
Pratial Veri�able Enryption and Deryption of Disrete

Logarithms

�

Jan Camenish

y

Vitor Shoup

z

August 22, 2003

Abstrat

This paper addresses the problem of designing pratial protools for proving properties

about enrypted data. To this end, it presents a variant of the new publi key enryption of

Cramer and Shoup based on Paillier's deision omposite residuosity assumption, along with

eÆient protools for veri�able enryption and deryption of disrete logarithms (and more

generally, of representations with respet to multiple bases). This is the �rst veri�able enryption

system that provides hosen iphertext seurity and avoids ineÆient ut-and-hoose proofs. The

presented protools have numerous appliations, inluding key esrow, optimisti fair exhange,

publily veri�able seret and signature sharing, universally omposable ommitments, group

signatures, and on�rmer signatures.

Keywords. Veri�able enryption, veri�able deryption, adaptive hosen iphertext seurity,

publi key enryption.

1 Introdution

This paper onerns itself with the general problem of proving properties about enrypted data. In

the ase of publi-key enryption, whih is the setting in whih we are interested here, there are

two parties who are in a position to prove some property to another party about an enrypted

message | namely, the party who reated the iphertext, and the party who holds the seret key.

A protool in whih the enryptor is the prover is a veri�able enryption protool, while a protool

in whih the deryptor is the prover is a veri�able deryption protool.

For example, suppose a party T has a publi key/seret key pair (PK;SK) for a publi key

enryption sheme. Party A might enrypt, using T 's publi key PK, a seret message m that

satis�es a publily-de�ned property �, and give the resulting iphertext  to another party B. The

latter party might demand that A prove that  is an enryption of a message satisfying property �.

Ideally, the proof should be \zero knowledge," so that no unneessary information aboutm is leaked

to B as part of the proof. Another party B

0

might obtain the iphertext  , and may request that T

prove or disprove that  derypts under SK to a message m satisfying a publily-de�ned property

�

0

; a speial ase of this would be the situation where T simply gives m to B

0

, and proves to B

0

that the deryption was performed orretly. Again, ideally, the proof should be \zero knowledge."

Now, if one expets to obtain reasonably pratial protools for this problem, it seems neessary

to restrit the type of properties that the protools should work with. In this paper, we onsider

�
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only properties related to the disrete logarithm problem. The message m enrypted by A above

is the disrete logarithm of an element Æ with respet to a base , and A proves to B that  is

an enryption log



Æ under T 's publi key PK. Here, the ommon inputs to A and B in the proof

protool are PK,  , Æ, and . Similarly, when a party B

0

presents  to T for deryption, T may

state and prove whether or nor  derypts to log



Æ, or alternatively, T may give the deryption

of  to B

0

, and simply prove that the deryption was performed orretly. We also onsider the

obvious generalizations from disrete logarithms to representations with respet to several bases |

i.e., proving that a iphertext is an enryption of (m

1

; : : : ;m

k

) suh that Æ = 

m

1

1

� � � 

m

k

k

.

Although the restrition to properties related to the disrete logarithm problem may seem ex-

essive, it turns out (as we disuss in some detail below) that protools for proving suh properties

have many useful appliations in ryptography, inluding key esrow, optimisti fair exhange, pub-

lily veri�able seret and signature sharing, universally omposable ommitments, group signatures,

and on�rmer signatures. One reason why this restrition is not really so exessive is beause in

the past few years, eÆient protools for proving numerous properties about ommitted values |

using Pedersen's ommitment sheme [Ped92℄ and generalizations to groups of unknown order |

have been developed (.f., [FO97, DF02, Bou00℄); ombining these protools with our sheme for

veri�able enryption of a representation (i.e., an opening of a ommitment), we immediately get

orresponding protools for proving suh properties about enrypted values.

Our ontribution. The ontribution of this paper is to present and analyze a pratial publi-key

enryption sheme, together with a suite of pratial proof protools for the properties related to

the disrete logarithm problem outlined above. The enryption sheme is a variant of the new

publi key enryption sheme of Cramer and Shoup [CS02℄ based on Paillier's deision omposite

residuosity assumption [Pai99℄, suitably modi�ed so as to support our proof protools. The proof

protools are all of the usual, three move \�-protool" type [CDS94℄, satisfying the usual, and very

strong onditions of speial honest veri�er zero knowledge and speial soundness. We note that any

suh protool an be easily and eÆiently onverted into a \real" zero-knowledge protool using

well known tehniques, e.g., [Dam00℄. Our sheme for veri�able enryption of disrete logarithms is

the �rst one that provides hosen iphertext seurity and avoids ineÆient ut-and-hoose proofs.

Our sheme for veri�able deryption of disrete logarithms is the �rst pratial protool of its

kind. Our system is very exible, in that a single publi key for the enryption sheme an be

used with many di�erent groups; that is, users an hoose their own (arbitrary and varied) groups

for disrete logarithms, subjet only to some (reasonable) size onstraints. As pointed out in

[KP98, CM99b, ASW00℄ suh separability in system design is highly desirable in pratie. Although

our protools do not rely on the random orale heuristi, we hasten to point out that even allowing

this heuristi, our protools are muh more eÆient than previously known protools for these

problems.

1.1 Appliations

In this setion, we outline some of the numerous appliations of veri�able enryption and deryption

of disrete logarithms and representations. For all of them our protools, used together with the

existing solutions, either yield more eÆient solutions or add seurity against hosen iphertext

attaks, whih is often ruial.

1.1.1 Key Esrow

Party A may enrypt its own seret key for an asymmetri ryptographi primitive under the publi

key of a trusted third party T , and present to a seond party B the iphertext  and a proof that  
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is indeed an enryption of it's seret key. This problem area has attrated a good deal of attention,

with spei� shemes being proposed in [Sta96, BG96, YY98, ASW00, PS00℄.

Now, if A's seret key is, say, a key for a disrete log based sheme, suh as Shnorr or DSS

signatures or ElGamal enryption, we an use our veri�able enryption protool diretly. We note

that for this and other appliations, it is important to be able to bind some publi data, alled a

label, to the iphertext at both enryption and deryption time. In this appliation, user A would

attah a label to  that indiates the onditions under whih  should be derypted, e.g., A's

identity and perhaps an expiration date. The de�nition of hosen iphertext seurity ensures that

derypting a iphertext under any label di�erent from the label used to reate the iphertext reveals

no information about the original enrypted message.

Even though T is \trusted," it might be nie to minimize the trust we need to plae in T . To

this end, veri�able deryption omes in handy | we an fore T to prove that it performed the

deryption operation orretly. Of ourse, this does not prevent T from misbehaving in other ways,

suh as divulging a seret key to an unauthorized party.

If A's seret key is for a fatoring based sheme, one an still use our protool for veri�able

enryption of a representation. One an use Pedersen's ommitment sheme to ommit to some

quantity related to the seret key, and then use an appropriate protool to prove that the ommitted

value is indeed the right one, together with our protool to prove that the enryption ontains

an opening of the ommitment. The quantity ommitted to ould be the fatorization of an

RSA modulus, the deryption exponent of an RSA sheme, or an appropriate root in a Guillou-

Quisquater sheme | there are protools for proving that a ommitted value is of suh a form

[FO97, CM99a, DF02, PS00, Bou00℄.

1.1.2 Optimisti Fair Exhange

Two parties A and B want to exhange some valuable digital data (e.g., signatures on a ontrat,

e-ash), but in a fair way: either eah party obtains the other's data, or neither party does. One way

to do this is by employing a trusted third party T , but, for the sake of eÆieny, with T only involved

in risis situations. One approah to this problem is to have both parties veri�ably enrypt to eah

other their data under T 's publi key, and only then to reveal their data to eah other | if one party

baks out unexpetedly, the other an go to T to obtain the required data. The general problem of

optimisti fair exhange has been extensively studied, .f., [ASW97, BDM98, BP90, Mi, ASW00℄,

while the solution using veri�able enryption was studied in detail in [ASW00℄.

Our sheme for veri�able enryption may be used diretly to eÆiently implement the fair

exhange of Shnorr or DSS signatures. As outlined in [ASW00℄, if the publi key of the Shnorr

signature sheme onsists of the base  and the group element � = 

x

, and A has a signature on a

message m of the form (�; ; s), where � = 

r

,  = H(�;m), s = r + x mod �, and � is the group

size, then A gives to B the triple (�; ; Æ), where Æ = 

s

, along with an enryption  of s under

T 's publi key, and proves to B that  is an enryption of log



Æ. In addition to heking the proof

that  is a orret enryption of log



Æ, B also heks that Æ = �



; with these heks, B an be

sure that if the need arises,  an be derypted so as to obtain a signature on m. As argued in

[ASW00℄, this tehnique of reduing a signature to a disrete logarithm does not make it any easier

for anyone to forge a signature. Moreover, as disussed in [ASW00℄, similar tehniques an be used

to failitate the fair exhange of other items, suh as eletroni ash.

As in the esrow appliation, the label mehanism plays a ruial role here, helping to enfore

the logi of the exhange protool, and a veri�able deryption protool may be used to hold T 's

feet to the �re.
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1.1.3 Publily Veri�able Seret Sharing and Signature Sharing

Stadler [Sta96℄ introdued the notion of publily veri�able seret sharing. Here, one party, the

dealer, shares a seret with several proxies P

1

; : : : ; P

n

, in suh a way that a third party (other

than the dealer and the proxies) an verify that the sharing was done orretly. This an be done

quite simply by sharing the seret using Shamir's seret sharing sheme: the dealer enrypts P

i

's

share under P

i

's publi key, and gives to the third party ommitments to these shares, along with

ommitments to the oeÆients of the blinding polynomial, and all of the iphertexts, and proves

to the third party that the iphertexts enrypt openings of the ommitments to the shares. As

the openings to the ommitments are just disrete logarithms, veri�able enryption of disrete

logarithms is just the right tool.

Using the notion disussed above above for reduing a signature to a disrete logarithm, one

an easily implement a (publily) veri�able signature sharing sheme [FR95, CG98℄ for Shnorr

and DSS signatures.

These two appliations of veri�able enryption were disussed in [CD00℄.

1.1.4 Universally Composable Commitments

The notion of universally omposable (UC) ommitments, introdued by Canetti and Fishlin

[CF01℄, is a very strong notion of seurity for a ommitment sheme. It basially says that ommit-

ments in the real world at like ommitments in an ideal world in whih, when a party A ommits

to a value x to a party B, A presents x to an idealized trusted party T (that does not exist in the

real world), and when A opens the ommitment, T gives x to B. In the ideal world, no information

about x is revealed to B prior to opening, and A is fored to �x the value ommitted to when the

ommitment protool runs.

This notion of seurity is so strong, in fat, that it an only be realized in the ommon referene

string (CRS) model, where all parties have aess to a string that was generated by a trusted party

aording to some presribed distribution. In the CRS model, the simulator S in the ideal world

is given the privilege of generating the ommon referene string, and so S may know some \side

information" related to the ommon referene string that is not available to anyone in the real

world.

Veri�able enryption of a representation may be used to implement UC ommitments in the

CRS model, as follows. The CRS onsists of a publi key for the enryption sheme, along with

bases 

1

and 

2

for some suitable group. When A ommits a value x to B, he reates a Pedersen

ommitment C = 

x

1



r

2

, and an enryption  of the representation (x; r) of C with respet to

(

1

; 

2

). A then gives (C; ) to B, and proves to B that  indeed derypts to a representation of

C. In order to satisfy the de�nition of seurity for UC ommitments, and in partiular, to prevent

\man in the middle attaks," a label ontaining A's identity should be attahed to  .

The reason this is seure is that the simulator S in the CRS model knows the seret key to

the enryption sheme, whih allows him to \extrat" values ommitted by orrupted parties, and

S knows the disrete logarithm of 

2

with respet to 

1

, whih allows him to \equivoate" values

ommitted by honest parties. The proof that  is an enryption of a representation C ensures that

the value extrated by the simulator at ommitment time agrees with the value revealed at opening

time.

The details of this onstrution and seurity proof are the subjet of a forthoming paper.
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1.1.5 Con�rmer Signatures

In a on�rmer signature sheme, a notion introdued in [Cha94℄, a party A reates an \opaque

signature"  on a message m, whih an not be veri�ed by any other party exept a designated

trusted third party T , who may either on�rm or deny the validity of the signature to another

party B. Under appropriate irumstanes, T may also onvert  into an ordinary signature,

whih may then be veri�ed by anybody. Additionally, the party A may prove the validity of an

opaque signature  to a party B, at the time that A reates and gives  to B. As desribed in

[CM00℄, one may implement on�rmer signatures as follows: A reates an ordinary signature �

on m, and enrypts � under T 's publi key. Using veri�able enryption, A may prove to B that

the resulting iphertext  indeed enrypts a valid signature on m, and using veri�able deryption,

T may on�rm or deny the validity of  , or alternatively, just derypt  , thus onverting it to

the ordinary signature �. To implement this idea for Shnorr signatures, one again uses the idea

outlined in above for reduing signatures to disrete logarithms. The details of all this are the

subjet of a forthoming paper.

1.1.6 Group Signatures and Anonymous Credentials

In a group signature sheme (see [ACJT00, KP98, CD00℄), when a user joined a group (whose mem-

bership is ontrolled by a speial party, alled the group manager), the user may sign messages on

behalf of the group, without revealing his individual identity; however, under appropriate irum-

stanes, the identity of the individual who atually signed a partiular message may be revealed

(using a speial party, alled the anonymity revoation manager, whih may be distint from the

group manager).

Without going into too many details, veri�able enryption may be used in the following way

as a omponent in suh a system. When a group member signs a message, he enrypts enough

information under the publi key of the anonymity revoation manager, so that later, if the identity

of the signer needs to be revealed, this information an be derypted. To prove that this information

orretly identi�es the signer, he makes a Pedersen ommitment to this information, proves that

the ommitted value identi�es the user, enrypts the opening of the ommitment, and proves that

the iphertext derypts to an opening of the ommitment. To turn this into a signature sheme,

one must use the Fiat-Shamir heuristi [FS87℄ to make it non-interative (the interative version is

alled an identity esrow sheme [KP98℄).

