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Abstract

This paper presents a new “operational” cryptanalysis of block ci-
phers based on the use of a well-known error-correcting code: the rep-
etition codes. We demonstrate how to describe a block cipher with
such a code before explaining how to design a new ciphertext only
cryptanalysis of these cryptosystems on the assumption that plaintext
belongs to a particular class. This new cryptanalysis may succeed for
any block cipher and thus is likely to question the security of those
cryptosystems for encryption. We then apply this cryptanalysis to
the 128-bit key AES. Our results have been experimentallly confirmed
with 100 effective cryptanalysis. Our attack enables to recover two
information bits of the secret key with only 23! ciphertext blocks and
a complexity of O(23!) with a success probability of 0.68.

Keywords: AES, block cipher, cryptanalysis, coding theory, repetition
codes.

1 Introduction

In October 2000, the NIST has selected Rijndaél as the Advanced Encryption
Standard (AES) to replace the DES and extent it to a massive world-wide
usage.

The growing dependence of the commercial community on AES -for its
data security functions- make it desirable to keep under review the strength
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of this cryptographic standard. Although several interesting properties have
been pointed out [7, 9, 13] and cryptanalysis proposed [4], none of them is
thought to make it less secure than expected by its key size.

The evaluation of the AES, as well as for the other finalists [1], has been
essentially based on the the former cryptanalysis or their variant forms:
differential cryptanalysis [2], linear cryptanalysis [11], ... and no significative
results were likely to question their strength. Finally we must admit that
security consideration as a key point in the final choice was not so relevant as
we could have imagined since all of the finalists offer a suitable high security.
To quote Adi Shamir [15], “any new real life cryptanalysis which may appear
in the future will equally challenge the finalists”.

On the other hand, the future seems to favour block encryption, at least
on the trade level. Few stream ciphers are known or proposed whereas
meanwhile many block systems are proposed (17 block cipher systems for
only b stream ciphers have been suggested for the New Furopean Schemes
for Signature, Integrity and Encryption (NESSIE) project [14]). As for the
AES, only block ciphers were requested. Though we can strongly affirm that
a very consequent theory for stream encryption exists, the block encryption
theory does not provide more than a few cryptanalytic techniques and results
on the constituent primitives at the round level. A rigorous and global
description of formalization of a whole system, including a combinatorial
approach in particular, is still to come. In other words, who can affirm that
hiding a trap, for example, is totally impossible without being detected (this
has still been more or less an open question for the DES; on the contrary,
the answer is easy for the stream encryption); and what about the existence
of particular global mask values on input and output which could drastically
improve linear cryptanalysis techniques. The authors of AES acknowledge
this second fact [5, Chap 7 and paragraph 2 of page 124], which moreover is
also relevant for any cryptosystem.

Actually, most of cryptanalysis capacity depends on the ability of de-
tecting these high correlations if there are some. In real-life cryptanalysis it
is not so much the maximum average correlation potential that is relevant
but the maximum correlation potential corresponding to the given key un-
der attack [5]. Our experience in cryptanalysis shows us that very often it
is more interesting and efficient to consider this potential when considering
a particular class of plaintext. In case of block ciphers, this approach is par-
ticularly efficient since plaintext represents an active part in the production
of the block cipher. This fact has recently been pointed out by the statisti-
cal analysis of the Algebraic Normal Form of Boolean functions modeling a
block cipher [7].



