Theoretical Use of Cache Memory as a
Cryptanalytic Side-Channel

D. Page

Department of Computer Science, University of Bristol
http://www.cs.bris.ac.uk/

Abstract

We expand on the idea, proposed by Kelsegl. [14], of cache memory being
used as a side-channel which leaks information during thefa cryptographic
algorithm. By using this side-channel, an attacker may le talreveal or narrow
the possible values of secret information held on the tadgeice. We describe
an attack which encrypts'® chosen plaintexts on the target processor in order to
collect cache profiles and then performs aroffrdcomputational steps to recover
the key. As well as describing and simulating the theorktatiack, we discuss
how hardware and algorithmic alterations can be used tomdefgainst such tech-
niques.

1 Introduction

State of the art cryptanalysis has conventionally lay in the realm of maticaamat
who seek techniques to unravel the hard problems on which modern cry{eiosy
are generally based. Recently, a new class of attack has become increasingly. popular
Side-channel analysis [23] moves the problem of revealing secret infemiadgm
the mathematical domain into the practical domain of implementation. Byidemirsy
the implementation of cryptosystems rather than their specification, resesittive
found they can mount attacks which are of low cost in terms of time and eguip
and are highly successful in extracting useful results.

Side-channel attacks are based around the general assumption that one can mea-
sure properties of the algorithm being processed and make deductioriseabotly
what that processing entails. For example, simple (SPA) and differéD®&) power
analysis [22] both rely on the attacker measuring the power usage of a gwousdsle
executing a cryptographic algorithm. By performing executions efaigorithm and
using statistical tests on the resulting power profiles [2], the attaskdrle to deduce
what data is being used at each stage of the execution. If this data is specliied as
ing secret, the attacker can read it, as if public, when leaked though the power based
side-channel.

SPA and DPA are both non-invasive attacks in that the processing deddenot
be altered or damaged in any way during the attack. Other side-channel attacks which
are progressively more intrusive include timing attacks [21], electagnetic radiation
analysis [13] and glitch and fault analysis based attacks [9]. In theirwevieside-
channel cryptanalysis, Kelsey al. state:

“We believe attacks based on cache hit ratio in large S-box ciphkes li
Blowfish, CAST and Khufu are possiblg4, Section 7]

We show precisely how cache profiles can aid the recovery of secret information,
thereby confirming this prediction. Since cache memory represents a langerfion

of microprocessor designs, these profiles are potentially easier to cbidechiicro-

level features such as register or bus state used in related DPA and adtiBg24{4i8]
attacks. Furthermore, our attack technique is deterministic in the deatsmutside the
collection of profile information, it does not make use of the siadstechniques used

in DPA and similar cache based attacks that could be constructed using timfong i
mation. These characteristics mean that cache behaviour analysis (CBA) attacks are
hard to defend against without removing the cache entirely and may be mauittted

less sophisticated equipment than other methods.

Although current smart-card processor cores [24] seldom incorporate cache m
ories, some next-generation [19] designs and many current embedded pre¢gss]
do allow the inclusion of both instruction and data caches. Since addiaglee is
inexpensive in that it requires relatively few architectural alteratiomsh & step is at-
tractive because it offers a cost effective way to improve system performdinig.
work presents preliminary research into how an attacker might use the predence
cache to their advantage. As such, it provides an attack method which, if n@dimm
ately threatening, warns against the use of cache memory in security cordeiiees
without careful consideration.

We begin in Section 2 by giving a brief introduction to how cache memanks,
with particular emphasis to the elements that related to our attack. In Sectien 3
outline the environment in which we set our experiments before spegin example
attack against DES [20] in Section 4. So as to provide balance to our attacioeesin
in Section 5 we consider some potential countermeasures and discuss #tige reer-
its. Finally, we present ideas for further research in Section 6 and congltetimarks
in Section 7.

2 Cache Memory

Cache memory, in the context of microprocessors, is a small area of vergdasory
that is placed between the processor and main memory. Since accesses to main mem-
ory are slow in comparison to the processor speed, performance is ofteiréh by
operations that need to load and store data. A cache, which operates at a speed closer
to that of the processor, helps to solve this problem by storingibe often used data
items, thus reducing the cost of accessing them. Accesses to both data ant inst
tions can be cached in this way, the whole system relying on the assuntipdicthere
is a working set of data items that are accessed most frequently. Since acddss to t
working set will be accelerated by the cache, the performance of the whaodersysi
improve.

However, since cache memory is faster and more expensive, it is smaller &imn m
memory and can therefore only house a subset of the data items held aéaléigh
A replacement policy manages which data items are stored in the cache when they are
accessed by the processor, meaning that data items in the cache that have ns¢teen u
for some time may be evicted and replaced by new items.

When the processor issues an access to the memory system, the address yn memor
that is being referenced is first mapped into a cache line. In the most simpl¢hésis

Valid Tag Content

true |0b001 | 0x20 | 0x21 |0x22 | 0%23],ThisIinecontainsaddreﬁmoomoooo
false |——— ———— || |

false | ———— || |
true |0b000 |0x00 |0x01 |0x02 |0x03 } This line contains addre$$%00001101
false |———- |||

false | ———- | | |
false |————- ||| These lines are empty

false |———-— - | |V |

Figure 1: An example cache structure with eight line and four elemeniinger

may be described as
cache line = addressnod cache size

although more complex mapping schemes exist for more complex cache typts

that since the cache is smaller than main memory, the mapping scheme causes a wrap
around effect meaning more than one address may map to the same line. A cache line
will contain three main items of information: the cache valid flag that detersif the

cache line has valid information in it, the cache tag that describes what &icedin

the line, and the cache data that holds the actual memory contents.

In all but the most simple of caches, the cache line may contain data frerasev
different addresses inside the same content field. That is, several addnegseaf
map to the same line and be contained within that line. This allows laigek$of
data to be transfered to and from main memory at once which is more efficamt th
dealing with many smaller transfers. The cache tag field allows such conmggexit
the mapping scheme by offering uniquely identification such that we can siwatch
an address with the content of the mapped cache line.

Consider an example cache, shown in Figure 1, with a size of eight linea and
line size of four elements that is accessed using 8 bit addresses. In tlesamplex
scheme, we use the lower bits of the address to select the entry withéacthe line
meaning that the higher bits, the tag, identifies the content of tha$irewhole

cache element= (addressmod line size
cacheline = (address> (log,(line sizg) mod cache size
cachetag = (address> (log,(line size + log,(cache sizg)

where>> is bit-wise right shift. That is, the element number is calculated by setect
bits zero and one of the address while bits two, three and four spegiffyin line
number. The cache tag is calculated by selecting all the other bits, i.e. exospt th
used to specify the line or element number. From these formula we cantshbthe
combination of element number, line number and tag allows us to digimgetween
the mapping of any two addresses. For example, consider the follovapgings that
result from the equations above

addres®b00001101 +~ tag0b000, line 0b011, elementb01
addres®b00000000 + tag0b000, line 0b000, elementdb00
addres®b00100000 + tag0b001,line 0b000, elementb00

We can see for example that addréz® 0001101 maps to line three and the value
we are interested in is in element one. Addresge80000000 and0b00100000
both map to line zero, element zero but we can distinguish between them séyce th
have different tag values.

