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Abstrat

This paper presents a new \operational" ryptanalysis of blok i-

phers based on the use of a well-known error-orreting ode: the rep-

etition odes. We demonstrate how to desribe a blok ipher with

suh a ode before explaining how to design a new iphertext only

ryptanalysis of these ryptosystems on the assumption that plaintext

belongs to a partiular lass. This new ryptanalysis may sueed for

any blok ipher and thus is likely to question the seurity of those

ryptosystems for enryption. We then apply this ryptanalysis to

the 128-bit key AES. Our results have been experimentallly on�rmed

with 100 e�etive ryptanalysis. Our attak enables to reover two

information bits of the seret key with only 2

31

iphertext bloks and

a omplexity of O(2

31

) with a suess probability of 0.68.

Keywords: AES, blok ipher, ryptanalysis, oding theory, repetition

odes.

1 Introdution

In Otober 2000, the NIST has seleted Rijnda�el as the Advaned Enryption

Standard (AES) to replae the DES and extent it to a massive world-wide

usage.

The growing dependene of the ommerial ommunity on AES -for its

data seurity funtions- make it desirable to keep under review the strength
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of this ryptographi standard. Although several interesting properties have

been pointed out [7, 9, 13℄ and ryptanalysis proposed [4℄, none of them is

thought to make it less seure than expeted by its key size.

The evaluation of the AES, as well as for the other �nalists [1℄, has been

essentially based on the the former ryptanalysis or their variant forms:

di�erential ryptanalysis [2℄, linear ryptanalysis [11℄, ... and no signi�ative

results were likely to question their strength. Finally we must admit that

seurity onsideration as a key point in the �nal hoie was not so relevant as

we ould have imagined sine all of the �nalists o�er a suitable high seurity.

To quote Adi Shamir [15℄, \any new real life ryptanalysis whih may appear

in the future will equally hallenge the �nalists".

On the other hand, the future seems to favour blok enryption, at least

on the trade level. Few stream iphers are known or proposed whereas

meanwhile many blok systems are proposed (17 blok ipher systems for

only 5 stream iphers have been suggested for the New European Shemes

for Signature, Integrity and Enryption (NESSIE) projet [14℄). As for the

AES, only blok iphers were requested. Though we an strongly aÆrm that

a very onsequent theory for stream enryption exists, the blok enryption

theory does not provide more than a few ryptanalyti tehniques and results

on the onstituent primitives at the round level. A rigorous and global

desription of formalization of a whole system, inluding a ombinatorial

approah in partiular, is still to ome. In other words, who an aÆrm that

hiding a trap, for example, is totally impossible without being deteted (this

has still been more or less an open question for the DES; on the ontrary,

the answer is easy for the stream enryption); and what about the existene

of partiular global mask values on input and output whih ould drastially

improve linear ryptanalysis tehniques. The authors of AES aknowledge

this seond fat [5, Chap 7 and paragraph 2 of page 124℄, whih moreover is

also relevant for any ryptosystem.

Atually, most of ryptanalysis apaity depends on the ability of de-

teting these high orrelations if there are some. In real-life ryptanalysis it

is not so muh the maximum average orrelation potential that is relevant

but the maximum orrelation potential orresponding to the given key un-

der attak [5℄. Our experiene in ryptanalysis shows us that very often it

is more interesting and eÆient to onsider this potential when onsidering

a partiular lass of plaintext. In ase of blok iphers, this approah is par-

tiularly eÆient sine plaintext represents an ative part in the prodution

of the blok ipher. This fat has reently been pointed out by the statisti-

al analysis of the Algebrai Normal Form of Boolean funtions modeling a

blok ipher [7℄.
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In this paper we intend to introdue a new representation of blok i-

pher ryptanalysis related to this approah. On the assumption that a given

subset of plaintext spae has been enrypted and that onsequently, parti-

ular, higher orrelation properties exist between only the resulting subset of

iphertexts and any key of the key spae, we design an attak using repeti-

tion odes on iphertext bloks only. This ryptanalysis is alled Plaintext-

dependent Repetition Codes Cryptanalysis (PDRC attak for short). It dif-

fers from a lassial hosen-plaintext attak as we do not have to hoose or

even know any of the plaintext bloks. Moreover, a PDRC attak uses only

iphertext bloks. Thus the diÆulty is to �nd suitable properties that leaks

information about the key from the iphertext. By using the ombinatorial

and statistial pakage CoHS (Combinatoris over Huge Sets) that we de-

velopped for the study of huge omplex and disrete sets, we have managed

to �nd suh properties for several blok iphers and use them in a modi�ed

version of linear ryptanalysis. This paper presents the AES ryptanalysis.

