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Abstrat

In this paper, we present a new visual rypto system based on the polarisation of light

and investigate the existene and struture of the assoiated threshold visual seret sharing

shemes. It is shown that very eÆient (n; n) shemes exist and that (2; n) shemes are

equivalent to binary odes. The existene of (k; n) shemes is shown in general by two

expliit onstrutions. Finally, bounds on the physial properties as ontrast and resolution

are derived.

Key words Light Polarisation, XOR, (MDS) odes, Threshold Visual Seret Sharing Shemes

1 Introdution

The idea of using the human visual system for seurity purposes was �rst mentioned in [1℄.

Independently of [1℄, the basi Visual Cryptography priniples were studied by Naor, Shamir

and Pinkas in [6, 7℄. The main idea is to split an image into two random shares (printed on

transparenies) whih separately reveal no information on the original image. The original

image an be reonstruted by superimposing the two shares. In [6, 7℄ it is shown that this

system is equivalent to a One Time Pad enryption sheme based on the boolean OR fun-

tion and therefore unonditionally seure. Moreover, they developped visual authentiation

shemes whih together with a visual enryption sheme lead to a seure system. Later,

the assoiated seret sharing problem and its physial properties as ontrast, resolution and

olour were extensively studied by Stinson [10℄ and by Verheul and Van Tilborg [11℄.

Although the above mentioned visual rypto systems an be made unonditionally seure,

they are not satisfatory from a pratial point of view. Firstly, beause of the One Time

Pad property of the sheme, a key an be used only one. Sine transparenies are stati

objets, this implies that a user has to arry a pile of transparenies with him to update the

keys. Seondly, the bad physial properties (olour, resolution, ontrast) [6, 10, 11℄ make the

system not very well suited for pratial purposes.

In this paper we investigate threshold visual seret sharing shemes assoiated to a new visual

enryption sheme. The new visual rypto system uses the polarisation of light and has good

olour, ontrast and resolution properties. It is based on two well-known physial priniples:

i) Polarisors only transmit light whose polarisation is aligned with the one of the polarisor

(sunglasses) and ii) Liquid Crystal (LC) ells an be used to rotate the polarisation diretion

of inoming light.
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This paper is organised as follows. In Se. 2 we give a desription of the physis behind the

polarisation based visual rypto system and show that it an mathematially be desribed by

an XOR. As suh, the system has good brightness, resolution, ontrast and olour properties

and gives rise to a new interesting type of seret sharing problem based on the omponent

wise addition of binary vetors, whih is the main topi of this paper. This seret sharing

problem is formally de�ned in Se. 3. In this setion we also give examples of some simple

threshold visual seret sharing systems and show the equivalene between (2; n) shemes and

binary oding theory. The existene of general threshold visual seret sharing shemes based

on polarisation is shown in Se. 4. Finally, we derive bounds on resolution and ontrast

properties of these shemes in Se. 5.

2 The Model

In this setion, we explain the physial system and the model for blak and white pitures.

We also briey sketh the situation for gray sales and olours but refer the reader for more

details to a forthoming publiation.

In order to introdue the model, we briey explain the physis of an LC display with baklight.

An LC display onsists mainly of four layers (Fig. 1). The �rst one has the baklight. The

seond layer onsists of a polarisor, the third one is the LC layer and the fourth one onsists

again of a polarisor. The baklight emits irularly polarised light. The �rst polarisation

layer projets the polarisation of the inident light on its polarisation diretion. Depending

on the voltage that is applied to a LC ell, this LC ell will rotate the polarisation of the

light that enters it over a ertain angle. If the polarisation diretion of the light leaving

the LC-layer mathes that of the �nal polarisor, light omes out of the display. If on the

other hand the polarisation of the light oming out of the LC layer is perpendiular to the

polarisation diretion of the �nal polariser, no light omes out. By applying voltages to the

LC-ells suh that the polarisation diretion of the outoming light makes an angle � � �=2

with the polarisation diretion of the seond polarisor, gray sales an be generated.

In order to build a visual rypto system based on LC displays we proeed as follows (Fig. 2).

We have two displays onsisting of an LC layer whih have a polarisor at one side and no

polarisor at the other side. We also assume that the �rst LC has the baklight and the seond

one has not. The seond display has to be onsidered as a dediated trusted devie that a

user is arrying with him. The shares of both users are then the two (or more) LC layers on

whih the dealer writes a ertain pattern in terms of the angle of rotation of the various LC

ells.

