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Abstrat

We use a general treatment of both information-theoreti and ryptographi settings for

Multi-Party Computation (MPC), based on the underlying linear seret sharing sheme. Our

goal is to study the Monotone Span Program (MSP), whih is the result of loal multipliation

of shares distributed by two given MSPs as well as the aess struture that this resulting

MSP omputes. First, we expand the onstrution proposed by Cramer et al. multiplying

two di�erent general aess strutures and we prove some properties of the resulting MSPM.

Next we expand the de�nition of multipliative MSPs and we prove that when one uses dual

MSPs only all players together an ompute the produt, i.e., the onstrution proposed by

Cramer et al. gives only multipliative MPC. Third, we propose a solution for the strongly

multipliative MPC (in presene of adversary). The knowledge of the resulting MSP and

the aess struture it omputes allows us to build an analog of the algebrai simpli�ation

protool of Gennaro et al. We show how to ahieve in the omputational model MPC seure

against adaptive adversary in the zero-error ase, through the appliation of homomorphi

ommitments. There is an open problem how eÆiently we an determine � the aess

struture of the resulting MSP M. This open problem reets negatively on the eÆieny

of the proposed solution.

1 Introdution

The onept of seret sharing was introdued by Shamir as a tool to protet a seret simultane-

ously from exposure and from being lost. It allows a so alled dealer to share the seret among

a set of entities, usually alled players, in suh a way that only ertain spei�ed subsets of the

players are able to reonstrut the seret while smaller subsets have no information about it.

We all the groups who are allowed to reonstrut the seret quali�ed (denoted by �), and the

groups who should not be able to obtain any information about the seret forbidden (denoted

by �). The tuple (�;�) is alled an aess struture if � ∩ � = ∅. Denote by P the set of
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partiipants in the sheme. If � = �



is the omplement of �, then we say that (�;�) is

omplete and we denote it only by �.

It is ommon to model heating by onsidering an adversary who may orrupt some subset of

the players. One an distinguish between passive and ative orruption, see Fehr and Maurer

[6℄ for reent results. The adversary is haraterized by a privay struture � and an adversary

struture �

A

⊆ �. Denote the omplement �

A

= �



A

. Fehr and Maurer [6℄ and Nikov et al. [10℄

alled this set honest (or good) players struture, whih in fat appears to be misleading term.

Atually its dual aess struture �

⊥
A

should be alled the honest (or good) players struture,

sine for any set G of good players the omplement G



is the set of orrupted players from �

A

:

Both passive and ative adversaries may be either stati, meaning that the set of orrupted

players is hosen one and for all before the protool starts, or adaptive meaning that the

adversary an at any time during the protool hoose to orrupt a new player based on all the

information he has at the time, as long as the total set is in �

A

.

Most proposed Seret Sharing Shemes (SSS) are linear, but the onept of a Linear Seret

Sharing Sheme (LSSS) was �rst onsidered in its full generality by Karhmer and Wigderson,

who introdued the equivalent notion of Monotone Span Program (MSP), whih we desribe

later. Eah linear SSS an be viewed as derived from a monotone span program M omputing

its aess struture. On the other hand, eah monotone span program gives rise to an LSSS.

Hene, one an identify an LSSS with its underlying monotone span program. Suh an MSP

always exists, beause MSPs an ompute any monotone funtion. Now we will onsider any

omplete aess struture �, whih desribes subsets of partiipants that are quali�ed to reover

the seret s ∈ F (F here is a �nite �eld) in the set of possible seret values, as long as � admits

a linear seret sharing sheme.

Sine an LSSS neither guarantees reonstrutability when some shares are inorret, nor veri�a-

bility of a shared value a stronger primitive veri�able seret sharing (VSS) has been introdued

in [5, 1℄. In VSS a dealer distributes a seret value among the players, where the dealer and/or

some of the players may be heating. It is guaranteed that if the dealer is honest, then the

heaters obtain no information about the seret, and all honest players will later be able to

reonstrut it, without the help of the dealer. Even if the dealer heats, a unique value will be

determined and is reonstrutible without the heaters' help. Seure multi-party omputation

(MPC) an be de�ned as follows: n players ompute an agreed funtion of their inputs in a

\seure" way, where \seure" means guaranteeing the orretness of the output as well as the

privay of the players' inputs, even when some players heat. A key tool for seure MPC, is

VSS. We will onsider the standard synhronous model with a broadast hannel.