With the knowledge of only 2

31

iphertext bloks, we reovered two infor-

mation bits on the key with a work fator of 2

31

iphertext-bloks readings

and a probability of suess of 0.68. Those results have been on�rmed by

100 e�etive ryptanalysis we implemented. An additionnal set of 564 in-

formation bits is urrently tested and should very likely allow to reover the

omplete key without requiring an exhaustive searh step.

This paper is organized as follows. Setion 2 presents theoretial pre-

liminaries and notation. Then Setion 3 details the formal model of the

new ryptanalysis based on repetition odes. In partiular we give a om-

binatorial resistane riterion against PDRC attak. Setion 4 illustrates

this approah by onsidering the AES. We give detailed experimental rypt-

analysis results obtained with 100 ryptanalysis. Setion 5 onludes while

presenting open problems and future studies.

It is worth notiing and important to insist on the fat that this new AES

ryptanalysis does not rely on a weakness or trap whih ould be delared as

spei� to it. We just use a \natural weakness" of blok iphers as explained

in Setion 3.1. Other blok iphers urrently studied present the same weak-

ness and are likely to suumb to this ryptanalysis. In fat, the suitability

and the seurity of blok iphers for enryption must be questionned.
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2 Bakground Theory and Notation

2.1 Repetition Codes

Let us onsider a Binary Symmetri Channel (BSC) of parameter p used to

transmit messages over a binary alphabet. Its transition probability matrix

is the square matrix of order 2 whose oeÆients are given by a

i;j

= q

whenever i 6= j and a

i;j

= q = 1� p otherwise.

In other words, if an emitter sends bit b

t

then

^

b

t

= b

t

� e

t

will be

e�etively reeived with probability p (hannel error probability). To reover

from transmission errors one uses error-orreting odes and in partiular

linear odes. A binary linear ode [n; k; d℄ is a vetor subspae of F

n

2

, of

dimension k. Its minimal distane d is the minimum Hamming weight of

all non zero odewords (that is to say the n-bit vetors). In other words

d = min

x2F

n

2

fwt(x)g where wt(x) denotes the number of non zero positions

in x = (x

1

; : : : ; x

n

). Then a well-known result [10℄ de�nes the number of

errors on a odeword that an be orreted by a ode of minimal distane d

as

d�1

2

.

A n-repetition ode, on a set of two symbols, is a [n; 1; n℄ linear ode

and onsists of two odewords, eah one of them is made up of n idential

symbols. Whenever q > p, maximum likelihood deoding (MLD) amounts

to �nd out in the reeived vetor whih symbol is repeated most. The vetor

will be deoded as 0 if its Hamming distane to null vetor is less than its

distane to vetor (1; 1; 1; : : : ; 1), otherwise it is deoded as 1. Thus MLD

redues to majority deoding.

Example 1 Let us onsider the message 01100 and a 3-repetition ode.

Then the sequene 000 111

111 000 000 is transmitted. The sequene 010111101110100 is reeived

and deoded as 01110. There is one residual error.

These odes are the most easily deodable among odes ensuring a high

protetion. Moreover, repetition odes are the most eÆient ones when

dealing with high noise probability p [12℄.

Proposition 1 [12℄ Let n = 2s+1. Then the n repetition ode is orreting

at most s errors and is a perfet ode. Its bit error probability (residual

deoding error) is given by

P

err

=

n

X

i=s+1

�

n

i

�

p

i

� q

n�i

: (1)
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The term perfet means that every words in the \ambient" spae F

n

2

is

deodable for maximum likelihood as in a perfet blok ode. Finally the

probability of suessful deoding is given by

P

su

= 1� P

err

It is worth notiing that if p <

1

2

the P

err;2s+1

tends towards 0 as s!1.

2.2 Blok Ciphers and Linear Cryptanalysis

A blok ipher working on m-bit plaintext bloks P

i

with a n-bit seret

key K ((m;n)-blok ipher for short) is a mapping from F

m

2

� F

n

2

to F

m

2

.

