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Abstrat. Given a positive integer n and a point P on an ellipti urve

E, the omputation of nP , that is, the result of adding n times the point

P to itself, alled the salar multipliation, is the entral operation of

ellipti urve ryptosystems. We present an algorithm that, using p pro-

essors, an ompute nP in time O(log n+H(n)=p+ log p), where H(n)

is the Hamming weight of n. Furthermore, if this algorithm is applied to

Koblitz urves, the running time an be redued to O(H(n)=p+ log p).

1 Introdution

Ellipti urve ryptosytems were �rst proposed by Koblitz [10℄ and Miller [15℄.

Their main attrative is their strongest seurity by key length. It is possible to

onstrut ellipti urve ryptosystems over a smaller de�nition �eld than similar

publi-key ryptosystems based on the disrete logarithm problem, suh as RSA

[17℄ ryptosystems. Ellipti urve ryptosystems with a 160-bit key are believed

to have the same seurity as, for example, the RSA with a 1024-bit key length.

Several fast implementation of ellipti urve ryptosystems has been reported

[8, 7, 18, 4, 5℄. The seurity of ellipti urve ryptosystems is based on the diÆ-

ulty of the ellipti urve disrete logarithm problem, and then the main opera-

tion of those ryptosystems is the exponentiation, also known as salar multipli-

ation. For a general survey on exponentiation methods see [6℄. In order to obtain

fast ellipti urve exponentiation three fators has been onsidered: the �eld of

de�nition [4℄[18℄, addition hains [4, 12, 16, 18℄ and optimal oordinate systems

[3, 5℄. Speial ellipti urves with eÆient arithmetis has also been onsidered

[11℄ [20℄[21℄. In this paper we propose the appliation of parallel proessing to

speed up the exponentiation on ellipti urves.

There already exists parallel algorithms for exponentiation of integers modulo

a m-bit integer [2, 1, 13℄ and also for exponentiation on the �elds GF (2

m

) [22℄

and GF (q

m

) [23℄. We present in this paper a parallel algorithm to ompute salar

multipliation on ellipti urves. This algorithm would be speially eÆient for



anomalous binary urves, also known as Koblitz urves. The appliation of our

algorithm ould lead to eÆient implementations of ellipti urve ryptosystems

on multiproessor omputers.

2 Binary Method

We have an ellipti urve E and a point P 2 E. We want to ompute nP , for

some non negative integer n. Let n = (b

N�1

b

N�2

b

N�3

� � � b

2

b

1

b

0

)

2

be the binary

representation of n, where

N = blogn+ 1: (1)

Then

n = b

N�1

2

N�1

+ b

N�2

2

N�2

+ � � �+ b

2

2

2

+ b

1

2 + b

0
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Using the Horner expansion, the last expression beomes

n = (� � � ((b

N�1

2 + b

N�2

)2 + � � �+ b

1

)2 + b

0

): (3)

From (3) we have

nP = 2(� � � 2(2(2(b

N�1

P ) + b

N�2

P ) + � � �+ b

1

P ) + b

0

P: (4)

The last expression suggests a way to get nP . We an de�ne the suession of

points P

1

; � � � ; P

N

as follows. Let

P

1

= P

(5)

P

i

=

�

2P

i�1

if b

N�i

= 0

2P

i�1

+ P if b

N�i

= 1

for i = 2; � � � ; N . We an easily observe that P

N

= nP .

The method above outlined, to obtain nP by the omputation of the terms

P

1

; � � � ; P

N

, is known as the binary algorithm [9℄. From (5) we an dedue that

to obtain the term P

i

we need one doubling and, if the orresponding bit of the

binary representation of n is one, one adding. This omputation is made N � 1

times, where N = blogn+ 1. If H(n) is the binary Hamming weight of n, that

is, the number of bits set to one in the binary representation of n, then we need

H(n) � 1 point addings besides the N � 1 doublings. Then we an state the

following theorem.

Theorem 1. If P is a point on an ellipti urve E and n is a positive integer,

to obtain nP by the binary method are required blogn doublings and H(n) � 1

point addings.

If we assume that the time taken to add two ellipti urve points is almost the

same that the time taken to do a doubling, and we denote as t suh time, we

an onlude from theorem 1 the following:



Corollary 1. The exeution time of the binary algorithm is

(blogn+H(n)� 1) � t;

where t is the time taken by a single ellipti urve operation.

Some improvement to the binary method an be obtained by the use of

redundant number systems. Morain and Olivos [16℄ observed that on ellipti

urves the inverse of a point an be obtained without a ost. For urves y

2

=

x

3

+ Ax + B over GF (p) with p > 3, the inverse of (x; y) is (x;�y) and, for

y

2

+ xy = x

3

+ Ax

2

+ B over GF (2

m

), the inverse is (x; x + y). Then, we an

onsider representations

n =

N�1

X

i=0



i

2

i

(6)

with 

i

2 f�1; 0; 1g for i = 0; : : : ; N � 1. A nonadjaent form (NAF) is a repre-

sentation with 

i



i+1

= 0 for 0 � i < N � 1. Sine the NAF in general has fewer

nonzeros that the binary representation, then the advantage of using it is few

number of additions. Morain and Olivos [16℄ showed that the expeted number

of nonzeros in a NAF is N=3.