When the processor accesses memory though the cache using a mapping of this
form, one of several situations occurs. If the line contains invadigh dhen we need
to load the memory content from main memory since the cache doesn’t contain i
Similarly, if the cache tag held in the calculated cache line doesn’t match the teache
of the address, we also need to load the content from memory since alttieuljine
contains valid information, it isn’t the information we are loaoifor. Either of these
two cases is called a cache miss since the cache doesn't contain the data we want and
hence it must be fetched from main memory. If the line contains valid datéhartags
match, then a cache hit is signalled since the data is present and we can ulsetit wi
resorting to the slower main memory. The locality of reference phenamieans that
cache hits happen more often than cache misses and hence the operation ofate over
system is accelerated since there are less accesses to slower memory devices and more
to the fast, cached memory.

3 Attack Assumptions

A naive way to approach using cache behaviour is the construction of a databias
matches hit/miss profiles collected from an attack run with pre-computedesr&dr
encrypting a plain-text under all possible keys. Although thit sbattack would be
successful, the amount of storage and computational power required td sumi an
attack is cripplingly large.

In order to improve on this naive approach, our work employs analysisiod
knowledge of, the algorithms under attack. This analysis forms rakttips between
parts of secret information based on the behaviour of the cache when thighalgis
run. Such relationships can be used to weaken the cipher, or perhaps diredtize
the secret information, with some extra processing after the collezticache profiles.

When discussing these techniques, we make several assumptions alahilithe
of the attacker and the composition of the device being attacked:

o Firstly, we assume that the processing device being attacked accesses main mem-
ory through a conventional cache memory. Our example attack is based on the
ability to spot cache hits and misses in a profile and so devices whichrperfo
direct memory access, i.e. without a cache, will not be endangered by this sort
of technique.

¢ We also assume an attacker has the ability to capture information about tiee cach
using a well understood method. We envisage this would be doneditingp
known features in a power or electro-magnetic profile in a similar way @ ho
SPA might attack an exponentiation algorithm. By observing the @iffee in
activity between a cache hit and cache miss, the attacker can construct a profile
that describes which event occurs within the cache for a given access.

¢ We assume knowledge about the cache structure, for example the linarsize,
develop our attack based on these facts. Although the attack will need to change
based on the attributes of cache memory found in a real device, the general attack
principle remains the same.

e Since our example attack is based on accesses to the S-box style struatndes fo
in many block ciphers, we assume that the value of these S-boxes is fetohed f
a table in memory and not calculated directly using a mapping implemented
by processor instructions [1]. This means the access to memory willutedo
through the cache and produce an access profile without which such attacks are
useless.

e We assume that the cache is emptied on power-off of the host device amethat
start running our cryptographic algorithm with an empty cache in respehbet
data associated with the algorithm.

¢ Finally, we assume that we can match information gained from our captute abi
ity to operations in the source code. That is, when a memory access happens
through the cache, we can tell which data structure in the algorithm ig bein
cessed. This assumption basically means we need to deal with a deterministic,
in-order memory system.

Although these assumptions vastly constrain the usefulness of attgaksst real de-
vices, none of them are particularly outrageous when considering théfeagbération
of next-generation smart-card devices and current embedded processorad&Hg-u
ing fact is that the behaviour of cache memory on-board a cryptograpticedsill
yield at least some useful information. Attacks will always need to bertallto spe-
cific circumstances but, in general, more information is always better tierpaint of
view of the attacker.

In our example attack we assume the existence of a processor from whizdnwe
glean the result of cache accesses. In order to simulate the information arelattack
might gain from a real device, we linked our algorithm implementatiorieé Dinero
cache simulation library [15] which was configured to modél kilobyte, four byte
per-line, direct-mapped variant of that found in a real processor core [#), The
cache simulator produces a list of accesses for each run of the algorithm where each
access in the list relates to the S-box structures being read.

4 Example Attack

4.1 Introduction

Our example attack is against the DES [20] encryption algorithm whoseisale-
scribed as pseudo-code in Figure 2. In this discussion, we usenhgdios/ D, E,

P and F'D to denote the initial data, expansion, P-box and final data permutasons
well asT', T K andC in place of key rotation, initial key and compression permutations
respectively.S represents the whole S-box or substitution transformation wihite
denotes an access to S-boxNote that we assume that the S-box structures have been
rearranged for easy array-style indexing as is common in software impiatioes of
DES.

Additionally, we use several types of notation to select and concatenateizet
values to and from larger values. The notatin .z] selects a number of bits, between
indicesy andz inclusively, from the value: and reforms them into a new value. Simi-
larly, the notationc[y, z] selects individual bits at indicgsandz and forms them into
a new value. Thé& operator is used to concatenate, or recombine, groups of bits into
larger values.

void des(D, KI[])

D = ID(D)
L’ = D[63 32]
R’ = D[31 00]

for(round = 0; round < 16; round++)

R

R =R "~ K[round];

R = SBO[R[47 .. 42]] @ SB1[R[41 .. 361] @
SB2[R[35 .. 30]] @ SB3[R[29 .. 241] e
SB4[R[23 .. 18]] @ SB5[R[17 .. 12 1] @
SB6[R[11 .. 06 1 1 @ SB7[R[05 .. 00] 1;

R =P(R);

R =1L’ R

=
o
=

Figure 2: A pseudo-code implementation of DES.

Our goal in attacking this algorithm is to reveal the master Kewhich is stored
as secret information in the target device and used to generate the key scloedul
encryption and decryption operations. Knowledge of this key wouldlengto man-
ufacture a clone device which we could use for fraudulent purposes siaagdone
would exactly replicate the behaviour of the original device.

4.2 Formulation

The formulation of an attack against DES assumes the in-depth knowléduyho
the algorithm and the operational behaviour of cache memory [11]. Wensdd to
consider the first two rounds of DES which are best described by the féyrasn in
Figure 3. From this diagram it is easy to trace the flow of informathaough the
algorithm and show how a given value is calculated from previous values.

