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Abstra
t

This paper presents a new \operational" 
ryptanalysis of blo
k 
i-

phers based on the use of a well-known error-
orre
ting 
ode: the rep-

etition 
odes. We demonstrate how to des
ribe a blo
k 
ipher with

su
h a 
ode before explaining how to design a new 
iphertext only


ryptanalysis of these 
ryptosystems on the assumption that plaintext

belongs to a parti
ular 
lass. This new 
ryptanalysis may su

eed for

any blo
k 
ipher and thus is likely to question the se
urity of those


ryptosystems for en
ryption. We then apply this 
ryptanalysis to

the 128-bit key AES. Our results have been experimentallly 
on�rmed

with 100 e�e
tive 
ryptanalysis. Our atta
k enables to re
over two

information bits of the se
ret key with only 2

31


iphertext blo
ks and

a 
omplexity of O(2

31

) with a su

ess probability of 0.68.

Keywords: AES, blo
k 
ipher, 
ryptanalysis, 
oding theory, repetition


odes.

1 Introdu
tion

In O
tober 2000, the NIST has sele
ted Rijnda�el as the Advan
ed En
ryption

Standard (AES) to repla
e the DES and extent it to a massive world-wide

usage.

The growing dependen
e of the 
ommer
ial 
ommunity on AES -for its

data se
urity fun
tions- make it desirable to keep under review the strength
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of this 
ryptographi
 standard. Although several interesting properties have

been pointed out [7, 9, 13℄ and 
ryptanalysis proposed [4℄, none of them is

thought to make it less se
ure than expe
ted by its key size.

The evaluation of the AES, as well as for the other �nalists [1℄, has been

essentially based on the the former 
ryptanalysis or their variant forms:

di�erential 
ryptanalysis [2℄, linear 
ryptanalysis [11℄, ... and no signi�
ative

results were likely to question their strength. Finally we must admit that

se
urity 
onsideration as a key point in the �nal 
hoi
e was not so relevant as

we 
ould have imagined sin
e all of the �nalists o�er a suitable high se
urity.

To quote Adi Shamir [15℄, \any new real life 
ryptanalysis whi
h may appear

in the future will equally 
hallenge the �nalists".

On the other hand, the future seems to favour blo
k en
ryption, at least

on the trade level. Few stream 
iphers are known or proposed whereas

meanwhile many blo
k systems are proposed (17 blo
k 
ipher systems for

only 5 stream 
iphers have been suggested for the New European S
hemes

for Signature, Integrity and En
ryption (NESSIE) proje
t [14℄). As for the

AES, only blo
k 
iphers were requested. Though we 
an strongly aÆrm that

a very 
onsequent theory for stream en
ryption exists, the blo
k en
ryption

theory does not provide more than a few 
ryptanalyti
 te
hniques and results

on the 
onstituent primitives at the round level. A rigorous and global

des
ription of formalization of a whole system, in
luding a 
ombinatorial

approa
h in parti
ular, is still to 
ome. In other words, who 
an aÆrm that

hiding a trap, for example, is totally impossible without being dete
ted (this

has still been more or less an open question for the DES; on the 
ontrary,

the answer is easy for the stream en
ryption); and what about the existen
e

of parti
ular global mask values on input and output whi
h 
ould drasti
ally

improve linear 
ryptanalysis te
hniques. The authors of AES a
knowledge

this se
ond fa
t [5, Chap 7 and paragraph 2 of page 124℄, whi
h moreover is

also relevant for any 
ryptosystem.

A
tually, most of 
ryptanalysis 
apa
ity depends on the ability of de-

te
ting these high 
orrelations if there are some. In real-life 
ryptanalysis it

is not so mu
h the maximum average 
orrelation potential that is relevant

but the maximum 
orrelation potential 
orresponding to the given key un-

der atta
k [5℄. Our experien
e in 
ryptanalysis shows us that very often it

is more interesting and eÆ
ient to 
onsider this potential when 
onsidering

a parti
ular 
lass of plaintext. In 
ase of blo
k 
iphers, this approa
h is par-

ti
ularly eÆ
ient sin
e plaintext represents an a
tive part in the produ
tion

of the blo
k 
ipher. This fa
t has re
ently been pointed out by the statisti-


al analysis of the Algebrai
 Normal Form of Boolean fun
tions modeling a

blo
k 
ipher [7℄.
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In this paper we intend to introdu
e a new representation of blo
k 
i-

pher 
ryptanalysis related to this approa
h. On the assumption that a given

subset of plaintext spa
e has been en
rypted and that 
onsequently, parti
-

ular, higher 
orrelation properties exist between only the resulting subset of


iphertexts and any key of the key spa
e, we design an atta
k using repeti-

tion 
odes on 
iphertext blo
ks only. This 
ryptanalysis is 
alled Plaintext-

dependent Repetition Codes Cryptanalysis (PDRC atta
k for short). It dif-

fers from a 
lassi
al 
hosen-plaintext atta
k as we do not have to 
hoose or

even know any of the plaintext blo
ks. Moreover, a PDRC atta
k uses only


iphertext blo
ks. Thus the diÆ
ulty is to �nd suitable properties that leaks

information about the key from the 
iphertext. By using the 
ombinatorial

and statisti
al pa
kage CoHS (Combinatori
s over Huge Sets) that we de-

velopped for the study of huge 
omplex and dis
rete sets, we have managed

to �nd su
h properties for several blo
k 
iphers and use them in a modi�ed

version of linear 
ryptanalysis. This paper presents the AES 
ryptanalysis.