3 The p

th

-Order Binary Method

First, we divide the binary representation of n in dN=pe bloks of p bits eah

one and then we split n into s

0

; s

1

; : : : ; s

p

suh that the binary representation of

eah s

i

is formed by dN=pe bloks of p bits set to 0, exept for the i-th bit, whih

has the same value that the i-th bit of the orresponding blok of the binary

representation of n. Thus, we an de�ne s

i

, for i = 0; : : : ; p� 1, as follows:

s

0
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0
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p
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p

+ b
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That is

s

i

=

d

N

p

e�1

X

j=0

b

jp+i

2

jp+i

(8)

for i = 0; 1; : : : ; p � 1, where we are onsidering some padding bits b

k

= 0 for

N�1 < k � pdN=pe�1. The integer set fs

0

; s

1

; � � � ; s

p�1

g an be easily obtained

from n by XOR-ing it with the appropiate mask. It is lear from (2) and (7) that

n = s

0

+ s

1

+ � � �+ s

p�1

(9)

and then, we an ompute nP as the sum of s

0

P; s

1

P; : : : ; s

p�1

P .

Now, we an outline our p

th

-order binary method in two phases as follows:



1. Bits sattering: Compute the set fs

0

; s

1

; : : : ; s

p�1

g as is de�ned in (7). Using

p proessors, ompute in parallel the salar multipliations

s

0

P; s

1

P; : : : ; s

p�1

P

running the binary method on eah proessor.

2. Assoiative fan-in: Using dp=2e proessors ompute in parallel

nP = s

0

P + s

1

P + : : :+ s

p�1

P:

To do this, �rst we separate the total sum as

p�1

X

i=0

s

i

=

dp=2e�1

X

i=0

s

i

+

p�1

X

i=dp=2e

s

i

;

and then both halves an be omputed in parallel. We proeed on eah half

the same way reursivelly until we only need to ompute a single addition

of two ellipti urve points. Clearly in the deepest level of the reursion we

have to do dp=2e additions in parallel, and to obtain the total sum we have

to make dlog pe reursive steps.

We an observe that if p = 1 then our algorithm redues to the ordinary

binary algorithm. In what follows, we analyze the running time of the p

th

-order

binary method.

Theorem 2. The running time of the p

th

-order binary algorithm, on the best

ase, is

blogn+ dH(n)=pe+ dlog pe � 1

and, on the worst ase,

blogn+H(n)� 1:

Proof. First, we must observe that the integer set fs

0

; s

1

; � � � ; s

p�1

g an be ob-

tained from n in a negligible time. In the phase one of the algorithm, eah

proessor exeutes the binary algorithm to ompute s

i

P , where i is the pro-

essor's index. From orollary 1, it requires blog s

i

+H(s

i

)� 1 steps to do this

omputation. Now, sine a

N�1

= 1, one of the proessors have to ompute N�1

doublings and if we suppose that in order to start the phase two all the proes-

sors must �nish its omputation, then the running time of the phase one will

be

T

1

= N +H

�

� 2; (10)

where

H

�

= max

0�i�p�1

H(s

i

): (11)

Sine we have that

H(n) =

p�1

X

i=0

H(s

i

) (12)



then

dH(n)=pe � H

�

� H(n): (13)

In the best ase, all the bits set to one in the binary representation of n are

equally sattered among the integers fs

i

g, so the load is perfetly balaned on

all the proessors, and then we have

H

�

=

�

H(n)

p

�

: (14)

And from (14), (10) and (1) we have that, on the best ase, the time of the phase

one is given by

T

1

= blogn+ dH(n)=pe � 1: (15)

In the phase two of our algorithm, the sum s

0

P + � � �+ s

p�1

P is omputed using

the assoiative fan-in algorithm in

T

2

= dlog pe (16)

steps, and then the total running time for the best ase will be

T = T

1

+ T

2

= blogn+ dH(n)=pe+ dlog pe � 1: (17)

In the worst ase H

�

= H(n), whih implies by the de�nition of H

�

(11) that

exists some index k, 0 � k � p � 1, suh that H(s

k

) = H(n) and, from (12),

H(s

i

) = 0 for i 6= k and then s

i

= 0 for i 6= k. From (9) we have that n = s

k

and then s

k

P = nP . Then we have that nP is omputed on the phase one by

the proessor k. Therefore the running time will be the same as that stated on

the orollary 1.

Some improvement an be obtained if we use the NAF as input to our al-

gorithm instead of the binary representation of n. Sine the NAF has a fewer

number of nonzeros, then we an obtain the same running times with fewer pro-

essors. But before this we an see that a bottlenek in our algorithm is aused

by the number of doublings needed on the �rst phase, represented by the linear

term on N in (10), whih is independent from the number p of proessors.