The functionsS, andS; in the diagram represent the substitution transformations
in rounds zero and one respectively which are implemented by accesses to the S-bo
structures in memory. We can trace through the diagram to produce twailés for
the indices], andiy, which perform the S-box accesses in transformatiynandS,

Iy, = K[)EBE[)(RU) (1)
IL = Ki&Ei(Ly® Py(So(Ko @ Eo(Ro))))

The equations fofy, and; hold for a different sub-set of bits for each S-box in each
transformation. For example, the seventh S-box is accessed using loittoZiare

of the incoming index. Furthermore, depending on the cache behavitiuregpect

to each S-box access, we can relate one index to the other. If we capture the cache
behaviour when the aforementioned S-box seven is accessed in transfosigémd

K

S0

IK

[
2 =]

-

o

-

Round (
S

H_H

L N

[T
T

Eo
q
)
@

,_

il

:
Ex [c]
q
S1
:

! |
0
o
0
1
|
1
1
Round 1
L.
L2 R2

\l \l \l

Pt

Figure 3: A flow diagram of DES.

S1 and consider the correct sub-set of bits used in the indices, we producdthving
relationships

I5[05..00] =p/~ve I11]05..00] whenS; yields a cache hit 2
Ip[05..00] #rinve I11]05..00] whensS; yields a cache miss

where=r;nvr and#rrnv g arecache line equivalencieshich take into account the
fact that since each cache line may store more than one data item, the indices may
result in the same cache line being accessed without actually being equal., That is
cache tagof addresse$, and I, which dictate the cache lines they map to, may be
equal withoutly andI; actually being equal in value.

Our equations in step 2 basically mean that if we concentrate on the cache profile
of one S-box and in round one it produces a hit, we know that theésdy and I,
must map to the same line in the cache. Depending on the cache line size, wecean fo
these cache line considerate equations into direct equalities. We considemaple
cache which has a line size of four, i.e. each cache line can hold four S-box element
meaning that the bottom two bits of any access will be used as the seledtor thit
line rather than altering which line the access refers to. We can apply thidéage
to solidify our relations thus

Ip[05..02] = 1;[05..02] whenS; yields a cache hit 3)
Ih[05..02] # I1,]05..02] whensS; yields a cache miss

This has allowed us to directly relate the valuedgptndI; with each other from a
cache hit or miss on accesses to a given S-box, in this case S-box seven.tiWaecon
our analysis by using the bit selection on our indices to peal away laypesmiutation

47..0

‘ Ko @ Eo (Ro) ‘

TR
47.42| 41.3 35.30 29.24 23.18 17.712 1116 5.
[sBo| sB1| sBJ SB3 SB# SB5 SB6 Sk
31..28| 27..24| 23..20| 19..16| 15..12| 11..8 | 7.4 3.0

R TR R T T T
\ So (Ko ® Eo (Ro)) \

31..0

Figure 4: A flow diagram of DES S-box access in round zero.

in order to simplify our expressions fdg andI;. For example, given the expression
Py(X)[04..01] (4)

we can trace the bits we require in the output through the permutatavder to deduce
the bits from whence they came

Py(X)[04.01] = X[26,10,21,28] (5)

This example shows that if we apply t§ permutation to a valu& and are only
interested in a sub-set of bits in the output, which valueX ofie need to consider in
their place. By applying this sort of technique to our equationddand; we can

simplify them as follows

Iy = (Ko® Ey(Io))[05..02] (6)
= K[05..02] © Eo(Ry)[05..02]
= Ko[05..02] & Ro[04..01]

I = (K19 Ei(Lo® Py(So(Ko & Eo(Ro)))))[05..02]
= KL[05.02] & Br (Lo & Po(So(Ko & Eo(Ro))))[05..02]
— K1[05..02] @ (Lo ® Po(So(Ko @ Eo(Ro))))[04..01]
= K1[05..02] @ Lo[04..01] © Po(So (Ko & Eo(Ro)))[04..01]
= K1[05..02] @ Lo[04..01] @ So(Ko B Eo(Ro))[26, 10,21, 28]

The sticking point in using these equations is the instance ofghansformation
which represents S-box accesses in round zero. Note that in this case, cacheurehavi
is irrelevant and we are interested only in the resultant value of theftnamation in

our equation. Since we know the output bits we are interested in, wexgame our
expressions using knowledge about the flow of data through thex&stkas shown in
Figure 4. We can see from this that the output of the S-box transfttwm given the
sub-set of bits we are interested in, is taken from the output of fiterent actual
S-box accesses. Hence we make the following specialisation

So(X)[26] = SB1(X[41..36])[02] @)
So(X)[10] = SB5(X[17..12])[02]
So(X)[21] = SB2(X[35..30))[01]
So(X)[28] = SBO(X[47..42))[00]

which we can insert into our expression thus

Iy = Ko[05..02] ® Ro[04..01] (8)
I, = K;[05..02]® Lo[04..01] ® Z
where
Z = SBI1((Ko® Eo(Ryp))[41..36])[02]@
SB5((Ko ® Eo(Ryp))[17..12])[02]@
SB2((Ko ® Eo(Ro))[35..30])[01]@
))

SBO((Ko @ Eo(Ro))[47..42])[00]

By rewriting all instances ok, andK; in terms ofK, we find that

Ko[05.02] = KJ[19,50,51,02] 9)
K1[05..02] = KJ[27,58,59,10]

Ko[41.36] = KJ[31,07,62,55,45,22]

Ko[17.12] = KJ[17,34,59,11,41,35]

Ko[35..30] = KJ61,29,38,39,20,06]

Ko[47.42] = KJ[54,13,30,04,15,47]

which we can substitute into our equations fplandi;, before removing any remain-
ing permutation operations, to form a final result

1)[05..02] = KJ19,50,51,02] ® Ro[04..01] (10)
105.02] = KJ[27,58,59,10] ® Lo[04..01] & Z

where

7 = SBI1(K[31,07,62,55,45,22] & Ro[31,39,47, 55,63, 05])[02] @

SB5(K[17,34,59, 11,41, 35] & Ro[27, 35,43, 51,59, 01])[02]@

SB2(K[61,29,38,39,20,06] & Ro[63,05, 13,21, 29, 37] 01]@
[

From this final result and the reIatlonshlps betwé@landll described in step 3, we
have developed equations that tie together different parts of key mdi@rigiven
values of input data. When the indices for accesses to a given S-box in imenodad
one are equal, i.e. there is a cache hit recorded for the access to that S-hmdione,
these equations give us a equality test which we can use to check if a givemetiorb
of key material bits are valid. The composition of the test will depemd/bich S-box
was considered when generating the equationgsf@nd 7; but will take the general
form

K[z.y]® Rolz.y] = Klz.y|® Lo[z.y] & Z
where
Z = SBn(Klz..y] ® Rolz..y])[z]@
SBn(K[z..y] ® Rolz..y])[z]@
SBn(K[z..y] ® Ro[z..y])[z]Q
SBn(K[z..y] © Rolz..y])[2]

Since we can control the value Bf, and hence the values 6f and Ry, we can force
the solidification of our relationships into tests by picking a valti&, and finding a
value of L, such that accessing the S-box under consideration in round one produces a
hit. We call the value of .o which provokes this cache hit thiged pointof Rq. Using
this technique and randomly picking valuesi¥, we can manufacture as many tests
as we want by performing encryption queries to the target device, captheraache
profile, and testing if a give,, provoked a cache hit in round one when our chosen
S-box was accessed.