Although one an implement group signatures without it, by using veri�able enryption, one

an build a more modular system, in whih the group manager and anonymity manager are sep-

arate entities with independently generated publi keys (this is the separability issue). Veri�able

deryption an be used both to ensure the orret behavior of the anonymity revoation man-

ager (preventing it from \framing" innoent users), and to allow even more �ne-grained ontrol of

anonymity revoation: instead of simply revealing the identity of a partiular signer, the anonymity

revoation manager an state (and prove) whether or not a partiular signature was generated by

a partiular user.

Credential systems [Cha85, CL01℄ are a generalization of group signatures that allow users

to show redentials to various organizations, and obtain new redentials, without revealing their

identity, exept through the use of an anonymity revoation manager. Veri�able enryption an

be used as a omponent in suh systems in a manner similar to that desribed above for group

signatures. In fat, our veri�able enryption sheme is used in a prototype redential system

developed at IBM alled idemix [CL01, CVH02℄.
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1.2 Previous Work and Further Disussion

In all appliations mentioned in x1.1, it is essential that the underlying enryption sheme provide

seurity against hosen iphertext attaks. As pointed out in [ASW00℄, the earlier work on veri�able

enryption in [Sta96, BG96, YY98℄ overlooked this fat, as does [PS00℄.

Our enryption sheme and proof protools are quite eÆient. In partiular, the proof proto-

ols are onventional \�-protools," rather than the generally more expensive \ut and hoose"

protools, suh as those in [Sta96, BG96, YY98, ASW00℄, that have been previously designed

for the problem of veri�able enryption. Moreover, our veri�able enryption sheme atually

produes a proof that a given iphertext is orret, as opposed to the paradigm followed in

[Sta96, BG96, YY98, ASW00℄, whih intertwines the proess of enrypting and proving, so that

the entire transript of the proof must be retained by the veri�er in lieu of a (short) iphertext.

Additionally, the ombined enrypting/proving paradigm makes it muh harder to inorporate any

type of veri�able deryption protool.

Our veri�able deryption protools are the �rst pratial shemes of their kind.

Unlike, e.g., the shemes in [Sta96, YY98℄, we do not require that all users of the system work

with the same algebrai group | in our system, there are no \double deker" disrete logarithms,

and the enryption keys may be used with any group or groups, provided ertain reasonable size

restritions are met.

Our deryption proedure an be implemented as a threshold deryption protool. This allows

one to minimize the trust plaed in the deryptor, and in some appliations this may be a preferable

alternative to veri�able deryption.

Our protools are based on a number of tehniques. The key ingredients that make our veri�able

enryption protool possible are:

� Fujisaki and Okamoto's method for proving relations on ommitted values [FO97℄ (with some

re�nements, as in [CS00, DF02℄),

� the related interval proofs [CM98, CFT98℄,

� Paillier enryption [Pai99℄, and

� Cramer and Shoup's universal hash proof enryption tehnique [CS02℄.

The additional ingredients needed to make our veri�able deryption protools work are:

� Cramer, Damg�ard, and Shoenmakers' proofs of partial knowledge [CDS94℄,

� Boudot's exat interval proofs [Bou00℄, and

� new protools for proving the inequality of disrete logarithms.

To give the reader a rough idea of the omplexity of of our protools, onsider a setting in

whih the disrete logarithms being enrypted are with respet to an element of order �, where

� is, say, around `

0

� 160 bits. For suh a �, it suÆes to work with a modulus n of around

` � 1024 bits for the Paillier enryption sheme. Counting just squarings, whih are all that matter

asymptotially, and ignoring lower order terms, the enryption algorithm takes 3` squarings mod

n

2

, and the deryption algorithm takes 5` squarings mod n

2

. For the veri�able enryption protool,

the prover performs 2` squarings mod n, 3` squarings mod n

2

, and `

0

squarings in the underlying

group; the veri�er performs 3` squarings mod n

2

, ` squarings mod n, and `

0

squarings in the group.

The veri�able deryption protools are about 5 to 6 times slower than this. For representations
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with respet to several bases, the omplexity of the enryption and deryption algorithms, and the

orresponding proof protools, grows linearly in the number of bases, as one would expet.

2 Preliminaries

2.1 Notation

Let a be a real number. We denote by ba the largest integer b � a, by dae the smallest integer

b � a, and by da the largest integer b � a + 1=2. For positive real numbers a and b, let [a℄

denote the set f0; : : : ; ba � 1g and [a; b℄ denote the set fba; : : : ; bbg and [�a; b℄ denote the set

f�ba; : : : ; bbg.

Let a, b, and  be integers, with b > 0. Most of the time, we use least non-negative remainders,

i.e.,  = a mod b is a � ba=bb and we have 0 �  < b. Sometimes, we have to ompute balaned

remainders, i.e.,  = a rem b is a� da=bb and we have �b=2 �  < b=2. Moreover, if b is odd, then

�(b� 1)=2 � a rem b � (b� 1)=2 for all a.

By neg(�) we denote a negligible funtion, i.e., a funtion f suh that f(�) < 1=p(�) holds for

all polynomials p(�) and all suÆiently large �.

Let (P; V ) be a pair of interative Turing mahines. By V (x)

P (y)

we denote the output of V

upon interating with P , where V 's input is x and P 's input is y.

We use notation introdued by Camenish and Stadler [CS97℄ for the various zero-knowledge

proofs of knowledge of disrete logarithms and proofs of the validity of statements about disrete

logarithms. For instane,

PKf(a; b; ) : y = g

a

h

b

^ y = g

a

h



^ (u � a � v)g

denotes a \zero-knowledge Proof of Knowledge of integers a, b, and g suh that y = g

a

h

b

and

y = g

a

h



holds, where v < a < u," where y; g; h; y; g, and h are elements of some groups G = hgi =

hhi and G = hgi = hhi. The onvention is that the elements listed in the round brakets denote

quantities the knowledge of whih is being proved (and are in general not known to the veri�er),

while all other parameters are known to the veri�er. Using this notation, a proof-protool an be

desribed by just pointing out its aim while hiding all details.

2.2 Speial Honest-Veri�er Zero-Knowledge Protools

A speial honest-veri�er zero-knowledge protool is a protool between a prover and a veri�er,

where y is their ommon input and x is the prover's additional input. The protool is restrited

to three moves: in the �rst move the prover sends the veri�er a \ommitment" message t, in the

seond move the veri�er sends the prover a \hallenge" message , and in the third move the prover

sends the veri�er a \response" message s. Finally, there must exist a simulator that, on input y and

any \hallenge" message ~, outputs a \ommitment" and \response" messages

~

t and ~s suh that the

distribution of the triple (

~

t; ~; ~s) is (statistially) indistinguishable from the one of triples (t; ; s)

stemming from real onversations of the prover and the veri�er for whih  = ~. Note that the

existene of suh a simulator implies that the protool is (ordinary) honest-veri�er zero-knowledge.

For partiular types of proof systems, we shall give expliit, detailed de�nitions of speial

honest-veri�er zero knowledge, as appropriate.

While this notion of zero-knowledge is not suÆient for most appliations, there exist a num-

ber of generi onstrutions to turn a speial honest-veri�er zero-knowledge protool into one that
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satis�es stronger notions of zero-knowledge. The most important examples are probably the on-

strutions to obtain onurrent zero-knowledge protools [Dam00, DNS98, CGGM00℄ or witness-

hiding protools [CDS94℄. In partiular, the onstrution due to Damg�ard ahieves (onurrent)

zero-knowledge virtually for free [Dam00℄.

2.3 Seure Publi-Key Enryption

Here, we reall the notion of a publi-key enryption sheme. Atually, we need the notion of a

publi-key enryption sheme that supports labels. A label is an arbitrary bit string that is input

to the enryption and deryption algorithms, speifying the \ontext" in whih the enryption or

deryption operation is to take plae.

A publi key enryption sheme provides three algorithms:

� a probabilisti, polynomial-time key generation algorithm G that on input 1

�

| where � � 0

is a seurity parameter | outputs a publi-key/private-key pair (PK;SK). A publi key PK

spei�es a �nite, easy-to-reognize message spae M

PK

.

� a probabilisti, polynomial-time enryption algorithm E that takes as input a publi key PK,

a message m 2M

PK

, and a label L, and outputs a iphertext  .

� a deterministi, polynomial-time deryption algorithm D that takes as input a private key SK,

a iphertext  , a label L, and outputs either a message m 2M

PK

, where PK is the publi-key

orresponding to SK, or a speial symbol rejet.

Any publi-key enryption sheme should satisfy a \orretness" or \soundness" property, whih

loosely speaking means that the deryption operation \undoes" the enryption operation. For our

purposes, we an formulate this as follows. We all a publi-key enryption sheme sound if for

all (PK;SK) 2 G(1

�

), for all m 2 M

PK

, for all L 2 f0; 1g

�

, and for all  2 E(PK;m;L), we have

D(SK;  ; L) = m.

This de�nition an easily be relaxed to allow for an inorret deryption with negligible proba-

bility, but we do not pursue this matter here. For all enryption shemes presented in this paper, it

is trivial to verify this soundness property, and so we will not expliitly deal with this issue again.

We say that a iphertext is valid w.r.t. a label L (and a key pair (PK;SK)) if the deryption

algorithm does not rejet it and is invalid w.r.t. L otherwise.

Note that in this paper, we only work with �nite message spaes.

2.4 Adaptive Chosen Ciphertext Seurity

Consider a publi-key enryption sheme, and onsider the following game, played against an arbi-

trary probabilisti, polynomial-time adversary.

1. Key-Generation Phase. Let � � 0 be the seurity parameter. We run the key-generation

algorithm of the publi-key enryption sheme on input 1

�

, and get a key pair (PK;SK). We

equip an enryption orale with the publi key PK, and a deryption orale with the seret

key SK. The publi key PK is presented to the adversary.

2. Probing Phase I. In this phase, the attaker gets to interat with the deryption orale in an

arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, spei�ed by

the adversary. More preisely, in eah round of this interation, the adversary sends a query

( ;L) to the deryption orale. A query is a pair of bit strings hosen in an arbitrary way by

8



the adversary. The deryption orale in turn derypts  with label L under the seret key

SK, and responds to the query by returning the deryption to the adversary.

3. Target-Seletion Phase. The adversary selets two messages m

0

and m

1

from the message

spae, along with a label L

�

, and presents (m

0

;m

1

; L

�

) to the enryption orale. The en-

ryption orale selets a random � 2 f0; 1g, and enrypts m

�

with label L

�

under PK. The

resulting enryption  

�

, the target iphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only di�erene being that the de-

ryption orale only responds to queries ( ;L) with ( ;L) 6= ( 

�

; L

�

).

5. Guessing-Phase. The adversary outputs a bit �̂.

The adversary is said to win the game if �̂ = �. We de�ne the advantage (over random guessing)

of the adversary as the absolute value of the di�erene of the probability that he wins and 1=2.

A publi-key enryption sheme is said to be seure against adaptive hosen iphertext attak if

for all polynomial time, probabilisti adversaries, the advantage in this guessing game is negligible

as a funtion of the seurity parameter.

3 The Enryption Sheme

3.1 Bakground

Let p; q; p

0

; q

0

be distint odd primes with p = 2p

0

+1 and q = 2q

0

+1, and where p

0

and q

0

are both

` bits in length. Let n = pq and n

0

= p

0

q

0

. Consider the group Z

�

n

2

and the subgroup P of Z

�

n

2

onsisting of all n-th powers of elements in Z

�

n

2

.

Paillier's Deision Composite Residuosity (DCR) assumption [Pai99℄ is that given only n, it is

hard to distinguish random elements of Z

�

n

2

from random elements of P.

To be ompletely formal, one should speify a sequene of bit lengths `(�), parameterized by a

seurity parameter � � 0, and to generate an instane of the problem for seurity parameter �, the

primes p

0

and q

0

should be distint, random primes of length ` = `(�), suh that p = 2p

0

+ 1 and

q = 2q

0

+ 1 are also primes.

The primes p

0

and q

0

are alled Sophie Germain primes and the primes p and q are alled safe

primes. It has never been proven that there are in�nitely many Sophie Germain primes. Neverthe-

less, it is widely onjetured, and amply supported by empirial evidene, that the probability that

a random `-bit number is Sophie Germain prime is 
(1=`

2

). We shall assume that this onjeture

holds, so that we an assume that problem instanes an be eÆiently generated.

Note that Paillier did not make the restrition to safe primes in originally formulating the DCR

assumption. As will beome evident, we need to restrit ourselves to safe primes for tehnial

reasons. However, it is easy to see that the DCR assumption without this restrition implies the

DCR assumption with this restrition, assuming that safe primes are suÆiently dense, as we are

here.

We an deompose Z

�

n

2

as an internal diret produt

Z

�

n

2

= G

n

�G

n

0

�G

2

�T;

where eah group G

�

is a yli group of order � , and T is the subgroup of Z

�

n

2

generated by

(�1 mod n

2

). This deomposition is unique, exept for the hoie of G

2

(there are two possible

9



hoies). For any x 2 Z

�

n

2

, we an express x uniquely as x = x(G

n

)x(G

n

0

)x(G

2

)x(T), where for

eah G

�

, x(G

�

) 2 G

�

, and x(T) 2 T.

Note that the element h = (1 + n mod n

2

) 2 Z

�

n

2

has order n, i.e., it generates G

n

, and that

h

a

= (1 + an mod n

2

) for 0 � a < n. Observe that P = G

n

0

G

2

T.

3.2 The Sheme

For a seurity parameter � � 0, ` = `(�) is an auxiliary parameter.

The sheme makes use of a keyed hash sheme H that uses a key hk, hosen at random from

an appropriate key spae assoiated with the seurity parameter �; the resulting hash funtion

H

hk

(�) maps a triple (u; e; L) to a number in the set [2

`

℄. We shall assume that H is ollision

resistant, i.e., given a randomly hosen hash key hk, it is omputationally infeasible to �nd two

triples (u; e; L) 6= (u

0

; e

0

; L

0

) suh that H

hk

(u; e; L) = H

hk

(u

0

; e

0

; L

0

).

Let abs : Z

�

n

2

! Z

�

n

2

map (a mod n

2

), where 0 < a < n

2

, to (n

2

� a mod n

2

) if a > n

2

=2, and

to (a mod n

2

), otherwise. Note that v

2

= (abs(v))

2

holds for all v 2 Z

�

n

2

.

We now desribe the key generation, enryption, and deryption algorithms of the enryption

sheme, as they behave for a given value of the seurity parameter �.

