Thus, in this case,
the string sent by P1 in the output stage is predetermined. In contrast, P2’s string is
determined as follows: P1 is corrupted and therefore S has P1’s output x. Furthermore,
P1’s shares x1 in its own output lines are fixed (because P1 is corrupted). S therefore
simulates P2 sends x2 = x⊕x1 to P1 (and so P1 reconstructs its output to x, as required).

3. Simulation when P1 is not corrupted and P2 is corrupted: The simulation here is the
same as in the previous case (while reversing the roles of P1 and P2).

4. Simulation when both P1 and P2 are corrupted: The shares of all output lines of both
parties are already determined and so simulation is straightforward.

Simulation of the first corruption: We now show how S simulates the first corruption of a
party. Notice that this can occur at any stage after the simulation described above begins.
(If the party is corrupted before the execution begins, then the simulation is according to
above.) We describe the corruption as if it occurs at the end of the simulation; if it occurs
earlier, then the simulator follows the instructions here only until the appropriate point. We
differentiate between the corruptions of P1 and P2:

1. P1 is the first party corrupted: Upon corrupting P1, simulator S receives P1’s input value
v and output value x. S proceeds by generating the view of P1 in the input preparation
stage. Let v2 be the message that P1 sent P2 in the simulation of the input stage by S.
Then, S sets P1’s shares of its input to v1, where v1⊕v2 = v. Furthermore, S sets P1’s m-
bit input r1 to the lines corresponding to CF ’s random tape to be a uniformly distributed
string, and P1’s shares of the internal state of F to be a random string c1 ∈R {0, 1}

m.
(Actually, if this is the first activation of CF , then c1 is set to 0m to denote the empty
state.) In addition, S sets P1’s random tape to be a uniformly distributed string of the

33

appropriate length for running ΠF . (Notice that this random tape defines the bits γ1

that P1 chooses when defining the oblivious transfer tables for the multiplication gates;
recall that these bits then constitute P1’s shares of the output lines from these gates.)
In the case that P1 is corrupted before the output stage, this actually completes the
simulation of P1’s view of the evaluation until the corruption took place. This is due
to the fact that P1 receives no messages during the protocol execution until the output
stage (P1 is always the oblivious transfer sender).

We now consider the case that P1 is corrupted after the output stage is completed. In
this case the output messages x2 and y1 of both parties have already been sent. Thus,
we must show that S can efficiently compute a random tape for P1 that is consistent
with these messages. For simplicity of exposition, we assume that only multiplication
gates, and no addition gates, lead to output lines; any circuit can be easily modified to
fulfill this requirement. Now, notice that the random coin γ1 chosen by P1 in any given
multiplication gate is independent of all other coins. Therefore, the simulated output
messages x2, y1 that S already sent only influence the coins of multiplication gates that
lead to output lines; the coins of all other multiplication gates can be chosen uniformly
and independently of x2, y1. The coins for multiplication gates leading to output lines
are chosen as follows: For the ith output line belonging to P2’s output, S sets P1’s
coin γ1 to equal the ith bit of y1. (Recall that P1’s random coin γ1 equals its output
from the gate; therefore, P1’s output from the gate equals its appropriate share in P2’s
output, as required.) Furthermore, for the ith output line belonging to P1’s output, S
sets P1’s random coin γ1 to equal the ith bit of x ⊕ x2. (Therefore, P1’s reconstructed
output equals x, as required; furthermore, this reconstructed value is independent of the
intermediary information learned by the adversary.)

2. P2 is the first party corrupted: Upon the corruption of P2, simulator S receives P2’s
output y (P2 has no input). Then, S must generate P2’s view of the execution. S begins
by choosing r2 ∈R {0, 1}

m and setting P2’s input to the lines corresponding to CF ’s
random tape to r2. In addition, it chooses the shares of the internal state of F to be a
random string c2. (As above, in the first activation of CF , the string c2 is set to 0m.)
Next, notice that from this point on, P2 is deterministic (and thus it needs no random
tape). Also, notice that the value that P2 receives in each oblivious transfer is uniformly
distributed. Therefore, S simulates P2 receiving a random bit for every oblivious transfer
(S works in this way irrespective of when P2 was corrupted). If this corruption occurs
before the output stage has been simulated, then the above description is complete (and
accurate). However, if the corruption occurs after the simulation of the output stage,
then the following changes must be made. First, as above, the random bits chosen for
P2’s outputs from the oblivious transfers define P2’s shares in all the output lines. Now,
if the output stage has already been simulated then the string x2 sent by P2 to P1 and
the string y1 sent by P1 to P2 have already been fixed. Thus, as in the previous case, S
chooses the output bits of the oblivious transfers so that they are consistent with these
strings. In particular, let y be P2’s output (this is known to S since P2 is corrupted)
and define y2 = y ⊕ y1. Then, S defines P2’s output-bit of the oblivious transfer that is
associated with the ith bit of its shares of its own output to be the ith bit of y2. Likewise,
the output from the oblivious transfer associated with the ith bit of P2’s share of P1’s
output is set to equal the ith bit of x2.

We note that in the above description, S generates the corrupted party’s view of the current

34

activation. In addition, it must also generate the party’s view for all the activations in
the past. Observe that the only dependence between activations is that the shares of the
state string input into a given activation equal the shares of the state string output from the
preceding activation. Thus, the simulation of prior activations is exactly the case of simulation
where the corruption occurs after the output stage has been completed. The only difference
is that S defines the shares of the state string so that they are consistent between consecutive
activations.

Simulation of the second corruption: As before, we differentiate between the corruptions of
P1 and P2:

1. P2 is the second party corrupted: Upon corrupting P2, simulator S obtains P2’s output
in this activation and all its inputs and outputs from previous activations. Furthermore,
since the functionality is adaptively well-formed, S obtains the random tape used by the
ideal functionality F in its computation. Next, S computes the internal state of F in
this activation, based on all the past inputs, outputs and the internal random tape of F
(this can be computed efficiently). Let c be this state string and let r equal F ’s m-bit
random tape. Then, P2 sets c2 such that c = c1 ⊕ c2, where c1 was randomly chosen
upon P1’s corruption. (S also makes sure that the output state information from the
previous execution equals the input state information from this execution. This is easily
accomplished because output gates are always immediately preceded by multiplication
gates, and so independent random coins are used.) Similarly, S sets r2 = r1 ⊕ r, where
r equals F ’s random tape and r1 equals the random string chosen upon P1’s corruption
(for simulating P1’s share of the random tape of CF).

We now proceed to the rest of the simulation. In the case we are considering here,
P1 has already been corrupted. Therefore, all the tables for the oblivious transfers have
already been defined. It thus remains to show which values P2 receives from each of these
gate evaluations. However, this is immediately defined by P2’s input and the oblivious
transfer tables. Thus, all the values received by P2 from this point on, including the
output values, are fully defined, and S can directly compute them.

2. P1 is the second party corrupted: The simulation by S here begins in the same way as
when P2 is the second party corrupted. That is, S corrupts P1 and obtains the random
tape of F . Then, S defines the appropriate state share string c1, and random tape share
string r1 (in the same way as above). In addition, S obtains P1’s input value v and defines
the appropriate share v1 (choosing it so that v1 ⊕ v2 = v). This defines all the inputs
into the circuit CF . Given this information, S constructs the tables for all the oblivious
transfers. Recall that P2 is already corrupted. Therefore, the bits that it receives from
each oblivious transfer are already defined. Now, for each gate (working from the inputs
to the outputs), S works as follows. Let γ2 be the output that P2 received from some
oblivious transfer. Furthermore, assume that S holds the input shares of both parties
for the gate in question (this can be assumed because S works bottom-up, from the
input lines to the output lines). Then, S checks what the real (unmasked) output bit of
the gate should be, let this value be γ. Given that P2 received γ2 and the output value
should be γ, simulator S sets P1’s random-bit in defining this table to be γ1 = γ2 ⊕ γ
(notice that γ1 and P1’s input values to the gate fully define the table). S continues in
this way for all the gates evaluated in the simulation before P1 was corrupted. We note
that if the corruption occurred after the output stage, then the output strings sent are
defined by the outputs of the gates, as computed above.

35

Output and output delivery: S delivers the output from F to (an uncorrupted) party after A
delivers the corresponding output message to the party in the simulation. This takes care of
the outputs of the uncorrupted parties. For a corrupted party Pi (i ∈ {1, 2}), simulator S
copies the contents of the simulated Pi’s output tape (as written by A) onto the output tape
of the ideal process party Pi.

Analysis of S. We show that no environment Z can distinguish the case where it interacts with
S and F in the ideal process from the case where it interacts with A and ΠF in the Fot-hybrid
model. In fact, we demonstrate that Z’s view is distributed identically in the two interactions.

The proof proceeds by induction on the number of activations in a run of Z. Recall that in each
activation, Z reads the output tapes of P1, P2, and the adversary, and then activates either P1, P2

or the adversary with some input value. (One should not confuse activations of a party, as is the
intention here, with activations of the functionality and protocol.) We actually prove a somewhat
stronger claim: Let ζr

i denote the random variable describing the state of Z at the onset of the ith

activation in a real (or, more precisely, hybrid) interaction with adversary A and parties running
ΠF in the Fot-hybrid model, and let αr

i denote the random variable describing the state of A at
this point in the interaction. Let ζ i

i denote the random variable describing the state of Z at the
onset of its ith activation in an interaction with adversary S in the ideal process for functionality F ,
and let αi

i denote the random variable describing the state of the simulated A within S at this point
in the interaction. We show that for all i, the pairs (ζr

i , αr
i) and (ζ i

i , α
i
i) are identically distributed.

More precisely, Let i > 0. Then, for any values a1, a2, b1, b2 we show:

Pr
[

(ζr
i+1, α

r
i+1) = (b1, b2)

∣

∣

∣ (ζr
i , αr

i) = (a1, a2)
]

=Pr
[

(ζ i
i+1, α

i
i+1) = (b1, b2)

∣

∣

∣ (ζ i
i, α

i
i) = (a1, a2)

]

(2)

That is, assume that the states of Z and A at the onset of some activation of Z have some arbitrary
(fixed) values a1 and a2, respectively. Then the joint distribution of the states of Z and A at the
onset of the next activation of Z is the same regardless of whether we are in the “real interaction”
with ΠF , or in the ideal process. (In the real interaction with ΠF , the probability is taken over the
random choices of the uncorrupted parties. In the ideal process the probability is taken over the
random choices of S and F .)

Asserting Eq. (2), recall that in the ith activation Z first reads the output tapes of P1, P2,
and the adversary. (We envision that these values are written on a special part of the incoming
communication tape of Z, and are thus part of its state ζr

i = ζ i
i.) Next, Z either activates some

uncorrupted party with some input v, or activates the adversary with input v. We treat these cases
separately:

Z activates an uncorrupted party with some input value v. In this case, in the interaction
with ΠF , the activated party sends out a request to the other party to evaluate an activation
of CF , plus a random share of v. This message becomes part of the state of A (who sees all
messages sent). In the ideal process, S (who sees that the party has written a message on
its outgoing communication tape for F) generates the message that A would expect to see;
recall that this message is just a uniformly distributed string.

Z activates the adversary or a corrupted party with some input value v. Recall that in
the interaction with ΠF adversary A is now activated, reads v, and in addition has access to
the messages sent by the parties and by the various copies of Fot since its last activation.
(We envision that this information is written on A’s incoming communication tape.) Next,
A can either deliver a message to some party, modify the input/output tapes of some already

36

corrupted party or corrupt a currently honest party. Finally, A writes some value on its output
tape and completes its activation. In the ideal process, S forwards v to A and activates A.
Next, S provides A with additional information representing the messages sent by the parties
and also, in case of party corruption, the internal state of the corrupted party.

We proceed in four steps. First, we show that the contents of A’s incoming communication
tape has the same distribution in both interactions. Second, we show that the effect of message
delivery on the states of A and Z is the same in both interactions. Third, we demonstrate
that the information learned by A upon corrupting a party has the same distribution in
both interactions. Finally, we demonstrate that A’s view regarding the states of the already
corrupted parties has the same distribution in both interactions.

New messages seen by A. Each message seen by A is of one of the following possible
types:

• An input-sharing message as described above: As mentioned above, in this case in both
interactions A sees an m-bit long random string, representing a share of the sender’s
new input value.

• A message from a party to some copy of Fot: In this case, in both interactions, A only
gets notified that some message was sent from the party to the copy of Fot.

• A message from some copy of Fot to P2: In both interactions, if P2 is uncorrupted then
A does not see the contents of this message. If P2 is corrupted then this message consists
of a single random bit that is independent from the states of A and Z so far. (This bit
is P2’s share of the corresponding line of the circuit.)

• An output message from one party to another: Here one party sends its share of some
output line to the other party (who is designated to get the value of this line.) In both
interactions, if the recipient party is uncorrupted then this message consists of a single
random bit α that is independent from the states of A and Z so far. If the recipient
is corrupted then A already has β, the recipient’s share of that line. In the interaction
with ΠF , the value γ = α⊕β is the value of this output line in CF . In the ideal process,
γ = α ⊕ β is the corresponding value generated by F . The distribution of c (given the
states of A and Z so far) is identical in both cases; this is the case because CF correctly
represents an activation of F .

Messages delivered by A. If A delivers an output message to some party in an execution
of ΠF , then this party outputs the (correct) value derived from the corresponding output lines
of CF . This output value, γr, becomes part of the state of Z (to be read by Z at the onset of
its next activation.) If A delivers an output message to some party in the ideal process, then
S (who runs A) delivers the corresponding message from F to this party. Consequently, this
party outputs the value, γi, sent by F . Since CF correctly represents the computation of F ,
we have that γr and γi are identically distributed.

If A delivers to some party Pi a message that is not an output message then Pi outputs
nothing. (Pi may send other messages, but these messages will only become part of the state
of A in its next activation. This next activation of A occurs after the next activation of Z.)

Corruption of the first party. In the interaction with ΠF , upon corrupting the first
party A sees all the past inputs and outputs of this party. In addition, it sees all the shares
of this party from the input lines, the random input lines, the internal state input lines,
and all the internal lines of the circuit CF ; these shares are all random values distributed

37

independently from the states of A and Z so far. In the ideal process, S provides A with
identically distributed information.

Corruption of the second party. In the interaction with ΠF , upon corrupting the second
party A sees the same information as in the first corruption, namely all the past inputs and
outputs of this party, as well as the shares of this party from the input lines, the random input
lines, the internal state input lines, and all the internal lines of the circuit CF . Here, however,
this information determines the actual values of all types of input lines to the circuit, plus
the values of all the internal lines of the circuit. (The values of the random input lines to
the circuit are uniformly distributed. All other lines are uniquely determined by the states
of Z and A at this point.) In the ideal process, S provides A with identically distributed
information. (This can be seen from the code of S.)

This completes the analysis of S and the proof of the claim.

Using the UC composition theorem, Proposition 4.3 follows from Claims 4.1, 4.2, and 4.4.

5 Universally Composable Commitments

We describe our new universally composable non-interactive commitment scheme that is secure
against adaptive adversaries. Our construction is in the common reference string model, and
assumes only the existence of enhanced trapdoor permutations. (If the common reference string
must come from the uniform distribution, then we actually require enhanced trapdoor permutations
with dense public descriptions [dp92].) UC commitment schemes are protocols that UC realize the
multi-session ideal commitment functionality Fmcom that is presented in Figure 4. Note that Fmcom

is in fact a re-formulation of F̂com, the multi-session extension of the single-session ideal commitment
functionality, Fcom, presented in [cf01].

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Commit Phase: Upon receiving a message (commit, sid, ssid, Pi, Pj , b) from Pi, where b ∈ {0, 1},
record the tuple (ssid, Pi, Pj , b) and send the message (receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore
any future commit messages with the same ssid from Pi to Pj .

• Reveal Phase: Upon receiving a message (reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , b)
was previously recorded, then send the message (reveal, sid, ssid, Pi, Pj , b) to Pj and S. Otherwise,
ignore.

Figure 4: The ideal commitment functionality

Informally speaking, in order to achieve universal composability against adaptive adversaries, a
commitment scheme must have the following two properties:

• Polynomial equivocality:17 the simulator (i.e., the adversary in the ideal process) should be able
to produce polynomially many commitments for which it can decommit to both 0 and 1, using
the same reference string. (An additional property is actually needed for adaptive security; see
below.) Of course, the real committer must be able to decommit to only a single value (as
required by the binding property of commitment schemes).

17Commitments with this property have mistakenly been called “equivocable”; we fix this error and call them
equivocal.

38

• Simulation extractability: the simulator should be able to extract the contents of any valid com-
mitment generated by the adversary, even after having supplied an adversary with an arbitrary
number of equivocal commitments.

We remark that in the equivocal commitment protocols of [dio98, dkos01] each copy of the
reference string can be used for only a single commitment. Furthermore, they are not extractable.
In contrast, [cf01] show how to use a single copy of the reference string for multiple commitments
(although they rely on specific cryptographic assumptions).

We describe our construction in phases. First we describe a new non-interactive variant of the
Feige-Shamir trapdoor commitment scheme [fs89], which is at the heart of the construction. Then
we show how to transform this scheme into one that is universally composable.

Underlying standard commitment. Our UC commitment scheme uses a non-interactive, per-
fectly binding commitment scheme with pseudorandom commitments; denote this scheme by Com.
An example of such a scheme is the standard non-interactive commitment scheme based on a one-
way permutation f and a hard-core predicate b of f . In order to commit to a bit σ in this scheme,
one computes Com(σ) = 〈f(Uk), b(Uk) ⊕ σ〉, where Uk is the uniform distribution over {0, 1}k .
The Com scheme is computationally secret and produces pseudorandom commitments: that is, the
distribution ensembles {Com(0)}, {Com(1)}, and {Uk+1} are all computationally indistinguishable.

Non-interactive Feige-Shamir trapdoor commitments. We briefly describe a non-interactive
version of the Feige-Shamir trapdoor commitment scheme [fs89], which is based on the zero-
knowledge proof for Hamiltonicity of Blum [b86]. (We are able to obtain a non-interactive version
of this scheme by utilizing the common reference string.) First, we obtain a graph G (with q nodes),
so that it is hard to find a Hamiltonian cycle in G within polynomial-time. This is achieved as
follows: choose x ∈R {0, 1}

k and compute y = f(x), where f is a one-way function. Then, use
the (Cook-Levin) NP-reduction of the language {y | ∃x s.t. y = f(x)} to that of Hamiltonicity, to
obtain a graph G so that finding a Hamiltonian cycle in G is equivalent to finding the preimage x of
y. The one-wayness of f implies the difficulty of finding a Hamiltonian cycle in G. This graph G, or
equivalently the string y, is placed in the common reference string accessible by both parties. Now,
in order to commit to 0, the committer commits to a random permutation of G using the underlying
commitment scheme Com (and decommits by revealing the entire graph and the permutation). In
order to commit to 1, the committer commits to a graph containing a randomly labeled q-cycle
only (and decommits by opening this cycle only). Note that this commitment scheme is binding
because the ability to decommit to both 0 and 1 implies that the committer knows a Hamiltonian
cycle in G. The important property of the scheme of [fs89] that we use here is equivocality (or
what they call the trapdoor property). That is, given a Hamiltonian cycle in G, it is possible to
generate commitments that are indistinguishable from legal ones, and yet have the property that
one can decommit to both 0 and 1. In particular, after committing to a random permutation of G,
it is possible to decommit to 0 in the same way as above. However, it is also possible to decommit
to 1 by only revealing the (known) Hamiltonian cycle in G.