The paper is organized as follows: In the next Setion 3 we propose the main onstrution

diamond ⋄ and investigate its properties. Then in Setion 4 an algebrai simpli�ation for

multipliation is desribed. In the last setion onditions for existene of MPC seure against

adaptive adversary are onsidered.

2 Preliminaries

2.1 Related Work

The basi notation and linear algebra tehniques that we will use from now on are summarized

in the Appendix. The following operation (alled element-wise union) for monotone dereasing

sets was introdued in [10, 6℄.
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De�nition 2.1 [10, 6℄ We de�ne the operation ⊎ for any monotone dereasing sets �

1

;�

2

as follows: �

1

⊎�

2

= {A = A

1

∪A
2

;A

1

∈ �

1

; A

2

∈ �

2

} and the operation ⊎ for any monotone

inreasing sets �

1

;�

2

as follows: �

1

⊎ �

2

= {A = A

1

∪A
2

;A

1

=∈ �

1

; A

2

=∈ �

2

}.

De�nition 2.2 [2, 4℄ A Monotone Span Program (MSP) M is a quadruple (F;M; ";  ),

where F is a �nite �eld, M is a matrix (with m rows and d ≤ m olumns) over F,  :

{1; : : : ;m} → {1; : : : ; n} is a surjetive funtion and " is a �xed vetor, alled target vetor,

e.g. , olumn vetor (1; 0; :::; 0) ∈ F
d

: The size of M is the number m of rows.

As  labels eah row with a number from [1; : : : ;m℄ orresponding to a �xed player, we an

think of eah player as being the \owner" of one or more rows. For every player we onsider a

funtion ' whih gives the set of rows owned by the player, i.e., ' is \inverse" of  .

An MSP is said to ompute a (omplete) aess struture � when " ∈ Im(M

T

'(G)

) if and only

if G is a member of �. Hene, the players an reonstrut the seret preisely if the rows they

own ontain in their linear span the target vetor of M, and otherwise they get no information

about the seret, i.e., there exists a so alled reombination vetor r suh that 〈r;M
G

(s; �)〉 = s

and M

T

G

r = " for any seret s and any �. It is well known that the vetor " =∈ Im(M

T

N

) if and

only if there exists a k ∈ F
d

suh that M

N

k = 0 and k

1

= 1.

The main goal of our paper is to study the properties of a onstrution whih builds MPCs from

any LSSS. Beause of the linearity LSSS provide it is easy to add serets seurely { it is suÆient

for eah player to add up the shares he holds. Therefore, to ahieve general MPC, it suÆes

to implement multipliation of shared serets. That is, we need a protool where eah player

initially holds shared serets s and s

′
, and ends up holding a share of the produt ss

′
. Several

suh protools are known for the threshold ase [1, 3, 7, 8℄ and for general aess struture [2, 4℄.

We follow the approah proposed by Cramer et al. in [2, 4℄ to build an MPC from any LSSS,

provided that the LSSS is what they all (strongly) multipliative. Loosely speaking, an LSSS is

(strongly) multipliative if eah player i an, from his shares of serets s and s

′
, ompute a value



i

, suh that the produt ss

′
an be obtained using all values (only values from honest players).

One possible onstrution for MSP, introdued by Cramer [2℄, is M⊗, i.e., a matrix obtained

from matrix M by replaing eah row v of M with v ⊗ v. Denote the new MSP by M⊗ =

(F;M⊗; "⊗ ";  ). Hene M = (F;M; ";  ) is an MSP with multipliation if and only if " ⊗ " ∈
Im(M

T

⊗ ) : It is shown also in [2℄ that for any MSP M, and for all b and b

′
, the following

equality holds s ∗ s′ = (Mb) ∗ (Mb

′
) =M⊗(b⊗ b

′
) : where s ∗ s′ is the so-alled star produt, i.e.,

s ∗ s′ = (s

1

; : : : ; s

n

) ∗ (s′
1

; : : : ; s

′
n

) = (s

1

s

′
1

; : : : ; s

n

s

′
n

):