Key Generation. Selet two random `-bit Sophie Germain primes p

0

and q

0

, with p

0

6= q

0

,

and ompute p := (2p

0

+ 1), q := (2q

0

+ 1), n := pq, and n

0

:= p

0

q

0

, where ` = `(�) is an auxiliary

seurity parameter. Choose random x

1

, x

2

, x

3

2

R

[n

2

=4℄, hoose a random g

0

2

R

Z

�

n

2

, and ompute

g := (g

0

)

2n

, y

1

:= g

x

1

, y

2

:= g

x

2

, and y

3

:= g

x

3

. Also, generate a hash key hk from the key spae of

the hash sheme H assoiated with the seurity parameter �. The publi key is (hk; n; g; y

1

; y

2

; y

3

).

The seret key is (hk; n; x

1

; x

2

; x

3

).

In the rest of the paper, let h = (1 + n mod n

2

) 2 Z

�

n

2

, whih as disussed above, is an element

of order n.

Enryption. To enrypt a message m 2 [n℄ with label L 2 f0; 1g

�

under a publi key as above,

hoose a random r 2

R

[n=4℄ and ompute

u := g

r

; e := y

r

1

h

m

; and v := abs

�

(y

2

y

H

hk

(u;e;L)

3

)

r

�

:

The iphertext is (u; e; v).

Deryption. To derypt a iphertext (u; e; v) 2 Z

�

n

2

�Z

�

n

2

�Z

�

n

2

with label L under a seret key

as above, �rst hek that abs(v) = v and u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

. If this does not hold, then output

rejet and halt. Next, let t = 2

�1

mod n, and ompute m̂ := (e=u

x

1

)

2t

. If m̂ is of the form h

m

for

some m 2 [n℄, then output m; otherwise, output rejet.

This sheme di�ers from the DCR-based shemes presented in [CS02℄, beause in our situation,

speial attention must be paid to the treatment of elements of order 2 in the Z

�

n

2

, as these an ause

some trouble for the proof systems we disuss in the next setions. Beause of these di�erenes, the

above enryption sheme does not exatly �t into the general framework of [CS02℄, even though

the basi ideas are the same. We therefore analyze the seurity of the sheme starting from �rst

priniples, rather than trying to modify their framework.

Before presenting the seurity analysis, we remark on one of the more peuliar aspets of the

sheme, namely, the role of the abs(�) funtion in the enryption and deryption algorithms. If one

left this out, i.e., replaed abs(�) by the identity funtion, then the sheme would be malleable, as

10



(u; e; v) is an enryption of some message m with label L, then so is (u; e;�v). This partiular

type of malleability [ADR02, Sho01℄ is in fat rather \benign," and would be aeptable in most

appliations. However, we prefer to ahieve non-malleability in the stritest sense, and beause

this omes at a marginal ost, we do so. We also mention that in independent work, Gennaro

and Lindell [GL03℄ devise a similar (but not quite idential) sheme, but for ompletely di�erent

purposes: their goal is to onstrut eÆient password-based key exhange protools.

Theorem 1. The above sheme is seure against adaptive hosen iphertext attak provided the

DCR assumption holds, and provided H is ollision resistant.

The rest of this setion is devoted to the proof of Theorem 1.

Let us �x a value of the seurity parameter �, whih �xes ` = `(�), and let us �x an adversary

A. Let  

�

= (u

�

; e

�

; v

�

) denote the target iphertext, and L

�

the assoiated label.

We prove this theorem by analyzing a sequene of modi�ations to the environment in whih

the adversary runs. We refer to the attak game run with the original environment as Game 0

(.f. x2.4), and to the attak game run with subsequent modi�ations to the environment as Games

1, 2, et. Eah of these games are best viewed as operating on the same underlying probability

spae. The value of the random variable � is idential in eah game, but the output �̂ of the

adversary may vary among games. We de�ne the event T

i

, for i � 0, as the event that the � = �̂

in Game i.

Game 1. This is the same as Game 0, exept for the following modi�ation to the deryption orale.

If the deryption orale is invoked in Probing Phase II with a iphertext/label pair ((u; e; v); L) suh

that (u; e; L) 6= (u

�

; e

�

; L

�

) but H

hk

(u; e; L) = H

hk

(u

�

; e

�

; L

�

), then the deryption orale rejets

the iphertext.

Let F

1

be the event that a iphertext is rejeted in Game 1 using the above rejetion rule. It is

lear that Games 0 and 1 proeed identially until F

1

ours; more preisely, the events T

1

^ :F

1

and T

0

^ :F

1

are idential. Therefore,

jPr[T

1

℄� Pr[T

0

℄j � Pr[F

1

℄: (1)

Moreover, we have

Pr[F

1

℄ � AdvCRHF

A

0

(�); (2)

where AdvCRHF

A

0

(�) denotes the suess probability that a partiular adversary A

0

has in �nding

a ollision in H for the given value of the seurity parameter �. The running time of A

0

is about

the same as that of A. Indeed, given a hash key hk, adversary A

0

simply runs Game 1, using the

given value of hk in the key generation algorithm, and when F

1

ours, A

0

outputs (u; e; L) and

(u

�

; e

�

; L

�

).

Game 2. This game is the same as Game 1, exept for the following modi�ation to the deryption

orale. If the deryption orale is invoked in Probing Phase II with a iphertext (u; e; v) suh that

v

2

= (v

�

)

2

and v 6= v

�

, then the deryption orale rejets the iphertext.

Let F

2

be the event that a iphertext is rejeted in Game 2 using the above rejetion rule, but

would not have been rejeted for any other reason. It is lear that Games 1 and 2 proeed identially

until F

2

ours; more preisely, the events T

2

^ :F

2

and T

1

^ :F

2

are idential. Therefore,

jPr[T

2

℄� Pr[T

1

℄j � Pr[F

2

℄: (3)

Moreover, we have

Pr[F

2

℄ � AdvFator

A

00

(�); (4)
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where AdvFator

A

00

(�) denotes the suess probability that a partiular algorithm A

00

has in fa-

toring a number n as generated by the enryption algorithm for the given value of the seurity

parameter �. The running time of A

00

is about the same as that of A. Algorithm A

00

takes the given

number n, onstruts the remaining omponents of the publi key, and then lets adversary A run

in Game 2. If and when event F

2

ours, we have v

2

= (v

�

)

2

, v 6= v

�

, abs(v) = v, and abs(v

�

) = v

�

.

This implies that v 6= �v

�

. It follows that if v=v

�

= (a mod n

2

), then gd(a; n) splits n.

Game 3. This game is the same as Game 2, exept for the following modi�ation to the enryption

orale. Instead of omputing e

�

and v

�

as in the enryption algorithm, we ompute them using the

seret key, as follows:

e

�

:= (u

�

)

x

1

h

m

�

v

�

:= abs

�

(u

�

)

x

2

+H

hk

(u

�

;e

�

;L

�

)x

3

�

This modi�ation is purely oneptual, as the values of e

�

and v

�

omputed by the enryption

orale in Game 3 are idential to those omputed in Game 2. Therefore,

Pr[T

3

℄ = Pr[T

2

℄: (5)

Game 4. Now we further modify the enryption orale. Let r

�

denote the value of r generated

by the enryption orale. Then, instead of omputing u

�

as g

r

�

, the enryption orale in this game

hooses a random �u 2 P, and sets u

�

:= �u

2

.

We laim that

jPr[T

4

℄� Pr[T

3

℄j = O(2

�`

): (6)

To see this, observe that �u

2

is uniformly distributed over G

n

0

. Also, observe that with probability

1�O(2

�`

), g is a generator for G

n

0

, and that the distribution of r

�

is O(2

�`

)-lose to the uniform

distribution on [n

0

℄. It is an easy exerise to show that the bound (6) follows from these observations.

Game 5. We again modify the enryption orale. Instead of hoosing �u at random from P, the

enryption orale hooses �u at random from Z

�

n

2

; otherwise, the omputation is idential to that of

Game 4.

It is lear that any signi�ant di�erene between Pr[T

5

℄ and Pr[T

4

℄ leads immediately to an

e�etive statistial test for distinguishing P from Z

�

n

2

. More preisely, there exists an adversary

A

000

, whose running time is roughly the same as that of A, suh that

jPr[T

5

℄� Pr[T

4

℄j � AdvDCR

A

000

(�); (7)

where AdvDCR

A

000

(�) denotes the advantage that A

000

has in distinguishingP from Z

�

n

2

for the given

value of the seurity parameter �.

Game 6. We again modify the enryption orale. This time, we replae u

�

by a random element

of G

n

G

n

0

suh that u

�

(G

n

) has order n.

We laim that

jPr[T

6

℄� Pr[T

5

℄j = O(2

�`

): (8)

To see this, note that in Game 5, u

�

is uniformly distributed over G

n

G

n

0

, and so u

�

(G

n

) has order

n with probability 1�O(2

�`

). The bound (8) follows immediately.

12



Game 7. Now we modify the key generation algorithm. Instead of hoosing x

1

; x

2

; x

3

at random

from [n

2

=4℄, we hoose them at random from [nn

0

℄.

Beause the uniform distribution on [n

2

=4℄ is O(2

�`

)-lose to the uniform distribution on [nn

0

℄,

it follows immediately that

jPr[T

7

℄� Pr[T

6

℄j = O(2

�`

): (9)

Game 8. Now we modify the deryption orale. In this game, in addition to rejeting a iphertext

(u; e; v) 2 Z

�

n

2

�Z

�

n

2

�Z

�

n

2

with label L if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, the deryption orale also rejets

this iphertext if u =2 G

n

0

G

2

T.

In this game, the deryption orale leaks no information about the value of x

1

modulo n. >From

this, and the fat that u

�

(G

n

) has order n and e

�

= (u

�

)

x

1

h

m

�

, it follows that A's output �̂ is

independent of �. Therefore,

Pr[T

8

℄ = 1=2: (10)

Let F

8

be the event that in Game 8, some iphertext (u; e; v) with label L is rejeted using the

speial rejetion rule introdued in Game 8, but would not have been rejeted for any other reason,

i.e., the speial rejetion rules introdued in Games 1 and 2 do not apply, and u

2(x

2

+H

hk

(u;e;L)x

3

)

=

v

2

.

It is lear that Games 7 and 8 proeed identially until F

8

ours. More preisely, the events

T

8

^ :F

8

and T

7

^ :F

8

are idential. Therefore,

jPr[T

8

℄� Pr[T

7

℄j � Pr[F

8

℄: (11)

Let � = �(�) denote an upper bound on the number of deryption orale queries made by A

for the given value of the seurity parameter �. We assume this bound holds, regardless of the

environment in whih A runs. We laim that

Pr[F

8

℄ � � � 2

�`

: (12)

To prove (12), we argue as follows. Let �x

2

and �x

3

denote the values of x

2

and x

3

, respetively,

modulo n. Similarly, let �x

0

2

and �x

0

3

denote the values of x

2

and x

3

, respetively, modulo n

0

.

Let us ondition on �xed values of

n; g; x

1

; �x

0

2

; �x

0

3

; hk;

as well as �xed values of the oin tosses of A. In this onditional probability spae, the publi key

is �xed, A's queries to the deryption orale in Probing Phase I, as well as the responses of the

deryption orale. To see why responses of the deryption orale are fully determined, observe that

all iphertexts (u; e; v) with u =2 G

n

0

G

2

T are rejeted, and that the deryption orale squares u in

all omputations involving u; thus, the response of the deryption orale is determined by �x

0

2

and

�x

0

3

, whih are �xed. Also, in this onditional probability spae, it is determined whether or not

A invokes the enryption orale, and if so, A's inputs to the enryption orale. However, by the

Chinese Remainder Theorem, the values of �x

2

and �x

3

in this onditional probability spae are still

uniformly and independently distributed over [n℄.

In this onditional probability spae, onsider a partiular invoation of the deryption orale in

Probing Phase I with a iphertext (u; e; v) and label L. Suppose that u =2 G

n

0

G

2

T. Let �u = u(G

0

n

)

2

,

�u

0

= u(G

n

)

2

, and H = H

hk

(u; e; L). Note that �u 6= 1, and so �u has order p, q, or n. Now, we have

u

2(x

2

+H

hk

(u;e;L)x

3

)

= (�u)

�x

2

+H�x

3

(�u

0

)

�x

0

2

+H�x

0

3

:
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It follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

is uniformly distributed over a partiular oset in G

n

0

G

n

of the

subgroup generated by �u. As v

2

is �xed in this onditional probability spae, it follows that

u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

with probability at most 2

�`

.

Now suppose that in this onditional probability spae A invokes the enryption orale with

partiular messages m

0

and m

1

, and a label L

�

. Let us further ondition on �xed values of �

and u

�

. This determines the value of e

�

, and also the value of H

�

= H

hk

(u

�

; e

�

; L

�

). Let us also

further ondition a �xed value of �x

2

+ H

�

�x

3

modulo n. This determines the value v

�

. In the

resulting onditional probability spae, the output of the enryption orale, as well as all queries

and responses of deryption orale queries in Probing Phase II are ompletely determined.

In this onditional probability spae, onsider a partiular invoation of the deryption orale

in Probing Phase II with a iphertext (u; e; v) and label L, suh that (u; e; v; L) 6= (u

�

; e

�

; v

�

; L).

Suppose that u =2 G

n

0

G

2

T, and that the speial rejetion rules introdued in Games 1 and 2 do

not apply. We onsider two ases.

Case 1: (u; e; L) = (u

�

; e

�

; L

�

). We must have v 6= v

�

, as (u; e; v; L) 6= (u

�

; e

�

; v

�

; L). Beause

the speial rejetion rule in Game 2 does not apply, we must have v

2

6= (v

�

)

2

, whih implies that

u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

.

Case 2: (u; e; L) 6= (u

�

; e

�

; L

�

). As the speial rejetion rule in Game 1 does not apply, we must

have H 6= H

�

. By the de�nition of H, this implies that H 6� H

�

(mod p) and H 6� H

�

(mod q).

This in turn implies that in this onditional probability spae, the distribution of �x

2

+H�x

3

modulo

n is uniform. It follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

is uniformly distributed over a partiular oset in

G

n

0

G

n

of the subgroup generated by �u. Beause v

2

is �xed in this onditional probability spae,

it follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

with probability at most 2

�`

.

The above arguments show that the event F

8

ours for a partiular deryption query with

probability at most 2

�`

. The bound (12) now follows.