We will start with a model for blak and white pixels. We assume that the diretion of the

�rst polarisor equals that of the seond polarisor and is horizontal. Furthermore, we assume

that two voltages an be applied to LC ells V

1

and V

2

. When the voltage V

1

is applied, the

LC ell will not rotate the polarisation diretion of the inoming light, while when the voltage

V

2

is applied, the polarisation diretion is rotated over an angle of 90 degrees. When an LC

onsists of N pixels (LC ells), one share will basially onsist of N voltages (orresponding

to the angle of rotation of the di�erent ells). Table 1 summarizes the physis for one pixel.

It follows from Table 1 that when two superimposed LC ells apply the same rotation, this

generates a white pixel and when they rotate the polarisation over a di�erent angle this

generates a blak pixel.
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Pol �lter 1 ! ! ! !

LC1 k k 	 	

LC2 k 	 k 	

Pol �lter 2 ! ! ! !

Color white blak blak white

Table 1: This table summarizes the physis of a polarisation based visual rypto system. The

arrows ! indiate that the polarisor projets the polarisation diretion of the inoming light

on the horizontal. The symbols k and 	 stand for LC ells that do not and do rotate the

polarisation diretion of the light respetively.

LC1 0 0 1 1

LC2 0 1 0 1

Color 0 1 1 0

Table 2: Mathematial model of Table 1.

If an LC does not rotate the polarisation of the inoming light, then we will denote this by a

0. If on the other hand the polarisation is rotated over 90 degrees by the LC ell, this will be

denoted by a 1. This means that the mathematial struture of the system we desribed is that

of binary addition as follows from Table 2. The visual enryption sheme orresponds then to

the physial implementation on LC layers of the One Time Pad based on an XOR operation.

As LC layers an be driven eletronially (as in LCD's), the key an be easily updated (using

pseudo random number generators), whih leads to a pratial updating mehanism.

Finally, we mention that reently another visual rypto system using an XOR proess has

been introdued in [2℄. Their system is based on interferometri tehniques and needs a

Mah-Zehnder interferometer making the system less pratial and more expensive.

3 Threshold Visual Seret Sharing Shemes

3.1 De�nitions

In this setion, we will onstrut Threshold Visual Seret Sharing (TVSS) shemes based on

the polarisation rotation tehnique as explained in Se. 2. We will restrit ourselves to images

onsisting of blak or white pixels. Sine images onsist of pixels, it suÆes to give shemes

for sharing a blak or white pixel only. In order to share a omplete image, the pixel sheme

has to be applied as many times as there are pixels in the image.

By a (k; n) TVSS sheme, we mean a sheme in whih a seret (the olour: blak or white)

is divided into n shares whih are given to the n users. Any subgroup of k users out of these

n, an reonstrut the seret but any subgroup onsisting of less than k users does not have

any information on the seret.

We introdue the notion of a share matrix. A k-share matrix is an n� b (n: number of users,

b: length of the shares) matrix whose rows are the shares that are distributed to the users.

Any arbitrary subset of k rows out of the set of n rows generates the seret when the shares
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are superimposed. We denote by C

0

the set of n� b k-share matries that generate a white

pixel. By C

1

we denote the set of k-share matries that generate a blak pixel.

We will follow the de�nitions of Verheul and Van Tilborg [11℄ to give rigorous de�nitions of

a visual seret sharing sheme, ontrast and resolution. For a vetor v 2 GF(2)

b

, we denote

by z(v) the number of zero entries in the vetor v (note that z(v) + w(v) = b, where w(v)

denotes the Hamming weight of the vetor v).

A k out of n TVSS sheme S = (C

0

; C

1

) onsists of two olletions of n � b binary share

matries C

0

and C

1

. To share a white (blak) pixel, the dealer randomly hooses one of the

matries in C

0

(C

1

) and distributes its rows (shares) under the n partiipants of the system.

More preisely,

De�nition 1 Let k; n; b; h; l be positive integers satisfying 1 � k � n and b � h > l. A

[(k; n); b; h; l℄ TVSS sheme onsists of two olletions of n � b boolean matries C

0

and C

1

suh that:

1. For any s 2 C

0

, the XOR v of any k of the n rows of s satis�es z(v) � h.

2. For any s 2 C

1

, the XOR v of any k of the n rows of s satis�es z(v) � l.