Let � be an aess struture, omputed by the MSP M = (F;M; ";  ). Given two m-vetors

x and y, Cramer et al. in [2, 4℄ denote x ⋄ y to be the vetor ontaining all the entries of the

form x

i

y

j

, where  (i) =  (j). Thus, if m

i

= |'(i)| is the number of rows owned by a player

i, then x ⋄ y has m =

P

i

m

2

i

entries. So, if x and y ontain shares resulting from sharing two

serets using M, then the vetor x ⋄ y an be omputed using only loal omputations by the

players, i.e., eah omponent of the vetor an be omputed by one player. Hene when eah

player owns exatly one row in M the operations ⋄ and ∗ oinide.

Denote by M
A

the MSP obtained from M by keeping only the rows owned by players in A, for

any players subset A.

De�nition 2.3 [2, 4℄ A multipliative MSP is an MSP M for whih there exists an m-vetor

r alled a reombination vetor, suh that for any two serets s

′
and s

′′
and any �

′
and �

′′
,
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it holds that

s

′
s

′′
= 〈r;M(s

′
; �

′
) ⋄M(s

′′
; �

′′
)〉 :

It is said that M is strongly multipliative if for any subset A of players that is not quali�ed

by M, M
A



is multipliative.

Throughout the paper we will onsider presene of adaptive adversary. Sine the adversary we

an tolerate is at least a Q

2

adversary and sine the ondition Q

2

is equivalent to �

A

∩ �

⊥
A

= ∅
(and to �

⊥
A

⊆ �

A

), we have that the honest players struture has no intersetion with the

adversary struture.

Reently Maurer [9℄ has proved that general perfet information-theoretially MPC seure

against a (�

1

;�

A

)-adversary is possible if and only if P =∈ �

1

⊎ �

1

⊎ �

A

or equivalently if

and only if �

⊥
A

⊆ �

1

⊎ �

1

: Notie that thanks to the loal omputation model for MPC the

interation between players is redued, and in this way we may think of the MPC as a kind of

VSS.

A reent result, whih gives neessary and suÆient onditions for the existene of VSS has been

proved by Fehr and Maurer in [6℄: the robustness, strong robustness and very strong robustness

onditions for VSS are ful�lled if and only if P =∈ � ⊎ �

A

⊎ �

A

or equivalently if and only if

(�

A

⊎ �

A

)

⊥ ⊆ �.

2.2 Our Results

We fous on the general treatment of non-ryptographi (i.e., information-theoretially seure)

multi-party omputation, based on an underlying linear seret sharing sheme. Our researh

relies mainly on the de�nitions and results by Cramer et al. in [4℄ about General Seure Multi-

Party Computation.

First we expand the onstrution proposed by Cramer et al. in [2, 4℄. Let �

1

and �

2

be aess

strutures, omputed by MSPs M
1

= (F;M
1

; "

1

;  

1

) and M
2

= (F;M
2

; "

2

;  

2

): Let also M

1

be

an m

1

× d

1

matrix, M

2

be an m

2

× d

2

matrix and '

1

, '

2

are the \inverse" funtions of  

1

and

 

2

. Given an m

1

-vetor x and an m

2

-vetor y, we denote x ⋄ y to be the vetor ontaining all

entries of form x

i

y

j

, where  

1

(i) =  

2

(j). Thus x ⋄ y has m =

P

i

|'
1

(i)||'
2

(i)| entries (notie
that m < m

1

m

2

). So, if x and y ontain shares resulting from sharing two serets using M
1

and M
2

, then the vetor x ⋄ y an be omputed using only loal omputation by the players,

i.e., eah omponent of the vetor an be omputed by one player. In other words we de�ne

the operation diamond ⋄ for vetors (and analogously for matries) as onatenation of vetors

(matries), whih are tensor (⊗) multipliation of the sub-vetors (sub-matries) belonging to a

�xed player, see (1) and (2).

Following this new model we expand the de�nition for a multipliative MSP.

