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Abstra
t

In this paper, we present a new visual 
rypto system based on the polarisation of light

and investigate the existen
e and stru
ture of the asso
iated threshold visual se
ret sharing

s
hemes. It is shown that very eÆ
ient (n; n) s
hemes exist and that (2; n) s
hemes are

equivalent to binary 
odes. The existen
e of (k; n) s
hemes is shown in general by two

expli
it 
onstru
tions. Finally, bounds on the physi
al properties as 
ontrast and resolution

are derived.
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1 Introdu
tion

The idea of using the human visual system for se
urity purposes was �rst mentioned in [1℄.

Independently of [1℄, the basi
 Visual Cryptography prin
iples were studied by Naor, Shamir

and Pinkas in [6, 7℄. The main idea is to split an image into two random shares (printed on

transparen
ies) whi
h separately reveal no information on the original image. The original

image 
an be re
onstru
ted by superimposing the two shares. In [6, 7℄ it is shown that this

system is equivalent to a One Time Pad en
ryption s
heme based on the boolean OR fun
-

tion and therefore un
onditionally se
ure. Moreover, they developped visual authenti
ation

s
hemes whi
h together with a visual en
ryption s
heme lead to a se
ure system. Later,

the asso
iated se
ret sharing problem and its physi
al properties as 
ontrast, resolution and


olour were extensively studied by Stinson [10℄ and by Verheul and Van Tilborg [11℄.

Although the above mentioned visual 
rypto systems 
an be made un
onditionally se
ure,

they are not satisfa
tory from a pra
ti
al point of view. Firstly, be
ause of the One Time

Pad property of the s
heme, a key 
an be used only on
e. Sin
e transparen
ies are stati


obje
ts, this implies that a user has to 
arry a pile of transparen
ies with him to update the

keys. Se
ondly, the bad physi
al properties (
olour, resolution, 
ontrast) [6, 10, 11℄ make the

system not very well suited for pra
ti
al purposes.

In this paper we investigate threshold visual se
ret sharing s
hemes asso
iated to a new visual

en
ryption s
heme. The new visual 
rypto system uses the polarisation of light and has good


olour, 
ontrast and resolution properties. It is based on two well-known physi
al prin
iples:

i) Polarisors only transmit light whose polarisation is aligned with the one of the polarisor

(sunglasses) and ii) Liquid Crystal (LC) 
ells 
an be used to rotate the polarisation dire
tion

of in
oming light.
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This paper is organised as follows. In Se
. 2 we give a des
ription of the physi
s behind the

polarisation based visual 
rypto system and show that it 
an mathemati
ally be des
ribed by

an XOR. As su
h, the system has good brightness, resolution, 
ontrast and 
olour properties

and gives rise to a new interesting type of se
ret sharing problem based on the 
omponent

wise addition of binary ve
tors, whi
h is the main topi
 of this paper. This se
ret sharing

problem is formally de�ned in Se
. 3. In this se
tion we also give examples of some simple

threshold visual se
ret sharing systems and show the equivalen
e between (2; n) s
hemes and

binary 
oding theory. The existen
e of general threshold visual se
ret sharing s
hemes based

on polarisation is shown in Se
. 4. Finally, we derive bounds on resolution and 
ontrast

properties of these s
hemes in Se
. 5.

2 The Model

In this se
tion, we explain the physi
al system and the model for bla
k and white pi
tures.

We also brie
y sket
h the situation for gray s
ales and 
olours but refer the reader for more

details to a forth
oming publi
ation.

In order to introdu
e the model, we brie
y explain the physi
s of an LC display with ba
klight.

An LC display 
onsists mainly of four layers (Fig. 1). The �rst one has the ba
klight. The

se
ond layer 
onsists of a polarisor, the third one is the LC layer and the fourth one 
onsists

again of a polarisor. The ba
klight emits 
ir
ularly polarised light. The �rst polarisation

layer proje
ts the polarisation of the in
ident light on its polarisation dire
tion. Depending

on the voltage that is applied to a LC 
ell, this LC 
ell will rotate the polarisation of the

light that enters it over a 
ertain angle. If the polarisation dire
tion of the light leaving

the LC-layer mat
hes that of the �nal polarisor, light 
omes out of the display. If on the

other hand the polarisation of the light 
oming out of the LC layer is perpendi
ular to the

polarisation dire
tion of the �nal polariser, no light 
omes out. By applying voltages to the

LC-
ells su
h that the polarisation dire
tion of the out
oming light makes an angle � � �=2

with the polarisation dire
tion of the se
ond polarisor, gray s
ales 
an be generated.

In order to build a visual 
rypto system based on LC displays we pro
eed as follows (Fig. 2).

We have two displays 
onsisting of an LC layer whi
h have a polarisor at one side and no

polarisor at the other side. We also assume that the �rst LC has the ba
klight and the se
ond

one has not. The se
ond display has to be 
onsidered as a dedi
ated trusted devi
e that a

user is 
arrying with him. The shares of both users are then the two (or more) LC layers on

whi
h the dealer writes a 
ertain pattern in terms of the angle of rotation of the various LC


ells.