Adaptively secure commitments. In order to explain elements of our construction that are
important in obtaining security against adaptive adversaries, we begin by describing a general
problem that can occur in such a setting. In the adaptive setting, the adversary can corrupt parties
at any point in the computation. Specifically, for the case of commitments, this means that the
adversary can corrupt a party after the commit stage has been completed. In such a case, the
simulator must generate some “simulated commitment” string c before the committing party is

39

corrupted, and therefore without knowing the value b that is being committed to. Then, after the
corruption takes place and the committed value b becomes known to the simulator and adversary,
it must be possible to “explain” the string c as a valid commitment to b. This is because in a
real execution, c is indeed a commitment to b and A will see this upon corrupting the committer.
However, in the ideal process, c is generated by S who knows nothing about the value b. A valid
“explanation” of the string c is a series of coins rb such that upon input b and random coins rb,
the honest committer would output the commitment string c. Consider the [fs89] commitment
scheme described above, and assume that the ideal-model simulator S knows a Hamiltonian cycle
in G. Then, as we have described, it is possible for S to generate a commitment string c that can
be decommitted to both 0 and 1. However, it is not possible for S to later provide two sets of coins
r0 and r1 so that c is the result of an honest commitment to b with coins rb (for b = 0 and b = 1).
This is because the coins used in all of the Com commitments demonstrate whether a permutation
of G was committed to or just a simple cycle. This demonstrates that the trapdoor or equivocality
property is not enough for obtaining adaptive security.

In order to obtain adaptive security, we modify the way that the Com commitments are gen-
erated in the [fs89] scheme. Specifically, commitments which are not opened upon decommitment
(i.e., commitments outside of the simple cycle in a commitment to 1) are generated by just choosing
random strings. Since Com has a pseudorandom range and these commitments are never opened,
this makes no difference. Below we will show that this actually suffices for obtaining adaptive
security. More precisely, the adaptively secure scheme, denoted aHC (for adaptive Hamiltonian

Commitment), is defined as follows:

• To commit to a 0, the sender picks a random permutation π of the nodes of G, and commits to
the entries of the adjacency matrix of the permuted graph one by one, using Com. To decommit,
the sender sends π and decommits to every entry of the adjacency matrix. The receiver verifies
that the graph it received is π(G). (This is the same as in the [fs89] scheme.)

• To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in the
adjacency matrix corresponding to edges on the q-cycle, it uses Com to commit to 1 values.
For all the other entries, it produces random values from Uk+1 (for which it does not know
the decommitment). To decommit, the sender opens only the entries corresponding to the
randomly chosen q-cycle in the adjacency matrix. (This is the point where our scheme differs to
that of [fs89]. That is, in [fs89] the edges that are not on the q-cycle are sent as commitments
to 0. Here, random strings are sent instead.)

By the above description, the length of the random string used in order to commit to 0 is different
from the length of the random string used in order to commit to 1. Nevertheless, we pad the
lengths so that they are equal (the reason why this is needed will be explained below). We denote by
aHC(b; r) a commitment of the bit b using randomness r, and by aHC(b) the distribution aHC(b;U|r|).

This commitment scheme has the property of being computationally secret; i.e., the distribution
ensembles {aHC(0)} and {aHC(1)} are computationally indistinguishable for any graph G. Also,
given the opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in
G. Therefore, the committer cannot decommit to both 0 and 1, and the binding property holds.
Finally, as with the scheme of [fs89], given a Hamiltonian cycle in G, a simulator can generate
a commitment to 0 and later open it to both 0 and 1. (This is because the simulator knows a
simple q-cycle in G itself.) Furthermore, in contrast to [fs89], here the simulator can also produce
a random tape for the sender, explaining the commitment as a commitment to either 0 or 1.
Specifically, the simulator generates each commitment string c as a commitment to 0. If, upon
corruption of the sender, the simulator has to demonstrate that c is a commitment to 0 then all

40

randomness is revealed. To demonstrate that c was generated as a commitment to 1, the simulator
opens the commitments to the edges in the q-cycle and claims that all the unopened commitments
are merely uniformly chosen strings (rather than commitments to the rest of G). This can be
done since commitments produced by the underlying commitment scheme Com are pseudorandom.
This therefore gives us polynomial equivocality, where the same reference string can be reused
polynomially-many times.

Achieving simulation extractability. As discussed above, the commitment scheme aHC has
the equivocality property, as required. However, a UC commitment scheme must also have the sim-

ulation extractability property. We must therefore modify our scheme in such a way that we add
extractability without sacrificing equivocality. Simulation-extractability alone could be achieved by
including a public-key for an encryption scheme secure against adaptive chosen-ciphertext attacks
(CCA2) [ddn00] into the common reference string, and having the committer send an encryption
of the decommitment information along with the commitment itself. A simulator knowing the as-
sociated decryption key can decrypt and obtain the decommitment information, thereby extracting
the committed value from any adversarially prepared commitment. (The reason that we use a
CCA2-secure encryption scheme will become evident in the proof. Intuitively, the reason is that in
the simulated interaction extracting the committed value involves ciphertext decryptions. Thus by
interacting with the simulator the adversary essentially has access to a decryption oracle for the
encryption scheme.) However, just encrypting the decommitment information destroys the equiv-
ocality of the overall scheme, since such an encryption is binding even to a simulator. In order to
regain equivocality, we use encryption schemes with pseudorandom ciphertexts. This is used in the
following way. Given any equivocal commitment, there are two possible decommitment strings (by
the binding property, only one can be efficiently found but they both exist). The commitment is
sent along with two ciphertexts: one ciphertext is an encryption of the decommitment information
known to the committer and the other ciphertext is just a uniformly distributed string. In this
way, equivocality is preserved because a simulator knowing both decommitment strings can encrypt
them both and later claim that it only knows the decryption to one and that the other was uni-
formly chosen. A problem with this solutions is that there is no known CCA2-secure scheme with
pseudorandom ciphertexts (and assuming only enhanced trapdoor permutations). We therefore use
double encryption. That is, first the value is encrypted using a CCA2-secure scheme, which may
result in a ciphertext which is not pseudorandom, and then this ciphertext is re-encrypted using
an encryption scheme with pseudorandom ciphertexts. (The second scheme need only be secure
against chosen plaintext attacks.)

For the CCA2-secure scheme, denoted Ecca, we can use any known scheme based on enhanced
trapdoor permutations18 with the (natural) property that any ciphertext has at most one valid
decryption. This property holds for all known such encryption schemes, and in particular for the
scheme of [ddn00]. For the second encryption scheme, denoted E, we use the standard encryption
scheme based on trapdoor-permutations and hard-core predicates [gl89], where the public key is a
trapdoor permutation f , and the private key is f−1. Here encryption of a bit b is f(x) where x is a
randomly chosen element such that the hard-core predicate of x is b. Note that encryptions of both 0
and 1 are pseudorandom. The commitment scheme, called UAHC (for UC Adaptive Hamiltonicity
Commitment), is presented in Figure 5.

18The fact that enhanced trapdoor permutations are used (and not any trapdoor permutation) is due to the non-
interactive zero-knowledge (NIZK) proofs which are used in all known CCA2-secure schemes that are based on general
assumptions. The additional “enhanced” feature of trapdoor permutations is used in the construction of these NIZK
proofs.

41

Protocol UAHC

• Common Reference String: The string consists of a random image y of a one-way function f
(this y determines the graph G), and public-keys for the encryption schemes E and Ecca. (The
security parameter k is implicit.)

• Commit Phase:

1. On input (commit, sid, ssid, Pi, Pj , b) where b ∈ {0, 1}, party Pi computes z = aHC(b; r)
for a uniformly distributed string of the appropriate length. Next, Pi computes Cb =
E(Ecca(Pi, Pj , sid, ssid, r)) using random coins s, and sets C1−b to a random string of length
|Cb|.

19 Finally, Pi records (sid, ssid, Pj, r, s, b), and sends c = (sid, ssid, Pi, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs (receipt, sid, ssid, Pi, Pj). Pj ignores any later commit
messages from Pi with the same (sid, ssid).

• Reveal Phase:

1. On input (reveal, sid, ssid), party Pi retrieves (sid, ssid, Pj, r, s, b) and sends (sid, ssid, r, s, b)
to Pj .

2. Upon receiving (sid, ssid, r, s, b) from Pi, Pj checks that it has a tuple (sid, ssid, Pi, z, C0, C1).
If yes, then it checks that z = aHC(b; r) and that Cb = E(Ecca(Pi, Pj , sid, ssid, r)), where the
ciphertext was obtained using random coins s. If both these checks succeed, then Pj outputs
(reveal, sid, ssid, Pi, Pj , b). Otherwise, it ignores the message.

Figure 5: The commitment protocol UAHC

Let Fcrs denote the common reference string functionality (that is, Fcrs provides all parties
with a common, public string drawn from the distribution described in Figure 5). Then, we have:

Proposition 5.1 Assuming the existence of enhanced trapdoor permutations, Protocol UAHC of

Figure 5 UC realizes Fmcom in the Fcrs-hybrid model.

Proof: Let A be a malicious, adaptive adversary that interacts with parties running the above
protocol in the Fcrs-hybrid model. We construct an ideal process adversary S with access to
Fmcom, which simulates a real execution of Protocol UAHC with A such that no environment Z
can distinguish the ideal process with S and Fmcom from a real execution of UAHC with A.

Recall that S interacts with the ideal functionality Fmcom and with the environment Z. The
ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and parties running the protocol. (We refer to the interaction of S in the ideal
process as external interaction. The interaction of S with the simulated A is called internal inter-

action.) We fix the following notation. First, the session and sub-session identifiers are respectively
denoted by sid and ssid. Next, the committing party is denoted Pi and the receiving party Pj .
Finally, C denotes a ciphertext generated from E(·), and Ccca denotes a ciphertext generated from
Ecca(·). Simulator S proceeds as follows:

Initialization step: The common reference string (CRS) is chosen by S in the following way
(recall that S chooses the CRS for the simulated A by itself):

19As we have mentioned, the length of the random string r is the same for the case of b = 0 and b = 1. This is
necessary because otherwise it would be possible to distinguish commitments merely by looking at the lengths of C0

and C1.

42

1. S chooses a string x ∈R {0, 1}
k and computes y = f(x), where f is the specified one-way

function.

2. S runs the key-generation algorithm for the CCA2-secure encryption scheme, obtaining
a public-key Ecca and a secret-key Dcca.

3. S runs the key-generation algorithm for the CPA-secure encryption scheme with pseu-
dorandom ciphertexts, obtaining a public-key E and a secret-key D.

Then, S sets the common reference string to equal (y,Ecca, E) and locally stores the triple
(x,Dcca,D). (Recall that y defines a Hamiltonian graph G and knowing x is equivalent to
knowing a Hamiltonian cycle in G.)

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input-tape (as if coming from A’s environment). Likewise, every output value written
by A on its own output tape is copied to S’s own output tape (to be read by S’s environ-
ment Z).

Simulating “commit” activations where the committer is uncorrupted: In the ideal model,
when the honest committer Pi receives an input (commit, sid, ssid, Pi, Pj , b) from the environ-
ment, it writes this message on its outgoing communication tape for Fmcom. Recall that by
convention, the (commit, sid, sssid, Pi, Pj) part of the message (i.e., the header) is public and
can be read by S, whereas the actual input value b cannot be read by S (see Section 3.1 – “the
ideal process”). Now, upon seeing that Pi writes a “commit” message for Fmcom, S simulates
a real party Pi writing the commit message of Protocol UAHC on its outgoing communication
tape for Pj . That is, S computes z ← aHC(0) along with two strings r0 and r1 such that rb

constitutes a decommitment of z to b. (As we have described, since S knows a Hamiltonian
cycle in G, it is able to do this.) Next, S computes C0 ← E(Ecca(Pi, Pj , sid, ssid, r0)) using
random coins s0, and C1 ← E(Ecca(Pi, Pj , sid, ssid, r1)) using random coins s1. Then, S
stores (c, r0, s0, r1, s1) and simulates Pi writing c = (sid, ssid, Pi, z, C0, C1) on its outgoing
communication tape for Pj . When A delivers c from Pi to Pj in the internal simulation, then
S delivers the message from the ideal process Pi’s outgoing communication tape to Fmcom.
Furthermore, S also delivers the (receipt, . . .) message from Fmcom to Pj . If A corrupts Pi

before delivering c and then modifies c before delivering it, then S proceeds by following the
instructions for a corrupted committer. If A corrupts Pi but does not modify c, then S carries
out the simulation as described here.

Simulating “reveal” activations where the committer is uncorrupted: When an honest Pi

receives a (reveal, sid, ssid) input from Z, it writes this on its outgoing communication tape
for Fmcom (this entire message is a “header” and is therefore public). S then delivers this
message to Fmcom and obtains the message (reveal, sid, ssid, Pi, Pj , b) from Fmcom. Given the
value b, S generates a simulated decommitment message from the real-model Pi: this message
is (sid, ssid, rb, sb, b), where rb and sb are as generated in the previous item. S then internally
simulates for A the event where Pi writes this message on its outgoing communication tape
for Pj . When A delivers this message from Pi to Pj in the internal interaction, then S delivers
the (reveal, sid, ssid, Pi, Pj , b) message from Fmcom to Pj.

Simulating corruption of parties: When A issues a “corrupt Pi” command in the internal (sim-
ulated) interaction, S first corrupts the ideal model party Pi and obtains the values of all
its unopened commitments. Then, S prepares the internal state of Pi to be consistent with

43

these commitment values in the same way as shown above. That is, in a real execution party
Pi stores the tuple (sid, ssid, Pj , r, s, b) for every commitment c. In the simulation, S defines
the stored tuple to be (sid, ssid, Pj , rb, sb, b) where b is the commitment value associated with
(sid, ssid) in Pi’s internal state, and rb and sb are as generated above.

Simulating “commit” activations where the committer is corrupted: When A, control-
ling corrupted party Pi, delivers a commitment message (sid, ssid, Pi, z, C0, C1) to an uncor-
rupted party Pj in the internal (simulated) interaction, S works as follows. If a commitment
from Pi to Pj using identifiers (sid, ssid) was sent in the past, then S ignores the message.
Otherwise, informally speaking, S must extract the commitment bit committed to by A.
Simulator S begins by decrypting both C0 and C1 obtaining ciphertexts Ccca

0 and Ccca
1 and

then decrypting each of Ccca
0 and Ccca

1 . There are three cases here:

1. Case 1: For some b ∈ {0, 1}, Ccca
b decrypts to (Pi, Pj , sid, ssid, r) where r is the correct

decommitment information for z as a commitment to b, and Ccca
1−b does not decrypt to

a decommitment to 1− b. Then, S sends (commit, sid, ssid, Pi, Pj , b) to Fmcom, delivers
Fmcom’s receipt response to Pj , and stores the commitment string.

2. Case 2: Neither Ccca
0 or Ccca

1 decrypt to (Pi, Pj , sid, ssid, r) where r is the appropriate
decommitment information for z (and sid and ssid are the correct identifiers from the
commitment message). In this case, S sends (commit, sid, ssid, Pi, Pj , 0) to Fmcom and
delivers Fmcom’s receipt response to Pj . (The commitment string is not stored, since it
will never be opened correctly.)

3. Case 3: Ccca
0 decrypts to (Pi, Pj , sid, ssid, r0) and Ccca

1 decrypts to (Pi, Pj , sid, ssid, r1),
where r0 is the correct decommitment information for z as a commitment to 0 and r1

is the correct decommitment information for z as a commitment to 1. Furthermore, the
identifiers in the decryption information are the same as in the commitment message.
In this case, S outputs a special failure symbol and halts.

Simulating “reveal” activations where the committer is corrupted: When A, controlling
corrupted party Pi, delivers a reveal message (sid, ssid, r, s, b) to an uncorrupted party Pj

in the internal (simulated) interaction, S works as follows. S first checks that a tuple
(sid, ssid, Pi, z, C0, C1) is stored and that r and s constitute a proper decommitment to b.
If the above holds, then S sends (reveal, sid, ssid, Pi, Pj) to Fmcom and delivers the reveal
message from Fmcom to Pj . Otherwise, S ignores the message.

We now prove that Z cannot distinguish an interaction of Protocol UAHC withA from an interaction
in the ideal process with Fmcom and S. In order to show this, we examine several hybrid experiments:

(I) Real interaction: This is the interaction of Z with A and Protocol UAHC.

(II) Real interaction with partially fake commitments: This is the interaction of Z with A and
Protocol UAHC, except that: (i) The Hamiltonian Cycle to G is provided to all honest parties,
but this information is not revealed upon corruption. (ii) In honest party commitments, a
commitment to b is generated by computing z ← aHC(0) and strings r0, r1 such that r0 and r1

are correct decommitments to 0 and 1, respectively. (This is just like the simulator.) Then, Cb

is computed as an encryption to E(Ecca(Pi, Pj , sid, ssid, rb)). However, unlike the simulator,
C1−b is still chosen as a uniformly distributed string. Again, this modification is not revealed
upon corruption (i.e., the honest party decommits to b as in a real interaction).

44

(III) Real interaction with completely fake commitments: This is the same as (II), except that in
commitments generated by honest parties, the ciphertext C1−b equals E(Ecca(Pi, Pj , sid, ssid, r1−b))
as generated by S, rather than being chosen uniformly. Commitments are opened in the same
way as the simulator.

(IV) Simulated interaction: This is the interaction of Z with S, as described above.

Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other words
that Z’s output at the end of interaction (I) deviates only negligibly from Z’s output at the end of
interaction (IV). We prove this by showing that each consecutive pair of interactions are indistin-
guishable to Z. (Abusing notation, we use the term “distribution i” to denote both “interaction
i”, and “Z’s output from interaction i”.)

The fact that distributions (I) and (II) are computationally indistinguishable is derived from
the pseudorandomness of the underlying commitment scheme aHC. This can be seen as follows.
The only difference between the two distributions is that even commitments to 1 are computed by
z ← aHC(0). However, the distribution ensembles {aHC(0)} and {aHC(1)} are indistinguishable.
Furthermore, these ensembles remain indistinguishable when the decommitment information to 1
is supplied. That is, {aHC(0), r1} and {aHC(1), r} are also indistinguishable, where r1 is the
(simulator) decommitment of aHC(0) to 1, and r is the (prescribed) decommitment of aHC(1) to 1.
(A standard hybrid argument is employed to take into account the fact that many commitments
and decommitments occur in any given execution.)

Next, distributions (II) and (III) are indistinguishable due to the pseudorandomness of encryp-
tions under E. In particular, the only difference between the distributions is that in (II) the cipher-
text C1−b is uniformly chosen, whereas in (III) ciphertext C1−b equals E(Ecca(Pi, Pj , sid, ssid, r1−b)).
Intuitively, CPA security suffices because in order to emulate experiments (II) and (III), no decryp-
tion oracle is needed. In order to formally prove this claim, we use the “left-right” oracle formulation
of security for encryption schemes [bbm00]. In this formulation of security, there is a “left-right”
oracle (LR-oracle) which has a randomly chosen and hidden value b ∈ {0, 1} built into it. When
queried with a pair of plaintexts (a0, a1), the oracle returns E(ab). Equivalently, the oracle can
be queried with a single message a such that it returns E(a) if b = 0 and a uniformly distributed
string if b = 1. This reflects the fact that here the security lies in the pseudorandomness of the
ciphertext, rather than due to the indistinguishability of encryptions. (We stress that the LR-oracle
always uses the same bit b.) A polynomial-time attacker is successful in this model if it succeeds
in guessing the bit b with a non-negligible advantage. For chosen-plaintext security, this attacker
is given access to the LR-oracle for the encryption scheme E. We now construct an adversary
who carries out a chosen-plaintext attack on E and distinguishes encryptions to strings of the form
Ecca(Pi, Pj , sid, ssid, r1−b) from uniformly chosen strings. This adversary emulates experiments (II)
and (III) by running Z and all the parties. However, when an honest party is supposed to generate
C1−b, the attacker hands the LR-oracle the query Ecca(Pi, Pj , sid, ssid, r1−b) and receives back C ′

which either equals E(Ecca(Pi, Pj , sid, ssid, r1−b)) or is uniformly distributed. The attacker then
sets C1−b = C ′. This emulation can be carried out given the encryption-key E only (i.e., no decryp-
tion key is required). This is the case because decryption is only needed for decommitment, and
the only ciphertext to be decrypted upon decommitment is Cb (and not C1−b). Now, if b = 1 for
the LR-oracle, then the attacker perfectly emulates experiment (II). Furthermore, if b = 0 then the
attacker perfectly emulates experiment (III). Finally, as we have mentioned, the above emulation is
carried out using a chosen-plaintext attack on E only. Therefore, if Z can distinguish experiments
(II) and (III), then the attacker can guess the bit b of the LR-oracle with non-negligible advantage.
This is in contradiction to the CPA-security of E.

