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Abstract

In this paper, we present a new visual crypto system based on the polarisation of light
and investigate the existence and structure of the associated threshold visual secret sharing
schemes. Tt is shown that very efficient (n,n) schemes exist and that (2,n) schemes are
equivalent to binary codes. The existence of (k,n) schemes is shown in general by two
explicit constructions. Finally, bounds on the physical properties as contrast and resolution
are derived.
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1 Introduction

The idea of using the human visual system for security purposes was first mentioned in [1].
Independently of [1], the basic Visual Cryptography principles were studied by Naor, Shamir
and Pinkas in [6, 7]. The main idea is to split an image into two random shares (printed on
transparencies) which separately reveal no information on the original image. The original
image can be reconstructed by superimposing the two shares. In [6, 7] it is shown that this
system is equivalent to a One Time Pad encryption scheme based on the boolean OR func-
tion and therefore unconditionally secure. Moreover, they developped visual authentication
schemes which together with a visual encryption scheme lead to a secure system. Later,
the associated secret sharing problem and its physical properties as contrast, resolution and
colour were extensively studied by Stinson [10] and by Verheul and Van Tilborg [11].

Although the above mentioned visual crypto systems can be made unconditionally secure,
they are not satisfactory from a practical point of view. Firstly, because of the One Time
Pad property of the scheme, a key can be used only once. Since transparencies are static
objects, this implies that a user has to carry a pile of transparencies with him to update the
keys. Secondly, the bad physical properties (colour, resolution, contrast) [6, 10, 11] make the
system not very well suited for practical purposes.

In this paper we investigate threshold visual secret sharing schemes associated to a new visual
encryption scheme. The new visual crypto system uses the polarisation of light and has good
colour, contrast and resolution properties. It is based on two well-known physical principles:
i) Polarisors only transmit light whose polarisation is aligned with the one of the polarisor
(sunglasses) and ii) Liquid Crystal (LC) cells can be used to rotate the polarisation direction
of incoming light.



This paper is organised as follows. In Sec. 2 we give a description of the physics behind the
polarisation based visual crypto system and show that it can mathematically be described by
an XOR. As such, the system has good brightness, resolution, contrast and colour properties
and gives rise to a new interesting type of secret sharing problem based on the component
wise addition of binary vectors, which is the main topic of this paper. This secret sharing
problem is formally defined in Sec. 3. In this section we also give examples of some simple
threshold visual secret sharing systems and show the equivalence between (2,n) schemes and
binary coding theory. The existence of general threshold visual secret sharing schemes based
on polarisation is shown in Sec. 4. Finally, we derive bounds on resolution and contrast
properties of these schemes in Sec. 5.

2 The Model

In this section, we explain the physical system and the model for black and white pictures.
We also briefly sketch the situation for gray scales and colours but refer the reader for more
details to a forthcoming publication.

In order to introduce the model, we briefly explain the physics of an LC display with backlight.
An LC display consists mainly of four layers (Fig. 1). The first one has the backlight. The
second layer consists of a polarisor, the third one is the L.C layer and the fourth one consists
again of a polarisor. The backlight emits circularly polarised light. The first polarisation
layer projects the polarisation of the incident light on its polarisation direction. Depending
on the voltage that is applied to a LC cell, this LC cell will rotate the polarisation of the
light that enters it over a certain angle. If the polarisation direction of the light leaving
the LC-layer matches that of the final polarisor, light comes out of the display. If on the
other hand the polarisation of the light coming out of the LC layer is perpendicular to the
polarisation direction of the final polariser, no light comes out. By applying voltages to the
LC-cells such that the polarisation direction of the outcoming light makes an angle ¢ < 7/2
with the polarisation direction of the second polarisor, gray scales can be generated.

In order to build a visual crypto system based on LC displays we proceed as follows (Fig. 2).
We have two displays consisting of an LC layer which have a polarisor at one side and no
polarisor at the other side. We also assume that the first LC has the backlight and the second
one has not. The second display has to be considered as a dedicated trusted device that a
user is carrying with him. The shares of both users are then the two (or more) LC layers on
which the dealer writes a certain pattern in terms of the angle of rotation of the various LC
cells.

