A Mode of Operation with Partial Encryption
and Message Integrity (PEMI)

Philip Hawkes' and Gregory G. Rose'

QUALCOMM International (Australia)
Level 3, 230 Victoria Road, Gladesville NSW 2111 Australia
{phawkes,ggr}@qualcomm. com

Abstract. At the recent AES Modes of Operation Conference, several
modes of operation were proposed for using a block cipher to provide
both confidentiality and authentication. These modes require only a little
more work than the cost of encryption alone, and come with proofs of
security. However, these modes require the entire message to be sent in
encrypted form. This can cause problems in situations where some of the
message neeeds to be sent in plaintext while still being authenticated.
This paper describes a simple variation that allows any choice of message
blocks to be sent in plaintext form rather than in encrypted form. This
mode, Partial Encryption with Message Integrity (PEMI), is shown to
be secure for message integrity and message secrecy.

1 Introduction

In 2000 Jutla [2, 3] proposed new modes of operation for symmetric block ciphers:
Integrity Aware Cipher Bock Chaining (IACBC) mode and Integrity-Aware Par-
allelizable (IAPM) Mode. Provided the underlying block cipher is secure, the
modes are proven to provide secure encryption and secure message authentica-
tion. Other modes with the same properties have since been proposed: XCBC
mode, proposed by Gligor and Donescu [1]; and OCB mode, proposed by Rog-
away, Bellare, Black and Krovetz [5]. These modes (IACBC, IAPM, XCBC and
OCB) share a common dilemma: the entire message must be sent in encrypted
form. In many situations, this is not an issue. However, some protocols require
part of the message (such as an IP address) to be sent as plaintext, and it would
be desirable for this plaintext portion to be authenticated along with the remain-
der of the message. This is not possible with the aforementioned modes. This
paper presents a mode whereby part of the message can be sent as plaintext,
and this plaintext portion to be authenticated along with the remainder of the
message. The mode is called Partial Encryption with Message Integrity (PEMI)
mode.

The paper is arranged as follows. Section 2 contains a description of TAPM
and the new mode. A short discussion on the efficiency of PEMI follows in
Section 2.2. A proof of message integrity is provided in Section 3. Section 3.1
discusses partial block encryption, where part of a block is sent encrypted and
the remaining part of the block is sent unencrypted.



2 Description

Let Ex denote encryption of an [-bit block by a symmetric block cipher using
the key K, and let Dg denote decryption by the symmetric block cipher us-
ing K. Suppose the message is m blocks in length: P = P[1],..., P[m], and the
sender and receiver have agreed on two keys K0, K'1. The XOR version of TAPM
mode is summarized below.! This mode requires the generation of a sequence
S[0], ..., S[m+1] from the initial value I'V using the key K 0. This sequence must
have the property that S[i] ® S[j] is uniformly distributed for 0 < i < j < m+1.
The method proposed by Jutla [3] uses only only ¢ = [log,(m + 3)] encryp-
tions. This method is given in the Appendix. IAPM encryption, decryption and
message integrity verification are computed as follows.

IAPM: Encryption with Authentication

Step 1 Choose a random I-bit initial value IV, set C[0] = IV.
Step 2 Generate S[0],...,S[m + 1] from IV and KO.

Step 3 For 1 <i < m, compute C[i] = S[i] ® Ex1(P[i] ® S[i]).
Step 4 Form P[i+ 1] = P[1]& --- & P[m], and compute,

Clm + 1] = S[0] & Ek1(checksum & S[m + 1]).
Transmit C' = (C[0],...,C[m + 1]).
IAPM: Decryption with Message Integrity Verification

Step 1 Extract IV = C[0].

Step 2 Generate S[0],...,S[m + 1] from IV and KO.

Step 3 For 1 <i < m compute P[i| = S[i] ® Dg1(C[i] ® S[i]).

Step 4 Compute P[m + 1] = S[m + 1] & Dg1(C[m + 1] & S[0]).

Step 5 If P[m + 1] = P[0] & - - - & P[m], then the message integrity is verified,
and the message is P = P[1],..., P[m].

[Note to referees: We can include a Figure describing IAPM here, but we are
currently pressed for time.]

As explained in Section 1, There is demand for a mode in which part of
the message is sent in non-encrypted form. The mode proposed below, Partial
Encryption with Message Integrity (PEMI), is a variation on TAPM. Suppose
the message is m blocks in length: P = P[1],..., P[m], and the sender and
receiver have agreed on two keys K0, K'1. The sender and receiver also agree on
aset U C {1,...,m} of block indices for which the plaintext block P[i] will be
transmitted rather than the ciphertext C[i] when i € U.

! There is a slight discrepancy between the description of IAPM in [2, 3]. This descrip-
tion follows [3].