45

Finally, we consider the hybrid experiments (III) and (IV). The only difference between these
experiments is that in experiment (III) the checks causing S to output failure are not carried out.
That is, if S never outputs failure, then experiments (III) and (IV) are identical. This is due to
the fact that if S never outputs failure, then for every commitment c generated by the real-model
adversary A, there is at most one possible decommitment. There is therefore no need for S to carry
out these checks. We conclude that it suffices to show that S outputs failure with at most negligible
probability. In order to prove this, we again consider a sequence of hybrid experiments:

(V) Simulation with partially real encryptions: This is the same as (IV), except that S is given (say,
by F) the true values of the inputs for all uncorrupted parties. Then, when generating simu-
lated commitments for uncorrupted parties, S replaces C1−b with E(Ecca(Pi, Pj , sid, ssid, 0|r1−b|)),
where b is the true input value.

(VI) Simulation with nearly real commitments: This is the same as (V), except that in the simulated
commitments generated for uncorrupted parties, S computes z ← aHC(b) where b is the true
value of the commitment (instead of always computing z ← aHC(0)).

We now claim that the probability that S outputs failure in experiment (IV) is negligibly close
to the probability that it outputs failure in experiment (V). The only difference between these
experiments relates to the encryption value of C1−b (i.e., in (IV) we have that C1−b contains the
actual random coins r1−b, whereas in (V) this is replaced by 0|r1−b|). The proof relies on the
chosen-ciphertext security of the scheme Ecca. (Chosen ciphertext security is required because the
emulation of experiments (IV) and (V) requires access to a decryption oracle: Recall that S must
decrypt ciphertexts in the simulation of commit-activations where the committer is corrupted.)
Formally, we prove this claim using the “left-right” oracle formulation of security for encryption
schemes. Recall that according to this definition, an attacker is given access to an LR-oracle that
has a randomly chosen bit b internally hardwired. The attacker can then query the oracle with
pairs (a0, a1) and receives back Ecca(ab). When considering CCA2-security, the attacker is given
access to the LR-oracle as well as a decryption oracle for Ecca which works on all ciphertexts except
for those output by the LR-oracle.

We argue that if S outputs failure with probabilities that are non-negligibly far apart in exper-
iments (IV) and (V), then Z together with A can be used to construct a successful CCA2 attacker
against Ecca in the LR-model. We now describe the attacker. The attacker receives the public
key for Ecca. It then simulates experiment (IV) by playing Z, A and S as above, except for the
following differences:

1. The public key for Ecca is given to S externally and S does not have the decryption key.

2. When generating a simulated commitment for an honest party Pi, the attacker computes
z ← aHC(0) and decommitment strings r0 and r1 to 0 and 1, respectively. Furthermore, the at-
tacker computes Cb ← E(Ecca(Pi, Pj , sid, ssid, rb)) as S does. However, for C1−b, the attacker
queries the LR-oracle with the plaintexts (Pi, Pj , sid, ssid, r1−b) and (Pi, Pj , sid, ssid, 0|r1−b|).
When the LR-oracle responds with a ciphertext Ccca, the attacker sets C1−b ← E(Ccca).

3. When S obtains a commitment (sid, ssid, Pj , z, C0, C1) from A controlling a corrupted party
Pi, then the attacker decrypts C0 and C1 using the decryption key for E and obtains Ccca

0

and Ccca
1 . There are two cases:

46

• Case 1 – a ciphertext Ccca
b came from a commitment previously generated for an honest

party by S: If this generated commitment was not from Pi to Pj , then Ccca
b cannot con-

stitute a valid decommitment because the encryption does not contain the pair (Pi, Pj)
in this order. Likewise, if the previous commitment was from Pi to Pj but the sub-session
identifiers are different, then it still cannot be a valid decommitment. (Recall that Pj

will ignore a second commitment from Pi with the same identifiers.) In the above cases,
the attacker acts just as S would for ciphertexts that do not decrypt to valid decommit-
ment information. (Notice that the attacker does not need to use the decryption oracle
in this case.)

One other possible case is that the previous commitment was from Pi to Pj and the
sub-session identifiers are correct. This can only happen if Pi was corrupted after the
commitment message containing Ccca

b was written by S on Pi’s outgoing communication
tape, but before A delivered it. However, in this case, the attacker knows the decryption
of the ciphertext without querying the decryption oracle, and therefore uses this value
in the simulation.

• Case 2 – a ciphertext Ccca
b was not previously generated by S: Then, except with

negligible probability, this ciphertext could not have been output by the LR-oracle.
Therefore, the attacker can query its decryption oracle and obtain the corresponding
plaintext. Given this plaintext, the attacker proceeds as S does.

We note that the above simulation can be carried out without knowing the decryption key for Ecca.
This is because the attacker knows the value b that an honest party is committing to before it needs
to generate the simulated commitment value. Therefore, it never needs to decrypt C1−b.

Analyzing the success probability of the attacker, we make the following observations. If the
LR-oracle uses Left encryptions (i.e., it always outputs a ciphertext Ccca that is an encryption of
(Pi, Pj , sid, ssid, r1−b)), then the resulting simulation is negligibly close to experiment (IV). (The
only difference is in the case that a ciphertext Ccca

b generated by A coincides with a ciphertext
output by the LR-oracle. However, this occurs with only negligible probability, otherwise Ecca

does not provide correctness.) On the other hand, if the LR-oracle uses Right encryptions (i.e,
it always outputs a ciphertext Ccca that is an encryption of (Pi, Pj , sid, ssid, 0|r1−b |)), then the
resulting simulation is negligibly close to experiment (V). Therefore, by the CCA2-security of Ecca,
the probability that Z outputs 1 from experiment (IV) must be negligibly close to the probability
that it outputs 1 in experiment (V). By having Z output 1 if and only if S outputs a failure symbol,
we have that the probability that S outputs failure in the two experiments is negligibly close.

We now proceed to show that the probability that S outputs failure in experiments (V) and
(VI) is negligibly close. This follows from the indistinguishability of commitments {aHC(0)} and
{aHC(1)}. (A standard hybrid argument is used to take into account the fact that many commit-
ments are generated by S during the simulation.) Here we use the fact that in both experiments
(V) and (VI) the ciphertext C1−b is independent from the rest of the commitment. That is, in these
experiments C1−b does not contain the random coins r1−b which would constitute a decommitment
to aHC(1−b). Now, for commitments to 0 (i.e., when b = 0), experiments (V) and (IV) are identical.
However, for commitments to 1 (i.e., when b = 1), they are different. Nevertheless, it is hard to
distinguish the case that z = aHC(0) from the case that z = aHC(1), even given the random coins
r1 that constitute a decommitment of z to 1.

Finally, to complete the proof, we show that in experiment (VI) the probability that S outputs
failure is negligible. The main observation here is that in experiment (VI), S does not use knowledge
of a Hamiltonian cycle in G. Now, if S outputs failure when simulating commit activations for a

47

corrupted party, then this means that it obtains a decommitment to 0 and to 1 for some commitment
string z. However, by the construction of the commitment scheme, this means that S obtains a
Hamiltonian cycle (and equivalently a pre-image of y = f(x)). Since S can do this with only
negligible probability we have that this event can also only occur with negligible probability. We
conclude that S outputs failure in experiment (VI), and therefore in experiment (IV), with only
negligible probability. (Formally speaking, given S we construct an inverter for f that proceeds
as described above.) This completes the hybrid argument, demonstrating that Z can distinguish
experiments (I) and (IV) with only negligible probability.

6 Universally Composable Zero-Knowledge

We present and discuss the ideal zero-knowledge functionality Fzk. This functionality plays a central
role in our general construction of protocols for realizing any two-party functionality. Specifically,
our protocol for realizing the commit-and-prove functionality is constructed and analyzed in a
hybrid model with access to Fzk (i.e., in the Fzk-hybrid model). Using the universal composition
theorem, the construction can be composed with known protocols that UC realize Fzk, either
in the Fmcom-hybrid model or directly in the common reference string (CRS) model, to obtain
protocols for realizing any two-party functionality in the CRS model. (Actually, here we use
universal composition with joint state. See more details below.)

In the zero-knowledge functionality, parameterized by a relation R, the prover sends the func-
tionality a statement x to be proven along with a witness w. In response, the functionality forwards
the statement x to the verifier if and only if R(x,w) = 1 (i.e., if and only if it is a correct statement).
Thus, in actuality, this is a proof of knowledge in that the verifier is assured that the prover actually
knows w (and has explicitly sent w to the functionality), rather than just being assured that such
a w exists. The zero-knowledge functionality, Fzk, is presented in Figure 6.

Functionality Fzk

Fzk proceeds as follows, running with a prover P , a verifier V and an adversary S, and parameterized
with a relation R:

• Upon receiving (ZK-prover, sid, x, w) from P , do: if R(x, w) = 1, then send (ZK-proof, sid, x) to V
and S and halt. Otherwise, halt.

Figure 6: The single-session Fzk functionality

Let us highlight several technical issues that motivate the present formalization. First, notice
that the functionality is parameterized by a single relation (and thus a different copy of Fzk is
used for every different relation required). Nonetheless, the relation R may actually index any
polynomial number of predetermined relations for which the prover may wish to prove statements.
This can be implemented by separating the statement x into two parts: x1 that indexes the relation

to be used and x2 that is the actual statement. Then, define R((x1, x2), w)
def
= Rx1(x2, w). (Note

that in this case the set of relations to be indexed is fixed and publicly known.)20

20Another possibility is to parameterize Fzk by a polynomial q(·). Then, Pi sends the functionality a triple
(x, w, CR), where CR is a two-input binary circuit of size at most q(|x|). (This circuit defines the relation being used.)
The ideal functionality then sends Pj the circuit CR and the bit CR(x,w). This approach has the advantage that the
relations to be used need not be predetermined and fixed.

48

Second, the functionality is defined so that only correct statements (i.e., values x such that
R(x,w) = 1) are received by P2 in the prove phase. Incorrect statements are ignored by the
functionality, and the receiver P2 receives no notification that an attempt at cheating in a proof
took place. This convention simplifies the description and analysis of our protocols. We note,
however, that this is not essential. Error messages can be added to the functionality (and realized)
in a straightforward way. Third, we would like to maintain the (intuitively natural) property that
a prover can always cause the verifier to reject, even if for every w it holds that R(x,w) = 1 (e.g.,
take R = {0, 1}∗ × {0, 1}∗). This technicality is solved by defining a special witness input symbol
“⊥” such that for every relation R and every x, R(x,⊥) = 0.

Note that each copy of the functionality handles only a single proof (with a given prover and
a given verifier). This is indeed convenient for protocols in the Fzk-hybrid model, since a new
copy of Fzk can be invoked for each new proof (or, each “session”). However, directly realizing
Fzk in the Fcrs-hybrid model and using the universal composition theorem would result in an
extremely inefficient composed protocol, where a new instance of the reference string is needed for
each proof. Instead, we make use of universal composition with joint state, as follows. We start
by defining functionality F̂zk, the multi-session extension of Fzk, and recall known protocols that
UC realize F̂zk using a single short instance of the common string. We then use the JUC theorem
(Theorem 3.4) to compose protocols in the Fzk-hybrid model with protocols that UC realize F̂zk.

The definition of F̂zk, the multi-session extension of Fzk, follows from the definition of Fzk

and the general definition of multi-session extensions (see Section 3.2). Nonetheless, for the sake
of clarity we explicitly present functionality F̂zk in Figure 7. An input to F̂zk is expected to
contain two types of indices: the first one, sid, is the SID that differentiates messages to F̂zk from
messages sent to other functionalities. The second index, ssid, is the sub-session ID and is unique
per “sub-session” (i.e., per input message).

Functionality F̂zk

F̂zk proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parameterized with
a relation R:

• Upon receiving (ZK-prover, sid, ssid, Pi, Pj , x, w) from Pi: If R(x, w) = 1, then send the message
(ZK-proof, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, ignore.

Figure 7: The multi-session zero-knowledge functionality

In the case of static adversaries, there exists a protocol that UC realizes F̂zk for any NP relation,
in the common reference string (CRS) model [d+01]. The protocol of [d+01] assumes the existence of
enhanced trapdoor permutations. Furthermore, the protocol is “non-interactive”, in the sense that
it consists of a single message from the prover to the verifier. In the case of adaptive adversaries,
[cf01] show a three-round protocol that UC realizes F̂zk in the Fmcom-hybrid model, where Fmcom

is the multi-session universally composable commitment functionality (see Section 5 below). The
protocol uses a single copy of Fmcom.21 We conclude that also in the adaptive case F̂zk can be
UC realized in the Fcrs-hybrid model, assuming the existence of enhanced trapdoor permutations.
(This is obtained by plugging our construction of F1:M

mcom into the F̂zk protocol of [cf01].)

21Actually, the zero-knowledge functionality in [cf01] is only “single session” (and has some other technical differ-
ences from F̂zk). Nonetheless, it is easy to see that by using Fmcom and having the prover first check that its input x

and w is such that (x,w) ∈ R, their protocol UC realizes F̂zk.

49

7 The Commit-and-Prove Functionality Fcp

In this section we define the “commit-and-prove” functionality, Fcp, and present protocols for
UC realizing it. As discussed in Section 2, this functionality, which is a generalization of the
commitment functionality, is central for constructing the protocol compiler. As in the case of Fzk,
the Fcp functionality is parameterized by a relation R. The first stage is a commit phase in which
the receiver obtains a commitment to some value w. The second phase is more general than plain
decommitment. Rather than revealing the committed value, the functionality receives some value
x from the committer, sends x to the receiver, and asserts whether R(x,w) = 1. To see that this
is indeed a generalization of a commitment scheme, take R to be the identity relation and x = w.
Then, following the prove phase, the receiver obtains w and is assured that this is the value that
was indeed committed to in the commit phase.

In fact, Fcp is even more general than the above description, in the following ways. First it
allows the committer to commit to multiple secret values wi, and then have the relation R depend
on all these values in a single proof. (This extension is later needed for dealing with reactive
protocols, where inputs may be received over time.) Second, the committer may ask to prove
multiple statements with respect to the same set of secret values. These generalizations are dealt
with as follows. When receiving a new (commit, sid, w) request from the committer, Fcp adds the
current w to the already existing list w of committed values. When receiving a (CP-prover, sid, x)
request, Fcp evaluates R on x and the current list w. Functionality Fcp is presented in Figure 8.

Functionality Fcp

Fcp proceeds as follows, running with a committer C, a receiver V and an adversary S, and is param-
eterized by a value k and a relation R:

• Commit Phase: Upon receiving a message (commit, sid, w) from C where w ∈ {0, 1}k, append
the value w to the list w, and send the message (receipt, sid) to V and S. (Initially, the list w is
empty.)

• Prove Phase: Upon receiving a message (CP-prover, sid, x) from C, where x ∈ {0, 1}poly(k), com-
pute R(x, w): If R(x, w) = 1, then send V and S the message (CP-proof, sid, x). Otherwise, ignore
the message.

Figure 8: The commit-and-prove functionality

As in the case of Fzk, the Fcp functionality is defined so that only correct statements (i.e.,
values x such that R(x,w) = 1) are received by V in the prove phase. Incorrect statements are
ignored by the functionality, and the receiver V receives no notification that an attempt at cheating
in a proof took place.

7.1 UC Realizing Fcp for Static Adversaries

We present protocols for UC realizing the Fcp functionality in the Fzk-hybrid model, for both
static and adaptive adversaries. We first concentrate on the case of static adversaries, since it is
significantly simpler than the adaptive case, and therefore serves as a good warm-up.

The commit phase and the prove phase of the protocol each involve a single invocation of Fzk.
(The relation used in each phase is different.) In the commit phase the committer commits to
a value using a standard commitment scheme, and proves knowledge of the decommitment value

50

through Fzk. Thus we obtain a “commit-with-knowledge” protocol, in which the simulator can
extract the committed value.

Specifically, let Com be a perfectly binding commitment scheme, and denote by Com(w; r)
a commitment to a string w using a random string r. For simplicity, we use a non-interactive
commitment scheme. Such schemes exist assuming the existence of 1–1 one-way functions, see [g01].
(Alternatively, we could use the Naor scheme [n91] that can be based on any one-way function,
rather than requiring 1–1 one-way functions. In this scheme, the receiver sends an initial message
and then the committer commits. This changes the protocol and analysis only slightly. We note
that in fact, the use of perfect binding is not essential and computational binding actually suffices,
as will be the case in Section 7.2.) Loosely speaking, the protocol begins by the committer C
sending c = Com(w; r) to V , and then proving knowledge of the pair (w, r). In our terminology,
this consists of C sending (ZK-prover, sidC , c = Com(w; r), (w, r)) to Fzk, which is parameterized
by the following relation RC :

RC = {(c, (w, r)) | c = Com(w; r)} (3)

That is, RC is the relation of pairs of commitments with their decommitment information. In
addition, the committer C keeps the list w of all the values w committed to. It also keeps the lists
r and c of the corresponding random values and commitment values.

When the receiver V receives (ZK-proof, sidC , c) from Fzk, it accepts c as the commitment string
and adds c to its list c of accepted commitments. (Note that in the Fzk-hybrid model, V is guar-
anteed that C “knows” the decommitment, in the sense that C explicitly sent the decommitment
value to Fzk.)

The prove phase of the protocol also involves invoking Fzk where the relation RP parameterizing
the Fzk functionality is defined as follows. Let R be the relation parameterizing Fcp. Then, RP is
defined by:

RP
def
= {((x, c), (w, r)) | ∀i, ci = Com(wi; ri) & R(x,w) = 1} (4)

That is, RP confirms that c is the vector of commitments to w, and that R(x,w) = 1. Thus, the
prove phase consists of the committer proving some NP-statement regarding the values committed
to previously. (The value x is the NP-statement and the values committed to, plus the randomness
used, comprise the “witness” for x). Upon receiving the message (ZK-proof, sidP , (x, c)) from Fzk,
the receiver accepts if c equals the list of commitments that it had previously received. (The receiver
must check c because this is what ensures that the witness being used is indeed the list of values
previously committed to, and nothing else.) Finally, note that if R ∈ NP, then so too is RP .

We denote by Fc
zk and Fp

zk the copies of Fzk from the commit phase and prove phase respectively
(i.e., Fc

zk is parameterized by RC and Fp
zk is parameterized by RP). Formally, the two copies

of Fzk are differentiated by using session identifiers sidC and sidP , respectively. (E.g., one can
define sidC = sid◦‘C’ and sidP = sid◦‘P’, where sid is the session identifier of the protocol
for realizing Fcp and “◦” denotes concatenation.) The protocol, using a perfectly binding non-
interactive commitment scheme Com, is presented in Figure 9.

Proposition 7.1 Assuming that Com is a secure (perfectly binding) commitment scheme,22 Pro-

tocol SCP of Figure 9 UC realizes Fcp in the Fzk-hybrid model, for static adversaries.

Proof: Let A be a static adversary who operates against Protocol SCP in the Fzk-hybrid model.
We construct an ideal-process adversary (or simulator) S such that no environment Z can tell with

22When we refer to “secure perfectly binding commitments” here, we mean secure according to standard definitions
(see [g01, Section 4.4.1] for a formal definition).