With the knowledge of only 2

31


iphertext blo
ks, we re
overed two infor-

mation bits on the key with a work fa
tor of 2

31


iphertext-blo
ks readings

and a probability of su

ess of 0.68. Those results have been 
on�rmed by

100 e�e
tive 
ryptanalysis we implemented. An additionnal set of 564 in-

formation bits is 
urrently tested and should very likely allow to re
over the


omplete key without requiring an exhaustive sear
h step.

This paper is organized as follows. Se
tion 2 presents theoreti
al pre-

liminaries and notation. Then Se
tion 3 details the formal model of the

new 
ryptanalysis based on repetition 
odes. In parti
ular we give a 
om-

binatorial resistan
e 
riterion against PDRC atta
k. Se
tion 4 illustrates

this approa
h by 
onsidering the AES. We give detailed experimental 
rypt-

analysis results obtained with 100 
ryptanalysis. Se
tion 5 
on
ludes while

presenting open problems and future studies.

It is worth noti
ing and important to insist on the fa
t that this new AES


ryptanalysis does not rely on a weakness or trap whi
h 
ould be de
lared as

spe
i�
 to it. We just use a \natural weakness" of blo
k 
iphers as explained

in Se
tion 3.1. Other blo
k 
iphers 
urrently studied present the same weak-

ness and are likely to su

umb to this 
ryptanalysis. In fa
t, the suitability

and the se
urity of blo
k 
iphers for en
ryption must be questionned.
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2 Ba
kground Theory and Notation

2.1 Repetition Codes

Let us 
onsider a Binary Symmetri
 Channel (BSC) of parameter p used to

transmit messages over a binary alphabet. Its transition probability matrix

is the square matrix of order 2 whose 
oeÆ
ients are given by a

i;j

= q

whenever i 6= j and a

i;j

= q = 1� p otherwise.

In other words, if an emitter sends bit b

t

then

^

b

t

= b

t

� e

t

will be

e�e
tively re
eived with probability p (
hannel error probability). To re
over

from transmission errors one uses error-
orre
ting 
odes and in parti
ular

linear 
odes. A binary linear 
ode [n; k; d℄ is a ve
tor subspa
e of F

n

2

, of

dimension k. Its minimal distan
e d is the minimum Hamming weight of

all non zero 
odewords (that is to say the n-bit ve
tors). In other words

d = min

x2F

n

2

fwt(x)g where wt(x) denotes the number of non zero positions

in x = (x

1

; : : : ; x

n

). Then a well-known result [10℄ de�nes the number of

errors on a 
odeword that 
an be 
orre
ted by a 
ode of minimal distan
e d

as

d�1

2

.

A n-repetition 
ode, on a set of two symbols, is a [n; 1; n℄ linear 
ode

and 
onsists of two 
odewords, ea
h one of them is made up of n identi
al

symbols. Whenever q > p, maximum likelihood de
oding (MLD) amounts

to �nd out in the re
eived ve
tor whi
h symbol is repeated most. The ve
tor

will be de
oded as 0 if its Hamming distan
e to null ve
tor is less than its

distan
e to ve
tor (1; 1; 1; : : : ; 1), otherwise it is de
oded as 1. Thus MLD

redu
es to majority de
oding.

Example 1 Let us 
onsider the message 01100 and a 3-repetition 
ode.

Then the sequen
e 000 111

111 000 000 is transmitted. The sequen
e 010111101110100 is re
eived

and de
oded as 01110. There is one residual error.

These 
odes are the most easily de
odable among 
odes ensuring a high

prote
tion. Moreover, repetition 
odes are the most eÆ
ient ones when

dealing with high noise probability p [12℄.

Proposition 1 [12℄ Let n = 2s+1. Then the n repetition 
ode is 
orre
ting

at most s errors and is a perfe
t 
ode. Its bit error probability (residual

de
oding error) is given by

P

err

=

n

X

i=s+1

�

n

i

�

p

i

� q

n�i

: (1)
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The term perfe
t means that every words in the \ambient" spa
e F

n

2

is

de
odable for maximum likelihood as in a perfe
t blo
k 
ode. Finally the

probability of su

essful de
oding is given by

P

su



= 1� P

err

It is worth noti
ing that if p <

1

2

the P

err;2s+1

tends towards 0 as s!1.

2.2 Blo
k Ciphers and Linear Cryptanalysis

A blo
k 
ipher working on m-bit plaintext blo
ks P

i

with a n-bit se
ret

key K ((m;n)-blo
k 
ipher for short) is a mapping from F

m

2

� F

n

2

to F

m

2

.

Ea
h time a given key K is 
hosen, the resulting mapping restri
tion is a

permutation over F

m

2

. A blo
k 
ipher is thus a set of 2

n

permutations over

F

m

2

. Note that it represents a very small subset of all these permutations

((2

m

)! in total).

Linear 
ryptanalysis [11℄ of blo
k 
iphers is a known plaintext atta
k in

whi
h a very large number of plaintext-
iphertext pairs are used to determine

the value of a subset of key bits, thus greatly redu
ing the exhaustive sear
h

part.