3. For any i

1

< i

2

< : : : < i

t

in f1; 2; : : : ; ng with t < k the two olletions of t�b matries

D

j

for j 2 f0; 1g, obtained by restriting eah n� b matrix in C

j

, for j = 0; 1, to rows

i

1

; i

2

; : : : ; i

t

are indistinguishable in the sense that they ontain the same matries with

the same frequenies.

h is alled the white level of the system and l is alled the blak level. The parameter b is

alled the blok length and determines the resolution of the sheme.

For a good sheme one needs that h > l. In [11℄ the ontrast  is de�ned as  = (h� l)=(h+ l)

whih is also the de�nition that we will take here. Note that  2 [0; 1℄ and that  is maximal,

when l = 0. Shemes with l = 0 are alled maximal ontrast shemes. In general, one is

interested in shemes with b as small as possible but with the ontrast  as large as possible.

The following symmetry property follows very easily and is therefore stated without proof.

Proposition 1 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS sheme with k odd and let

^

C

i

be

obtained from C

i

by replaing zeroes by ones and vie versa. Then, the sheme

^

S = (

^

C

0

;

^

C

1

) is

a [(k; n); b; b � l; b� h℄ sheme with ontrast ̂,

̂ = (h� l)=(2b � l � h):

It follows that ̂ >  whenever l + h > b.

�

The following proposition gives a bound on the distane between the di�erent shares and its

proof is given in appendix A.

Proposition 2 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS sheme with k � 3 and let 

1

and



2

be two rows of a share matrix in C

0

and hene also two rows of a share matrix in C

1

. Then,

d(

1

; 

2

) � minf2l; 2(b � h)g;

where d(:; :) denotes the Hamming distane.
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We will denote the set of n� b boolean matries (M

n�b

(GF(2))) briey by M

n�b

.

3.2 n out of n visual seret sharing

In this setion, we show that (n; n) TVSS shemes an have maximal ontrast ( = 1) with

minimal blok length (b = 1). This stands in sharp ontrast to the Naor Shamir ase [6℄

where for the simplest non-trivial ase (n = 2) at least two subpixels (b = 2) are needed.

Proposition 3 Let C

0

and C

1

be two sets of n� 1 matries de�ned as follows,

C

0

= fs 2 (GF(2))

n

j

n

M

i=1

s

i

= 0g; C

1

= fs 2 (GF(2))

n

j

n

M

i=1

s

i

= 1g: (1)

Then, the sheme S = (C

0

; C

1

) is a [(n; n); 1; 1; 0℄ TVSS sheme.

Proof. From the de�nition of C

0

and C

1

, it follows immediately that b = 1, h = 1 and l = 0.

Furthermore, one derives easily that jC

0

j = jC

1

j = 2

n�1

. Clearly any restrition of a share

matrix s 2 C

0

to any t < n rows (shares) an also be obtained as a restrition of a share

matrix ŝ 2 C

1

and vie versa. It follows moreover that those restritions our with the same

frequenies in C

0

and C

1

. Therefore, the onditions of Def. 1 are satis�ed.

�

Hene, in this set-up there exist visual enryption shemes with good ontrast and resolution

properties. This stands in sharp ontrast with OR-based visual rypto systems where maximal

ontrast shemes an only exist if b > 1 [11℄.

3.3 (2; n) TVSS shemes

A general onstrution for (2; n) TVSS shemes is given by the following theorem. It shows

that (2; n) TVSS shemes are equivalent to binary odes. By a (b; n; d) ode, we mean a

binary ode of length b, n words and minimum Hamming distane d.

Theorem 1 Let b; l be natural numbers with b > 1 and 0 � l � b. A [(2; n); b; b; l℄ TVSS

sheme exists if and only if there exists a binary (b; n; b� l) ode C.

Proof. The theorem is proved by onstrution. Let S be a [(2; n); b; b; l℄ TVSS sheme. Take

a share matrix A

1

2 C

1

and de�ne a set C whose words 

1

; : : : ; 

n

are given by the rows of

A

1

. As the sets C

0

and C

1

de�ne a [(2; n); b; b; l℄ TVSS sheme, the minimal distane between

those words is b � l. Consequently, C de�nes a ode of length b, onsisting of n words and

with minimal distane d = b� l.

Conversely, let C be a (b; n; d) ode over GF(2). De�ne the boolean matries A

i

2 M

n�b

,

i = 1; : : : ; n as matries whose n rows ontain the same odeword 

i

and de�ne the boolean

matrix B 2 M

n�b

onsisting of n di�erent rows ontaining the ode words 

i

; i = 1; : : : ; n.