We will start with a model for black and white pixels. We assume that the direction of the
first polarisor equals that of the second polarisor and is horizontal. Furthermore, we assume
that two voltages can be applied to LC cells V; and Vo. When the voltage V; is applied, the
LC cell will not rotate the polarisation direction of the incoming light, while when the voltage
V5 is applied, the polarisation direction is rotated over an angle of 90 degrees. When an LC
consists of N pixels (LC cells), one share will basically consist of N voltages (corresponding
to the angle of rotation of the different cells). Table 1 summarizes the physics for one pixel.
It follows from Table 1 that when two superimposed LC cells apply the same rotation, this
generates a white pixel and when they rotate the polarisation over a different angle this
generates a black pixel.



Pol filter 1 — — — —
LC1 I I O O
LC2 [ O I |o
Pol filter 2 — — — —
H Color ‘ white ‘ black ‘ black ‘ white H

Table 1: This table summarizes the physics of a polarisation based visual crypto system. The
arrows — indicate that the polarisor projects the polarisation direction of the incoming light
on the horizontal. The symbols || and O stand for LC cells that do not and do rotate the
polarisation direction of the light respectively.

LC1 |0]|0]1 |1
LC2 |0|1]0|1

[Color [O]1]1]0]

Table 2: Mathematical model of Table 1.

If an LC does not rotate the polarisation of the incoming light, then we will denote this by a
0. If on the other hand the polarisation is rotated over 90 degrees by the LC cell, this will be
denoted by a 1. This means that the mathematical structure of the system we described is that
of binary addition as follows from Table 2. The visual encryption scheme corresponds then to
the physical implementation on LC layers of the One Time Pad based on an XOR operation.
As LC layers can be driven electronically (as in LCD’s), the key can be easily updated (using
pseudo random number generators), which leads to a practical updating mechanism.
Finally, we mention that recently another visual crypto system using an XOR process has
been introduced in [2]. Their system is based on interferometric techniques and needs a
Mach-Zehnder interferometer making the system less practical and more expensive.

3 Threshold Visual Secret Sharing Schemes

3.1 Definitions

In this section, we will construct Threshold Visual Secret Sharing (TVSS) schemes based on
the polarisation rotation technique as explained in Sec. 2. We will restrict ourselves to images
consisting of black or white pixels. Since images consist of pixels, it suffices to give schemes
for sharing a black or white pixel only. In order to share a complete image, the pixel scheme
has to be applied as many times as there are pixels in the image.

By a (k,n) TVSS scheme, we mean a scheme in which a secret (the colour: black or white)
is divided into n shares which are given to the n users. Any subgroup of k& users out of these
n, can reconstruct the secret but any subgroup consisting of less than k users does not have
any information on the secret.

We introduce the notion of a share matriz. A k-share matrix is an n x b (n: number of users,
b: length of the shares) matrix whose rows are the shares that are distributed to the users.
Any arbitrary subset of k rows out of the set of n rows generates the secret when the shares



are superimposed. We denote by Cy the set of n x b k-share matrices that generate a white
pixel. By C; we denote the set of k-share matrices that generate a black pixel.

We will follow the definitions of Verheul and Van Tilborg [11] to give rigorous definitions of
a visual secret sharing scheme, contrast and resolution. For a vector v € GF(2)?, we denote
by z(v) the number of zero entries in the vector v (note that z(v) + w(v) = b, where w(v)
denotes the Hamming weight of the vector v).