De�nition 2.4 De�ne MSP M to be (F;M = M

1

⋄M
2

; " = "

1

⋄ "
2

;  ), where  (i; j) = r if

and only if  

1

(i) =  

2

(j) = r. Given two MSPs M
1

and M
2

, the MSP M is alled their

multipliative resulting MSP if there exists an m-vetor r alled a reombination vetor,

suh that for any two serets s

′
and s

′′
and any �

′
and �

′′
, it holds that

s

′
s

′′
= 〈r;M

1

(s

′
; �

′
) ⋄M

2

(s

′′
; �

′′
)〉 = 〈r;M((s

′
; �

′
)⊗ (s

′′
; �

′′
))〉 :

This means that one an onstrut a multipliative resulting MSP that omputes the produt

of the serets shared by MSPs M
1

and M
2

.
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De�nition 2.5 Given two MSPs M
1

and M
2

, the MSP M is alled their strongly multi-

pliative resulting MSP if the aess struture � omputed by M is suh that for any players'

subset A ∈ �, M
A

is the multipliative resulting MSP of (M
1

)

A

and (M
2

)

A

.

The last de�nition means that one an onstrut a strongly multipliative resulting MSP, om-

puting the produt of the serets shared by MSPs M
1

and M
2

, with some aess struture

�. The di�erene between the multipliative resulting MSP and the strongly multipliative

resulting MSP is that in the �rst one � = {P}.
Let �

1

and �

2

be the aess strutures omputed by the MSPs M
1

and M
2

, and suh that

satisfy the VSS onditions given in [6℄. Let the MSP M be the strongly multipliative result of

MSPs M
1

and M
2

, and let the aess struture � be omputed by the MSP M. Our �rst goal

will be to investigate the properties that the aess struture � and the MSP M posses. We

will prove in Proposition 3.4 that for the resulting MSP M we have � ⊆ �

1

⊎ �

2

. (Notie that

� may be equal to ∅.) Note that, if we know the requirements for the aess strutures �

1

and

�

2

suh that the equality in Proposition 3.4 holds, then in fat we will have an eÆient solution

for the strongly multipliative ase.

Our seond main result Theorem 3.5 shows that the aess struture � omputed by the resulting

MSP M of MSPs M
1

and M⊥
1

is in fat the whole set of players P . Theorem 3.5 implies that

only all players together an ompute the produt of the serets, hene M is the multipliative

resulting MSP, but not the strongly multipliative resulting MSP. Therefore the onstrution

proposed by Cramer et al. in [4℄ is not appliable in the strongly multipliative ase.

The use of strongly multipliative LSSS allows us to think about the MPC as a kind of VSS,

sine no interation between the players is needed to ompute the produt of two serets. Un-

fortunately in the general ase the piture oinides with the threshold ase. As Ben-Or et al.

note in their seminal paper [1℄ the new shares omputed after loal multipliation orrespond

to a higher (double) degree polynomial whih is not random. To overome this problem they

introdued a degree redution and randomization protools. Later Gennaro et al. [7℄ ahieve

both tasks in a single step, whih they all an algebrai simpli�ation for the multipliation

protool. As we will prove in the ase of general aess strutures we have the same problem as

desribed by Ben-Or et al. The new shares omputed after loal multipliation orrespond to

a muh \smaller" aess struture � and the shares are omputed using a non-random vetor.

On the other hand the knowledge of the aess struture � allows us to build an analog of the

algebrai simpli�ation protool of Gennaro et al.

The adversary is alled (�

1

;�

A

)-adversary if �

1

is his privay struture and �

A

⊆ �

1

is

his adversary struture. In our adaptive adversary model we have adversary with two privay

strutures �

1

, �

2

and with one adversary struture �

A

⊆ �

1

, �

A

⊆ �

2

. Finally, we propose

solutions in both information-theoreti and omputational models for the strongly multipliative

MPC.

In the information-theoretially seure general MPC model it is suÆient � to satisfy the VSS

onditions form [6℄ and � to be the strongly multipliative result of MSPs omputing �

1

(MSP

M
1

) and �

2

(MSP M
2

). Combining these onditions we prove our third main result Theorem

5.1, whih gives that suÆient onditions for existene of general perfet information-theoreti-

ally seure MPC, seure against (�

1

;�

2

;�

A

)-adversary is (�

A

⊎ �

A

)

⊥ ⊆ � ⊆ �

1

⊎ �

2

.

