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Abstra
t

This paper addresses the problem of designing pra
ti
al proto
ols for proving properties

about en
rypted data. To this end, it presents a variant of the new publi
 key en
ryption of

Cramer and Shoup based on Paillier's de
ision 
omposite residuosity assumption, along with

eÆ
ient proto
ols for veri�able en
ryption and de
ryption of dis
rete logarithms (and more

generally, of representations with respe
t to multiple bases). This is the �rst veri�able en
ryption

system that provides 
hosen 
iphertext se
urity and avoids ineÆ
ient 
ut-and-
hoose proofs. The

presented proto
ols have numerous appli
ations, in
luding key es
row, optimisti
 fair ex
hange,

publi
ly veri�able se
ret and signature sharing, universally 
omposable 
ommitments, group

signatures, and 
on�rmer signatures.
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1 Introdu
tion

This paper 
on
erns itself with the general problem of proving properties about en
rypted data. In

the 
ase of publi
-key en
ryption, whi
h is the setting in whi
h we are interested here, there are

two parties who are in a position to prove some property to another party about an en
rypted

message | namely, the party who 
reated the 
iphertext, and the party who holds the se
ret key.

A proto
ol in whi
h the en
ryptor is the prover is a veri�able en
ryption proto
ol, while a proto
ol

in whi
h the de
ryptor is the prover is a veri�able de
ryption proto
ol.

For example, suppose a party T has a publi
 key/se
ret key pair (PK;SK) for a publi
 key

en
ryption s
heme. Party A might en
rypt, using T 's publi
 key PK, a se
ret message m that

satis�es a publi
ly-de�ned property �, and give the resulting 
iphertext  to another party B. The

latter party might demand that A prove that  is an en
ryption of a message satisfying property �.

Ideally, the proof should be \zero knowledge," so that no unne
essary information aboutm is leaked

to B as part of the proof. Another party B

0

might obtain the 
iphertext  , and may request that T

prove or disprove that  de
rypts under SK to a message m satisfying a publi
ly-de�ned property

�

0

; a spe
ial 
ase of this would be the situation where T simply gives m to B

0

, and proves to B

0

that the de
ryption was performed 
orre
tly. Again, ideally, the proof should be \zero knowledge."

Now, if one expe
ts to obtain reasonably pra
ti
al proto
ols for this problem, it seems ne
essary

to restri
t the type of properties that the proto
ols should work with. In this paper, we 
onsider

�
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only properties related to the dis
rete logarithm problem. The message m en
rypted by A above

is the dis
rete logarithm of an element Æ with respe
t to a base 
, and A proves to B that  is

an en
ryption log




Æ under T 's publi
 key PK. Here, the 
ommon inputs to A and B in the proof

proto
ol are PK,  , Æ, and 
. Similarly, when a party B

0

presents  to T for de
ryption, T may

state and prove whether or nor  de
rypts to log




Æ, or alternatively, T may give the de
ryption

of  to B

0

, and simply prove that the de
ryption was performed 
orre
tly. We also 
onsider the

obvious generalizations from dis
rete logarithms to representations with respe
t to several bases |

i.e., proving that a 
iphertext is an en
ryption of (m

1

; : : : ;m

k

) su
h that Æ = 


m

1

1

� � � 


m

k

k

.

Although the restri
tion to properties related to the dis
rete logarithm problem may seem ex-


essive, it turns out (as we dis
uss in some detail below) that proto
ols for proving su
h properties

have many useful appli
ations in 
ryptography, in
luding key es
row, optimisti
 fair ex
hange, pub-

li
ly veri�able se
ret and signature sharing, universally 
omposable 
ommitments, group signatures,

and 
on�rmer signatures. One reason why this restri
tion is not really so ex
essive is be
ause in

the past few years, eÆ
ient proto
ols for proving numerous properties about 
ommitted values |

using Pedersen's 
ommitment s
heme [Ped92℄ and generalizations to groups of unknown order |

have been developed (
.f., [FO97, DF02, Bou00℄); 
ombining these proto
ols with our s
heme for

veri�able en
ryption of a representation (i.e., an opening of a 
ommitment), we immediately get


orresponding proto
ols for proving su
h properties about en
rypted values.

Our 
ontribution. The 
ontribution of this paper is to present and analyze a pra
ti
al publi
-key

en
ryption s
heme, together with a suite of pra
ti
al proof proto
ols for the properties related to

the dis
rete logarithm problem outlined above. The en
ryption s
heme is a variant of the new

publi
 key en
ryption s
heme of Cramer and Shoup [CS02℄ based on Paillier's de
ision 
omposite

residuosity assumption [Pai99℄, suitably modi�ed so as to support our proof proto
ols. The proof

proto
ols are all of the usual, three move \�-proto
ol" type [CDS94℄, satisfying the usual, and very

strong 
onditions of spe
ial honest veri�er zero knowledge and spe
ial soundness. We note that any

su
h proto
ol 
an be easily and eÆ
iently 
onverted into a \real" zero-knowledge proto
ol using

well known te
hniques, e.g., [Dam00℄. Our s
heme for veri�able en
ryption of dis
rete logarithms is

the �rst one that provides 
hosen 
iphertext se
urity and avoids ineÆ
ient 
ut-and-
hoose proofs.

Our s
heme for veri�able de
ryption of dis
rete logarithms is the �rst pra
ti
al proto
ol of its

kind. Our system is very 
exible, in that a single publi
 key for the en
ryption s
heme 
an be

used with many di�erent groups; that is, users 
an 
hoose their own (arbitrary and varied) groups

for dis
rete logarithms, subje
t only to some (reasonable) size 
onstraints. As pointed out in

[KP98, CM99b, ASW00℄ su
h separability in system design is highly desirable in pra
ti
e. Although

our proto
ols do not rely on the random ora
le heuristi
, we hasten to point out that even allowing

this heuristi
, our proto
ols are mu
h more eÆ
ient than previously known proto
ols for these

problems.

1.1 Appli
ations

In this se
tion, we outline some of the numerous appli
ations of veri�able en
ryption and de
ryption

of dis
rete logarithms and representations. For all of them our proto
ols, used together with the

existing solutions, either yield more eÆ
ient solutions or add se
urity against 
hosen 
iphertext

atta
ks, whi
h is often 
ru
ial.

1.1.1 Key Es
row

Party A may en
rypt its own se
ret key for an asymmetri
 
ryptographi
 primitive under the publi


key of a trusted third party T , and present to a se
ond party B the 
iphertext  and a proof that  
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is indeed an en
ryption of it's se
ret key. This problem area has attra
ted a good deal of attention,

with spe
i�
 s
hemes being proposed in [Sta96, BG96, YY98, ASW00, PS00℄.

Now, if A's se
ret key is, say, a key for a dis
rete log based s
heme, su
h as S
hnorr or DSS

signatures or ElGamal en
ryption, we 
an use our veri�able en
ryption proto
ol dire
tly. We note

that for this and other appli
ations, it is important to be able to bind some publi
 data, 
alled a

label, to the 
iphertext at both en
ryption and de
ryption time. In this appli
ation, user A would

atta
h a label to  that indi
ates the 
onditions under whi
h  should be de
rypted, e.g., A's

identity and perhaps an expiration date. The de�nition of 
hosen 
iphertext se
urity ensures that

de
rypting a 
iphertext under any label di�erent from the label used to 
reate the 
iphertext reveals

no information about the original en
rypted message.

Even though T is \trusted," it might be ni
e to minimize the trust we need to pla
e in T . To

this end, veri�able de
ryption 
omes in handy | we 
an for
e T to prove that it performed the

de
ryption operation 
orre
tly. Of 
ourse, this does not prevent T from misbehaving in other ways,

su
h as divulging a se
ret key to an unauthorized party.

If A's se
ret key is for a fa
toring based s
heme, one 
an still use our proto
ol for veri�able

en
ryption of a representation. One 
an use Pedersen's 
ommitment s
heme to 
ommit to some

quantity related to the se
ret key, and then use an appropriate proto
ol to prove that the 
ommitted

value is indeed the right one, together with our proto
ol to prove that the en
ryption 
ontains

an opening of the 
ommitment. The quantity 
ommitted to 
ould be the fa
torization of an

RSA modulus, the de
ryption exponent of an RSA s
heme, or an appropriate root in a Guillou-

Quisquater s
heme | there are proto
ols for proving that a 
ommitted value is of su
h a form

[FO97, CM99a, DF02, PS00, Bou00℄.

1.1.2 Optimisti
 Fair Ex
hange

Two parties A and B want to ex
hange some valuable digital data (e.g., signatures on a 
ontra
t,

e-
ash), but in a fair way: either ea
h party obtains the other's data, or neither party does. One way

to do this is by employing a trusted third party T , but, for the sake of eÆ
ien
y, with T only involved

in 
risis situations. One approa
h to this problem is to have both parties veri�ably en
rypt to ea
h

other their data under T 's publi
 key, and only then to reveal their data to ea
h other | if one party

ba
ks out unexpe
tedly, the other 
an go to T to obtain the required data. The general problem of

optimisti
 fair ex
hange has been extensively studied, 
.f., [ASW97, BDM98, BP90, Mi
, ASW00℄,

while the solution using veri�able en
ryption was studied in detail in [ASW00℄.

Our s
heme for veri�able en
ryption may be used dire
tly to eÆ
iently implement the fair

ex
hange of S
hnorr or DSS signatures. As outlined in [ASW00℄, if the publi
 key of the S
hnorr

signature s
heme 
onsists of the base 
 and the group element � = 


x

, and A has a signature on a

message m of the form (�; 
; s), where � = 


r

, 
 = H(�;m), s = r + x
 mod �, and � is the group

size, then A gives to B the triple (�; 
; Æ), where Æ = 


s

, along with an en
ryption  of s under

T 's publi
 key, and proves to B that  is an en
ryption of log




Æ. In addition to 
he
king the proof

that  is a 
orre
t en
ryption of log




Æ, B also 
he
ks that Æ = �





; with these 
he
ks, B 
an be

sure that if the need arises,  
an be de
rypted so as to obtain a signature on m. As argued in

[ASW00℄, this te
hnique of redu
ing a signature to a dis
rete logarithm does not make it any easier

for anyone to forge a signature. Moreover, as dis
ussed in [ASW00℄, similar te
hniques 
an be used

to fa
ilitate the fair ex
hange of other items, su
h as ele
troni
 
ash.

As in the es
row appli
ation, the label me
hanism plays a 
ru
ial role here, helping to enfor
e

the logi
 of the ex
hange proto
ol, and a veri�able de
ryption proto
ol may be used to hold T 's

feet to the �re.
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1.1.3 Publi
ly Veri�able Se
ret Sharing and Signature Sharing

Stadler [Sta96℄ introdu
ed the notion of publi
ly veri�able se
ret sharing. Here, one party, the

dealer, shares a se
ret with several proxies P

1

; : : : ; P

n

, in su
h a way that a third party (other

than the dealer and the proxies) 
an verify that the sharing was done 
orre
tly. This 
an be done

quite simply by sharing the se
ret using Shamir's se
ret sharing s
heme: the dealer en
rypts P

i

's

share under P

i

's publi
 key, and gives to the third party 
ommitments to these shares, along with


ommitments to the 
oeÆ
ients of the blinding polynomial, and all of the 
iphertexts, and proves

to the third party that the 
iphertexts en
rypt openings of the 
ommitments to the shares. As

the openings to the 
ommitments are just dis
rete logarithms, veri�able en
ryption of dis
rete

logarithms is just the right tool.

Using the notion dis
ussed above above for redu
ing a signature to a dis
rete logarithm, one


an easily implement a (publi
ly) veri�able signature sharing s
heme [FR95, CG98℄ for S
hnorr

and DSS signatures.

These two appli
ations of veri�able en
ryption were dis
ussed in [CD00℄.

1.1.4 Universally Composable Commitments

The notion of universally 
omposable (UC) 
ommitments, introdu
ed by Canetti and Fis
hlin

[CF01℄, is a very strong notion of se
urity for a 
ommitment s
heme. It basi
ally says that 
ommit-

ments in the real world a
t like 
ommitments in an ideal world in whi
h, when a party A 
ommits

to a value x to a party B, A presents x to an idealized trusted party T (that does not exist in the

real world), and when A opens the 
ommitment, T gives x to B. In the ideal world, no information

about x is revealed to B prior to opening, and A is for
ed to �x the value 
ommitted to when the


ommitment proto
ol runs.

This notion of se
urity is so strong, in fa
t, that it 
an only be realized in the 
ommon referen
e

string (CRS) model, where all parties have a

ess to a string that was generated by a trusted party

a

ording to some pres
ribed distribution. In the CRS model, the simulator S in the ideal world

is given the privilege of generating the 
ommon referen
e string, and so S may know some \side

information" related to the 
ommon referen
e string that is not available to anyone in the real

world.

Veri�able en
ryption of a representation may be used to implement UC 
ommitments in the

CRS model, as follows. The CRS 
onsists of a publi
 key for the en
ryption s
heme, along with

bases 


1

and 


2

for some suitable group. When A 
ommits a value x to B, he 
reates a Pedersen


ommitment C = 


x

1




r

2

, and an en
ryption  of the representation (x; r) of C with respe
t to

(


1

; 


2

). A then gives (C; ) to B, and proves to B that  indeed de
rypts to a representation of

C. In order to satisfy the de�nition of se
urity for UC 
ommitments, and in parti
ular, to prevent

\man in the middle atta
ks," a label 
ontaining A's identity should be atta
hed to  .

The reason this is se
ure is that the simulator S in the CRS model knows the se
ret key to

the en
ryption s
heme, whi
h allows him to \extra
t" values 
ommitted by 
orrupted parties, and

S knows the dis
rete logarithm of 


2

with respe
t to 


1

, whi
h allows him to \equivo
ate" values


ommitted by honest parties. The proof that  is an en
ryption of a representation C ensures that

the value extra
ted by the simulator at 
ommitment time agrees with the value revealed at opening

time.

The details of this 
onstru
tion and se
urity proof are the subje
t of a forth
oming paper.
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1.1.5 Con�rmer Signatures

In a 
on�rmer signature s
heme, a notion introdu
ed in [Cha94℄, a party A 
reates an \opaque

signature"  on a message m, whi
h 
an not be veri�ed by any other party ex
ept a designated

trusted third party T , who may either 
on�rm or deny the validity of the signature to another

party B. Under appropriate 
ir
umstan
es, T may also 
onvert  into an ordinary signature,

whi
h may then be veri�ed by anybody. Additionally, the party A may prove the validity of an

opaque signature  to a party B, at the time that A 
reates and gives  to B. As des
ribed in

[CM00℄, one may implement 
on�rmer signatures as follows: A 
reates an ordinary signature �

on m, and en
rypts � under T 's publi
 key. Using veri�able en
ryption, A may prove to B that

the resulting 
iphertext  indeed en
rypts a valid signature on m, and using veri�able de
ryption,

T may 
on�rm or deny the validity of  , or alternatively, just de
rypt  , thus 
onverting it to

the ordinary signature �. To implement this idea for S
hnorr signatures, one again uses the idea

outlined in above for redu
ing signatures to dis
rete logarithms. The details of all this are the

subje
t of a forth
oming paper.

1.1.6 Group Signatures and Anonymous Credentials

In a group signature s
heme (see [ACJT00, KP98, CD00℄), when a user joined a group (whose mem-

bership is 
ontrolled by a spe
ial party, 
alled the group manager), the user may sign messages on

behalf of the group, without revealing his individual identity; however, under appropriate 
ir
um-

stan
es, the identity of the individual who a
tually signed a parti
ular message may be revealed

(using a spe
ial party, 
alled the anonymity revo
ation manager, whi
h may be distin
t from the

group manager).