Furthermore, de�ne the boolean matries

^

A

i

= �

i

n

(B) 2M

n�b

; i = 1; : : : ; n where the yli

shift on n points, �

n

, is applied to the rows of B. De�ne the sets C

0

= fA

1

; : : : ; A

n

g and

C

1

= f

^

A

1

; : : : ;

^

A

n

g. We prove that the seret sharing sheme S = (C

0

; C

1

) is a [(2; n); b; b; b�d℄

TVSS sheme.
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Without loss of generality, we start from onsidering the matries A

i

;

^

A

i

; i = 1; : : : ; n. It is

lear that the sum of two arbitrary rows of the matries A

i

; i = 1; : : : ; n gives the all zero

vetor. It follows that h = b. As C has minimum distane d, for any two rows �

j

; �

k

from

^

A

i

(i = 1; : : : ; n), we have z(�

j

� �

k

) � b � d. Equality holds if �

j

and �

k

have Hamming

distane d, so l = b� d. The ontrast  of the sheme S is hene given by,

 =

d

2b� d

:

From the onstrution it follows that jC

0

j = jC

1

j and also that the olletions D

0

and D

1

whih

are obtained by restriting the elements of the olletions C

0

and C

1

to an arbitrary row are

indistinguishable. Therefore, the sheme S = (C

0

; C

1

) is a [(2; n); b; b; b � d℄ TVSS sheme.

�

We note that the onstrution of Theorem 1 does not allow to onstrut maximal ontrast

shemes. The impossibility of suh a onstrution for (k; n) shemes with 1 < k < n, will

be shown in generality in Se. 5. In fat, sine we showed in Theorem 1 that (2; n) TVSS

shemes are equivalent to binary odes, bounds for ; h and l an be derived from bounds for

(b; n; d) odes. Using the Singleton bound, we obtain the following orollary.

Corollary 1 The ontrast of a [(2; n); b; b; l℄ TVSS sheme is at most

(b� log

2

n+ 1)=(b + log

2

n� 1): (2)

Proof. The proof follows from the Singleton bound [3, Thm. 5.2.1℄ and Theorem 1.

�

In the same way, a lower bound for the ontrast of a (2; n) TVSS sheme follows from the

Gilbert-Varshamov bound [3, Thm. 5.1.7℄.

4 General k out of n visual seret sharing shemes

In this setion, we show two onstrutions of (k; n) TVSS shemes for all 3 � k � n� 1. The

�rst onstrution is reursive, the seond one is a diret onstrution and based on so-alled

MDS odes known from algebrai oding theory. We realize that more eÆient onstrutions

are possible, but post those as an open problem.

4.1 Constrution 1

The �rst onstrution that we propose is a reursive onstrution. We will �rst desribe a

(3; n) TVSS sheme, and derive a (4; n) TVSS sheme from it. It will then be lear how more

general shemes an be derived.

4.1.1 Introdution

We �rst emphasize that in all of the following onstrutions we produe two lasses of share

matries onsisting of n rows alled C

0

and C

1

. In eah step of the onstrution we will

let the permutation group S

n

at on the n rows of the share matries in C

0

and C

1

. The

appropriate permutation group S will at on the olumns of the share matries in C

0

and C

1

.
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This ensures the indistinguishability property aording to Def. 1 for the sets C

0

and C

1

. In

all onstrutions, we assume that this is done without mentioning this.

The idea of the onstrution is the following. Denote by a

i

the weight of the sum of any

1 � i � k rows of a matrix A 2 C

0

and similarly we use the notation b

i

for the weight any

i rows for B 2 C

1

. The onstrution will guarantee that a

i

= b

i

as long as i < k and that

a

k

6= b

k

as required by the indistinguishability property.

4.1.2 (3,n) TVSS shemes

Let B 2M

n�(2n�2)

be a matrix de�ned as follows,

B = (I

n

J

n;n�2

);

where I

n

stands for the n � n identity matrix and J

n;n�2

is the all one matrix with n rows

and n� 2 olumns. The matrix A 2M

n�(2n�2)

is de�ned as the omplement of B. We build

the sets of share matries C

0

and C

1

by letting the appropriate permutation groups at on the

rows and the olumns of the matries A and B respetively, as explained in Se. 4.1.1.

Proposition 4 The sheme S = (C

0

; C

1

) as de�ned in the previous paragraph is a [(3; n); 2n�

2; n+ 1; n� 3℄ TVSS sheme with ontrast  = 4=(2n� 2).