PEMI: Encryption with Authentication

Step 1 Choose a random I-bit value IV, set C[0] = IV.
Step 2 Generate S[0],...,S[m+1] from I'V and KO0 as shown in the Appendix.
Step 3 For 1 <i < m, perform one of the following steps.

— If i € U, then set C[i] = P[i] and compute Y[i] = S[i]® D1 (P[i] ® S[i]).
— If i ¢ U, then compute C[i] = S[i]® Ex1(P[é] ® S[i]) and set Y[i] = PJ[q].
Step 4 Form Plm+ 1] =Y[1] ®--- ® Y[m], and compute
Clm + 1] = S[0] ® Ex1(P[m + 1] @ S[m + 1]).
Transmit C' = (C[0],...,Clm + 1]).

[Note to referees: We can include a Figure describing PEMI here, but we are
currently pressed for time.]

Example 1. Suppose that the sender and receiver agree that the first data block
will be transmitted in plaintext rather than ciphertext. Then

Y[1] = S[1] @ Dk1(P[1] & S[1)),
and Y'[i] = P[i] for 2 < i < m. The tranmitted message appears as
Clo], P[1],C[2],...,Cm],Clm + 1],
where C[2],...,C[m] contain the encryptions of P[2],..., P[m].

PEMI: Decryption with Message Integrity Verification

Step 1 Extract IV = C[0].
Step 2 Generate S[0],...,S[m + 1] from IV and KO.
Step 3 For 1 < ¢ < m perform one of the following steps.
— If i € U, then set P[i] = C[i] and compute Y[i] = S[i]® D1 (P[i]® S[i]).
— If i ¢ U, then compute P[i] = S[i]® Dg1(C[i]® S[i]) and set Y [i] = P[q].
Step 4 Compute P[m + 1] = S[m + 1] & Dg1(C[m + 1] & S[0]).
Step 5 If Pim+ 1] =Y[1] ®--- @ Y[m], then the message integrity is verified,
and the message is P = (P[1],..., P[m]).

Note that the message integrity verification for a PEMI ciphertext C' is ex-
actly the same as the message integrity verification for an TAPM ciphertext C.
While TAPM used the “hidden” values P[1],...,P[m] to compute the check-
sum, this PEMI mode uses the hidden decrypted values of PJ[i], since P[i] is
transmitted.

2.1 Format

The format of a PEMI ciphertext is a description of which blocks will be sent
unencrypted and which blocks will be sent encrypted. The message integrity
verification of PEMI is independent of which blocks were sent encrypted and
which blocks were sent unencrypted. That is, PEMI does not verify the format
of the ciphertext. This opens PEMI to the possibility of an attack in which the
claimed format of the ciphertext is changed. We do not consider this to be a
serious threat as there are several ways to resist this threat. One simple solution
is that the sender and receiver can agree a priori on the format. An alternative
solution is to define part of the unencrypted plaintext to include formatting data.



2.2 Performance

The same principles used in PEMI can be used to create other modes that
provide partial encryption with message integrity. One example is the so-called
Hawkes-Rose (HR) variant of IAPM [4]. In the HR variant, the checksum is
defined as P[m + 1] = _ 4y, P[j], with

Clm +1] = Ex1(Pm + 1] @ S[m + 1)) ® S[0] & > _[S[i] & Ex1 (Pli] @ Si])].
jeu

Here is a comparison of PEMI and the HR variant.

— The HR variant encryption requires only block cipher encryption. PEMI en-
cryption requires both block cipher encryption and block cipher decryption.

— In the HR variant encryption, all block cipher encryptions can be performed
in parallel; there is no latency. In PEMI encryption, P[m + 1] can only be
formed after the block cipher decryptions of the unencrypted blocks. Thusm
the computation of C[m + 1] cannot take place until after these decryptions.
Consequently, not all operations in PEMI encryption can be performed in
parallel; there is a latency of one block cipher encryption.

— The HR variant decryption and message integrity verification requires both
block cipher encryption and block cipher decryption. PEMI decryption and
message integrity verification requires only block cipher decryption.

— In the HR variant decryption and message integrity verification, the block
cipher encryptions of the unencrypted blocks must be performed to obtain
A =" cplSli] ® Ex1(Pli] ® S[i])], before the receiver can decrypt to form

Plm+1]=Sm+1]® Dg1(Clm + 1] & S[0] & A).

That is, the computation of P[m + 1] cannot take place until after these en-
cryptions. Consequently, not all operations in the HR variant decryption and
message integrity verification can be performed in parallel; there is a latency
of one block cipher encryption. In PEMI decryption and message integrity
verification, all block cipher decryptions can be performed in parallel; there
is no latency.