Without going into too many details, veri�able en
ryption may be used in the following way

as a 
omponent in su
h a system. When a group member signs a message, he en
rypts enough

information under the publi
 key of the anonymity revo
ation manager, so that later, if the identity

of the signer needs to be revealed, this information 
an be de
rypted. To prove that this information


orre
tly identi�es the signer, he makes a Pedersen 
ommitment to this information, proves that

the 
ommitted value identi�es the user, en
rypts the opening of the 
ommitment, and proves that

the 
iphertext de
rypts to an opening of the 
ommitment. To turn this into a signature s
heme,

one must use the Fiat-Shamir heuristi
 [FS87℄ to make it non-intera
tive (the intera
tive version is


alled an identity es
row s
heme [KP98℄).

Although one 
an implement group signatures without it, by using veri�able en
ryption, one


an build a more modular system, in whi
h the group manager and anonymity manager are sep-

arate entities with independently generated publi
 keys (this is the separability issue). Veri�able

de
ryption 
an be used both to ensure the 
orre
t behavior of the anonymity revo
ation man-

ager (preventing it from \framing" inno
ent users), and to allow even more �ne-grained 
ontrol of

anonymity revo
ation: instead of simply revealing the identity of a parti
ular signer, the anonymity

revo
ation manager 
an state (and prove) whether or not a parti
ular signature was generated by

a parti
ular user.

Credential systems [Cha85, CL01℄ are a generalization of group signatures that allow users

to show 
redentials to various organizations, and obtain new 
redentials, without revealing their

identity, ex
ept through the use of an anonymity revo
ation manager. Veri�able en
ryption 
an

be used as a 
omponent in su
h systems in a manner similar to that des
ribed above for group

signatures. In fa
t, our veri�able en
ryption s
heme is used in a prototype 
redential system

developed at IBM 
alled idemix [CL01, CVH02℄.
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1.2 Previous Work and Further Dis
ussion

In all appli
ations mentioned in x1.1, it is essential that the underlying en
ryption s
heme provide

se
urity against 
hosen 
iphertext atta
ks. As pointed out in [ASW00℄, the earlier work on veri�able

en
ryption in [Sta96, BG96, YY98℄ overlooked this fa
t, as does [PS00℄.

Our en
ryption s
heme and proof proto
ols are quite eÆ
ient. In parti
ular, the proof proto-


ols are 
onventional \�-proto
ols," rather than the generally more expensive \
ut and 
hoose"

proto
ols, su
h as those in [Sta96, BG96, YY98, ASW00℄, that have been previously designed

for the problem of veri�able en
ryption. Moreover, our veri�able en
ryption s
heme a
tually

produ
es a proof that a given 
iphertext is 
orre
t, as opposed to the paradigm followed in

[Sta96, BG96, YY98, ASW00℄, whi
h intertwines the pro
ess of en
rypting and proving, so that

the entire trans
ript of the proof must be retained by the veri�er in lieu of a (short) 
iphertext.

Additionally, the 
ombined en
rypting/proving paradigm makes it mu
h harder to in
orporate any

type of veri�able de
ryption proto
ol.

Our veri�able de
ryption proto
ols are the �rst pra
ti
al s
hemes of their kind.

Unlike, e.g., the s
hemes in [Sta96, YY98℄, we do not require that all users of the system work

with the same algebrai
 group | in our system, there are no \double de
ker" dis
rete logarithms,

and the en
ryption keys may be used with any group or groups, provided 
ertain reasonable size

restri
tions are met.

Our de
ryption pro
edure 
an be implemented as a threshold de
ryption proto
ol. This allows

one to minimize the trust pla
ed in the de
ryptor, and in some appli
ations this may be a preferable

alternative to veri�able de
ryption.

Our proto
ols are based on a number of te
hniques. The key ingredients that make our veri�able

en
ryption proto
ol possible are:

� Fujisaki and Okamoto's method for proving relations on 
ommitted values [FO97℄ (with some

re�nements, as in [CS00, DF02℄),

� the related interval proofs [CM98, CFT98℄,

� Paillier en
ryption [Pai99℄, and

� Cramer and Shoup's universal hash proof en
ryption te
hnique [CS02℄.

The additional ingredients needed to make our veri�able de
ryption proto
ols work are:

� Cramer, Damg�ard, and S
hoenmakers' proofs of partial knowledge [CDS94℄,

� Boudot's exa
t interval proofs [Bou00℄, and

� new proto
ols for proving the inequality of dis
rete logarithms.

To give the reader a rough idea of the 
omplexity of of our proto
ols, 
onsider a setting in

whi
h the dis
rete logarithms being en
rypted are with respe
t to an element of order �, where

� is, say, around `

0

� 160 bits. For su
h a �, it suÆ
es to work with a modulus n of around

` � 1024 bits for the Paillier en
ryption s
heme. Counting just squarings, whi
h are all that matter

asymptoti
ally, and ignoring lower order terms, the en
ryption algorithm takes 3` squarings mod

n

2

, and the de
ryption algorithm takes 5` squarings mod n

2

. For the veri�able en
ryption proto
ol,

the prover performs 2` squarings mod n, 3` squarings mod n

2

, and `

0

squarings in the underlying

group; the veri�er performs 3` squarings mod n

2

, ` squarings mod n, and `

0

squarings in the group.

The veri�able de
ryption proto
ols are about 5 to 6 times slower than this. For representations
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with respe
t to several bases, the 
omplexity of the en
ryption and de
ryption algorithms, and the


orresponding proof proto
ols, grows linearly in the number of bases, as one would expe
t.

2 Preliminaries

2.1 Notation

Let a be a real number. We denote by ba
 the largest integer b � a, by dae the smallest integer

b � a, and by da
 the largest integer b � a + 1=2. For positive real numbers a and b, let [a℄

denote the set f0; : : : ; ba
 � 1g and [a; b℄ denote the set fba
; : : : ; bb
g and [�a; b℄ denote the set

f�ba
; : : : ; bb
g.

Let a, b, and 
 be integers, with b > 0. Most of the time, we use least non-negative remainders,

i.e., 
 = a mod b is a � ba=b
b and we have 0 � 
 < b. Sometimes, we have to 
ompute balan
ed

remainders, i.e., 
 = a rem b is a� da=b
b and we have �b=2 � 
 < b=2. Moreover, if b is odd, then

�(b� 1)=2 � a rem b � (b� 1)=2 for all a.

By neg(�) we denote a negligible fun
tion, i.e., a fun
tion f su
h that f(�) < 1=p(�) holds for

all polynomials p(�) and all suÆ
iently large �.

Let (P; V ) be a pair of intera
tive Turing ma
hines. By V (x)

P (y)

we denote the output of V

upon intera
ting with P , where V 's input is x and P 's input is y.

We use notation introdu
ed by Camenis
h and Stadler [CS97℄ for the various zero-knowledge

proofs of knowledge of dis
rete logarithms and proofs of the validity of statements about dis
rete

logarithms. For instan
e,

PKf(a; b; 
) : y = g

a

h

b

^ y = g

a

h




^ (u � a � v)g

denotes a \zero-knowledge Proof of Knowledge of integers a, b, and g su
h that y = g

a

h

b

and

y = g

a

h




holds, where v < a < u," where y; g; h; y; g, and h are elements of some groups G = hgi =

hhi and G = hgi = hhi. The 
onvention is that the elements listed in the round bra
kets denote

quantities the knowledge of whi
h is being proved (and are in general not known to the veri�er),

while all other parameters are known to the veri�er. Using this notation, a proof-proto
ol 
an be

des
ribed by just pointing out its aim while hiding all details.

2.2 Spe
ial Honest-Veri�er Zero-Knowledge Proto
ols

A spe
ial honest-veri�er zero-knowledge proto
ol is a proto
ol between a prover and a veri�er,

where y is their 
ommon input and x is the prover's additional input. The proto
ol is restri
ted

to three moves: in the �rst move the prover sends the veri�er a \
ommitment" message t, in the

se
ond move the veri�er sends the prover a \
hallenge" message 
, and in the third move the prover

sends the veri�er a \response" message s. Finally, there must exist a simulator that, on input y and

any \
hallenge" message ~
, outputs a \
ommitment" and \response" messages

~

t and ~s su
h that the

distribution of the triple (

~

t; ~
; ~s) is (statisti
ally) indistinguishable from the one of triples (t; 
; s)

stemming from real 
onversations of the prover and the veri�er for whi
h 
 = ~
. Note that the

existen
e of su
h a simulator implies that the proto
ol is (ordinary) honest-veri�er zero-knowledge.

For parti
ular types of proof systems, we shall give expli
it, detailed de�nitions of spe
ial

honest-veri�er zero knowledge, as appropriate.

While this notion of zero-knowledge is not suÆ
ient for most appli
ations, there exist a num-

ber of generi
 
onstru
tions to turn a spe
ial honest-veri�er zero-knowledge proto
ol into one that
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satis�es stronger notions of zero-knowledge. The most important examples are probably the 
on-

stru
tions to obtain 
on
urrent zero-knowledge proto
ols [Dam00, DNS98, CGGM00℄ or witness-

hiding proto
ols [CDS94℄. In parti
ular, the 
onstru
tion due to Damg�ard a
hieves (
on
urrent)

zero-knowledge virtually for free [Dam00℄.

2.3 Se
ure Publi
-Key En
ryption

Here, we re
all the notion of a publi
-key en
ryption s
heme. A
tually, we need the notion of a

publi
-key en
ryption s
heme that supports labels. A label is an arbitrary bit string that is input

to the en
ryption and de
ryption algorithms, spe
ifying the \
ontext" in whi
h the en
ryption or

de
ryption operation is to take pla
e.

A publi
 key en
ryption s
heme provides three algorithms:

� a probabilisti
, polynomial-time key generation algorithm G that on input 1

�

| where � � 0

is a se
urity parameter | outputs a publi
-key/private-key pair (PK;SK). A publi
 key PK

spe
i�es a �nite, easy-to-re
ognize message spa
e M

PK

.

� a probabilisti
, polynomial-time en
ryption algorithm E that takes as input a publi
 key PK,

a message m 2M

PK

, and a label L, and outputs a 
iphertext  .

� a deterministi
, polynomial-time de
ryption algorithm D that takes as input a private key SK,

a 
iphertext  , a label L, and outputs either a message m 2M

PK

, where PK is the publi
-key


orresponding to SK, or a spe
ial symbol reje
t.

Any publi
-key en
ryption s
heme should satisfy a \
orre
tness" or \soundness" property, whi
h

loosely speaking means that the de
ryption operation \undoes" the en
ryption operation. For our

purposes, we 
an formulate this as follows. We 
all a publi
-key en
ryption s
heme sound if for

all (PK;SK) 2 G(1

�

), for all m 2 M

PK

, for all L 2 f0; 1g

�

, and for all  2 E(PK;m;L), we have

D(SK;  ; L) = m.

This de�nition 
an easily be relaxed to allow for an in
orre
t de
ryption with negligible proba-

bility, but we do not pursue this matter here. For all en
ryption s
hemes presented in this paper, it

is trivial to verify this soundness property, and so we will not expli
itly deal with this issue again.

We say that a 
iphertext is valid w.r.t. a label L (and a key pair (PK;SK)) if the de
ryption

algorithm does not reje
t it and is invalid w.r.t. L otherwise.

Note that in this paper, we only work with �nite message spa
es.

2.4 Adaptive Chosen Ciphertext Se
urity

Consider a publi
-key en
ryption s
heme, and 
onsider the following game, played against an arbi-

trary probabilisti
, polynomial-time adversary.

1. Key-Generation Phase. Let � � 0 be the se
urity parameter. We run the key-generation

algorithm of the publi
-key en
ryption s
heme on input 1

�

, and get a key pair (PK;SK). We

equip an en
ryption ora
le with the publi
 key PK, and a de
ryption ora
le with the se
ret

key SK. The publi
 key PK is presented to the adversary.

2. Probing Phase I. In this phase, the atta
ker gets to intera
t with the de
ryption ora
le in an

arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, spe
i�ed by

the adversary. More pre
isely, in ea
h round of this intera
tion, the adversary sends a query

( ;L) to the de
ryption ora
le. A query is a pair of bit strings 
hosen in an arbitrary way by

8



the adversary. The de
ryption ora
le in turn de
rypts  with label L under the se
ret key

SK, and responds to the query by returning the de
ryption to the adversary.

3. Target-Sele
tion Phase. The adversary sele
ts two messages m

0

and m

1

from the message

spa
e, along with a label L

�

, and presents (m

0

;m

1

; L

�

) to the en
ryption ora
le. The en-


ryption ora
le sele
ts a random � 2 f0; 1g, and en
rypts m

�

with label L

�

under PK. The

resulting en
ryption  

�

, the target 
iphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only di�eren
e being that the de-


ryption ora
le only responds to queries ( ;L) with ( ;L) 6= ( 

�

; L

�

).

5. Guessing-Phase. The adversary outputs a bit �̂.

The adversary is said to win the game if �̂ = �. We de�ne the advantage (over random guessing)

of the adversary as the absolute value of the di�eren
e of the probability that he wins and 1=2.

A publi
-key en
ryption s
heme is said to be se
ure against adaptive 
hosen 
iphertext atta
k if

for all polynomial time, probabilisti
 adversaries, the advantage in this guessing game is negligible

as a fun
tion of the se
urity parameter.

3 The En
ryption S
heme

3.1 Ba
kground

Let p; q; p

0

; q

0

be distin
t odd primes with p = 2p

0

+1 and q = 2q

0

+1, and where p

0

and q

0

are both

` bits in length. Let n = pq and n

0

= p

0

q

0

. Consider the group Z

�

n

2

and the subgroup P of Z

�

n

2


onsisting of all n-th powers of elements in Z

�

n

2

.

Paillier's De
ision Composite Residuosity (DCR) assumption [Pai99℄ is that given only n, it is

hard to distinguish random elements of Z

�

n

2

from random elements of P.

To be 
ompletely formal, one should spe
ify a sequen
e of bit lengths `(�), parameterized by a

se
urity parameter � � 0, and to generate an instan
e of the problem for se
urity parameter �, the

primes p

0

and q

0

should be distin
t, random primes of length ` = `(�), su
h that p = 2p

0

+ 1 and

q = 2q

0

+ 1 are also primes.

The primes p

0

and q

0

are 
alled Sophie Germain primes and the primes p and q are 
alled safe

primes. It has never been proven that there are in�nitely many Sophie Germain primes. Neverthe-

less, it is widely 
onje
tured, and amply supported by empiri
al eviden
e, that the probability that

a random `-bit number is Sophie Germain prime is 
(1=`

2

). We shall assume that this 
onje
ture

holds, so that we 
an assume that problem instan
es 
an be eÆ
iently generated.

Note that Paillier did not make the restri
tion to safe primes in originally formulating the DCR

assumption. As will be
ome evident, we need to restri
t ourselves to safe primes for te
hni
al

reasons. However, it is easy to see that the DCR assumption without this restri
tion implies the

DCR assumption with this restri
tion, assuming that safe primes are suÆ
iently dense, as we are

here.

We 
an de
ompose Z

�

n

2

as an internal dire
t produ
t

Z

�

n

2

= G

n

�G

n

0

�G

2

�T;

where ea
h group G

�

is a 
y
li
 group of order � , and T is the subgroup of Z

�

n

2

generated by

(�1 mod n

2

). This de
omposition is unique, ex
ept for the 
hoi
e of G

2

(there are two possible
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hoi
es). For any x 2 Z

�

n

2

, we 
an express x uniquely as x = x(G

n

)x(G

n

0

)x(G

2

)x(T), where for

ea
h G

�

, x(G

�

) 2 G

�

, and x(T) 2 T.

Note that the element h = (1 + n mod n

2

) 2 Z

�

n

2

has order n, i.e., it generates G

n

, and that

h

a

= (1 + an mod n

2

) for 0 � a < n. Observe that P = G

n

0

G

2

T.

3.2 The S
heme

For a se
urity parameter � � 0, ` = `(�) is an auxiliary parameter.