Proof. Let a

i

; b

i

; i = 1; : : : ; n be as de�ned in Se 4.1.1. Then, it follows that

a

1

= b

1

= n� 1; a

2

= b

2

: (3)

The permutation of the olumns applied to the matries A and B guarantees together with

Eqs (3) that the sheme S satis�es the indistinguishability property of Def. 1. Furthermore,

it follows immediately, that h = n+ 1 and l = n� 3 and therefore  = 4=(2n � 2).

�

4.1.3 (4,n) TVSS shemes

We present the onstrution for n even (for n odd, the onstrution is similar). First, we

introdue some more notation. Let O

n;l

denote the all-zero matrix onsisting of n rows and l

olumns. We onstrut a sequene of matries A

1

; A

2

; : : : whih will lead to the set C

0

and a

sequene of matries B

1

; B

2

; : : : whih will lead to the set C

1

. Moreover, for all i, the matries

A

i

will have the same number of olumns as well as the matries B

i

. If these numbers are

di�erent we adjoin matries O

n;l

to all members of one of the lasses to make the number of

olumns equal.

Constrution 1

1. De�ne binary matries B

1

that ontain every olumn of weight two exatly one. It

follows from some omputations that:

b

1

= n� 1; b

2

= 2n� 4; b

3

= 3(n� 3); b

4

= 4(n� 4): (4)

2. De�ne binary matries A

1

that ontain every olumn of weight three exatly one. Then,

a

1

=

�

n� 1

2

�

; a

2

= 2

�

n� 2

2

�

; a

3

= 3

�

n� 3

2

�

+ 1; a

4

= 4

�

n� 4

2

�

+ 4: (5)
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3. De�ne �

i

= b

i

� a

i

at eah step of the onstrution.

4. New binary matries B

2

are de�ned by taking

n�2

2

opies of the matrix B

1

. At this

step, we have

�

1

= 0; �

2

= n� 2; �

3

= 3n� 10; �

4

= 6n� 28:

5. De�ne binary matries B

3

by adjoining the matrix J

n;(n�2)=2

to the matries B

2

. De�ne

also binary matries A

2

by adjoining (n� 2)=2 opies of I

n

to the matries A

1

. At this

step, one then has

�

1

= 0; �

2

= 0; �

3

= 2n� 8; �

4

= 4n� 24:

6. De�ne binary matries B

4

by adjoining to the matries B

3

, (n � 4)=2 opies of the

matries from the set C

1

of the (3; n) shemes as onstruted in Se. 4.1.2. Similarly,

de�ne binary matries A

3

by adjoining (n�4)=2 opies of share matries of the lass C

0

of the (3; n) sheme onstruted in Se. 4.1.2 to the matries A

2

. From the onstrution

of the matries in the (3; n) shemes, it still follows that �

1

= �

2

= 0. But for �

3

we

have

�

3

= (2n� 8)� 4

n� 4

2

= 0:

On the other hand, this onstrution learly has no impat on �

4

. For n 6= 6, we have

that �

4

6= 0.

7. De�ne the sets C

0

and C

1

from the matries A

2

and B

4

respetively aording to the

ation of the appropriate permutation groups as explained in the Se. 4.1.1.

Proposition 5 The sheme S = (C

0

; C

1

) with C

0

and C

1

as onstruted in onstrution 1 is

a [(4; n); b; h; l℄ TVSS sheme for n > 6 where

b =

n

3

+ 3n

2

� 22n+ 16

4

; h = b� 2n

2

+ 16n� 40; l = b� 2n

2

+ 12n� 16:

Proof. The indistinguishability property follows from the fat that �

1

= �

2

= �

3

= 0 and

the appliation of the permutation group on the olumns of the share matries. The values

for b; h and l follow from some tedious alulations.

�

4.2 Constrution 2

In this setion, we assume that 2 < k < n. In order to onstrut (k; n) TVSS shemes

we make use of MDS odes over GF(q), the �nite �eld with q elements. We reall that an

[n; k; n� k+1℄ MDS ode over GF(q) exists if q+1 � n as follows from Theorem 9 in Ch. 11

of [4℄. Therefore, we hoose q � n� 1.