Eah time a given key K is hosen, the resulting mapping restrition is a

permutation over F

m

2

. A blok ipher is thus a set of 2

n

permutations over

F

m

2

. Note that it represents a very small subset of all these permutations

((2

m

)! in total).

Linear ryptanalysis [11℄ of blok iphers is a known plaintext attak in

whih a very large number of plaintext-iphertext pairs are used to determine

the value of a subset of key bits, thus greatly reduing the exhaustive searh

part.

A ondition for applying linear ryptanalysis to suh a blok sheme is to

�nd \e�etive", probabilisti linear expressions between any plaintext blok

P

i

, any iphertext blok C

i

and any key K of the form:

< P

i

; u > � < C

i

; w >

p

�

=

< K; v > (2)

where < :; : > denotes the usual salar produt over F

m

2

. If this equation

holds with a probability p 6=

1

2

then by heking the left-hand side of Equa-

tion (2) for a large number N of plaintext-iphertext pairs, the right-hand

side of this equation may be guessed by a simple maximum likelihood deod-

ing. A single information bit about the key is obtained. This ryptanalysis

is e�etive if the deviation jp�

1

2

j is large enough. In [11℄, it is shown that

the probability of suessful guessing is very small as soon as N > jp�

1

2

j

�2

.

Generally the linear approximation desribed by Equation (2) is obtained

by \haining" single-round linear approximations obtained by onsidering

statistial biases in the onstituent primitives. This implies that other, pos-

sibly higher orrelations that are depending on the global struture of the

systems are out of analysis apabilities [5, Chap 7 and paragraph 2 of page

124℄.
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3 Repetition Codes Cryptanalysis of Blok Ciphers

3.1 Blok Ciphers and Repetition Codes

Let us onsider a given property I and let us denote P

E

[I℄ the probability

of I to be satis�ed on set E . Then a blok ipher an be broken if we have,

for some I, P

F

m+n

2

[I℄ 6=

1

2

.

Eah keyK in the key spae K = F

n

2

selets a orresponding permutation

over F

m

2

. Thus K may be reover if P

F

m

2

[I

K

℄ 6=

1

2

where I

K

denotes the

property I related to the key K. Then we may dispose of an attak if we

an exhibit suh a property veri�ed for any K 2 K (denoted I

K

). For linear

ryptanalysis, I

K

is a partiular linear probabilisti equation.

Let us now onsider the plaintext spae P = F

m

2

and a partition (P

i

)

i�2

k

of P for some k 2 N. Without loss of generality we suppose that jP

i

j =

2

m�k

for all i. Now suppose there exists (possibly many) P

i

suh that

I

P

i

[I

K

℄ = p

i

6=

1

2

. Sine the enryption key K 2 K remains the same for all

the plaintext bloks, we may ompare the enryption proess as a Binary

Symmetri Channel (BSC) with parameter p

i

where the noise is produed

by the plaintext bloks from P

i

(see Figure 1). The BSC is diretly and

losely determined by P

i

. The noisy version



I

K

of I

K

is a (possibly omplex)

-?I

K



I

K

P

Figure 1: Blok Cipher and Binary Symmetri Channel

funtion f(C) of iphertext bloks C. In other words enrypting N plaintext

bloks P 2 P

i

may be equivalently de�ned as transmitting I

K

by means of a

N repetition ode through a BSC of parameter p

i

. From Figure 1, it means

that over C

i

we have P [I

K

=



I

K

℄ = 1� p

i

.

The aim of the designer is to obtain a set of permutations over C suh

that no obvious properties I leaks information about the key. But the

situation is likely to be very di�erent when onsidering a restrition to a

subset C

i

 C. If we have

P

C

[I℄ =

2

k

X

i=0

P

C

i

[I℄ � P [C

i

℄ =

1

2

6



we however may have many P

C

i

[I℄ di�erent from

1

2

(it suÆes that

P

i

�

i

=

P

i

(p

i

�

1

2

) = 0). This fat seems to be partly explained by the fat that

the atual number of permutations over C e�etively represented by a blok

ipher is extraordinary negligible ompared of the total number of permu-

tations over the same plaintext spae.

3.2 Desription of the PDRC Attak

With the setting de�ned in the previous setion, we now an desribe the

plaintext-dependent repetition ode ryptanalysis, very simply. Note, one

again, that loal independane from the plaintext (due to the restrition to

a partiular subset C

i

 C) allows us to design a iphertext only attak.

We �rst present Algorithm A.1 whih uses only one repetition ode.