All the designs that we considered (for partial encryption with message integrity)
appeared to require a mixture of block cipher encryption and block cipher de-
cryption either during encryption or during decryption and message integrity
verification. All the designs that we considered also required a latency of at
least one block cipher encryption or decryption at some point: either during
encryption or during decryption and message integrity verification.
Performance-wise, there is little to differentiate between PEMI and the HR
variant. Both schemes allow for significant parallelization, so they are very fast.
However, we prefer PEMI because message verification for PEMI is identical to
message integrity for TAPM. This means that the security of PEMI for message
integrity can be easily related to the security of IAPM for message integrity. As
the security proof for IAPM already exists, this makes our work much easier.



3 Proof of Message Integrity

A message integrity attack (MIA) on PEMI or IAPM is a two step process. In
the first step, the adversary chooses plaintexts P!,..., PZ, and gets the sender
to reply C',...,C*. Note that each plaintext and ciphertext consists of multiple
blocks: C* = (C?[0] ...,C%m¢+1]), where m? is the length of the i-th plaintext.
In the second step, the adversary produces a new ciphertext C’ (distinct from
the other ciphertexts C'*) for which there is a non-negligible probability that it
is valid. There is a slight difference between the MIA on PEMI and the MIA on
TAPM,; the difference is easier to express with some additional notation.

1. PEMI. Let Y[j], 1 < j < m, be defined as above for PEMI: if j € U, then
Y'[j] = P[j]; otherwise

Y[jl = Sl ® Dr1(P[j] @ S[j]).-

For 0 < j < m define Z[j] = C[j], noting that Z[j] = P[j] for j € U. Also
define

Ym+1=Y[1]®---Y[m],
ZIm +1] = S[0] © Ex1(Y[m + 1] & S[m + 1]).

For the i-th plaintext message P?, let U’ denote the set of indices for which
Pi[j] is sent unencrypted.

2. IAPM. For 1 < j < m, define Y[j] = P[j] and Z[j] = C[j] = S[j] &
Er1(Z[j] @ S[j])- Finally define

Ym+1=Y[1]®---Y[m],
Zm +1] = S[0] © Ex1(Y[m + 1] & S[m + 1]).

The differences between an MIA on PEMI and an MIA on TAPM are in whether
the values of Y?[j] and Z'[j] are known, unknown, chosen or uniformly dis-
tributed.

1. In an MIA on IAPM, the values of Y?[j], 1 < i < m + 1, are chosen and
thus known. In an MIA on PEMI, the values of Y[j], j ¢ U‘, are chosen
and known but the values of Y[j], j € U¢, are unknown and expected to be
uniformly distributed.

2. In an MIA on IAPM, the values of Z'[j] are known and expected to be
uniformly distributed. In an MIA on PEMI, the values of Zi[j], i ¢ U?, are
unknown and expected to be uniformly distributed, but the values of Z[j],
i ¢ Ut, are chosen. In an MIA on PEMI, the adversary gets to choose U’
based on P!,..., P! and C%,...,C*"!. This means that the adversary
gets to choose which values of Z%[j] will be plaintexts (and for which the
adversary can choose the values) and which values of Z![j] will be unknown,
uniformly distributed ciphertexts.



We can translate the proof for IAPM [3] into a proof using Y*[j] and Z‘[j] in
the place of Pi[j] and C*[j]. A proof for PEMI results if the proof for IAPM still
holds when some values of Z[j] are chosen, while the corresponding values of
Y'[j] are unknown and uniformly distributed. The fact that some values of Y[4]
are unknown and uniformly distributed cannot increase the success probability
of the attack. The question is whether the fact that Z'[j], j € U?, are chosen
increases the success probability.

In Jutla’s calculations for bounding the success probability of an MIA on
TAPM [3], the “un-predictability” of the ciphertexts has the following effect.
To compute a probability where there are, say, ¢t possible ciphertexts resulting
the initial value IV, Jutla sums the probabilities over the individual possible
ciphertexts and introduces a factor of 1/t, seeing as the actual value for the
ciphertext is not known in advance. As only a bound is required, we obtain a
bound g that holds for all ¢ possible fixed ciphertexts. We then see that the
bound on the sum of the probabilities is Zciphertexts B/t = B. That is, the bound
on the success probability does not depend on how many possible values there
are for the ciphertexts.

This means that in the same analysis of PEMI, the same bounds would
apply even though the attacker has the opportunity to choose some portion of
the ciphertexts. Thus, an attack on the message integrity of PEMI has negligible
success probability; that is, PEMI remains secure for message integrity.

The proof of privacy for PEMI remains the same as that for IAPM, except
of course that some of the plaintexts are transmitted in clear.