A k out of n TVSS scheme S = (Cy,C;) consists of two collections of n x b binary share
matrices Cy and Cy. To share a white (black) pixel, the dealer randomly chooses one of the
matrices in Cy (C1) and distributes its rows (shares) under the n participants of the system.
More precisely,

Definition 1 Let k,n,b, h,l be positive integers satisfying 1 < k < n and b > h > 1. A
[(k,m);b,h,l] TVSS scheme consists of two collections of n x b boolean matrices Cy and Cy
such that:

1. For any s € Cy, the XOR v of any k of the n rows of s satisfies z(v) > h.
2. For any s € C1, the XOR v of any k of the n rows of s satisfies z(v) <.

3. Foranyiy <ig <...<igin{1,2,... ,n} witht < k the two collections of t x b matrices
Dj for j € {0,1}, obtained by restricting each n x b matriz in C;, for j = 0,1, to rows
11,19, ... , 13 are indistinguishable in the sense that they contain the same matrices with
the same frequencies.

h is called the white level of the system and [ is called the black level. The parameter b is
called the block length and determines the resolution of the scheme.

For a good scheme one needs that h > [. In [11] the contrast c is defined as ¢ = (h—1)/(h +1)
which is also the definition that we will take here. Note that ¢ € [0, 1] and that ¢ is maximal,
when [ = 0. Schemes with [ = 0 are called mazimal contrast schemes. In general, one is
interested in schemes with b as small as possible but with the contrast ¢ as large as possible.

The following symmetry property follows very easily and is therefore stated without proof.

Proposition 1 Let S = (Cy,Cy1) be a [(k,n);b,h,l] TVSS scheme with k odd and let ?Z be
obtained from C; by replacing zeroes by ones and vice versa. Then, the scheme S = (Cy,Cy) is
a [(k,n);b,b —1,b— h] scheme with contrast ¢,

¢c=(h—=10/2b—1—h).
It follows that ¢ > ¢ whenever | + h > b.

The following proposition gives a bound on the distance between the different shares and its
proof is given in appendix A.

Proposition 2 Let S = (Cy,C1) be a [(k,n);b,h,l] TVSS scheme with k > 3 and let ¢; and
co be two rows of a share matriz in Cy and hence also two rows of a share matriz in Cy. Then,

d(c1,c2) <min{2l,2(b — h)},

where d(.,.) denotes the Hamming distance.



We will denote the set of n x b boolean matrices (M™*?(GF(2))) briefly by M™*®.

3.2 n out of n visual secret sharing

In this section, we show that (n,n) TVSS schemes can have maximal contrast (¢ = 1) with
minimal block length (b = 1). This stands in sharp contrast to the Naor Shamir case [6]
where for the simplest non-trivial case (n = 2) at least two subpixels (b = 2) are needed.

Proposition 3 Let Cy and C; be two sets of n X 1 matrices defined as follows,
Co = {s € (GF(2 n|@sl 0}, Ci ={se (GF?2 "|@sl_1}. (1)

Then, the scheme S = (Cp,Cy) is a [(n,n);1,1,0] TVSS scheme.

Proof. From the definition of Cy and Cy, it follows immediately that b =1, h =1 and [ = 0.
Furthermore, one derives easily that |Cy| = |C1| = 2"~ !. Clearly any restriction of a share
matrix s € Cy to any ¢ < n rows (shares) can also be obtained as a restriction of a share
matrix § € C; and vice versa. It follows moreover that those restrictions occur with the same
frequencies in Cy and C;. Therefore, the conditions of Def. 1 are satisfied.

|

Hence, in this set-up there exist visual encryption schemes with good contrast and resolution
properties. This stands in sharp contrast with OR-based visual crypto systems where maximal
contrast schemes can only exist if b > 1 [11].

3.3 (2,n) TVSS schemes

A general construction for (2,n) TVSS schemes is given by the following theorem. It shows
that (2,mn) TVSS schemes are equivalent to binary codes. By a (b,n,d) code, we mean a
binary code of length b, n words and minimum Hamming distance d.

Theorem 1 Let b,] be natural numbers with b > 1 and 0 <[ < b. A [(2,n);b,b,]] TVSS
scheme exists if and only if there exists a binary (b,n,b—1) code C.