We start by onstruting the set C

1

. Let A be a n� q

k

matrix over GF(q). The olumns of

A onsist of the q

k

words of an [n; k; n� k + 1℄ ode C over GF(q).
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Lemma 1 Denote by A

s

the restrition of the matrix A to the �rst s rows. The olumns

of the matrix A

k

ontain eah vetor of the vetor spae GF(q)

k

exatly one. Moreover, the

restrition A

k�1

ontains eah vetor of GF(q)

k�1

exatly q times.

Proof. Sine the olumns of A belong to a ode C whose words di�er in at least n� k + 1

positions, the olumns of a restrited matrix A

k

di�er in at least one position. Hene, all q

k

olumns of A

k

are distint and so A

k

ontains eah vetor of GF(q)

k

exatly one.

Hene, it also follows that the restrition of A to any k�1 rows ontains every possible olumn

(elements of GF(q)

k�1

) exatly q times.

�

Lemma 1 holds for the restrition of A to any k rows, as one sees by inspetion of its proof.

We derive a binary matrix

^

A 2M

n�q

k

from the matrix A by replaing all non-zero entries of

A by the element 1.

Lemma 2 Let A

i

1

;::: ;i

k

denote the restrition of the matrix A to the rows i

1

; : : : ; i

k

and denote

by v

�

i

1

;::: ;i

k

2 GF(2)

q

k

the sum of the k rows of the assoiated binary matrix

^

A

i

1

;::: ;i

k

. Then,

z(v

�

i

1

;::: ;i

k

) =

q

k

+ (2� q)

k

2

:

Proof. Choose k arbitrary rows i

1

; : : : ; i

k

. By onstrution of the matrix

^

A

i

1

;::: ;i

k

, this matrix

ontains every possible olumn exatly one, hene the number of olumns of weight w equals

�

k

w

�

(q � 1)

w

:

Therefore, the number of zeros in v

�

i

1

;::: ;i

k

equals

z(v

�

i

1

;::: ;i

k

) =

X

w=0 (mod2)

�

k

w

�

(q � 1)

w

=

q

k

+ (2� q)

k

2

:

�

Sine the number z(v

�

i

1

;::: ;i

k

) does not depend on the rows i

1

; : : : ; i

k

, we will further denote

this number simply by z(v

�

b

).

Put A

1

=

^

A and de�ne the set C

1

as the set of share matries obtained by letting the

permutation group S

q

k

at on the olumns of the matrix

^

A.

Next, we desribe the onstrution of the set C

0

. Denote by B

0

an n�q

k�1

matrix over GF(q)

whose olumns are the words of an [n; k � 1; n � k + 2℄ (MDS) ode over GF(q) (this ode

exists sine n � q + 1). The matrix B onsists of q opies of the matrix B

0

and is hene an

n� q

k

matrix over GF(q).

Lemma 3 Denote by B

i

1

;::: ;i

k

the restrition of the matrix B to the rows i

1

; : : : ; i

k

. Then,

the olumns of the matrix B

i

1

;::: ;i

k

ontain eah vetor of GF(q)

k

either zero or q times. The

olumns of the matrix B

i

1

;::: ;i

k�1

ontain eah vetor of the spae GF(q)

k�1

exatly q times.

Proof. Sine the olumns of the matrix B belong to an [n; k � 1; n� k + 2℄ MDS ode over

GF(q), the olumns of the restrited matrix B

i

1

;::: ;i

k�1

di�er in at least one position. Hene,

the olumns of B

i

1

;::: ;i

k�1

ontain all the vetors GF(q)

k�1

exatly one.

9



The fat that the matrix B

i

1

;::: ;i

k

ontains eah vetor of GF(q)

k

either zero or q times follows

then immediately from the onstrution.

�

We de�ne the binary matrix

^

B by replaing in the matrix B eah non-zero entry by one. Put

A

0

=

^

B.

Lemma 4 Let A

i

1

;::: ;i

k

0

denote the restrition of the matrix A

0

to the rows i

1

; : : : ; i

k

. Then,

the number of zeroes in the sum vetor v

�

i

1

;::: ;i

k

is given by

z(v

�

i

1

;::: ;i

k

) = z(v

�

b

) + (q � 1)2

k�1

:

Proof. Consider the matrix B

i

1

;::: ;i

k

0

whih is a restrition of the matrix B

0

to the rows

i

1

; : : : ; i

k

. The olumns of this matrix are the words of an [k; k� 1; 2℄ MDS ode over GF(q).