The point of generating these tests is that we can use them to perform aeneffici
sub-key search which gives us a small number of candidate sub-key vathessyiect
to each S-box. For example, considering the final result for S-box sevstep 10
above, we might choosR, to be zero which, after finding the fixed poihf to be
0x0E, gives the test

K[19,50,51,02] = K]J27,58,59,10]® 0z0E & Z
where
Z = SBI1(K][31,07,62,55,45,22])[02]@Q
SB5(K|[17,34,59,11,41, 35])[02]@
SB2(K161,29, 38,39, 20,06])[01]@Q
SBO(K[54,13,30,04,15,47])[00]

If we were to perform a brute-force search through3heinique key bits used, with

bit 59 being used twice, only a small proportion of the bit combination§lvelvalid

under this equality. Since we can generate many of these tests for each S-box, each
with different Ly and Ry pairs as demonstrated by the appendix to this paper, we can
apply many tests on a given combination of key bits and ensure very feacarally
considered valid.

4.3 Implementation

We considered an example attack against a secret key of

K = 0x0123456789ABCDEF (12)
which when we strip out the parity bits for clarity equals

K = 0x0022446688AACCEE (12)

Note that we consider 64 bit key since this is what out algorithm, and hence the

related key permutation and schedule operations, expects. It is impurtaote that

any valid key could have been used and that the existence of parity bits' tieffsct

the correctness of performance of the attack since they don’t occur in bagtegtions.
We started by generatirg? tests with respect to S-box zero, by taking the general

form for S-box zero indices found in the appendix, selecting a ranBgrmand finding

the corresponding fixed poirity. After finding 32 random point/fixed point pairs,

and hence creating the same number of equalities, we reduced the potential méimb

candidate sub-keys by searching through the used key bits and apgllyong equality

tests to all the combinations.

10

Eight candidate sub-key combinations passedatests, wher€’; ; denotes can-

didate key numbef which was gained from roundof the attack method

Co,0 = 0x00024420C88024AA (13)

Co,1 = 0x00024420C88034BA

Coh,2 = 0x00024420C8A004AA

Co,3 = 0x00024420C8A014BA

Co,a = 0x00024460888024AA

Co,5 = 0x00024460888034BA

Co,6 = 0x0002446088A004AA

Co,7 = 0x0002446088A014BA
Interestingly, we found that performii@ tests on each combination was in fact overkill
since the same result could have been obtained using9or@gts. In order to move
closer to the actual result, we performed a second round of testingassingre tests,
this time generated with respect to S-box one. The search again covered Fihuits o
key space and resulted in a further eight candidate sub-keys

C1,0 = 0x00020046800A086E (14)

C1,1 = 0x00020046800A88EE

(1,2 = 0x40020046800A084E

(1,3 = 0x40020046800A88CE

(1,4 = 0x80820046800A086E

C1 5 = 0x80820046800A88EE

(1,6 = 0xC0820046800A084E

C1 7 = 0xC0820046800A88CE
This time, the full set of tests was required to narrow the candidat&sybhto a man-
ageable number. Since the candidate sub-keys from each round of testidifferent

bits of the key, we would ordinarily have to consider all logical camakions of the
candidates, i.e.

Cop V Cip (15)

)

Coo V Cis

Cor VvV Cig
Cor V Cig

However, since we know that the two searches overldf inits of their key usage, we

can eliminate a large number of these combinations. This is done bydeoingj pairs

of sub-keys and discarding any which disagree in their use of overlgpfs If Cj ;
and(C ; represent two candidate sub-keys from search zero and one respectively and
M, represents a mask of the overlapping bits between the two rounds oftekti

(Co’z' ©® Cl,j) AM,=0 (16)
then the combined sub-key

Co,i VCh,j (17)

11

is accepted as a valid candidate. After calculating the midskvhich represents the
overlapping bits to be

M, = 0xC0821840840000AA (18)

and using the test in step 16 on values from steps 13 and 14, we were abledw
the number of potential candidates to four

C,0 = 0x00024466888AACEE (19)
C>,1 = 0x00024466888ABCFE
Cs,2 = 0x0002446688AA8CEE
C,3 = 0x0002446688AA9CFE

At this stage in the attack, we are faced with the prospect of further soafitdsting in
order to narrow our candidate keys towards the final result. However,@dtforming
rounds zero and one of testing, we have covefedf the 56 non-parity key bits and
find that a further round of testing would only add a few extra litshis coverage.
Since a brute force search of the bits not covered by search rounds zero aisd one
much less expensive that performing further rounds of testingisthiiee approach we
adopt.

If M, represents a mask where if a bit is set, it needs to be included in the search,
i.e. it was not covered by any previous rounds of testing, and the vélikisamask
with respect to rounds zero and one is

M, = 0x0630800000044000 (20)
we can apply the following test to narrow the candidate keys towardsleréisult
DES(P,K) = DES(P,C>; V M,) (21)

That is, if the cipher-text produced by encrypting a known plain-texter the secret
key equals the cipher-text produced by encrypting the same plainftdet wur com-
posed candidate key, we have found the final result. Note that w&/yge denote a
value which is derived from only the bits, given BY,,, not covered by previous test-
ing. In trying to solve this equation, we first collect a known plant/cipher-text pair
from the target device with which to compare the results of our searchselalues
could be taken from the first phase of the attack where we recover fixed paimigr
equations by running queries on the device. We then search throughlpasdues in
M, and compare the result of our known encryption to that of our compkejtgiven
by C>; V M,. We performed this search with our candidate keys and produced one
single result

Cs.0 = 0x0022446688AACCEE (22)

which is the same as the key we started with and hence represents a successful at

4.4 Efficiency

In general, using our sub-key search method is significantly less expehsin per-
forming conventional brute force key search. The first phase of the astéok collec-
tion of cache information from the target device in order to build est equalities. If

12

we intend to perform rounds of testing each performingests on each key combina-
tion, we will need to perform at most

a = rxtx2?