Proof. The theorem is proved by construction. Let S be a [(2,7n);b,b,I] TVSS scheme. Take
a share matrix A; € C; and define a set C whose words cy,... ,c, are given by the rows of
Aq. As the sets Cy and C; define a [(2,n);b,b,1] TVSS scheme, the minimal distance between
those words is b — [. Consequently, C defines a code of length b, consisting of n words and
with minimal distance d = b —I.

Conversely, let C be a (b,n,d) code over GF(2). Define the boolean matrices A; € M™*?,
1 =1,...,n as matrices whose n rows contain the same codeword ¢; and define the boolean
matrix B € M"*® consisting of n different rows containing the code words ¢;, i = 1,... ,n.
Furthermore, define the boolean matrices A; = I (B) € Mt i =1,... ,n where the cyclic
shift on n points, I'),, is applied to the rows of B. Define the sets Cy = {A;,...,A,} and
C, ={A,,...,A,}. We prove that the secret sharing scheme S = (Cy,C1) is a [(2,n); b, b, b—d]
TVSS scheme.



Without loss of generality, we start from considering the matrices Ai,fii,i =1,...,n. Itis
clear that the sum of two arbitrary rows of the matrices A;,7 = 1,...,n gives the all zero
vector. It follows that = b. As C has minimum distance d, for any two rows o7, o* from
A; (i =1,...,n), we have z(c7 @ o*) > b — d. Equality holds if 07 and ¢* have Hamming
distance d, so [ = b — d. The contrast ¢ of the scheme S is hence given by,

_d
“Tow_da

From the construction it follows that |Cy| = |C1| and also that the collections Dy and D; which
are obtained by restricting the elements of the collections Cy and C; to an arbitrary row are
indistinguishable. Therefore, the scheme S = (Cy,C1) is a [(2,n); b, b,b — d] TVSS scheme.

We note that the construction of Theorem 1 does not allow to construct maximal contrast
schemes. The impossibility of such a construction for (k,n) schemes with 1 < k < n, will
be shown in generality in Sec. 5. In fact, since we showed in Theorem 1 that (2,n) TVSS
schemes are equivalent to binary codes, bounds for ¢, h and [ can be derived from bounds for
(b,n,d) codes. Using the Singleton bound, we obtain the following corollary.

Corollary 1 The contrast of a [(2,n);b,b,I] TVSS scheme is at most
(b—logan+1)/(b+logyn —1). (2)

Proof. The proof follows from the Singleton bound [3, Thm. 5.2.1] and Theorem 1.
|

In the same way, a lower bound for the contrast of a (2,n) TVSS scheme follows from the
Gilbert-Varshamov bound [3, Thm. 5.1.7].

4 General k£ out of n visual secret sharing schemes

In this section, we show two constructions of (k,n) TVSS schemes for all 3 <k <n —1. The
first construction is recursive, the second one is a direct construction and based on so-called
MDS codes known from algebraic coding theory. We realize that more efficient constructions
are possible, but post those as an open problem.

4.1 Construction 1

The first construction that we propose is a recursive construction. We will first describe a,
(3,n) TVSS scheme, and derive a (4,n) TVSS scheme from it. It will then be clear how more
general schemes can be derived.

4.1.1 Introduction

We first emphasize that in all of the following constructions we produce two classes of share
matrices consisting of n rows called Cy and C;. In each step of the construction we will
let the permutation group S, act on the n rows of the share matrices in Cyp and C;. The
appropriate permutation group S will act on the columns of the share matrices in Cy and Cy.



This ensures the indistinguishability property according to Def. 1 for the sets Cy and C;. In
all constructions, we assume that this is done without mentioning this.

The idea of the construction is the following. Denote by a; the weight of the sum of any
1 <1 < k rows of a matrix A € Cy and similarly we use the notation b; for the weight any
i rows for B € C;. The construction will guarantee that a; = b; as long as 4 < k and that
ar, 7 by as required by the indistinguishability property.