A 
ondition for applying linear 
ryptanalysis to su
h a blo
k s
heme is to

�nd \e�e
tive", probabilisti
 linear expressions between any plaintext blo
k

P

i

, any 
iphertext blo
k C

i

and any key K of the form:

< P

i

; u > � < C

i

; w >

p

�

=

< K; v > (2)

where < :; : > denotes the usual s
alar produ
t over F

m

2

. If this equation

holds with a probability p 6=

1

2

then by 
he
king the left-hand side of Equa-

tion (2) for a large number N of plaintext-
iphertext pairs, the right-hand

side of this equation may be guessed by a simple maximum likelihood de
od-

ing. A single information bit about the key is obtained. This 
ryptanalysis

is e�e
tive if the deviation jp�

1

2

j is large enough. In [11℄, it is shown that

the probability of su

essful guessing is very small as soon as N > jp�

1

2

j

�2

.

Generally the linear approximation des
ribed by Equation (2) is obtained

by \
haining" single-round linear approximations obtained by 
onsidering

statisti
al biases in the 
onstituent primitives. This implies that other, pos-

sibly higher 
orrelations that are depending on the global stru
ture of the

systems are out of analysis 
apabilities [5, Chap 7 and paragraph 2 of page

124℄.
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3 Repetition Codes Cryptanalysis of Blo
k Ciphers

3.1 Blo
k Ciphers and Repetition Codes

Let us 
onsider a given property I and let us denote P

E

[I℄ the probability

of I to be satis�ed on set E . Then a blo
k 
ipher 
an be broken if we have,

for some I, P

F

m+n

2

[I℄ 6=

1

2

.

Ea
h keyK in the key spa
e K = F

n

2

sele
ts a 
orresponding permutation

over F

m

2

. Thus K may be re
over if P

F

m

2

[I

K

℄ 6=

1

2

where I

K

denotes the

property I related to the key K. Then we may dispose of an atta
k if we


an exhibit su
h a property veri�ed for any K 2 K (denoted I

K

). For linear


ryptanalysis, I

K

is a parti
ular linear probabilisti
 equation.

Let us now 
onsider the plaintext spa
e P = F

m

2

and a partition (P

i

)

i�2

k

of P for some k 2 N. Without loss of generality we suppose that jP

i

j =

2

m�k

for all i. Now suppose there exists (possibly many) P

i

su
h that

I

P

i

[I

K

℄ = p

i

6=

1

2

. Sin
e the en
ryption key K 2 K remains the same for all

the plaintext blo
ks, we may 
ompare the en
ryption pro
ess as a Binary

Symmetri
 Channel (BSC) with parameter p

i

where the noise is produ
ed

by the plaintext blo
ks from P

i

(see Figure 1). The BSC is dire
tly and


losely determined by P

i

. The noisy version




I

K

of I

K

is a (possibly 
omplex)

-?I

K




I

K

P

Figure 1: Blo
k Cipher and Binary Symmetri
 Channel

fun
tion f(C) of 
iphertext blo
ks C. In other words en
rypting N plaintext

blo
ks P 2 P

i

may be equivalently de�ned as transmitting I

K

by means of a

N repetition 
ode through a BSC of parameter p

i

. From Figure 1, it means

that over C

i

we have P [I

K

=




I

K

℄ = 1� p

i

.

The aim of the designer is to obtain a set of permutations over C su
h

that no obvious properties I leaks information about the key. But the

situation is likely to be very di�erent when 
onsidering a restri
tion to a

subset C

i

 C. If we have

P

C

[I℄ =

2

k

X

i=0

P

C

i

[I℄ � P [C

i

℄ =

1

2
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we however may have many P

C

i

[I℄ di�erent from

1

2

(it suÆ
es that

P

i

�

i

=

P

i

(p

i

�

1

2

) = 0). This fa
t seems to be partly explained by the fa
t that

the a
tual number of permutations over C e�e
tively represented by a blo
k


ipher is extraordinary negligible 
ompared of the total number of permu-

tations over the same plaintext spa
e.

3.2 Des
ription of the PDRC Atta
k

With the setting de�ned in the previous se
tion, we now 
an des
ribe the

plaintext-dependent repetition 
ode 
ryptanalysis, very simply. Note, on
e

again, that lo
al independan
e from the plaintext (due to the restri
tion to

a parti
ular subset C

i

 C) allows us to design a 
iphertext only atta
k.

We �rst present Algorithm A.1 whi
h uses only one repetition 
ode.

Input: N (N odd) 
iphertext blo
ks C

j

en
ryted by key K from plaintext

P

j

2 C

i

(1 � j � N) and a probabilisti
 information I

K

su
h that I

K

p

i

�

=

f(C

j

) for some g and for all j.

Output: Exa
t value I(K) for the a
tual key.

1. Initialize 
ounter 
t 0.

2. For ea
h of the N 
iphertext blo
ks C

j

(a) Compute f(C

i

).

(b) If f(C

i

) = 1 then 
t++.

3. end for

4. If 
t �

N+1

2

then I(K) = 1 else I(K) = 0.