We will start with a model for bla
k and white pixels. We assume that the dire
tion of the

�rst polarisor equals that of the se
ond polarisor and is horizontal. Furthermore, we assume

that two voltages 
an be applied to LC 
ells V

1

and V

2

. When the voltage V

1

is applied, the

LC 
ell will not rotate the polarisation dire
tion of the in
oming light, while when the voltage

V

2

is applied, the polarisation dire
tion is rotated over an angle of 90 degrees. When an LC


onsists of N pixels (LC 
ells), one share will basi
ally 
onsist of N voltages (
orresponding

to the angle of rotation of the di�erent 
ells). Table 1 summarizes the physi
s for one pixel.

It follows from Table 1 that when two superimposed LC 
ells apply the same rotation, this

generates a white pixel and when they rotate the polarisation over a di�erent angle this

generates a bla
k pixel.
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Pol �lter 1 ! ! ! !

LC1 k k 	 	

LC2 k 	 k 	

Pol �lter 2 ! ! ! !

Color white bla
k bla
k white

Table 1: This table summarizes the physi
s of a polarisation based visual 
rypto system. The

arrows ! indi
ate that the polarisor proje
ts the polarisation dire
tion of the in
oming light

on the horizontal. The symbols k and 	 stand for LC 
ells that do not and do rotate the

polarisation dire
tion of the light respe
tively.

LC1 0 0 1 1

LC2 0 1 0 1

Color 0 1 1 0

Table 2: Mathemati
al model of Table 1.

If an LC does not rotate the polarisation of the in
oming light, then we will denote this by a

0. If on the other hand the polarisation is rotated over 90 degrees by the LC 
ell, this will be

denoted by a 1. This means that the mathemati
al stru
ture of the system we des
ribed is that

of binary addition as follows from Table 2. The visual en
ryption s
heme 
orresponds then to

the physi
al implementation on LC layers of the One Time Pad based on an XOR operation.

As LC layers 
an be driven ele
troni
ally (as in LCD's), the key 
an be easily updated (using

pseudo random number generators), whi
h leads to a pra
ti
al updating me
hanism.

Finally, we mention that re
ently another visual 
rypto system using an XOR pro
ess has

been introdu
ed in [2℄. Their system is based on interferometri
 te
hniques and needs a

Ma
h-Zehnder interferometer making the system less pra
ti
al and more expensive.

3 Threshold Visual Se
ret Sharing S
hemes

3.1 De�nitions

In this se
tion, we will 
onstru
t Threshold Visual Se
ret Sharing (TVSS) s
hemes based on

the polarisation rotation te
hnique as explained in Se
. 2. We will restri
t ourselves to images


onsisting of bla
k or white pixels. Sin
e images 
onsist of pixels, it suÆ
es to give s
hemes

for sharing a bla
k or white pixel only. In order to share a 
omplete image, the pixel s
heme

has to be applied as many times as there are pixels in the image.

By a (k; n) TVSS s
heme, we mean a s
heme in whi
h a se
ret (the 
olour: bla
k or white)

is divided into n shares whi
h are given to the n users. Any subgroup of k users out of these

n, 
an re
onstru
t the se
ret but any subgroup 
onsisting of less than k users does not have

any information on the se
ret.

We introdu
e the notion of a share matrix. A k-share matrix is an n� b (n: number of users,

b: length of the shares) matrix whose rows are the shares that are distributed to the users.

Any arbitrary subset of k rows out of the set of n rows generates the se
ret when the shares
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are superimposed. We denote by C

0

the set of n� b k-share matri
es that generate a white

pixel. By C

1

we denote the set of k-share matri
es that generate a bla
k pixel.

We will follow the de�nitions of Verheul and Van Tilborg [11℄ to give rigorous de�nitions of

a visual se
ret sharing s
heme, 
ontrast and resolution. For a ve
tor v 2 GF(2)

b

, we denote

by z(v) the number of zero entries in the ve
tor v (note that z(v) + w(v) = b, where w(v)

denotes the Hamming weight of the ve
tor v).

A k out of n TVSS s
heme S = (C

0

; C

1

) 
onsists of two 
olle
tions of n � b binary share

matri
es C

0

and C

1

. To share a white (bla
k) pixel, the dealer randomly 
hooses one of the

matri
es in C

0

(C

1

) and distributes its rows (shares) under the n parti
ipants of the system.

More pre
isely,

De�nition 1 Let k; n; b; h; l be positive integers satisfying 1 � k � n and b � h > l. A

[(k; n); b; h; l℄ TVSS s
heme 
onsists of two 
olle
tions of n � b boolean matri
es C

0

and C

1

su
h that:

1. For any s 2 C

0

, the XOR v of any k of the n rows of s satis�es z(v) � h.