In this paper we intend to introduce a new representation of block ci-
pher cryptanalysis related to this approach. On the assumption that a given
subset of plaintext space has been encrypted and that consequently, partic-
ular, higher correlation properties exist between only the resulting subset of
ciphertexts and any key of the key space, we design an attack using repeti-
tion codes on ciphertext blocks only. This cryptanalysis is called Plaintezt-
dependent Repetition Codes Cryptanalysis (PDRC attack for short). It dif-
fers from a classical chosen-plaintext attack as we do not have to choose or
even know any of the plaintext blocks. Moreover, a PDRC attack uses only
ciphertext blocks. Thus the difficulty is to find suitable properties that leaks
information about the key from the ciphertext. By using the combinatorial
and statistical package CoHS (Combinatorics over Huge Sets) that we de-
velopped for the study of huge complex and discrete sets, we have managed
to find such properties for several block ciphers and use them in a modified
version of linear cryptanalysis. This paper presents the AES cryptanalysis.
With the knowledge of only 23! ciphertext blocks, we recovered two infor-
mation bits on the key with a work factor of 23! ciphertext-blocks readings
and a probability of success of 0.68. Those results have been confirmed by
100 effective cryptanalysis we implemented. An additionnal set of 564 in-
formation bits is currently tested and should very likely allow to recover the
complete key without requiring an exhaustive search step.

This paper is organized as follows. Section 2 presents theoretical pre-
liminaries and notation. Then Section 3 details the formal model of the
new cryptanalysis based on repetition codes. In particular we give a com-
binatorial resistance criterion against PDRC attack. Section 4 illustrates
this approach by considering the AES. We give detailed experimental crypt-
analysis results obtained with 100 cryptanalysis. Section 5 concludes while
presenting open problems and future studies.

It is worth noticing and important to insist on the fact that this new AES
cryptanalysis does not rely on a weakness or trap which could be declared as
specific to it. We just use a “natural weakness” of block ciphers as explained
in Section 3.1. Other block ciphers currently studied present the same weak-
ness and are likely to succumb to this cryptanalysis. In fact, the suitability
and the security of block ciphers for encryption must be questionned.



2 Background Theory and Notation

2.1 Repetition Codes

Let us consider a Binary Symmetric Channel (BSC) of parameter p used to
transmit messages over a binary alphabet. Its transition probability matrix
is the square matrix of order 2 whose coefficients are given by a;; = ¢
whenever 4 # j and a; j = ¢ = 1 — p otherwise.

In other words, if an emitter sends bit b; then l;t = by ® e; will be
effectively received with probability p (channel error probability). To recover
from transmission errors one uses error-correcting codes and in particular
linear codes. A binary linear code [n,k,d] is a vector subspace of F,", of
dimension k. Its minimal distance d is the minimum Hamming weight of
all non zero codewords (that is to say the n-bit vectors). In other words
d = minger, {wt(z)} where wt(z) denotes the number of non zero positions
in z = (z1,...,2,). Then a well-known result [10] defines the number of
errors on a codeword that can be corrected by a code of minimal distance d
as %.

A n-repetition code, on a set of two symbols, is a [n,1,n] linear code
and consists of two codewords, each one of them is made up of n identical
symbols. Whenever ¢ > p, maximum likelihood decoding (MLD) amounts
to find out in the received vector which symbol is repeated most. The vector
will be decoded as 0 if its Hamming distance to null vector is less than its
distance to vector (1,1,1,...,1), otherwise it is decoded as 1. Thus MLD
reduces to majority decoding.

Example 1 Let us consider the message 01100 and a 3-repetition code.
Then the sequence 000 111

111 000 000 is transmitted. The sequence 010111101110100 is received
and decoded as 01110. There is one residual error.

These codes are the most easily decodable among codes ensuring a high
protection. Moreover, repetition codes are the most efficient ones when
dealing with high noise probability p [12].

Proposition 1 [12] Let n = 2s+1. Then the n repetition code is correcting
at most s errors and is a perfect code. Its bit error probability (residual
decoding error) is given by

Py = zn: (?)pi-qm- (1)



The term perfect means that every words in the “ambient” space F," is
decodable for maximum likelihood as in a perfect block code. Finally the
probability of successful decoding is given by

Psucc:]-_Perr

It is worth noticing that if p < % the P, 2:+1 tends towards 0 as s — oo.