Putting together (1)-(12), we have

jPr[T

0

℄� 1=2j � AdvCRHF

A

0

(�) + AdvFator

A

00

(�) + AdvDCR

A

000

(�) + � � 2

�`

+O(2

�`

):

Theorem 1 now follows immediately.

3.3 Extensions to Threshold Deryption

Our sheme an easily be transformed to provide threshold deryption, where it omes in handy

that the knowledge of the fatorization of n is not required for deryption. This allows one to

redue the trust assumption for the deryptor when used as a trusted third party. This an be

done either along the lines in [SG98℄, whih requires a random orale seurity argument, or along

the lines in [CG99℄, whih does not require that argument, but for whih the deryption protool

is less eÆient.

4 The Strong RSA and Fatoring Assumptions

This strong RSA assumption is the following: given a omposite modulus n and a random element

g 2 Z

�

n

, it is hard to ompute h 2 Z

�

n

and integer e > 1 suh that h

e

= g. To be omplete, one

needs to speify more preisely the distribution from whih n is drawn. As in x3, we shall speify

that n is of the form pq, where p = 2p

0

+ 1, q = 2q

0

+ 1, and p

0

and q

0

are uniformly distributed

over all `-bit numbers suh that p; q; p

0

; q

0

are prime and p

0

6= q

0

. We also set n

0

= p

0

q

0

. As usual,

` = `(�), where � is a seurity parameter.
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We will make use of both the strong RSA assumption, as well as the assumption that fatoring

integers n as above is hard. Of ourse, the strong RSA assumption implies that fatoring is hard.

We will make use of these two assumptions as follows. First, we shall make extensive use of

the well known fat that if fatoring is hard, then it is hard to ompute a non-zero multiple of n

0

.

We shall also make use of the fat that if fatoring is hard, then it is hard to ompute a non-zero

multiple of either p

0

or q

0

. To see this, suppose that m is a non-zero multiple of p

0

or q

0

. If m is a

multiple of n

0

, then the above mentioned result applies. Otherwise, with overwhelming probability,

for random z 2 Z

�

n

, gd(z

2m

� 1; n) will be either p or q, as the reader may easily hek using the

Chinese Remainder Theorem. Thus, assuming fatoring is hard, we may assume that it is hard to

ompute a non-zero integer m suh that gd(m;n

0

) 6= 1.

We also shall use the following fats:

Theorem 2. Under the assumption that fatoring is hard, given a modulus n (distributed as above),

along with random elements g; h 2 (Z

�

n

)

2

, it is hard to ompute integers a; b, suh that

1 = g

a

h

b

and (a 6= 0 or b 6= 0): (13)

Proof. Suppose there is an algorithm A that takes as input n; g; h as above, and outputs a; b

satisfying (13) with non-negligible probability. We an use use A to fator a given n, as follows:

generate g 2 (Z

�

n

)

2

at random | with overwhelming probability, g has order n

0

; hoose r 2 [1; n

2

℄

at random, and set h = g

r

| the distribution of h is statistially lose to the uniform distribution

on (Z

�

n

)

2

; feed n; g; h to A, obtaining a; b. With non-negligible probability, we have

g has order n

0

; 1 = g

a+rb

; and (a 6= 0 or b 6= 0) : (14)

Claim: with non-negligible probability, not only does (14) hold, but also a + rb 6= 0. To prove

this laim, let us ondition on �xed values of n; g; h; a; b, and oins of A, suh that A outputs a; b on

inputs n; g; h, and suh that the onditions in (14) are satis�ed. Let us write r = r

2

n

0

+ r

1

, where

0 � r

1

< n

0

. In this onditional probability spae, the value r

1

is also �xed, but the distribution of

r

2

is statistially lose to the uniform distribution on [4n℄. We an write the equation a+ rb = 0 as

a+ r

2

n

0

b+ r

1

b = 0, and in this equation all terms are �xed exept for r

2

. We may as well assume

that b 6= 0, as otherwise, a 6= 0 and the equation never holds. There is at most one solution in r

2

to the equation (as the oeÆient n

0

b is non-zero), and so it holds with only negligible probability.

That proves the laim.

The identity g

a+rb

implies that a+ rb is a multiple of n

0

, and if a+ rb 6= 0, we have a non-zero

multiple of n

0

.

Theorem 3. Under the strong RSA assumption, given a modulus n (distributed as above), along

with random elements g; h 2 (Z

�

n

)

2

, it is hard to ompute w 2 Z

�

n

and integers a; b;  suh that

w



= g

a

h

b

and ( - a or  - b): (15)

Proof. Suppose we have an algorithm A that given n; g; h as above, omputes w; a; b;  satisfying

(15) with non-negligible probability.

Case 1. Let us �rst onsider the ase where  = 0 with non-negligible probability. Then the

ondition that  - a or  - b simply means that a 6= 0 or b 6= 0, and the result is implied by

Theorem 2.
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Case 2. Let us next onsider the remaining, and more interesting, ase where  6= 0 with non-

negligible probability. We may as well assume that gd(; n

0

) = 1, sine as was disussed at the

beginning of the proof, under the assumption that fatoring is hard, it is diÆult to ompute non-

zero  suh that gd(; n

0

) 6= 1. We now show how we an use A to either fator a given n or

�nd a non-trivial root of a given g, thus ontraditing the strong RSA assumption (sine a random

element of Z

�

n

is a square with probability 1=4).

Given n and g, we proeed as follows. First, note that with overwhelming probability, g has

order n

0

. Let us ompute h = g

r

, for r randomly hosen from [1; n

2

℄, so that the distribution of

h is statistially lose to the uniform distribution on (Z

�

n

)

2

. Now we feed n; g; h to A, obtaining

w; a; b; . With non-negligible probability, we have

g has order n

0

; w



= g

a+rb

;  6= 0; gd(; n

0

) = 1; and  - a : (16)

Claim: with non-negligible probability, not only does (16) hold, but also  - (a + rb). To prove

this laim, let now ondition on �xed values of n; g; h; w; a; b; , and oins of A, suh that A outputs

w; a; b;  on inputs n; g; h, and suh that the onditions in (16) are satis�ed. Let us write r =

r

2

n

0

+ r

1

, where 0 � r

1

< n

0

. In this onditional probability spae, the value r

1

is also �xed, but

the distribution of r

2

is statistially lose to the uniform distribution on [4n℄.

Now, onsider the ongruene

a+ rb � 0 (mod ) :

This ongruene holds if and only if

a+ r

1

b+ r

2

n

0

b � 0 (mod ) :

Now, in the onditional probability spae, all terms in the above ongruene are �xed, exept for

r

2

. Let us bound from above the probability that this ongruene holds. We may as well assume

that  - b, beause if  j b, then  - a, and the ongruene will never hold. As gd(; n

0

) = 1, it

follows that the solutions r

2

to the above ongruene are uniquely determined modulo =d

0

, where

d

0

= gd(; b). Sine  - b, it follows that d

0

is a proper divisor of , and hene =d

0

� 2. Beause the

distribution of r

2

is statistially lose to the uniform distribution on a very large range, it follows

that the ongruene holds with probability at most about 1=2. This proves the laim.

It is left to show that if  - (a+ rb), then we an either fator n, or just ompute a non-trivial

root of g. Let d = gd(; a + rb). Sine we are assuming that  - (a+ rb), it follows that =d � 2.

There are integers � and � suh that d = �+�(a+ rb), and using the identity w



= g

a

h

b

, we have

g

d

= (w

�

g

�

)



;

and so g = �(w

�

g

�

)

=d

for some �Z

�

n

with �

d

= 1. Thus, the order of � divides d, and of ourse,

sine 2n

0

is the exponent of Z

�

n

, it follows that the order of � divides gd(d; 2n

0

). Now, sine d j 

and gd(; n

0

) = 1, we have gd(d; n

0

) = 1, from whih it follows that � has order dividing 2.

So either � = �1 or gd(� � 1; n) splits n. In the latter ase we have fatored n. In the former

ase we an ompute suh a root of g as follows. If =d is even, then (w

�

g

�

)

=d

2 (Z

�

n

)

2

and so

(beause g 2 (Z

�

n

)

2

), we must have � = 1 (as �1 =2 (Z

�

n

)

2

). If =d is odd then g = (�w

�

g

�

)

=d

. In

either ase, we have omputed a (=d)th root of g.

Disussion. The strong RSA assumption was introdued independently in [BP97℄ and [FO97℄. Sine

then, it has been found to be useful in the analysis of many ryptographi shemes (e.g., [CM98,
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GHR99, CS00, ACJT00, CL01℄). We do not laim that Theorem 3 is new: it has appeared impliitly

and in more restrited form in previous papers: the essential idea in the proof of Theorem 3 already

appears in [CS00℄, although that paper deals with a more restrited, and somewhat simpler, setting;

also, the paper [DF02℄ impliitly ontains a proof of a statement that is very similar to that of

Theorem 3. The paper [FO97℄ also makes some similar laims (impliitly), but some of their proofs

are awed. Theorem 3 is atually a bit more general than we atually need for our paper, but as it

is atually a quite useful theorem in several ontexts, we prefer to state it in a very general form.

5 Veri�able Enryption

Loosely speaking, veri�able enryption for a relationR is a protool that allows a prover to onvine

a veri�er that a given iphertext is an enryption under a given publi key of a value w suh that

(Æ; w) 2 R for a given Æ.

Asokan et al. [ASW98, ASW00℄ present a protool for veri�able enryption for the ase where

w is a homomorphi pre-image of Æ and Camenish and Damg�ard [CD00℄ present a protool that

works for any relation R that has a three-move honest-veri�er zero-knowledge proof of knowledge

where the veri�er sends as a seond message a random hallenge. Both these protools work for

any seure publi key enryption sheme. However, they are based on the ut-and-hoose paradigm

and hene are rather impratial.

In this setion we present an eÆient veri�able enryption protool for disrete logarithms

in onjuntion with the enryption sheme presented in the previous setion. We then disuss

extensions of this protool.

5.1 De�nition of Veri�able Enryption

Before stating the formal de�nition of veri�able enryption, we begin with a high level disussion

of what we are after, along with some auxiliary de�nitions.

Let (G; E ;D) be a publi key enryption sheme, and suppose we have generated a key pair

(PK;SK).

A veri�able enryption sheme proves that a iphertext enrypts a plaintext satisfying a ertain

relation R. The relation R is de�ned by a generator algorithm G

0

whih on input 1

�

outputs a

desription 	 = 	[R;W;�℄ of a binary relation R on W ��. We require that the sets R, W , and

� are easy to reognize (given 	). For Æ 2 �, an element w 2 W suh that (w; Æ) 2 R is alled a

witness for Æ. The idea is that the enryptor will be given a value Æ, a witness w for Æ, and a label

L, and then enrypts w under L, yielding a iphertext  . After this, the enryptor may prove to

another party that  derypts under L to a witness for Æ. In arrying out the proof, the enryptor

will of ourse need to make use of the random oins that were used by the enryption algorithm:

we denote by E

0

(PK;m;L) the pair ( ; oins), where  is the output of E(PK;m;L) and oins are

the random oins used by E to ompute  .

In suh a proof system, the (honest) veri�er will output 0 or 1, with 1 signifying \aept."

We of ourse shall require that the proof system is sound, in the sense that if a veri�er aepts a

proof, then with overwhelming probability,  indeed derypts under L to a witness for Æ. However,

it is onvenient, and adequate for many appliations, to take a more relaxed approah: instead

of requiring that  derypts under L to a witness, we only require that a witness an be easily

reonstruted from the plaintext using some eÆient reonstrution algorithm. Suh an algorithm

reon takes as input a publi key PK, a relation desription 	[R;W; Æ℄, an element Æ 2 �, and a

message m 2M

PK

[ frejetg, and outputs w 2W [ frejetg.
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We need to make some tehnial \ompatibility" requirements: we say that an enryption

sheme, a relation generator, and a reonstrution algorithm as above are mutually ompatible if

for all � � 0, all (PK;SK) 2 G(1

�

), and all 	[R;W;�℄ 2 G

0

(1

�

), we have

� W �M

PK

, and

� for all (w; Æ) 2 R, we have reon(PK;	; Æ; w) = w.

The �rst requirement simply says that witness \�t" into the message spae, and the seond require-

ment simply says that the reonstrution routine does not modify valid witnesses (together with

the orretness property for the enryption sheme, this ensures that an enryption of a witness

derypts and reonstruts to the same witness).

We shall also require that the proof system is speial honest-veri�er zero knowledge. To formu-

late this more preisely below, we let Trans(PK;	; Æ;  ; L; ; w; oins ) denote the transript seen by

a veri�er that uses a �xed hallenge .

De�nition 1. A proof system (P;V), together with mutually ompatible enryption sheme

(G; E ;D), relation generator G

0

, and reonstrution algorithm reon, form a veri�able enryption

sheme, if the following properties hold.

Corretness: for all (PK;SK) 2 G(1

�

), for all 	[R;W;�℄ 2 G

0

(1

�

), for all (w; Æ) 2 R, for all

L 2 f0; 1g

�

, for all ( ; oins) 2 E

0

(PK; w; L),

Pr[x V(PK;	; Æ;  ; L)

P(PK;	;Æ; ;L;w;oins)

: x = 1℄ = 1� neg(�):

Soundness: for all adversaries (A

�

, P

�

),

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(Æ;  ; L; aux ) A

�

(PK;SK;	);

x V(PK;	; Æ;  ; L)

P

�

(aux )

;

m D(SK;  ; L);

w  reon(PK;	; Æ;m) :

x = 1 ^ (w; Æ) =2 R ℄ = neg(�):

Speial honest-veri�er zero knowledge: There exists a simulator Sim suh that for all adver-

saries (A

�

, B

�

, C

�

), we have

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(w; Æ; L; aux ) A

�

(PK;SK;	); where (w; Æ) 2 R;

( ; oins) E

0

(PK; w; L);

 B

�

(aux ;  );

b f0; 1g;

if b = 0

then � Trans(PK;	; Æ;  ; L; ; w; oins )

else � Sim(PK;	; Æ;  ; L; );

^

b C

�

(aux ;  ; �) :

b =

^

b ℄ = 1=2 + neg(�):
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The above de�nitions are fairly traditional. Our formulations of soundness and speial honest-

veri�er zero knowledge are basially of the \omputational" variety, but where we have taken the

notion of \omputational" one step further: instead of universally quantifying over the inputs to

the veri�er (respetively, simulator), we quantify \omputationally." This is tehnially onvenient,

and is adequate for most appliations.