Complexity of algorithm A.1 is easy to evaluate. It performs only N

evaluations of f . Thus 
omplexity is O(N). Sin
e N is the length of the

repetition 
ode, a

ording to Se
tion 2.1, it depends only on p

i

and p

su



,

the probability of su

essful guessing for I(K).

To the knowledge of the author there does not exist a general formula

for N dire
tly from parameters p

i

and p

su



. We 
an only tabulate results

for �xed values of them. It is a well-known fa
t that for a �xed p

i

, p

su



in
reases with N .

Example 2 Let us 
onsider p

i

= 0:49999. Then p

su



= 0:501784 for

N = 49999 while p

su



= 0:5025 for N = 99999.
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In order to obtain a as high as possible probability of su

ess, we designed

a se
ond algorithm A.2 whi
h uses 
on
atenated repetition 
odes. The 
on-


atenation 
odes have been in introdu
ed by Forney in 1966 [8℄ and general-

ized by Zinov'ev in 1976 [16℄. The prin
iple is to use two 
odes as depi
ted in

Figure 2. The 
ombination of inner en
oder, 
hannel and outer de
oder 
an

OUTER
ENCODER

INNER
ENCODER CHANNEL DECODER

INNER
DECODER
OUTER

SUPERCHANNEL

Figure 2: A Con
atenated Code

be thought of as forming a new 
hannel (
alled a super
hannel). The aim is

to improve the 
orre
ting 
apa
ity of the inner 
ode by use of a se
ond 
ode.

When transmitting over a very noisy 
hannel, repetition 
odes are suitable

outer 
odes in 
lassi
al 
on
atenated 
odes.

In our 
ryptanalyti
 
ase, the super
hannel is a BSC with parameter

p

0

= 1 � P

su



produ
ed by the inner de
oding residual error. We then

iterate the de
oding pro
ess on this super
hannel with an outer repetition


ode. Here is the algorithm A.2 whose 
omplexity is in O(N

1

�N

2

):

Input: N

1

� N

2

(N

1

; N

2

odd) 
iphertext blo
ks C

j

en
ryted by key K from

plaintext P

j

2 C

i

(1 � j � N) and a probabilisti
 information I

K

su
h that

I

K

p

i

�

=

f(C

j

) for some g and for all j.

Output: Exa
t value I(K) for the a
tual key.

1. Initialize 
ounter 
t1 0.

2. For 1 � k � N

1

(a) Initialize 
ounter 
t2 0.

(b) For ea
h of the N

2


iphertext blo
ks C

j

(k-th set)

i. Compute f(C

i

).

ii. If f(C

i

) = 1 then 
t2 + +.

(
) end for

(d) if 
t2 �

N

2

+1

2

then I(K) = 1 else I(K) = 0.

3. If I(K) = 1 then 
t1 + +.

8



4. end for

5. If 
t1 �

N

1

+1

2

then I(K) = 1 else I(K) = 0.

While generally 
on
atenated 
odes yield a better probability of su

ess,

it is not the 
ase when the outer and inner 
odes are both repetition 
odes.

Proposition 2 Let N an odd number of 
iphertext blo
ks. Algorithm A.1

has a higher probability of su

ess than Algorithm A.2.

The proof is given in Appendix C. However the 
on
atenated 
ode approa
h

allow us to 
ompute a lower bound of A.1 su

ess probability. The general

Formula (1) 
annot be 
omputed dire
tly as soon as N is too large.

3.3 Resistan
e Criterion against PDRC Atta
k

PDRC atta
k is possible if and only if there exists a subset C

i

� C su
h that

P

C

i

[I

K

℄ 6=

1

2

for some property I. This allow us to formulate the following

resistan
e 
riterion against PDRC Atta
k.

Proposition 3 Let S be a (m;n) blo
k 
ipher and let us 
onsider a property

I about the key bits relatively to the 
iphertext bits. S is immune against

the PDRC atta
k relatively to property I if and only if 8j 2 N the partition

(C

1

; C

2

; : : : ; C

j

) of C is su
h that

8k � j; P

C

k

[I℄ =

1

2

:

The 
ryptanalyst's work is to �nd a exploitable property I and a parti
ular

subset of \meaningful" plaintext blo
ks in order to 
ondu
t PDRC atta
k on

S. On 
ryptographer's side things may be far more diÆ
ult. This diÆ
ulty

is summarized with the four open problems here following.

3.3.1 Open Problems

1. PDRC immunity problem .- Given a property I, is it possible to design

a system S whi
h is PDRC-immune relatively to I ?

2. Weak trap problem .- Given C

i

� C, is it possible to design a system S

su
h that P

C

i

[I℄ 6=

1

2

for some interesting I (the trap) ?

3. Strong trap problem .- Given I a property, is it possible to design a

system S su
h that for all C

i

� C we have P

C

i

[I℄ 6=

1

2

?

9



4. PDRC feasibility .- Given S a system and C

i

a plaintext subset, is it

possible to �nd some property I suitable for PDRC atta
k of S.

Problems 2 and 3 mean that it would be possible to hide a trap I in the

system S.

Conje
ture 1 There always exists a property I for whi
h any blo
k 
ipher

system S is not PDRC-immune.

If true, this means that blo
k 
iphers are inse
ure systems.