2.2 Block Ciphers and Linear Cryptanalysis

A block cipher working on m-bit plaintext blocks P; with a m-bit secret
key K ((m,n)-block cipher for short) is a mapping from F,” x F,* to F,™.
Each time a given key K is chosen, the resulting mapping restriction is a
permutation over Fy™. A block cipher is thus a set of 2" permutations over
F,”. Note that it represents a very small subset of all these permutations
((2™)! in total).

Linear cryptanalysis [11] of block ciphers is a known plaintext attack in
which a very large number of plaintext-ciphertext pairs are used to determine
the value of a subset of key bits, thus greatly reducing the exhaustive search
part.

A condition for applying linear cryptanalysis to such a block scheme is to
find “effective”, probabilistic linear expressions between any plaintext block
F;, any ciphertext block C; and any key K of the form:

p
< PLou>® < Cjw>=E< K0 > (2)

where < .,. > denotes the usual scalar product over F,". If this equation
holds with a probability p # % then by checking the left-hand side of Equa-
tion (2) for a large number N of plaintext-ciphertext pairs, the right-hand
side of this equation may be guessed by a simple maximum likelihood decod-
ing. A single information bit about the key is obtained. This cryptanalysis
is effective if the deviation |p — %] is large enough. In [11], it is shown that
the probability of successful guessing is very small as soon as N > |p— %|_2.

Generally the linear approximation described by Equation (2) is obtained
by “chaining” single-round linear approximations obtained by considering
statistical biases in the constituent primitives. This implies that other, pos-
sibly higher correlations that are depending on the global structure of the
systems are out of analysis capabilities [5, Chap 7 and paragraph 2 of page
124].



3 Repetition Codes Cryptanalysis of Block Ciphers

3.1 Block Ciphers and Repetition Codes

Let us consider a given property Z and let us denote Pg[Z] the probability
of T to be satisfied on set £. Then a block cipher can be broken if we have,
for some T, Py 7] # 3.

Each key K in the key space K = [, selects a corresponding permutation
over Fy”. Thus K may be recover if Prm|[Tx] # % where Zx denotes the
property Z related to the key K. Then we may dispose of an attack if we
can exhibit such a property verified for any K € K (denoted Zx). For linear
cryptanalysis, Zx is a particular linear probabilistic equation.

Let us now consider the plaintext space P = Fy™ and a partition (P;);<ok
of P for some k& € N. Without loss of generality we suppose that |P;| =
2m=F for all i. Now suppose there exists (possibly many) P; such that
Ip,|Zx] = pi # % Since the encryption key K € K remains the same for all
the plaintext blocks, we may compare the encryption process as a Binary
Symmetric Channel (BSC) with parameter p; where the noise is produced
by the plaintext blocks from P; (see Figure 1). The BSC is directly and
closely determined by P;. The noisy version f[\( of Tk is a (possibly complex)

P

Tx Tr

Figure 1: Block Cipher and Binary Symmetric Channel

function f(C) of ciphertext blocks C'. In other words encrypting N plaintext
blocks P € P; may be equivalently defined as transmitting Zx by means of a
N repetition code through a BSC of parameter p;. From Figure 1, it means
that over C; we have P[Zg =Zg] =1 —p;.

The aim of the designer is to obtain a set of permutations over C such
that no obvious properties Z leaks information about the key. But the
situation is likely to be very different when considering a restriction to a
subset C; & C. If we have

PelZ] = Y Pe 1] PIC] = 5
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we however may have many Pr,[Z] different from 1 (it suffices that >, e; =
>i(pi — ) = 0). This fact seems to be partly explained by the fact that
the actual number of permutations over C effectively represented by a block
cipher is extraordinary negligible compared of the total number of permu-
tations over the same plaintext space.

3.2 Description of the PDRC Attack

With the setting defined in the previous section, we now can describe the
plaintext-dependent repetition code cryptanalysis, very simply. Note, once
again, that local independance from the plaintext (due to the restriction to
a particular subset C; & C) allows us to design a ciphertext only attack.
We first present Algorithm A.1 which uses only one repetition code.