In the omputational model for seure general MPC we use the algebrai simpli�ation for multi-

pliation protool, presented in Setion 4, and the homomorphi ommitments [7, 4℄ to \redue"

the aess struture � to any aess struture �

3

, provided the VSS onditions for �

3

holds. As
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we will prove in our fourth main result Theorem 5.2 here we need weaker onditions for � than

in the information-theoreti model. In other words, if trapdoor one-way permutation exists,

then the suÆient onditions for existene of general perfet seure MPC in the ryptographi

senario, seure against (�

1

;�

2

;�

A

)-adversary is �

⊥
A

⊆ � ⊆ �

1

⊎ �

2

.

As a onsequene of the onsidered model we obtain a requirement for the aess struture �

i.e. �

⊥
A

⊆ �, whih turns out to be equivalent to the Cramer et al. de�nition of the strongly

multipliative MSP.

3 Main Results

3.1 The Diamond ⋄ Constrution

A natural onstrution for the resulting MSP is the well known Kroneker produt (onstrution

⊗) of matries. The problem with this onstrution is that we do not know whom eah row

belongs to and that the loal omputation ase is not appliable. In the appendix we give some

useful properties of the matrixM =M

1

⊗M
2

. To avoid the inherent problem of the onstrution

⊗, we study the diamond ⋄ onstrution.

Consider the vetor x. Let us ollet the oordinates in x, whih belong to the player t in

a sub-vetor x

t

or x = (�x

1

; : : : ; �x

n

). Hene �x

t

∈ F
|'(t)|

. Thus we have obviously 〈x; y〉 =

〈(�x
1

; : : : ; �x

n

); (�y

1

; : : : ; �y

n

)〉 =
P

t

〈�x
t

; �y

t

〉 . Also notie that the operation diamond ⋄ for vetors

ould be de�ned as:

x ⋄ y = (�x

1

⊗ �y

1

; : : : ; �x

n

⊗ �y

n

) : (1)

We de�ne an operation diamond for the matries and onstrut a new matrix M as follows. We

will denote it by M =M

1

⋄M
2

.

For eah partiipant t onsider the rows he owns in both matries. Then for eah row (M

1

)

i

of

M

1

, suh that  

1

(i) = t and for eah row (M

2

)

j

of M

2

, suh that  

2

(j) = t, alulate a new row

(M

1

)

i

⊗ (M

2

)

j

of M , and write  (i; j) = t. Hene m is de�ned as m =

P

t∈P |'
1

(t)||'
2

(t)|, and
M is an m× d

1

d

2

matrix.

Remarks on the Constrution: We assume, without restrition for the MSP, that its rows

are ordered as follows: �rst we have |'(1)| rows that belong to the player 1, next |'(2)| rows
belonging to the player 2, et. Then the onstrution shows that eah row (M

1

)

i

of M

1

, suh

that  

1

(i) = t is tensor multiplied to eah row (M

2

)

j

of M

2

, suh that  

2

(j) = t. In other words

for any sub-matrix, whih belongs to a �xed player we apply the onstrution ⊗.
On the other hand for the olumns in M we have the following result: the �rst olumn of M

1

is ⋄ multiplied to eah olumn of M

2

, next the seond olumn of M

1

is ⋄ multiplied to eah

olumn of M

2

, and so on. Thus the proess is analogous to the ase of ⊗ onstrution, with the

di�erene that the operation ⊗ is replaed by ⋄.
To make the explanations learer let us denote by (M

1

)

t

the matrix formed by rows ofM

1

owned

by player t and orrespondingly by (M

2

)

t

the matrix formed by rows of M

2

owned by player t.

Then (M

1

)

t

is a |'
1

(t)|×d
1

matrix and (M

2

)

t

is a |'
2

(t)|×d
2

matrix. Hene we an presentM

1

as a onatenation of the matries (M

1

)

t

for t = 1; : : : ; n and analogously we an present M

2

as a onatenation of the matries (M

2

)

t

for t = 1; : : : ; n. Now from the onstrution diamond

⋄ follows that the matrix M = M

1

⋄M
2

is the onatenation of matries (M

1

)

t

⊗ (M

2

)

t

for
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t = 1; : : : ; n. i.e.,

M

1

=

0

�

(M

1

)

1

: : :

(M

1

)

n

1

A

; M

2

=

0

�

(M

2

)

1

: : :

(M

2

)

n

1

A

; and M =

0

�

(M

1

)

1

⊗ (M

2

)

1

: : :

(M

1

)

n

⊗ (M

2

)

n

1

A

: (2)

3.2 Properties of the Diamond ⋄ Constrution

We present some useful properties of the new onstrution diamond ⋄ as well as some properties

of the Kroneker produt in the Appendix. Here, �rst we show that the onstrution is symmetri

regarding to the MSPs M
1

and M
2

.