4.1.2 (3,n) TVSS schemes
Let B € M"*(2n=2) 16 3 matrix defined as follows,
B = (Ian,nf2)a

where I,, stands for the n x n identity matrix and J, 2 is the all one matrix with n rows
and n — 2 columns. The matrix A € M™*(27-2) ig defined as the complement of B. We build
the sets of share matrices Cy and C; by letting the appropriate permutation groups act on the
rows and the columns of the matrices A and B respectively, as explained in Sec. 4.1.1.

Proposition 4 The scheme S = (Cy,C1) as defined in the previous paragraph is a [(3,n);2n—
2,n+1,n—3] TVSS scheme with contrast ¢ =4/(2n —2).

Proof. Let a;,b;,i = 1,... ,n be as defined in Sec 4.1.1. Then, it follows that
alzblzn—l, (I,Q:bQ. (3)

The permutation of the columns applied to the matrices A and B guarantees together with
Eqgs (3) that the scheme S satisfies the indistinguishability property of Def. 1. Furthermore,
it follows immediately, that » =n + 1 and | = n — 3 and therefore ¢ = 4/(2n — 2).

4.1.3 (4,n) TVSS schemes

We present the construction for n even (for n odd, the construction is similar). First, we
introduce some more notation. Let O,,; denote the all-zero matrix consisting of n rows and [
columns. We construct a sequence of matrices A', A%,... which will lead to the set Cy and a
sequence of matrices B!, B2, ... which will lead to the set C;. Moreover, for all 7, the matrices
A? will have the same number of columns as well as the matrices B’. If these numbers are
different we adjoin matrices O,,; to all members of one of the classes to make the number of
columns equal.

Construction 1

1. Define binary matrices B! that contain every column of weight two exactly once. It
follows from some computations that:

by=n—1, bp =2n—4, b3 =3(n—3), by =4(n —4). (4)

2. Define binary matrices A' that contain every column of weight three exactly once. Then,

n—1 n—2 n—3 n—4
= =2 = 1 =4 4.
ai ( 2 >7a2 < 92 >7a3 3< 2 >+ , Q4 ( 92 >+ (5)



3. Define A; = b; — a; at each step of the construction.

4. New binary matrices B? are defined by taking "T_Q copies of the matrix B'. At this
step, we have

A1 =0, Ao =n—2, Ay =3n—10, Ay = 6n— 28.

5. Define binary matrices B3 by adjoining the matrix Jn,(n—2)/2 to the matrices B?. Define
also binary matrices A2 by adjoining (n — 2)/2 copies of I, to the matrices A;. At this
step, one then has

A1:0, AQZO, A3:2n—8, A4:4n—24

6. Define binary matrices B* by adjoining to the matrices B3, (n — 4)/2 copies of the
matrices from the set C; of the (3,n) schemes as constructed in Sec. 4.1.2. Similarly,
define binary matrices A% by adjoining (n —4)/2 copies of share matrices of the class Cy
of the (3,n) scheme constructed in Sec. 4.1.2 to the matrices A%2. From the construction
of the matrices in the (3,n) schemes, it still follows that A; = Ay = 0. But for Az we
have

n—4
2

Az = (2n—8) —4

On the other hand, this construction clearly has no impact on A4. For n # 6, we have
that Ay # 0.

7. Define the sets Cy and C; from the matrices A% and B* respectively according to the
action of the appropriate permutation groups as explained in the Sec. 4.1.1.

Proposition 5 The scheme S = (Cy,Cy1) with Cy and Cy as constructed in construction 1 is
a [(4,n);b,h,l] TVSS scheme for n > 6 where

_n3+3n2—22n+16
- 4

b , h=b—2n2+16n—40, [ =b—2n?+ 12n — 16.
Proof. The indistinguishability property follows from the fact that Ay = As = Az = 0 and
the application of the permutation group on the columns of the share matrices. The values
for b, h and [ follow from some tedious calculations.

|

4.2 Construction 2

In this section, we assume that 2 < k < n. In order to construct (k,n) TVSS schemes
we make use of MDS codes over GF(q), the finite field with ¢ elements. We recall that an
[n,k,n —k+ 1] MDS code over GF(q) exists if ¢+ 1 > n as follows from Theorem 9 in Ch. 11
of [4]. Therefore, we choose ¢ > n — 1.