DES operations (DOPS) on the target device in order to recover the fixets pmd
hence generate the equalities. Once this is done, we move onto the searctvpicas
is the most costly operation in the attack. In total, we need to perform

B = rxtx2

test operations (TOPS) since any test for a given S-box will utilisaat 31 unique
key bits. Finally, we need to finalise the candidate keys we have left gifé search
operation by brute force searching the rest of the key space. We consiehdise to
take

Yy = ¢cxm

DES operations whereis the number of candidate keys produced by the search phase
andm is a constant related to how may residual bits need to be searched. Typically,
bothc andm will be small and hence the finalisation phase will not be costly in com-
parison with the main search phase. In our example, we chose the fallpaiameters

r = 2
t = 32

i.e. we did two rounds of testing where in each round, generated by S-ber@and
one,32 tests were applied to each key combination. Since S-boxes zero and one overlap
in 13 bits of their key use, they cover a total4sf bits of the key. The remainingnon-

parity bits of the key need to be searched by brute force DES search as paet of t
finalisation phase. We therefore performed a workload of

a = 2x32x2*
= 2!°DOPS

B = 2x32x2%
= 2%7TOPS

v = 4 x 2567(31+31713)
= 2°DOPS

We deliberately chose to perford@ tests on each combination of key bits since this is
roughly equivalent to performing one application of DES. Thereforegesi2 TOPS
equalsl DOPS, our total workload was

2'°DOPS+ 232DOPS+ 2°DOPS ~ 232DOPS

This result indicates that with the help of cache information gleaned fhamarget
processor, thé6 bit DES key is equivalent in terms of security t@2 bit DES key.

It is imperative to note that only the first attack phase counts as erpliocessing.
That is, the attacker only needs access to the target device for as long as ibtakes t
generate the fixed points for the test operations, i.e. for as long a®# takperform

210 DES operations. The expensive off-line phase of the processing, effound232

13

DES operations, may take place off-line, at the attackers leisure and witteoneed
for access to the target device. We implemented the off-line processing phasr
example attack described in Section 4.3 in software 6006MHz UltraSPARC I
processor, and in hardware o8@MHz Xilinx4000XL FPGA design [7] programmed
using the Handel-C hardware compilation system [6]. We were able tactxhe key
in around seven hours in software and under three hours in hardware.

It is interesting to note that the minimisation of on-line woldois an important
factor in the viability of side-channel analysis attacks since withoutvadost way of
collecting operation profiles, useful access to the target device will biedrfb]. The
low on-line processing cost versus high off-line processing costcleristic of this
attack may therefore be thought of as an advantage over techniques that reopgire m
on-line work. That is, since we will always have more resources angl titnperform
off-line processing it makes sense to have an attack whose characterissésass
towards this fact.

5 Potential Countermeasures

Although CBA might offer effective methods to attack the security of gtgraphic
algorithm, there are measures which can be taken to limit the damage. Thealpdet w
prevent attacks against the cache is to remove it from the processor dékigpugh

the cost versus performance tradeoff of removing the cache might be acceptable
some situations, the technique is flawed in general since the degraidagtierformance

of the processing device is too valuable a factor to ignore. This dismugs therefore
limited to techniques which act to reduce the effectiveness of such an attack vehen th
cache is present.

We present several potential methods of guarding against CBA attacks which ar
based on hardware modifications, algorithmic alterations or a comhiraftimth. The
ideal solution will be the one which approaches the same performance-biicedef
as when a normal cache is present but without the problems of having atisioks
information such as device gives. It is clear that other defences might b&aredo
through further investigation. However, none of our current ideast &om removing
the cache, can offer guaranteed protection from our attack methods since thiégrall o
some probabilistic level of security. This is mainly due to the faat bur assumption
is that the attacker is able to construct a profile of cache behaviour ratireusiing
statistical information such as timing of execution. Although a fafllection based
attack will be harder to do, and require more sophisticated hardare, gstbhpa more
realistic model of how a secure processor would be attacked in the wilthelnase
of timing based attacks against cache behaviour, defenses can fairly easily $edreal
using timing skews or by inserting dummy operations [12] to atierrun-time of the
assumed fixed-length operation. To defend against our attack, one mustimaskual
occurance of cache behaviour, in a similar way that register access behawald sh
be masked to defend against DPA, an act which proves to be much harder to perform

The defence which offers the best security versus cost ratio appears to be non
deterministic access ordering described in Section 5.3 since it offerebdepro-
tection based on calculatable, although probabilistic, parameters such agethef le
non-deterministic scheduling possible between the accesses. Howeveotevihat
this defence requires significant hardware changes which might be procesty a
tradeoff in order to increase performance via the cache.

14

5.1 Full or Random Cache Warming

In order to change the profile of cache hits and misses between runs of thighaig

we can make a changes to the source code of the algorithm which warms ¢10] th
cache with data. This may range from fully loading an S-box into the cachdear
avoiding any misses from which information can be gained, to randamalgihg S-

box elements such that the confidence in information gained from the cacieited.

For example, in the attack described in Section 4 we could alter the profiiesaind
misses to the S-box data structure by warming the cache with random eédeincen

that structure:

for(i = 0; 1 < warming factor; i++)
{
dummy = sbox[random number % sbox size]

}

By performing this operation at the start of the algorithm, we wiilltfie cache with
random elements from the S-box which will act to change the profile sfmtl misses

in the cache depending on which elements were loaded. This approach isyiwitiall
tractive since it can be implemented in software as a prelude to the actugdhjtiain
rather than involving extra hardware elements. However, it does noagiesd pro-
tection because it only actually masks the original access if we warmed the cabhe wi
the right entry. In that respect, it is a probabilistic defence withpitudbability of ac-

tual protection related to the size of the S-boxes and the proportitreof which are
warmed into the cache.

To guarantee this as an effective countermeasure we need to warm the cache with
the entirety of all the S-boxes, rather than just random elements, bus & bad as not
having a cache in the first place. Even so, full warming of the cache is ingpitd
inadvertently in algorithms such as Khufu [17] where the S-boxes argutad via
influence from the key material. In these cases, the entire S-box widumhed, and
hence loaded into the cache, before execution of the algorithm starts mehaing
assumptions about the ability to manufacture hits and misses no lbalger

5.2 Rapid Avalanche Effect

Conventional wisdom states that a desirable property in hash functéoigliner de-
signs is the demonstration of an avalanche effect. That is, any given thi¢ imput
should effect as much of the output as possible. If this effect happendygiridke

algorithm, it is much harder to perform analysis on the flow of data dinle@mount
of unknown information that effects any given stage is very large.