Input: N (N odd) ciphertexzt blocks C; encryted by key K from plaintext
pi

P; € C; (1 < j < N) and a probabilistic information Ty such that I =
f(Cj) for some g and for all j.
Output: Ezact value Z(K) for the actual key.

1. Initialize counter ct < 0.
2. For each of the N ciphertext blocks C;

(a) Compute f(C;).
(b) If f(Ci) =1 then ct + +.

3. end for

4. If et > Xt then T(K) = 1 else Z(K) = 0.

Complexity of algorithm A.1 is easy to evaluate. It performs only N
evaluations of f. Thus complexity is O(N). Since N is the length of the
repetition code, according to Section 2.1, it depends only on p; and psucc,
the probability of successful guessing for Z(K).

To the knowledge of the author there does not exist a general formula
for N directly from parameters p; and psucc. We can only tabulate results
for fixed values of them. It is a well-known fact that for a fixed p;, psucc
increases with N.

Example 2 Let us consider p; = 0.49999. Then psycc = 0.501784 for
N = 49999 while psyce = 0.5025 for N = 99999.



In order to obtain a as high as possible probability of success, we designed
a second algorithm A.2 which uses concatenated repetition codes. The con-
catenation codes have been in introduced by Forney in 1966 [8] and general-
ized by Zinov’ev in 1976 [16]. The principle is to use two codes as depicted in
Figure 2. The combination of inner encoder, channel and outer decoder can

OUTER INNER INNER OUTER
ENCODER ENCODER CHANNEL DECODER DECODER

X ~

SUPERCHANNEL

Figure 2: A Concatenated Code

be thought of as forming a new channel (called a superchannel). The aim is
to improve the correcting capacity of the inner code by use of a second code.
When transmitting over a very noisy channel, repetition codes are suitable
outer codes in classical concatenated codes.

In our cryptanalytic case, the superchannel is a BSC with parameter
p' = 1 — Psuce produced by the inner decoding residual error. We then
iterate the decoding process on this superchannel with an outer repetition
code. Here is the algorithm A.2 whose complexity is in O(N; - Na):

Input: Ny - Ny (Ni, Ny odd) ciphertext blocks C; encryted by key K from
plaintext P; € C; (1 < j < N) and a probabilistic information Zx such that

Pi
Ik = f(Cj) for some g and for all j.
Output: Ezact value Z(K) for the actual key.

1. Initialize counter ctl < 0.

2. For1<k<N;

(a) Initialize counter ct2 < 0.

(b) For each of the Ny ciphertext blocks C; (k-th set)
i. Compute f(C;).
ii. If f(C;) =1 then ct2 + +.

(c) end for

(d) if ct2 > N2 then T(K) =1 else Z(K) = 0.

3. If I(K) =1 then ctl + +.



4. end for

5. If ctl > MH then I(K) = 1 else Z(K) = 0.

While generally concatenated codes yield a better probability of success,
it is not the case when the outer and inner codes are both repetition codes.

Proposition 2 Let N an odd number of ciphertext blocks. Algorithm A.1
has a higher probability of success than Algorithm A.2.

The proof is given in Appendix C. However the concatenated code approach
allow us to compute a lower bound of A.1 success probability. The general
Formula (1) cannot be computed directly as soon as N is too large.

3.3 Resistance Criterion against PDRC Attack

PDRC attack is possible if and only if there exists a subset C; C C such that
Pe,[Zx] # % for some property Z. This allow us to formulate the following
resistance criterion against PDRC Attack.

Proposition 3 Let S be a (m,n) block cipher and let us consider a property
T about the key bits relatively to the ciphertext bits. S is immune against
the PDRC attack relatively to property T if and only if Vj € N the partition
(C1,Ca,...,Cj) of C is such that

. 1

The cryptanalyst’s work is to find a exploitable property Z and a particular
subset of “meaningful” plaintext blocks in order to conduct PDRC attack on
S. On cryptographer’s side things may be far more difficult. This difficulty
is summarized with the four open problems here following.

