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Abstra
t. Given a positive integer n and a point P on an ellipti
 
urve

E, the 
omputation of nP , that is, the result of adding n times the point

P to itself, 
alled the s
alar multipli
ation, is the 
entral operation of

ellipti
 
urve 
ryptosystems. We present an algorithm that, using p pro-


essors, 
an 
ompute nP in time O(log n+H(n)=p+ log p), where H(n)

is the Hamming weight of n. Furthermore, if this algorithm is applied to

Koblitz 
urves, the running time 
an be redu
ed to O(H(n)=p+ log p).

1 Introdu
tion

Ellipti
 
urve 
ryptosytems were �rst proposed by Koblitz [10℄ and Miller [15℄.

Their main attra
tive is their strongest se
urity by key length. It is possible to


onstru
t ellipti
 
urve 
ryptosystems over a smaller de�nition �eld than similar

publi
-key 
ryptosystems based on the dis
rete logarithm problem, su
h as RSA

[17℄ 
ryptosystems. Ellipti
 
urve 
ryptosystems with a 160-bit key are believed

to have the same se
urity as, for example, the RSA with a 1024-bit key length.

Several fast implementation of ellipti
 
urve 
ryptosystems has been reported

[8, 7, 18, 4, 5℄. The se
urity of ellipti
 
urve 
ryptosystems is based on the diÆ-


ulty of the ellipti
 
urve dis
rete logarithm problem, and then the main opera-

tion of those 
ryptosystems is the exponentiation, also known as s
alar multipli-


ation. For a general survey on exponentiation methods see [6℄. In order to obtain

fast ellipti
 
urve exponentiation three fa
tors has been 
onsidered: the �eld of

de�nition [4℄[18℄, addition 
hains [4, 12, 16, 18℄ and optimal 
oordinate systems

[3, 5℄. Spe
ial ellipti
 
urves with eÆ
ient arithmeti
s has also been 
onsidered

[11℄ [20℄[21℄. In this paper we propose the appli
ation of parallel pro
essing to

speed up the exponentiation on ellipti
 
urves.

There already exists parallel algorithms for exponentiation of integers modulo

a m-bit integer [2, 1, 13℄ and also for exponentiation on the �elds GF (2

m

) [22℄

and GF (q

m

) [23℄. We present in this paper a parallel algorithm to 
ompute s
alar

multipli
ation on ellipti
 
urves. This algorithm would be spe
ially eÆ
ient for



anomalous binary 
urves, also known as Koblitz 
urves. The appli
ation of our

algorithm 
ould lead to eÆ
ient implementations of ellipti
 
urve 
ryptosystems

on multipro
essor 
omputers.

2 Binary Method

We have an ellipti
 
urve E and a point P 2 E. We want to 
ompute nP , for

some non negative integer n. Let n = (b

N�1

b

N�2

b

N�3

� � � b

2

b

1

b

0

)

2

be the binary

representation of n, where

N = blogn
+ 1: (1)

Then

n = b

N�1

2

N�1

+ b

N�2

2

N�2

+ � � �+ b

2

2

2

+ b

1

2 + b

0

: (2)

Using the Horner expansion, the last expression be
omes

n = (� � � ((b

N�1

2 + b

N�2

)2 + � � �+ b

1

)2 + b

0

): (3)

From (3) we have

nP = 2(� � � 2(2(2(b

N�1

P ) + b

N�2

P ) + � � �+ b

1

P ) + b

0

P: (4)

The last expression suggests a way to get nP . We 
an de�ne the su
ession of

points P

1

; � � � ; P

N

as follows. Let

P

1

= P

(5)

P

i

=

�

2P

i�1

if b

N�i

= 0

2P

i�1

+ P if b

N�i

= 1

for i = 2; � � � ; N . We 
an easily observe that P

N

= nP .

The method above outlined, to obtain nP by the 
omputation of the terms

P

1

; � � � ; P

N

, is known as the binary algorithm [9℄. From (5) we 
an dedu
e that

to obtain the term P

i

we need one doubling and, if the 
orresponding bit of the

binary representation of n is one, one adding. This 
omputation is made N � 1

times, where N = blogn
+ 1. If H(n) is the binary Hamming weight of n, that

is, the number of bits set to one in the binary representation of n, then we need

H(n) � 1 point addings besides the N � 1 doublings. Then we 
an state the

following theorem.