2. For any s 2 C

1

, the XOR v of any k of the n rows of s satis�es z(v) � l.

3. For any i

1

< i

2

< : : : < i

t

in f1; 2; : : : ; ng with t < k the two 
olle
tions of t�b matri
es

D

j

for j 2 f0; 1g, obtained by restri
ting ea
h n� b matrix in C

j

, for j = 0; 1, to rows

i

1

; i

2

; : : : ; i

t

are indistinguishable in the sense that they 
ontain the same matri
es with

the same frequen
ies.

h is 
alled the white level of the system and l is 
alled the bla
k level. The parameter b is


alled the blo
k length and determines the resolution of the s
heme.

For a good s
heme one needs that h > l. In [11℄ the 
ontrast 
 is de�ned as 
 = (h� l)=(h+ l)

whi
h is also the de�nition that we will take here. Note that 
 2 [0; 1℄ and that 
 is maximal,

when l = 0. S
hemes with l = 0 are 
alled maximal 
ontrast s
hemes. In general, one is

interested in s
hemes with b as small as possible but with the 
ontrast 
 as large as possible.

The following symmetry property follows very easily and is therefore stated without proof.

Proposition 1 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS s
heme with k odd and let

^

C

i

be

obtained from C

i

by repla
ing zeroes by ones and vi
e versa. Then, the s
heme

^

S = (

^

C

0

;

^

C

1

) is

a [(k; n); b; b � l; b� h℄ s
heme with 
ontrast 
̂,


̂ = (h� l)=(2b � l � h):

It follows that 
̂ > 
 whenever l + h > b.

�

The following proposition gives a bound on the distan
e between the di�erent shares and its

proof is given in appendix A.

Proposition 2 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS s
heme with k � 3 and let 


1

and




2

be two rows of a share matrix in C

0

and hen
e also two rows of a share matrix in C

1

. Then,

d(


1

; 


2

) � minf2l; 2(b � h)g;

where d(:; :) denotes the Hamming distan
e.
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We will denote the set of n� b boolean matri
es (M

n�b

(GF(2))) brie
y by M

n�b

.

3.2 n out of n visual se
ret sharing

In this se
tion, we show that (n; n) TVSS s
hemes 
an have maximal 
ontrast (
 = 1) with

minimal blo
k length (b = 1). This stands in sharp 
ontrast to the Naor Shamir 
ase [6℄

where for the simplest non-trivial 
ase (n = 2) at least two subpixels (b = 2) are needed.

Proposition 3 Let C

0

and C

1

be two sets of n� 1 matri
es de�ned as follows,

C

0

= fs 2 (GF(2))

n

j

n

M

i=1

s

i

= 0g; C

1

= fs 2 (GF(2))

n

j

n

M

i=1

s

i

= 1g: (1)

Then, the s
heme S = (C

0

; C

1

) is a [(n; n); 1; 1; 0℄ TVSS s
heme.

Proof. From the de�nition of C

0

and C

1

, it follows immediately that b = 1, h = 1 and l = 0.

Furthermore, one derives easily that jC

0

j = jC

1

j = 2

n�1

. Clearly any restri
tion of a share

matrix s 2 C

0

to any t < n rows (shares) 
an also be obtained as a restri
tion of a share

matrix ŝ 2 C

1

and vi
e versa. It follows moreover that those restri
tions o

ur with the same

frequen
ies in C

0

and C

1

. Therefore, the 
onditions of Def. 1 are satis�ed.

�

Hen
e, in this set-up there exist visual en
ryption s
hemes with good 
ontrast and resolution

properties. This stands in sharp 
ontrast with OR-based visual 
rypto systems where maximal


ontrast s
hemes 
an only exist if b > 1 [11℄.

3.3 (2; n) TVSS s
hemes

A general 
onstru
tion for (2; n) TVSS s
hemes is given by the following theorem. It shows

that (2; n) TVSS s
hemes are equivalent to binary 
odes. By a (b; n; d) 
ode, we mean a

binary 
ode of length b, n words and minimum Hamming distan
e d.

Theorem 1 Let b; l be natural numbers with b > 1 and 0 � l � b. A [(2; n); b; b; l℄ TVSS

s
heme exists if and only if there exists a binary (b; n; b� l) 
ode C.

Proof. The theorem is proved by 
onstru
tion. Let S be a [(2; n); b; b; l℄ TVSS s
heme. Take

a share matrix A

1

2 C

1

and de�ne a set C whose words 


1

; : : : ; 


n

are given by the rows of

A

1

. As the sets C

0

and C

1

de�ne a [(2; n); b; b; l℄ TVSS s
heme, the minimal distan
e between

those words is b � l. Consequently, C de�nes a 
ode of length b, 
onsisting of n words and

with minimal distan
e d = b� l.