Problem 4 is 
learly the most important to solve, from 
ryptanalyst's

point of view. In order to try to solve it, we used the 
ombinatorial, sta-

tisti
al pa
kage CoHS

1

(Combinatori
s over Huge Sets) that we developped

to �nd stru
tural properties in 
omplex sets of huge size. It is a non publi


pa
kage up to now being still under development. With CoHS, a (m;n)

blo
k 
ipher is seen as a family of 2

m+n

m-bit blo
ks where ea
h of the

blo
k is repeated 2

n

times. For PDRC atta
k, it aims at �nding parti
ular

stru
tures between blo
ks for given subsets. Then identi�ed stru
tures may

be eventually turned into statisti
al properties. The main advantage of this

pa
kage is that it does not require to build the whole family but only a

subset of a reasonable size. CoHS's theoreti
al aspe
ts should be published

in the near future as soon as its development is frozen and patenting pro
ess

is 
ompleted.

4 The AES Cryptanalysis

We will not re
all the stru
ture of the AES sin
e we do not exploit it.

Interested reader will �nd a 
omplete des
ription as well as te
hni
al details

in [5℄. On
e again, we point out that the AES is not weaker than other blo
k


iphers for PDRC atta
k. Other systems are under 
urrent study and �rst

results have exhibited the same weaknesses. We just 
hoose the AES as a

\fashion" blo
k 
ipher to illustrate PDRC atta
k. The bit notation in AES

en
ryption are given in Appendix A.

4.1 The Repetitition Codes for the AES

The main problem is then to �nd a suitable property I

K

presenting a bias

for a subset C

i

� C of parti
ular interest. The idea has been to tune CoHS

1

In fa
t, CoHS is a subpa
kage of the 
ryptanalyti
 pa
kage VAUBAN, that has been

developped for operational 
ryptanalysis purposes of symmetri
 
ryptosystems and hash

fun
tions. VAUBAN's status is up to now not �xed yet.
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in order to work on a linear 
ryptanalysis basis. In this 
ase, we need to

have an approximation of the form:

< P; u > � < C;w >

q

�

=

< K; v >

where u; v and w are masks used for bit sele
tion. If we manage to �nd a

subset C

i

for whi
h there exists v

0

; w

0

2 F

n

2

� F

m

2

su
h that

< C;w

0

>

q

0

�

=

< K; v

0

> (3)

with q

0

6=

1

2

then we get a property I

K

suitable to be used as a repetition


ode.

Let (x

8

; x

7

; : : : ; x

1

) denote an o
tet. We 
hoose to work with plaintext in

English language in as
ii 
oding that is to say when most signi�
ant bit x

8

of ea
h 8-bit 
hara
ter is zero or when bit x

5

is zero. Thus we 
onsidered the

two following plaintext subsets (all mask values are written in hexade
imal;

the se
ond set 
orresponds to a parti
ular en
oding of the English language):

C

i

= fC

j

&7F7F7F : : : 7F7F7F7F7F7F7F7F7F jC

j

2 F

128

2

g

C

i

= fC

j

&EFEFEF : : : EFEFEFEFEFEFEFEFEF jC

j

2 F

128

2

g

Then we tried to �nd pairs of mask values (v

0

; w

0

) yielding equation of the

form (3). CoHS pa
kage has been run during four months on four ATHLON

XP2000+ PC with 512 Mo RAM and 80 Go HD. We tuned the parameter in

order to obtain values w

0

of weight as low as possible (mainly to redu
e the


omputing time and produ
e a few �rst results). Up to now two equations

for mask 0xEFEFEFEF : : : have been produ
ed and 
on�rmed as suitable

with 100 
ryptanalysis (in fa
t 27 equations have been produ
ed ea
h of

them having a 
ryptanalysis probability of su

ess ranging from 0.68 to

0.88. Only the mentionned one produ
ed a joint probability large enough)

but CoHS is still running and an additionnal set of 564 equations has been

produ
ed (mask values w

0

have higher weight; both for masks 7F7F7F : : :

11



and 0xEFEFEFE : : :) and are 
urrently tested by 100 more 
ryptanalysis:

1� 


71

= k

2

� k

3

� k

4

� k

6

� k

7

� k

8

� k

9

� k

10

� k

12

� k

13

�k

15

� k

17

� k

20

� k

24

� k

25

� k

30

� k

33

� k

36

� k

43

�k

44

� k

45

� k

47

� k

48

� k

49

� k

50

� k

53

� k

54

� k

56

�k

60

� k

63

� k

66

� k

67

� k

68

� k

71

� k

72

� k

73

� k

74

�k

76

� k

78

� k

80

� k

81

� k

82

� k

83

� k

86

� k

87

� k

96

�k

97

� k

98

� k

99

� k

100

� k

101

� k

103

� k

104

� k

105

� k

106

�k

107

� k

109

� k

111

� k

112

� k

116

� k

117

� k

118

� k

122

� k

123

�k

126

whi
h holds with probability p = 1� 0:499971 = 0:500029 and




19

= k

0

� k

4

� k

11

� k

13

� k

14

� k

16

� k

17

� k

18

� k

19

� k

20

�k

21

� k

23

� k

24

� k

25

� k

27

� k

31

� k

32

� k

33

� k

34

�k

35

� k

37

� k

38

� k

39

� k

40

� k

46

� k

47

� k

49

� k

50

�k

51

� k

53

� k

54

� k

55

� k

56

� k

58

� k

61

� k

63

� k

66

�k

67

� k

68

� k

69

� k

70

� k

71

� k

72

� k

74

� k

75

� k

81

�k

82

� k

83

� k

84

� k

85

� k

86

� k

87

� k

88

� k

89

� k

100

�k

103

� k

106

� k

109

� k

110

� k

111

� k

113

� k

115

� k

117

� k

119

�k

121

� k

123

whi
h holds with probability p = 1� 0:499972 = 0:500028.