51

Protocol SCP

• Auxiliary Input: A security parameter k.

• Commit phase:

1. On input (commit, sid, w), where w ∈ {0, 1}k, C chooses a random string r of length sufficient
for committing to w in scheme Com, and sends (ZK-prover, sidC , Com(w; r), (w, r)) to Fc

zk,
where Fc

zk is parameterized by the relation RC defined in Eq. (3). In addition, C stores in
a vector w the list of all the values w that it has sent to Fc

zk, and in vectors r and c the
corresponding lists of random strings and commitment values.

2. When receiving (ZK-proof, sidC , c) from Fc
zk, the receiver V outputs (receipt, sid), and adds c

to its list of commitments c. (Initially, c is empty.)

• Prove phase:

1. On input (CP-prover, sid, x), C sends (ZK-prover, sidP , (x, c), (w, r)) to Fp
zk, where w, r, c are

the above-define vectors and Fp
zk is parameterized by the relation RP defined in Eq. (4).

2. When receiving (ZK-proof, sidP , (x, c)) from Fp
zk, V proceeds as follows. If its list of commit-

ments equals c, then it outputs (CP-proof, sid, x). Otherwise, it ignores the message.

Figure 9: A protocol for realizing Fcp for static adversaries

non-negligible probability whether it is interacting with A and parties running Protocol SCP in the
Fzk-hybrid model or with S in the ideal process for Fcp. As usual, S will run a simulated copy
of A and will use A in order to interact with Z and Fcp. For this purpose, S will “simulate for
A” an interaction with parties running Protocol SCP, where the interaction will match the inputs
and outputs seen by Z in its interaction with S in the ideal process for Fcp. We use the term
external communication to refer to S’s communication with Z and Fcp. We use the term internal

communication to refer to S’s communication with the simulated A.
Recall that A is a static adversary and therefore the choice of which parties are under its control

(i.e., corrupted) is predetermined. When describing S, it suffices to describe its reaction to any
one of the possible external activations (inputs from Z and messages from Fcp) and any one of
the possible outputs or outgoing messages generated internally by A. This is done below. For
clarity, we group these activities according to whether or not the committing party C is corrupted.
Simulator S proceeds as follows:

Simulating the communication with the environment: Every input value coming from Z
(in the external communication) is forwarded to the simulated A (in the internal communi-
cation) as if coming from A’s environment. Similarly, every output value written by A on its
output tape is copied to S’s own output tape (to be read by the external Z).

Simulating the case that the committer is uncorrupted: In this case, A expects to see the
messages sent by Fc

zk and Fp
zk to V . (Notice that the only messages sent in the protocol are

to and from Fc
zk and Fp

zk; therefore, the only messages seen by A are those sent by these
functionalities. This holds regardless of whether the receiver V is corrupted or not.) In the
ideal process, S receives the (receipt, . . .) and (CP-proof, . . .) messages that V receives from
Fcp. It constructs the appropriate Fc

zk messages given the receipt messages from Fcp, and
the appropriate Fp

zk messages given the CP-proof messages from Fcp. This is done as follows:

• Whenever S receives a message (receipt, sid) from Fcp where C is uncorrupted, S computes

52

c = Com(0k; r) for a random r and (internally) passes A the message (ZK-proof, sidC , c),
as A would receive from Fc

zk in a real protocol execution. Furthermore, S adds the value
c to its list of simulated-commitment values c. (It is stressed that the commitment here is
to an unrelated value, however by the hiding property of commitments and the fact that
all commitments are of length k, this is indistinguishable from a real execution.)

• Whenever S receives a message (CP-proof, sid, x) from Fcp where C is uncorrupted, S
internally passes A the message (ZK-proof, sidP , (x, c)), as A would receive from Fp

zk in
a protocol execution, where c is the current list of commitment values generated in the
simulation of the commit phase.

Simulating the case that the committer is corrupted: Here, A controls C and generates
the messages that C sends during an execution of Protocol SCP.23 Intuitively, in this case S
must be able to extract the decommitment value w from A during the commit phase of the
protocol simulation. This is because, in the ideal process, S must explicitly send the value w
to Fcp (and must therefore know the value being committed to). Fortunately, this extraction
is easy for S to do because A works in the Fzk-hybrid model, and any message sent by A to
Fzk is seen by S during the simulation. In particular, S obtains the ZK-proof message sent
by A to Fc

zk, and this message is valid only if it explicitly contains the decommitment. The
simulation is carried out as follows:

• Whenever the simulatedA internally delivers a message of the form (ZK-prover, sidC , c, (w, r))
from a corrupted C to Fc

zk, simulator S checks that c = Com(w; r). If this holds, then
S externally sends (commit, sid, w) to Fcp and internally passes (ZK-proof, sidC , c) to A
(as if coming from Fc

zk). Furthermore, S adds c to its list of received commitments c.
Otherwise, S ignores the message.

• Whenever A internally generates a message of the form (ZK-prover, sidP , (x, c), (w, r))
going from C to Fp

zk, simulator S acts as follows. First, S checks that c equals its
list of commitments and that ((x, c), (w, r)) ∈ RP . If yes, then S internally passes
(ZK-proof, sidP , (x, c)) to A (as if received from Fp

zk) and externally sends the prover
message (CP-prover, sid, x) to Fcp. If no, then S does nothing.

Message delivery: It remains to describe when (if at all) S delivers the messages between the
dummy parties C and V and the functionality Fcp. Simulator S delivers commit and CP-
prover messages from C to Fcp when A delivers the corresponding ZK-prover messages from
C to Fc

zk and Fp
zk in the internal simulation. Likewise, S delivers the receipt and CP-proof

messages from Fcp to V in the ideal process, when A delivers the corresponding ZK-proof
messages from Fc

zk and Fp
zk to V in the simulation.

We show that for every environment Z it holds that:

idealFcp,S,Z
c
≈ execFzk

scp,A,Z (5)

We first assert the following claim regarding the case where the committer is corrupted: the receiver
V accepts a proof in the protocol execution if and only if in the ideal model simulation, V receives
(CP-proof, sid, x) from Fcp. This can be seen as follows. First, note that if A (controlling C) sends
a ZK-prover message containing a different vector of commitments to that sent in previous commit

23We assume without loss of generality that the receiver V is uncorrupted, since carrying out an interaction where
both participants are corrupted bears no effect on the view of Z.

53

activations, then S does not send any CP-prover message to Fcp. Likewise, in such a case, V ignores
the ZK-proof message. Simulator S also checks that ((x, c), (w, r)) ∈ RP before sending any CP-
prover message to Fcp. Thus, if this does not hold, no CP-proof message is received by V . Likewise,
in a protocol execution, if ((x, c), (w, r)) 6∈ RP , then V receives no CP-proof message. Finally, we
note that by the (perfect) binding property of the commitment scheme, if A tries to use a different
vector of witnesses than that committed to in the commit phase, then this is detected by V and
S, and the message is ignored. (By the perfect binding of the commitment scheme, the vector c
defines a unique witness vector w that can be used.) We conclude that when S sends a CP-prover
message to Fcp the following holds: R(x,w) = 1 if and only if RP ((x, c), (w, r)) = 1, where c is the
vector of commitments sent by the corrupted committer. Thus, V outputs (CP-proof, sid, x) in a
protocol execution if and only if Fcp sends (CP-proof, sid, x) to V in the ideal model simulation.

We proceed to demonstrate Eq. (5). Since S obtains the messages sent by A to both the Fc
zk

and Fp
zk functionalities, most of the simulation is perfect and the messages seen by A are exactly

the same as it would see in a hybrid execution of Protocol SCP. There is, however, one case where
the simulation is different from a real execution. When the committer is uncorrupted, S receives
a (receipt, sid) message from Fcp and must generate the message that A would see from Fc

zk in the
protocol. Specifically, S sends (ZK-proof, sid, c) to A, where c = Com(0k; r). That is, S passes A a
commitment to a value that is unrelated to C’s input. In contrast, in a real execution of Protocol
SCP, the value c seen by A is c = Com(w; r), where w is C’s actual input. Intuitively, by the hiding
property of the commitment scheme Com, these two cases are indistinguishable. Formally, assume
that there exists an adversary A, an environment Z and an input z to Z, such that the ideal and
exec distributions can be distinguished. Then, we construct a distinguisher D for the commitment
scheme Com. That is, the distinguisher D chooses some challenge w, receives a commitment c that
is either to 0k or to w, and can tell with non-negligible probability which is the case.

Distinguisher D invokes the environment Z, the party C and the simulator S (which runs
A internally) on the following simulated interaction. First, a number i is chosen at random in
{1, . . . , t}, where t is a bound on the running time of Z. Then, for the first i − 1 commitments
c generated by S, distinguisher D sets c = Com(0k; r). When S is about to generate the ith

commitment, D declares the corresponding value w to be the challenge value, and obtains a test
value c∗. (This w is the value that the simulated Z hands the uncorrupted committer C.) Then,
S uses c∗ as the commitment value for the ith commitment. The rest of the commitments in the
simulation are generated as normal commitments to the corresponding input values provided by
Z. When Z halts with an output value, D outputs whatever Z outputs and halts.

Analysis of the success probability of D is done via a standard hybrid argument and is omit-
ted. We obtain that D succeeds in breaking the commitment with advantage p/t, where p is the
advantage in which Z distinguishes between an interaction in the hybrid model and an interaction
in the ideal process (and t is the bound on Z’s running time).

On sufficient assumptions for realizing Fcp: For simplicity, Protocol SCP uses a non-interactive
commitment scheme, which can be based on 1–1 one-way functions. However, as we have men-
tioned, the commit-phase of Protocol SCP can be modified to use Naor’s commitment scheme [n91]
(which in turn can use any one-way function). In this case, V begins by sending the receiver mes-
sage of the [n91] scheme, and then C sends the commit message, using Fc

zk as in Protocol SCP.
Thus, we have that Fcp can be UC realized in the Fzk-hybrid model, assuming the existence of any

one-way function.

54

7.2 UC Realizing Fcp for Adaptive Adversaries

We now present a protocol for UC realizing functionality Fcp in the Fzk-hybrid model, in the
presence of adaptive adversaries. The difference between this protocol and Protocol SCP for static
adversaries is in the properties of the underlying commitment scheme Com in use. Essentially,
here we use a commitment scheme that is “adaptively secure”. That is, a simulator (having access
to some trapdoor information) can generate “dummy commitments” that can later be opened in
several ways.24 In order to achieve this, the commit phase of the protocol will now involve two

invocations of Fzk. As in the case of Protocol SCP, the relations used by the invocations of Fzk in
the commit phase are different from the relation used in the prove phase. Thus, for sake of clarity
we use three different copies of Fzk, two for the commit messages and one for the prove messages.

The specific commitment scheme C used in the commit phase here is the aHC commitment that
lies at the core of the universally composable commitment scheme of Section 5. Recall that this
scheme uses a common reference string containing an image y of a one-way function f . However,
here we work in the Fzk-hybrid model and do not have access to a common reference string. Thus,
the common reference string is “replaced” by interaction via the Fzk functionality. That is, the
basic commitment scheme is as follows. The receiver V chooses a random value t and sends the
committer C the value s = f(t). Next, C uses s to commit to its input value, as defined in
the aHC commitment scheme. That is, C first obtains a Hamiltonian graph G such that finding a
Hamiltonian cycle in G is equivalent to computing the preimage t of s. (This is obtained by reducing
the NP-language {s | ∃t s.t. s = f(t)} to Hamiltonicity.) Then, in order to commit to 0, C chooses
a random permutation π of the nodes of G and commits to the edges of the permuted graph one-by-
one, using a non-interactive commitment scheme Com with pseudorandom commitments. (Such a
scheme can be obtained using one-way permutations, see Section 5.) On the other hand, in order
to commit to 1, C chooses a randomly labeled cycle over the same number of nodes as in G. Then,
C uses Com to commit to these entries and produces random values for the rest of the adjacency
matrix. As was shown in Section 5, this commitment scheme is both hiding and binding, and also
has the property that given a preimage t of s, it is possible to generate a “dummy commitment”
that can be later explained as a commitment to both 0 and 1. (Thus, t is essentially a trapdoor.)
We denote a commitment of this type by aHCs(w; r), where s is the image of the one-way function
being used, w is the value being committed to, and r is the randomness used in generating the
commitment.

The commitment scheme aHC as described above requires that the underlying one-way function
be a permutation. However, by using interaction, we can implement Com using the commitment
scheme of Naor [n91] (this scheme also has pseudorandom commitments). We thus obtain that aHC
can be implemented using any one-way function. For simplicity, the protocol is written for Com
that is non-interactive (and therefore assumes one-way permutations). However, it is not difficult
to modify it so that the [n91] scheme can be used instead.

As in the case of Protocol SCP, the first stage of the adaptive protocol (denoted ACP for adaptive
commit-and-prove) involves carrying out the commit phase of the above-described commitment
scheme via invocations of Fzk. This use of Fzk enables the simulator to extract the committed
value from the committing party. In addition, here Fzk is also used to enable the simulator to
obtain the trapdoor information needed for carrying out the adaptive simulation. Thus the protocol
begins by the receiver first choosing a random string t and computing s = f(t). Next, it sends

24The property actually required is that the simulator can generate a “commitment” c such that given any w at a
later stage, it can find randomness rw such that c = Com(w; rw). This is needed for the adaptive corruption of the
committing party. See Section 5 for more discussion.

55

s to the committer and, in addition, proves that it knows the preimage t. Loosely speaking, in
the Fzk-hybrid model, this involves sending a (ZK-prover, sid, s, t) message to Fzk and having the
functionality send C the message (ZK-proof, sid, s) if s = f(t). We note that this step is carried
out only once, even if many values are later committed to. Thus, the same s is used for many
commitments.

Let Ft
zk denote the copy of Fzk used for proving knowledge of the trapdoor/preimage. Then,

Ft
zk is parameterized by the relation RT defined as follows:

RT
def
= {(s, t) | s = f(t)} (6)

Fzk is used twice more; once more in the commit phase and once in the prove phase. These
copies of Fzk are denoted Fc

zk and Fp
zk, respectively. The uses of Fzk here are very similar to the

static case (Protocol SCP). We therefore proceed directly to defining the relations RC and RP that
parameterize Fc

zk and Fp
zk, respectively:

RC
def
= {((s, c), (w, r)) | c = aHCs(w; r)} (7)

RP
def
= {((x, s, c), (w, r)) | ∀i, ci = aHCs(wi; ri) & R(x,w) = 1} (8)

The only difference between the definition of RC and RP here and in the static case is that here
the value s is included as well. This is because a pair (s, c) binds the sender to a single value w,
whereas c by itself does not. The protocol for the adaptive case is presented in Figure 10. (As
in the static case, we formally differentiate the copies of Fzk by session identifiers sidT , sidC and
sidP .)

Proposition 7.2 Assuming the existence of one-way functions, Protocol ACP of Figure 10 UC

realizes Fcp in the Fzk-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of the above proposition follows similar lines to the proof of Proposi-
tion 7.1. However, here the adversary A can adaptively corrupt parties. Therefore, the simulator
S must deal with instructions from A to corrupt parties during the simulation. When given such
a “corrupt” command, S corrupts the ideal model party and receives its input (and possibly its
output). Then, given these values, S must provide A with random coins such that the simulated
transcript generated so far is consistent with this revealed input and output. (An additional “com-
plication” here is that the binding property of the underlying commitment scheme aHC is only
computational. Thus, the validity of the simulation will be demonstrated by a reduction to the
binding property of aHC.)

More precisely, let A be an adaptive adversary who operates against Protocol ACP in the Fzk-
hybrid model. We construct a simulator S such that no environment Z can tell with non-negligible
probability whether it is interacting with A and parties running Protocol ACP in the Fzk-hybrid
model or with S in the ideal process for Fcp. Simulator S will operate by running a simulated copy
of A and will use A in order to interact with Z and Fcp. S works in a similar way to the simulator
in the static case (see the proof of Proposition 7.1), with the following changes:

1. S records the pair (s, t) from the initialization phase of an execution. In the case where
the receiver is uncorrupted, this pair is chosen by S itself. In the case where the receiver
is corrupted this pair is chosen by the simulated A, and S obtains both s and t from the
message that the corrupted receiver sends to Ft

zk.

56

Protocol ACP

• Auxiliary Input: A security parameter k, and a session identifier sid.

• Initialization phase:
The first time that the committer C wishes to commit to a value using the identifier sid, parties C
and V execute the following before proceeding to the commit phase:

1. C sends sid to V to indicate that it wishes to initiate a commit activation.

2. Upon receiving sid from C, the receiver V chooses t ∈R {0, 1}k, computes s = f(t) (where f
is a one-way function), and sends (ZK-prover, sidT , s, t) to Ft

zk, where Ft
zk is parameterized by

the relation RT defined in Eq. (6). V records the value s.

3. Upon receiving (ZK-proof, sidT , s) from Ft
zk, C records the value s.

• Commit phase:

1. On input (commit, sid, w) (where w ∈ {0, 1}k), C computes c = aHCs(w; r) for a random r and
using the s it received in the initialization phase. C then sends (ZK-prover, sidC , (s, c), (w, r))
to Fc

zk, where Fc
zk is parameterized by the relation RC defined in Eq. (7). In addition, C

stores in a vector w the list of all the values w that were sent, and in vectors r and c the
corresponding lists of random strings and commitment values.

2. Upon receiving (ZK-proof, sidC , (s′, c)) from Fc
zk, V verifies that s′ equals the string s that it

sent in the initialization phase, outputs (receipt, sid) and adds the value c to its list c. (Initially,
c is empty.) If s′ 6= s, then V ignores the message.

• Prove phase:

1. On input (CP-prover, sid, x), the committer/prover C sends (ZK-prover, sidP , (x, s, c), (w, r))
to Fp

zk, where c, w and r are the vectors described above, and Fp
zk is parameterized by the

relation RP defined in Eq. (8).

2. Upon receiving (ZK-proof, sid, (x, s′, c)) from Fp
zk, V verifies that s′ is the same string s that

it sent in the initialization phase, and that its list of commitments equals c. If so, then it
outputs (CP-proof, sid, x). Otherwise, it ignores the message.

Figure 10: A protocol for realizing Fcp for adaptive adversaries

2. Whenever an uncorrupted party C commits to an unknown value w, simulator S hands A
a commitment to 0k as the commitment value. More precisely, whenever an uncorrupted C
writes a commit message on its outgoing transcript for Fcp, simulator S simulates the hybrid-
model C writing a ZK-prover message on its outgoing communication tape for Fc

zk (recall
that only the headers in these messages are public). Then, when A delivers this message to
Fc

zk in the simulated interaction, S computes c = aHCs(0
k; r) for a random r, and simulates

A receiving the message (ZK-proof, sidC , (s, c)) from Fc
zk. Likewise, S delivers the commit

message from C to Fcp, and receives back (receipt, sid) from Fcp. Then, when A delivers the
ZK-proof from Fc

zk to V , simulator S delivers the receipt message from Fcp to V . The “prove
phase” is simulated in an analogous way.

(Recall that by the aHC scheme, the commitment c to 0k that is generated by S can be later
opened as any string in {0, 1}k , given the trapdoor information t; see Section 5. This will be
needed below.)

3. When the simulated A internally corrupts C, simulator S first externally corrupts C in the

57

ideal process for Fcp and obtains the vector of values w that C committed to so far. Next,
S prepares for A a simulated internal state of C in Protocol ACP as follows. Apart from the
vector of committed values w, the only hidden internal state that C keeps in Protocol ACP is
a vector of random strings r that were used to commit to each wi in w. That is, for each input
value wi in w, adversary A expects to see a value ri such that ci = aHCs(wi, ri), where ci is
the corresponding commitment value that S generated and handed to A in the simulation
of commitments by an uncorrupted C (see step 2 above). Thus, for every i, S generates the
appropriate value ri using the trapdoor t, and then hands the list r to A. (See Section 5 for
a description of exactly how this randomness is generated.)