Conversely, let C be a (b; n; d) 
ode over GF(2). De�ne the boolean matri
es A

i

2 M

n�b

,

i = 1; : : : ; n as matri
es whose n rows 
ontain the same 
odeword 


i

and de�ne the boolean

matrix B 2 M

n�b


onsisting of n di�erent rows 
ontaining the 
ode words 


i

; i = 1; : : : ; n.

Furthermore, de�ne the boolean matri
es

^

A

i

= �

i

n

(B) 2M

n�b

; i = 1; : : : ; n where the 
y
li


shift on n points, �

n

, is applied to the rows of B. De�ne the sets C

0

= fA

1

; : : : ; A

n

g and

C

1

= f

^

A

1

; : : : ;

^

A

n

g. We prove that the se
ret sharing s
heme S = (C

0

; C

1

) is a [(2; n); b; b; b�d℄

TVSS s
heme.
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Without loss of generality, we start from 
onsidering the matri
es A

i

;

^

A

i

; i = 1; : : : ; n. It is


lear that the sum of two arbitrary rows of the matri
es A

i

; i = 1; : : : ; n gives the all zero

ve
tor. It follows that h = b. As C has minimum distan
e d, for any two rows �

j

; �

k

from

^

A

i

(i = 1; : : : ; n), we have z(�

j

� �

k

) � b � d. Equality holds if �

j

and �

k

have Hamming

distan
e d, so l = b� d. The 
ontrast 
 of the s
heme S is hen
e given by,


 =

d

2b� d

:

From the 
onstru
tion it follows that jC

0

j = jC

1

j and also that the 
olle
tions D

0

and D

1

whi
h

are obtained by restri
ting the elements of the 
olle
tions C

0

and C

1

to an arbitrary row are

indistinguishable. Therefore, the s
heme S = (C

0

; C

1

) is a [(2; n); b; b; b � d℄ TVSS s
heme.

�

We note that the 
onstru
tion of Theorem 1 does not allow to 
onstru
t maximal 
ontrast

s
hemes. The impossibility of su
h a 
onstru
tion for (k; n) s
hemes with 1 < k < n, will

be shown in generality in Se
. 5. In fa
t, sin
e we showed in Theorem 1 that (2; n) TVSS

s
hemes are equivalent to binary 
odes, bounds for 
; h and l 
an be derived from bounds for

(b; n; d) 
odes. Using the Singleton bound, we obtain the following 
orollary.

Corollary 1 The 
ontrast of a [(2; n); b; b; l℄ TVSS s
heme is at most

(b� log

2

n+ 1)=(b + log

2

n� 1): (2)

Proof. The proof follows from the Singleton bound [3, Thm. 5.2.1℄ and Theorem 1.

�

In the same way, a lower bound for the 
ontrast of a (2; n) TVSS s
heme follows from the

Gilbert-Varshamov bound [3, Thm. 5.1.7℄.

4 General k out of n visual se
ret sharing s
hemes

In this se
tion, we show two 
onstru
tions of (k; n) TVSS s
hemes for all 3 � k � n� 1. The

�rst 
onstru
tion is re
ursive, the se
ond one is a dire
t 
onstru
tion and based on so-
alled

MDS 
odes known from algebrai
 
oding theory. We realize that more eÆ
ient 
onstru
tions

are possible, but post those as an open problem.

4.1 Constru
tion 1

The �rst 
onstru
tion that we propose is a re
ursive 
onstru
tion. We will �rst des
ribe a

(3; n) TVSS s
heme, and derive a (4; n) TVSS s
heme from it. It will then be 
lear how more

general s
hemes 
an be derived.

4.1.1 Introdu
tion

We �rst emphasize that in all of the following 
onstru
tions we produ
e two 
lasses of share

matri
es 
onsisting of n rows 
alled C

0

and C

1

. In ea
h step of the 
onstru
tion we will

let the permutation group S

n

a
t on the n rows of the share matri
es in C

0

and C

1

. The

appropriate permutation group S will a
t on the 
olumns of the share matri
es in C

0

and C

1

.
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This ensures the indistinguishability property a

ording to Def. 1 for the sets C

0

and C

1

. In

all 
onstru
tions, we assume that this is done without mentioning this.

The idea of the 
onstru
tion is the following. Denote by a

i

the weight of the sum of any

1 � i � k rows of a matrix A 2 C

0

and similarly we use the notation b

i

for the weight any

i rows for B 2 C

1

. The 
onstru
tion will guarantee that a

i

= b

i

as long as i < k and that

a

k

6= b

k

as required by the indistinguishability property.

4.1.2 (3,n) TVSS s
hemes

Let B 2M

n�(2n�2)

be a matrix de�ned as follows,

B = (I

n

J

n;n�2

);

where I

n

stands for the n � n identity matrix and J

n;n�2

is the all one matrix with n rows

and n� 2 
olumns. The matrix A 2M

n�(2n�2)

is de�ned as the 
omplement of B. We build

the sets of share matri
es C

0

and C

1

by letting the appropriate permutation groups a
t on the

rows and the 
olumns of the matri
es A and B respe
tively, as explained in Se
. 4.1.1.