The s
heme makes use of a keyed hash s
heme H that uses a key hk, 
hosen at random from

an appropriate key spa
e asso
iated with the se
urity parameter �; the resulting hash fun
tion

H

hk

(�) maps a triple (u; e; L) to a number in the set [2

`

℄. We shall assume that H is 
ollision

resistant, i.e., given a randomly 
hosen hash key hk, it is 
omputationally infeasible to �nd two

triples (u; e; L) 6= (u

0

; e

0

; L

0

) su
h that H

hk

(u; e; L) = H

hk

(u

0

; e

0

; L

0

).

Let abs : Z

�

n

2

! Z

�

n

2

map (a mod n

2

), where 0 < a < n

2

, to (n

2

� a mod n

2

) if a > n

2

=2, and

to (a mod n

2

), otherwise. Note that v

2

= (abs(v))

2

holds for all v 2 Z

�

n

2

.

We now des
ribe the key generation, en
ryption, and de
ryption algorithms of the en
ryption

s
heme, as they behave for a given value of the se
urity parameter �.

Key Generation. Sele
t two random `-bit Sophie Germain primes p

0

and q

0

, with p

0

6= q

0

,

and 
ompute p := (2p

0

+ 1), q := (2q

0

+ 1), n := pq, and n

0

:= p

0

q

0

, where ` = `(�) is an auxiliary

se
urity parameter. Choose random x

1

, x

2

, x

3

2

R

[n

2

=4℄, 
hoose a random g

0

2

R

Z

�

n

2

, and 
ompute

g := (g

0

)

2n

, y

1

:= g

x

1

, y

2

:= g

x

2

, and y

3

:= g

x

3

. Also, generate a hash key hk from the key spa
e of

the hash s
heme H asso
iated with the se
urity parameter �. The publi
 key is (hk; n; g; y

1

; y

2

; y

3

).

The se
ret key is (hk; n; x

1

; x

2

; x

3

).

In the rest of the paper, let h = (1 + n mod n

2

) 2 Z

�

n

2

, whi
h as dis
ussed above, is an element

of order n.

En
ryption. To en
rypt a message m 2 [n℄ with label L 2 f0; 1g

�

under a publi
 key as above,


hoose a random r 2

R

[n=4℄ and 
ompute

u := g

r

; e := y

r

1

h

m

; and v := abs

�

(y

2

y

H

hk

(u;e;L)

3

)

r

�

:

The 
iphertext is (u; e; v).

De
ryption. To de
rypt a 
iphertext (u; e; v) 2 Z

�

n

2

�Z

�

n

2

�Z

�

n

2

with label L under a se
ret key

as above, �rst 
he
k that abs(v) = v and u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

. If this does not hold, then output

reje
t and halt. Next, let t = 2

�1

mod n, and 
ompute m̂ := (e=u

x

1

)

2t

. If m̂ is of the form h

m

for

some m 2 [n℄, then output m; otherwise, output reje
t.

This s
heme di�ers from the DCR-based s
hemes presented in [CS02℄, be
ause in our situation,

spe
ial attention must be paid to the treatment of elements of order 2 in the Z

�

n

2

, as these 
an 
ause

some trouble for the proof systems we dis
uss in the next se
tions. Be
ause of these di�eren
es, the

above en
ryption s
heme does not exa
tly �t into the general framework of [CS02℄, even though

the basi
 ideas are the same. We therefore analyze the se
urity of the s
heme starting from �rst

prin
iples, rather than trying to modify their framework.

Before presenting the se
urity analysis, we remark on one of the more pe
uliar aspe
ts of the

s
heme, namely, the role of the abs(�) fun
tion in the en
ryption and de
ryption algorithms. If one

left this out, i.e., repla
ed abs(�) by the identity fun
tion, then the s
heme would be malleable, as

10



(u; e; v) is an en
ryption of some message m with label L, then so is (u; e;�v). This parti
ular

type of malleability [ADR02, Sho01℄ is in fa
t rather \benign," and would be a

eptable in most

appli
ations. However, we prefer to a
hieve non-malleability in the stri
test sense, and be
ause

this 
omes at a marginal 
ost, we do so. We also mention that in independent work, Gennaro

and Lindell [GL03℄ devise a similar (but not quite identi
al) s
heme, but for 
ompletely di�erent

purposes: their goal is to 
onstru
t eÆ
ient password-based key ex
hange proto
ols.

Theorem 1. The above s
heme is se
ure against adaptive 
hosen 
iphertext atta
k provided the

DCR assumption holds, and provided H is 
ollision resistant.

The rest of this se
tion is devoted to the proof of Theorem 1.

Let us �x a value of the se
urity parameter �, whi
h �xes ` = `(�), and let us �x an adversary

A. Let  

�

= (u

�

; e

�

; v

�

) denote the target 
iphertext, and L

�

the asso
iated label.

We prove this theorem by analyzing a sequen
e of modi�
ations to the environment in whi
h

the adversary runs. We refer to the atta
k game run with the original environment as Game 0

(
.f. x2.4), and to the atta
k game run with subsequent modi�
ations to the environment as Games

1, 2, et
. Ea
h of these games are best viewed as operating on the same underlying probability

spa
e. The value of the random variable � is identi
al in ea
h game, but the output �̂ of the

adversary may vary among games. We de�ne the event T

i

, for i � 0, as the event that the � = �̂

in Game i.

Game 1. This is the same as Game 0, ex
ept for the following modi�
ation to the de
ryption ora
le.

If the de
ryption ora
le is invoked in Probing Phase II with a 
iphertext/label pair ((u; e; v); L) su
h

that (u; e; L) 6= (u

�

; e

�

; L

�

) but H

hk

(u; e; L) = H

hk

(u

�

; e

�

; L

�

), then the de
ryption ora
le reje
ts

the 
iphertext.

Let F

1

be the event that a 
iphertext is reje
ted in Game 1 using the above reje
tion rule. It is


lear that Games 0 and 1 pro
eed identi
ally until F

1

o

urs; more pre
isely, the events T

1

^ :F

1

and T

0

^ :F

1

are identi
al. Therefore,

jPr[T

1

℄� Pr[T

0

℄j � Pr[F

1

℄: (1)

Moreover, we have

Pr[F

1

℄ � AdvCRHF

A

0

(�); (2)

where AdvCRHF

A

0

(�) denotes the su

ess probability that a parti
ular adversary A

0

has in �nding

a 
ollision in H for the given value of the se
urity parameter �. The running time of A

0

is about

the same as that of A. Indeed, given a hash key hk, adversary A

0

simply runs Game 1, using the

given value of hk in the key generation algorithm, and when F

1

o

urs, A

0

outputs (u; e; L) and

(u

�

; e

�

; L

�

).

Game 2. This game is the same as Game 1, ex
ept for the following modi�
ation to the de
ryption

ora
le. If the de
ryption ora
le is invoked in Probing Phase II with a 
iphertext (u; e; v) su
h that

v

2

= (v

�

)

2

and v 6= v

�

, then the de
ryption ora
le reje
ts the 
iphertext.

Let F

2

be the event that a 
iphertext is reje
ted in Game 2 using the above reje
tion rule, but

would not have been reje
ted for any other reason. It is 
lear that Games 1 and 2 pro
eed identi
ally

until F

2

o

urs; more pre
isely, the events T

2

^ :F

2

and T

1

^ :F

2

are identi
al. Therefore,

jPr[T

2

℄� Pr[T

1

℄j � Pr[F

2

℄: (3)

Moreover, we have

Pr[F

2

℄ � AdvFa
tor

A

00

(�); (4)

11



where AdvFa
tor

A

00

(�) denotes the su

ess probability that a parti
ular algorithm A

00

has in fa
-

toring a number n as generated by the en
ryption algorithm for the given value of the se
urity

parameter �. The running time of A

00

is about the same as that of A. Algorithm A

00

takes the given

number n, 
onstru
ts the remaining 
omponents of the publi
 key, and then lets adversary A run

in Game 2. If and when event F

2

o

urs, we have v

2

= (v

�

)

2

, v 6= v

�

, abs(v) = v, and abs(v

�

) = v

�

.

This implies that v 6= �v

�

. It follows that if v=v

�

= (a mod n

2

), then g
d(a; n) splits n.

Game 3. This game is the same as Game 2, ex
ept for the following modi�
ation to the en
ryption

ora
le. Instead of 
omputing e

�

and v

�

as in the en
ryption algorithm, we 
ompute them using the

se
ret key, as follows:

e

�

:= (u

�

)

x

1

h

m

�

v

�

:= abs

�

(u

�

)

x

2

+H

hk

(u

�

;e

�

;L

�

)x

3

�

This modi�
ation is purely 
on
eptual, as the values of e

�

and v

�


omputed by the en
ryption

ora
le in Game 3 are identi
al to those 
omputed in Game 2. Therefore,

Pr[T

3

℄ = Pr[T

2

℄: (5)

Game 4. Now we further modify the en
ryption ora
le. Let r

�

denote the value of r generated

by the en
ryption ora
le. Then, instead of 
omputing u

�

as g

r

�

, the en
ryption ora
le in this game


hooses a random �u 2 P, and sets u

�

:= �u

2

.

We 
laim that

jPr[T

4

℄� Pr[T

3

℄j = O(2

�`

): (6)

To see this, observe that �u

2

is uniformly distributed over G

n

0

. Also, observe that with probability

1�O(2

�`

), g is a generator for G

n

0

, and that the distribution of r

�

is O(2

�`

)-
lose to the uniform

distribution on [n

0

℄. It is an easy exer
ise to show that the bound (6) follows from these observations.

Game 5. We again modify the en
ryption ora
le. Instead of 
hoosing �u at random from P, the

en
ryption ora
le 
hooses �u at random from Z

�

n

2

; otherwise, the 
omputation is identi
al to that of

Game 4.

It is 
lear that any signi�
ant di�eren
e between Pr[T

5

℄ and Pr[T

4

℄ leads immediately to an

e�e
tive statisti
al test for distinguishing P from Z

�

n

2

. More pre
isely, there exists an adversary

A

000

, whose running time is roughly the same as that of A, su
h that

jPr[T

5

℄� Pr[T

4

℄j � AdvDCR

A

000

(�); (7)

where AdvDCR

A

000

(�) denotes the advantage that A

000

has in distinguishingP from Z

�

n

2

for the given

value of the se
urity parameter �.

Game 6. We again modify the en
ryption ora
le. This time, we repla
e u

�

by a random element

of G

n

G

n

0

su
h that u

�

(G

n

) has order n.

We 
laim that

jPr[T

6

℄� Pr[T

5

℄j = O(2

�`

): (8)

To see this, note that in Game 5, u

�

is uniformly distributed over G

n

G

n

0

, and so u

�

(G

n

) has order

n with probability 1�O(2

�`

). The bound (8) follows immediately.
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Game 7. Now we modify the key generation algorithm. Instead of 
hoosing x

1

; x

2

; x

3

at random

from [n

2

=4℄, we 
hoose them at random from [nn

0

℄.

Be
ause the uniform distribution on [n

2

=4℄ is O(2

�`

)-
lose to the uniform distribution on [nn

0

℄,

it follows immediately that

jPr[T

7

℄� Pr[T

6

℄j = O(2

�`

): (9)

Game 8. Now we modify the de
ryption ora
le. In this game, in addition to reje
ting a 
iphertext

(u; e; v) 2 Z

�

n

2

�Z

�

n

2

�Z

�

n

2

with label L if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, the de
ryption ora
le also reje
ts

this 
iphertext if u =2 G

n

0

G

2

T.

In this game, the de
ryption ora
le leaks no information about the value of x

1

modulo n. >From

this, and the fa
t that u

�

(G

n

) has order n and e

�

= (u

�

)

x

1

h

m

�

, it follows that A's output �̂ is

independent of �. Therefore,

Pr[T

8

℄ = 1=2: (10)

Let F

8

be the event that in Game 8, some 
iphertext (u; e; v) with label L is reje
ted using the

spe
ial reje
tion rule introdu
ed in Game 8, but would not have been reje
ted for any other reason,

i.e., the spe
ial reje
tion rules introdu
ed in Games 1 and 2 do not apply, and u

2(x

2

+H

hk

(u;e;L)x

3

)

=

v

2

.

It is 
lear that Games 7 and 8 pro
eed identi
ally until F

8

o

urs. More pre
isely, the events

T

8

^ :F

8

and T

7

^ :F

8

are identi
al. Therefore,

jPr[T

8

℄� Pr[T

7

℄j � Pr[F

8

℄: (11)

Let � = �(�) denote an upper bound on the number of de
ryption ora
le queries made by A

for the given value of the se
urity parameter �. We assume this bound holds, regardless of the

environment in whi
h A runs. We 
laim that

Pr[F

8

℄ � � � 2

�`

: (12)

To prove (12), we argue as follows. Let �x

2

and �x

3

denote the values of x

2

and x

3

, respe
tively,

modulo n. Similarly, let �x

0

2

and �x

0

3

denote the values of x

2

and x

3

, respe
tively, modulo n

0

.

Let us 
ondition on �xed values of

n; g; x

1

; �x

0

2

; �x

0

3

; hk;

as well as �xed values of the 
oin tosses of A. In this 
onditional probability spa
e, the publi
 key

is �xed, A's queries to the de
ryption ora
le in Probing Phase I, as well as the responses of the

de
ryption ora
le. To see why responses of the de
ryption ora
le are fully determined, observe that

all 
iphertexts (u; e; v) with u =2 G

n

0

G

2

T are reje
ted, and that the de
ryption ora
le squares u in

all 
omputations involving u; thus, the response of the de
ryption ora
le is determined by �x

0

2

and

�x

0

3

, whi
h are �xed. Also, in this 
onditional probability spa
e, it is determined whether or not

A invokes the en
ryption ora
le, and if so, A's inputs to the en
ryption ora
le. However, by the

Chinese Remainder Theorem, the values of �x

2

and �x

3

in this 
onditional probability spa
e are still

uniformly and independently distributed over [n℄.

In this 
onditional probability spa
e, 
onsider a parti
ular invo
ation of the de
ryption ora
le in

Probing Phase I with a 
iphertext (u; e; v) and label L. Suppose that u =2 G

n

0

G

2

T. Let �u = u(G

0

n

)

2

,

�u

0

= u(G

n

)

2

, and H = H

hk

(u; e; L). Note that �u 6= 1, and so �u has order p, q, or n. Now, we have

u

2(x

2

+H

hk

(u;e;L)x

3

)

= (�u)

�x

2

+H�x

3

(�u

0

)

�x

0

2

+H�x

0

3

:

13



It follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

is uniformly distributed over a parti
ular 
oset in G

n

0

G

n

of the

subgroup generated by �u. As v

2

is �xed in this 
onditional probability spa
e, it follows that

u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

with probability at most 2

�`

.

Now suppose that in this 
onditional probability spa
e A invokes the en
ryption ora
le with

parti
ular messages m

0

and m

1

, and a label L

�

. Let us further 
ondition on �xed values of �

and u

�

. This determines the value of e

�

, and also the value of H

�

= H

hk

(u

�

; e

�

; L

�

). Let us also

further 
ondition a �xed value of �x

2

+ H

�

�x

3

modulo n. This determines the value v

�

. In the

resulting 
onditional probability spa
e, the output of the en
ryption ora
le, as well as all queries

and responses of de
ryption ora
le queries in Probing Phase II are 
ompletely determined.

In this 
onditional probability spa
e, 
onsider a parti
ular invo
ation of the de
ryption ora
le

in Probing Phase II with a 
iphertext (u; e; v) and label L, su
h that (u; e; v; L) 6= (u

�

; e

�

; v

�

; L).

Suppose that u =2 G

n

0

G

2

T, and that the spe
ial reje
tion rules introdu
ed in Games 1 and 2 do

not apply. We 
onsider two 
ases.

Case 1: (u; e; L) = (u

�

; e

�

; L

�

). We must have v 6= v

�

, as (u; e; v; L) 6= (u

�

; e

�

; v

�

; L). Be
ause

the spe
ial reje
tion rule in Game 2 does not apply, we must have v

2

6= (v

�

)

2

, whi
h implies that

u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

.