Input: N (N odd) iphertext bloks C

j

enryted by key K from plaintext

P

j

2 C

i

(1 � j � N) and a probabilisti information I

K

suh that I

K

p

i

�

=

f(C

j

) for some g and for all j.

Output: Exat value I(K) for the atual key.

1. Initialize ounter t 0.

2. For eah of the N iphertext bloks C

j

(a) Compute f(C

i

).

(b) If f(C

i

) = 1 then t++.

3. end for

4. If t �

N+1

2

then I(K) = 1 else I(K) = 0.

Complexity of algorithm A.1 is easy to evaluate. It performs only N

evaluations of f . Thus omplexity is O(N). Sine N is the length of the

repetition ode, aording to Setion 2.1, it depends only on p

i

and p

su

,

the probability of suessful guessing for I(K).

To the knowledge of the author there does not exist a general formula

for N diretly from parameters p

i

and p

su

. We an only tabulate results

for �xed values of them. It is a well-known fat that for a �xed p

i

, p

su

inreases with N .

Example 2 Let us onsider p

i

= 0:49999. Then p

su

= 0:501784 for

N = 49999 while p

su

= 0:5025 for N = 99999.
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In order to obtain a as high as possible probability of suess, we designed

a seond algorithm A.2 whih uses onatenated repetition odes. The on-

atenation odes have been in introdued by Forney in 1966 [8℄ and general-

ized by Zinov'ev in 1976 [16℄. The priniple is to use two odes as depited in

Figure 2. The ombination of inner enoder, hannel and outer deoder an

OUTER
ENCODER

INNER
ENCODER CHANNEL DECODER

INNER
DECODER
OUTER

SUPERCHANNEL

Figure 2: A Conatenated Code

be thought of as forming a new hannel (alled a superhannel). The aim is

to improve the orreting apaity of the inner ode by use of a seond ode.

When transmitting over a very noisy hannel, repetition odes are suitable

outer odes in lassial onatenated odes.

In our ryptanalyti ase, the superhannel is a BSC with parameter

p

0

= 1 � P

su

produed by the inner deoding residual error. We then

iterate the deoding proess on this superhannel with an outer repetition

ode. Here is the algorithm A.2 whose omplexity is in O(N

1

�N

2

):

Input: N

1

� N

2

(N

1

; N

2

odd) iphertext bloks C

j

enryted by key K from

plaintext P

j

2 C

i

(1 � j � N) and a probabilisti information I

K

suh that

I

K

p

i

�

=

f(C

j

) for some g and for all j.

Output: Exat value I(K) for the atual key.

1. Initialize ounter t1 0.

2. For 1 � k � N

1

(a) Initialize ounter t2 0.

(b) For eah of the N

2

iphertext bloks C

j

(k-th set)

i. Compute f(C

i

).

ii. If f(C

i

) = 1 then t2 + +.

() end for

(d) if t2 �

N

2

+1

2

then I(K) = 1 else I(K) = 0.

3. If I(K) = 1 then t1 + +.
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4. end for

5. If t1 �

N

1

+1

2

then I(K) = 1 else I(K) = 0.

While generally onatenated odes yield a better probability of suess,

it is not the ase when the outer and inner odes are both repetition odes.

Proposition 2 Let N an odd number of iphertext bloks. Algorithm A.1

has a higher probability of suess than Algorithm A.2.

The proof is given in Appendix C. However the onatenated ode approah

allow us to ompute a lower bound of A.1 suess probability. The general

Formula (1) annot be omputed diretly as soon as N is too large.

3.3 Resistane Criterion against PDRC Attak

PDRC attak is possible if and only if there exists a subset C

i

� C suh that

P

C

i

[I

K

℄ 6=

1

2

for some property I. This allow us to formulate the following

resistane riterion against PDRC Attak.

Proposition 3 Let S be a (m;n) blok ipher and let us onsider a property

I about the key bits relatively to the iphertext bits. S is immune against

the PDRC attak relatively to property I if and only if 8j 2 N the partition

(C

1

; C

2

; : : : ; C

j

) of C is suh that

8k � j; P

C

k

[I℄ =

1

2

:

The ryptanalyst's work is to �nd a exploitable property I and a partiular

subset of \meaningful" plaintext bloks in order to ondut PDRC attak on

S. On ryptographer's side things may be far more diÆult. This diÆulty

is summarized with the four open problems here following.