4. When the simulated A internally corrupts V , S provides A with a simulated internal state
of V . This state consists of the preimage t, plus the messages that V receives from Fzk. All
this information is available to S.

The analysis of the above simulator is very similar to the static case (Proposition 7.1). The main
difference is that here the commitment is only computationally binding. Thus the following bad
event is potentially possible: When the committer C is corrupted, the simulated A commits to
a series of values w with corresponding commitment values c. Later, in the prove phase, A then
generates a message (ZK-prover, sidP , (x, c), (w′, r′)) to send to Fp

zk, where w′ 6= w and yet for every
i, it holds that ci = aHCs(w

′
i, r

′
i). Furthermore, R(x,w′) = 1 and R(x,w) = 0. In other words, the

bad event corresponds to a case where in the ideal process Fcp does not send a (CP-proof, sid, x)
message (because R(x,w) = 0), whereas V does output such a message in a real execution of
Protocol ACP (because RP ((x, s, c)(w′, r′)) = 1 and the vector of commitments c is as observed by
V). (We note that given that this event does not occur, the correctness of the simulation carried
out by S follows the same argument as in the proof of Proposition 7.1.)

We conclude the proof by showing that this bad event occurs with negligible probability, or else
Z andA can be used to construct an algorithm that breaks the binding property of the aHC commit-
ment scheme. It suffices to show that A cannot generate a message (ZK-prover, sidP , (x, c), (w′, r′))
where w′ 6= w and yet for every i, it holds that ci = aHCs(w

′
i, r

′
i). Intuitively, this follows from the

binding property of aHC (see Section 5). In particular, let Z and A be such that the bad event
occurs with non-negligible probability during the above ideal-process simulation by S. Then, we
construct a machine M who receives s and with non-negligible probability outputs a commitment
c along with (w1, r1) and (w2, r2), where c = aHCs(w1; r1) = aHCs(w2; r2) and w1 6= w2.

M invokes S on Z and A, and emulates the ideal process, while playing the roles of the ideal
functionality and the uncorrupted parties C and V . Simulator S is the same as described above,
with the following two important differences:

• Instead of S choosing the pair (s, t) itself in step 1 of its instructions above, it uses the value s
that M receives as input. (Recall that M receives s and is attempting to contradict the binding
property of the commitment relative to this s.)

• If C commits to any values before it is corrupted, the simulation is modified as follows. Instead
of S providing A with a commitment c = aHCs(0

k; r), machine M provides S with the input
w being committed to and then S provides A with c = aHCs(w; r). Upon corruption of C,
simulator S then provides A directly with the list of random values r used in generating the
commitments. M can give S these values because it plays the uncorrupted C in the emulation
and therefore knows the w values.25

25A more “natural” definition of M would be to have it run S in the same way as in the simulation, even before C is
corrupted. In such a case, M would need to know the trapdoor in order to proceed when C is corrupted. However, it is
crucial here that M not know the trapdoor (because the binding property only holds when the trapdoor is unknown).

58

If during the emulation by M , the above-described bad event occurs, then M outputs c and the
two pairs (w1, r1) and (w2, r2). In order to analyze the success probability of M , first notice that
the views of Z and A in this simulation by M are indistinguishable from their views in an ideal
process execution. The only difference between the executions is that A does not receive “dummy
commitments” to 0k, but real commitments to w. By the hiding property of the commitments,
these are indistinguishable. Therefore, the probability that A generates the messages constituting
a bad event in M ’s emulation is negligibly close to the probability that the bad event occurs in the
ideal process simulation by S. The key point here is that S does not need to know the trapdoor t
in order to carry out the emulation. In particular, M carries out its emulation with s only, and
without knowing t. Therefore the binding property of the commitment scheme aHCs must hold with
respect to M . However, by the contradicting hypothesis, the bad event occurs in M ’s emulation
with non-negligible probability. This contradicts the binding property of the commitment scheme.

8 Two-Party Secure Computation for Malicious Adversaries

In this section, we show how to obtain universally composable general secure computation in the
presence of malicious adversaries. Loosely speaking, we present a protocol compiler that transforms
any protocol that is designed for the semi-honest adversarial model into a protocol that guarantees
essentially the same behavior in the presence of malicious adversaries. The compiler is described in
Section 8.1. Then, Section 8.2 ties together all the components of the construction, from Sections
4, 6, 7 and 8.1.

8.1 The Protocol Compiler

As discussed in Section 2.2, the Fcp functionality is used to construct a protocol compiler that
transforms any non-trivial protocol that UC realizes some two-party functionality F in the presence
of semi-honest adversaries (e.g., the protocol of Section 4), into a non-trivial protocol that UC
realizes F in the presence of malicious adversaries. In this section we present the compiler (the
same compiler is valid for both static and adaptive adversaries). Now, let Π be a two-party, reactive
protocol. Without loss of generality, we assume that Π works by a series of activations, where in
each activation, only one of the parties has an input. This is consistent with our description of
general two-party functionalities, see Sections 3.1 and 3.3. For the sake of simplicity, we also assume
that the lengths of the random tapes specified by Π for all activations is k.

The compiled protocol Comp(Π) is described in Figure 11 below. It uses two copies of Fcp:
one for when P1 is the committer and one for when P2 is the committer. These copies of Fcp are
denoted F1

cp and F2
cp, respectively, and are formally identified by session identifiers sid1 and sid2

(where sidi can be taken as sid ◦ i). The description of the compiler is from the point of view of
party P1; P2’s instructions are analogous.

Loosely speaking, the effect of the compiler on the adversary’s capabilities, is that the (mali-
cious) adversary must exhibit semi-honest behavior, or else its cheating will be detected. Recall
that a semi-honest adversary follows the protocol instructions exactly, according to a fixed input
and a uniformly distributed random input. The following proposition asserts that for every mali-
cious adversary A participating in an execution of the compiled protocol (in the Fcp-hybrid model),
there exists a semi-honest adversary A′ that interacts with the original protocol in the plain real-
life model such that for every environment Z, the output distributions in these two interactions
are identical. Thus, essentially, a malicious adversary is reduced to semi-honest behavior. We

59

Comp(Π)

Party P1 proceeds as follows (the code for party P2 is analogous):

1. Random tape generation: When activating Comp(Π) for the first time with session identifier
sid, party P1 proceeds as follows:

(a) Choosing a random tape for P1:

i. P1 chooses r1
1 ∈R {0, 1}k and sends (commit, sid1, r

1
1) to F1

cp. (P2 receives a
(receipt, sid1) message, chooses r2

1 ∈R {0, 1}k and sends (sid, r2
1) to P1.)

ii. When P1 receives a message (sid, r2
1) from P2, it sets r1

def
= r1

1 ⊕ r2
1 (r1 serves as P1’s

random tape for the execution of Π).

(b) Choosing a random tape for P2:

i. P1 waits to receive a message (receipt, sid2) from F2
cp (this occurs after P2 sends a

commit message (commit, sid2, r
2
2) to F2

cp). It then chooses r1
2 ∈R {0, 1}k and sends

(sid, r1
2) to P2. (P2 sets r2 = r1

2 ⊕ r2
2 to be its random tape for the execution of Π.)

2. Activation due to new input: When activated with input (sid, x), party P1 proceeds as
follows.

(a) Input commitment: P1 sends (commit, sid1, x) to F1
cp and adds x to the list of inputs x

(this list is initially empty and contains P1’s inputs from all the previous activations of Π).
Note that at this point P2 receives the message (receipt, sid1) from F1

cp.

(b) Protocol computation: Let m1 be the series of Π-messages that P1 received from P2 in all
the activations of Π until now (m1 is initially empty). P1 runs the code of Π on its input
list x, messages m1, and random tape r1 (as generated above).

(c) Outgoing message transmission: For any outgoing message m that Π instructs P1 to send
to P2, P1 sends (CP-prover, sid1, (m, r2

1 , m1)) to F1
cp where the relation RΠ for F1

cp is defined
as follows:

RΠ =
{

((m, r2
1 , m1), (x, r1

1)) | m = Π(x, r1
1 ⊕ r2

1 , m1)
}

In other words, P1 proves that m is the correct next message generated by Π when the
input sequence is x, the random tape is r1 = r1

1 ⊕ r2
1 and the series of incoming Π-messages

equals m1. (Recall that r1
1 and all the elements of x were committed to by P1 in the past

using commit invocations of F1
cp, and that r2

1 is the random string sent by P2 to P1 in Step
1(a)ii above.)

3. Activation due to incoming message: When activated with incoming message
(CP-proof, sid2, (m, r1

2 , m2)) from F2
cp, P1 first verifies that the following conditions hold (we

note that F2
cp is parameterized by the same relation RΠ as F1

cp):

(a) r1
2 is the string that P1 sent to P2 in Step 1(b)i above.

(b) m2 equals the series of Π-messages received by P2 from P1 (i.e., P1’s outgoing messages) in
all the activations until now.

If any of these conditions fail, then P1 ignores the message. Otherwise, P1 appends m to its list
of incoming Π-messages m1 and proceeds as in Steps 2b and 2c.

4. Output: Whenever Π generates an output value, Comp(Π) generates the same output value.

Implicit in the above protocol specification is the fact that P1 and P2 only consider messages that are

associated with the specified identifier sid.

Figure 11: The compiled protocol Comp(Π)

60

note that the compiler does not use any additional cryptographic construct other than access to
Fcp. Consequently, the following proposition holds unconditionally, and even if the adversary and
environment are computationally unbounded.

Proposition 8.1 Let Π be a two-party protocol and let Comp(Π) be the protocol obtained by ap-

plying the compiler of Figure 11 to Π. Then, for every malicious adversary A that interacts with

Comp(Π) in the Fcp-hybrid model there exists a semi-honest adversary A′ that interacts with Π in

the plain real-life model, such that for every environment Z,

realΠ,A′,Z ≡ execFcp

Comp(Π),A,Z

An immediate corollary of this proposition is that any protocol that UC realizes some two-party
functionality F in the semi-honest model can be compiled into a protocol that UC realizes F in
the malicious model. This holds both for static and adaptive adversaries.

Corollary 8.2 Let F be a two-party functionality and let Π be a non-trivial protocol that UC

realizes F in the real-life model and in the presence of semi-honest adversaries. Then Comp(Π) is

a non-trivial protocol that UC realizes F in the Fcp-hybrid model and in the presence of malicious

adversaries.

We note that the proposition and corollary hold both for the case of adaptive adversaries and for
the case of static adversaries. Here we prove the stronger claim, relating to adaptive adversaries.
We now prove the proposition.

Proof of Proposition 8.1: Intuitively, a malicious adversary cannot cheat because the validity
of each message that it sends is verified using the Fcp functionality. Therefore, it has no choice but
to play in a semi-honest manner (or be detected cheating).

More precisely, let A be a malicious adversary interacting with Comp(Π) in the Fcp-hybrid
model. We construct a semi-honest adversary A′ that interacts with Π in the plain real-life model,
such that no environment Z can tell whether it is interacting with Comp(Π) and A in the Fcp-
hybrid model, or with Π and A′ in the plain real-life model. As usual, A′ works by running a
simulated copy of A and using the messages sent by A as a guide for its interaction with Π and Z.
We use the term external communication to refer to the communication of A′ with Z and Π. The
term internal communication is used to refer to the communication of A′ with the simulated A.
Before describing A′, we note the difference between this proof and all previous ones in this paper.
Until now, we constructed an ideal process adversary S from a hybrid or real model adversary
A. In contrast, here we construct a real model adversary A′ from a hybrid model adversary A.
Furthermore, previously both S and A were malicious adversaries, whereas here A is malicious and
A′ is semi-honest. We now describe A′:

First, A′ runs a simulated copy of A and simulates for A the Comp(Π) messages relating to
the generation of the random string of both parties. Next, A′ translates each message externally
sent in Π to the corresponding message (or sequence of messages) in Comp(Π). Each message sent
by the simulated A (in the name of a corrupted party running Comp(Π)) is translated back to a
Π-message and sent externally. The rationale of this behavior is that if the simulated A (controlling
the corrupted party) deviates from the protocol, then this would have been detected by the partner
in Comp(Π), and thus A′ can ignore that message. If A does not deviate from the protocol, then A′

can forward the messages sent by A to the other party as this is allowed behavior for a semi-honest
party. More precisely, A′ proceeds as follows.

61

Simulating the communication with the environment: Every input value coming from Z
(in the external communication) is forwarded to the simulated A (in the internal communi-
cation) as if coming from A’s environment. Similarly, every output value written by A on its
output tape is copied to A′’s own output tape (to be read by the external Z).

Simulating the “random tape generation” phase: When the first activation of Π takes place,
A′ internally simulates the “random tape generation” phase of Comp(Π). Here we separately
deal with each corruption case:

1. Both parties are not corrupted: A′ simulates both parties’ messages from this stage.
That is, in order to simulate the generation of P1’s random tape, A′ internally passes A
the message (receipt, sid1), as if coming from F1

cp. Furthermore, A′ chooses a random
r2
1, records the value, and simulates P2 sending P1 the message (sid, r2

1) of Step 1(a)ii in
Figure 11. The simulation of P2’s random tape is analogous.

2. P1 is not corrupted and P2 is corrupted: We begin with the generation of P1’s random
tape. As above, A′ begins by internally passingA the message (receipt, sid1), as if coming
from F1

cp. Then, A′ obtains and records the message (sid, r2
1) from the corrupted P2

(controlled by A in Comp(Π)).

We now proceed to the generation of P2’s random tape. A′ obtains from A the message
(commit, sid2, r

2
2), as sent by P2 to F2

cp in an execution of Comp(Π). Now, let r2 equal
the random tape of the corrupted P2 in the external execution of Π (A′ knows this
value because it can read all of the corrupted P2’s tapes). Then, A′ sets r1

2 = r2 ⊕ r2
2

and internally passes A the message (sid, r1
2), as if sent by P1 to P2. (Recall that A′ is

semi-honest and thus it cannot modify P2’s random tape r2 for Π. A′ therefore “forces”
A to use this exact same random tape for P2 in the simulated execution of Comp(Π).)

3. P1 is corrupted and P2 is not corrupted: The simulation of this case is analogous to the
previous one. In particular, for the generation of the corrupted P1’s random tape, A′

first receives a message (commit, sid1, r
1
1) from A and simulates P2 sending (sid, r2

1) to
P1, where r2

1 = r1 ⊕ r1
1 and r1 equals the random tape of the real party P1 executing Π.

4. Both parties are corrupted: When both parties are corrupted, the entire simulation is
straightforward. (A′ simply runs both malicious parties and at the end, copies the
contents of their output tapes to the output tapes of the semi-honest parties running
Π.) We therefore ignore this case from now on.

Simulating an activation due to new input: Recall that the input commitment phase con-
sists only of P1 sending a commit message to F1

cp. We deal with the case that P1 is not
corrupted separately from the case that P1 is corrupted. First, in the case that party P1 is
not corrupted, then A′ learns that the external P1 received new input from the fact that it
sends its first message of the execution of Π. In response, A′ simulates the input commitment
step by internally passing (receipt, sid1) to A (as A expects to receive from F1

cp in a real
execution of Comp(Π)).

If P1 is corrupted, then A′ receives a message (commit, sid1, x) from A (who controls P1

in Comp(Π)). Then, A′ adds x to the list x of inputs committed to by P1 and passes A
the string (receipt, sid1), as if coming from F1

cp. Furthermore, A′ sets P1’s input tape to
equal x. (Recall that a semi-honest adversary is allowed to modify the input values that the
environment writes on the input tape of a corrupted party. Formally, when the environment
Z notifies the semi-honest A′ of the value that it wishes to write on P1’s input tape, A′

62

simulates for A the malicious model where Z writes directly to P1’s input tape. Then, when
A sends the message (commit, sid1, x) in the simulation, A′ externally instructs Z to write the
value x (as committed to by A) on P1’s input tape. See Section 3.1.1 for an exact description
of how values are written to the parties’ input tapes in the semi-honest model.)

Dealing with Π messages sent externally by uncorrupted parties: If an uncorrupted party
P1 externally sends P2 a message m in the execution of Π, then A′ internally passes A the
analogous message that it expects to see in Comp(Π): (CP-proof, sid1, (m, r2

1 ,m1)), where
r2
1 is the value recorded by A′ in the simulated generation of P1’s random tape above, and

m1 is the series of all Π-messages received by P1 so far. Similarly, if an uncorrupted party
P2 sends P1 a message m in the execution of Π, then A′ internally passes A the message
(CP-proof, sid2, (m, r1

2 ,m2)), where r1
2 and m2 are the analogous values to the previous case.

Next, the messages sent from P1 to P2 (resp., from P2 to P1) in the real execution of Π are
delivered externally by A′, when A delivers the corresponding (CP-proof, . . .) messages from
F1

cp to P2 (resp., from F2
cp to P1) in the simulated execution of Comp(Π).

Dealing with Comp(Π) messages sent internally by corrupted parties: Assume that P1 is
corrupted. If A, controlling P1, sends a message (CP-prover, sid1, (m, r′21,m

′
1)), then A′ works

as follows. First, A′ has seen all the messages m1 received by P1 and can check that m′
1 = m1.

Likewise, A′ checks that r′21 = r2
1 (recall that r2

1 is the value recorded by A′ in the simulated
generation of P1’s random tape above). Finally, A′ checks that m = Π(x, r1

1⊕r2
1,m1). (Notice

that since P1 is corrupted, A′ has all the necessary information to carry out these checks.) If
all of the above is true, then A′ internally passes A the message (CP-proof, sid1, (m, r′21,m

′
1)),

as A expects to receive from F1
cp. Then, whenA delivers this (CP-proof, . . .) message from F1

cp

to P2 in the simulation, A externally delivers the message that P1, running Π, has written on
its outgoing communication tape for P2.

26 If any of these checks fail, then A′ does nothing.
(That is, no message is externally delivered from P1 to P2 at this point.) The case of A
sending a CP-proof message in the name of a corrupt P2 is analogous.

Dealing with corruption of parties:27 When the simulated A internally corrupts a party P1,
A′ first externally corrupts P1 and obtains all of P1’s past inputs and outputs, and its random
tape. Next, A′ prepares for A a simulated internal state of P1 in protocol Comp(Π). This is
done as follows. The only additional internal state that P1 keeps in Comp(Π) is the random
string r1

1 (this is the string that P1 commits to in the random tape generation phase of
Comp(Π)). Therefore, A′ sets r1

1 = r1⊕ r2
1, where r1 is P1’s random string for Π and r2

1 is the
string that P2 sent to P1 in the internal simulated interaction with A of Comp(Π). In this
way, A′ prepares a simulated internal state of P1 in Comp(Π) and internally passes it to A.
A′ works in an analogous way upon the corruption of P2.

We argue that Z’s view of the interaction with A′ and parties running Π in the real-life semi-
honest model is identical to its view of the interaction with A and parties running Comp(Π) in the
Fcp-hybrid model. (In particular, the view of the simulated A within A′ is identical to its view
in a real interaction with the same Z and Comp(Π) in the Fcp-hybrid model.) This can be seen
by observing the computational steps in an interaction of Z with A′ and Π. The cases where an

26This point requires some elaboration. Notice that if all checks were successful, then the message that P1 would
send in an execution of Π equals m. This is because external P1 in Π and internal P1 in Comp(Π) both have the
same inputs, random tapes and series of incoming messages. Therefore, their outgoing messages are also the same.

27In the case of static adversaries the simulation remains the same with the exception that this case is ignored.