3.3.1 Open Problems

1. PDRC immunity problem .- Given a property Z, is it possible to design
a system S which is PDRC-immune relatively to Z 7

2. Weak trap problem .- Given C; C C, is it possible to design a system S
such that Pr,[Z] # % for some interesting Z (the trap) ?

3. Strong trap problem .- Given Z a property, is it possible to design a
system S such that for all C; C C we have P[] # & ?




4. PDRC feasibility .- Given S a system and C; a plaintext subset, is it
possible to find some property Z suitable for PDRC attack of S.

Problems 2 and 3 mean that it would be possible to hide a trap Z in the
system S.

Conjecture 1 There always exists a property T for which any block cipher
system S is not PDRC-immune.

If true, this means that block ciphers are insecure systems.

Problem 4 is clearly the most important to solve, from cryptanalyst’s
point of view. In order to try to solve it, we used the combinatorial, sta-
tistical package CoHS'(Combinatorics over Huge Sets) that we developped
to find structural properties in complex sets of huge size. It is a non public
package up to now being still under development. With CoHS, a (m,n)
block cipher is seen as a family of 2" m-bit blocks where each of the
block is repeated 2" times. For PDRC attack, it aims at finding particular
structures between blocks for given subsets. Then identified structures may
be eventually turned into statistical properties. The main advantage of this
package is that it does not require to build the whole family but only a
subset of a reasonable size. CoHS’s theoretical aspects should be published
in the near future as soon as its development is frozen and patenting process
is completed.

4 The AES Cryptanalysis

We will not recall the structure of the AES since we do not exploit it.
Interested reader will find a complete description as well as technical details
in [5]. Once again, we point out that the AES is not weaker than other block
ciphers for PDRC attack. Other systems are under current study and first
results have exhibited the same weaknesses. We just choose the AES as a
“fashion” block cipher to illustrate PDRC attack. The bit notation in AES
encryption are given in Appendix A.

4.1 The Repetitition Codes for the AES

The main problem is then to find a suitable property Zx presenting a bias
for a subset C; C C of particular interest. The idea has been to tune CoHS

'In fact, CoHS is a subpackage of the cryptanalytic package VAUBAN, that has been
developped for operational cryptanalysis purposes of symmetric cryptosystems and hash
functions. VAUBAN’s status is up to now not fixed yet.
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in order to work on a linear cryptanalysis basis. In this case, we need to
have an approximation of the form:

q
<Pu>d<Cw>=<K,v>

where u,v and w are masks used for bit selection. If we manage to find a
subset C; for which there exists v',w’ € Fy* x Fy™ such that

!

q
< Cow' >2< K, v' > (3)

with ¢ # % then we get a property Zx suitable to be used as a repetition
code.

Let (zg,z7,...,z1) denote an octet. We choose to work with plaintext in
English language in ASCII coding that is to say when most significant bit xg
of each 8-bit character is zero or when bit x5 is zero. Thus we considered the
two following plaintext subsets (all mask values are written in hexadecimal,
the second set corresponds to a particular encoding of the English language):

Ci = {C;&TFTFTF ... TFTFTFTFTFTFTFTFTF|C; € F,*%}

C;i = {C;&EFEFEF ... EFEFEFEFEFEFEFEFEF|C; € F,'*%}

Then we tried to find pairs of mask values (v',w') yielding equation of the
form (3). CoHS package has been run during four months on four ATHLON
XP2000+ PC with 512 Mo RAM and 80 Go HD. We tuned the parameter in
order to obtain values w' of weight as low as possible (mainly to reduce the
computing time and produce a few first results). Up to now two equations
for mask OzEFEFEFEF ... have been produced and confirmed as suitable
with 100 cryptanalysis (in fact 27 equations have been produced each of
them having a cryptanalysis probability of success ranging from 0.68 to
0.88. Only the mentionned one produced a joint probability large enough)
but CoHS is still running and an additionnal set of 564 equations has been
produced (mask values w' have higher weight; both for masks TF7F7F ...