3.1 Partial Block Encryption with Message Integrity

PEMI above relies upon entire blocks being either plaintext or ciphertext, which
is an undesirable reflection of the structure of the block cipher. Since the AES
works on large blocks of 16 bytes, this might be seen to be unduly restrictive. It
is desirable to handle, somehow, the case of partially encrypted blocks. We call a
block a “partial block” when some of its contents are to be sent encrypted, and
some of it is to be sent clear. Again we assume that the format of the message,
in the sense of what part is to be sent unencrypted, is agreed a priori between
the parties.

One way to solve this problem is to treat the partial block as a block to be
transmitted unencrypted for the purposes of calculating the Message Integrity
above. Since this ensures message integrity, we encrypt the desired part with an
additive cipher, effectively in counter mode. The I'V was used in conjunction
with K0 to generate the S[i] values, but K1 is used to encrypt and decrypt the
actual data blocks, so we can reuse the I'V in this context.

Consider the i-th block, and assume that we have a bitwise mask M[i] that
defines the bits to be encrypted. (M[i] won’t be all zeros, or the sender would just
send the plaintext; similarly it won’t be all ones, or the sender would just send
the ciphertext. Beyond that, there is no reason to further constrain which bits
are to be encrypted, and which left unencrypted.) The block to be transmitted



is calculated so:
Partial[i] = P[i] @ (M[i] AND Eg,(IV @1)),

where AND denotes the bit-wise AND operation. For each block to be partially
encrypted, an extra encryption operation over the basic PEMI is required to
generate the counter-mode mask. Since this extra operation can also be done
in parallel with the data encryption or decryption operation required by the
message integrity calculation or verification (respectively) the overall latency in
parallel mode need not increase.

Security of the message integrity follows directly from that of PEMI. The
message integrity was already guaranteed when plaintext was sent, so obscuring
part of the plaintext cannot weaken the message integrity. Security of the privacy
of the data follows directly from the proof of security of basic Counter Mode
encryption, which we do not repeat here. We only require that the two encryption
operations needed are independent, to prove the security of this enhancement.

In one (privacy) operation, we encrypt Exi(IV @1). In the other (integrity)
operation, we encrypt Ex(P[i] ® S[i]). These values are unrelated, except that
the S[i] are related to the I'V through encryption with key K0 (not K1). There-
fore, any dependence between these two encryption operations must result from
the attacker’s ability to relate the input and output of encryption using the key
KO0, which would therefore imply his ability to break the underlying block ci-
pher with an unknown key. Thus the partially encrypted blocks are fully integrity
protected and partially encrypted as required.

4 Conclusion

We have proposed a new mode for symmetric block ciphers that provides Partial
Encryption with Message Integrity, hence the name PEMI. We have sketched a
method in which a proof of message integrity for PEMI can be based on a proof
of message integrity for IAPM. The same principles used in PEMI can be used
to create other modes that provide partial encryption with message integrity.
For example, a PEMI-like mode may also be constructed from OCB [5].

References
1. V. Gligor and P. Donescu. Fast encryption and authentica-
tion: XCBC encryption and XECB authenitcation modes. See

http://csrc.nist.gov/encryption/modes/proposedmodes/xcbc/xcbc-spec. pdf,
2001.

2. C. S. Jutla. Encryption modes with almost free message integrity. See
http://csrc.nist.gov/encryption/modes/proposedmodes/iacbc/iacbc-spec.pdf,
2001.

3. C. S. Jutla. Parallelizable encryption mode with almost free message integrity. See
http://csrc.nist.gov/encryption/modes/proposedmodes/iapm/iapm-spec.pdf,
2001.



4. C. S. Jutla. Hawkes-Rose variant of ITAPM and mesage integrity. See
http://csrc.nist.gov/encryption/modes/proposedmodes/iapm/variantprood.pdf,
2001.

5. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. See
http://csrc.nist.gov/encryption/modes/proposedmodes/ocb/ocb-spec.pdf,
2001.

5 Appendix

This section describes the method proposed by Jutla [3] for generating the se-
quence S[0],...,S[m + 1] from a key and an initial value I'V. The sequence has
the property that S[i] ® S[j] is uniformly distributed for 0 < i < j < m + 1.
This method requires t = [(log,(m + 3)] encryptions. This text is taken (almost
verbatim) from [3].

1. Set Wy = Exo(IV), (noting that IV = C[0]).

2. Set S[0] = Wp.

3. For j =1 to m, perform the following steps:
(a) Find the index k of the least significant non-zero bit in (j + 1).
(b) If (j + 1) = 2%, then compute Wy, = Exo(Wo + k).
(c) Set S[j] = S[j + 1] & Wy.