3.3.1 Open Problems

1. PDRC immunity problem .- Given a property I, is it possible to design

a system S whih is PDRC-immune relatively to I ?

2. Weak trap problem .- Given C

i

� C, is it possible to design a system S

suh that P

C

i

[I℄ 6=

1

2

for some interesting I (the trap) ?

3. Strong trap problem .- Given I a property, is it possible to design a

system S suh that for all C

i

� C we have P

C

i

[I℄ 6=

1

2

?
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4. PDRC feasibility .- Given S a system and C

i

a plaintext subset, is it

possible to �nd some property I suitable for PDRC attak of S.

Problems 2 and 3 mean that it would be possible to hide a trap I in the

system S.

Conjeture 1 There always exists a property I for whih any blok ipher

system S is not PDRC-immune.

If true, this means that blok iphers are inseure systems.

Problem 4 is learly the most important to solve, from ryptanalyst's

point of view. In order to try to solve it, we used the ombinatorial, sta-

tistial pakage CoHS

1

(Combinatoris over Huge Sets) that we developped

to �nd strutural properties in omplex sets of huge size. It is a non publi

pakage up to now being still under development. With CoHS, a (m;n)

blok ipher is seen as a family of 2

m+n

m-bit bloks where eah of the

blok is repeated 2

n

times. For PDRC attak, it aims at �nding partiular

strutures between bloks for given subsets. Then identi�ed strutures may

be eventually turned into statistial properties. The main advantage of this

pakage is that it does not require to build the whole family but only a

subset of a reasonable size. CoHS's theoretial aspets should be published

in the near future as soon as its development is frozen and patenting proess

is ompleted.

4 The AES Cryptanalysis

We will not reall the struture of the AES sine we do not exploit it.

Interested reader will �nd a omplete desription as well as tehnial details

in [5℄. One again, we point out that the AES is not weaker than other blok

iphers for PDRC attak. Other systems are under urrent study and �rst

results have exhibited the same weaknesses. We just hoose the AES as a

\fashion" blok ipher to illustrate PDRC attak. The bit notation in AES

enryption are given in Appendix A.

4.1 The Repetitition Codes for the AES

The main problem is then to �nd a suitable property I

K

presenting a bias

for a subset C

i

� C of partiular interest. The idea has been to tune CoHS

1

In fat, CoHS is a subpakage of the ryptanalyti pakage VAUBAN, that has been

developped for operational ryptanalysis purposes of symmetri ryptosystems and hash

funtions. VAUBAN's status is up to now not �xed yet.
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in order to work on a linear ryptanalysis basis. In this ase, we need to

have an approximation of the form:

< P; u > � < C;w >

q

�

=

< K; v >

where u; v and w are masks used for bit seletion. If we manage to �nd a

subset C

i

for whih there exists v

0

; w

0

2 F

n

2

� F

m

2

suh that

< C;w

0

>

q

0

�

=

< K; v

0

> (3)

with q

0

6=

1

2

then we get a property I

K

suitable to be used as a repetition

ode.

Let (x

8

; x

7

; : : : ; x

1

) denote an otet. We hoose to work with plaintext in

English language in asii oding that is to say when most signi�ant bit x

8

of eah 8-bit harater is zero or when bit x

5

is zero. Thus we onsidered the

two following plaintext subsets (all mask values are written in hexadeimal;

the seond set orresponds to a partiular enoding of the English language):

C

i

= fC

j

&7F7F7F : : : 7F7F7F7F7F7F7F7F7F jC

j

2 F

128

2

g

C

i

= fC

j

&EFEFEF : : : EFEFEFEFEFEFEFEFEF jC

j

2 F

128

2

g

Then we tried to �nd pairs of mask values (v

0

; w

0

) yielding equation of the

form (3). CoHS pakage has been run during four months on four ATHLON

XP2000+ PC with 512 Mo RAM and 80 Go HD. We tuned the parameter in

order to obtain values w

0

of weight as low as possible (mainly to redue the

omputing time and produe a few �rst results). Up to now two equations

for mask 0xEFEFEFEF : : : have been produed and on�rmed as suitable

with 100 ryptanalysis (in fat 27 equations have been produed eah of

them having a ryptanalysis probability of suess ranging from 0.68 to

0.88. Only the mentionned one produed a joint probability large enough)

but CoHS is still running and an additionnal set of 564 equations has been

produed (mask values w

0

have higher weight; both for masks 7F7F7F : : :
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and 0xEFEFEFE : : :) and are urrently tested by 100 more ryptanalysis:

1� 

71

= k

2

� k

3

� k

4

� k

6

� k

7

� k

8

� k

9

� k

10

� k

12

� k

13

�k

15

� k

17

� k

20

� k

24

� k

25

� k

30

� k

33

� k

36

� k

43

�k

44

� k

45

� k

47

� k

48

� k

49

� k

50

� k

53

� k

54

� k

56

�k

60

� k

63

� k

66

� k

67

� k

68

� k

71

� k

72

� k

73

� k

74

�k

76

� k

78

� k

80

� k

81

� k

82

� k

83

� k

86

� k

87

� k

96

�k

97

� k

98

� k

99

� k

100

� k

101

� k

103

� k

104

� k

105

� k

106

�k

107

� k

109

� k

111

� k

112

� k

116

� k

117

� k

118

� k

122

� k

123

�k

126

whih holds with probability p = 1� 0:499971 = 0:500029 and
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= k

0

� k

4

� k

11

� k

13

� k

14

� k

16

� k

17

� k

18

� k

19

� k

20

�k

21

� k

23

� k

24

� k

25

� k

27

� k

31

� k

32

� k

33

� k

34

�k

35

� k

37

� k

38

� k

39

� k

40

� k

46

� k

47

� k

49

� k

50

�k

51

� k

53

� k

54

� k

55

� k

56

� k

58

� k

61

� k

63

� k

66

�k

67

� k

68

� k

69

� k

70

� k

71

� k

72

� k

74

� k

75

� k

81

�k

82

� k

83

� k

84

� k

85

� k

86

� k

87

� k

88

� k

89

� k

100

�k

103

� k

106

� k

109

� k

110

� k

111

� k

113

� k

115

� k

117

� k

119

�k

121

� k

123

whih holds with probability p = 1� 0:499972 = 0:500028.

As CoHS does not provide the exat probability of the resulting equation

but only potential weak assoiate strutures, we apply statistial tests to

evaluate it, and to on�rm CoHS hypothesis. Detailed statistial testing

protool is given in Appendix B. However it is important to keep in mind

that equations have been �rst deterministially produed by CoHS) and only

then statistially tested before implementing the �nal ryptanalysis. Only

a subset of equations yielding the best joint probability has been kept but

all equations produed by CoHS have presented e�etively and individually

high ryptanalysis probability of suess (between 0.68 and 0.88). In order

to be preise, we did not test equations produed by CoHS and keep only

the best individual ones.

Now it is important to explain how equations of the form of Equation

(3) may work. On the whole iphertext spae these equations are normally

permutations and they hold with exat probability

1

2

(sine they are lin-

ear equations) when the onsidered blok ipher is well designed (whih is

12



the ase for most of them). This is veri�ed for any key and thus for any

permutation.

But at loal level, that is to say when onsidering iphertext bloks

produed from a plaintext subset, this equation does not generally hold

with exat probability

1

2

. This fat an be explained as follows. Any (m;n)-

blok ipher may be desribed as a Boolean funtion f

j

over F

m+n

2

relatively

to eah of its output bits j; 0 � j < m. Let now onsider a given partition

(C

i

)

1�i�2

k

of the whole plaintext spae F

m

2

. We suppose that any C

i

ontains

2

n�k

elements. On that whole spae we have

P [< K; v >= f

j

(K)℄ =

1

2

thus for any v 2 F

n

2

and any j. But sine we have

P [< K; v >= f

j

(K)℄ =

X

i

1

2

k

� P [f

j;C

i

(K) =< K; v >℄

where f

j;C

i

is the restrition of f

j

on C

i

, we may very likely have a few C

i

, if

not all, suh that P [f

j;C

i

(K) =< K; v >℄ 6=

1

2

. This fat has been impliitly

akowledged by the AES designers [5, Chap 7 and paragraph 2 of page 124℄.

A toy permutation is presented as an example in Appendix D to illustrate

this loal e�et.

From a design point of view, this implies that haining blok ipher prim-

itives (in Feistel iphers or SP-networks) will likely result in unontrollable,

unsuspeted strutural biases in the whole struture of the system.