Also, the above de�nitions assume that the key for the enryption sheme are generated by a

trusted party. While it is possible to de�ne veri�able enryption in a setting where the keys are not

generated by a trusted party, the de�nitions in this ase are a bit more ompliated and subtle, and

we do not present them here. Nevertheless, our protools would require only slight modi�ation to

remain seure in this setting.

5.2 Veri�able Enryption of a Disrete Logarithm

Let (hk; n; g; y

1

; y

2

; y

3

) be a publi key of the enryption sheme desribed in x3. Reall that the

message spae assoiated with this publi key is [n℄.

Let � be a yli group of order � generated by . We assume that  and � are publily known,

and that � is prime. Let W = [�℄ and � = �, and let R = f(w; Æ) 2 W � � : 

w

= Æg. The

\disrete logarithm" relation R is the relation with respet to whih we want to veri�ably enrypt.

We shall of ourse require that n > � (in fat, we will make a stronger requirement). The

reonstrution routine reon will map a plaintext m 2 [n℄ to the integer (m remn) mod �, i.e.,

it omputes the balaned remainder of m modulo n, and then omputes the least non-negative

remainder of this modulo �.

Setup. Our protool requires the auxiliary parameters n, whih must the produt of two safe

(l+ 1)-bit primes p = 2p

0

+ 1 and q = 2q

0

+ 1, and g and h, whih are two generators of G

n

0

� Z

�

n

,

where n

0

= p

0

q

0

; G

n

0

is the subgroup of Z

�

n

of order n

0

, and l = l(�).

One may view n, g, and h as additional omponents of the publi key of the enryption sheme,

or as system parameters generated by a trusted party. Depending on the setting, we may simply

put n := n. In any event, the prover should not be privy to the fatorization of n.

Let k = k(�) and k

0

= k

0

(�) be further seurity parameters, where 2

�k(�)

and 2

�k

0

(�)

are

negligible funtions (f0; 1g

k

is the \hallenge spae" of the veri�er and k

0

ontrols the quality of

the zero-knowledge property). We require that 2

k

< minfp

0

; q

0

; p

0

; q

0

; �g holds. Finally, we require

that � < n2

�k�k

0

�3

holds, i.e., that log



Æ \�ts into an enryption". (If this ondition is not meet,

the value log



Æ ould be split into smaller piees, eah of whih would then be veri�ably enrypted.

However, we do not address this here.)

The protool. The ommon input of the prover and veri�er is: the publi key (hk; n; g; y

1

; y

2

; y

3

),

the augmented publi key (n; g; h), a group element (Æ), a iphertext (u; e; v), and a label L. The

prover has additional inputs m = log



Æ and r 2

R

[n=4℄ suh that

u = g

r

; e = y

r

1

h

m

; and v = abs ((y

2

y

H

hk

(u;e;L)

3

)

r

) :

1. The prover hooses a random s 2

R

[n=4℄ and omputes k := g

m

h

s

. The prover sends k to the

veri�er.

2. Then the prover and veri�er engage in the following protool.
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(a) The prover hooses random

r

0

2

R

[�n2

k+k

0

�2

; n2

k+k

0

�2

℄; s

0

2

R

[�n2

k+k

0

�2

; n2

k+k

0

�2

℄; m

0

2

R

[��2

k+k

0

; �2

k+k

0

℄:

The prover omputes

u

0

:= g

2r

0

; e

0

:= y

2r

0

1

h

2m

0

; v

0

:= (y

2

y

H

hk

(u;e;L)

3

)

2r

0

; Æ

0

:= 

m

0

; and k

0

:= g

m

0

h

s

0

:

The prover sends u

0

, e

0

, v

0

, Æ

0

, and k

0

to the veri�er.

(b) The veri�er hooses a random hallenge  2

R

f0; 1g

k

and sends  to the prover.

() The prover replies with ~r := r

0

� r, ~s := s

0

� s, and ~m := m

0

� m (omputed in Z).

(d) The veri�er heks whether the relations

u

0

= u

2

g

2~r

; e

0

= e

2

y

2~r

1

h

2 ~m

; v

0

= v

2

(y

2

y

H

hk

(u;e;L)

3

)

2~r

;

Æ

0

= Æ





~m

; k

0

= k



g

~m

h

~s

; and � n=4 < ~m < n=4

hold. If any of them does not hold, the veri�er stops and outputs 0.

3. If v = abs(v) the veri�er outputs 1; otherwise she outputs 0.

Using notation from [CS97℄ we denote the sub-protool of Step 2 as

PKf(r;m; s) : u

2

= g

2r

^ e

2

= y

2r

1

h

2m

^ v

2

= (y

2

y

H

hk

(u;e;L)

3

)

2r

^

Æ = 

m

^ k = g

m

h

s

^ �n=2 < m < n=2g :

Proof of Seurity. We prove the following theorem about the above system. Given this theorem,

one an apply the standard onstrutions (e.g., [Dam00℄) to turn the sub-protool used in Step 2

into an eÆient one that is zero-knowledge w.r.t. any veri�er, and an thus obtain a veri�able

enryption system that satis�es omputational zero-knowledge.

Theorem 4. Under the strong RSA assumption, the above system is a veri�able enryption sheme.

Proof. The orretness and speial honest-veri�er zero-knowledge properties are easy to verify, and

we leave this to the reader.

It remains to onsider soundness.

If the suess-probability of the prover is non-negligible, then there is a knowledge extrator that

produes (in time polynomial in � and with non-negligible probability) two answers (~r

(1)

; ~s

(1)

; ~m

(1)

)

(~r

(2)

; ~s

(2)

; ~m

(2)

) from the prover on two di�erent hallenges 

(1)

and 

(2)

w.r.t. the same u

0

, e

0

, v

0

, Æ

0

,

and k

0

. W.l.o.g., suppose that 

(2)

> 

(1)

. Let �r = ~r

(1)

� ~r

(2)

, �s = ~s

(1)

� ~s

(2)

, �m = ~m

(1)

� ~m

(2)

,

and � = 

(2)

� 

(1)

> 0. From the veri�ation equations one an derive the following equations:

u

2�

= g

2�r

e

2�

= y

2�r

1

h

2�m

v

2�

= (y

2

y

H

hk

(u;e;L)

3

)

2�r

Æ

�

= 

�m

k

�

= g

�m

h

�s

Now we use the strong RSA assumption. By Theorem 3, sine we have omputed k;�m;�s;

and � suh that k

�

= g

�m

h

�s

, we may assume that � j �m and � j �s. Also, by onstrution

we have j�j < minfp; q; p

0

; q

0

; p; q; p

0

; q

0

; �g and hene � is invertible modulo any of those primes.

Let ̂ = �

�1

mod nn

0

. As u

2

has order dividing nn

0

, we get u

2

= g

2�r̂

, i.e.,

u = w

1

g

�r̂

(17)

20



for some w

1

of order 2. Similarly, we get

e = w

2

y

�r̂

1

h

�m=�

(18)

v = w

3

(y

2

y

H

hk

(u;e;L)

3

)

�r̂

(19)

Æ = 

�m=�

(20)

for some w

2

and w

3

of order 2. It is not hard to see that from v = abs(v) and from Eqns. (17)-(19)

it follows that deryption of the triple (u; e; v) will provide the integer �m := �m=� mod n modulo

n (note that due to the squarings in the deryption algorithm, all the w

i

's disappear).

We laim that for �m = ( �m remn) mod � we have Æ = 

�m

, i.e., that (u; e; v) is an enryption

of log



Æ. As j ~m

(1)

j; j ~m

(2)

j < n=4 and � j �m, we must have j�m=�j < n=2. Hene �m=� =

((�m=� mod n) remn) = �m remn and therefore Æ = 

�m=�

= 

�m

.

5.3 Extensions

Our enryption sheme an be extended as follows to enrypt l messages at one. The idea is to

use several y

1

's to ompute several e's. That is, the seret key beomes (hk; x

(1)

1

; : : : ; x

(l)

1

; x

2

; x

3

)

with x

(1)

1

; : : : ; x

(l)

1

; x

2

; x

3

2

R

[n

2

=4℄, and the publi key beomes (hk; n; g; y

(1)

1

; : : : ; y

(l)

1

; y

2

; y

3

) with

y

(i)

1

:= g

x

(i)

1

. To enrypt a messages m

(i)

2 [n℄ with label L 2 f0; 1g

�

under a publi key as above,

hoose a random r 2

R

[n=4℄ and ompute

u := g

r

; e

(i)

:= (y

(i)

1

)

r

h

m

(i)

; and v := abs

�

(y

2

y

H

hk

(u;e;L)

3

)

r

�

:

To derypt a iphertext (u; e

(1)

; : : : ; e

(l)

; v) with label L under a seret key as above, �rst hek

that abs(v) = v and u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

. If this does not hold, then output rejet and halt.

Next, let t = 2

�1

mod n, and ompute m̂

(i)

:= (e

(i)

=u

x

(i)

1

)

2t

. If all m̂

(i)

's are of the form h

m

(i)

for

some m

(i)

2 [n℄, then output the m

(i)

's; otherwise, output rejet. It is easy to prove this enryption

sheme seure.

It is now straightforward to extend our veri�able enryption protool to the above enryption

sheme to obtain to a veri�able enryption sheme that enrypts a (subset of a) representation of

a group element with respet to several bases.

Further, all of these protools an be easily adapted to the ase where the order of the group �

is not known, i.e., a subgroup of of Z

�

N

for an RSA-modulus N .

6 Proving the Inequality of Disrete Logarithms

Our protool for veri�able deryption (below) requires that one party proves to another party

whether or not two disrete logarithms are equal, where one of the disrete logarithms might not

be known to the prover (that is, in the ase the disrete logarithms are not equal). There are

well-known, eÆient, speial honest-veri�er zero-knowledge proof systems for proving that two

disrete logarithms are equal (see [CP93℄), so we fous on the problem of proving that two disrete

logarithms are unequal. We disuss an eÆient protool for this problem separately as it is of

independent interest and as the algebrai setting here is simpler than the one in whih we use it in

the next setion.
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Let G = hgi be a group of prime order q. The prover and veri�er have ommon inputs g; h; y; z 2

G, where g and h are generators for G, and log

g

y 6= log

h

z. The prover has the additional input

x = log

g

y. The prover and veri�er then engage in the following protool.

1. The prover hooses r 2

R

Z

q

, omputes the auxiliary ommitment C = (h

x

=z)

r

, and sends C

to the veri�er.

2. The prover exeutes the protool denoted

PKf(�; �) : C = h

�

�

1

z

�

�

^ 1 = g

�

�

1

y

�

�

g

with the veri�er.

3. The veri�er aepts if it aepts in Step 2, and if C 6= 1; otherwise, the veri�er rejets.

Note that in an atual implementation, the value C may be sent to the veri�er as part of the

�rst message in the sub-protool in Step 2.

Theorem 5. The above protool is a speial honest-veri�er proof system for proving that log

g

y 6=

log

h

z.

Proof. Corretness of the protool is by inspetion.

Consider the protool's soundness. If a prover an make an honest veri�er aept with non-

negligible probability, then using standard rewinding arguments, there exist values � and � suh

that the equations

C = h

�

�

1

z

�

�

1 = g

�

�

1

y

�

�

(21)

hold. From the seond equation of (21) one an onlude that

� � � log

g

y (mod q) :

Substituting � log

g

y for � in the �rst equation of (21), we get C = (h

log

g

y

=z)

�

. As the veri�er

aepts only if C 6= 1, this implies that h

log

g

y

=z 6= 1, i.e., that log

g

y 6= log

h

z.

To see that the protool is speial honest-veri�er zero knowledge, note that in an atual run of

the protool with an honest prover, C is a random element of G. Thus, the simulator an simply

generate C at random, and then use the simulator for the proof in Step 2.

Let us briey disuss related work. Independently of our work, Bresson and Stern [BS02℄ provide

a protool to prove that two disrete logarithms are not equal that is similar to ours. However,

their protool is about a fator of two less eÆient than ours and is only omputationally sound.

Also, we note that the protool proposed by Mihels and Stadler [MS98℄ to prove whether or not

two disrete logarithms are equal is not zero knowledge beause it reveals the value h

x

(whih the

simulator an not ompute, but a (dishonest) veri�er an if he hooses h suh the he knows log

g

h).

7 Veri�able Deryption

In this setion we provide a protool that allows the deryptor to prove that she derypted orretly.

In partiular, we provide a protool that allows the deryptor to prove whether or not a given

iphertext derypts to a given plaintext. We then extend the protool to one for proving whether

or not a given iphertext derypts to the disrete logarithm of a given group element.
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7.1 De�nition of Veri�able Deryption

Veri�able deryption is a protool between a prover, knowing the deryption key, and a veri�er,

who as the result of the protool either rejets or learns whether or not a given iphertext derypts

under a given label to a plaintext that satis�es a given relation.

We adopt the notation and terminology in x5.1. In addition, for mutually ompatible enryption

sheme enryption sheme (G; E ;D), relation generator G

0

, and reonstrution algorithm reon , we

de�ne the funtion f that for all (PK;SK) 2 G(1

�

), all 	[R;W;�℄ 2 G

0

, all  ;L 2 f0; 1g

�

, and all

Æ 2 �

f(	; Æ;  ; L;SK) =

(

+1 if (reon(PK;	; Æ;D(SK;  ; L)); Æ) 2 R;

�1 otherwise:

The (honest) veri�er in a veri�able deryption protool will output either a value �1, indiating

that this is the value of f , or the value 0, indiating that the proof is invalid.

A diÆulty in de�ning soundness for veri�able deryption is that for many publi key enryption

shemes (inluding ours and, e.g., the ElGamal based Cramer-Shoup one [CS98℄), it is not well

de�ned whether or not a iphertext is valid given only the publi key. More preisely, there are

iphertexts that an be both valid and invalid, depending on the atual value of the seret key.

Hene, it is in priniple possible that the deryptor/prover ould hange her mind about suh

iphertexts, whih seems inappropriate. In the following de�nition, we assume that the publi and

seret key are generated by a trusted party whih allows us to de�ne soundness in terms of the seret

key and publi key rather than only the publi key. As for veri�able enryption, the de�nitions

for the setting where the keys are not generated by a trusted party are a bit more ompliated

and subtle, and we do not present them here. However, our protools would require only slight

modi�ation to remain seure in this setting.