Case 2: (u; e; L) 6= (u

�

; e

�

; L

�

). As the spe
ial reje
tion rule in Game 1 does not apply, we must

have H 6= H

�

. By the de�nition of H, this implies that H 6� H

�

(mod p) and H 6� H

�

(mod q).

This in turn implies that in this 
onditional probability spa
e, the distribution of �x

2

+H�x

3

modulo

n is uniform. It follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

is uniformly distributed over a parti
ular 
oset in

G

n

0

G

n

of the subgroup generated by �u. Be
ause v

2

is �xed in this 
onditional probability spa
e,

it follows that u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

with probability at most 2

�`

.

The above arguments show that the event F

8

o

urs for a parti
ular de
ryption query with

probability at most 2

�`

. The bound (12) now follows.

Putting together (1)-(12), we have

jPr[T

0

℄� 1=2j � AdvCRHF

A

0

(�) + AdvFa
tor

A

00

(�) + AdvDCR

A

000

(�) + � � 2

�`

+O(2

�`

):

Theorem 1 now follows immediately.

3.3 Extensions to Threshold De
ryption

Our s
heme 
an easily be transformed to provide threshold de
ryption, where it 
omes in handy

that the knowledge of the fa
torization of n is not required for de
ryption. This allows one to

redu
e the trust assumption for the de
ryptor when used as a trusted third party. This 
an be

done either along the lines in [SG98℄, whi
h requires a random ora
le se
urity argument, or along

the lines in [CG99℄, whi
h does not require that argument, but for whi
h the de
ryption proto
ol

is less eÆ
ient.

4 The Strong RSA and Fa
toring Assumptions

This strong RSA assumption is the following: given a 
omposite modulus n and a random element

g 2 Z

�

n

, it is hard to 
ompute h 2 Z

�

n

and integer e > 1 su
h that h

e

= g. To be 
omplete, one

needs to spe
ify more pre
isely the distribution from whi
h n is drawn. As in x3, we shall spe
ify

that n is of the form pq, where p = 2p

0

+ 1, q = 2q

0

+ 1, and p

0

and q

0

are uniformly distributed

over all `-bit numbers su
h that p; q; p

0

; q

0

are prime and p

0

6= q

0

. We also set n

0

= p

0

q

0

. As usual,

` = `(�), where � is a se
urity parameter.
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We will make use of both the strong RSA assumption, as well as the assumption that fa
toring

integers n as above is hard. Of 
ourse, the strong RSA assumption implies that fa
toring is hard.

We will make use of these two assumptions as follows. First, we shall make extensive use of

the well known fa
t that if fa
toring is hard, then it is hard to 
ompute a non-zero multiple of n

0

.

We shall also make use of the fa
t that if fa
toring is hard, then it is hard to 
ompute a non-zero

multiple of either p

0

or q

0

. To see this, suppose that m is a non-zero multiple of p

0

or q

0

. If m is a

multiple of n

0

, then the above mentioned result applies. Otherwise, with overwhelming probability,

for random z 2 Z

�

n

, g
d(z

2m

� 1; n) will be either p or q, as the reader may easily 
he
k using the

Chinese Remainder Theorem. Thus, assuming fa
toring is hard, we may assume that it is hard to


ompute a non-zero integer m su
h that g
d(m;n

0

) 6= 1.

We also shall use the following fa
ts:

Theorem 2. Under the assumption that fa
toring is hard, given a modulus n (distributed as above),

along with random elements g; h 2 (Z

�

n

)

2

, it is hard to 
ompute integers a; b, su
h that

1 = g

a

h

b

and (a 6= 0 or b 6= 0): (13)

Proof. Suppose there is an algorithm A that takes as input n; g; h as above, and outputs a; b

satisfying (13) with non-negligible probability. We 
an use use A to fa
tor a given n, as follows:

generate g 2 (Z

�

n

)

2

at random | with overwhelming probability, g has order n

0

; 
hoose r 2 [1; n

2

℄

at random, and set h = g

r

| the distribution of h is statisti
ally 
lose to the uniform distribution

on (Z

�

n

)

2

; feed n; g; h to A, obtaining a; b. With non-negligible probability, we have

g has order n

0

; 1 = g

a+rb

; and (a 6= 0 or b 6= 0) : (14)

Claim: with non-negligible probability, not only does (14) hold, but also a + rb 6= 0. To prove

this 
laim, let us 
ondition on �xed values of n; g; h; a; b, and 
oins of A, su
h that A outputs a; b on

inputs n; g; h, and su
h that the 
onditions in (14) are satis�ed. Let us write r = r

2

n

0

+ r

1

, where

0 � r

1

< n

0

. In this 
onditional probability spa
e, the value r

1

is also �xed, but the distribution of

r

2

is statisti
ally 
lose to the uniform distribution on [4n℄. We 
an write the equation a+ rb = 0 as

a+ r

2

n

0

b+ r

1

b = 0, and in this equation all terms are �xed ex
ept for r

2

. We may as well assume

that b 6= 0, as otherwise, a 6= 0 and the equation never holds. There is at most one solution in r

2

to the equation (as the 
oeÆ
ient n

0

b is non-zero), and so it holds with only negligible probability.

That proves the 
laim.

The identity g

a+rb

implies that a+ rb is a multiple of n

0

, and if a+ rb 6= 0, we have a non-zero

multiple of n

0

.

Theorem 3. Under the strong RSA assumption, given a modulus n (distributed as above), along

with random elements g; h 2 (Z

�

n

)

2

, it is hard to 
ompute w 2 Z

�

n

and integers a; b; 
 su
h that

w




= g

a

h

b

and (
 - a or 
 - b): (15)

Proof. Suppose we have an algorithm A that given n; g; h as above, 
omputes w; a; b; 
 satisfying

(15) with non-negligible probability.

Case 1. Let us �rst 
onsider the 
ase where 
 = 0 with non-negligible probability. Then the


ondition that 
 - a or 
 - b simply means that a 6= 0 or b 6= 0, and the result is implied by

Theorem 2.
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Case 2. Let us next 
onsider the remaining, and more interesting, 
ase where 
 6= 0 with non-

negligible probability. We may as well assume that g
d(
; n

0

) = 1, sin
e as was dis
ussed at the

beginning of the proof, under the assumption that fa
toring is hard, it is diÆ
ult to 
ompute non-

zero 
 su
h that g
d(
; n

0

) 6= 1. We now show how we 
an use A to either fa
tor a given n or

�nd a non-trivial root of a given g, thus 
ontradi
ting the strong RSA assumption (sin
e a random

element of Z

�

n

is a square with probability 1=4).

Given n and g, we pro
eed as follows. First, note that with overwhelming probability, g has

order n

0

. Let us 
ompute h = g

r

, for r randomly 
hosen from [1; n

2

℄, so that the distribution of

h is statisti
ally 
lose to the uniform distribution on (Z

�

n

)

2

. Now we feed n; g; h to A, obtaining

w; a; b; 
. With non-negligible probability, we have

g has order n

0

; w




= g

a+rb

; 
 6= 0; g
d(
; n

0

) = 1; and 
 - a : (16)

Claim: with non-negligible probability, not only does (16) hold, but also 
 - (a + rb). To prove

this 
laim, let now 
ondition on �xed values of n; g; h; w; a; b; 
, and 
oins of A, su
h that A outputs

w; a; b; 
 on inputs n; g; h, and su
h that the 
onditions in (16) are satis�ed. Let us write r =

r

2

n

0

+ r

1

, where 0 � r

1

< n

0

. In this 
onditional probability spa
e, the value r

1

is also �xed, but

the distribution of r

2

is statisti
ally 
lose to the uniform distribution on [4n℄.

Now, 
onsider the 
ongruen
e

a+ rb � 0 (mod 
) :

This 
ongruen
e holds if and only if

a+ r

1

b+ r

2

n

0

b � 0 (mod 
) :

Now, in the 
onditional probability spa
e, all terms in the above 
ongruen
e are �xed, ex
ept for

r

2

. Let us bound from above the probability that this 
ongruen
e holds. We may as well assume

that 
 - b, be
ause if 
 j b, then 
 - a, and the 
ongruen
e will never hold. As g
d(
; n

0

) = 1, it

follows that the solutions r

2

to the above 
ongruen
e are uniquely determined modulo 
=d

0

, where

d

0

= g
d(
; b). Sin
e 
 - b, it follows that d

0

is a proper divisor of 
, and hen
e 
=d

0

� 2. Be
ause the

distribution of r

2

is statisti
ally 
lose to the uniform distribution on a very large range, it follows

that the 
ongruen
e holds with probability at most about 1=2. This proves the 
laim.

It is left to show that if 
 - (a+ rb), then we 
an either fa
tor n, or just 
ompute a non-trivial

root of g. Let d = g
d(
; a + rb). Sin
e we are assuming that 
 - (a+ rb), it follows that 
=d � 2.

There are integers � and � su
h that d = �
+�(a+ rb), and using the identity w




= g

a

h

b

, we have

g

d

= (w

�

g

�

)




;

and so g = �(w

�

g

�

)


=d

for some �Z

�

n

with �

d

= 1. Thus, the order of � divides d, and of 
ourse,

sin
e 2n

0

is the exponent of Z

�

n

, it follows that the order of � divides g
d(d; 2n

0

). Now, sin
e d j 


and g
d(
; n

0

) = 1, we have g
d(d; n

0

) = 1, from whi
h it follows that � has order dividing 2.

So either � = �1 or g
d(� � 1; n) splits n. In the latter 
ase we have fa
tored n. In the former


ase we 
an 
ompute su
h a root of g as follows. If 
=d is even, then (w

�

g

�

)


=d

2 (Z

�

n

)

2

and so

(be
ause g 2 (Z

�

n

)

2

), we must have � = 1 (as �1 =2 (Z

�

n

)

2

). If 
=d is odd then g = (�w

�

g

�

)


=d

. In

either 
ase, we have 
omputed a (
=d)th root of g.

Dis
ussion. The strong RSA assumption was introdu
ed independently in [BP97℄ and [FO97℄. Sin
e

then, it has been found to be useful in the analysis of many 
ryptographi
 s
hemes (e.g., [CM98,
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GHR99, CS00, ACJT00, CL01℄). We do not 
laim that Theorem 3 is new: it has appeared impli
itly

and in more restri
ted form in previous papers: the essential idea in the proof of Theorem 3 already

appears in [CS00℄, although that paper deals with a more restri
ted, and somewhat simpler, setting;

also, the paper [DF02℄ impli
itly 
ontains a proof of a statement that is very similar to that of

Theorem 3. The paper [FO97℄ also makes some similar 
laims (impli
itly), but some of their proofs

are 
awed. Theorem 3 is a
tually a bit more general than we a
tually need for our paper, but as it

is a
tually a quite useful theorem in several 
ontexts, we prefer to state it in a very general form.

5 Veri�able En
ryption

Loosely speaking, veri�able en
ryption for a relationR is a proto
ol that allows a prover to 
onvin
e

a veri�er that a given 
iphertext is an en
ryption under a given publi
 key of a value w su
h that

(Æ; w) 2 R for a given Æ.

Asokan et al. [ASW98, ASW00℄ present a proto
ol for veri�able en
ryption for the 
ase where

w is a homomorphi
 pre-image of Æ and Camenis
h and Damg�ard [CD00℄ present a proto
ol that

works for any relation R that has a three-move honest-veri�er zero-knowledge proof of knowledge

where the veri�er sends as a se
ond message a random 
hallenge. Both these proto
ols work for

any se
ure publi
 key en
ryption s
heme. However, they are based on the 
ut-and-
hoose paradigm

and hen
e are rather impra
ti
al.

In this se
tion we present an eÆ
ient veri�able en
ryption proto
ol for dis
rete logarithms

in 
onjun
tion with the en
ryption s
heme presented in the previous se
tion. We then dis
uss

extensions of this proto
ol.

5.1 De�nition of Veri�able En
ryption

Before stating the formal de�nition of veri�able en
ryption, we begin with a high level dis
ussion

of what we are after, along with some auxiliary de�nitions.

Let (G; E ;D) be a publi
 key en
ryption s
heme, and suppose we have generated a key pair

(PK;SK).

A veri�able en
ryption s
heme proves that a 
iphertext en
rypts a plaintext satisfying a 
ertain

relation R. The relation R is de�ned by a generator algorithm G

0

whi
h on input 1

�

outputs a

des
ription 	 = 	[R;W;�℄ of a binary relation R on W ��. We require that the sets R, W , and

� are easy to re
ognize (given 	). For Æ 2 �, an element w 2 W su
h that (w; Æ) 2 R is 
alled a

witness for Æ. The idea is that the en
ryptor will be given a value Æ, a witness w for Æ, and a label

L, and then en
rypts w under L, yielding a 
iphertext  . After this, the en
ryptor may prove to

another party that  de
rypts under L to a witness for Æ. In 
arrying out the proof, the en
ryptor

will of 
ourse need to make use of the random 
oins that were used by the en
ryption algorithm:

we denote by E

0

(PK;m;L) the pair ( ; 
oins), where  is the output of E(PK;m;L) and 
oins are

the random 
oins used by E to 
ompute  .

In su
h a proof system, the (honest) veri�er will output 0 or 1, with 1 signifying \a

ept."

We of 
ourse shall require that the proof system is sound, in the sense that if a veri�er a

epts a

proof, then with overwhelming probability,  indeed de
rypts under L to a witness for Æ. However,

it is 
onvenient, and adequate for many appli
ations, to take a more relaxed approa
h: instead

of requiring that  de
rypts under L to a witness, we only require that a witness 
an be easily

re
onstru
ted from the plaintext using some eÆ
ient re
onstru
tion algorithm. Su
h an algorithm

re
on takes as input a publi
 key PK, a relation des
ription 	[R;W; Æ℄, an element Æ 2 �, and a

message m 2M

PK

[ freje
tg, and outputs w 2W [ freje
tg.
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We need to make some te
hni
al \
ompatibility" requirements: we say that an en
ryption

s
heme, a relation generator, and a re
onstru
tion algorithm as above are mutually 
ompatible if

for all � � 0, all (PK;SK) 2 G(1

�

), and all 	[R;W;�℄ 2 G

0

(1

�

), we have

� W �M

PK

, and

� for all (w; Æ) 2 R, we have re
on(PK;	; Æ; w) = w.

The �rst requirement simply says that witness \�t" into the message spa
e, and the se
ond require-

ment simply says that the re
onstru
tion routine does not modify valid witnesses (together with

the 
orre
tness property for the en
ryption s
heme, this ensures that an en
ryption of a witness

de
rypts and re
onstru
ts to the same witness).

We shall also require that the proof system is spe
ial honest-veri�er zero knowledge. To formu-

late this more pre
isely below, we let Trans(PK;	; Æ;  ; L; 
; w; 
oins ) denote the trans
ript seen by

a veri�er that uses a �xed 
hallenge 
.

De�nition 1. A proof system (P;V), together with mutually 
ompatible en
ryption s
heme

(G; E ;D), relation generator G

0

, and re
onstru
tion algorithm re
on, form a veri�able en
ryption

s
heme, if the following properties hold.