4.2 Simulation Results

From these probability and Formula (1) we obtain the suitable repetition

parameter N and hene the number of required iphertext bloks. The

following parameter have been taken for our attak using Algorithm A.1 :

N = 2500100001

�

=

2

31

P

su

� 0:7875:

The attak desribed in Algorithm A.1 has been implemented for 100 di�er-

ent, randomly hosen keys. The plaintext has been randomly generated too

and bit seleted aording to mask value orresponding to English language

inAsii oding. Eah experiment took 7 hours on four ATHLON XP 2000+

PC. Most of the time has been spent for plaintext generation.

The experimental probability of suess over the 100 ryptanalysis for

eah of the two equations is 0.72 (while the 25 remaining equations pro-

vides high probability of suess too). This is slightly lower that expeted.

13



This probably omes from the di�erene between the empirial and exat

approximation probabilites for the equations.

But the most notieable result is that the atual probability of suess for

the two equations to hold is 0.68 (joint probability). On the assumption that

these equations are independent we should observe a joint suess probability

of 0.5184 instead. This means that the two equations are not independant

at all and somehow existene of strutural biases is on�rmed. Other sets

of suh equations o�ering suh a high joint bias are under testing.

5 Future Work and Conlusion

In this paper we have presented a new ryptanalysis of blok ipher by

means of a N repetition ode where N is preisely the number of iphertext

bloks we need. We experimentally on�rmed the expeted results with 100

e�etive ryptanalysis. The attak managed to reover two information

bits with only 2

31

iphertext blok and suess probability of 0.68.

The searh for other equations, in partiular involving several iphertext

bits, is under way and will very likely allow to �nd additional information

bits on the seret key with the same omplexity (in other word the number of

iphertext bloks). An additionnal set of 564 information bits will very likely

suppress the remaining exhaustive searh step. First results are exellent

and omplete equations will be published as soon as 100 more omplete,

e�etive ryptanalysis are ompleted.

In parallel, this attak is urrently applied to other blok iphers, in

partiular Serpent, Two�sh and DFC. The �rst results seem to be very

promising. Other blok iphers may likely suumb to this attak as well.

At last, a slightly modi�ed version of CoHS should allow to greatly

redue the number N of iphertext bloks we need for PDRC-attak and

thus provide a far more operationnal extent while inreasing the suess

probability.

The results presented in this paper should likely ast a shadow on blok

iphers in the future and hallenge their suitability for data enryption and

more generally for ryptgraphi use.
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A Detailed Notation for the AES

We take the �rst test vetor of the �le eb tbl.txt provided by the AES

designers, in order to preise the notation we use for the attak.

K = 00010203050607080A0B0C0D0F101112

Leftmost key bit is denoted k

0

and rightmost key bit is denoted k

127

.

Hene we have

K = (k

0

; k

1

; : : : ; k

126

; k

127

)

In other words for the test key here given we have k

0

= 0; k

126

= 1; k

127

= 0.

The same bit ordering is onsidered for plaintext and iphertext bloks.

P = 506812A45F08C889B97F5980038B8359

C = D8F532538289EF7D06B506A4FD5BE9C9

The partiular set of plaintext we onsider are then de�ned by

p

i

= 0 80 � i � 127 and i � 0 mod 8

B Optimized Evaluation of Correlation Probabil-

ities

Let be a probabilisti equation f(x) = b whih holds with unknown proba-

bility p. We only know that p 6=

1

2

. Our aim is to guess an aurate enough

value p

0

of p. How many random values x must be taken in order to om-

pute p

0

suh that

p

0

p

is as lose as possible to 1. Note that onsidering the

ratio rather than the di�erene between p

0

and p is more signi�ant.
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Let us now onsider the Bernouilli random variable X

i

of parameter p

orresponding to the equation evaluation result when taking value x

i

:

X

i

=

�

1 if f(x

i

) = b

0 otherwise

Let us note S

N

=

P

N

i=1

X

i

. It is a known result that S

N

has a Gaussian

distribution N (N � p;

p

N � p � q) with q = 1 � p. Let us now note



S

N

=

S

N

�

1

N �p

. Its mena value is given by:

E[



S

N

℄ = E[S

N

�

1

N � p

℄ =

1

N � p

�N � p = 1

sine N � p is an unknown but onstant value. In the same way, we have for

the variane:

V [



S

N

℄ =

q

N � p

:

Evaluating p amounts to �nd � and N suh that, for a �xed �,

� = P [1� � �



S

N

� 1 + �℄ is maximal

By using the following equality:

P [1� � �



S

N

� 1 + �℄ = 2 � �

�

0

�

�

q

q

N �p

1

A

� 1

where �

�

(:) denotes the Gaussian umulative density funtion , we obtain

N for �xed � and �.