As CoHS does not provide the exa
t probability of the resulting equation

but only potential weak asso
iate stru
tures, we apply statisti
al tests to

evaluate it, and to 
on�rm CoHS hypothesis. Detailed statisti
al testing

proto
ol is given in Appendix B. However it is important to keep in mind

that equations have been �rst deterministi
ally produ
ed by CoHS) and only

then statisti
ally tested before implementing the �nal 
ryptanalysis. Only

a subset of equations yielding the best joint probability has been kept but

all equations produ
ed by CoHS have presented e�e
tively and individually

high 
ryptanalysis probability of su

ess (between 0.68 and 0.88). In order

to be pre
ise, we did not test equations produ
ed by CoHS and keep only

the best individual ones.

Now it is important to explain how equations of the form of Equation

(3) may work. On the whole 
iphertext spa
e these equations are normally

permutations and they hold with exa
t probability

1

2

(sin
e they are lin-

ear equations) when the 
onsidered blo
k 
ipher is well designed (whi
h is

12



the 
ase for most of them). This is veri�ed for any key and thus for any

permutation.

But at lo
al level, that is to say when 
onsidering 
iphertext blo
ks

produ
ed from a plaintext subset, this equation does not generally hold

with exa
t probability

1

2

. This fa
t 
an be explained as follows. Any (m;n)-

blo
k 
ipher may be des
ribed as a Boolean fun
tion f

j

over F

m+n

2

relatively

to ea
h of its output bits j; 0 � j < m. Let now 
onsider a given partition

(C

i

)

1�i�2

k

of the whole plaintext spa
e F

m

2

. We suppose that any C

i


ontains

2

n�k

elements. On that whole spa
e we have

P [< K; v >= f

j

(K)℄ =

1

2

thus for any v 2 F

n

2

and any j. But sin
e we have

P [< K; v >= f

j

(K)℄ =

X

i

1

2

k

� P [f

j;C

i

(K) =< K; v >℄

where f

j;C

i

is the restri
tion of f

j

on C

i

, we may very likely have a few C

i

, if

not all, su
h that P [f

j;C

i

(K) =< K; v >℄ 6=

1

2

. This fa
t has been impli
itly

a
kowledged by the AES designers [5, Chap 7 and paragraph 2 of page 124℄.

A toy permutation is presented as an example in Appendix D to illustrate

this lo
al e�e
t.

From a design point of view, this implies that 
haining blo
k 
ipher prim-

itives (in Feistel 
iphers or SP-networks) will likely result in un
ontrollable,

unsuspe
ted stru
tural biases in the whole stru
ture of the system.

4.2 Simulation Results

From these probability and Formula (1) we obtain the suitable repetition

parameter N and hen
e the number of required 
iphertext blo
ks. The

following parameter have been taken for our atta
k using Algorithm A.1 :

N = 2500100001

�

=

2

31

P

su



� 0:7875:

The atta
k des
ribed in Algorithm A.1 has been implemented for 100 di�er-

ent, randomly 
hosen keys. The plaintext has been randomly generated too

and bit sele
ted a

ording to mask value 
orresponding to English language

inAs
ii 
oding. Ea
h experiment took 7 hours on four ATHLON XP 2000+

PC. Most of the time has been spent for plaintext generation.

The experimental probability of su

ess over the 100 
ryptanalysis for

ea
h of the two equations is 0.72 (while the 25 remaining equations pro-

vides high probability of su

ess too). This is slightly lower that expe
ted.

13



This probably 
omes from the di�eren
e between the empiri
al and exa
t

approximation probabilites for the equations.

But the most noti
eable result is that the a
tual probability of su

ess for

the two equations to hold is 0.68 (joint probability). On the assumption that

these equations are independent we should observe a joint su

ess probability

of 0.5184 instead. This means that the two equations are not independant

at all and somehow existen
e of stru
tural biases is 
on�rmed. Other sets

of su
h equations o�ering su
h a high joint bias are under testing.

5 Future Work and Con
lusion

In this paper we have presented a new 
ryptanalysis of blo
k 
ipher by

means of a N repetition 
ode where N is pre
isely the number of 
iphertext

blo
ks we need. We experimentally 
on�rmed the expe
ted results with 100

e�e
tive 
ryptanalysis. The atta
k managed to re
over two information

bits with only 2

31


iphertext blo
k and su

ess probability of 0.68.

The sear
h for other equations, in parti
ular involving several 
iphertext

bits, is under way and will very likely allow to �nd additional information

bits on the se
ret key with the same 
omplexity (in other word the number of


iphertext blo
ks). An additionnal set of 564 information bits will very likely

suppress the remaining exhaustive sear
h step. First results are ex
ellent

and 
omplete equations will be published as soon as 100 more 
omplete,

e�e
tive 
ryptanalysis are 
ompleted.