11



and 0zEFEFEFE...) and are currently tested by 100 more cryptanalysis:

1®cy1y = ko@ksDhksDhkgDky ks ® kgD kig D k12 D ki3
®k15 © k17 @ koo © koa @ kos © k3o D k33 © kse D ka3
©kaa ® kas ® kar ® kag @ kag @ kso @ ksz @ ksa D ke
Dk D ko3 D ke D kg7 D keg D k71 D kro D ks @ kg
Dk D kg D kgo D kg1 D kga D kg3 D ksg D kg7 D kog
©ko7 © kog @ koo @ k100 D k101 @ K103 @ k104 ® k105 D k106
©k107 D k109 @ k111 © k112 ® k116 D k117 D k118 © k122 © k123
®k126

which holds with probability p =1 —0.499971 = 0.500029 and

cl9 = ko@D ks ®Dki1 @ kis D kia D kig ® k17 D k1s D k19 D koo
Dko1 @ ko3 D kog D kos B kot D k31 @ k3o D k33 @ k3q
Dkss @ k37 D ksg D k3o D kao D kag @ ka7 D kg @ kxo
©ks1 @ ks3 @ ksa @ kss @ kse @ kss @ kg1 D kes D kes
kg7 D kes D kgog D ko B k1 D ko @ kyg D ks @ ks
©kso @ kg3 @ ksa @ kss @ kse @ ksr @ kgs D kg D k1o
®k103 D k106 D k109 @ k110 @ k111 D k113 @ k115 @ k117 @ kiig
®Fk121 @ k123

which holds with probability p = 1 — 0.499972 = 0.500028.

As CoHS does not provide the exact probability of the resulting equation
but only potential weak associate structures, we apply statistical tests to
evaluate it, and to confirm CoHS hypothesis. Detailed statistical testing
protocol is given in Appendix B. However it is important to keep in mind
that equations have been first deterministically produced by CoHS) and only
then statistically tested before implementing the final cryptanalysis. Only
a subset of equations yielding the best joint probability has been kept but
ALL equations produced by CoHS have presented effectively and individually
high cryptanalysis probability of success (between 0.68 and 0.88). In order
to be precise, we did not test equations produced by CoHS and keep only
the best individual ones.

Now it is important to explain how equations of the form of Equation
(3) may work. On the whole ciphertext space these equations are normally
permutations and they hold with exact probability % (since they are lin-
ear equations) when the considered block cipher is well designed (which is
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the case for most of them). This is verified for any key and thus for any
permutation.

But at local level, that is to say when considering ciphertext blocks
produced from a plaintext subset, this equation does not generally hold
with exact probability % This fact can be explained as follows. Any (m,n)-
block cipher may be described as a Boolean function f; over F,”*" relatively
to each of its output bits 7,0 < j < m. Let now consider a given partition
(Ci)1<i<or of the whole plaintext space Fi'. We suppose that any C; contains
2"~k eclements. On that whole space we have

Pl< Ko >= f(K)] = 5

thus for any v € FJ and any j. But since we have
1
Pl< K,v >= f;(K)] = Z o Plfici(K) =< K,v >]
2

where f; ¢, is the restriction of f; on C;, we may very likely have a few C;, if
not all, such that P[fjc,(K) =< K,v >] # % This fact has been implicitly
ackowledged by the AES designers [5, Chap 7 and paragraph 2 of page 124].
A toy permutation is presented as an example in Appendix D to illustrate
this local effect.

From a design point of view, this implies that chaining block cipher prim-
itives (in Feistel ciphers or SP-networks) will likely result in uncontrollable,
unsuspected structural biases in the whole structure of the system.

4.2 Simulation Results

From these probability and Formula (1) we obtain the suitable repetition
parameter N and hence the number of required ciphertext blocks. The
following parameter have been taken for our attack using Algorithm A.1 :

N = 2500100001 = 23! Psuce > 0.7875.