We start by constructing the set C;. Let A be a n x ¢* matrix over GF(g). The columns of
A consist of the ¢¥ words of an [n, k,n — k + 1] code C over GF(q).



Lemma 1 Denote by A® the restriction of the matriz A to the first s rows. The columns
of the matriz AF contain each vector of the vector space GF(q)* exactly once. Moreover, the
restriction A¥~1 contains each vector of GF(q)*~1 exactly q times.

Proof. Since the columns of A belong to a code C whose words differ in at least n — k + 1
positions, the columns of a restricted matrix A* differ in at least one position. Hence, all ¢*
columns of A¥ are distinct and so A contains each vector of GF(¢)* exactly once.
Hence, it also follows that the restriction of A to any k—1 rows contains every possible column
(elements of GF(q)*~") exactly ¢ times.

|
Lemma 1 holds for the restriction of A to any k rows, as one sees by inspection of its proof.

We derive a binary matrix A € M™*4" from the matrix A by replacing all non-zero entries of
A by the element 1.

Lemma 2 Let A'» % denote the restriction of the matriz A to the rows i1, ... i and denote
k . . . 24 ;
by vf?% € GF(2)T the sum of the k rows of the associated binary matriz A">-*. Then,

® N qk + (2 - Q)k
z(vil,...,ik) - 2 .
Proof. Choose k arbitrary rows i,... , ;. By construction of the matrix Aty k| this matrix

contains every possible column exactly once, hence the number of columns of weight w equals

<Z> (¢—1)".

Therefore, the number of zeros in vff% equals
k ¢ +(2-q"
0= Y (y)u-v”
w 2
w=0 (mod2)
|
Since the number z(vf?%) does not depend on the rows iq,... ,i;, we will further denote

this number simply by z(v").
Put A, = A and define the set Cy as the set of share matrices obtained by letting the

permutation group Sy act on the columns of the matrix A.

Next, we describe the construction of the set Cy. Denote by By an n x ¢*~! matrix over GF(q)

whose columns are the words of an [n,k — 1,n — k + 2] (MDS) code over GF(q) (this code
exists since n < ¢ + 1). The matrix B consists of g copies of the matrix By and is hence an
n x ¢* matrix over GF(q).

Lemma 3 Denote by B>+ the restriction of the matriz B to the rows iy,... ,ix. Then,
the columns of the matriz B % contain each vector of GF(q)* either zero or q times. The
columns of the matriz B+ "—1 contain each vector of the space GF(q)*~1 exactly q times.

Proof. Since the columns of the matrix B belong to an [n,k — 1,n — k 4+ 2] MDS code over
GF(q), the columns of the restricted matrix B* -1 differ in at least one position. Hence,

the columns of B %-1 contain all the vectors GF(g)¥~! exactly once.



The fact that the matrix B % contains each vector of GF(g)¥ either zero or ¢ times follows
then immediately from the construction.

We define the binary matrix B by replacing in the matrix B each non-zero entry by one. Put
Ay = B.

Lemma 4 Let Af)l"“’i’“ denote the restriction of the matriz Ay to the rows i1,... ,ix. Then,

@ is given by

the number of zeroes in the sum vector v;; i

(0P ) =z2(0f) + (g —1)25

Proof. Consider the matrix Bél""’i’“ which is a restriction of the matrix By to the rows
i1,-.. ,ik. The columns of this matrix are the words of an [k, k — 1,2] MDS code over GF(q).
By Theorem 6 in Ch. 11 of [4], it follows that b,, the number of columns of weight w in the

matrix By, is given by

o = ()= :<—1>f ("7 e
SEECIEN
q

- (Jo-n(

As B consists of ¢ copies of By, it follows that in B and hence in 4 every column of weight
w occurs gb,, times and so

Q

(6)

20 ) = o =200) + g=1) Y (D = 2(0f) + (g - )2,
w=0mod2
|

Again, we remark that the number z(v" does not depend on the rows 4q,... ,%;. There-

5
D1 yene sl
fore, we denote this number by z(vy).

The set Cy is then defined by letting the permutation group S, act on the columns of Ay.