In the dedution of the running time of our algorithm, was supossed that

the time needed to do a doubling or a point addition is almost the same, but in

general it depends of the oordinate system in whih an ellipti urve is repre-

sented. The most well known oordinate systems are the aÆne and projetive

oordinates [19℄. Another two oordinate systems, the Jaobian oordinates and

Chudnovsky Jaobian oordinates have been proposed in [3℄. The eÆieny of

Jaobian oordinates for ellipti urve exponentiation was disussed in [4℄. In

[5℄ has been proposed a modi�ed Jaobian oordinate system, whih gives faster

doublings than aÆne, projetive, Jaobian and Chudnovsky Jaobian oordi-

nates. Then we an use this modi�ed Jaobian oordinate system to partially

overome the bottlenek of doublings in our algorithm.

A more fruitful approah ould be the use of speial ellipti urves in whih

doublings are unneessary at all. This will be disussed at the next setion.



4 The p

th

-order � -ary method

The binary anomalous urves, proposed by Koblitz [11℄, have been used to ob-

tain eÆient implementations of ellipti urve ryptosystems [14℄[20℄ [21℄. These

urves are

E

1

: y

2

+ xy = x

3

+ x

2

+ 1 (18)

and

E

2

: y

2

+ xy = x

3

+ 1 (19)

over GF (2

m

). For these it an be easily veri�ed the property that if the point

(x; y) is in the urve, also is the point (x

2

; y

2

). Then we an de�ne their Frobenius

automorphisms as '(x; y) = (x

2

; y

2

), whih orresponds to multipliation by

� = (1+

p

�7)=2 on E

1

and by ��� = (�1+

p

�7)=2 on E

2

. Using normal basis

on GF (2

m

), the multipliation by � requires only two yli shifts and then it

an be done in a negligible time.

Sine � is an element of norm 2 in the Eulidean domain Z[� ℄ any integer n

has a representation as

n =

1

X

i=0



i

�

i

(20)

for 

i

2 f0; 1g. For any n 2 Z[� ℄ a representation (20) is alled a NAF if 

i

2

f0;�1g and 

i



i+1

= 0 for all i � 0. Solinas [20℄ showed the existene of a NAF

of minimal weigth by giving an algorithm that omputes the NAF diretly. If

� jn, then 

0

= 0. Otherwise, �

2

divides either n+ 1 or n� 1 and the NAF ends

in (0;�1) or (0; 1), respetively. This proess is repeated on n=� , (n+ 1)=�

2

or

(n� 1)=�

2

.

Beause '

m

(x; y) = (x

2

m

; y

2

m

) = (x; y), any two representations whih agree

modulo �

m

� 1 will yield the same endomorphism on the urve. Based on this

property, Meier and Sta�elbah [14℄ showed the following:

Theorem 3. Every n 2 Z[� ℄ has a representation

n �

m�1

X

i=0



i

�

i

(mod �

m

� 1); (21)

with 

i

2 f0;�1g.

The binary method an be extended in a natural way to a � -ary method

based on the representation of n given by (21). Now we an de�ne a parallel

p

th

-order � -ary method.

Using (21) we an de�ne the set fs

0

; � � � ; s

p�1

g � Z[� ℄, where

s

i

=

d

m

p

e�1

X

j=0



jp+i

�

jp+i

(22)

for i = 0; 1; : : : ; p� 1.

The p

th

-order �-ary method onsists in the following two stages:



1. Bits sattering: Using p proessors ompute in parallel

s

0

P; s

1

P; � � � ; s

p�1

P

running the � -ary algorithm on eah proessor.

2. Assoiative fan-in: Using dp=2e proessors ompute

p�1

X

k=0

s

k

P

with the assoiative fan-in algorithm, in dlog pe steps.

If we de�ne H(n) as the number of nonzeros in the representation given by

(21), we an state the following theorem:

Theorem 4. The running time of the p

th

-order �-ary method, on the best ase,

is

dH(n)=pe+ dlog pe � 1

and

H(n)� 1

on the worst ase.

Proof. The proof of this theorem is the same as that of theorem 2 exept that

the time for the phase one will be

T

1

= H

�

� 1 (23)

where H

�

is de�ned as in (11).

Meier and Sta�elbah [14℄ onjeture, based on experimental evidene, that

on average half of the 

i

will be nonzero. So we an expet that when p � m=2

the running time will be loser to logH(n). Further improvements an be made

to the � -ary representation to redue the number of nonzeros [21℄, so a small

number of proessors an bring similar speed-up in the p

th

-order � -ary method.

5 Conlusions

We have disussed in this paper a extension of the binary algorithm, whih by the

use of parallel proessing an speed up the omputation of salar multipliations

on ellipti urves. We have also disussed some ways to improve this algorithm.

We have showed how it an be speially eÆient for Koblitz urves.

The appliation of this algorithm ould lead to eÆient implementations of

ellipti urves ryptosystems on multiproessor arhitetures.
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