63

uncorrupted party sends a message are immediate. To see that this holds also in the case that A′

delivers messages sent by corrupted parties, observe the following facts:

1. Random tape: A′ forces the random tape of a corrupted P1 in the internal execution of
Comp(Π) with A to be the random tape of the semi-honest party P1 externally executing Π.

2. Input: A′ modifies the input tape of the external party P1 so that it is the same input as
committed to by A.

We therefore have that the input and random tapes that the malicious A committed to for the
internal P1 are exactly the same as the input and random tapes used by the external, semi-honest
P1.

3. Message generation and delivery: In the simulation with malicious A, semi-honest A′ obtains
all the inputs committed to by a corrupted P1. Consequently, A′ is able to verify at every
step if the message m sent by A, in the name of corrupted P1, is according to the protocol
specification. If yes, then it is guaranteed that P1 generates the exact same message m in the
external execution of Π. Thus, P2 receives the same Π-message in the execution of Π (where
the adversary A′ is semi-honest) and in the execution of Comp(Π) (where the adversary
A is malicious). Furthermore, it is guaranteed that whenever A′ delivers a message m in
the external execution of Π, the simulated A generated and delivered a valid corresponding
message to Fcp.

4. Corruptions: The internal state that A receives from A′ upon corrupting a party is exactly
the same as it receives in a real execution of Comp(Π). In particular, observe that in the
simulation of the random tape generation phase when P1 is not corrupted, A receives no
information about r1

1 (it only sees a (receipt, sid1) message). Therefore, A′ can choose r1
1 as

any value that it wishes upon the corruption of P1, and in particular it can set it to equal
r1 ⊕ r2

1 (recall that P1 indeed uses the random tape r1; therefore this is consistent with its
true internal state).

We conclude that the ensembles real and exec are identical.

8.2 Conclusions

Combining the semi-honest protocol of Proposition 4.3 with the compilation obtained in Corol-
lary 8.2, we have that for any two-party ideal functionality F , there exists a protocol that UC
realizes F in the Fcp-hybrid model (in the presence of malicious adversaries). Combining this with
the fact that assuming the existence of one-way functions, Fcp can be UC realized in the Fzk-
hybrid model (Proposition 7.1), and using the UC composition theorem (Theorem 3.3), we obtain
universally composable general two-party computation in the Fzk-hybrid model. That is,

Theorem 8.3 (Theorem 2.2 – formally restated): Assume that enhanced trapdoor permutations

exist. Then, for any well-formed two-party ideal functionality F , there exists a non-trivial proto-

col that UC realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries.

Furthermore, if one-way functions and two-party augmented non-committing encryption protocols

exist, then for any adaptively well-formed two-party ideal functionality F , there exists a non-trivial

protocol that UC realizes F in the Fzk-hybrid model in the presence of malicious, adaptive adver-

saries.

64

Recall that, under the assumption that enhanced trapdoor permutations exist, functionality F̂zk

(the multi-session extension of Fzk) can be UC realized in the Fcrs-hybrid model by protocols that
uses a single copy of the reference string. We can thus use the universal composition with joint
state theorem (Theorem 3.4) to obtain the following corollary:

Corollary 8.4 Assume that enhanced trapdoor permutations exist. Then, for any well-formed

two-party ideal functionality F , there exists a non-trivial protocol that UC realizes F in the Fcrs-

hybrid model in the presence of malicious, static adversaries. Furthermore, if two-party augmented

non-committing encryption protocols also exist, then for any adaptively well-formed two-party func-

tionality F , there exists a non-trivial protocol that UC realizes F in the Fcrs-hybrid model in the

presence of malicious, adaptive adversaries. In both cases, the protocol uses a single copy of Fcrs.

9 Multi-Party Secure Computation

This section extends the two-party constructions of Sections 5–8 to the multi-party setting, thereby
proving Theorem 2.3. The results here relate to a multi-party network where subsets of the parties
wish to realize arbitrary (possibly reactive) functionalities of their local inputs. Furthermore, there
is an adaptive adversary that can corrupt any number of the parties (in particular, no honest
majority is assumed). Throughout, we continue to assume a completely asynchronous network
without guaranteed message delivery.

This section is organized as follows. We start by showing how to obtain UC multi-party com-
putation in the presence of semi-honest adversaries. Next we define a basic broadcast primitive
which will be used in all our protocols in the case of malicious adversaries. We then generalize
the UC commitment, zero-knowledge and Fcp functionalities to the multi-party case. Finally, we
construct a multi-party protocol compiler using the generalized Fcp, and obtain UC multi-party
computation in the malicious adversarial model. In our presentation below, we assume familiarity
with the two-party constructions.

9.1 Multi-Party Secure Computation for Semi-Honest Adversaries

In this section, we sketch the construction of non-trivial protocols that UC realize any adaptively
well-formed functionality F for semi-honest adversaries. (Recall the definition of adaptively well-
formed functionalities in Section 3.3.) The construction is a natural extension of the construction
for the two-party case. We assume that the set P of participating parties in any execution is fixed
and known; let this set be P1, . . . , Pℓ. Then, the input lines to the circuit (comprising of the input
value, random coins and internal state of the functionality) are shared amongst all ℓ parties. That
is, for every input bit α to the circuit, the parties hold random bits α1, . . . , αℓ, respectively, under
the constraint that α = ⊕ℓ

i=1αi. Next, the parties compute the circuit inductively from the inputs
to outputs so that at every step, they hold shares of the lines already computed. Once the circuit
is fully computed, the parties reconstruct the outputs, as required. We now proceed to prove the
following proposition:

Proposition 9.1 Assume that enhanced trapdoor permutations exist. Then, for any well-formed

(multi-party) ideal functionality F , there exists a non-trivial protocol that UC realizes F in the

presence of semi-honest, static adversaries. Furthermore, if two-party augmented non-committing

encryption protocols exist, then for any adaptively well-formed (multi-party) functionality F , there

65

exists a non-trivial protocol that UC realizes F in the presence of semi-honest, adaptive adversaries.

As in the two-party case, for adaptive adversaries we assume the existence of two-party augmented
non-committing encryption protocols. Indeed, as in the two-party case this assumption is needed
only to UC realize the two-party functionality F4

ot, which plays a central role even in the multi-party
case.

We begin our proof of Proposition 9.1 by presenting a non-trivial multi-party protocol ΠF that
UC realizes any adaptively well-formed functionality F in the Fot-hybrid model. (We prove the
proposition for the adaptive case only, the static case is easily derived.) We start by defining a
boolean circuit CF that represents an activation of F . The circuit CF has 3m input lines: m lines
represent the input value sent to F in this activation (i.e., this is the input held by one of the
parties). The additional 2m input lines are used for F ’s random coins and for holding F ’s state
at the onset of the activation. The circuit also has m output lines for each party and m output
lines for final state of F after the activation (a total of mℓ + m lines). For more details on how F
and CF are defined, see the description for the two-party case in Section 4.2 (the extensions to the
multi-party case are straightforward).

Protocol Π
F

(for UC realizing F): Let the set of participating parties equal P = {P1, . . . , Pℓ}.
We state the protocol for an activation in which P1 sends a message to F . When activated with
input (sid, v) for P1 where |v| ≤ m, the protocol first pads v to length m (according to some
standard encoding), and sends a message to all the parties in P, asking them to participate in a
joint evaluation of CF . Next, the parties do the following:

1. Input Preparation Stage:

• Input value: P1 starts by sharing its input v with all parties. That is, P1 chooses ℓ random
strings v1, . . . , vℓ ∈R {0, 1}

m with the constraint that ⊕ℓ
i=1vi = v. Then, P1 sends (sid, vi)

to Pi for every 2 ≤ i ≤ ℓ, and stores v1.

• Internal state: At the onset of each activation, the parties hold shares of the current
internal state of F . That is, let c denote the current internal state of F , where |c| = m
and m is an upper bound on the size of the state string stored by F . Then, party Pi holds
ci ∈ {0, 1}

m and all the ci’s are random under the restriction that ⊕ℓ
i=1ci = c. (In the

first activation of F , the internal state is empty and so the parties hold fixed shares 0 that
denote the empty state.)

• Random coins: Upon the first activation of F only, each party Pi locally chooses a random
string ri ∈R {0, 1}

m. The strings r1, . . . , rℓ then constitute shares of the random coins
r = ⊕ℓ

i=1ri to be used by CF in all activations.

At this point, the parties hold (random) shares of every input line of CF .

2. Circuit Evaluation: The parties proceed to evaluate the circuit CF in a gate-by-gate man-
ner. Let α and β denote the bit-values of the input lines to a given gate. Then every Pi holds
bits αi, βi such that α =

∑ℓ
i=1 αi and β =

∑ℓ
i=1 βi. The gates are computed as follows:

• Addition gates: If the gate is an addition gate, then each Pi locally sets its share of the
output line of the gate to be γi = αi + βi. (Thus

∑ℓ
i=1 γi =

∑ℓ
i=1(αi + βi) = α + β = γ.)

66

• Multiplication gates: If the gate is a multiplication gate, then the parties need to compute

their shares of γ =
(

∑ℓ
i=1 αi

)(

∑ℓ
i=1 βi

)

. The key to carrying out this computation is the

following equality:

(

ℓ
∑

i=1

αi

)(

ℓ
∑

i=1

βi

)

= ℓ ·
ℓ
∑

i=1

αiβi +
∑

1≤i<j≤ℓ

(αi + αj) · (βi + βj)

(See [g98, Section 3.2.2] for a justification of this equality.) Notice that each party can
compute a share of the first sum locally (by simply computing αi · βi and multiplying
the product by ℓ). Shares of the second sum can be computed using activations of the
two-party oblivious transfer functionality F4

ot. (That is, for each pair i and j, parties Pi

and Pj compute shares of (αi + αj) · (βi + βj). This is exactly the same computation as in
the two-party case and can be carried out using F4

ot.) After computing all of the shares,
each party Pi locally sums its shares into a value γi, and we have that

∑ℓ
i=1 γi = γ, as

required.

3. Output stage: Following the above stage, the parties hold shares of all the output lines of
the circuit CF . Each output line of CF is either an output addressed to one of the parties
P1, . . . , Pℓ, or belongs to the internal state of CF after the activation. The activation concludes
as follows:

• Pi’s output (for every i): For every j 6= i, party Pj sends Pi all of its shares in Pi’s output
lines. Pi then reconstructs every bit of its output value by adding the appropriate shares,
and writes the result on its output tape.

• Internal state: P1, . . . , Pℓ all locally store the shares that they hold for the internal state
lines of CF . (These shares are to be used in the next activation.)

Recall that since we are working in an asynchronous network, there is no guarantee on the order of
message delivery and messages may be delivered “out of order”. In contrast, to maintain correctness
the protocol must be executed according to its prescribed order (e.g., new activations must begin
only after previous ones have completed and gates may be evaluated only after the shares of the
input lines are known). As in the two-party case, this is dealt with by assigning unique identifiers to
every message sent during all activations. A full description of how this can be achieved appears in
Section 4.2. By having the parties store messages that arrive before they are relevant in appropriate
buffers (where the time that a message becomes relevant is self-evident from the unique tags), we
have that all honest parties process the messages in correct order. Thus, it makes no difference
whether or not the adversary delivers the messages according to the prescribed order and we can
assume that all messages are delivered in order.

This completes the description of ΠF . We now sketch the proof that ΠF UC realizes any adaptively
well-formed multi-party functionality F :

Claim 9.2 Let F be an adaptively well-formed multi-party functionality. Then, protocol ΠF UC

realizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.

Proof (sketch): The proof of this claim is very similar to the two-party case (i.e., Claim 4.4).
First, it is clear that ΠF correctly computes F (i.e., all parties receive outputs that are distributed
according to F). Next, we show the existence of a simulator for ΠF . The basis for the simulator’s

67

actions is the fact that, as long as there is at least one uncorrupted party, all the intermediary
values seen by the parties are uniformly distributed.

Let A be a semi-honest, adaptive adversary; we construct a simulator S for the ideal process
F . Simulator S internally invokes A and works as follows:

Simulating the communication with Z: The input values received by S from Z are written
on A’s input tape, and the output values of A are copied to S’s own output tape.

Simulation of the input stage: Recall that in this stage, the only messages sent are random
strings v2, . . . , vℓ that P1 sends to P2, . . . , Pℓ. Thus, the simulation of this stage involves
simulating P1 sending ℓ− 1 random strings v2, . . . , vℓ to P2, . . . , Pℓ. (If P1 is corrupted, then
v2, . . . , vℓ are chosen according to P1’s random tape. Otherwise, S chooses each vi uniformly.)

Simulation of the circuit evaluation stage: The addition gates require no simulation since
they constitute local computation only. The multiplication gates involve simulation of pair-
wise oblivious transfer calls to Fot. We describe the simulation of these oblivious transfers
separately for each corruption case.

1. Oblivious transfers run with an uncorrupted receiver: In the case that the receiver is not
corrupted, the only message seen by A in a call to Fot is the session-identifier used.
This is therefore easily simulated by S. (If the sender is corrupted, then its input table
to Fot is seen by A. However, this is already defined because it is a function of the
sender’s view which is known to A.)

2. Oblivious transfers run with an uncorrupted sender and a corrupted receiver: In this
case, the receiver obtains a uniformly distributed bit γ2 as output from the oblivious
transfer. Therefore, S merely chooses γ2 uniformly.

3. Oblivious transfers run with a corrupted sender and receiver: Simulation is straightfor-
ward when both participating parties are corrupted (all input values and random tapes
are already defined).

Simulation of the output stage: S simulates the parties sending strings in the output stage in
order to reconstruct their outputs. First, we note that the shares of the output lines are
already defined for any party Pj that is already corrupted. (This is because A holds the view
of Pj and this view defines the shares that Pj holds of all the output lines.) This means that
the strings that Pj sends in the output stage are also defined. Now, S defines the strings
received by a party Pi in the output stage as follows. If Pi is not corrupted, then S simulates
all the other uncorrupted parties sending Pi uniformly distributed strings. If Pi is corrupted,
then S has Pi’s output yi. S uses this to choose random strings for the honest parties so that
the exclusive-or of these strings along with the defined output strings sent by the corrupted
parties equals yi. (Thus, Pi’s output is reconstructed to yi, as required.) Simulator S carries
out this simulation for all parties P1, . . . , Pℓ.

Simulation of corruptions before the last honest party is corrupted: When some party Pi

is corrupted, S should provide A with the internal state of Pi for all the activations of F (i.e.,
for all the evaluations of CF) so far. All the evaluations are dealt with independently from
each other, except that Pi’s output shares of F ’s internal state from one evaluation equals its
input shares of F ’s internal state in the following evaluation. Also all evaluations, except per-
haps for the current one, are complete. Here we describe how S deals with a single, complete

68

activation. (If the current activation is not complete then S follows its instructions until the
point where Pi is corrupted.)

Upon the corruption of party Pi, simulator S receives Pi’s input xi and output yi, and should
generate Pi’s view of the simulated protocol execution. This view should be consistent with
the messages sent in the simulation so far. We begin with the simulation of Pi’s view of the
input stage. If i = 1 (i.e., P1 is the party that is corrupted), then S obtains the input value
v. Let v2, . . . , vℓ be the random strings that P1 sent P2, . . . , Pℓ in the simulated interaction.
Then, S defines P1’s share of the input to equal v1 so that ⊕ℓ

i=1vi = v. S continues for any Pi

(i.e., not just for i = 1) as follows. S chooses random strings ri ∈R {0, 1}
m and ci ∈R {0, 1}

s

and sets Pi’s inputs to CF ’s random-coins and internal state to be ri and ci, respectively.

Having completed the simulation of Pi’s view of the input stage, S proceeds to simulate Pi’s
view in the oblivious transfers of the protocol execution. Below we describe the simulation
for all the multiplication gates except for those immediately preceding output lines (these will
be dealt with separately below). We distinguish four cases (when referring to corrupted and
uncorrupted Pj below, we mean the current corruption status and not the status at the time
that the given oblivious transfer was executed):

1. Oblivious transfers run with Pi as sender and an uncorrupted Pj as receiver: Recall that
in every oblivious transfer, the sender inputs a random-bit γ1 to mask the outcome. In
this case, S simply chooses γ1 uniformly. (This is the random bit that Pi supposedly
chose upon computing this gate.)

2. Oblivious transfers run with an uncorrupted Pj as sender and Pi as receiver: In this
case, in the execution of ΠF , party Pi receives a uniformly distributed bit γ2 as output
from the oblivious transfer. Therefore, S chooses γ2 uniformly.

3. Oblivious transfers run with Pi as sender and an already corrupted Pj as receiver: Pj is
already corrupted and therefore the value γ2 that it received from this oblivious transfer
has already been fixed in the simulation. Furthermore, both Pi and Pj ’s circuit inputs
vi, vj , ri, rj and ci, cj have been fixed, as too have their views for all the multiplication
gates leading to this one. (S computes the view inductively from the inputs to the out-
puts.) Thus, the input lines to this oblivious transfer are fixed, as too is Pj ’s output from
the oblivious transfer. This fully defines the oblivious transfer table that P1 constructs
in the protocol execution (as well as its “random” bit γ1). Therefore, S constructs the
table according to the protocol instructions.

4. Oblivious transfers run with an already corrupted Pj as sender and Pi as receiver: As in
the previous case, the input lines and the random-bit γ1 that Pj inputs into the oblivious
transfer are fixed. Since Pi’s input into this oblivious transfer is also already fixed, this
fully defines the bit γ2 that Pi receives as output.

As we have mentioned, there is a difference regarding the simulation of multiplication gates
that precede output lines. (As in the two-party case, we assume for simplicity that every
output line is preceded by a multiplication gate.) We describe the simulation of these gates
together with the output stage. During the simulation of the output stage, Pi received
uniformly distributed strings yj

i from every party Pj (the strategy for choosing these values is

described above in the item on “simulation of the output stage”). Note that all the yj
i ’s (for

j 6= i) are defined and fixed.28 Upon the corruption of Pi, simulator S receives Pi’s output

28Actually, corruption can happen in the middle of the output stage and in such a case only some of the output
strings may be fixed. In such a case, first (internally) fix all the output strings and then continue as here.

69

string yi. The aim of S is to have Pi’s output lines define shares yi
i such that ⊕ℓ

j=1 yj
i = yi

(and thus Pi’s output reconstruction will be as required). This is done as follows. Recall
that the evaluation of each multiplication gate is comprised of a series of oblivious transfers
between all pairs of parties. Since Pi is not the last honest party to be corrupted, there
exists at least one honest party Pl with which Pi runs a pairwise oblivious transfer in the
computation of this gate. All the oblivious transfers of this gate apart from this one are
simulated as described above. These simulations all provide bit-shares to Pi: let b denote
the sum of these shares. It remains to simulate this last oblivious transfer between Pi and
Pl. Let γi be the bit of yi

i that Pi is supposed to receive as its share of the output line that
follows from this multiplication gate. Now, the specific oblivious transfer between Pi and Pl

defines one share of the output bit γi, and all the other shares have already been fixed and
sum to b. Thus, the aim of S is to have Pi’s output from the oblivious transfer with Pl equal
γi + b (and thus Pi’s overall output from the gate will be γi as required). However, Pl is not
corrupted. Therefore, whether Pi is the sender or Pl is the sender, Pi’s output can be chosen
arbitrarily by S. (See the first 2 of the 4 simulation cases above; in those cases, S merely
chooses the output bit randomly.) Thus, S sets the output bit to be γi + b and Pi receives
the correct bit. This completes the simulation for the corruption of Pi.