In parallel, this atta
k is 
urrently applied to other blo
k 
iphers, in

parti
ular Serpent, Two�sh and DFC. The �rst results seem to be very

promising. Other blo
k 
iphers may likely su

umb to this atta
k as well.

At last, a slightly modi�ed version of CoHS should allow to greatly

redu
e the number N of 
iphertext blo
ks we need for PDRC-atta
k and

thus provide a far more operationnal extent while in
reasing the su

ess

probability.

The results presented in this paper should likely 
ast a shadow on blo
k


iphers in the future and 
hallenge their suitability for data en
ryption and

more generally for 
ryptgraphi
 use.

A
knowledgement

I would like to thank Don Coppersmith who helped me very mu
h to improve

the te
hni
al quality of the paper. He dete
ted some typos and above all

14



helped me to 
larify some points that e�e
tively needed to be explained. I

am sure that mu
h work still need to be done for that.

Referen
es

[1℄ http://www.nist.gov/aes

[2℄ E. Biham, A. Shamir, Di�erential Cryptanalysis of DES-like Cryptosys-

tems, Journal of Cryptology, Vol. 4, No 1, 1991, pp. 3-72.

[3℄ P. Camion, Majority De
oding of Large Repetition Codes for the R-

ary Symmetri
 Channel. In: Pro
eedings of the AAECC'88 Conferen
e,

Le
ture Notes in Computer S
ien
e 357, pp 458{466, Springer Verlag,

1989.

[4℄ N. Courtois, J. Pieprzyk, Cryptanalysis of Blo
k Ciphers with Overde-

�ned Systems of Equations, Advan
es in Cryptology - ASIACRYPT

2002, Le
ture Notes in Computer S
ien
e 2501, Springer Verlag, 2002.

[5℄ J. Daemen, V. Rijmen, The Design of Rijndael: AES - The Advan
ed

En
ryption Standard, Springer Verlag, 2002.

[6℄ W. Feller, An Introdu
tion to Probability Theory, Wiley, 1966.

[7℄ E.Filiol, A New Statisti
al Testing for Symmetri
 Ciphers and Hash

Fun
tions, in Pro
eedings of ICICS 2002, Le
ture Notes in Computer

S
ien
es 2513, Springer, 2002.

[8℄ G.D. Forney, Con
atenated Codes, M.I.T Press, Cambridge MA, 1966.

[9℄ J. Fuller, W. Millan, On Linear Redundan
y in the AES S-Box, , IACR

preprint 111, 2002. Available at http://eprint.ia
r.org/2002/111.ps.

[10℄ F.J. Ma
Williams, N.J.A. Sloane, The Theory of Error-Corre
ting

Codes, North-Holland, 1977.

[11℄ M. Matsui, Linear Cryptanalysis Method for DES Cipher, in: Advan
es

in Cryptology - Euro
rypt'93, Le
ture Note in 
omputer S
ien
e 765,

pp 386{397, Springer Verlag, 1994.

[12℄ R. M
Elie
e, The Theory of Information and Coding, Addison Wesley,

1977.

15



[13℄ S. Murphy and M.J.B. Robshaw, Essential Algebrai
 Stru
ture within

the AES. In: M. Yung, editor, Advan
es in Cryptology - CRYPTO 2002,

Le
ture Notes in Computer S
ien
e 2442, pp 1{16, Springer Verlag,

2002.

[14℄ http://www.
ryptonessie.org

[15℄ Adi Shamir, Third AES Conferen
e, New York, 2000.

[16℄ V.A. Zinov'ev, Generalized Con
atenated Codes, Problemy Pereda
hi

Informatsii, Vol. 12, No 1, pp. 5-15, 1976.

A Detailed Notation for the AES

We take the �rst test ve
tor of the �le e
b tbl.txt provided by the AES

designers, in order to pre
ise the notation we use for the atta
k.

K = 00010203050607080A0B0C0D0F101112

Leftmost key bit is denoted k

0

and rightmost key bit is denoted k

127

.

Hen
e we have

K = (k

0

; k

1

; : : : ; k

126

; k

127

)

In other words for the test key here given we have k

0

= 0; k

126

= 1; k

127

= 0.

The same bit ordering is 
onsidered for plaintext and 
iphertext blo
ks.

P = 506812A45F08C889B97F5980038B8359

C = D8F532538289EF7D06B506A4FD5BE9C9

The parti
ular set of plaintext we 
onsider are then de�ned by

p

i

= 0 80 � i � 127 and i � 0 mod 8

B Optimized Evaluation of Correlation Probabil-

ities

Let be a probabilisti
 equation f(x) = b whi
h holds with unknown proba-

bility p. We only know that p 6=

1

2

. Our aim is to guess an a

urate enough

value p

0

of p. How many random values x must be taken in order to 
om-

pute p

0

su
h that

p

0

p

is as 
lose as possible to 1. Note that 
onsidering the

ratio rather than the di�eren
e between p

0

and p is more signi�
ant.
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Let us now 
onsider the Bernouilli random variable X

i

of parameter p


orresponding to the equation evaluation result when taking value x

i

:

X

i

=

�

1 if f(x

i

) = b

0 otherwise

Let us note S

N

=

P

N

i=1

X

i

. It is a known result that S

N

has a Gaussian

distribution N (N � p;

p

N � p � q) with q = 1 � p. Let us now note




S

N

=

S

N

�

1

N �p

. Its mena value is given by:

E[




S

N

℄ = E[S

N

�

1

N � p

℄ =

1

N � p

�N � p = 1

sin
e N � p is an unknown but 
onstant value. In the same way, we have for

the varian
e:

V [




S

N

℄ =

q

N � p

:

Evaluating p amounts to �nd � and N su
h that, for a �xed �,

� = P [1� � �




S

N

� 1 + �℄ is maximal

By using the following equality:

P [1� � �




S

N

� 1 + �℄ = 2 � �

�

0

�

�

q

q

N �p

1

A

� 1

where �

�

(:) denotes the Gaussian 
umulative density fun
tion , we obtain

N for �xed � and �.

In order to evaluate the probability p of equations we 
onsidered, we

�xed � = 10

�4

and � = 0:9999. Then N = 1; 520; 000; 000.

Ea
h equation has been tested with N di�erent keys on the assump-

tion that plaintext was English in ASCII 
oding (0xEFEFEF : : : and

0x7F7F : : : 
lasses). It is important to note that the random generation

of key and plaintext before applying either of the two possible maskin val-

ues has been done by means of a high quality random generator (not that

of the C language whi
h is very poor). Moreover SHA-1 has been applied

to the random values before in order to prevent unsuspe
ted biases (debias-

ing te
hniques). I hope that other people will reprodu
e these testing and


on�rmed the results.
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C Proof of Proposition 2

Let us write N = N

1

�N

2

where N

1

and N

2

are odd integers. Sin
e Algorithm

A.1 uses a [N; 1; N ℄ repetition 
ode, its 
orre
ting 
apa
ity is given by

N�1

2

=

(N

1

�N

2

�1

2

.

Suppose now that in AlgorithmA.2, the super
hannel's 
ode is a [N

1

; 1; N

1

℄

repetition 
ode. It 
an 
orre
t at most

N

1

�1

2

errors. The [N

2

; 1; N

2

℄ outer

repetition 
ode will then 
orre
t at most

N

2

�1

2

. Consequently the maximum

number of errors that 
an be 
orre
ted by the resulting 
on
atenated 
ode

is

(N

1

�1)(N

2

�1)

4

. It is easy to verify that

(N

1

�N

2

)� 1

2

>

(N

1

� 1)(N

2

� 1)

4

hen
e the result.

D Toy Permutation with Lo
al Bias

Let f be the permutation over F

8

2

given by

(215, 100, 200, 204, 233, 050, 085, 196,

071, 141, 122, 160, 093, 131, 243, 234,

162, 183, 036, 155, 004, 062, 035, 205,

040, 102, 033, 027, 255, 055, 214, 156,

075, 163, 134, 126, 249, 074, 197, 228,

072, 090, 206, 235, 017, 022, 049, 169,

227, 089, 016, 005, 117, 060, 248, 230,

217, 068, 138, 096, 194, 170, 136, 010,

112, 238, 184, 189, 176, 042, 225, 212,

084, 058, 175, 244, 150, 168, 219, 236,

101, 208, 123, 037, 164, 110, 158, 201,

078, 114, 057, 048, 070, 142, 106, 043,

232, 026, 032, 252, 239, 098, 191, 094,

059, 149, 039, 187, 203, 190, 019, 013,

133, 045, 061, 247, 023, 034, 020, 052,

118, 209, 146, 193, 222, 018, 001, 152,

046, 041, 091, 148, 115, 025, 135, 077,

254, 147, 224, 161, 009, 213, 223, 250,

231, 251, 127, 166, 063, 179, 081, 130,

139, 028, 120, 151, 241, 086, 111, 000,

088, 153, 172, 182, 159, 105, 178, 047,
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051, 167, 065, 066, 092, 073, 198, 211,

245, 195, 031, 220, 140, 076, 221, 186,

154, 185, 056, 083, 038, 165, 109, 067,

124, 226, 132, 053, 229, 029, 012, 181,

121, 024, 207, 199, 177, 113, 030, 080,

003, 097, 188, 079, 216, 173, 008, 145,

087, 128, 180, 237, 240, 137, 125, 104,

015, 242, 119, 246, 103, 143, 095, 144,

002, 044, 069, 157, 192, 174, 014, 054,

218, 082, 064, 210, 011, 006, 129, 021,

116, 171, 099, 202, 007, 107, 253, 108)

and let us note the input x = (x

7

; x

6

; x

5

; x

4

; x

3

; x

2

; x

1

; x

0

) and the output

f(x) = y = (y

7

; y

6

; y

5

; y

4

; y

3

; y

2

; y

1

; y

0

). Now let us 
onsider the restri
tion of

f when (x

7

; x

6

; x

5

; x

4

) = (1; 1; 1; 0). The we have for this parti
ular subset

of inputs

P [x

0

� x

3

= y

0

℄ =

5

16

6=

1

2

and

P [x

0

� x

3

= y

0

� y

1

℄ =

5

8

6=

1

2

:
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