We encountered the problems raised by the avalanche effect in Section 4. Mile fou
thatin DES 54 of the56 useful bits in the key influenced the behaviour of the algorithm
by the second round. This significantly complicates our equations anktimgsests
since considering cache accesses to any of the S-box structures means cansiderin
the output from a further four S-boxes indexed by key material. itf tere not the
case, the relationships would be significantly simpler and include farueknown
information. This in turn would results in a more effective attack agtdhre algorithm.

Since the rapid influence of the avalanche effect will make the formatioalaf
tionships based on cache behaviour harder, it follows that this isch@mmtermeasure
to consider.

15

5.3 Non-deterministic Access Ordering

Non-deterministic processors [16] have been proposed as a general defesiabe-t
channel attacks. These processors harness instruction level paralletienerinin the
implementation of an algorithm, to run instructions in a random ovdgite main-
taining dependencies between them. Since the processor will run thectistauin
a different order on each run of the algorithm, the power profile will geanetween
runs making an attack significantly harder.

Similar principles can be applied to defending against CBA by allowing nmgmo
access to occur out of order in the same way that register based instruntensin-
deterministic processor. Although dependencies between instructionsmbedb-
served to prevent write-after-read or write-after-write hazards, a listbokecutive
reads to memory could be reordered producing a different cache profileqesingy:

temp0 = sbox0[address] = hit = temp2 = sbox2[address] = miss
templ = sboxl[address] = hit = temp3 = sbox3[address] = miss
temp2 = sbox2[address] = miss = temp0 = sbox0[address] = hit
temp3 = sbox3[address] = miss = templ = sboxl[address] = hit

The accesses could also be reordered in a valid manner such that the cache profile
remains the same:

temp0 = sbox0[address] = hit = templ = sboxl[address] = hit
templ = sboxl[address] = hit = temp0 = sbox0[address] = hit
temp2 = sbox2[address] = miss = temp3 = sbox3[address] = miss
temp3 = sbox3[address] = miss = temp2 = sbox2[address] = miss

However, the attacker can not be sure that the deductions made from the cacke acces
information are valid since they are no longer able to match an access irofile fr
a reference in the source code. Furthermore, the addition of an instrgttgam mu-
tation unit [12] might enable false memory accesses to further complicatafitured
access profile.

An optimistic attacker might suggest that they could count the totaibar of
cache hits and misses in round zero and and one of DES execution. Then, binghang
only input bits affecting a single S-box in round one and obserthiegchange with
respect to the pre-recorded total, he might still be able to see if tharkii©or a miss.
For example, the attacker might record the hits and misses in round cokoassf

temp0 = sbox0[address] = hit
templ = sboxl[address] = hit
temp2 = sbox2[address] = miss
temp3 = sbox3[address] = miss

Then he cycles through bits in the address, i.e. the input data, whikhdves might
alter accesses to only one S-box, e.g. S-box one. Eventually, he migit &italue
which turns the hit resulting from the access to S-box one into a. ntisgn if the
accesses are reordered, the attacker still has the knowledge that there werts two h
before; one hit afterwards; and his alterations only effected accesses to &éiox o

temp2 = sbox2[address] = miss
temp3 = sbox3[address] = miss
temp0 = sbox0[address] = miss
templ = sboxl[address] = hit

16

Therefore, he might claim that since there was one less hit before thaniafédtelning
the address, the result of accessing S-box one must have been a hit.pddst®
deduction is true if he were to find one more hit, rather than one lesspdtforming
the counting operations. However, in practice, this attack doesn’t vilock shanks to
the avalanche effect in DES, it is impossible to find enough bits imtlizess through
which to cycle such that you can guarantee to alter the access pattern and notice the
difference.

If this scheme were implemented as an extension to a non-deterministiespr
sor [16] where scheduling allows a reasonably large degree of movenménstiwic-
tions, it could significantly reduce the determinism of a captured cachéepamd
make CBA attacks much harder. However, it provides a probabilistic defehich
is bound by the amount of memory reordering potential in a given akgori If the
algorithm under attack has very few accesses to memory which can be reordered, due
to dependencies for example, the whole scheme will be ineffective in guggadiinst
CBA.

5.4 Non-deterministic Cache Placement

The use of randomised cache mapping policies [25] has been proposed as d ofietho
avoiding cache conflict caused by, for example, strided access patterns. o so
scheme works by introducing some skew in how a cache line is determimdlie
address so that over time, the same address will be mapped into diffeest Whis
sort of technique offers high performance while adding a level of aeterminism to
the system by changing the mapping function between runs of an algorithm

At first glance, it appears we might be able to use this property to defeaidsag
a CBA attack by introducing some degree of non-determinism in the caudraton.
However, by looking at the problem more closely, this turns ougtorpossible. If you
implement a randomised mapping policy in the cache you could non-deistically
alter the performance, i.e. the number of hit and misses, between runsatddnighm.
Although this is possible, it isn’t guaranteed since the mapping clarstits chosen
will entirely determine the performance given a fixed base architecture aridoad.
Alternatively, you could elect to alter the mappings in the middle ofhglsiexecution
in an attempt to alter the pattern of hits and misses.

The problem in the first case is that unlike DPA, we aren't interesteceifop
mance differentials between runs of the algorithm but the deterministiarrence of
a cache hit from a specific S-box access in the second round of DES exectii®is T
something that altering the mapping between executions will not hide.

In the second case, altering the mappings in a more fine grained mannen a.g. o
cache miss, will make all the data in the cache unretrievable every thimis drhis
is because the mappings effectively determine where in the cache new data slement
are placed rather than whether the data can be found. By altering the maptlings,
have done is to ensure none of the data can be found but new data@therirache
will be placed in a different location. The net effect represents a massivaerpenfice
problem which doesn't offer any better performance than not having a cagbentr

Therefore, the introduction of non-determinism through randorrisethe map-
pings doesn't offer an effective defence since is doesn’t guarantee a lefécive-
ness and isn't able to hide the side-channel from the attacker.

17

6 Observations and Further Work

Our work so far has been fairly successful in developing techniques to use lsach
haviour information in a cryptanalytic setting. Our example staytanalysing the flow
of data through the algorithm in question to form relationships/ben bits of secret
information. These relationships are brought about by the abditgason about the
behaviour of the cache while the algorithm is running. We are ablertv@dhe plain-
text input to the algorithm in order to solidify these relatiopshand inspect possible
values of secret information. This process narrows the possible valoas take so
that key search may be executed more efficiently.

Clearly our attack, like most side-channel attacks, is specialised to a given cry
tographic algorithm and can not easily be generalised to other algoritrensfehey
are similar in structure. However, we have outlined some general nsethatl are
potentially effective against a wide range of cryptographic algoritantsidentified a
number of issues which will impact on our ability to use these methodssil-life:

Our assumptions about cache line size will alter how our attacks are impietgnen
against a real device. Since the core element of our attacks is the abilitydoreas
about what meaning a cache hit or miss has, the fact that altering the cache line
size will alter the cache profile will need to be addressed in real world attacks.