Proposition 4 The s
heme S = (C

0

; C

1

) as de�ned in the previous paragraph is a [(3; n); 2n�

2; n+ 1; n� 3℄ TVSS s
heme with 
ontrast 
 = 4=(2n� 2).

Proof. Let a

i

; b

i

; i = 1; : : : ; n be as de�ned in Se
 4.1.1. Then, it follows that

a

1

= b

1

= n� 1; a

2

= b

2

: (3)

The permutation of the 
olumns applied to the matri
es A and B guarantees together with

Eqs (3) that the s
heme S satis�es the indistinguishability property of Def. 1. Furthermore,

it follows immediately, that h = n+ 1 and l = n� 3 and therefore 
 = 4=(2n � 2).

�

4.1.3 (4,n) TVSS s
hemes

We present the 
onstru
tion for n even (for n odd, the 
onstru
tion is similar). First, we

introdu
e some more notation. Let O

n;l

denote the all-zero matrix 
onsisting of n rows and l


olumns. We 
onstru
t a sequen
e of matri
es A

1

; A

2

; : : : whi
h will lead to the set C

0

and a

sequen
e of matri
es B

1

; B

2

; : : : whi
h will lead to the set C

1

. Moreover, for all i, the matri
es

A

i

will have the same number of 
olumns as well as the matri
es B

i

. If these numbers are

di�erent we adjoin matri
es O

n;l

to all members of one of the 
lasses to make the number of


olumns equal.

Constru
tion 1

1. De�ne binary matri
es B

1

that 
ontain every 
olumn of weight two exa
tly on
e. It

follows from some 
omputations that:

b

1

= n� 1; b

2

= 2n� 4; b

3

= 3(n� 3); b

4

= 4(n� 4): (4)

2. De�ne binary matri
es A

1

that 
ontain every 
olumn of weight three exa
tly on
e. Then,

a

1

=

�

n� 1

2

�

; a

2

= 2

�

n� 2

2

�

; a

3

= 3

�

n� 3

2

�

+ 1; a

4

= 4

�

n� 4

2

�

+ 4: (5)
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3. De�ne �

i

= b

i

� a

i

at ea
h step of the 
onstru
tion.

4. New binary matri
es B

2

are de�ned by taking

n�2

2


opies of the matrix B

1

. At this

step, we have

�

1

= 0; �

2

= n� 2; �

3

= 3n� 10; �

4

= 6n� 28:

5. De�ne binary matri
es B

3

by adjoining the matrix J

n;(n�2)=2

to the matri
es B

2

. De�ne

also binary matri
es A

2

by adjoining (n� 2)=2 
opies of I

n

to the matri
es A

1

. At this

step, one then has

�

1

= 0; �

2

= 0; �

3

= 2n� 8; �

4

= 4n� 24:

6. De�ne binary matri
es B

4

by adjoining to the matri
es B

3

, (n � 4)=2 
opies of the

matri
es from the set C

1

of the (3; n) s
hemes as 
onstru
ted in Se
. 4.1.2. Similarly,

de�ne binary matri
es A

3

by adjoining (n�4)=2 
opies of share matri
es of the 
lass C

0

of the (3; n) s
heme 
onstru
ted in Se
. 4.1.2 to the matri
es A

2

. From the 
onstru
tion

of the matri
es in the (3; n) s
hemes, it still follows that �

1

= �

2

= 0. But for �

3

we

have

�

3

= (2n� 8)� 4

n� 4

2

= 0:

On the other hand, this 
onstru
tion 
learly has no impa
t on �

4

. For n 6= 6, we have

that �

4

6= 0.

7. De�ne the sets C

0

and C

1

from the matri
es A

2

and B

4

respe
tively a

ording to the

a
tion of the appropriate permutation groups as explained in the Se
. 4.1.1.

Proposition 5 The s
heme S = (C

0

; C

1

) with C

0

and C

1

as 
onstru
ted in 
onstru
tion 1 is

a [(4; n); b; h; l℄ TVSS s
heme for n > 6 where

b =

n

3

+ 3n

2

� 22n+ 16

4

; h = b� 2n

2

+ 16n� 40; l = b� 2n

2

+ 12n� 16:

Proof. The indistinguishability property follows from the fa
t that �

1

= �

2

= �

3

= 0 and

the appli
ation of the permutation group on the 
olumns of the share matri
es. The values

for b; h and l follow from some tedious 
al
ulations.

�

4.2 Constru
tion 2

In this se
tion, we assume that 2 < k < n. In order to 
onstru
t (k; n) TVSS s
hemes

we make use of MDS 
odes over GF(q), the �nite �eld with q elements. We re
all that an

[n; k; n� k+1℄ MDS 
ode over GF(q) exists if q+1 � n as follows from Theorem 9 in Ch. 11

of [4℄. Therefore, we 
hoose q � n� 1.