Corre
tness: for all (PK;SK) 2 G(1

�

), for all 	[R;W;�℄ 2 G

0

(1

�

), for all (w; Æ) 2 R, for all

L 2 f0; 1g

�

, for all ( ; 
oins) 2 E

0

(PK; w; L),

Pr[x V(PK;	; Æ;  ; L)

P(PK;	;Æ; ;L;w;
oins)

: x = 1℄ = 1� neg(�):

Soundness: for all adversaries (A

�

, P

�

),

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(Æ;  ; L; aux ) A

�

(PK;SK;	);

x V(PK;	; Æ;  ; L)

P

�

(aux )

;

m D(SK;  ; L);

w  re
on(PK;	; Æ;m) :

x = 1 ^ (w; Æ) =2 R ℄ = neg(�):

Spe
ial honest-veri�er zero knowledge: There exists a simulator Sim su
h that for all adver-

saries (A

�

, B

�

, C

�

), we have

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(w; Æ; L; aux ) A

�

(PK;SK;	); where (w; Æ) 2 R;

( ; 
oins) E

0

(PK; w; L);


 B

�

(aux ;  );

b f0; 1g;

if b = 0

then � Trans(PK;	; Æ;  ; L; 
; w; 
oins )

else � Sim(PK;	; Æ;  ; L; 
);

^

b C

�

(aux ;  ; �) :

b =

^

b ℄ = 1=2 + neg(�):
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The above de�nitions are fairly traditional. Our formulations of soundness and spe
ial honest-

veri�er zero knowledge are basi
ally of the \
omputational" variety, but where we have taken the

notion of \
omputational" one step further: instead of universally quantifying over the inputs to

the veri�er (respe
tively, simulator), we quantify \
omputationally." This is te
hni
ally 
onvenient,

and is adequate for most appli
ations.

Also, the above de�nitions assume that the key for the en
ryption s
heme are generated by a

trusted party. While it is possible to de�ne veri�able en
ryption in a setting where the keys are not

generated by a trusted party, the de�nitions in this 
ase are a bit more 
ompli
ated and subtle, and

we do not present them here. Nevertheless, our proto
ols would require only slight modi�
ation to

remain se
ure in this setting.

5.2 Veri�able En
ryption of a Dis
rete Logarithm

Let (hk; n; g; y

1

; y

2

; y

3

) be a publi
 key of the en
ryption s
heme des
ribed in x3. Re
all that the

message spa
e asso
iated with this publi
 key is [n℄.

Let � be a 
y
li
 group of order � generated by 
. We assume that 
 and � are publi
ly known,

and that � is prime. Let W = [�℄ and � = �, and let R = f(w; Æ) 2 W � � : 


w

= Æg. The

\dis
rete logarithm" relation R is the relation with respe
t to whi
h we want to veri�ably en
rypt.

We shall of 
ourse require that n > � (in fa
t, we will make a stronger requirement). The

re
onstru
tion routine re
on will map a plaintext m 2 [n℄ to the integer (m remn) mod �, i.e.,

it 
omputes the balan
ed remainder of m modulo n, and then 
omputes the least non-negative

remainder of this modulo �.

Setup. Our proto
ol requires the auxiliary parameters n, whi
h must the produ
t of two safe

(l+ 1)-bit primes p = 2p

0

+ 1 and q = 2q

0

+ 1, and g and h, whi
h are two generators of G

n

0

� Z

�

n

,

where n

0

= p

0

q

0

; G

n

0

is the subgroup of Z

�

n

of order n

0

, and l = l(�).

One may view n, g, and h as additional 
omponents of the publi
 key of the en
ryption s
heme,

or as system parameters generated by a trusted party. Depending on the setting, we may simply

put n := n. In any event, the prover should not be privy to the fa
torization of n.

Let k = k(�) and k

0

= k

0

(�) be further se
urity parameters, where 2

�k(�)

and 2

�k

0

(�)

are

negligible fun
tions (f0; 1g

k

is the \
hallenge spa
e" of the veri�er and k

0


ontrols the quality of

the zero-knowledge property). We require that 2

k

< minfp

0

; q

0

; p

0

; q

0

; �g holds. Finally, we require

that � < n2

�k�k

0

�3

holds, i.e., that log




Æ \�ts into an en
ryption". (If this 
ondition is not meet,

the value log




Æ 
ould be split into smaller pie
es, ea
h of whi
h would then be veri�ably en
rypted.

However, we do not address this here.)

The proto
ol. The 
ommon input of the prover and veri�er is: the publi
 key (hk; n; g; y

1

; y

2

; y

3

),

the augmented publi
 key (n; g; h), a group element (Æ), a 
iphertext (u; e; v), and a label L. The

prover has additional inputs m = log




Æ and r 2

R

[n=4℄ su
h that

u = g

r

; e = y

r

1

h

m

; and v = abs ((y

2

y

H

hk

(u;e;L)

3

)

r

) :

1. The prover 
hooses a random s 2

R

[n=4℄ and 
omputes k := g

m

h

s

. The prover sends k to the

veri�er.

2. Then the prover and veri�er engage in the following proto
ol.
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(a) The prover 
hooses random

r

0

2

R

[�n2

k+k

0

�2

; n2

k+k

0

�2

℄; s

0

2

R

[�n2

k+k

0

�2

; n2

k+k

0

�2

℄; m

0

2

R

[��2

k+k

0

; �2

k+k

0

℄:

The prover 
omputes

u

0

:= g

2r

0

; e

0

:= y

2r

0

1

h

2m

0

; v

0

:= (y

2

y

H

hk

(u;e;L)

3

)

2r

0

; Æ

0

:= 


m

0

; and k

0

:= g

m

0

h

s

0

:

The prover sends u

0

, e

0

, v

0

, Æ

0

, and k

0

to the veri�er.

(b) The veri�er 
hooses a random 
hallenge 
 2

R

f0; 1g

k

and sends 
 to the prover.

(
) The prover replies with ~r := r

0

� 
r, ~s := s

0

� 
s, and ~m := m

0

� 
m (
omputed in Z).

(d) The veri�er 
he
ks whether the relations

u

0

= u

2


g

2~r

; e

0

= e

2


y

2~r

1

h

2 ~m

; v

0

= v

2


(y

2

y

H

hk

(u;e;L)

3

)

2~r

;

Æ

0

= Æ







~m

; k

0

= k




g

~m

h

~s

; and � n=4 < ~m < n=4

hold. If any of them does not hold, the veri�er stops and outputs 0.

3. If v = abs(v) the veri�er outputs 1; otherwise she outputs 0.

Using notation from [CS97℄ we denote the sub-proto
ol of Step 2 as

PKf(r;m; s) : u

2

= g

2r

^ e

2

= y

2r

1

h

2m

^ v

2

= (y

2

y

H

hk

(u;e;L)

3

)

2r

^

Æ = 


m

^ k = g

m

h

s

^ �n=2 < m < n=2g :

Proof of Se
urity. We prove the following theorem about the above system. Given this theorem,

one 
an apply the standard 
onstru
tions (e.g., [Dam00℄) to turn the sub-proto
ol used in Step 2

into an eÆ
ient one that is zero-knowledge w.r.t. any veri�er, and 
an thus obtain a veri�able

en
ryption system that satis�es 
omputational zero-knowledge.

Theorem 4. Under the strong RSA assumption, the above system is a veri�able en
ryption s
heme.

Proof. The 
orre
tness and spe
ial honest-veri�er zero-knowledge properties are easy to verify, and

we leave this to the reader.

It remains to 
onsider soundness.

If the su

ess-probability of the prover is non-negligible, then there is a knowledge extra
tor that

produ
es (in time polynomial in � and with non-negligible probability) two answers (~r

(1)

; ~s

(1)

; ~m

(1)

)

(~r

(2)

; ~s

(2)

; ~m

(2)

) from the prover on two di�erent 
hallenges 


(1)

and 


(2)

w.r.t. the same u

0

, e

0

, v

0

, Æ

0

,

and k

0

. W.l.o.g., suppose that 


(2)

> 


(1)

. Let �r = ~r

(1)

� ~r

(2)

, �s = ~s

(1)

� ~s

(2)

, �m = ~m

(1)

� ~m

(2)

,

and �
 = 


(2)

� 


(1)

> 0. From the veri�
ation equations one 
an derive the following equations:

u

2�


= g

2�r

e

2�


= y

2�r

1

h

2�m

v

2�


= (y

2

y

H

hk

(u;e;L)

3

)

2�r

Æ

�


= 


�m

k

�


= g

�m

h

�s

Now we use the strong RSA assumption. By Theorem 3, sin
e we have 
omputed k;�m;�s;

and �
 su
h that k

�


= g

�m

h

�s

, we may assume that �
 j �m and �
 j �s. Also, by 
onstru
tion

we have j�
j < minfp; q; p

0

; q

0

; p; q; p

0

; q

0

; �g and hen
e �
 is invertible modulo any of those primes.

Let 
̂ = �


�1

mod nn

0

. As u

2

has order dividing nn

0

, we get u

2

= g

2�r
̂

, i.e.,

u = w

1

g

�r
̂

(17)
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for some w

1

of order 2. Similarly, we get

e = w

2

y

�r
̂

1

h

�m=�


(18)

v = w

3

(y

2

y

H

hk

(u;e;L)

3

)

�r
̂

(19)

Æ = 


�m=�


(20)

for some w

2

and w

3

of order 2. It is not hard to see that from v = abs(v) and from Eqns. (17)-(19)

it follows that de
ryption of the triple (u; e; v) will provide the integer �m := �m=�
 mod n modulo

n (note that due to the squarings in the de
ryption algorithm, all the w

i

's disappear).

We 
laim that for �m = ( �m remn) mod � we have Æ = 


�m

, i.e., that (u; e; v) is an en
ryption

of log




Æ. As j ~m

(1)

j; j ~m

(2)

j < n=4 and �
 j �m, we must have j�m=�
j < n=2. Hen
e �m=�
 =

((�m=�
 mod n) remn) = �m remn and therefore Æ = 


�m=�


= 


�m

.

5.3 Extensions

Our en
ryption s
heme 
an be extended as follows to en
rypt l messages at on
e. The idea is to

use several y

1

's to 
ompute several e's. That is, the se
ret key be
omes (hk; x

(1)

1

; : : : ; x

(l)

1

; x

2

; x

3

)

with x

(1)

1

; : : : ; x

(l)

1

; x

2

; x

3

2

R

[n

2

=4℄, and the publi
 key be
omes (hk; n; g; y

(1)

1

; : : : ; y

(l)

1

; y

2

; y

3

) with

y

(i)

1

:= g

x

(i)

1

. To en
rypt a messages m

(i)

2 [n℄ with label L 2 f0; 1g

�

under a publi
 key as above,


hoose a random r 2

R

[n=4℄ and 
ompute

u := g

r

; e

(i)

:= (y

(i)

1

)

r

h

m

(i)

; and v := abs

�

(y

2

y

H

hk

(u;e;L)

3

)

r

�

:

To de
rypt a 
iphertext (u; e

(1)

; : : : ; e

(l)

; v) with label L under a se
ret key as above, �rst 
he
k

that abs(v) = v and u

2(x

2

+H

hk

(u;e;L)x

3

)

= v

2

. If this does not hold, then output reje
t and halt.

Next, let t = 2

�1

mod n, and 
ompute m̂

(i)

:= (e

(i)

=u

x

(i)

1

)

2t

. If all m̂

(i)

's are of the form h

m

(i)

for

some m

(i)

2 [n℄, then output the m

(i)

's; otherwise, output reje
t. It is easy to prove this en
ryption

s
heme se
ure.

It is now straightforward to extend our veri�able en
ryption proto
ol to the above en
ryption

s
heme to obtain to a veri�able en
ryption s
heme that en
rypts a (subset of a) representation of

a group element with respe
t to several bases.

Further, all of these proto
ols 
an be easily adapted to the 
ase where the order of the group �

is not known, i.e., a subgroup of of Z

�

N

for an RSA-modulus N .

6 Proving the Inequality of Dis
rete Logarithms

Our proto
ol for veri�able de
ryption (below) requires that one party proves to another party

whether or not two dis
rete logarithms are equal, where one of the dis
rete logarithms might not

be known to the prover (that is, in the 
ase the dis
rete logarithms are not equal). There are

well-known, eÆ
ient, spe
ial honest-veri�er zero-knowledge proof systems for proving that two

dis
rete logarithms are equal (see [CP93℄), so we fo
us on the problem of proving that two dis
rete

logarithms are unequal. We dis
uss an eÆ
ient proto
ol for this problem separately as it is of

independent interest and as the algebrai
 setting here is simpler than the one in whi
h we use it in

the next se
tion.
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Let G = hgi be a group of prime order q. The prover and veri�er have 
ommon inputs g; h; y; z 2

G, where g and h are generators for G, and log

g

y 6= log

h

z. The prover has the additional input

x = log

g

y. The prover and veri�er then engage in the following proto
ol.

1. The prover 
hooses r 2

R

Z

q

, 
omputes the auxiliary 
ommitment C = (h

x

=z)

r

, and sends C

to the veri�er.

2. The prover exe
utes the proto
ol denoted

PKf(�; �) : C = h

�

�

1

z

�

�

^ 1 = g

�

�

1

y

�

�

g

with the veri�er.

3. The veri�er a

epts if it a

epts in Step 2, and if C 6= 1; otherwise, the veri�er reje
ts.

Note that in an a
tual implementation, the value C may be sent to the veri�er as part of the

�rst message in the sub-proto
ol in Step 2.

Theorem 5. The above proto
ol is a spe
ial honest-veri�er proof system for proving that log

g

y 6=

log

h

z.

Proof. Corre
tness of the proto
ol is by inspe
tion.

Consider the proto
ol's soundness. If a prover 
an make an honest veri�er a

ept with non-

negligible probability, then using standard rewinding arguments, there exist values � and � su
h

that the equations

C = h

�

�

1

z

�

�

1 = g

�

�

1

y

�

�

(21)

hold. From the se
ond equation of (21) one 
an 
on
lude that

� � � log

g

y (mod q) :

Substituting � log

g

y for � in the �rst equation of (21), we get C = (h

log

g

y

=z)

�

. As the veri�er

a

epts only if C 6= 1, this implies that h

log

g

y

=z 6= 1, i.e., that log

g

y 6= log

h

z.

To see that the proto
ol is spe
ial honest-veri�er zero knowledge, note that in an a
tual run of

the proto
ol with an honest prover, C is a random element of G. Thus, the simulator 
an simply

generate C at random, and then use the simulator for the proof in Step 2.

Let us brie
y dis
uss related work. Independently of our work, Bresson and Stern [BS02℄ provide

a proto
ol to prove that two dis
rete logarithms are not equal that is similar to ours. However,

their proto
ol is about a fa
tor of two less eÆ
ient than ours and is only 
omputationally sound.

Also, we note that the proto
ol proposed by Mi
hels and Stadler [MS98℄ to prove whether or not

two dis
rete logarithms are equal is not zero knowledge be
ause it reveals the value h

x

(whi
h the

simulator 
an not 
ompute, but a (dishonest) veri�er 
an if he 
hooses h su
h the he knows log

g

h).

7 Veri�able De
ryption

In this se
tion we provide a proto
ol that allows the de
ryptor to prove that she de
rypted 
orre
tly.

In parti
ular, we provide a proto
ol that allows the de
ryptor to prove whether or not a given


iphertext de
rypts to a given plaintext. We then extend the proto
ol to one for proving whether

or not a given 
iphertext de
rypts to the dis
rete logarithm of a given group element.
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7.1 De�nition of Veri�able De
ryption

Veri�able de
ryption is a proto
ol between a prover, knowing the de
ryption key, and a veri�er,

who as the result of the proto
ol either reje
ts or learns whether or not a given 
iphertext de
rypts

under a given label to a plaintext that satis�es a given relation.

We adopt the notation and terminology in x5.1. In addition, for mutually 
ompatible en
ryption

s
heme en
ryption s
heme (G; E ;D), relation generator G

0

, and re
onstru
tion algorithm re
on , we

de�ne the fun
tion f that for all (PK;SK) 2 G(1

�

), all 	[R;W;�℄ 2 G

0

, all  ;L 2 f0; 1g

�

, and all

Æ 2 �

f(	; Æ;  ; L;SK) =

(

+1 if (re
on(PK;	; Æ;D(SK;  ; L)); Æ) 2 R;

�1 otherwise:

The (honest) veri�er in a veri�able de
ryption proto
ol will output either a value �1, indi
ating

that this is the value of f , or the value 0, indi
ating that the proof is invalid.