Simulation of the corruption of the last honest party: Let Pi be the party that is corrupted
last. If i = 1, then S obtains the input-value v into this activation. As above, in this case,
S defines P1’s share of the input v1 to be so that ⊕ℓ

j=1 vj = v. In all cases, S obtains the
output-value yi that Pi receives. Furthermore, since F is adaptively well-formed, S obtains
the random tape of F . Given this information, S computes the internal state of F in the
beginning of this activation; S can do this because it now holds F ’s random tape and the
inputs of all parties in all the activations of F . Let c be the computed state string and let
r equal F ’s length-m random tape. Now, apart from Pi, all the other parties have already
been corrupted. Therefore, the shares of the random tape rj are already fixed for every j 6= i.
S takes Pi’s share of the random tape to be ri so that ⊕ℓ

j=1 rj = r. Likewise, except for ci,

all the shares of the state input cj are fixed. S thus defines ci so that ⊕ℓ
j=1 cj = c. This

completes the simulation of the input stage.

Next S simulates the circuit evaluation stage, working from the input gates to the output
gates, in the same way as described above (i.e., for the case that Pi is not the last honest party
corrupted). Notice above that when Pi runs an oblivious transfer with an already corrupted
party, then all the inputs and outputs are essentially fixed. Thus, S merely computes the bit
that Pi should see in each oblivious transfer as in the above cases. We therefore have that
the simulation of this stage is a deterministic process. This simulation also defines the output
shares that Pi receives, thus concluding the simulation.

Output delivery: S delivers the output from F to an uncorrupted party Pi when A delivers all
the output shares yj

i that parties Pj send Pi in the simulation.

It remains to show that no environment Z can distinguish the case that it interacts with S and F
in the ideal process or with A and ΠF in the Fot-hybrid model. The analysis is similar to the one
for the two-party case and is omitted.

70

9.2 Authenticated Broadcast

In order to obtain our result, we assume that each set of parties that engage in a protocol execution
have access to an authenticated broadcast channel. The broadcast channel is modeled by the ideal
broadcast functionality, Fbc, as defined in Figure 12. In our protocols for malicious adversaries, all
communication among the parties is carried out via Fbc.

Functionality Fbc

Fbc proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving a message (broadcast, sid,P , x) from Pi, where P is a set of parties, send
(broadcast, sid, Pi,P , x) to all parties in P and to S, and halt.

Figure 12: The ideal broadcast functionality

Note that the Fbc-hybrid model does not guarantee delivery of messages, nor does it provide
any synchrony guarantees for the messages that are delivered. It only guarantees that no two
uncorrupted parties in P will receive two different message with the same sid. In subsequent
work to ours, Goldwasser and Lindell [gl02] show that in our model where message delivery is not
guaranteed, functionality Fbc can be UC realized by a non-trivial protocol, for malicious adversaries,
for any number of corrupted parties and without any setup assumptions. (In fact, the broadcast
functionality defined in [gl02] is different to the one here in that it requires that all the parties
P1, . . . , Pn receive every broadcasted message. In the functionality here, however, only a subset of
the parties P receive the message. Furthermore, all the parties receiving the message know the
identities of the parties in the set P. This gap can be easily bridged by having the broadcasting
party include the set P along with the broadcasted message x. Then, all parties receive (P, x) and
the parties not in P simply discard the message.)

We remark that in contrast to all the other functionalities defined in this paper, the entire

(broadcast, sid,P, x) message is included in the public header (i.e., x is not private and can be read
by the adversary). This is consistent with the fact that the adversary can read any message x
sent by one party to another party, using its outgoing communication tape. (That is, we view the
broadcast to be like regular communication between parties and not like private communication
that takes place between parties and ideal functionalities.)

9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove

In this section, we present one-to-many extensions of the commitment, zero-knowledge and commit-
and-prove functionalities. The extensions are called “one-to-many” because in all of them, a single

party commits/proves to many receivers/verifiers.

One-to-many UC commitments. We begin by defining a one-to-many extension of the UC
commitment functionality, denoted F1:M

mcom. In this functionality, the committing party commits to
a value to many receivers. The formal definition appears in Figure 13. Similarly to the two-party
case, the commitment functionality is presented as a multi-session functionality. From here on, the
JUC theorem of [cr02] is applied and we consider only single-session functionalities (see Section 3.2
for more explanation). We denote the single session analog to F1:M

mcom by F1:M
com.

The key observation in realizing the F1:M
mcom functionality is that Protocol UAHC (of Section 5)

that UC realizes the two-party commitment functionality Fmcom is non-interactive. Therefore, the

71

Functionality F1:M
mcom

F1:M
mcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Commit Phase: Upon receiving a message (commit, sid, ssid,P , b) from Pi where P is a set of
parties and b ∈ {0, 1}, record the tuple (ssid, Pi,P , b) and send the message (receipt, sid, ssid, Pi,P)
to all the parties in P and to S. Ignore any future commit messages with the same ssid.

• Prove Phase: Upon receiving a message (reveal, sid, ssid) from Pi: If a tuple (ssid, Pi,P , b) was
previously recorded, then send the message (reveal, sid, ssid, b) to all parties in P and to S. Other-
wise, ignore.

Figure 13: One-to-Many multi-session commitment

one-to-many extension is obtained by simply having the committer broadcast the commitment
string of Protocol UAHC to all the participating parties on the broadcast channel. The proof that
this protocol UC realizes F1:M

mcom is almost identical to the proof that Protocol UAHC UC realizes
Fmcom, and is omitted. We do, however, mention one important point. The commitment string
is broadcast using the Fbc functionality which ensures that only one message is broadcast using
a given session identifier. This is important because otherwise the adversary could broadcast two
different commitment strings c1 and c2, where it delivers c1 to some of the honest parties and
c2 to the others. This is, of course, not allowed by the F1:M

mcom functionality that ensures that all
parties receive the same commitment for the same identifier pair (sid, ssid). We therefore have the
following:

Proposition 9.3 Assuming the existence of enhanced trapdoor permutations, there exists a (non-

interactive) protocol that UC realizes F1:M
mcom in the (Fcrs,Fbc)-hybrid model 29, in the presence of

malicious, adaptive adversaries. Furthermore, this protocol uses only a single copy of Fcrs.

One-to-many UC zero-knowledge. Similarly to the one-to-many extension of commitments,
we define a one-to-many functionality where one party proves a statement to some set of par-
ties. The definition of the (single-session) one-to-many zero-knowledge functionality, denoted F1:M

zk ,
appears in Figure 14. (For simplicity, in the multi-party case we concentrate on single-session
zero-knowledge, constructed using a single-session version of F1:M

mcom. These protocols will later be
composed, using universal composition with joint state, to obtain protocols that use only a single
copy of the reference string when realizing all the copies of F1:M

zk .)

Functionality F1:M
zk

F1:M
zk proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parameterized with

a relation R:

• Upon receiving a message (ZK-prover, sid,P , x, w) from a party Pi where P is a set of parties: If
R(x, w) = 1, then send (ZK-proof, sid, Pi,P , x) to all parties in P and to S and halt. Otherwise,
halt.

Figure 14: Single-session, One-to-Many zero-knowledge

29In the (Fcrs,Fbc)-hybrid model, all parties have ideal access to both the common reference string functionality
Fcrs and the ideal broadcast functionality Fbc.

72

As with the case of commitments, a non-interactive protocol that UC realizes the two-party
zero-knowledge functionality Fzk could be directly used to realize F1:M

zk . For the case of static
adversaries, the protocol of [d+01] can be used. However, for the case of adaptive adversaries, no
non-interactive protocol is known. Rather, we base the one-to-many extension on the interactive
UC zero-knowledge protocol of [cf01]. Their protocol is basically that of parallel Hamiltonicity
(cf. [b86]), except that the commitments used are universally composable. Our extension of this
protocol to the one-to-many case follows the methodology of [g98] and is presented in the proof of
the following proposition:

Proposition 9.4 There exists a protocol that UC realizes F1:M
zk in the (F1:M

com,Fbc)-hybrid model,

in the presence of malicious, adaptive adversaries.

Proof (sketch): The protocol for realizing F1:M
zk works by having the prover separately prove the

statement in question to all parties. The protocol used in each of these pairwise proofs is exactly
the two-party protocol of [cf01], with the exception that the messages of each proof are broadcast
to all parties. (This also means that all commitments and decommitments are run using F1:M

com,
rather than the two-party Fcom. (F1:M

com is the single-session parallel to F1:M
mcom.) Also, the protocol

must make sure that each invocation of broadcast will have a unique session ID. This can be done in
standard ways, given the unique session ID of the zero-knowledge protocol.) Then, a party accepts
the proof, outputting (ZK-proof, sid, Pi,P, x), if and only if all the pairwise proofs are accepting.
Note that other than the use of F1:M

com, no cryptographic primitives are used. Indeed, security of
this protocol in the F1:M

com-hybrid model is unconditional.
Next, note that it is indeed possible for the parties to know whether all the pairwise proofs are

accepting. This is because all the commitments and messages are seen by all the parties and the
zero-knowledge proof of Hamiltonicity used by [cf01] is publicly verifiable (i.e., it is enough to see
the transcript of prover/verifier messages to know whether or not the proof was accepted by the
verifier).

Now, recall that in order to prove the universal composability of F1:M
zk , we must present an

ideal-process adversary (i.e., a simulator) that simulates proofs for the case that the prover is not
corrupted and verifiers are corrupted, and is also able to extract the witness from an adversarially
generated proof (for the case that the prover is corrupted). When simulating a proof for a corrupted
verifier, the simulator for F1:M

zk works simply by running the simulator of the two-party protocol
of [cf01] for every pairwise proof. On the other hand, in order to extract the witness from a
corrupted prover, first note that it is possible to run the two-party extractor for any pairwise proof
in which the verifier is not corrupted. Now, the scenario in which we need to run the extractor here
is where the prover is corrupted and at least one verifier is not (otherwise, all parties are corrupted
and simulation is straightforward). Therefore, there exists one pairwise proof in which the verifier
is not corrupted. The simulator for F1:M

zk thus runs the extractor for the protocol of [cf01] for this
proof. Finally, we note that the simulator delivers the output of F1:M

zk to the verifiers if and only if
all verifiers accept in the simulation. (Thus, the parties’ outputs in the ideal process are the same
as in a real execution.) This concludes the proof sketch.

One-to-many UC commit-and-prove. The one-to-many extension of the commit-and-prove
functionality, denoted F1:M

cp , is presented in Figure 15. The functionality handles a single session
only, and requires that all commitments and proofs are to the same set P. (This set is fixed the
first time a commit is sent with a given sid.)

Our protocol for UC realizing the one-to-many commit-and-prove functionality F1:M
cp is con-

structed in the F1:M
zk -hybrid model. The protocol, denoted ACP1:M, is very similar to Protocol ACP

73

Functionality F1:M
cp

F1:M
cp proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parameterized by a

value k and a relation R:

• Commit Phase: Upon receiving a message (commit, sid,P , w) from Pi where P is a set of parties
and w ∈ {0, 1}k, append the value w to the list w, record P , and send the message (receipt, sid, Pi,P)
to the parties in P and S. (Initially, the list w is empty. Also, if a commit message has already
been received, then check that the recorded set of parties is P . If it is a different set, then ignore
this message.)

• Prove Phase: Upon receiving a message (CP-prover, sid, x) from Pi, where x ∈ {0, 1}poly(k),
compute R(x, w): If R(x, w) = 1, then send the message (CP-proof, sid, x) to the parties in P and
to S. Otherwise, ignore.

Figure 15: One-to-Many commit-and-prove

for the two-party case. Recall that Protocol ACP begins with the receiver choosing a pair (s, t),
where s = f(t) and f is a one-way function. The value s is then used by the committer who
commits to w by sending c = aHCs(w; r). This is generalized in the natural way by having every

receiving party Pj choose a pair (sj , tj), and the committer then sending cj = aHCsj
(w; rj) for

all values of sj. In addition, the committer proves that all these commitments are to the same
w (this is done to prevent the committer from committing to different w’s for different sj’s). We
define a compound commitment scheme as follows. Let ~s = (s1, . . . , sℓ) and ~r = (r1, . . . , rℓ). Then,
define ~c = aHC~s(w;~r) = (aHCs1(w; r1), . . . , aHCsℓ

(w; rℓ)). Restating the above, the commit phase
consists of the committer committing to w using the compound scheme aHC~s and proving that the
commitment was generated correctly.

The multi-party protocol ACP1:M uses three different copies of F1:M
zk , where each copy is param-

eterized by a different relation. The copies are denoted F1:M
zk,t (for the initialization phase), F1:M

zk,c

(for the commit stage) and F1:M
zk,p (for the prove stage). These functionalities are differentiated by

session identifiers sidT , sidC and sidP , respectively. These identifiers should be unique, as long as
the session ID of the current instance of ACP1:M is unique. One way to guarantee this is setting
sidT = sid ◦ T , sidC = sid ◦ C and sidP = sid ◦ P , where sid is the session ID of the current
instance of ACP1:M. The protocol is presented in Figure 16.

Proposition 9.5 Assuming the existence of one-way functions, Protocol ACP1:M of Figure 16 UC

realizes F1:M
cp in the (Fbc,F

1:M
zk)-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of this proposition is very similar to the proof of Proposition 7.2
for the two-party case. Let A be an adaptive adversary who operates against Protocol ACP1:M in
the F1:M

zk -hybrid model. We construct a simulator S such that no environment Z can tell with
non-negligible probability whether it is interacting with A and parties running Protocol ACP1:M in
the F1:M

zk -hybrid model or with S in the ideal process for F1:M
cp . Simulator S operates by running a

simulated copy of A and using A in order to interact with Z and F1:M
cp . S works as follows.

Simulating the initialization phase: S records all the pairs (s1, t1), . . . , (sℓ, tℓ) from the initial-
ization phase of an execution, and defines ~s = (s1, . . . , sℓ). For every uncorrupted receiving
party Pj , simulator S chooses the pair (sj, tj) by itself. For corrupted receiving parties, the
pairs are chosen by the simulated A, and S obtains the tj ’s from A’s messages to F1:M

zk,t.

74

Protocol ACP1:M

• Auxiliary Input: A security parameter k, and a session identifier sid.

• Initialization phase:
The first time that the committer Pi wishes to commit to a value to the set of parties P using
the identifier sid, the parties in P execute the following initialization phase. (To simplify notation,
assume that P = {P1, . . . , Pℓ} for some ℓ, and that the sender belongs to P . Also, the parties ignore
incoming messages that are addressed to a set P ′ that is different than the set P specified in the
first message.)

1. Pi sends a (broadcast, sid,P , begin-commit) message to Fbc to indicate that it wishes to initiate
a commit activation.

2. Upon receiving (broadcast, sid, Pi,P , begin-commit), each party Pj ∈ P records the triple
(sid, Pi,P). From here on, the parties only relate to messages with identifier sid if they are
associated with the committer/prover Pi and set of parties P .

Then, every Pj chooses tj ∈R {0, 1}k, computes sj = f(tj) (where f is a one-way function),
and sends (ZK-prover, sidT ,P , sj, tj) to F1:M

zk,t, where F1:M
zk,t is parameterized by the relation RT

defined by:
RT

def
= {(s, t) | s = f(t)}

3. Upon receiving (ZK-proof, sidT , Pj ,P , sj) from F1:M
zk,t, all the parties in P (including the com-

mitter Pi) record the value sj. This phase concludes when all parties in P have sent the
appropriate ZK-proof message, and thus when all the parties hold the vector ~s = (s1, . . . , sℓ).

The parties now proceed to the commit phase.

• Commit phase: (Pi’s input is (commit, sid,P , w), where w ∈ {0, 1}k.)

1. Pi computes the compound commitment ~c = aHC~s(w;~r) where the vector ~s is the one obtained
in the initialization phase, and the rj ’s in ~r are uniformly chosen.

Pi then sends (ZK-prover, sidC ,P , (~s,~c), (w,~r)) to F1:M
zk,c, where F1:M

zk,c is parameterized by the
relation RC defined by:

RC
def
= {(~s,~c), (w,~r) | ~c = aHC~s(w;~r)}

(That is, RC verifies that ~c is a valid compound commitment to the value w, using ~s.)

In addition, Pi stores in a list w all the values w that were sent, and in lists c and r the
corresponding commitment values ~c and random strings ~r = (r1, . . . , rℓ).

2. Upon receiving (ZK-proof, sidC , Pi,P , (~s′,~c)) from F1:M
zk,c, every party Pj ∈ P verifies that

~s′ = ~s (where ~s equals the list of strings that it recorded in the initialization phase). If yes,
then Pj outputs (receipt, sid) and adds the commitment ~c to its list c. (Initially, c is empty.)
Otherwise, the parties in P ignore the message.

• Prove phase: (Pi’s input is (CP-prover, sid, x).)

1. Pi sends (ZK-prover, sidP , Pi,P , (x,~s, c), (w, r)) to F1:M
zk,p, where c, w and r are the lists de-

scribed above. Let w = (w1, . . . , wm), c = (~c1, . . . ,~cm) and r = (~r1, . . . , ~rm). Then, F1:M
zk,p is

parameterized by the relation RP defined by:

RP
def
= {((x,~s, c), (w, r)) | R(x, w) = 1 & ∀j ~cj = aHC~s(wj ;~rj)}

That is, RP verifies that R(x, w) = 1 and that c contains commitments to the previously
committed values w.

2. Upon receiving (ZK-proof, sidP , Pi,P , (x,~s′, c)) from F1:M
zk,p, every party in P verifies that ~s′ = ~s

and that its list of stored commitments equals c. If yes, then it outputs (CP-proof, sid, x).
Otherwise, it ignores the message.

Figure 16: A protocol for realizing F1:M
cp for adaptive adversaries

75

Simulating the case where the committer is corrupted: We first describe how to simulate
the commit phase. Whenever A (controlling Pi) wishes to commit to a value, S obtains
the message (ZK-prover, sidC ,P, (~s,~c), (w,~r)) that A sends to F1:M

zk,c. S checks that ~s is as
generated in the initialization phase and that ~c = aHC~s(w;~r). If yes, then S internally passes
A the message (ZK-proof, sidC ,P, (~s,~c)) and externally sends (commit, sid,P, w) to F1:M

cp .
Furthermore, S adds the commitment ~c to its list of commitments c.

We now describe the simulation of the prove phase. Whenever A wishes to prove a statement,
S receives a message (ZK-prover, sidP , (x,~s, c), (w, r)) that A sends to F1:M

zk,p. S then checks
that ~s is as generated in the initialization phase, that the list c is as stored above, and that
R(x,w) = 1. If yes, then S internally passes (ZK-proof, sidP , (x,~s, c)) to A and externally
sends (CP-prover, sid, x) to F1:M

cp . Otherwise, it ignores the message.

Simulating the case where the committer is not corrupted: Whenever an uncorrupted party
Pi commits to an unknown value w, simulator S hands A a commitment to 0k as the com-
mitment value. More precisely, whenever Pi writes a commit message on its outgoing commu-
nication tape for Fcp, simulator S internally simulates Pi writing an appropriate ZK-prover
message on its outgoing communication tape (recall that only the commit header is viewed by
S, and that it only needs to write the ZK-prover header). Then, when A delivers the ZK-prover
message to F1:M

zk,c, simulator S delivers the commit message from Pi to F1:M
cp . Furthermore, S

computes ~c = aHC~s(0
k;~r) and hands A the message (ZK-proof, sidC , Pi,P, (~s,~c)), as if coming

from F1:M
zk,c. Now, when A delivers this ZK-proof message from F1:M

zk,c to a party Pj ∈ P in the
internal simulation,, then S delivers the receipt message from F1:M

cp to Pj . (Recall that by the
aHC scheme, given the trapdoor information ~t = (t1, . . . , tℓ), a commitment to 0 with ~s can
be opened as either 0 or 1; see Section 5.)