In order to evaluate the probability p of equations we onsidered, we

�xed � = 10

�4

and � = 0:9999. Then N = 1; 520; 000; 000.

Eah equation has been tested with N di�erent keys on the assump-

tion that plaintext was English in ASCII oding (0xEFEFEF : : : and

0x7F7F : : : lasses). It is important to note that the random generation

of key and plaintext before applying either of the two possible maskin val-

ues has been done by means of a high quality random generator (not that

of the C language whih is very poor). Moreover SHA-1 has been applied

to the random values before in order to prevent unsuspeted biases (debias-

ing tehniques). I hope that other people will reprodue these testing and

on�rmed the results.
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C Proof of Proposition 2

Let us write N = N

1

�N

2

where N

1

and N

2

are odd integers. Sine Algorithm

A.1 uses a [N; 1; N ℄ repetition ode, its orreting apaity is given by

N�1

2

=

(N

1

�N

2

�1

2

.

Suppose now that in AlgorithmA.2, the superhannel's ode is a [N

1

; 1; N

1

℄

repetition ode. It an orret at most

N

1

�1

2

errors. The [N

2

; 1; N

2

℄ outer

repetition ode will then orret at most

N

2

�1

2

. Consequently the maximum

number of errors that an be orreted by the resulting onatenated ode

is

(N

1

�1)(N

2

�1)

4

. It is easy to verify that

(N

1

�N

2

)� 1

2

>

(N

1

� 1)(N

2

� 1)

4

hene the result.

D Toy Permutation with Loal Bias

Let f be the permutation over F

8

2

given by

(215, 100, 200, 204, 233, 050, 085, 196,

071, 141, 122, 160, 093, 131, 243, 234,

162, 183, 036, 155, 004, 062, 035, 205,

040, 102, 033, 027, 255, 055, 214, 156,

075, 163, 134, 126, 249, 074, 197, 228,

072, 090, 206, 235, 017, 022, 049, 169,

227, 089, 016, 005, 117, 060, 248, 230,

217, 068, 138, 096, 194, 170, 136, 010,

112, 238, 184, 189, 176, 042, 225, 212,

084, 058, 175, 244, 150, 168, 219, 236,

101, 208, 123, 037, 164, 110, 158, 201,

078, 114, 057, 048, 070, 142, 106, 043,

232, 026, 032, 252, 239, 098, 191, 094,

059, 149, 039, 187, 203, 190, 019, 013,

133, 045, 061, 247, 023, 034, 020, 052,

118, 209, 146, 193, 222, 018, 001, 152,

046, 041, 091, 148, 115, 025, 135, 077,

254, 147, 224, 161, 009, 213, 223, 250,

231, 251, 127, 166, 063, 179, 081, 130,

139, 028, 120, 151, 241, 086, 111, 000,

088, 153, 172, 182, 159, 105, 178, 047,
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051, 167, 065, 066, 092, 073, 198, 211,

245, 195, 031, 220, 140, 076, 221, 186,

154, 185, 056, 083, 038, 165, 109, 067,

124, 226, 132, 053, 229, 029, 012, 181,

121, 024, 207, 199, 177, 113, 030, 080,

003, 097, 188, 079, 216, 173, 008, 145,

087, 128, 180, 237, 240, 137, 125, 104,

015, 242, 119, 246, 103, 143, 095, 144,

002, 044, 069, 157, 192, 174, 014, 054,

218, 082, 064, 210, 011, 006, 129, 021,

116, 171, 099, 202, 007, 107, 253, 108)

and let us note the input x = (x

7

; x

6

; x

5

; x

4

; x

3

; x

2

; x

1

; x

0

) and the output

f(x) = y = (y

7

; y

6

; y

5

; y

4

; y

3

; y

2

; y

1

; y

0

). Now let us onsider the restrition of

f when (x

7

; x

6

; x

5

; x

4

) = (1; 1; 1; 0). The we have for this partiular subset

of inputs

P [x

0

� x

3

= y

0

℄ =

5

16

6=

1

2

and

P [x

0

� x

3

= y

0

� y

1

℄ =

5

8

6=

1

2

:
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