We start by 
onstru
ting the set C

1

. Let A be a n� q

k

matrix over GF(q). The 
olumns of

A 
onsist of the q

k

words of an [n; k; n� k + 1℄ 
ode C over GF(q).
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Lemma 1 Denote by A

s

the restri
tion of the matrix A to the �rst s rows. The 
olumns

of the matrix A

k


ontain ea
h ve
tor of the ve
tor spa
e GF(q)

k

exa
tly on
e. Moreover, the

restri
tion A

k�1


ontains ea
h ve
tor of GF(q)

k�1

exa
tly q times.

Proof. Sin
e the 
olumns of A belong to a 
ode C whose words di�er in at least n� k + 1

positions, the 
olumns of a restri
ted matrix A

k

di�er in at least one position. Hen
e, all q

k


olumns of A

k

are distin
t and so A

k


ontains ea
h ve
tor of GF(q)

k

exa
tly on
e.

Hen
e, it also follows that the restri
tion of A to any k�1 rows 
ontains every possible 
olumn

(elements of GF(q)

k�1

) exa
tly q times.

�

Lemma 1 holds for the restri
tion of A to any k rows, as one sees by inspe
tion of its proof.

We derive a binary matrix

^

A 2M

n�q

k

from the matrix A by repla
ing all non-zero entries of

A by the element 1.

Lemma 2 Let A

i

1

;::: ;i

k

denote the restri
tion of the matrix A to the rows i

1

; : : : ; i

k

and denote

by v

�

i

1

;::: ;i

k

2 GF(2)

q

k

the sum of the k rows of the asso
iated binary matrix

^

A

i

1

;::: ;i

k

. Then,

z(v

�

i

1

;::: ;i

k

) =

q

k

+ (2� q)

k

2

:

Proof. Choose k arbitrary rows i

1

; : : : ; i

k

. By 
onstru
tion of the matrix

^

A

i

1

;::: ;i

k

, this matrix


ontains every possible 
olumn exa
tly on
e, hen
e the number of 
olumns of weight w equals

�

k

w

�

(q � 1)

w

:

Therefore, the number of zeros in v

�

i

1

;::: ;i

k

equals

z(v

�

i

1

;::: ;i

k

) =

X

w=0 (mod2)

�

k

w

�

(q � 1)

w

=

q

k

+ (2� q)

k

2

:

�

Sin
e the number z(v

�

i

1

;::: ;i

k

) does not depend on the rows i

1

; : : : ; i

k

, we will further denote

this number simply by z(v

�

b

).

Put A

1

=

^

A and de�ne the set C

1

as the set of share matri
es obtained by letting the

permutation group S

q

k

a
t on the 
olumns of the matrix

^

A.

Next, we des
ribe the 
onstru
tion of the set C

0

. Denote by B

0

an n�q

k�1

matrix over GF(q)

whose 
olumns are the words of an [n; k � 1; n � k + 2℄ (MDS) 
ode over GF(q) (this 
ode

exists sin
e n � q + 1). The matrix B 
onsists of q 
opies of the matrix B

0

and is hen
e an

n� q

k

matrix over GF(q).

Lemma 3 Denote by B

i

1

;::: ;i

k

the restri
tion of the matrix B to the rows i

1

; : : : ; i

k

. Then,

the 
olumns of the matrix B

i

1

;::: ;i

k


ontain ea
h ve
tor of GF(q)

k

either zero or q times. The


olumns of the matrix B

i

1

;::: ;i

k�1


ontain ea
h ve
tor of the spa
e GF(q)

k�1

exa
tly q times.

Proof. Sin
e the 
olumns of the matrix B belong to an [n; k � 1; n� k + 2℄ MDS 
ode over

GF(q), the 
olumns of the restri
ted matrix B

i

1

;::: ;i

k�1

di�er in at least one position. Hen
e,

the 
olumns of B

i

1

;::: ;i

k�1


ontain all the ve
tors GF(q)

k�1

exa
tly on
e.

9



The fa
t that the matrix B

i

1

;::: ;i

k


ontains ea
h ve
tor of GF(q)

k

either zero or q times follows

then immediately from the 
onstru
tion.

�

We de�ne the binary matrix

^

B by repla
ing in the matrix B ea
h non-zero entry by one. Put

A

0

=

^

B.

Lemma 4 Let A

i

1

;::: ;i

k

0

denote the restri
tion of the matrix A

0

to the rows i

1

; : : : ; i

k

. Then,

the number of zeroes in the sum ve
tor v

�

i

1

;::: ;i

k

is given by

z(v

�

i

1

;::: ;i

k

) = z(v

�

b

) + (q � 1)2

k�1

:

Proof. Consider the matrix B

i

1

;::: ;i

k

0

whi
h is a restri
tion of the matrix B

0

to the rows

i

1

; : : : ; i

k

. The 
olumns of this matrix are the words of an [k; k� 1; 2℄ MDS 
ode over GF(q).