Theorem 1. If P is a point on an ellipti
 
urve E and n is a positive integer,

to obtain nP by the binary method are required blogn
 doublings and H(n) � 1

point addings.

If we assume that the time taken to add two ellipti
 
urve points is almost the

same that the time taken to do a doubling, and we denote as t su
h time, we


an 
on
lude from theorem 1 the following:



Corollary 1. The exe
ution time of the binary algorithm is

(blogn
+H(n)� 1) � t;

where t is the time taken by a single ellipti
 
urve operation.

Some improvement to the binary method 
an be obtained by the use of

redundant number systems. Morain and Olivos [16℄ observed that on ellipti



urves the inverse of a point 
an be obtained without a 
ost. For 
urves y

2

=

x

3

+ Ax + B over GF (p) with p > 3, the inverse of (x; y) is (x;�y) and, for

y

2

+ xy = x

3

+ Ax

2

+ B over GF (2

m

), the inverse is (x; x + y). Then, we 
an


onsider representations

n =

N�1

X

i=0




i

2

i

(6)

with 


i

2 f�1; 0; 1g for i = 0; : : : ; N � 1. A nonadja
ent form (NAF) is a repre-

sentation with 


i




i+1

= 0 for 0 � i < N � 1. Sin
e the NAF in general has fewer

nonzeros that the binary representation, then the advantage of using it is few

number of additions. Morain and Olivos [16℄ showed that the expe
ted number

of nonzeros in a NAF is N=3.

3 The p

th

-Order Binary Method

First, we divide the binary representation of n in dN=pe blo
ks of p bits ea
h

one and then we split n into s

0

; s

1

; : : : ; s

p

su
h that the binary representation of

ea
h s

i

is formed by dN=pe blo
ks of p bits set to 0, ex
ept for the i-th bit, whi
h

has the same value that the i-th bit of the 
orresponding blo
k of the binary

representation of n. Thus, we 
an de�ne s

i

, for i = 0; : : : ; p� 1, as follows:

s

0

= b

0

+ b

p

2

p

+ b

2p

2

2p

+ � � �+ b

(d

N

p

e�1)p

2

(d

N

p

e�1)p

(7)

s

1

= b

1

2 + b

p+1

2

p+1

+ b

2p+1

2

2p+1

+ � � �+ b

(d

N

p

e�1)p+1

2

(d

N

p

e�1)p+1

.

.

.

s

p�1

= b

p�1

2

p�1

+ b

2p�1

2

2p�1

+ b

3p�1

2

3p�1

+ � � �+ b

pd

N

p

e�1

2

pd

N

p

e�1

:

That is

s

i

=

d

N

p

e�1

X

j=0

b

jp+i

2

jp+i

(8)

for i = 0; 1; : : : ; p � 1, where we are 
onsidering some padding bits b

k

= 0 for

N�1 < k � pdN=pe�1. The integer set fs

0

; s

1

; � � � ; s

p�1

g 
an be easily obtained

from n by XOR-ing it with the appropiate mask. It is 
lear from (2) and (7) that

n = s

0

+ s

1

+ � � �+ s

p�1

(9)

and then, we 
an 
ompute nP as the sum of s

0

P; s

1

P; : : : ; s

p�1

P .

Now, we 
an outline our p

th

-order binary method in two phases as follows:



1. Bits s
attering: Compute the set fs

0

; s

1

; : : : ; s

p�1

g as is de�ned in (7). Using

p pro
essors, 
ompute in parallel the s
alar multipli
ations

s

0

P; s

1

P; : : : ; s

p�1

P

running the binary method on ea
h pro
essor.

2. Asso
iative fan-in: Using dp=2e pro
essors 
ompute in parallel

nP = s

0

P + s

1

P + : : :+ s

p�1

P:

To do this, �rst we separate the total sum as

p�1

X

i=0

s

i

=

dp=2e�1

X

i=0

s

i

+

p�1

X

i=dp=2e

s

i

;

and then both halves 
an be 
omputed in parallel. We pro
eed on ea
h half

the same way re
ursivelly until we only need to 
ompute a single addition

of two ellipti
 
urve points. Clearly in the deepest level of the re
ursion we

have to do dp=2e additions in parallel, and to obtain the total sum we have

to make dlog pe re
ursive steps.