De�nition 2. A proof system (P;V), together with mutually ompatible enryption sheme

(G; E ;D), relation generator G

0

, and reonstrution algorithm reon, form a veri�able deryption

sheme, if the following properties hold.

Corretness: For all (PK;SK) 2 G(1

�

), for all 	[R;W;�℄ 2 G

0

(1

�

), for all Æ 2 �, for all  ;L 2

f0; 1g

�

,

Pr[x V(PK;	; Æ;  ; L)

P(PK;	;Æ; ;L;SK)

: x = f(	; Æ;  ; L; SK)℄ = 1� neg(�) :

Soundness: For all adversaries (A

�

, P

�

),

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(Æ;  ; L; aux ) A

�

(PK;SK;	);

x V(PK;	; Æ;  ; L)

P

�

(aux )

:

x = �f(	; Æ;  ; L; SK) ℄ = neg(�) :

Speial honest-veri�er zero knowledge: There exists a simulator Sim suh that for all adver-
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saries (A

�

, B

�

), we have

Pr[ (PK;SK) G(1

�

);	[R;W;�℄  G

0

(1

�

);

(Æ;  ; L; ; aux ) A

�

(PK;SK;	);

b f0; 1g;

if b = 0

then � Trans(PK;	; Æ;  ; L; ;SK)

else � Sim(PK;	; Æ;  ; L; ; f(	; Æ;  ; L;SK));

^

b B

�

(aux ; �) :

b =

^

b ℄ = 1=2 + neg(�) :

7.2 Veri�able Deryption of a Mathing Plaintext

We give a protool for the deryptor to prove whether or not a iphertext (u; e; v) derypts to a

message m under label L, i.e., using this protool she an show that she did orretly derypt. This

is a speial ase of veri�able deryption in whih the relation R is equality, and the reonstrution

routine returns its last input as its output.

For our enryption sheme in x3, this proof orresponds to proving whether or not the two

equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 and (e=u

x

1

)

2

=h

2m

= 1 (22)

hold (assuming that the publi test abs(v) = v is satis�ed). If the iphertext is invalid, one or both

of the two statements do not hold. If the iphertext is valid but derypts to another message, the

�rst statement holds but the seond one does not.

Proving that both of these equations hold is a fairly straightforward appliation of known

tehniques.

To prove that at least one of the equations does not hold, we an use the \proof of partial

knowledge" tehnique of [CDS94℄, ombined with the tehnique developed in x6. However, beause

in the present setting the group has non-prime order we an not prove the relationship among

the serets in the same way as in x6 and, more importantly, the resulting protool would not be

zero-knowledge. The former problem an be solved using an auxiliary group G

n

0

� Z

�

n

as we did

in x5. We onsider the latter problem. Depending on the values of the seret keys x

1

, x

2

, and x

3

,

the left hand sides of the equations (22), and thus the auxiliary ommitments to be provided in the

protool, lie in di�erent (sub-)groups, i.e., in G

n

, G

n

0

, or G

n

G

n

0

. As the simulator does not know

the values x

1

, x

2

, and x

3

, it an not simulate these auxiliary ommitments. We solve this problem

using the fat that for all elements a 2 G

n

G

n

0

we have

a 6= 1 , (a

n

2 G

n

0

^ a

n

6= 1) _ (a 2 G

n

^ a 6= 1) :

Thus, to prove that (at least) one of the equations (22) does not hold, we prove that either

�

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

�

n

6= 1 (23)

or

�

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

�

n

= 1 and

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

6= 1 (24)
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or

�

(e=u

x

1

)

2

h

2m

�

n

= (e=u

x

1

)

2n

6= 1 (25)

or

�

(e=u

x

1

)

2

h

2m

�

n

= 1 and

(e=u

x

1

)

2

h

2m

6= 1 (26)

holds. Now, whenever one of the four ases applies it is always well de�ned in whih group the

left-hand sides of the inequalities lie and we an apply the ideas underlying the protool in x6

to prove that at least one of these four inequalities applies. We remark that the ase where the

statements (23-25) are false but the statement (26) is true orresponds to the ase where the

iphertext is a valid enryption of a message di�erent from m. If any of the statements (23-25) is

true orresponds to the ases where the iphertext is invalid.

We are now ready to desribe the protool between the deryptor and a veri�er. Their ommon

input is (hk; n; g; y

1

; y

2

; y

3

), (n; g; h), (u; e; v), m, and L and the additional input to the deryptor

is (x

1

; x

2

; x

3

). The triple (n; g; h) is an auxiliary parameter as in the one previous setion. (As we

assume here that n is generated by a trusted party as well, i.e., that the deryptor is not provided

with n's fatorization; also, n and n ould be idential.) In the following desription we assume

that all the messages the prover sends to the veri�er prior to the exeution of one of the possible

PK protools will in fat be bundled with the �rst message of that PK protool. Here we provide

the proof-protools only by high-level notation; the atual protools are easily derived from it (f.

also the the veri�able enryption protool presented in x5 and its high-level notation).

1. If m 62 [n℄ or the iphertext is malformed, (e.g., if v 6= abs(v)), the veri�er outputs �1, and

the protool stops.

2. If (u; e; v) is a valid iphertext and derypts to m under label L, the deryptor sends 1 to

the veri�er, and then engages in the protool denoted

PKf(x

1

; x

2

; x

3

) : y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^ v

2

= u

2x

2

u

2H

hk

(u;e;L)x

3

^

e

2

h

2m

= u

2x

1

g

with the veri�er.

3. If (u; e; v) is an invalid iphertext w.r.t. the label L or derypts to some message di�erent

from m under L, then the deryptor sends �1 to the veri�er. They proeed as follows.

(a) The deryptor hooses a

1

2

R

[n=4℄, a

2

2

R

[n

2

=4℄, a

3

2

R

[n=4℄, and a

4

2

R

[n

2

=4℄, along

with b

1

; b

2

; b

3

; b

3

2

R

[n=4℄.

She then omputes C

1

:= g

a

1

h

b

1

, C

2

:= g

a

2

h

b

2

, C

3

:= g

a

3

h

b

3

, and C

4

:= g

a

4

h

b

4

.

She hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

G

n

.

Furthermore,

(Case 1) if u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

, she sets C

1

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

;

(Case 2) else if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, she sets C

2

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

;

(Case 3) else if (u

x

1

=e)

2

62 hhi, she sets C

3

:= (u

x

1

=e)

2na

3

;

(Case 4) else (u

x

1

=e)

2

6= h

2m

, and she sets C

4

:= (u

x

1

h

m

=e)

2a

4

:

The deryptor sends C

1

, C

2

, C

3

, C

4

, C

1

, C

2

, C

3

, and C

4

to the veri�er.
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(b) The deryptor and the veri�er arry out the protool denoted

PK

n

(x

1

; x

2

; x

3

; a

1

; : : : ; a

4

; b

1

; : : : ; b

4

; r

1

; : : : ; r

4

s

1

; : : : ; s

4

) :

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

1

= u

2nr

1

(

1

v

)

2na

1

^ C

1

= g

a

1

h

b

1

^ 1 = (

1

C

1

)

x

2

(

1

C

1

)

H

hk

(u;e;L)x

3

g

r

1

h

s

1

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

2

= u

2r

2

(

1

v

)

a

2

^ C

2

= g

a

2

h

b

2

^ 1 = (

1

C

2

)

x

2

(

1

C

2

)

H

hk

(u;e;L)x

3

g

r

2

h

s

2

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

3

= u

2nr

3

(

1

e

)

2na

3

^ C

3

= g

a

3

h

b

3

^ 1 = (

1

C

3

)

x

1

g

r

3

h

s

3

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

4

= u

2r

4

(

h

m

e

)

2a

4

^ C

4

= g

a

4

h

b

4

^ 1 = (

1

C

4

)

x

1

g

r

4

h

s

4

io

;

where r

1

; : : : ; r

4

; s

1

; : : : ; s

4

are temporary serets (i.e.,

r

1

= a

1

(x

2

+H

hk

(u; e; L)x

3

); s

1

= b

1

(x

2

+H

hk

(u; e; L)x

3

);

r

2

= a

2

(x

2

+H

hk

(u; e; L)x

3

); s

2

= b

2

(x

2

+H

hk

(u; e; L)x

3

);

r

3

= x

1

a

3

; s

3

= x

1

b

3

;

r

4

= x

1

a

4

; s

4

= x

1

b

4

;

(omputed in Z)). (To derive the atual protool one may to apply the tehniques by

Cramer et al.[CDS94℄ for realizing the _'s.)

() The veri�er heks that C

2

1

6= 1, C

2

2

6= 1, C

2

3

6= 1, and C

2

4

6= 1.

The omputational load of the prover and the veri�er is about one to four times the load in the

protool for veri�able enryption desribed in the previous setion (depending on whether Step 2

or Step 3 gets arried out).

Theorem 6. Assuming fatoring is hard, the above sheme is a veri�able deryption sheme (for

mathing plaintexts).

Proof. Corretness is trivial, and we leave this to the reader.

We now show that the protool is speial honest-veri�er omputational zero-knowledge by pro-

viding a simulator.

First the simulator exeutes step 1 of the protool as the deryptor would, that is, if m 62 [n℄ or

if the iphertext is malformed the simulator stops. The simulator queries an orale to determine

whether or not  derypts to m. If it does, it sends the veri�er 1 it simulates step 2 by the simulator

for the PK -protool of step 2. If does not, it simulates step 3 as follows. First the simulator sends

the veri�er �1. Then it hooses b

1

; b

2

; b

3

; b

3

2

R

[n=4℄. It then omputes C

1

:= h

b

1

, C

2

:= h

b

2

,

C

3

:= h

b

3

, and C

4

:= h

b

4

. It hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

G

n

. Next it

invokes the simulator for the PK -protool of step 3. This onludes the simulator.
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It remains to show that the simulator indeed works. It is lear that the simulation of steps 1

and 2 works. Consider step 3.

Note that in the real run as well as in the simulation the pairs (C

1

; C

1

); : : : ; (C

4

; C

4

) are inde-

pendently distributed. Moreover they obviously have the same distribution in the simulation as in

the real run exept for the one pair for whih the prover replaes the C

i

.

We onsider the ases where the prover replaes C

1

and C

2

, respetively. The remaining two

ases are analogous.

Case 1. Here u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

holds and the prover replaes C

1

. Note that

(u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

2 G

n

0

and (u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

6= 1. Thus (u

(x

2

+H

hk

(u;e;L)x

3

)

=v) gen-

erates G

n

0

(or we ould fator n) and C

1

= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

is a random element of G

n

0

as

a

1

is hosen at random from the appropriate interval. Also, as b

1

is hosen independently of a

1

, C

1

is a random element from G

n

0

. Hene C

1

and C

1

have the same distribution in the run with the

real prover as in the simulation.

Case 2. As the above ase does not apply, i.e., (u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

= 1 we have that

(u

x

2

+H

hk

(u;e;L)x

3

)

=v)

2

2 G

n

. Again, (u

x

2

+H

hk

(u;e;L)x

3

)

=v)

2

generates G

n

(or we ould fator n) and

C

2

= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

as a

1

is hosen at random. For the same reason as in Case 1, C

2

is a

random element from G

n

0

and C

2

and C

2

have the same distribution in the run with the real prover

as in the simulation.

These fats, together with the fat that all the PK -protools used as sub-protools are speial

honest-veri�er zero-knowledge (showing the latter is standard and left to the reader), imply that

the veri�able deryption protool is speial honest-veri�er zero-knowledge. Note that we have used

in an essential way the fat that we quantify \omputationally" over the inputs to the simulator:

the inputs that ause the simulator to fail are assumed to be hard to �nd.

In the remainder we prove soundness. Let us generate a publi keys and seret keys aording

to the usual algorithms, obtaining

n; g; y

1

; y

2

; y

3

; x

1

; x

2

; x

3

; n; g; h:

All of this information is available to the adversary, who produes m; ;L, and is able to make the

veri�er aept on these inputs with non-negligible probability. Using standard rewinding tehniques

we an produe two aepting onversations for either the PK protool in Step 2 or the one in Step 3

(for di�erent hallenges but the same �rst message), depending on whether m = D(1

�

;SK;  ; L).

We onsider these two ases.

Case I. First assume that m 6= D(1

�

;SK;  ; L) but that V 's output is 1. Let (u; e; v) :=  . In

this ase we get two aepting onversations of the PK protool in Step 2 and hene two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

) and (~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

)

for the two di�erent hallenges 

(1)

and 

(2)

but with the same �rst message (here we use the same

notation for the protool variables as for the PK protool in the previous setion). W.l.o.g., suppose

that 

(2)

> 

(1)

. Let �x

1

= ~x

(1)

1

� ~x

(2)

1

, �x

2

= ~x

(1)

2

� ~x

(2)

2

, �x

3

= ~x

(1)

3

� ~x

(2)

3

, and � = 

(2)

� 

(1)

.

From the veri�ation equation of the PK protool one an derive the following equations:

y

1

�

= g

�x

1

; y

2

�

= g

�x

2

; y

3

�

= g

�x

3

; (27)

v

2�

= u

2�x

2

u

2H

hk

(u;e;L)�x

3

; and (28)

(

e

2

h

2m

)

�

= u

2�x

1

: (29)
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As n is the produt of two safe primes p and q, we have j�j < minfp; q; p

0

q

0

g and hene � is

invertible modulo n

0

n. We know x

i

suh that y

i

= g

x

i

and therefore it follows from (27) that

� x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (30)

Now, D(1

�

;SK;  ; L) 6= m means that least one of the four statements (23-26) must be true and

therefore at least one of the two statements

u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

or (e=u

x

1

)

2

6= h

2m

(31)

holds. We onsider these two ases:

Case 1. If u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

we must have that u

2�(x

2

+H

hk

(u;e;L)x

3

)

6= v

2�

=

u

2�x

2

+H

hk

(u;e;L)�x

3

(from Equation (28) and beause � is invertible modulo nn

0

) and there-

fore also

�(x

2

+H

hk

(u; e; L)x

3

) 6� �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

n) ;

as the order of u

2

divides n

0

n. From (30) it follows that

�(x

2

+H

hk

(u; e; L)x

3

) � �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

) :

Therefore �x

2

��x

2

+ (�x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

, whih

would allow us to fator n, whih is impossible.