Our example algorithm is based on a Feistel network structure. It woeild
interesting to investigate other algorithms, such as AES [8], that asedon
substitution/permutation network design. Additionally, it webbe interested to
investigate algorithms such as Khufu which generate key-dependenteS-tmox
see if the scheduling operation is vulnerable to attack.

The current state of our example attack is a product of the first roureseirch
and is therefore open to improvement. Specifically, it would be inteigestin
improve the attack against DES such that it yields more useful resutidesis

computational effort on the behalf of the attacker. Additionally, itiportant to

implement and test the effectiveness of our countermeasure proposals.

We have only considered cache behaviour within large S-box structétes.
though potentially more complicated to analyse, there may be other data str
tures used by an algorithm which are amenable to being examined by similar
techniques. Although this would certainly need to be examined on the per-
algorithm basis, it may provide an interesting area for further woekhaps
focusing on the use of the function call stack.

Related to the item above, we could investigate implementations of >
such as DES, which perform permutation operations by table lookupoiédih
this is costly in hardware, with memories becoming larger this may be d vali
optimisation technique in software which is exploitable using CBA

The main item of further work to consider is the deployment of our nasho real
world situations against physical implementations. This step is taitthle success of
this work since side-channel analysis is an inherently real world attack arwhsal-
ering simulated results is at best theoretical and at worst invalid.

18

7 Conclusions

Because of their ability to introduce non-linearity into block ciph&oxes are gen-
erally considered to be vital for defense against mathematical based cryptsinalysi

“S-boxes are considered to be the elements in the round transfonrmatio
that give the cipher its strength against cryptanalys|8,”Page 73]

However, this work shows that when considering implementation basethoalysis

the S-boxes can present an attackable side-channel. Side-channel analysisiis a tho
in the side of manufacturers of secure devices since it allows attackerpagssgon-
ventional, mathematical notions of security. By attacking the implementati al-
gorithms rather than their specification, secret information can be libenateddost
effective and practical manner. Next-generation smart-card devices [19] aedttyirr
available embedded processors [3, 4] allow the addition of cache memoryasta w
improve overall system performance. We have shown that using cache manary
processor without some thought can enable an attacker to infer details afatitsw
going on inside a secure processor by analysing the cache access behaviour.

We have presented a theoretical attack against DES, which acts to significantly
weaken the cipher once cache behaviour information has been collected. Owr result
showed that &6 bit DES key is effectively only as secure a82bit key if an attacker
can spot cache hits and misses during execution of the algorithm. Tdnispd has
hinted at some general techniques for using cache behaviour in attacks atfa@nst o
systems as well as a number of potential countermeasures which can make such attacks
harder.

Clearly the theoretical examples and countermeasures presented here require fur
ther work to produce useful, implementable attacks against real hardwareveiowt
is imperative to note that CBA can give the attacker more informatiorthiegtwould
otherwise have. Giving an attacker this extra information is dangdfausan be
avoided since combining several attacks which each yield small amountohif
tion may produce a composite attack that can reveal secret information andduit
promise security. Ultimately, designers of secure systems must eoasiyleaked
information as dangerous since an attacker is certain to use anything theytbair t
advantage.

Acknowledgements

The author would like to thank James Irwin and Nigel Smart for usefdidision
throughout the duration of this work.

References

[1] A. Klimov and A. Shamir. A New Class of Invertible Mappings. In3B Kaliski
Jr. and C.K. Ko¢ and C. Paar, editdth Workshop on Cryptographic Hardware
and Embedded Systems (CHE®Jume , pages 471-484. Springer-Verlag, Lec-
ture Notes in Computer Science, August 2002.

[2] M-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power Analysihats
Now Possible... Ir6th International Conference on the Theory and Application
of Cryptology and Information Securitgpringer-Verlag, December 2000.

19

[3] ARM Ltd. ARM7 Embedded Processor Corehttp://www.arm.com/
armtech/ARM7_Thumb?OpenDocument, 2002.

[4] ARM Ltd. ARM9 Embedded Processor Corehttp://www.arm.com/
armtech/ARM9_Thumb?OpenDocument, 2002.

[5] B. Schneier and A. Shostack. Breaking Up Is Hard to Do: Modeling Sercurit
Threats for Smart Cards. IWSENIX Workshop on Smart Card Technolqmgges
175-185. USENIX Press, 1999.

[6] Celoxica. Handel-C Language Overview. Technical report.

[7] Celoxica. Reconfigurable Hardware Development Platform: RC1000.niealh
report.

[8] J. Daemen and V. RijmenThe Design of RijndaelSpringer-Verlag, 2002.

[9] E. Biham and A. Shamir. Differential fault analysis of secret key crgpstems.
In 17th Annual International Cryptology Conference (CRYPTM@Jume 1294.
Springer-Verlag, August 1997.

[10] M.C. Easton and R. Fagin. Cold-Start vs. Warm-Start Miss Ralio€ommuni-
cations of the ACMvolume 21, pages 866—872, October 1978.

[11] J. Hennessy and D. Patterso@omputer Architecture A Quantative Approach
Morgan Kaufmann, 1996.

[12] J. Irwin and D. Page and N.P. Smart. Instruction Stream MutatiorNbn-
Deterministic Processors. In M. Shulte and S. Bhattacharyya and Ne&airg
and R. Schreiber, editot,3th International Conference on Application-Specific
Systems, Architectures and Processors (ASp&jes 286—295. IEEE Computer
Society Press, July 2002.

[13] K. Gandolfi and C. Mourtel and F. Olivier. Electromagnetic Analysizon-
crete Results. IWorkshop on Cryptographic Hardware and Embedded Systems
(CHES) volume 2162. Springer-Verlag, May 2001.

[14] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Crypt&iaalf
Product Ciphers. I6th European Symposium on Research in Computer Security
volume 1485, pages 97-110. Springer-Verlag, 1998.

[15] M.D. Hill. Aspects of Cache Memory and Instruction Buffer Perfarme. Tech-
nical Report CSD-87-381, University of California, Berkeley, Depairtin of
Computer Sciences, November 1987.

[16] M.D. May and H.L. Muller and N.P. Smart. Non-Deterministic Prames. In6th
Australasian Conference On Information Security and Privacy (RIBages
115-129, 2001.

[17] R.C. Merkle. Fast Software Encryption Functions. Aldvances in Cryptology
(CRYPTO)volume 537, pages 476-501. Springer-Verlag, August 1990.