By Theorem 6 in Ch. 11 of [4℄, it follows that b

w

the number of olumns of weight w in the

matrix B

i

1

;::: ;i

k

0

, is given by

b

w

=

�

k

w

�

(q � 1)

w�2

X

j=0

(�1)

j

�

w � 1

j

�

q

w�2�j

=

�

k

w

�

(q � 1)

�

(q � 1)

w�1

� (�1)

w�1

q

�

: (6)

As B onsists of q opies of B

0

, it follows that in

^

B and hene in A

0

every olumn of weight

w ours qb

w

times and so

z(v

�

i

1

;::: ;i

k

) = qb

w

= z(v

�

b

) + (q � 1)

X

w=0mod2

�

k

w

�

= z(v

�

b

) + (q � 1)2

k�1

:

�

Again, we remark that the number z(v

�

i

1

;::: ;i

k

) does not depend on the rows i

1

; : : : ; i

k

. There-

fore, we denote this number by z(v

�

w

).

The set C

0

is then de�ned by letting the permutation group S

q

k

at on the olumns of A

0

.

Constrution of a general (k; n) sheme: onstrution 2

1. Choose q (power of a prime) with q � n� 1.

2. De�ne the sets of share matries C

0

and C

1

as earlier in this setion.

3. De�ne the sheme S = (C

0

; C

1

).

Theorem 2 The sheme S = (C

0

; C

1

) as de�ned in onstrution 2, is a [(k; n); q

k

; z(v

�

w

); z(v

�

b

)℄

TVSS sheme.

Proof. The fat that b = q

k

follows from the de�nition of onstrution 2. The equalities

h = z(v

�

w

) and l = z(v

�

b

) follow from lemmas 4 and 2. The indistinguishability property

follows from the observation that the matries A

i

1

;::: ;i

t

0

and A

i

1

;::: ;i

t

1

, with t < k, obtained

by restriting the matries A

0

and A

1

to t arbitrary rows, are onstruted in the same way.

10



They are obtained from the indistinguishable matries B

i

1

;::: ;i

t

and A

i

1

;::: ;i

t

as follows from

lemmas 3 and 1.

�

Finally, note that the ontrast  of [(k; n); b; h; l℄ shemes in onstrution 2 is given by

 = ((q � 1)2

k�1

)=(q

k

+ (�1)

k

(q � 2)

k

+ (q � 1)2

k�1

):

5 Bounds on the parameters b, h and l

Lemma 5 Let k be an even integer. Let B be a binary matrix with n rows suh that the sum

(XOR) of any k rows from B di�ers from 0. Then B has at least n� k + 2 distint rows.

Proof. By indution on k. The result is obvious for k = 2. Now assume that k � 4, and

that B has two equal rows (otherwise we are done). By removing these two rows from B,

we obtain a matrix B

�

with n� 2 rows. The sum of any k � 2 rows from B

�

di�ers from 0

as otherwise these k � 2 rows and the two removed rows would add up to 0. The indution

hypothesis implies that B

�

(so surely B) has at least (n� 2)� (k� 2)+2 = n�k+2 distint

rows.

�

Proposition 6 Let k be even, k � 4 and let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS sheme.

Then we have that

n� k + 1 �

min(l;2(b�h))

X

i=0

�

b

i

�

:

Proof. Let B be a share matrix in C

1

. As l 6= b, no k rows of B add to the all-zero word.

Lemma 5 implies that B has at least n�k+2 distint rows. As all rows from B have Hamming

distane at most 2(b� h) to its top row (see Proposition 2),

n� k + 2 �

2(b�h)

X

i=0

�

b

i

�

:

Now, we assume without loss of generality that the top n� k +1 rows of B are distint. Let

 be the sum of the k� 1 bottom rows of B. For 1� i � n� k+1, the sum of  and the i-th

row of B ontains at most l ones; that is to say, the i-th row of B has Hamming distane at

most l to the omplement of . As the n� k + 1 top rows of B are distint, n� k + 1 is at

most the number of vetors at distane at most l from the omplement of , so

n� k + 1 �

l

X

i=0

�

b

i

�

:

�

We are investigating the struture of the possible shemes in this set-up. In partiular, we

prove that maximal ontrast shemes (l = 0) do not exist.
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Proposition 7 [(k; n); b; h; 0℄ TVSS shemes with 1 < k < n do not exist. Furthermore,

[(k; n); b; b; l℄ TVSS shemes with 2 < k < n do not exist either.