Case 2. If u

2x

1

6= (

e

h

m

)

2

we an, similarly as in ase 1, onlude that u

2�x

1

6= u

2�x

1

from Equa-

tion (29) and that �x

1

��x

1

is a non-zero multiple of n

0

, whih would again allow us to

fator n, whih is impossible.

Case II. It remains to onsider the ase when V 's output is �1 but m = D(1

�

;SK;  ; L) holds.

Let (u; e; v) :=  . Thus we have

v

2

= u

2(x

2

+H

hk

(u;e;L)x

3

)

and u

2x

1

= (

e

h

m

)

2

: (32)

As usual we obtain two aepting onversation of the PK protool in Step 3 and thus two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~a

(1)

1

; : : : ; ~a

(1)

6

;

~

b

(1)

1

; : : : ;

~

b

(1)

4

; ~r

(1)

1

; : : : ; ~r

(1)

4

; ~s

(1)

1

; : : : ; ~s

(1)

4

)

and

(~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

; ~a

(2)

1

; : : : ; ~a

(2)

4

;

~

b

(2)

1

; : : : ;

~

b

(2)

4

; ~r

(2)

1

; : : : ; ~r

(2)

4

; ~s

(2)

1

; : : : ; ~s

(2)

4

)

for the two di�erent hallenges 

(1)

and 

(2)

but with the same �rst message (here we use the same

notation for the protool variables as for the PK protool in the previous setion and left out an

intermediate step that deals with the _'s (.f. [CDS94℄)). W.l.o.g., suppose that 

(2)

> 

(1)

. Let

�x

i

= ~x

(1)

i

� ~x

(2)

i

(i = 1; : : : ; 3); �a

i

= ~a

(1)

i

� ~a

(2)

i

(i = 1; : : : ; 4);

�b

i

=

~

b

(1)

i

�

~

b

(2)

i

(i = 1; : : : ; 4); �s

i

= ~s

(1)

i

� ~s

(2)

i

(i = 1; : : : ; 4);

�r

i

= ~r

(1)

i

� ~r

(2)

i

(i = 1; : : : ; 4); � = 

(2)

� 

(1)

:

28



From the veri�ation equation of the PK protool one an derive that

y

1

�

= g

�x

1

; y

2

�

= g

�x

2

; and y

3

�

= g

�x

3

; (33)

hold and either

C

�

1

= u

2n�r

1

(

1

v

)

2n�a

1

; C

�

1

= g

�a

1

h

�b

1

; and 1 = (

1

C

1

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

1

h

�s

1

(34)

or

C

�

2

= u

2�r

2

(

1

v

)

2�a

2

; C

�

2

= g

�a

2

h

�b

2

; and 1 = (

1

C

2

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

2

h

�s

2

(35)

or

C

�

3

= u

2n�r

3

(

1

e

)

2n�a

3

; C

�

3

= g

�a

3

h

�b

3

; and 1 = (

1

C

3

)

�x

1

g

�r

3

h

�s

3

(36)

or

C

�

4

= u

2�r

4

(

1

e

)

n�a

4

; C

�

4

= g

�a

4

h

�b

4

; and 1 = (

1

C

4

)

�x

1

g

�r

4

h

�s

4

(37)

hold. We know x

i

suh that y

i

= g

x

i

and therefore it follows from (33) that

� x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (38)

We next onsider the impliations of the ases when the equations (34), the equations (35), the

equations (36), or the equations (37) hold in onjuntion with (33).

Case 1. Consider the ase where Equations (33) and (34) hold. From the last two equations of (34)

we get

g

�a

1

(�x

2

+H

hk

(u;e;L)�x

3

)

h

�b

1

(�x

2

+H

hk

(u;e;L)�x

3

)

= g

��r

1

h

��s

1

:

Under the assumption that fatoring n is hard, and applying Theorem 2, we may assume that

�a

1

(�x

2

+H

hk

(u; e; L)�x

3

) = ��r

1

: (39)

Beause n is the produt of two safe primes and we have j�j < minfp; q; p

0

q

0

g, it follows from

C

2

1

6= 1 (whih is heked by the veri�er in Step 3) that C

�

1

6= 1. From the �rst equation

of (34) it follows that u

2n�r

1

6= v

2n�a

1

. By Eq. (39) and the fat that u

2n

and v

2n

have order

dividing n

0

, we have

u

2n�a

1

(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n��a

1

;

and hene

u

2n(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n�

: (40)

From (40) and the �rst equation of (32) we have

u

2n(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n�

= u

2n�(x

2

+H

hk

(u;e;L)x

3

)

:

29



Beause the order of u

2n

divides n

0

we an further onlude that

�x

2

+H

hk

(u; e; L)�x

3

6� �(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) :

From (38) if follows that

�x

2

+H

hk

(u; e; L)�x

3

� �(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) ;

whih is a ontradition to the previous equation and hene this ase an not our.

Case 2. We onsider the ase where Equations (33) and (35) hold. Similarly as in ase 1, we an

derive that

u

2(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2�

= u

2�(x

2

+H

hk

(u;e;L)x

3

)

holds (assuming n is hard to fator). Beause the order of u

2

divides n

0

n we an further

onlude that

�x

2

+H

hk

(u; e; L)�x

3

6� �(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

n) :

From (38) if follows that

�x

2

+H

hk

(u; e; L)�x

3

� �(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) :

Therefore �x

2

��x

2

+ (�x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

, whih

would allow us to fator n, whih is a ontradition.

Case 3. Similarly as in ase 1, from the Equations (33) and (36), one an derive that

u

2n�x

1

6= e

2n�

(41)

holds (or we fator n with non-negligible probability). From the seond equation of (32) and

h

n

= 1 if follows that u

2nx

1

= e

2n

and u

2n�x

1

= e

2n�

, and from (41), that

u

2n�x

1

6= u

2n�x

1

and �nally that �x

1

6� �x

1

(mod n

0

)

as u

2n

has order dividing n

0

. The latter, however, is a ontradition to Eqn. (38) and thus

this ase an not our.

Case 4. Similarly as before, from the Equations (33) and (37) one an show that

u

2�x

1

6= (

e

h

m

)

2�

(42)

holds (or we fator n with non-negligible probability). From the seond equation of (32) and

from (42) we get u

2�x

1

6= u

2�x

1

. Similarly as in ase 2, it follows that �x

1

� �x

1

is a

multiple of n

0

and we are again able to fator n.
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7.3 Veri�able Deryption of a Disrete Logarithm

We now desribe how the protool provided in the previous setion an be modi�ed to obtain a

protool for veri�able deryption of a disrete logarithm. The setting and notation are as in x5.2;

in partiular, we make use of the same reonstrution routine.

We need to modify the protool from the previous setion only for the ases where the iphertext

is valid. That is, instead of proving that the iphertext derypts (or does not derypt) to a given

message, the deryptor now has to prove that it derypts (or does not derypt) to a value m suh

that (m remn) � log



Æ (mod �). This orresponds to proving whether or not the three equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 or (e=u

x

1

)

2n

= 1 or Æ = 

(log

h

2

(e=u

x

1

)

2

remn)

(43)

hold. Note that log

h

2

(e=u

x

1

)

2

exists if and only if (e=u

x

1

)

2n

= 1. The �rst two statements of (43)

an be handled as in the previous setion. The last one an be handled by proving knowledge of a

seret, say m, that (1) equals the enrypted message modulo n, (2) equals (or doesn't equal) log



Æ

modulo q, and (3) lies in the interval [�(n�1)=2; (n�1)=2℄. The �rst two properties an be proved

under the strong RSA assumption using additional parameters (n; g; h) as in the previous setion.

We disuss proving the last one. Di�erent from the interval-proof used for veri�able enryption,

this interval-proof needs to be exat, i.e., if we allowed for the same sloppiness, then the prover

ould for instane add a multiple of n to m and then show that (u; e; v) does not (or does) derypt

to log



Æ.

Boudot [Bou00℄ presents several protools to prove that in integer m lies exatly in an interval

[a; b℄. One protool uses the fat that x 2 [a; b℄ is equivalent to b � x � 0 and x � a � 0 and that

one an show that an integer is positive by proving knowledge of four values the squares of whih

sum up to the onsidered integer (in Z), again under the strong RSA assumption using additional

parameters (n; g; h). Lagrange proved that an integer an always be represented as four squares

and Rabin and Shallit [RS86℄ provide an eÆient algorithm for �nding suh squares.

We note that in our ase the interval is symmetri and it therefore suÆes to prove that

((n� 1)=2)

2

�m

2

� 0 holds, whih is more eÆient.

With these observations one an derive the following protool for veri�able deryption of a

disrete logarithm from the protool presented in the previous setion.

The ommon input of the deryptor and the veri�er is (hk; n; g; y

1

; y

2

; y

3

); (n; g; h); (u; e; v); Æ; L

and the additional input to the deryptor is (x

1

; x

2

; x

3

).

1. If Æ 62 � or the iphertext is malformed (e.g., if v 6= abs(v)), the veri�er outputs �1, and the

protool stops.

In ase (u; e; v) is a valid iphertext w.r.t. label L, the prover derypts it, thereby obtains m,

and omputes integers w

1

; : : : ; w

4

suh that

P

4

i=1

w

i

= (n� 1)

2

=4�m

2

(.f. [RS86℄).

2. If (u; e; v) indeed derypts to log



Æ under label L, i.e., if Æ = 

m remn

, the deryptor sends 1

to the veri�er, hooses t

1

; : : : ; t

5

2

R

[n=4℄, omputes

W

1

:= g

w

1

h

t

1

;W

2

:= g

w

2

h

t

2

;W

3

:= g

w

3

h

t

3

;W

4

:= g

w

4

h

t

4

; and M := g

m

h

t

5

;

and sends W

1

, W

2

, W

3

, W

4

, and M to the veri�er.
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The prover and the veri�er engage in the protool

PKf(x

1

; x

2

; x

3

;m;w

1

; : : : ; w

4

; t

1

; : : : ; t

5

; s) :

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

v

2

= u

2x

2

u

2H

hk

(u;e;L)x

3

^ e

2

= u

2x

1

h

2m

^

W

1

= g

w

1

h

t

1

^ W

2

= g

w

2

h

t

2

^ W

3

= g

w

3

h

t

3

^ W

4

= g

w

4

h

t

4

^

M = g

m

h

t

5

^ g

(n�1)

2

=4

=M

m

W

w

1

1

W

w

2

2

W

w

3

3

W

w

4

4

h

s

^

Æ = 

m

g ;

where s is a temporary seret (i.e., s = �t

5

m�

P

4

i=1

w

i

t

i

).

3. If (u; e; v) is an invalid iphertext w.r.t. the label L or derypts to some message m suh that

Æ 6= 

m remn

, then the deryptor sends �1 to the veri�er. They proeed as follows.

(a) The deryptor hooses a

1

2

R

[n=4℄ a

2

2

R

[n

2

=4℄, a

3

2

R

[n=4℄, and a

4

2

R

[�℄, along with

b

1

; : : : ; b

3

; t

1

; : : : ; t

5

2

R

[n=4℄.

She omputes C

1

:= g

a

1

h

b

1

, C

2

:= g

a

2

h

b

2

, C

3

:= g

a

3

h

b

3

, and C

4

:= g

a

4

h

b

4

.

She omputes W

1

:= h

t

1

, W

2

:= h

t

2

, W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

.

She hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

�.

Furthermore,

(Case 1) if u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

, she sets C

1

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

;

(Case 2) else if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, she sets C

2

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

;

(Case 3) else if (u

x

1

=e)

2

62 hhi, she sets C

3

:= (u

x

1

=e)

2na

3

;

(Case 4) else Æ 6= 

m remn

, and she sets C

4

:= (

m

=Æ)

a

4

;

W

i

:= g

w

i

h

t

i

(i = 1; : : : ; 4); and

M := g

m

h

t

5

:

The deryptor sends C

1

, C

2

, C

3

, C

4

, C

1

, C

2

, C

3

, and C

4

to the veri�er.
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(b) The deryptor and the veri�er arry out the protool denoted

PK

n

(x

1

; x

2

; x

3

; a

1

; : : : ; a

4

; b

1

; : : : ; b

4

; r

1

; : : : ; r

4

s

1

; : : : ; s

5

; t

1

; : : : ; t

5

; w

1

; : : : ; w

4

;m) :

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

1

= u

2nr

1

(

1

v

)

2na

1

^ C

1

= g

a

1

h

b

1

^ 1 = (

1

C

1

)

x

2

(

1

C

1

)

H

hk

(u;e;L)x

3

g

r

1

h

s

1

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

2

= u

2r

2

(

1

v

)

a

2

^ C

2

= g

a

2

h

b

2

^ 1 = (

1

C

2

)

x

2

(

1

C

2

)

H

hk

(u;e;L)x

3

g

r

2

h

s

2

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

3

= u

2nr

3

(

1

e

)

2na

3

^ C

3

= g

a

3

h

b

3

^ 1 = (

1

C

3

)

x

1

g

r

3

h

s

3

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

e

2

= u

2x

1

h

2m

^

W

1

= g

w

1

h

t

1

^ W

2

= g

w

2

h

t

2

^ W

3

= g

w

3

h

t

3

^ W

4

= g

w

4

h

t

4

^

M = g

m

h

t

5

^ g

(n�1)

2

=4

=M

m

W

w

1

1

W

w

2

2

W

w

3

3

W

w

4

4

h

s

5

^

C

4

= 

r

4

(

1

Æ

)

a

4

^ C

4

= g

a

4

h

b

4

^ 1 = (

1

C

4

)

m

g

r

4

h

s

4

io

;

where r

1

; : : : ; r

4

; s

1

; : : : ; s

4

are temporary serets (i.e.,

r

1

= a

1

(x

2

+H

hk

(u; e; L)x

3

); s

1

= b

1

(x

2

+H

hk

(u; e; L)x

3

);

r

2

= a

2

(x

2

+H

hk

(u; e; L)x

3

); s

2

= b

2

(x

2

+H

hk

(u; e; L)x

3

);

r

3

= x

1

a

3

; s

3

= x

1

b

3

;

r

4

= ma

4

; s

4

= mb

4

;

s

5

= �t

5

m�

4

X

i=1

w

i

t

i

:

(omputed in Z)). (To derive the atual protool one has to apply the tehniques by

Cramer et al.[CDS94℄ for realizing the _'s.)