[18] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. InvestigatioRsw&r Analysis
Attacks on Smartcards. IdSENIX Workshop on Smartcard Technologgges
151-162, May 1999.

20

[19] MIPS Technologies. MIPS 4KSc Smart-Card Processor Cotep: / /www.
mips.com/products/s2p9.html, 2002.

[20] National Institute of Standards and Technology (NIST). Data ¥twn Stan-
dard (DES). Technical Report FIPS PUB 46-3, October 1999.

[21] P.C. Kocher. Timing Attacks on Implementations of Diffie-HellmdSA,
DSS, and Other Systems. I6th Annual International Cryptology Conference
(CRYPTO)volume 1109. Springer-Verlag, August 1996.

[22] P.C. Kocher and J. Jaffe and B. Jun. Differential Power Analysi&¢9th Annual
International Cryptology Conference (CRYPT@)Ilume 2139. Springer-Verlag,
August 1999.

[23] N.P. Smart. Physical Side-Channel Attacks On Cryptographie8ystSoftware
Focus 1(2):6—-13, 2000.

[24] STMicroelectronics. ST22 Smart-Card Processor Cdtetp://www.st.
com, 2002.

[25] N.P. Topham and A. Gonzalez. Randomized Cache Placement for Eliminating
Conflicts. IEEE Transactions on Computer3(2):185-192, 1999.

Appendix

With respect to S-box O:

Ip[47,46,45, 44] K[54,13,30,04] © DI[57,07,15,23]
I,][47,46,45,44] = K][62,21,38,12] @ DI[56,06,14,22]&® Z

where
7Z = SB6(K]03,43,26,01,49,44] ¢ D[59,01,09,17,25,33]
SB3(K][05,63,28,37,46, 23] ® D[29, 37,45,53,61, 03]
SB1(K|[31,07,62,55,45,22]® DJ[31,39,47,55,63,05]
SB4(K42,36,25,10,27,60] ¢ D[61,03,11,19,27, 35

— — — —

With respect to S-box 1:

Ip[41,40,39,38] = K|[31,07,62,55] ¢ D[31,39,47,55]

I,]41,40,39,38] = K][39,15,05,63] ¢ D[30,38,46,54] & Z
where

Z = SB5(KJ17,34,59,11,41,35]® D[27,35,43,51,59,01])[03]@

SBT7(K][19,50,51,02,09, 33] ¢ D[25,33,41,49,57,07])[03]Q
SB2(K]61,29,38,39,20,06] ¢ D[63,05,13,21,29,37])[00]Q
SB6(K03,43,26,01,49,44] ® D[59,01, 09,17, 25, 33])[00]
With respect to S-box 2:

Ip[35, 34,33, 32] K[61,29,38,39] ¢ D[63,05, 13,21]

I,[35,34,33,32] = K][04,37,46,47] @ D[62,04,12,20]® Z

21

where

7 =

SB0
SB3

K

(K[
(K[
(K
(K[

With respect to S-box 3:

10[29, 28, 27, 26]
1,[29, 28, 27, 26]

where

Z

(
SB1(
SBA(
(

With respect to S-box 4:

10[23,22,21,20]
1,[23, 22,21, 20]

where

Z SB2
SB0
SB1

SB5

~~ ~ —~

With respect to S-box 5:

Io[17,16,15, 14]
I,[17,16,15, 14]

where

A

SB7
SB6

K

(K
(K[
(K
(K[

With respect to S-box 6:

Io[11,10,09, 08]
1,[11, 10,09, 08]

SB4(K[42, 36,25,
54,13, 30,
05,63, 28,
SB5(K[17,34, 59,

K[05,63,28,37] &
K[13,06,07,45] &

SB6(K[03,43,26,
K[31,07,62,
K[42,36,25,
SBT(K[19,50,51,

K[61,29,38,
K[54,13,30,
K[31,07,62,
K[17,34, 59,

SB3(K[05,63,28,
19,50, 51,
03,43, 26,
SBO(K[54, 13,30,

37,46,23] © D[29, 37,45, 53,61, 03]

10,27,60]® D[61,03, 11, 19, 27, 35])[03]@
3@
o1ja

11,41,35]® D[27,35,43, 51,59, 01])[01]

)l
04,15,47] @ D[57,07, 15,23, 31,39])[
)l
)l

D[29,37,45, 53]
D[28,36,44,52) & Z

01,49, 44] & D[59,01, 09, 17, 25, 33])[02]@
55,45,22] ® D[31,39, 47, 55, 63,05])[03]@
10,27,60] @ D[61,03, 11, 19, 27, 35])[02]@
02,09, 33] & D[25,33, 41,49, 57,07))[01]

K[42,36,25,10] @ D[61,03, 11, 19]
K[50,44,33,18] @ D[60,02,10,18] & Z

39,20,06] & D[63,05, 13, 21, 29, 37])[02]@
04,15,47]® D[57,07, 15,23, 31, 39])[02] @
55,45,22] ® D[31, 39, 47, 55, 63, 05])[00]@
11,41, 35] & D[27, 35,43, 51, 59, 01])[00]

K[17,34,59, 11] & D[27, 35,43, 51]
K[25,42,36,19] & D[26,34,42,50] & Z

37,46, 23] @ D[29, 37,45, 53,61, 03]
02,09, 33] & D[25,33, 41,49, 57, 07]
01,49, 44] & D[59,01, 09, 17, 25, 33]
04,15,47]@® D[57,07, 15,23, 31, 39]

— — — —

K[03,43,26,01] & D[59,01, 09, 17]
K[11,51,34,00] & D[58,00,08,16] & Z

22

where

7 = SB2(K[61,29,38,39,20,06]® D[63,05,13,21,29,37])[03]@

SBA(K[42,36,25,10,27,60] & D[61,03, 11,19, 27, 35])[01]
SB3(K[05,63,28,37,46,23] & D[29,37, 45,53, 61,03])[03]
SBT(K[19,50,51,02,09, 33] & D[25,33, 41,49, 57,07])[02]

Q@
Q@

With respect to S-box 7:

10[05,04,03,02] = KJ[19,50,51,02] & D[25,33,41,49]
1,[05,04,03,02] = KJ[27,58,59,10] & D[24,32,40,48] & Z

where
Z = SBI1(K[31,07,62,55,45,22]® DI[31,39,47,55,63,05]
SB5(K][17,34,59,11,41,35]® D27, 35,43,51,59,01]
(
(

[

[
SB2(K[61,29,38,39,20,06] & D[63,05,13,21,29, 37]
SBO(K[54,13,30,04,15,47] & D[57,07, 15,23, 31, 39]

(02)@
(02)@
01]@
[00]

_ — — —

23