The simulation of the prove phase is carried out as follows. Whenever an uncorrupted Pi writes
a CP-prover message on its outgoing communication tape for F1:M

cp , simulator S internally
simulates Pi writing the appropriate ZK-prover message on its outgoing communication tape
for F1:M

zk,p. When A delivers this ZK-prover message in the internal simulation, then S delivers
Pi’s CP-prover message to F1:M

cp and receives back the message (CP-proof, sid, x). Then, S
internally passes A the message (ZK-proof, sidP , (x,~s, c)) as if it came from F1:M

zk,p, where c is
the list of simulated commitments generated above. When A delivers this ZK-proof message
from F1:M

zk,p to a party Pj ∈ P in the internal simulation, then S delivers the CP-proof message
from F1:M

cp to Pj .

Dealing with the corruption of parties: The only private information held by a receiving party
Pj is the trapdoor information tj that it chooses in the initialization phase. As we have seen in
the simulation of the initialization phase above, S knows all of the trapdoors in the simulated
execution. Therefore, when A corrupts a receiving party Pj , simulator S internally passes tj
to A.

The committing party Pi’s private state in an execution of Protocol ACP1:M consists of the
list of committed values w and the list of vectors of random strings r (that contain the
decommitment information of the list c). Therefore, when A corrupts the committer Pi,
simulator S first externally corrupts Pi in the ideal process and obtains the list w. Next, S
generates the list r so that the simulated list of commitments c is “explained” as a list of
commitments to w. S can do this because it has all of the trapdoor information t1, . . . , tℓ
(this case is identical to in the proof of Proposition 7.2).

76

The analysis of the correctness of the simulation is analogous to in the two-party case and is omitted.

9.4 Multi-Party Secure Computation for Malicious Adversaries

As in the two-party case, multi-party secure computation in the presence of malicious adversaries is
obtained by constructing a protocol compiler that transforms protocols for the semi-honest model
into protocols for the malicious model. This compiler is then applied to Protocol ΠF of Section 9.1.
The compiler is constructed in the F1:M

cp -hybrid model and in a very similar way to the two-party
compiler. The compiler itself is described in Figure 17. We note that each party has to commit and
prove statements to all other parties during the protocol execution. In order to do this, each party
Pi uses a separate invocation of F1:M

cp , with session ID sidi. (Also here, the protocol should make
sure that these session ID’s are unique as long as the session ID of the current copy of Comp(Π)
is unique. This can be done by setting sidi = sid ◦ i where sid is the session ID of the current
copy of Comp(Π). The relations parameterizing these functionalities are natural extensions of the
relations parameterizing the relations F1

cp and F2
cp in the two-party compiler of Figure 11. In

addition to commit-and-prove, the multi-party compiler here uses “standard” UC commitments for
coin-tossing. However, in order to remain in the F1:M

cp -hybrid model (and not the (F1:M
cp ,F1:M

mcom)-
hybrid model), these commitments are implemented by F1:M

cp where the relation used is the identity
relation (and so a proof is just a decommitment). Once again, the different invocations of F1:M

cp are
distinguished by unique identifiers (in the coin-tossing used for generating Pj ’s random tape, Pi

uses F1:M
cp with session ID sidi,j = sid ◦ i ◦ j). Notice that protocol Comp(Π) essentially broadcasts

(via F1:M
cp) each message that was sent in Π, even if this message was originally sent only to a single

party. This is done to provide all parties with consistent views of the execution; it clearly has no
negative effect on the security of the protocol (since the adversary anyway sees all messages).

Implicit in the protocol specification is the fact that all parties only consider messages that are
associated with the specified session identifiers and referring to the same set of parties P. All other
messages are ignored. As in the two-party case, we assume that Π is such that the parties copy
their input tape onto an internal work tape when first activated.

We now prove that the compiler of Figure 17 achieves the desired result:

Proposition 9.6 (multi-party protocol compiler): Let Π be a multi-party protocol and let Comp(Π)
be the protocol obtained by applying the compiler of Figure 17 to Π. Then, for every malicious
adversary A that interacts with Comp(Π) in the F1:M

cp -hybrid model there exists a semi-honest
adversary A′ that interacts with Π in the plain real-life model, such that for every environment Z,

realΠ,A′,Z ≡ exec
F1:M

cp

Comp(Π),A,Z

Proof (sketch): The proof sketch is very similar to the proof of Proposition 8.1 for the two-party
case. We construct a semi-honest adversary A′ from the malicious adversary A. Adversary A′ runs
the protocol Π while internally simulating an execution of Comp(Π) for A. The key point in the
simulation is that A′ is able to complete the simulation in spite of the fact that, being semi-honest,
it cannot diverge from the protocol specification. This is so since A is forced to send all messages
via F1:M

cp that verifies their correctness. Thus, essentially, A must behave in a semi-honest way and
can be simulated by a truly semi-honest party A′. (Of course, A is not semi-honest and can send
arbitrary messages. However, since all invalid messages are ignored by F1:M

cp in Comp(Π), they do
not cause any problem.) A′ runs a simulated copy of A, and proceeds as follows:

77

Comp(Π)

Party Pi proceeds as follows (the code for all other parties is analogous):

1. Random tape generation: When activating Comp(Π) for the first time with session identifier
sid and set P or parties, party Pi proceeds as follows. For every party Pj , the parties run the
following procedure in order to choose a random tape for Pj :

(a) Pi chooses rj
i ∈R {0, 1}k and sends (commit, sidi,j ,P , rj

i) to F1:M
cp .

(b) Pi receives (receipt, sidk,j , Pk,P) for every Pk ∈ P . Pi also receives (receipt, sidj , Pj ,P),
where Pj is the party for whom the random tape is being chosen. Pi then uses F1:M

cp to

decommit to its value rj
i . That is, Pi sends (CP-prover, sidi,j , r

j
i) to F1:M

cp , where the relation
parameterizing the F1:M

cp functionality with identifier sidi,j is the identity relation (i.e., F1:M
cp

sends (CP-proof, sidi,j , r
j
i) if rj

i was the value previously committed to; it thus serves as a
regular commitment functionality).

(c) Pi receives (CP-proof, sidk,j , r
j
k) messages for every k 6= j and defines the string sj =

⊕

k 6=j rj
k. (The random tape for Pj is defined by rj = rj

j ⊕ sj .)

When choosing a random tape for Pi, the only difference for Pi is that it sends its random string
ri
i to F1:M

cp indexed by session-identifier sidi and it does not decommit (as is understood from
Pj ’s behavior above).

2. Activation due to new input: When activated with input (sid, x), party Pi proceeds as
follows.

(a) Input commitment: Pi sends (commit, sidi,P , x) to F1:M
cp and adds x to the list of inputs

xi (this list is initially empty and contains Pi’s inputs from all the previous activations of
Π). (At this point all other parties Pj receive the message (receipt, sidi, Pi,P) from F1:M

cp .
Pi then proceeds to the next step.)

(b) Protocol computation: Let m be the series of Π-messages that were broadcast in all the
activations of Π until now (m is initially empty). Pi runs the code of Π on its input list
xi, messages m, and random tape ri (as generated above). If Π instructs Pi to broadcast
a message, Pi proceeds to the next step (Step 2c).

(c) Outgoing message transmission: For each outgoing message m that Pi sends in Π, Pi sends
(CP-prover, sidi, (m, si, m)) to F1:M

cp with a relation RΠ defined as follows:

RΠ =
{

((m, si, m), (xi, r
i
i)) | m = Π(xi, r

i
i ⊕ si, m)

}

In other words, Pi proves that m is the correct next message generated by Π when the input
sequence is xi, the random tape is ri = ri

i⊕si and the series of broadcast Π-messages equals
m. (Recall that ri

i and all the elements of xi were committed to by Pi in the past using
commit activations of F1:M

cp with identifier sidi, and that si is the random-string derived in
the random tape generation for Pi above.)

3. Activation due to incoming message: Upon receiving a message (CP-proof, sidj , (m, sj , m))
that is sent by Pj , party Pi first verifies that the following conditions hold (note that F1:M

cp with
sidj is parameterized by the same relation RΠ as F1:M

cp with sidi above):

• sj is the random string that is derived in the random tape generation for Pj above.

• m equals the series of Π-messages that were broadcast in all the activations until now. (Pi

knows these messages because all parties see all messages sent.)

If any of these conditions fail, then Pi ignores the messages. Otherwise, Pi appends m to m and
proceeds as in Steps 2b and 2c above.

4. Output: Whenever Π generates an output value, Comp(Π) generates the same output value.

Figure 17: The compiled protocol Comp(Π)

78

Simulating the communication with Z: The input values received by A′ from Z are written
on A’s input tape, and the output values of A are copied to A′’s own output tape.

Simulating the “random tape generation” phase: When the first activation of Π takes place,
A′ simulates the random tape generation phase of Comp(Π) for A. We describe A′’s simula-
tion of the random tape generation for a party Pj (this simulation is repeated for every j).
We differentiate between the case that Pj is honest and Pj is corrupted:

1. Party Pj is not corrupted: The semi-honest adversary A′ internally hands the mali-
cious A the message (receipt, sidj , Pj ,P) from F1:M

cp (this refers to Pj ’s commitment).
In addition, A′ simulates all the (receipt, sidk,j, Pk,P) messages that A′ expects to re-
ceive from F1:M

cp . A′ completes the simulation by passing A the “decommit” messages
(CP-proof, sidk,j, r

j
k) for every uncorrupted party Pk. A

′ also obtains (commit, sidk,j , r
j
k)

messages from A for the corrupted parties Pk as well as the respective decommit mes-
sages (CP-prover, sidk,j, r

j
k). A

′ computes sj as in the protocol and records this value.

2. Party Pj is corrupted: Let rj be the random tape of the semi-honest party Pj in pro-
tocol Π. Now, as above, for every uncorrupted party Pk, adversary A′ passes A the
(receipt, sidk,j , Pk,P) messages that A expects to receive from F1:M

cp . A′ also obtains

(commit, sidk,j , r
j
k) messages from A (for every corrupt Pk) and corrupted Pj ’s commit-

ment (commit, sidj , r
j
j). Notice that at this point, A is bound to all the rj

k values of
the corrupted parties, whereas A′ is still free to choose the analogous values for the
uncorrupted parties. Therefore, in the “decommitment” part of the phase, A′ chooses
the uncorrupted parties’ values so that

⊕ℓ
k=1 rj

k = rj where rj is the random tape of the
external Pj in Π. (Thus, A′ forces A into using rj for the malicious Pj in Comp(Π) as
well.)

Simulating an activation due to a new input: When the first message of an activation of Π
is sent, A′ internally simulates for A the appropriate stage in Comp(Π). This is done as
follows. Let Pi be the activated party with a new input. If Pi is not corrupted, then A′

internally passes A the message (receipt, sidi, Pi,P) that A expects to receive from F1:M
cp . If

Pi is corrupted, then A′ receives a message (commit, sidi,P, x) from A (who controls Pi). A
′

adds x to its list xi of inputs received from Pi and passes A the string (receipt, sidii, Pi,P).
Furthermore, A′ sets Pi’s input tape to equal x. (Recall that in the semi-honest model, A′

can modify the input that the environment writes on a corrupted party’s input tape.)

Dealing with messages sent by honest parties: If an uncorrupted party Pi sends a message
m in Π to a corrupted party (controlled by A′), then A′ prepares a simulated message of
Comp(Π) to give to A. Specifically, A′ passes A the message (CP-proof, sidi, (m, si,m)) as
expected from F1:M

cp .

Dealing with messages sent by corrupted parties: When A sends a Comp(Π)-message from
a corrupted party, A′ translates this to the appropriate message in Π. That is, A′ obtains a
message (CP-prover, sidi, (m, s′i,m)) from A, in the name of a corrupted party Pi. Then, A′

checks that the series of broadcasted Π-messages is indeed m. A′ also checks that s′i = si,
where si is the value defined in the random tape generation phase. Finally, A′ checks that
m = Π(xi, si ⊕ ri

i,m). If yes, then it delivers the message written on semi-honest party Pi’s
outgoing communication tape in Π. Otherwise, A′ does nothing.

79

Dealing with corruption of parties: When the simulated A internally corrupts a party Pi, ad-
versary A′ externally corrupts Pi and obtains all of its past inputs, outputs and random tapes
in Π. Then, A′ prepares a simulated internal state of Pi in Comp(Π). The only additional
state that Pi has in Comp(Π) is the random string ri

i for the random tape generation phase.
Since the string si is public and fixed, A′ sets ri

i so that ri = si ⊕ ri
i, where ri is Pi’s random

tape in Π.

We now claim that Z’s view of an interaction with A′ and Π is distributed identically to its view of
an interaction with A and Comp(Π). This follows from the same observations as in the two-party
case. The key points are as follows. For every corrupted Pi, the semi-honest adversary A′ can force
A into using the exact random tape of Pi in Π. Furthermore, any modification of the inputs made
by A can also be carried out by A′. We therefore have that if A follows the protocol specification
with respect to these inputs and random tapes, then the semi-honest parties in Π will send exactly
the same messages as the malicious parties in Comp(Π). The proof is concluded by observing that
A must follow the protocol specification because the F1:M

cp functionality enforces this. Thus, A′’s
checks of correctness in the simulation perfectly simulate the behavior of F1:M

cp in a hybrid execution.
Finally, the internal state revealed to A in the case of a corruption is exactly as it expects to see.
This completes the proof.

9.4.1 Conclusions

Combining the semi-honest protocol of Proposition 9.1 with the compilation obtained in Proposi-
tion 9.6, we have that for any multi-party ideal functionality F , there exists a protocol that UC
realizes F in the F1:M

cp -hybrid model (in the presence of malicious adversaries). Combining this
with the fact that assuming the existence of one-way functions, F1:M

cp can be UC realized in the
(Fbc,F

1:M
zk)-hybrid model (Proposition 9.5), and using the UC composition theorem (Theorem 3.3),

we obtain universally composable general two-party computation in the (Fbc,F
1:M
zk)-hybrid model.

That is:

Theorem 9.7 Assume that enhanced trapdoor permutations exist. Then, for any well-formed

multi-party ideal functionality F , there exists a non-trivial protocol that UC realizes F in the

(Fbc,F
1:M
zk)-hybrid model in the presence of malicious, static adversaries. Furthermore, if one-

way functions and two-party augmented non-committing encryption protocols exist, then for any

adaptively well-formed multi-party ideal functionality F , there exists a non-trivial protocol that UC

realizes F in the (Fbc,F
1:M
zk)-hybrid model in the presence of malicious, adaptive adversaries.

By Proposition 9.4, the zero-knowledge functionality F1:M
zk can be UC realized in the (Fbc,F

1:M
com)-

hybrid model. In addition, by Proposition 9.3, under the assumption that enhanced trapdoor
permutations exist, the multi-session F1:M

mcom can be UC realized in the (Fcrs,Fbc)-hybrid model.
Applying the universal composition with joint state theorem (Theorem 3.4), we obtain that F1:M

zk

can be UC realized in the (Fcrs,Fbc)-hybrid model (with a single copy of the CRS). We therefore
obtain that Theorem 9.7 can be restated in the (Fcrs,Fbc)-hybrid model only. Recalling that Fbc

can be UC realized in the plain model [gl02], we obtain the following theorem:

Theorem 9.8 (Theorem 2.3 – restated): Assume that enhanced trapdoor permutations exist. Then,

for any well-formed multi-party ideal functionality F , there exists a non-trivial protocol that UC

realizes F in the Fcrs-hybrid model in the presence of malicious, static adversaries. Furthermore,

if two-party augmented non-committing encryption protocols also exist, then for any adaptively

80

well-formed multi-party ideal functionality F , there exists a non-trivial protocol that UC realizes

F in the Fcrs-hybrid model in the presence of malicious, adaptive adversaries. In both cases, the

protocol uses only a single copy of Fcrs.

Acknowledgements

The authors would like to thank Oded Goldreich for helpful discussions (and in particular, for sug-
gesting the generalization of the commit-and-prove functionality to allow for many commitments).

81

References

[b91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating
a Faulty Minority. Journal of Cryptology, Springer-Verlag, 4:75–122, 1991.

[b97] D. Beaver. Plug and play encryption. In CRYPTO’97, Springer-Verlag (LNCS 1294),
pages 75–89, 1997.

[bbm00] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user Setting:
Security Proofs and Improvements. EUROCRYPT’00, Springer-Verlag (LNCS 1807),
pages 259–274, 2000.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. 20th STOC, pages 1–10, 1988.

[b86] M. Blum How to Prove a Theorem So No One Else Can Claim It. Proceedings of the

International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-
1451.

[bfm88] M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its applications.
In 20th STOC, pages 103–112, 1988.

[c00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of

Cryptology, 13(1):143–202, 2000.

[c01] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145. 2001. Full version available at
http://eprint.iacr.org/2000/067.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-Party Com-
putation. In 28th STOC, pages 639–648, 1996.

[cf01] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO’01,
Springer-Verlag (LNCS 2139), pages 19–40, 2001.

[ckl03] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composi-
tion Without Set-Up Assumptions. In EUROCRYPT’03, Springer-Verlag (LNCS 2656),
pages 68–86, 2003.

[cr02] R. Canetti and T. Rabin. Universal Composition with Joint State. Cryptology ePrint

Archive, Report 2002/047, http://eprint.iacr.org/, 2002.

[dn00] I. Damgard and J.B. Nielsen. Improved non-committing encryption schemes based on
general complexity assumptions. In CRYPTO’00, Springer-Verlag (LNCS 1880), pages
432–450.

[dn02] I. Damgard and J.B. Nielsen. Perfect Hiding or Perfect Binding Universally Composable
Commitment Schemes with Constant Expansion Factor. In CRYPTO’02, Springer-
Verlag (LNCS 2442), pages 581–596, 2002.

[d+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-
interactive Zero-Knowledge. In CRYPTO’01, Springer-Verlag (LNCS 2139), pages 566–
598, 2001.

82

[dp92] A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge Without Interaction.
In 33rd FOCS, pages 427–436, 1992.

[dio98] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Com-
mitment. In 30th STOC, pages 141–150, 1998.

[dkos01] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-interactive
Non-malleable Commitment. In EUROCRYPT’01, Springer-Verlag (LNCS 2045), pages
40–59, 2001.

[ddn00] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on

Computing, 30(2):391–437, 2000.

[dns98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409–418, 1998.

[egl85] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts. In
Communications of the ACM, 28(6):637–647, 1985.

[fs89] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

[gm00] J. Garay and P. Mackenzie. Concurrent Oblivious Transfer. In 41st FOCS, pages 314–
324, 2000.

[g98] O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary version, 1998.
Available from http://www.wisdom.weizmann.ac.il/∼oded/pp.html.

[g01] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge Uni-
versity Press, 2001.

[g03] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applica-

tions. To be published by the Cambridge University Press. Available from
http://www.wisdom.weizmann.ac.il/∼oded/PSBookFrag/v2.ps.

[gl89] O. Goldreich and L. Levin. A Hard Predicate for All One-Way Functions. In 21st STOC,

pages 25–32, 1989.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Com-
pleteness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229,
1987. For details see [g98].

[gl90] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of
Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[gl02] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In 16th DISC,

Springer-Verlag (LNCS 2508), pages 17–32 2002.

[gmr89] S. Goldwasser, S. Micali and C. Rackoff The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[k89] J. Kilian. Uses of Randomness in Algorithms and Protocols. The ACM Distinguished
Dissertation 1989, MIT press.

83

[l03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party
Computation. In 44th FOCS, 2003.

[llr02] Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authenticated Byzan-
tine Agreement. In 34th STOC, pages 514–523, 2002.

[mr91] S. Micali and P. Rogaway. Secure computation. Unpublished manuscript, 1992. Prelim-
inary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[n91] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology,
4(2):151–158, 1991.

[pw00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. 7th ACM Conference on Computer and Communication Security, 2000, pp.
245-254.

[r81] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

[rb89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with
Honest Majority. In 21st STOC, pages 73–85, 1989.

[rk99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EUROCRYPT’99, Springer-Verlag (LNCS 1592), pages 415–413, 1999.

[s99] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-
Ciphertext Security. In 40th FOCS, pages 543–553, 1999.

84