() The veri�er heks that C

2

1

6= 1, C

2

2

6= 1, C

2

3

6= 1, and C

4

6= 1.

Theorem 7. Under the strong RSA assumption, the above sheme is a veri�able deryption sheme

(for disrete logarithms).

Proof. One needs to prove soundness, orretness and speial honest-veri�er zero-knowledge w.r.t.

an orale f

0

(Æ;  ; L;SK) that replies with 1 if Æ = 

m̂

where m̂ = D(SK;  ; L) rem n, or with �1

otherwise.

The following proof is very similar to the one of Theorem 6.

Corretness is by inspetion.

We now show that the whole protool is speial honest-veri�er omputational zero-knowledge

by providing a simulator.

33



First the simulator exeutes Step 1 of the protool as the deryptor would, that is, if Æ 62 �

or v 6= abs(v) it and stops. Otherwise, the simulator hooses random integers m;w

1

; : : : ; w

4

2

R

[�n=2; n=2℄.

If f

0

(Æ;  ; L;SK) = 1, it simulates step 2 as follows. It hooses t

1

; : : : ; t

5

2

R

[n=4℄ and omputes

W

1

:= h

t

1

, W

2

:= h

t

2

, W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

. Then it sends the values W

1

; : : : ;W

4

;

and M to the veri�er and �nally invokes the simulator for the PK -protool of step 2.

If f

0

(Æ;  ; L;SK) = 1, it simulates step 3 as follows. The simulator hooses b

1

; b

2

; b

3

; b

3

2

R

t

1

; : : : ; t

5

[n=4℄. It then omputes C

1

:= h

b

1

, C

2

:= h

b

2

, C

3

:= h

b

3

, C

4

:= h

b

4

, W

1

:= h

t

1

, W

2

:= h

t

2

,

W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

. It hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

�.

It �nally invokes the simulator for the PK -protool of step 3. This onludes the simulator.

The argument that this simulation atually works is rather similar to the one given in the proof

of Theorem 6.

In the remainder we prove soundness. Let us generate a publi keys and seret keys aording

to the usual algorithms, obtaining

n; g; y

1

; y

2

; y

3

; x

1

; x

2

; x

3

; n; g; h:

All of this information is available to the adversary, who produes Æ;  ; L, and is able to make the

veri�er aept on these inputs with non-negligible probability. By standard rewinding tehniques

we an produe two aepting onversations for either the PK protool in Step 2 or the one in

Step 3 (for di�erent hallenges but the same �rst message), depending on whether Æ = 

m̂

, where

m̂ = D(SK;  ; L) remn, for (Æ;  ; L) provided by A

�

. We onsider these two ases.

Case I. First assume that Æ 6= 

m̂

or rejet = D(SK;  ; L) but that V 's output is 1. Let (u; e; v) :=

 . We an now get two aepting onversations of the PK protool in Step 2 and hene two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~m

(1)

; ~w

(1)

1

; : : : ; ~w

(1)

4

;

~

t

(1)

1

; : : : ;

~

t

(1)

5

; ~s

(1)

)

and

(~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

; ~m

(2)

; ~w

(2)

1

; : : : ; ~w

(2)

4

;

~

t

(2)

1

; : : : ;

~

t

(2)

5

; ~s

(2)

)

for the two di�erent hallenges 

(1)

and 

(2)

but with the same �rst message (here we use the same

notation for the protool variables as for the PK protool in the previous setion). W.l.o.g., suppose

that 

(2)

> 

(1)

. Let �x

1

= ~x

(1)

1

� ~x

(2)

1

, �x

2

= ~x

(1)

2

� ~x

(2)

2

, �x

3

= ~x

(1)

3

� ~x

(2)

3

, �m = ~m

(1)

� ~m

(2)

,

�w

1

= ~w

(1)

1

� ~w

(2)

1

, : : :, �w

4

= ~w

(1)

4

� ~w

(2)

4

, �t

1

=

~

t

(1)

1

�

~

t

(2)

1

, : : :, �t

5

=

~

t

(1)

5

�

~

t

(2)

5

, �s = ~s

(1)

� ~s

(2)

,

and � = 

(2)

�

(1)

. From the veri�ation equation of the PK protool one an derive the following

equations:

y

1

�

= g

�x

1

y

2

�

= g

�x

2

y

3

�

= g

�x

3

(44)

v

2�

= u

2�x

2

u

2H

hk

(u;e;L)�x

3

(45)

e

2�

= u

2�x

1

h

2�m

(46)

W

�

1

= g

�w

1

h

�t

1

W

�

2

= g

�w

2

h

�t

2

W

�

3

= g

�w

3

h

�t

3

W

�

4

= g

�w

4

h

�t

4

(47)

M

�

= g

�m

h

�t

5

g

�(n�1)

2

=4

=M

�m

W

�w

1

1

W

�w

2

2

W

�w

3

3

W

�w

4

4

h

�s

(48)

Æ

�

= 

�m

(49)
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Consider the equations (47) and (48). Under the strong RSA assumption, and using Theorem 3,

we may assume that � divides eah of �m, �w

1

, : : :, �w

4

, �t

1

, : : :, �t

5

, and �s. So we ompute

m̂ = �m=�, ŵ

1

= �w

1

=�, : : :, ŵ

4

= �w

4

=�,

^

t

1

= �t

1

=�, : : :,

^

t

5

= �t

5

=�, and ŝ = �s=�

and we know that

M = mg

m̂

h

^

t

5

W

1

= w

1

g

ŵ

1

h

^

t

1

W

2

= w

2

g

ŵ

2

h

^

t

2

W

3

= w

3

g

ŵ

3

h

^

t

3

W

4

= w

4

g

ŵ

4

h

^

t

4

Æ = 

m̂

(50)

holds for some m, w

1

, w

2

, w

3

, and w

4

suh that m

2

= 1 and w

2

i

= 1. Furthermore, we an rewrite

the seond equation of (48) as follows

g

(n�1)

2

=4

= ag

m̂

2

+

P

ŵ

2

i

h

m̂

^

t

5

+

P

ŵ

i

^

t

i

+ŝ

(51)

for some a suh that a

2

= 1. In fat, a = 1 as, �rst, a must lie in hgi and, seond, if a 6= �1 then

gd(a� 1; n) splits n. Applying Theorem 2, we may assume that

(n� 1)

2

=4 = m̂

2

+ ŵ

2

1

+ ŵ

2

2

+ ŵ

2

3

+ ŵ

2

4

and thus (n� 1)

2

=4� m̂

2

� 0 whih is equivalent to

�(n� 1)=2 � m̂ � (n� 1)=2 : (52)

Consider Equations (44-46). As n is the produt of two safe primes p and q, we have j�j <

minfp; q; p

0

q

0

g and hene � is invertible modulo n

0

n. By onstrution we know x

i

suh that

y

i

= g

x

i

and therefore it follows from (44) that

� x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (53)

Now we an either have D(SK;  ; L) = rejet or Æ 6= 

(m remn)

where m = D(SK;  ; L) =

log

h

2

(e=u

x

1

)

2

, i.e., one of the three statements

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

6= 1 or (e=u

x

1

)

2n

6= 1 or (

e

u

x

1

)

2

6= h

2m̂

(54)

must hold (f. (43)), where the last is equivalent to Æ 6= 

(m remn)

beause of Equations (49) and (52)

and the fat that �(n� 1)=2 � (m remn) � (n� 1)=2.

We onsider these three ases:

Case 1. If u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

we must have that u

2�(x

2

+H

hk

(u;e;L)x

3

)

6= v

2�

=

u

2�x

2

+H

hk

(u;e;L)�x

3

(from Equation (45) and beause � is invertible modulo nn

0

) and there-

fore also

�(x

2

+H

hk

(u; e; L)x

3

) 6� �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

n) ;

as the order of u

2

divides n

0

n. From (53) it follows that

�(x

2

+H

hk

(u; e; L)x

3

) � �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

) :

Therefore �x

2

��x

2

+ (�x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

and we

an fator n, a ontradition.
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Case 2. If u

2nx

1

6= e

2n

we have that u

2n�x

1

6= e

2n�

. Beause of (46) and h

n

= 1, we get

u

2n�x

1

6= u

2n�x

1

and thus �x

1

6� �x

1

(mod n

0

) ;

beause u

2n

has order dividing n

0

. The latter, however, is a ontradition to Eqn. (53) and

thus this ase an not our.

Case 3. The inequality (

e

u

x

1

)

2

6= h

2m̂

is equivalent to (

e

h

m̂

)

2

6= u

2x

1

. Realling that m̂� = �m we

an rewrite (46) as

�

e

�

h

�m

�

2

=

�

e

h

m̂

�

2�

= u

2�x

1

and onlude that u

2�x

1

6= u

2�x

1

:

Similarly to ase 1, it follows that �x

1

��x

1

is a multiple of n

0

and we are again able to

fator n, a ontradition.

Case II. It remains to onsider the ase when V 's output is �1 but Æ = 

(D(SK; ;L) remn)

holds.

Let (u; e; v) :=  . Now all the three equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 (e=u

x

1

)

2n

= 1 Æ = 

(log

h

2

(e=u

x

1

)

2

remn)

(55)

must hold. As usual we obtain two aepting onversation of the PK protool in Step 3 and thus

two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~a

(1)

1

; : : : ; ~a

(1)

4

;

~

b

(1)

1

; : : : ;

~

b

(1)

4

; ~r

(1)

1

; : : : ; ~r

(1)

4

; ~s

(1)

1

; : : : ; ~s

(1)

5

;

~

t

(1)

1

; : : : ;

~

t

(1)

5

; ~w

(1)

1

; : : : ; ~w

(1)

4

; ~m

(1)

1

)

and

(~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

; ~a

(2)

1

; : : : ; ~a

(2)

4

;

~

b

(2)

1

; : : : ;

~

b

(2)

4

; ~r

(2)

1

; : : : ; ~r

(2)

4

; ~s

(2)

1

; : : : ; ~s

(2)

5

;

~

t

(2)

1

; : : : ;

~

t

(2)

5

; ~w

(2)

1

; : : : ; ~w

(2)

4

; ~m

(2)

1

)

for the two di�erent hallenges 

(1)

and 

(2)

but with the same �rst message (here we use the same

notation for the protool variables as for the PK protool in the previous setion and left out an

intermediate step that deals with the _'s (.f. [CDS94℄)). W.l.o.g., suppose that 

(2)

> 

(1)

. Let

�x

i

= ~x

(1)

i

� ~x

(2)

i

(i = 1; : : : ; 3); �a

i

= ~a

(1)

i

� ~a

(2)

i

(i = 1; : : : ; 4);

�b

i

=

~

b

(1)

i

�

~

b

(2)

i

(i = 1; : : : ; 4); �r

i

= ~r

(1)

i

� ~r

(2)

i

(i = 1; : : : ; 4);

�s

i

= ~s

(1)

i

� ~s

(2)

i

(i = 1; : : : ; 5); �t

i

=

~

t

(1)

i

�

~

t

(2)

i

(i = 1; : : : ; 5);

�w

i

= ~w

(1)

i

� ~w

(2)

i

(i = 1; : : : ; 4); �m = m

(1)

� 

(2)

;

� = 

(2)

� 

(1)

:

From the veri�ation equation of the PK protool one an derive that

y

1

�

= g

�x

1

; y

2

�

= g

�x

2

; and y

3

�

= g

�x

3

; (56)

hold and either

C

�

1

= u

2n�r

1

(

1

v

)

2n�a

1

; C

�

1

= g

�a

1

h

�b

1

; and 1 = (

1

C

1

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

1

h

�s

1

(57)
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or

C

�

2

= u

2�r

2

(

1

v

)

2�a

2

; C

�

2

= g

�a

2

h

�b

2

; and 1 = (

1

C

2

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

2

h

�s

2

(58)

or

C

�

3

= u

2n�r

3

(

1

e

)

2n�a

3

; C

�

3

= g

�a

3

h

�b

3

; and 1 = (

1

C

3

)

�x

1

g

�r

3

h

�s

3

(59)

or

C

�

4

= 

�r

4

(

1

Æ

)

�a

4

; C

�

4

= g

�a

4

h

�b

4

; 1 = (

1

C

4

)

�m

g

�r

4

h

�s

4

(60)

e

2�

= u

2�x

1

h

2�m

; M

�

= g

�m

h

�t

5

; g

�(n�1)

2

=4

= M

�m

W

�w

1

1

W

�w

2

2

W

�w

3

3

W

�w

4

4

h

�s

5

(61)

W

�

1

= g

�w

1

h

�t

1

; W

�

2

= g

�w

2

h

�t

2

; W

�

3

= g

�w

3

h

�t

3

; and W

�

4

= g

�w

4

h

�t

4

:

(62)

hold. We know x

i

suh that y

i

= g

x

i

and therefore it follows from (33) that

� x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (63)

We next onsider the impliations of the ases when the equations (57), the equations (58), the

equations (59), or the equations (60-62) hold in onjuntion with (56). The �rst three ases appear

also in the proof of Theorem 6, while the last one is di�erent:

Case 4. Similarly as in Case I above, from the Equations (61) and (62) we an derive that

e

2�

= u

2�x

1

h

2�m̂

and � (n� 1)=2 � m̂ � (n� 1)=2 (64)

where m̂ = �m=�. Using Equations (63) and the fat that � is invertible modulo nn

0

, we

get

e

2

= u

2x

1

h

2m̂

;

and, beause of the seond equation of (64),

m̂ = (log

h

2

u

2x

1

=e

2

remn) (65)

Similarly as we did in Case II in the proof of Theorem 6, one an derive from the last two

equations of (60) that

�r

4

= �a

4

m̂ (66)

holds (using the strong RSA assumption for n). Now using (66) in the �rst equation of (60)

C

�

4

= 

�a

4

m̂

(

1

Æ

)

�a

4

and C

4

= (



m̂

Æ

)

â

4

; (67)

where â

4

:= �a

4

=� (mod �). Beause C

4

6= 1 we must have that Æ 6= 

m̂

and beause

of (65) that

Æ 6= 

(log

h

2

u

2x

1

=e

2

remn)

;

whih is a ontradition to the third equation of (55) and hene this ase an not our.
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