By Theorem 6 in Ch. 11 of [4℄, it follows that b

w

the number of 
olumns of weight w in the

matrix B

i

1

;::: ;i

k

0

, is given by

b

w

=

�

k

w

�

(q � 1)

w�2

X

j=0

(�1)

j

�

w � 1

j

�

q

w�2�j

=

�

k

w

�

(q � 1)

�

(q � 1)

w�1

� (�1)

w�1

q

�

: (6)

As B 
onsists of q 
opies of B

0

, it follows that in

^

B and hen
e in A

0

every 
olumn of weight

w o

urs qb

w

times and so

z(v

�

i

1

;::: ;i

k

) = qb

w

= z(v

�

b

) + (q � 1)

X

w=0mod2

�

k

w

�

= z(v

�

b

) + (q � 1)2

k�1

:

�

Again, we remark that the number z(v

�

i

1

;::: ;i

k

) does not depend on the rows i

1

; : : : ; i

k

. There-

fore, we denote this number by z(v

�

w

).

The set C

0

is then de�ned by letting the permutation group S

q

k

a
t on the 
olumns of A

0

.

Constru
tion of a general (k; n) s
heme: 
onstru
tion 2

1. Choose q (power of a prime) with q � n� 1.

2. De�ne the sets of share matri
es C

0

and C

1

as earlier in this se
tion.

3. De�ne the s
heme S = (C

0

; C

1

).

Theorem 2 The s
heme S = (C

0

; C

1

) as de�ned in 
onstru
tion 2, is a [(k; n); q

k

; z(v

�

w

); z(v

�

b

)℄

TVSS s
heme.

Proof. The fa
t that b = q

k

follows from the de�nition of 
onstru
tion 2. The equalities

h = z(v

�

w

) and l = z(v

�

b

) follow from lemmas 4 and 2. The indistinguishability property

follows from the observation that the matri
es A

i

1

;::: ;i

t

0

and A

i

1

;::: ;i

t

1

, with t < k, obtained

by restri
ting the matri
es A

0

and A

1

to t arbitrary rows, are 
onstru
ted in the same way.
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They are obtained from the indistinguishable matri
es B

i

1

;::: ;i

t

and A

i

1

;::: ;i

t

as follows from

lemmas 3 and 1.

�

Finally, note that the 
ontrast 
 of [(k; n); b; h; l℄ s
hemes in 
onstru
tion 2 is given by


 = ((q � 1)2

k�1

)=(q

k

+ (�1)

k

(q � 2)

k

+ (q � 1)2

k�1

):

5 Bounds on the parameters b, h and l

Lemma 5 Let k be an even integer. Let B be a binary matrix with n rows su
h that the sum

(XOR) of any k rows from B di�ers from 0. Then B has at least n� k + 2 distin
t rows.

Proof. By indu
tion on k. The result is obvious for k = 2. Now assume that k � 4, and

that B has two equal rows (otherwise we are done). By removing these two rows from B,

we obtain a matrix B

�

with n� 2 rows. The sum of any k � 2 rows from B

�

di�ers from 0

as otherwise these k � 2 rows and the two removed rows would add up to 0. The indu
tion

hypothesis implies that B

�

(so surely B) has at least (n� 2)� (k� 2)+2 = n�k+2 distin
t

rows.

�

Proposition 6 Let k be even, k � 4 and let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS s
heme.

Then we have that

n� k + 1 �

min(l;2(b�h))

X

i=0

�

b

i

�

:

Proof. Let B be a share matrix in C

1

. As l 6= b, no k rows of B add to the all-zero word.

Lemma 5 implies that B has at least n�k+2 distin
t rows. As all rows from B have Hamming

distan
e at most 2(b� h) to its top row (see Proposition 2),

n� k + 2 �

2(b�h)

X

i=0

�

b

i

�

:

Now, we assume without loss of generality that the top n� k +1 rows of B are distin
t. Let


 be the sum of the k� 1 bottom rows of B. For 1� i � n� k+1, the sum of 
 and the i-th

row of B 
ontains at most l ones; that is to say, the i-th row of B has Hamming distan
e at

most l to the 
omplement of 
. As the n� k + 1 top rows of B are distin
t, n� k + 1 is at

most the number of ve
tors at distan
e at most l from the 
omplement of 
, so

n� k + 1 �

l

X

i=0

�

b

i

�

:

�

We are investigating the stru
ture of the possible s
hemes in this set-up. In parti
ular, we

prove that maximal 
ontrast s
hemes (l = 0) do not exist.
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Proposition 7 [(k; n); b; h; 0℄ TVSS s
hemes with 1 < k < n do not exist. Furthermore,

[(k; n); b; b; l℄ TVSS s
hemes with 2 < k < n do not exist either.