Construction of a general (k,n) scheme: construction 2

1. Choose ¢ (power of a prime) with ¢ > n — 1.
2. Define the sets of share matrices Cy and C; as earlier in this section.

3. Define the scheme S = (Cp,C1).

Theorem 2 The scheme S = (Co,C1) as defined in construction 2, is a [(k,n); g%, z(v), z(v;")]
TVSS scheme.

Proof. The fact that b = ¢* follows from the definition of construction 2. The equalities
h = z(vy) and | = z(v}) follow from lemmas 4 and 2. The indistinguishability property

follows from the observation that the matrices Aél""’it and Alf"“’it, with ¢t < k, obtained
by restricting the matrices Ay and A; to ¢ arbitrary rows, are constructed in the same way.

10



They are obtained from the indistinguishable matrices B#»+% and A" as follows from
lemmas 3 and 1.

Finally, note that the contrast ¢ of [(k,n); b, h,] schemes in construction 2 is given by

c=((g - D2" /(" + (=D"a~2)" + (¢ - 2" ).

5 Bounds on the parameters b, h and [

Lemma 5 Let k be an even integer. Let B be a binary matriz with n rows such that the sum
(XOR) of any k rows from B differs from 0. Then B has at least n — k + 2 distinct rows.

Proof. By induction on k. The result is obvious for k¥ = 2. Now assume that k£ > 4, and
that B has two equal rows (otherwise we are done). By removing these two rows from B,
we obtain a matrix B* with n — 2 rows. The sum of any k& — 2 rows from B* differs from 0
as otherwise these k£ — 2 rows and the two removed rows would add up to 0. The induction
hypothesis implies that B* (so surely B) has at least (n —2) — (k—2)+2 = n — k+ 2 distinct
rows.

Proposition 6 Let k be even, k > 4 and let S = (Co,Cy1) be a [(k,n);b,h,l] TVSS scheme.
Then we have that

min(,2(b—h))

n—k+1< > <f>

1=0

Proof. Let B be a share matrix in Cy. As [ # b, no k rows of B add to the all-zero word.
Lemma 5 implies that B has at least n—k+2 distinct rows. As all rows from B have Hamming
distance at most 2(b — h) to its top row (see Proposition 2),

20-h)
—k+2< .
noki2s 3 ()

Now, we assume without loss of generality that the top n — k + 1 rows of B are distinct. Let
¢ be the sum of the £ — 1 bottom rows of B. For 1< i < n — k + 1, the sum of ¢ and the i-th
row of B contains at most [ ones; that is to say, the i-th row of B has Hamming distance at
most [ to the complement of c. As the n — &k + 1 top rows of B are distinct, n — k + 1 is at
most the number of vectors at distance at most [ from the complement of ¢, so

l
b
n—k—i—lSZ(i).
i=0

We are investigating the structure of the possible schemes in this set-up. In particular, we
prove that maximal contrast schemes (I = 0) do not exist.

11



Proposition 7 [(k,n);b,h,0] TVSS schemes with 1 < k < n do not exist. Furthermore,
[(k,m);b,b,1] TVSS schemes with 2 < k < n do not exist either.

Proof. For k = 2 the first statement has already been proven in Corollary 1. Therefore, we
assume w.l.o.g. that k£ > 3. Let S = (Cp,C1) be a [(k,n); b, h,0] TVSS scheme and let B be a
share matrix in C;. Denote by o', 62 two arbitrary rows in B. Since n — 2 > k — 1, there are

still £ — 1 rows left in the share matrix B. We denote these rows by ¢3,... , oL, Since S is
a threshold scheme with [ = 0, the XOR of ¢!, 03, 0%,... , 0%t is the all-one vector, as is the
XOR of 02,03,0%,... 0%t Tt follows that o' = 02, so all rows of B € C; are equal.