We 
an observe that if p = 1 then our algorithm redu
es to the ordinary

binary algorithm. In what follows, we analyze the running time of the p

th

-order

binary method.

Theorem 2. The running time of the p

th

-order binary algorithm, on the best


ase, is

blogn
+ dH(n)=pe+ dlog pe � 1

and, on the worst 
ase,

blogn
+H(n)� 1:

Proof. First, we must observe that the integer set fs

0

; s

1

; � � � ; s

p�1

g 
an be ob-

tained from n in a negligible time. In the phase one of the algorithm, ea
h

pro
essor exe
utes the binary algorithm to 
ompute s

i

P , where i is the pro-


essor's index. From 
orollary 1, it requires blog s

i


+H(s

i

)� 1 steps to do this


omputation. Now, sin
e a

N�1

= 1, one of the pro
essors have to 
ompute N�1

doublings and if we suppose that in order to start the phase two all the pro
es-

sors must �nish its 
omputation, then the running time of the phase one will

be

T

1

= N +H

�

� 2; (10)

where

H

�

= max

0�i�p�1

H(s

i

): (11)

Sin
e we have that

H(n) =

p�1

X

i=0

H(s

i

) (12)



then

dH(n)=pe � H

�

� H(n): (13)

In the best 
ase, all the bits set to one in the binary representation of n are

equally s
attered among the integers fs

i

g, so the load is perfe
tly balan
ed on

all the pro
essors, and then we have

H

�

=

�

H(n)

p

�

: (14)

And from (14), (10) and (1) we have that, on the best 
ase, the time of the phase

one is given by

T

1

= blogn
+ dH(n)=pe � 1: (15)

In the phase two of our algorithm, the sum s

0

P + � � �+ s

p�1

P is 
omputed using

the asso
iative fan-in algorithm in

T

2

= dlog pe (16)

steps, and then the total running time for the best 
ase will be

T = T

1

+ T

2

= blogn
+ dH(n)=pe+ dlog pe � 1: (17)

In the worst 
ase H

�

= H(n), whi
h implies by the de�nition of H

�

(11) that

exists some index k, 0 � k � p � 1, su
h that H(s

k

) = H(n) and, from (12),

H(s

i

) = 0 for i 6= k and then s

i

= 0 for i 6= k. From (9) we have that n = s

k

and then s

k

P = nP . Then we have that nP is 
omputed on the phase one by

the pro
essor k. Therefore the running time will be the same as that stated on

the 
orollary 1.

Some improvement 
an be obtained if we use the NAF as input to our al-

gorithm instead of the binary representation of n. Sin
e the NAF has a fewer

number of nonzeros, then we 
an obtain the same running times with fewer pro-


essors. But before this we 
an see that a bottlene
k in our algorithm is 
aused

by the number of doublings needed on the �rst phase, represented by the linear

term on N in (10), whi
h is independent from the number p of pro
essors.

In the dedu
tion of the running time of our algorithm, was supossed that

the time needed to do a doubling or a point addition is almost the same, but in

general it depends of the 
oordinate system in whi
h an ellipti
 
urve is repre-

sented. The most well known 
oordinate systems are the aÆne and proje
tive


oordinates [19℄. Another two 
oordinate systems, the Ja
obian 
oordinates and

Chudnovsky Ja
obian 
oordinates have been proposed in [3℄. The eÆ
ien
y of

Ja
obian 
oordinates for ellipti
 
urve exponentiation was dis
ussed in [4℄. In

[5℄ has been proposed a modi�ed Ja
obian 
oordinate system, whi
h gives faster

doublings than aÆne, proje
tive, Ja
obian and Chudnovsky Ja
obian 
oordi-

nates. Then we 
an use this modi�ed Ja
obian 
oordinate system to partially

over
ome the bottlene
k of doublings in our algorithm.

A more fruitful approa
h 
ould be the use of spe
ial ellipti
 
urves in whi
h

doublings are unne
essary at all. This will be dis
ussed at the next se
tion.