Proof. For k = 2 the �rst statement has already been proven in Corollary 1. Therefore, we

assume w.l.o.g. that k � 3. Let S = (C

0

; C

1

) be a [(k; n); b; h; 0℄ TVSS sheme and let B be a

share matrix in C

1

. Denote by �

1

; �

2

two arbitrary rows in B. Sine n� 2 � k � 1, there are

still k � 1 rows left in the share matrix B. We denote these rows by �

3

; : : : ; �

k+1

. Sine S is

a threshold sheme with l = 0, the XOR of �

1

; �

3

; �

4

; : : : ; �

k+1

is the all-one vetor, as is the

XOR of �

2

; �

3

; �

4

; : : : ; �

k+1

. It follows that �

1

= �

2

, so all rows of B 2 C

1

are equal.

Next, let A 2 C

0

and onsider row i and j of A. As k � 3, the indistinguishability property

of Def. 1 implies that there is a B 2 C

1

that agrees with A in these rows. As all rows of B

are equal, the i-th and j-th row of A are equal. Sine i and j are arbitrary, all rows of A are

equal, so A equals B, a ontradition.

The seond statement follows from an analogous reasoning.

�

Note that Proposition 7 implies that [(k; n); 1; h; l℄ TVSS shemes do not exist for 1 < k < n.

Moreover, it is note worthy that [(2; n); b; b; l℄ TVSS shemes with l > 0 exist while [(2; n); b; h; 0℄

TVSS shemes do not exist.

It follows from Def. 1 that one is interested in shemes with small l. The following Proposition

shows that for even k, l=b an not be arbitrarily small.

Proposition 8 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS sheme with 1 < k < n and k even.

Then, the white level l satis�es the following inequality,

l �

b

k + 1

:

Proof. Choose a share matrix B 2 C

1

. Let

^

B be a set of k + 1 arbitrarily hosen rows in B.

Let �

1

denote the number of positions in whih the shares of

^

B all have the same oordinate.

Let �

2

denote the number of positions in whih not all of the k + 1 shares of

^

B have the

same oordinate. Note that �

1

+ �

2

= b. Consider the k + 1 subsets of k elements of

^

B and

ompute the sum vetor of eah of the subsets of k elements. The total number of zeroes z

in the onatenation of these sum vetors satis�es

(k + 1)l � z � (k + 1)�

1

+ �

2

� �

1

+ �

2

= b:

�

It follows from Proposition 8 that for even k > 3 the ontrast  of [(k; n); b; h; l℄ TVSS shemes

is bounded by

 � ((k + 1)(b� 1)� b)=((k + 1)(b� 1) + b): (7)

For odd k on the other hand, l=b an be arbitrarily small. Indeed, in Constrution 2 of

Se. 4.2, the white level l satis�es (for �xed odd k)

l

b

=

1

2

(1� (1�

2

q

)

k

)

large q

�!

k

q

+O(q

�2

);
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whih beomes arbitrarily small with inreasing q. Together with Proposition 1, these results

indiate that (k; n) shemes with k odd are fundamentally di�erent from (k; n) shemes with

k even.

Finally, we mention that if k = 2, h an be as large as b (see Se. 3.3). For larger k,

Constrution 2 (ombined with Proposition 1, if k is odd) yields (k; n) shemes with h=b

arbitrarily lose to 1.
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A Tehnial Details

Proposition 9 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS sheme with k � 3 and let 

1

and



2

be two rows of a share matrix in C

0

and hene also two rows of a share matrix in C

1

. Then,

d(

1

; 

2

) � minf2l; 2(b � h)g;

where d(:; :) denotes the Hamming distane.
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Proof. Let B be a share matrix in C

1

ontaining the rows 

1

; 

2

and let  denote the (XOR)

sum of k � 1 other rows. Then, we have

d(

1

; 1� ) = z(� 

1

) � l;

d(

2

; 1� ) = z(� 

2

) � l:

From the triangle inequality, it then follows that

d(

1

; 

2

) � 2l: (8)

An analogous reasoning on a share matrix A 2 C

0

ontaining the shares 

1

; 

2

and ̂, then

gives

d(

1

; 

2

) � 2(b� h): (9)

Adding Eq. 8 and Eq. 9 then leads also to the following bound

d(

1

; 

2

) � b� h+ l:

�
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Figure 1: Struture and priniple of an LC Display. The symbol r in a ell means that this

LC ell rotates the polarisation of the inoming light.
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Figure 2: Visual rypto system by superimposing two LC layers. The symbol r in a ell means

that this LC ell rotates the polarisation of the inoming light.

15