Next, let A € Cy and consider row ¢ and j of A. As k > 3, the indistinguishability property
of Def. 1 implies that there is a B € C; that agrees with A in these rows. As all rows of B
are equal, the i-th and j-th row of A are equal. Since ¢ and j are arbitrary, all rows of A are
equal, so A equals B, a contradiction.
The second statement follows from an analogous reasoning.

|
Note that Proposition 7 implies that [(k,n); 1, h, 1] TVSS schemes do not exist for 1 < k < n.
Moreover, it is note worthy that [(2,7n); b, b, [] TVSS schemes with [ > 0 exist while [(2,n); b, h, 0]
TVSS schemes do not exist.
It follows from Def. 1 that one is interested in schemes with small [. The following Proposition
shows that for even k, [/b can not be arbitrarily small.

Proposition 8 Let S = (Cy,Cy1) be a [(k,n);b,h,l] TVSS scheme with 1 < k < n and k even.
Then, the white level | satisfies the following inequality,

b
[>—.
T k+1

Proof. Choose a share matrix B € C;. Let B be a set of k + 1 arbitrarily chosen rows in B.
Let a; denote the number of positions in which the shares of B all have the same coordinate.
Let a denote the number of positions in which not all of the k& + 1 shares of B have the
same coordinate. Note that oy + ag = b. Consider the k + 1 subsets of k& elements of B and

compute the sum vector of each of the subsets of k elements. The total number of zeroes z
in the concatenation of these sum vectors satisfies

(k-l-l)lzzz(k+1)0[1+0122011+012:b.

It follows from Proposition 8 that for even k£ > 3 the contrast c of [(k,n); b, h,l] TVSS schemes
is bounded by

c<((k+1)(b—1)=b)/((k+1)(b—1) +b). (7)

For odd & on the other hand, I/b can be arbitrarily small. Indeed, in Construction 2 of
Sec. 4.2, the white level [ satisfies (for fixed odd k)

l_l 2 Ly large q k 9
A e !
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which becomes arbitrarily small with increasing ¢. Together with Proposition 1, these results
indicate that (k,n) schemes with & odd are fundamentally different from (k,n) schemes with
k even.

Finally, we mention that if & = 2, h can be as large as b (see Sec. 3.3). For larger k,
Construction 2 (combined with Proposition 1, if k£ is odd) yields (k,n) schemes with h/b
arbitrarily close to 1.
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A Technical Details

Proposition 9 Let S = (Cy,Cy1) be a [(k,n);b,h,l] TVSS scheme with k > 3 and let ¢; and
co be two rows of a share matriz in Cy and hence also two rows of a share matriz in C1. Then,

d(ct,c2) <min{2l,2(b— h)},

where d(.,.) denotes the Hamming distance.
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Proof. Let B be a share matrix in C; containing the rows ¢1, c2 and let ¢ denote the (XOR)
sum of £ — 1 other rows. Then, we have

dlci,1®c) = z(cPca) <,
d(c,1®¢c) = z(cPce) <I.

From the triangle inequality, it then follows that
d(Cl,CQ) S 21. (8)

An analogous reasoning on a share matrix A € Cy containing the shares ¢j,cs and ¢, then
gives

d(Cl, 02) S 2(b — h) (9)
Adding Eq. 8 and Eq. 9 then leads also to the following bound

d(Cl,Cg) S b— h+l.

B Figures

O
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Figure 1: Structure and principle of an LC Display. The symbol r in a cell means that this
LC cell rotates the polarisation of the incoming light.
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Figure 2: Visual crypto system by superimposing two LC layers. The symbolr in a cell means
that this LC cell rotates the polarisation of the incoming light.
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