The attack described in Algorithm A.1 has been implemented for 100 differ-
ent, randomly chosen keys. The plaintext has been randomly generated too
and bit selected according to mask value corresponding to English language
in Ascil coding. Each experiment took 7 hours on four ATHLON XP 2000+
PC. Most of the time has been spent for plaintext generation.

The experimental probability of success over the 100 cryptanalysis for
each of the two equations is 0.72 (while the 25 remaining equations pro-
vides high probability of success too). This is slightly lower that expected.

13



This probably comes from the difference between the empirical and exact
approximation probabilites for the equations.

But the most noticeable result is that the actual probability of success for
the two equations to hold is 0.68 (joint probability). On the assumption that
these equations are independent we should observe a joint success probability
of 0.5184 instead. This means that the two equations are not independant
at all and somehow existence of structural biases is confirmed. Other sets
of such equations offering such a high joint bias are under testing.

5 Future Work and Conclusion

In this paper we have presented a new cryptanalysis of block cipher by
means of a N repetition code where N is precisely the number of ciphertext
blocks we need. We experimentally confirmed the expected results with 100
effective cryptanalysis. The attack managed to recover two information
bits with only 23! ciphertext block and success probability of 0.68.

The search for other equations, in particular involving several ciphertext
bits, is under way and will very likely allow to find additional information
bits on the secret key with the same complexity (in other word the number of
ciphertext blocks). An additionnal set of 564 information bits will very likely
suppress the remaining exhaustive search step. First results are excellent
and complete equations will be published as soon as 100 more complete,
effective cryptanalysis are completed.

In parallel, this attack is currently applied to other block ciphers, in
particular Serpent, Twofish and DFC. The first results seem to be very
promising. Other block ciphers may likely succumb to this attack as well.

At last, a slightly modified version of CoHS should allow to greatly
reduce the number N of ciphertext blocks we need for PDRC-attack and
thus provide a far more operationnal extent while increasing the success
probability.

The results presented in this paper should likely cast a shadow on block
ciphers in the future and challenge their suitability for data encryption and
more generally for cryptgraphic use.
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A Detailed Notation for the AES

We take the first test vector of the file ecb_tbl.tzt provided by the AES
designers, in order to precise the notation we use for the attack.
K = 00010203050607080A0B0C0DO0OF101112

Leftmost key bit is denoted k¢ and rightmost key bit is denoted kia7.
Hence we have
K = (k07 kla ey k1267 k127)

In other words for the test key here given we have kg = 0, k196 = 1, k197 = 0.
The same bit ordering is considered for plaintext and ciphertext blocks.

P = 506812445 F08C889B97F 5980038 B8359

C = D8F532538289 EFTD06B506A4F D5BE9ICY

The particular set of plaintext we consider are then defined by

pi=0 V0<:7:<127and7=0 mod 8

B Optimized Evaluation of Correlation Probabil-
ities

Let be a probabilistic equation f(z) = b which holds with unknown proba-
bility p. We only know that p # % Our aim is to guess an accurate enough
value pg of p. How many random values x must be taken in order to com-
pute py such that 22 is as close as possible to 1. Note that considering the
ratio rather than the difference between py and p is more significant.
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Let us now consider the Bernouilli random variable X; of parameter p
corresponding to the equation evaluation result when taking value x;:

XZ_:{ 1 if f(z) =b

0 otherwise

Let us note Sy = ZZJL X;. Tt is a known result that Sy has a Gaussian
distribution N'(N - p,/N -p-q) with ¢ = 1 — p. Let us now note Sy =
SN % ﬁ. Its mena value is given by:

1 | = 1
N-p_N-p

E[SN] = E[Sy X xN-p=1
since N - p is an unknown but constant value. In the same way, we have for

the variance:

VISy] = NLp

Evaluating p amounts to find « and N such that, for a fixed e,
a:P[l—ESS']\vS 1 + €] is maximal

By using the following equality:

€
\/I

N-p
where ®*(.) denotes the Gaussian cumulative density function , we obtain
N for fixed « and e.