Proof. For k = 2 the �rst statement has already been proven in Corollary 1. Therefore, we

assume w.l.o.g. that k � 3. Let S = (C

0

; C

1

) be a [(k; n); b; h; 0℄ TVSS s
heme and let B be a

share matrix in C

1

. Denote by �

1

; �

2

two arbitrary rows in B. Sin
e n� 2 � k � 1, there are

still k � 1 rows left in the share matrix B. We denote these rows by �

3

; : : : ; �

k+1

. Sin
e S is

a threshold s
heme with l = 0, the XOR of �

1

; �

3

; �

4

; : : : ; �

k+1

is the all-one ve
tor, as is the

XOR of �

2

; �

3

; �

4

; : : : ; �

k+1

. It follows that �

1

= �

2

, so all rows of B 2 C

1

are equal.

Next, let A 2 C

0

and 
onsider row i and j of A. As k � 3, the indistinguishability property

of Def. 1 implies that there is a B 2 C

1

that agrees with A in these rows. As all rows of B

are equal, the i-th and j-th row of A are equal. Sin
e i and j are arbitrary, all rows of A are

equal, so A equals B, a 
ontradi
tion.

The se
ond statement follows from an analogous reasoning.

�

Note that Proposition 7 implies that [(k; n); 1; h; l℄ TVSS s
hemes do not exist for 1 < k < n.

Moreover, it is note worthy that [(2; n); b; b; l℄ TVSS s
hemes with l > 0 exist while [(2; n); b; h; 0℄

TVSS s
hemes do not exist.

It follows from Def. 1 that one is interested in s
hemes with small l. The following Proposition

shows that for even k, l=b 
an not be arbitrarily small.

Proposition 8 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS s
heme with 1 < k < n and k even.

Then, the white level l satis�es the following inequality,

l �

b

k + 1

:

Proof. Choose a share matrix B 2 C

1

. Let

^

B be a set of k + 1 arbitrarily 
hosen rows in B.

Let �

1

denote the number of positions in whi
h the shares of

^

B all have the same 
oordinate.

Let �

2

denote the number of positions in whi
h not all of the k + 1 shares of

^

B have the

same 
oordinate. Note that �

1

+ �

2

= b. Consider the k + 1 subsets of k elements of

^

B and


ompute the sum ve
tor of ea
h of the subsets of k elements. The total number of zeroes z

in the 
on
atenation of these sum ve
tors satis�es

(k + 1)l � z � (k + 1)�

1

+ �

2

� �

1

+ �

2

= b:

�

It follows from Proposition 8 that for even k > 3 the 
ontrast 
 of [(k; n); b; h; l℄ TVSS s
hemes

is bounded by


 � ((k + 1)(b� 1)� b)=((k + 1)(b� 1) + b): (7)

For odd k on the other hand, l=b 
an be arbitrarily small. Indeed, in Constru
tion 2 of

Se
. 4.2, the white level l satis�es (for �xed odd k)

l

b

=

1

2

(1� (1�

2

q

)

k

)

large q

�!

k

q

+O(q

�2

);
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whi
h be
omes arbitrarily small with in
reasing q. Together with Proposition 1, these results

indi
ate that (k; n) s
hemes with k odd are fundamentally di�erent from (k; n) s
hemes with

k even.

Finally, we mention that if k = 2, h 
an be as large as b (see Se
. 3.3). For larger k,

Constru
tion 2 (
ombined with Proposition 1, if k is odd) yields (k; n) s
hemes with h=b

arbitrarily 
lose to 1.
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A Te
hni
al Details

Proposition 9 Let S = (C

0

; C

1

) be a [(k; n); b; h; l℄ TVSS s
heme with k � 3 and let 


1

and




2

be two rows of a share matrix in C

0

and hen
e also two rows of a share matrix in C

1

. Then,

d(


1

; 


2

) � minf2l; 2(b � h)g;

where d(:; :) denotes the Hamming distan
e.
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Proof. Let B be a share matrix in C

1


ontaining the rows 


1

; 


2

and let 
 denote the (XOR)

sum of k � 1 other rows. Then, we have

d(


1

; 1� 
) = z(
� 


1

) � l;

d(


2

; 1� 
) = z(
� 


2

) � l:

From the triangle inequality, it then follows that

d(


1

; 


2

) � 2l: (8)

An analogous reasoning on a share matrix A 2 C

0


ontaining the shares 


1

; 


2

and 
̂, then

gives

d(


1

; 


2

) � 2(b� h): (9)

Adding Eq. 8 and Eq. 9 then leads also to the following bound

d(


1

; 


2

) � b� h+ l:

�
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Figure 1: Stru
ture and prin
iple of an LC Display. The symbol r in a 
ell means that this

LC 
ell rotates the polarisation of the in
oming light.
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Figure 2: Visual 
rypto system by superimposing two LC layers. The symbol r in a 
ell means

that this LC 
ell rotates the polarisation of the in
oming light.
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