A diÆ
ulty in de�ning soundness for veri�able de
ryption is that for many publi
 key en
ryption

s
hemes (in
luding ours and, e.g., the ElGamal based Cramer-Shoup one [CS98℄), it is not well

de�ned whether or not a 
iphertext is valid given only the publi
 key. More pre
isely, there are


iphertexts that 
an be both valid and invalid, depending on the a
tual value of the se
ret key.

Hen
e, it is in prin
iple possible that the de
ryptor/prover 
ould 
hange her mind about su
h


iphertexts, whi
h seems inappropriate. In the following de�nition, we assume that the publi
 and

se
ret key are generated by a trusted party whi
h allows us to de�ne soundness in terms of the se
ret

key and publi
 key rather than only the publi
 key. As for veri�able en
ryption, the de�nitions

for the setting where the keys are not generated by a trusted party are a bit more 
ompli
ated

and subtle, and we do not present them here. However, our proto
ols would require only slight

modi�
ation to remain se
ure in this setting.

De�nition 2. A proof system (P;V), together with mutually 
ompatible en
ryption s
heme

(G; E ;D), relation generator G

0

, and re
onstru
tion algorithm re
on, form a veri�able de
ryption

s
heme, if the following properties hold.

Corre
tness: For all (PK;SK) 2 G(1

�

), for all 	[R;W;�℄ 2 G

0

(1

�

), for all Æ 2 �, for all  ;L 2

f0; 1g

�

,

Pr[x V(PK;	; Æ;  ; L)

P(PK;	;Æ; ;L;SK)

: x = f(	; Æ;  ; L; SK)℄ = 1� neg(�) :

Soundness: For all adversaries (A

�

, P

�

),

Pr[ (PK;SK) G(1

�

);	[R;W;�℄ G

0

(1

�

);

(Æ;  ; L; aux ) A

�

(PK;SK;	);

x V(PK;	; Æ;  ; L)

P

�

(aux )

:

x = �f(	; Æ;  ; L; SK) ℄ = neg(�) :

Spe
ial honest-veri�er zero knowledge: There exists a simulator Sim su
h that for all adver-
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saries (A

�

, B

�

), we have

Pr[ (PK;SK) G(1

�

);	[R;W;�℄  G

0

(1

�

);

(Æ;  ; L; 
; aux ) A

�

(PK;SK;	);

b f0; 1g;

if b = 0

then � Trans(PK;	; Æ;  ; L; 
;SK)

else � Sim(PK;	; Æ;  ; L; 
; f(	; Æ;  ; L;SK));

^

b B

�

(aux ; �) :

b =

^

b ℄ = 1=2 + neg(�) :

7.2 Veri�able De
ryption of a Mat
hing Plaintext

We give a proto
ol for the de
ryptor to prove whether or not a 
iphertext (u; e; v) de
rypts to a

message m under label L, i.e., using this proto
ol she 
an show that she did 
orre
tly de
rypt. This

is a spe
ial 
ase of veri�able de
ryption in whi
h the relation R is equality, and the re
onstru
tion

routine returns its last input as its output.

For our en
ryption s
heme in x3, this proof 
orresponds to proving whether or not the two

equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 and (e=u

x

1

)

2

=h

2m

= 1 (22)

hold (assuming that the publi
 test abs(v) = v is satis�ed). If the 
iphertext is invalid, one or both

of the two statements do not hold. If the 
iphertext is valid but de
rypts to another message, the

�rst statement holds but the se
ond one does not.

Proving that both of these equations hold is a fairly straightforward appli
ation of known

te
hniques.

To prove that at least one of the equations does not hold, we 
an use the \proof of partial

knowledge" te
hnique of [CDS94℄, 
ombined with the te
hnique developed in x6. However, be
ause

in the present setting the group has non-prime order we 
an not prove the relationship among

the se
rets in the same way as in x6 and, more importantly, the resulting proto
ol would not be

zero-knowledge. The former problem 
an be solved using an auxiliary group G

n

0

� Z

�

n

as we did

in x5. We 
onsider the latter problem. Depending on the values of the se
ret keys x

1

, x

2

, and x

3

,

the left hand sides of the equations (22), and thus the auxiliary 
ommitments to be provided in the

proto
ol, lie in di�erent (sub-)groups, i.e., in G

n

, G

n

0

, or G

n

G

n

0

. As the simulator does not know

the values x

1

, x

2

, and x

3

, it 
an not simulate these auxiliary 
ommitments. We solve this problem

using the fa
t that for all elements a 2 G

n

G

n

0

we have

a 6= 1 , (a

n

2 G

n

0

^ a

n

6= 1) _ (a 2 G

n

^ a 6= 1) :

Thus, to prove that (at least) one of the equations (22) does not hold, we prove that either

�

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

�

n

6= 1 (23)

or

�

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

�

n

= 1 and

u

2(x

2

+H

hk

(u;e;L)x

3

)

v

2

6= 1 (24)
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or

�

(e=u

x

1

)

2

h

2m

�

n

= (e=u

x

1

)

2n

6= 1 (25)

or

�

(e=u

x

1

)

2

h

2m

�

n

= 1 and

(e=u

x

1

)

2

h

2m

6= 1 (26)

holds. Now, whenever one of the four 
ases applies it is always well de�ned in whi
h group the

left-hand sides of the inequalities lie and we 
an apply the ideas underlying the proto
ol in x6

to prove that at least one of these four inequalities applies. We remark that the 
ase where the

statements (23-25) are false but the statement (26) is true 
orresponds to the 
ase where the


iphertext is a valid en
ryption of a message di�erent from m. If any of the statements (23-25) is

true 
orresponds to the 
ases where the 
iphertext is invalid.

We are now ready to des
ribe the proto
ol between the de
ryptor and a veri�er. Their 
ommon

input is (hk; n; g; y

1

; y

2

; y

3

), (n; g; h), (u; e; v), m, and L and the additional input to the de
ryptor

is (x

1

; x

2

; x

3

). The triple (n; g; h) is an auxiliary parameter as in the one previous se
tion. (As we

assume here that n is generated by a trusted party as well, i.e., that the de
ryptor is not provided

with n's fa
torization; also, n and n 
ould be identi
al.) In the following des
ription we assume

that all the messages the prover sends to the veri�er prior to the exe
ution of one of the possible

PK proto
ols will in fa
t be bundled with the �rst message of that PK proto
ol. Here we provide

the proof-proto
ols only by high-level notation; the a
tual proto
ols are easily derived from it (
f.

also the the veri�able en
ryption proto
ol presented in x5 and its high-level notation).

1. If m 62 [n℄ or the 
iphertext is malformed, (e.g., if v 6= abs(v)), the veri�er outputs �1, and

the proto
ol stops.

2. If (u; e; v) is a valid 
iphertext and de
rypts to m under label L, the de
ryptor sends 1 to

the veri�er, and then engages in the proto
ol denoted

PKf(x

1

; x

2

; x

3

) : y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^ v

2

= u

2x

2

u

2H

hk

(u;e;L)x

3

^

e

2

h

2m

= u

2x

1

g

with the veri�er.

3. If (u; e; v) is an invalid 
iphertext w.r.t. the label L or de
rypts to some message di�erent

from m under L, then the de
ryptor sends �1 to the veri�er. They pro
eed as follows.

(a) The de
ryptor 
hooses a

1

2

R

[n=4℄, a

2

2

R

[n

2

=4℄, a

3

2

R

[n=4℄, and a

4

2

R

[n

2

=4℄, along

with b

1

; b

2

; b

3

; b

3

2

R

[n=4℄.

She then 
omputes C

1

:= g

a

1

h

b

1

, C

2

:= g

a

2

h

b

2

, C

3

:= g

a

3

h

b

3

, and C

4

:= g

a

4

h

b

4

.

She 
hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

G

n

.

Furthermore,

(Case 1) if u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

, she sets C

1

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

;

(Case 2) else if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, she sets C

2

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

;

(Case 3) else if (u

x

1

=e)

2

62 hhi, she sets C

3

:= (u

x

1

=e)

2na

3

;

(Case 4) else (u

x

1

=e)

2

6= h

2m

, and she sets C

4

:= (u

x

1

h

m

=e)

2a

4

:

The de
ryptor sends C

1

, C

2

, C

3

, C

4

, C

1

, C

2

, C

3

, and C

4

to the veri�er.
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(b) The de
ryptor and the veri�er 
arry out the proto
ol denoted

PK

n

(x

1

; x

2

; x

3

; a

1

; : : : ; a

4

; b

1

; : : : ; b

4

; r

1

; : : : ; r

4

s

1

; : : : ; s

4

) :

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

1

= u

2nr

1

(

1

v

)

2na

1

^ C

1

= g

a

1

h

b

1

^ 1 = (

1

C

1

)

x

2

(

1

C

1

)

H

hk

(u;e;L)x

3

g

r

1

h

s

1

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

2

= u

2r

2

(

1

v

)

a

2

^ C

2

= g

a

2

h

b

2

^ 1 = (

1

C

2

)

x

2

(

1

C

2

)

H

hk

(u;e;L)x

3

g

r

2

h

s

2

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

3

= u

2nr

3

(

1

e

)

2na

3

^ C

3

= g

a

3

h

b

3

^ 1 = (

1

C

3

)

x

1

g

r

3

h

s

3

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

4

= u

2r

4

(

h

m

e

)

2a

4

^ C

4

= g

a

4

h

b

4

^ 1 = (

1

C

4

)

x

1

g

r

4

h

s

4

io

;

where r

1

; : : : ; r

4

; s

1

; : : : ; s

4

are temporary se
rets (i.e.,

r

1

= a

1

(x

2

+H

hk

(u; e; L)x

3

); s

1

= b

1

(x

2

+H

hk

(u; e; L)x

3

);

r

2

= a

2

(x

2

+H

hk

(u; e; L)x

3

); s

2

= b

2

(x

2

+H

hk

(u; e; L)x

3

);

r

3

= x

1

a

3

; s

3

= x

1

b

3

;

r

4

= x

1

a

4

; s

4

= x

1

b

4

;

(
omputed in Z)). (To derive the a
tual proto
ol one may to apply the te
hniques by

Cramer et al.[CDS94℄ for realizing the _'s.)

(
) The veri�er 
he
ks that C

2

1

6= 1, C

2

2

6= 1, C

2

3

6= 1, and C

2

4

6= 1.

The 
omputational load of the prover and the veri�er is about one to four times the load in the

proto
ol for veri�able en
ryption des
ribed in the previous se
tion (depending on whether Step 2

or Step 3 gets 
arried out).

Theorem 6. Assuming fa
toring is hard, the above s
heme is a veri�able de
ryption s
heme (for

mat
hing plaintexts).

Proof. Corre
tness is trivial, and we leave this to the reader.

We now show that the proto
ol is spe
ial honest-veri�er 
omputational zero-knowledge by pro-

viding a simulator.

First the simulator exe
utes step 1 of the proto
ol as the de
ryptor would, that is, if m 62 [n℄ or

if the 
iphertext is malformed the simulator stops. The simulator queries an ora
le to determine

whether or not  de
rypts to m. If it does, it sends the veri�er 1 it simulates step 2 by the simulator

for the PK -proto
ol of step 2. If does not, it simulates step 3 as follows. First the simulator sends

the veri�er �1. Then it 
hooses b

1

; b

2

; b

3

; b

3

2

R

[n=4℄. It then 
omputes C

1

:= h

b

1

, C

2

:= h

b

2

,

C

3

:= h

b

3

, and C

4

:= h

b

4

. It 
hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

G

n

. Next it

invokes the simulator for the PK -proto
ol of step 3. This 
on
ludes the simulator.
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It remains to show that the simulator indeed works. It is 
lear that the simulation of steps 1

and 2 works. Consider step 3.

Note that in the real run as well as in the simulation the pairs (C

1

; C

1

); : : : ; (C

4

; C

4

) are inde-

pendently distributed. Moreover they obviously have the same distribution in the simulation as in

the real run ex
ept for the one pair for whi
h the prover repla
es the C

i

.

We 
onsider the 
ases where the prover repla
es C

1

and C

2

, respe
tively. The remaining two


ases are analogous.

Case 1. Here u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

holds and the prover repla
es C

1

. Note that

(u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

2 G

n

0

and (u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

6= 1. Thus (u

(x

2

+H

hk

(u;e;L)x

3

)

=v) gen-

erates G

n

0

(or we 
ould fa
tor n) and C

1

= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

is a random element of G

n

0

as

a

1

is 
hosen at random from the appropriate interval. Also, as b

1

is 
hosen independently of a

1

, C

1

is a random element from G

n

0

. Hen
e C

1

and C

1

have the same distribution in the run with the

real prover as in the simulation.

Case 2. As the above 
ase does not apply, i.e., (u

(x

2

+H

hk

(u;e;L)x

3

)

=v)

2n

= 1 we have that

(u

x

2

+H

hk

(u;e;L)x

3

)

=v)

2

2 G

n

. Again, (u

x

2

+H

hk

(u;e;L)x

3

)

=v)

2

generates G

n

(or we 
ould fa
tor n) and

C

2

= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

as a

1

is 
hosen at random. For the same reason as in Case 1, C

2

is a

random element from G

n

0

and C

2

and C

2

have the same distribution in the run with the real prover

as in the simulation.

These fa
ts, together with the fa
t that all the PK -proto
ols used as sub-proto
ols are spe
ial

honest-veri�er zero-knowledge (showing the latter is standard and left to the reader), imply that

the veri�able de
ryption proto
ol is spe
ial honest-veri�er zero-knowledge. Note that we have used

in an essential way the fa
t that we quantify \
omputationally" over the inputs to the simulator:

the inputs that 
ause the simulator to fail are assumed to be hard to �nd.

In the remainder we prove soundness. Let us generate a publi
 keys and se
ret keys a

ording

to the usual algorithms, obtaining

n; g; y

1

; y

2

; y

3

; x

1

; x

2

; x

3

; n; g; h:

All of this information is available to the adversary, who produ
es m; ;L, and is able to make the

veri�er a

ept on these inputs with non-negligible probability. Using standard rewinding te
hniques

we 
an produ
e two a

epting 
onversations for either the PK proto
ol in Step 2 or the one in Step 3

(for di�erent 
hallenges but the same �rst message), depending on whether m = D(1

�

;SK;  ; L).

We 
onsider these two 
ases.

Case I. First assume that m 6= D(1

�

;SK;  ; L) but that V 's output is 1. Let (u; e; v) :=  . In

this 
ase we get two a

epting 
onversations of the PK proto
ol in Step 2 and hen
e two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

) and (~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

)

for the two di�erent 
hallenges 


(1)

and 


(2)

but with the same �rst message (here we use the same

notation for the proto
ol variables as for the PK proto
ol in the previous se
tion). W.l.o.g., suppose

that 


(2)

> 


(1)

. Let �x

1

= ~x

(1)

1

� ~x

(2)

1

, �x

2

= ~x

(1)

2

� ~x

(2)

2

, �x

3

= ~x

(1)

3

� ~x

(2)

3

, and �
 = 


(2)

� 


(1)

.

From the veri�
ation equation of the PK proto
ol one 
an derive the following equations:

y

1

�


= g

�x

1

; y

2

�


= g

�x

2

; y

3

�


= g

�x

3

; (27)

v

2�


= u

2�x

2

u

2H

hk

(u;e;L)�x

3

; and (28)

(

e

2

h

2m

)

�


= u

2�x

1

: (29)

27



As n is the produ
t of two safe primes p and q, we have j�
j < minfp; q; p

0

q

0

g and hen
e �
 is

invertible modulo n

0

n. We know x

i

su
h that y

i

= g

x

i

and therefore it follows from (27) that

�
 x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (30)

Now, D(1

�

;SK;  ; L) 6= m means that least one of the four statements (23-26) must be true and

therefore at least one of the two statements

u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

or (e=u

x

1

)

2

6= h

2m

(31)

holds. We 
onsider these two 
ases:

Case 1. If u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

we must have that u

2�
(x

2

+H

hk

(u;e;L)x

3

)

6= v

2�


=

u

2�x

2

+H

hk

(u;e;L)�x

3

(from Equation (28) and be
ause �
 is invertible modulo nn

0

) and there-

fore also

�
(x

2

+H

hk

(u; e; L)x

3

) 6� �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

n) ;

as the order of u

2

divides n

0

n. From (30) it follows that

�
(x

2

+H

hk

(u; e; L)x

3

) � �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

) :

Therefore �
x

2

��x

2

+ (�
x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

, whi
h

would allow us to fa
tor n, whi
h is impossible.