In order to evaluate the probability p of equations we considered, we
fixed € = 107* and o = 0.9999. Then N = 1,520,000, 000.

Each equation has been tested with N different keys on the assump-
tion that plaintext was English in ASCII coding (0zEFEFEF ... and
0x7FT7F ... classes). It is important to note that the random generation
of key and plaintext before applying either of the two possible maskin val-
ues has been done by means of a high quality random generator (not that
of the C language which is very poor). Moreover SHA-1 has been applied
to the random values before in order to prevent unsuspected biases (debias-

ing techniques). T hope that other people will reproduce these testing and
confirmed the results.

Pll—e<Sy<l+e=2 0 —1
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C Proof of Proposition 2

Let us write N = Ny-Ns where Ny and Ns are odd integers. Since Algorithm
A.1uses a [N, 1, N] repetition code, its correcting capacity is given by % =
(N1-Na—1
R

Suppose now that in Algorithm A.2, the superchannel’s code isa [Ny, 1, Ny]

repetition code. It can correct at most % errors. The [Ny, 1, No] outer
Ny—1
2

repetition code will then correct at most . Consequently the maximum
number of errors that can be corrected by the resulting concatenated code
js W=DWe=D) 14 ig oagy ¢ ify th
1 . y to verily that
(Ni-Np) =1 (Vi —1)(N2 — 1)
2 > 4

hence the result.

D Toy Permutation with Local Bias

Let f be the permutation over F,® given by

(215, 100, 200, 204, 233, 050, 085, 196,
071, 141, 122, 160, 093, 131, 243, 234,
162, 183, 036, 155, 004, 062, 035, 205,
040, 102, 033, 027, 255, 055, 214, 156,
075, 163, 134, 126, 249, 074, 197, 228,
072, 090, 206, 235, 017, 022, 049, 169,
227, 089, 016, 005, 117, 060, 248, 230,
217, 068, 138, 096, 194, 170, 136, 010,
112, 238, 184, 189, 176, 042, 225, 212,
084, 058, 175, 244, 150, 168, 219, 236,
101, 208, 123, 037, 164, 110, 158, 201,
078, 114, 057, 048, 070, 142, 106, 043,
232, 026, 032, 252, 239, 098, 191, 094,
059, 149, 039, 187, 203, 190, 019, 013,
133, 045, 061, 247, 023, 034, 020, 052,
118, 209, 146, 193, 222, 018, 001, 152,
046, 041, 091, 148, 115, 025, 135, 077,
254, 147, 224, 161, 009, 213, 223, 250,
231, 251, 127, 166, 063, 179, 081, 130,
139, 028, 120, 151, 241, 086, 111, 000,
088, 153, 172, 182, 159, 105, 178, 047,
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051, 167, 065, 066, 092, 073, 198, 211,
245, 195, 031, 220, 140, 076, 221, 186,
154, 185, 056, 083, 038, 165, 109, 067,
124, 226, 132, 053, 229, 029, 012, 181,
121, 024, 207, 199, 177, 113, 030, 080,
003, 097, 188, 079, 216, 173, 008, 145,
087, 128, 180, 237, 240, 137, 125, 104,
015, 242, 119, 246, 103, 143, 095, 144,
002, 044, 069, 157, 192, 174, 014, 054,
218, 082, 064, 210, 011, 006, 129, 021,
116, 171, 099, 202, 007, 107, 253, 108)

and let us note the input x = (x7,xg, x5, 24, T3, T2, 21, 29) and the output
f(x) =y = (y7, Y6, Y5, Y4, Y3, Y2, Y1, Yo ). Now let us consider the restriction of
f when (z7,z¢,z5,24) = (1,1,1,0). The we have for this particular subset
of inputs

N —

5
P[ivo@x:&:yo]:E#

and

Plzo®x3 =1y ®y] = < #

oo ot
N —
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