4 The p

th

-order � -ary method

The binary anomalous 
urves, proposed by Koblitz [11℄, have been used to ob-

tain eÆ
ient implementations of ellipti
 
urve 
ryptosystems [14℄[20℄ [21℄. These


urves are

E

1

: y

2

+ xy = x

3

+ x

2

+ 1 (18)

and

E

2

: y

2

+ xy = x

3

+ 1 (19)

over GF (2

m

). For these it 
an be easily veri�ed the property that if the point

(x; y) is in the 
urve, also is the point (x

2

; y

2

). Then we 
an de�ne their Frobenius

automorphisms as '(x; y) = (x

2

; y

2

), whi
h 
orresponds to multipli
ation by

� = (1+

p

�7)=2 on E

1

and by ��� = (�1+

p

�7)=2 on E

2

. Using normal basis

on GF (2

m

), the multipli
ation by � requires only two 
y
li
 shifts and then it


an be done in a negligible time.

Sin
e � is an element of norm 2 in the Eu
lidean domain Z[� ℄ any integer n

has a representation as

n =

1

X

i=0




i

�

i

(20)

for 


i

2 f0; 1g. For any n 2 Z[� ℄ a representation (20) is 
alled a NAF if 


i

2

f0;�1g and 


i




i+1

= 0 for all i � 0. Solinas [20℄ showed the existen
e of a NAF

of minimal weigth by giving an algorithm that 
omputes the NAF dire
tly. If

� jn, then 


0

= 0. Otherwise, �

2

divides either n+ 1 or n� 1 and the NAF ends

in (0;�1) or (0; 1), respe
tively. This pro
ess is repeated on n=� , (n+ 1)=�

2

or

(n� 1)=�

2

.

Be
ause '

m

(x; y) = (x

2

m

; y

2

m

) = (x; y), any two representations whi
h agree

modulo �

m

� 1 will yield the same endomorphism on the 
urve. Based on this

property, Meier and Sta�elba
h [14℄ showed the following:

Theorem 3. Every n 2 Z[� ℄ has a representation

n �

m�1

X

i=0




i

�

i

(mod �

m

� 1); (21)

with 


i

2 f0;�1g.

The binary method 
an be extended in a natural way to a � -ary method

based on the representation of n given by (21). Now we 
an de�ne a parallel

p

th

-order � -ary method.

Using (21) we 
an de�ne the set fs

0

; � � � ; s

p�1

g � Z[� ℄, where

s

i

=

d

m

p

e�1

X

j=0




jp+i

�

jp+i

(22)

for i = 0; 1; : : : ; p� 1.

The p

th

-order �-ary method 
onsists in the following two stages:



1. Bits s
attering: Using p pro
essors 
ompute in parallel

s

0

P; s

1

P; � � � ; s

p�1

P

running the � -ary algorithm on ea
h pro
essor.

2. Asso
iative fan-in: Using dp=2e pro
essors 
ompute

p�1

X

k=0

s

k

P

with the asso
iative fan-in algorithm, in dlog pe steps.

If we de�ne H(n) as the number of nonzeros in the representation given by

(21), we 
an state the following theorem:

Theorem 4. The running time of the p

th

-order �-ary method, on the best 
ase,

is

dH(n)=pe+ dlog pe � 1

and

H(n)� 1

on the worst 
ase.

Proof. The proof of this theorem is the same as that of theorem 2 ex
ept that

the time for the phase one will be

T

1

= H

�

� 1 (23)

where H

�

is de�ned as in (11).

Meier and Sta�elba
h [14℄ 
onje
ture, based on experimental eviden
e, that

on average half of the 


i

will be nonzero. So we 
an expe
t that when p � m=2

the running time will be 
loser to logH(n). Further improvements 
an be made

to the � -ary representation to redu
e the number of nonzeros [21℄, so a small

number of pro
essors 
an bring similar speed-up in the p

th

-order � -ary method.

5 Con
lusions

We have dis
ussed in this paper a extension of the binary algorithm, whi
h by the

use of parallel pro
essing 
an speed up the 
omputation of s
alar multipli
ations

on ellipti
 
urves. We have also dis
ussed some ways to improve this algorithm.

We have showed how it 
an be spe
ially eÆ
ient for Koblitz 
urves.

The appli
ation of this algorithm 
ould lead to eÆ
ient implementations of

ellipti
 
urves 
ryptosystems on multipro
essor ar
hite
tures.
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