Case 2. If u

2x

1

6= (

e

h

m

)

2

we 
an, similarly as in 
ase 1, 
on
lude that u

2�
x

1

6= u

2�x

1

from Equa-

tion (29) and that �
x

1

��x

1

is a non-zero multiple of n

0

, whi
h would again allow us to

fa
tor n, whi
h is impossible.

Case II. It remains to 
onsider the 
ase when V 's output is �1 but m = D(1

�

;SK;  ; L) holds.

Let (u; e; v) :=  . Thus we have

v

2

= u

2(x

2

+H

hk

(u;e;L)x

3

)

and u

2x

1

= (

e

h

m

)

2

: (32)

As usual we obtain two a

epting 
onversation of the PK proto
ol in Step 3 and thus two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~a

(1)

1

; : : : ; ~a

(1)

6

;

~

b

(1)

1

; : : : ;

~

b

(1)

4

; ~r

(1)

1

; : : : ; ~r

(1)

4

; ~s

(1)

1

; : : : ; ~s

(1)

4

)

and

(~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

; ~a

(2)

1

; : : : ; ~a

(2)

4

;

~

b

(2)

1

; : : : ;

~

b

(2)

4

; ~r

(2)

1

; : : : ; ~r

(2)

4

; ~s

(2)

1

; : : : ; ~s

(2)

4

)

for the two di�erent 
hallenges 


(1)

and 


(2)

but with the same �rst message (here we use the same

notation for the proto
ol variables as for the PK proto
ol in the previous se
tion and left out an

intermediate step that deals with the _'s (
.f. [CDS94℄)). W.l.o.g., suppose that 


(2)

> 


(1)

. Let

�x

i

= ~x

(1)

i

� ~x

(2)

i

(i = 1; : : : ; 3); �a

i

= ~a

(1)

i

� ~a

(2)

i

(i = 1; : : : ; 4);

�b

i

=

~

b

(1)

i

�

~

b

(2)

i

(i = 1; : : : ; 4); �s

i

= ~s

(1)

i

� ~s

(2)

i

(i = 1; : : : ; 4);

�r

i

= ~r

(1)

i

� ~r

(2)

i

(i = 1; : : : ; 4); �
 = 


(2)

� 


(1)

:
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From the veri�
ation equation of the PK proto
ol one 
an derive that

y

1

�


= g

�x

1

; y

2

�


= g

�x

2

; and y

3

�


= g

�x

3

; (33)

hold and either

C

�


1

= u

2n�r

1

(

1

v

)

2n�a

1

; C

�


1

= g

�a

1

h

�b

1

; and 1 = (

1

C

1

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

1

h

�s

1

(34)

or

C

�


2

= u

2�r

2

(

1

v

)

2�a

2

; C

�


2

= g

�a

2

h

�b

2

; and 1 = (

1

C

2

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

2

h

�s

2

(35)

or

C

�


3

= u

2n�r

3

(

1

e

)

2n�a

3

; C

�


3

= g

�a

3

h

�b

3

; and 1 = (

1

C

3

)

�x

1

g

�r

3

h

�s

3

(36)

or

C

�


4

= u

2�r

4

(

1

e

)

n�a

4

; C

�


4

= g

�a

4

h

�b

4

; and 1 = (

1

C

4

)

�x

1

g

�r

4

h

�s

4

(37)

hold. We know x

i

su
h that y

i

= g

x

i

and therefore it follows from (33) that

�
 x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (38)

We next 
onsider the impli
ations of the 
ases when the equations (34), the equations (35), the

equations (36), or the equations (37) hold in 
onjun
tion with (33).

Case 1. Consider the 
ase where Equations (33) and (34) hold. From the last two equations of (34)

we get

g

�a

1

(�x

2

+H

hk

(u;e;L)�x

3

)

h

�b

1

(�x

2

+H

hk

(u;e;L)�x

3

)

= g

�
�r

1

h

�
�s

1

:

Under the assumption that fa
toring n is hard, and applying Theorem 2, we may assume that

�a

1

(�x

2

+H

hk

(u; e; L)�x

3

) = �
�r

1

: (39)

Be
ause n is the produ
t of two safe primes and we have j�
j < minfp; q; p

0

q

0

g, it follows from

C

2

1

6= 1 (whi
h is 
he
ked by the veri�er in Step 3
) that C

�


1

6= 1. From the �rst equation

of (34) it follows that u

2n�r

1

6= v

2n�a

1

. By Eq. (39) and the fa
t that u

2n

and v

2n

have order

dividing n

0

, we have

u

2n�a

1

(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n�
�a

1

;

and hen
e

u

2n(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n�


: (40)

From (40) and the �rst equation of (32) we have

u

2n(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2n�


= u

2n�
(x

2

+H

hk

(u;e;L)x

3

)

:
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Be
ause the order of u

2n

divides n

0

we 
an further 
on
lude that

�x

2

+H

hk

(u; e; L)�x

3

6� �
(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) :

From (38) if follows that

�x

2

+H

hk

(u; e; L)�x

3

� �
(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) ;

whi
h is a 
ontradi
tion to the previous equation and hen
e this 
ase 
an not o

ur.

Case 2. We 
onsider the 
ase where Equations (33) and (35) hold. Similarly as in 
ase 1, we 
an

derive that

u

2(�x

2

+H

hk

(u;e;L)�x

3

)

6= v

2�


= u

2�
(x

2

+H

hk

(u;e;L)x

3

)

holds (assuming n is hard to fa
tor). Be
ause the order of u

2

divides n

0

n we 
an further


on
lude that

�x

2

+H

hk

(u; e; L)�x

3

6� �
(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

n) :

From (38) if follows that

�x

2

+H

hk

(u; e; L)�x

3

� �
(x

2

+H

hk

(u; e; L)x

3

) (mod n

0

) :

Therefore �
x

2

��x

2

+ (�
x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

, whi
h

would allow us to fa
tor n, whi
h is a 
ontradi
tion.

Case 3. Similarly as in 
ase 1, from the Equations (33) and (36), one 
an derive that

u

2n�x

1

6= e

2n�


(41)

holds (or we fa
tor n with non-negligible probability). From the se
ond equation of (32) and

h

n

= 1 if follows that u

2nx

1

= e

2n

and u

2n�
x

1

= e

2n�


, and from (41), that

u

2n�
x

1

6= u

2n�x

1

and �nally that �
x

1

6� �x

1

(mod n

0

)

as u

2n

has order dividing n

0

. The latter, however, is a 
ontradi
tion to Eqn. (38) and thus

this 
ase 
an not o

ur.

Case 4. Similarly as before, from the Equations (33) and (37) one 
an show that

u

2�x

1

6= (

e

h

m

)

2�


(42)

holds (or we fa
tor n with non-negligible probability). From the se
ond equation of (32) and

from (42) we get u

2�
x

1

6= u

2�x

1

. Similarly as in 
ase 2, it follows that �
x

1

� �x

1

is a

multiple of n

0

and we are again able to fa
tor n.
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7.3 Veri�able De
ryption of a Dis
rete Logarithm

We now des
ribe how the proto
ol provided in the previous se
tion 
an be modi�ed to obtain a

proto
ol for veri�able de
ryption of a dis
rete logarithm. The setting and notation are as in x5.2;

in parti
ular, we make use of the same re
onstru
tion routine.

We need to modify the proto
ol from the previous se
tion only for the 
ases where the 
iphertext

is valid. That is, instead of proving that the 
iphertext de
rypts (or does not de
rypt) to a given

message, the de
ryptor now has to prove that it de
rypts (or does not de
rypt) to a value m su
h

that (m remn) � log




Æ (mod �). This 
orresponds to proving whether or not the three equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 or (e=u

x

1

)

2n

= 1 or Æ = 


(log

h

2

(e=u

x

1

)

2

remn)

(43)

hold. Note that log

h

2

(e=u

x

1

)

2

exists if and only if (e=u

x

1

)

2n

= 1. The �rst two statements of (43)


an be handled as in the previous se
tion. The last one 
an be handled by proving knowledge of a

se
ret, say m, that (1) equals the en
rypted message modulo n, (2) equals (or doesn't equal) log




Æ

modulo q, and (3) lies in the interval [�(n�1)=2; (n�1)=2℄. The �rst two properties 
an be proved

under the strong RSA assumption using additional parameters (n; g; h) as in the previous se
tion.

We dis
uss proving the last one. Di�erent from the interval-proof used for veri�able en
ryption,

this interval-proof needs to be exa
t, i.e., if we allowed for the same sloppiness, then the prover


ould for instan
e add a multiple of n to m and then show that (u; e; v) does not (or does) de
rypt

to log




Æ.

Boudot [Bou00℄ presents several proto
ols to prove that in integer m lies exa
tly in an interval

[a; b℄. One proto
ol uses the fa
t that x 2 [a; b℄ is equivalent to b � x � 0 and x � a � 0 and that

one 
an show that an integer is positive by proving knowledge of four values the squares of whi
h

sum up to the 
onsidered integer (in Z), again under the strong RSA assumption using additional

parameters (n; g; h). Lagrange proved that an integer 
an always be represented as four squares

and Rabin and Shallit [RS86℄ provide an eÆ
ient algorithm for �nding su
h squares.

We note that in our 
ase the interval is symmetri
 and it therefore suÆ
es to prove that

((n� 1)=2)

2

�m

2

� 0 holds, whi
h is more eÆ
ient.

With these observations one 
an derive the following proto
ol for veri�able de
ryption of a

dis
rete logarithm from the proto
ol presented in the previous se
tion.

The 
ommon input of the de
ryptor and the veri�er is (hk; n; g; y

1

; y

2

; y

3

); (n; g; h); (u; e; v); Æ; L

and the additional input to the de
ryptor is (x

1

; x

2

; x

3

).

1. If Æ 62 � or the 
iphertext is malformed (e.g., if v 6= abs(v)), the veri�er outputs �1, and the

proto
ol stops.

In 
ase (u; e; v) is a valid 
iphertext w.r.t. label L, the prover de
rypts it, thereby obtains m,

and 
omputes integers w

1

; : : : ; w

4

su
h that

P

4

i=1

w

i

= (n� 1)

2

=4�m

2

(
.f. [RS86℄).

2. If (u; e; v) indeed de
rypts to log




Æ under label L, i.e., if Æ = 


m remn

, the de
ryptor sends 1

to the veri�er, 
hooses t

1

; : : : ; t

5

2

R

[n=4℄, 
omputes

W

1

:= g

w

1

h

t

1

;W

2

:= g

w

2

h

t

2

;W

3

:= g

w

3

h

t

3

;W

4

:= g

w

4

h

t

4

; and M := g

m

h

t

5

;

and sends W

1

, W

2

, W

3

, W

4

, and M to the veri�er.
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The prover and the veri�er engage in the proto
ol

PKf(x

1

; x

2

; x

3

;m;w

1

; : : : ; w

4

; t

1

; : : : ; t

5

; s) :

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

v

2

= u

2x

2

u

2H

hk

(u;e;L)x

3

^ e

2

= u

2x

1

h

2m

^

W

1

= g

w

1

h

t

1

^ W

2

= g

w

2

h

t

2

^ W

3

= g

w

3

h

t

3

^ W

4

= g

w

4

h

t

4

^

M = g

m

h

t

5

^ g

(n�1)

2

=4

=M

m

W

w

1

1

W

w

2

2

W

w

3

3

W

w

4

4

h

s

^

Æ = 


m

g ;

where s is a temporary se
ret (i.e., s = �t

5

m�

P

4

i=1

w

i

t

i

).

3. If (u; e; v) is an invalid 
iphertext w.r.t. the label L or de
rypts to some message m su
h that

Æ 6= 


m remn

, then the de
ryptor sends �1 to the veri�er. They pro
eed as follows.

(a) The de
ryptor 
hooses a

1

2

R

[n=4℄ a

2

2

R

[n

2

=4℄, a

3

2

R

[n=4℄, and a

4

2

R

[�℄, along with

b

1

; : : : ; b

3

; t

1

; : : : ; t

5

2

R

[n=4℄.

She 
omputes C

1

:= g

a

1

h

b

1

, C

2

:= g

a

2

h

b

2

, C

3

:= g

a

3

h

b

3

, and C

4

:= g

a

4

h

b

4

.

She 
omputes W

1

:= h

t

1

, W

2

:= h

t

2

, W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

.

She 
hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

�.

Furthermore,

(Case 1) if u

2n(x

2

+H

hk

(u;e;L)x

3

)

6= v

2n

, she sets C

1

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2na

1

;

(Case 2) else if u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

, she sets C

2

:= (u

x

2

+H

hk

(u;e;L)x

3

=v)

2a

2

;

(Case 3) else if (u

x

1

=e)

2

62 hhi, she sets C

3

:= (u

x

1

=e)

2na

3

;

(Case 4) else Æ 6= 


m remn

, and she sets C

4

:= (


m

=Æ)

a

4

;

W

i

:= g

w

i

h

t

i

(i = 1; : : : ; 4); and

M := g

m

h

t

5

:

The de
ryptor sends C

1

, C

2

, C

3

, C

4

, C

1

, C

2

, C

3

, and C

4

to the veri�er.
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(b) The de
ryptor and the veri�er 
arry out the proto
ol denoted

PK

n

(x

1

; x

2

; x

3

; a

1

; : : : ; a

4

; b

1

; : : : ; b

4

; r

1

; : : : ; r

4

s

1

; : : : ; s

5

; t

1

; : : : ; t

5

; w

1

; : : : ; w

4

;m) :

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

1

= u

2nr

1

(

1

v

)

2na

1

^ C

1

= g

a

1

h

b

1

^ 1 = (

1

C

1

)

x

2

(

1

C

1

)

H

hk

(u;e;L)x

3

g

r

1

h

s

1

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

2

= u

2r

2

(

1

v

)

a

2

^ C

2

= g

a

2

h

b

2

^ 1 = (

1

C

2

)

x

2

(

1

C

2

)

H

hk

(u;e;L)x

3

g

r

2

h

s

2

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

C

3

= u

2nr

3

(

1

e

)

2na

3

^ C

3

= g

a

3

h

b

3

^ 1 = (

1

C

3

)

x

1

g

r

3

h

s

3

i

_

h

y

1

= g

x

1

^ y

2

= g

x

2

^ y

3

= g

x

3

^

e

2

= u

2x

1

h

2m

^

W

1

= g

w

1

h

t

1

^ W

2

= g

w

2

h

t

2

^ W

3

= g

w

3

h

t

3

^ W

4

= g

w

4

h

t

4

^

M = g

m

h

t

5

^ g

(n�1)

2

=4

=M

m

W

w

1

1

W

w

2

2

W

w

3

3

W

w

4

4

h

s

5

^

C

4

= 


r

4

(

1

Æ

)

a

4

^ C

4

= g

a

4

h

b

4

^ 1 = (

1

C

4

)

m

g

r

4

h

s

4

io

;

where r

1

; : : : ; r

4

; s

1

; : : : ; s

4

are temporary se
rets (i.e.,

r

1

= a

1

(x

2

+H

hk

(u; e; L)x

3

); s

1

= b

1

(x

2

+H

hk

(u; e; L)x

3

);

r

2

= a

2

(x

2

+H

hk

(u; e; L)x

3

); s

2

= b

2

(x

2

+H

hk

(u; e; L)x

3

);

r

3

= x

1

a

3

; s

3

= x

1

b

3

;

r

4

= ma

4

; s

4

= mb

4

;

s

5

= �t

5

m�

4

X

i=1

w

i

t

i

:

(
omputed in Z)). (To derive the a
tual proto
ol one has to apply the te
hniques by

Cramer et al.[CDS94℄ for realizing the _'s.)

(
) The veri�er 
he
ks that C

2

1

6= 1, C

2

2

6= 1, C

2

3

6= 1, and C

4

6= 1.

Theorem 7. Under the strong RSA assumption, the above s
heme is a veri�able de
ryption s
heme

(for dis
rete logarithms).

Proof. One needs to prove soundness, 
orre
tness and spe
ial honest-veri�er zero-knowledge w.r.t.

an ora
le f

0

(Æ;  ; L;SK) that replies with 1 if Æ = 


m̂

where m̂ = D(SK;  ; L) rem n, or with �1

otherwise.

The following proof is very similar to the one of Theorem 6.

Corre
tness is by inspe
tion.

We now show that the whole proto
ol is spe
ial honest-veri�er 
omputational zero-knowledge

by providing a simulator.
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First the simulator exe
utes Step 1 of the proto
ol as the de
ryptor would, that is, if Æ 62 �

or v 6= abs(v) it and stops. Otherwise, the simulator 
hooses random integers m;w

1

; : : : ; w

4

2

R

[�n=2; n=2℄.

If f

0

(Æ;  ; L;SK) = 1, it simulates step 2 as follows. It 
hooses t

1

; : : : ; t

5

2

R

[n=4℄ and 
omputes

W

1

:= h

t

1

, W

2

:= h

t

2

, W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

. Then it sends the values W

1

; : : : ;W

4

;

and M to the veri�er and �nally invokes the simulator for the PK -proto
ol of step 2.

If f

0

(Æ;  ; L;SK) = 1, it simulates step 3 as follows. The simulator 
hooses b

1

; b

2

; b

3

; b

3

2

R

t

1

; : : : ; t

5

[n=4℄. It then 
omputes C

1

:= h

b

1

, C

2

:= h

b

2

, C

3

:= h

b

3

, C

4

:= h

b

4

, W

1

:= h

t

1

, W

2

:= h

t

2

,

W

3

:= h

t

3

, W

4

:= h

t

4

, and M := h

t

5

. It 
hooses C

1

2

R

G

n

0

, C

2

2

R

G

n

, C

3

2

R

G

n

0

, and C

4

2

R

�.

It �nally invokes the simulator for the PK -proto
ol of step 3. This 
on
ludes the simulator.

The argument that this simulation a
tually works is rather similar to the one given in the proof

of Theorem 6.

In the remainder we prove soundness. Let us generate a publi
 keys and se
ret keys a

ording

to the usual algorithms, obtaining

n; g; y

1

; y

2

; y

3

; x

1

; x

2

; x

3

; n; g; h:

All of this information is available to the adversary, who produ
es Æ;  ; L, and is able to make the

veri�er a

ept on these inputs with non-negligible probability. By standard rewinding te
hniques

we 
an produ
e two a

epting 
onversations for either the PK proto
ol in Step 2 or the one in

Step 3 (for di�erent 
hallenges but the same �rst message), depending on whether Æ = 


m̂

, where

m̂ = D(SK;  ; L) remn, for (Æ;  ; L) provided by A

�

. We 
onsider these two 
ases.

Case I. First assume that Æ 6= 


m̂

or reje
t = D(SK;  ; L) but that V 's output is 1. Let (u; e; v) :=

 . We 
an now get two a

epting 
onversations of the PK proto
ol in Step 2 and hen
e two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~m

(1)

; ~w

(1)

1

; : : : ; ~w

(1)

4

;

~

t

(1)

1

; : : : ;

~

t

(1)

5

; ~s

(1)

)

and

(~x

(2)

1

; ~x

(2)

2

; ~x

(2)

3

; ~m

(2)

; ~w

(2)

1

; : : : ; ~w

(2)

4

;

~

t

(2)

1

; : : : ;

~

t

(2)

5

; ~s

(2)

)

for the two di�erent 
hallenges 


(1)

and 


(2)

but with the same �rst message (here we use the same

notation for the proto
ol variables as for the PK proto
ol in the previous se
tion). W.l.o.g., suppose

that 


(2)

> 


(1)

. Let �x

1

= ~x

(1)

1

� ~x

(2)

1

, �x

2

= ~x

(1)

2

� ~x

(2)

2

, �x

3

= ~x

(1)

3

� ~x

(2)

3

, �m = ~m

(1)

� ~m

(2)

,

�w

1

= ~w

(1)

1

� ~w

(2)

1

, : : :, �w

4

= ~w

(1)

4

� ~w

(2)

4

, �t

1

=

~

t

(1)

1

�

~

t

(2)

1

, : : :, �t

5

=

~

t

(1)

5

�

~

t

(2)

5

, �s = ~s

(1)

� ~s

(2)

,

and �
 = 


(2)

�


(1)

. From the veri�
ation equation of the PK proto
ol one 
an derive the following

equations:

y

1

�


= g

�x

1

y

2

�


= g

�x

2

y

3

�


= g

�x

3

(44)

v

2�


= u

2�x

2

u

2H

hk

(u;e;L)�x

3

(45)

e

2�


= u

2�x

1

h

2�m

(46)

W

�


1

= g

�w

1

h

�t

1

W

�


2

= g

�w

2

h

�t

2

W

�


3

= g

�w

3

h

�t

3

W

�


4

= g

�w

4

h

�t

4

(47)

M

�


= g

�m

h

�t

5

g

�
(n�1)

2

=4

=M

�m

W

�w

1

1

W

�w

2

2

W

�w

3

3

W

�w

4

4

h

�s

(48)

Æ

�


= 


�m

(49)
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Consider the equations (47) and (48). Under the strong RSA assumption, and using Theorem 3,

we may assume that �
 divides ea
h of �m, �w

1

, : : :, �w

4

, �t

1

, : : :, �t

5

, and �s. So we 
ompute

m̂ = �m=�
, ŵ

1

= �w

1

=�
, : : :, ŵ

4

= �w

4

=�
,

^

t

1

= �t

1

=�
, : : :,

^

t

5

= �t

5

=�
, and ŝ = �s=�


and we know that

M = mg

m̂

h

^

t

5

W

1

= w

1

g

ŵ

1

h

^

t

1

W

2

= w

2

g

ŵ

2

h

^

t

2

W

3

= w

3

g

ŵ

3

h

^

t

3

W

4

= w

4

g

ŵ

4

h

^

t

4

Æ = 


m̂

(50)

holds for some m, w

1

, w

2

, w

3

, and w

4

su
h that m

2

= 1 and w

2

i

= 1. Furthermore, we 
an rewrite

the se
ond equation of (48) as follows

g

(n�1)

2

=4

= ag

m̂

2

+

P

ŵ

2

i

h

m̂

^

t

5

+

P

ŵ

i

^

t

i

+ŝ

(51)

for some a su
h that a

2

= 1. In fa
t, a = 1 as, �rst, a must lie in hgi and, se
ond, if a 6= �1 then

g
d(a� 1; n) splits n. Applying Theorem 2, we may assume that

(n� 1)

2

=4 = m̂

2

+ ŵ

2

1

+ ŵ

2

2

+ ŵ

2

3

+ ŵ

2

4

and thus (n� 1)

2

=4� m̂

2

� 0 whi
h is equivalent to

�(n� 1)=2 � m̂ � (n� 1)=2 : (52)

Consider Equations (44-46). As n is the produ
t of two safe primes p and q, we have j�
j <

minfp; q; p

0

q

0

g and hen
e �
 is invertible modulo n

0

n. By 
onstru
tion we know x

i

su
h that

y

i

= g

x

i

and therefore it follows from (44) that

�
 x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (53)

Now we 
an either have D(SK;  ; L) = reje
t or Æ 6= 


(m remn)

where m = D(SK;  ; L) =

log

h

2

(e=u

x

1

)

2

, i.e., one of the three statements

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

6= 1 or (e=u

x

1

)

2n

6= 1 or (

e

u

x

1

)

2

6= h

2m̂

(54)

must hold (
f. (43)), where the last is equivalent to Æ 6= 


(m remn)

be
ause of Equations (49) and (52)

and the fa
t that �(n� 1)=2 � (m remn) � (n� 1)=2.

We 
onsider these three 
ases:

Case 1. If u

2(x

2

+H

hk

(u;e;L)x

3

)

6= v

2

we must have that u

2�
(x

2

+H

hk

(u;e;L)x

3

)

6= v

2�


=

u

2�x

2

+H

hk

(u;e;L)�x

3

(from Equation (45) and be
ause �
 is invertible modulo nn

0

) and there-

fore also

�
(x

2

+H

hk

(u; e; L)x

3

) 6� �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

n) ;

as the order of u

2

divides n

0

n. From (53) it follows that

�
(x

2

+H

hk

(u; e; L)x

3

) � �x

2

+H

hk

(u; e; L)�x

3

(mod n

0

) :

Therefore �
x

2

��x

2

+ (�
x

3

��x

3

)H

hk

(u; e; L) must be a non-zero multiple of n

0

and we


an fa
tor n, a 
ontradi
tion.
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Case 2. If u

2nx

1

6= e

2n

we have that u

2n�
x

1

6= e

2n�


. Be
ause of (46) and h

n

= 1, we get

u

2n�
x

1

6= u

2n�x

1

and thus �
x

1

6� �x

1

(mod n

0

) ;

be
ause u

2n

has order dividing n

0

. The latter, however, is a 
ontradi
tion to Eqn. (53) and

thus this 
ase 
an not o

ur.

Case 3. The inequality (

e

u

x

1

)

2

6= h

2m̂

is equivalent to (

e

h

m̂

)

2

6= u

2x

1

. Re
alling that m̂�
 = �m we


an rewrite (46) as

�

e

�


h

�m

�

2

=

�

e

h

m̂

�

2�


= u

2�x

1

and 
on
lude that u

2�
x

1

6= u

2�x

1

:

Similarly to 
ase 1, it follows that �
x

1

��x

1

is a multiple of n

0

and we are again able to

fa
tor n, a 
ontradi
tion.

Case II. It remains to 
onsider the 
ase when V 's output is �1 but Æ = 


(D(SK; ;L) remn)

holds.

Let (u; e; v) :=  . Now all the three equations

u

2(x

2

+H

hk

(u;e;L)x

3

)

=v

2

= 1 (e=u

x

1

)

2n

= 1 Æ = 


(log

h

2

(e=u

x

1

)

2

remn)

(55)

must hold. As usual we obtain two a

epting 
onversation of the PK proto
ol in Step 3 and thus

two answers

(~x

(1)

1

; ~x

(1)

2

; ~x

(1)

3

; ~a

(1)

1

; : : : ; ~a

(1)

4

;

~

b

(1)

1
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~

b

(1)

4

; ~r
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1

; : : : ; ~r
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4

; ~s
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1

; : : : ; ~s

(1)

5

;

~

t
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1

; : : : ;

~

t
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5

; ~w

(1)

1

; : : : ; ~w

(1)

4

; ~m

(1)

1

)
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(~x
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1

; ~x

(2)

2

; ~x

(2)

3

; ~a

(2)

1

; : : : ; ~a

(2)

4

;

~

b

(2)

1

; : : : ;

~

b

(2)

4

; ~r

(2)

1

; : : : ; ~r

(2)

4

; ~s

(2)

1

; : : : ; ~s

(2)

5

;

~

t

(2)

1

; : : : ;

~

t

(2)

5

; ~w

(2)

1

; : : : ; ~w

(2)

4

; ~m

(2)

1

)

for the two di�erent 
hallenges 


(1)

and 


(2)

but with the same �rst message (here we use the same

notation for the proto
ol variables as for the PK proto
ol in the previous se
tion and left out an

intermediate step that deals with the _'s (
.f. [CDS94℄)). W.l.o.g., suppose that 


(2)

> 


(1)

. Let

�x

i

= ~x

(1)

i

� ~x

(2)

i

(i = 1; : : : ; 3); �a

i

= ~a

(1)

i

� ~a

(2)

i

(i = 1; : : : ; 4);

�b

i

=

~

b

(1)

i

�

~

b

(2)

i

(i = 1; : : : ; 4); �r

i

= ~r

(1)

i

� ~r

(2)

i

(i = 1; : : : ; 4);

�s

i

= ~s

(1)

i

� ~s

(2)

i

(i = 1; : : : ; 5); �t

i

=

~

t

(1)

i

�

~

t

(2)

i

(i = 1; : : : ; 5);

�w

i

= ~w

(1)

i

� ~w

(2)

i

(i = 1; : : : ; 4); �m = m

(1)

� 


(2)

;

�
 = 


(2)

� 


(1)

:

From the veri�
ation equation of the PK proto
ol one 
an derive that

y

1

�


= g

�x

1

; y

2

�


= g

�x

2

; and y

3

�


= g

�x

3

; (56)

hold and either

C

�


1
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2n�r

1

(

1

v

)

2n�a

1

; C

�


1

= g

�a

1

h

�b

1

; and 1 = (

1

C

1

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

1

h

�s

1

(57)
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or

C

�


2

= u

2�r

2

(

1

v

)

2�a

2

; C

�


2

= g

�a

2

h

�b

2

; and 1 = (

1

C

2

)

�x

2

+H

hk

(u;e;L)�x

3

g

�r

2

h

�s

2

(58)

or

C

�


3

= u

2n�r

3

(

1

e

)

2n�a

3

; C

�


3

= g

�a

3

h

�b

3

; and 1 = (

1

C

3

)

�x

1

g

�r

3

h

�s

3

(59)

or

C

�


4
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�r

4

(

1

Æ

)

�a

4

; C

�


4

= g

�a

4

h

�b

4

; 1 = (

1

C

4

)

�m

g

�r

4

h
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4

(60)

e

2�
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2�x

1

h

2�m

; M

�


= g

�m

h

�t

5

; g

�
(n�1)

2

=4

= M

�m

W

�w

1

1

W

�w

2

2

W

�w

3

3

W

�w

4

4

h

�s

5

(61)

W

�


1

= g

�w

1

h

�t

1

; W

�


2

= g

�w

2

h

�t

2

; W

�


3

= g

�w

3

h

�t

3

; and W

�


4

= g

�w

4

h

�t

4

:

(62)

hold. We know x

i

su
h that y

i

= g

x

i

and therefore it follows from (33) that

�
 x

i

� �x

i

(mod n

0

) for i = 1; : : : ; 3 : (63)

We next 
onsider the impli
ations of the 
ases when the equations (57), the equations (58), the

equations (59), or the equations (60-62) hold in 
onjun
tion with (56). The �rst three 
ases appear

also in the proof of Theorem 6, while the last one is di�erent:

Case 4. Similarly as in Case I above, from the Equations (61) and (62) we 
an derive that

e

2�


= u

2�x

1

h

2�
m̂

and � (n� 1)=2 � m̂ � (n� 1)=2 (64)

where m̂ = �m=�
. Using Equations (63) and the fa
t that �
 is invertible modulo nn

0

, we

get

e

2

= u

2x

1

h

2m̂

;

and, be
ause of the se
ond equation of (64),

m̂ = (log

h

2

u

2x

1

=e

2

remn) (65)

Similarly as we did in Case II in the proof of Theorem 6, one 
an derive from the last two

equations of (60) that

�r

4

= �a

4

m̂ (66)

holds (using the strong RSA assumption for n). Now using (66) in the �rst equation of (60)

C

�


4
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�a

4

m̂

(

1

Æ

)

�a

4

and C

4

= (




m̂

Æ

)

â

4

; (67)

where â

4

:= �a

4

=�
 (mod �). Be
ause C

4

6= 1 we must have that Æ 6= 


m̂

and be
ause

of (65) that

Æ 6= 


(log

h

2

u

2x

1

=e

2

remn)

;

whi
h is a 
ontradi
tion to the third equation of (55) and hen
e this 
ase 
an not o

ur.
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