Lemma 3.1 The MSPs M = M
1

⋄M
2

and

fM = M
2

⋄M
1

atually ompute the same aess

struture �.

Lemma 3.2 Let M

1

be an m

1

×d
1

matrix, and M

2

be an m

2

×d
2

matrix. Construt the matrix

M following the onstrution ⋄ (i.e., M = M

1

⋄M
2

is m × d

1

d

2

matrix), then for arbitrary

olumn vetors �

1

∈ F
d

1

, �

2

∈ F
d

2

the following equality holds

M(�

1

⊗ �

2

) = (M

1

⋄M
2

)(�

1

⊗ �

2

) = (M

1

�

1

) ⋄ (M
2

�

2

) :

Note that the onstrution diamond ⋄ and Lemma 3.2 on�rm our intuitive expetations, as

shown in the following lemma.

Lemma 3.3 Let us denote by S

1

=M

1

(s

1

; a) and S

2

=M

2

(s

2

; b) the shares distributed by MSPs

M
1

and M
2

, for the serets s

1

and s

2

respetively. Then MSP M atually distributes shares

S = S

1

⋄ S
2

for the seret s

1

s

2

.

Note that we have S = (M

1

⋄M
2

)((s

1

; a) ⊗ (s

2

; b)) and that the vetor (s

1

; a)⊗ (s

2

; b) is not a

random any more.

Now we are in position to prove our �rst main proposition.

Proposition 3.4 Let �

1

and �

2

be the aess strutures omputed by the MSPs M
1

and M
2

.

Let the MSP M be the strongly multipliative result of MSPs M
1

and M
2

, and let the aess

struture � be omputed by the MSP M. Then � ⊆ �

1

⊎ �

2

. (Notie that � may be equal to ∅.)

Proof: Let A

1

=∈ �

1

. Hene there exists a vetor k ∈ Ker((M

1

)

A

1

) suh that k

1

= 1. Analo-

gously, let A

2

=∈ �

2

. Hene there exists a vetor r ∈ Ker((M

2

)

A

2

) suh that r

1

= 1. Notie that

k ∈ F
d

1

and r ∈ F
d

2

. Let A = A

1

∪A
2

, so we have A =∈ �

1

⊎�
2

. Form a new vetor k⊗r ∈ F
d

1

d

2

.

Now using Lemma 6.5 it follows that the vetor k ⊗ r ∈ Ker(M

A

) and (k ⊗ r)

1

= 1. Hene

A =∈ �, thus � ⊆ �

1

⊎ �

2

. 2

3.3 Properties of the Resulting MSP

An interesting open question is when the \equality" holds? One an see from the examples given

in the appendix that \equality" does not always hold.

Note that � = �

1

⋄ �
2

may not be the reombination vetor for M = M

1

⋄ M
2

. For eah

B ∈ �

1

⊎ �

2

we have that B ∈ �

1

and B ∈ �

2

, hene there exist reombination vetors

�

1

and �

2

suh that M

T

1

�

1

=

P

n

t=1

(M

1

)

T

t

(

�

�

1

)

t

= "

1

and M

T

2

�

2

=

P

n

t=1

(M

2

)

T

t

(

�

�

2

)

t

= "

2

.
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On the other hand we have "

1

⋄ "
2

= " and eah olumn in M is equal to a olumn of M

1

⋄ a olumn of M

2

. Unfortunately � may not satisfy the ondition (applying Lemma 6.11)

M

T

� =M

T

(�

1

⋄ �
2

) =

P

n

t=1

((M

1

)

T

t

(

�

�

1

)

t

)⊗ ((M

2

)

T

t

(

�

�

2

)

t

) = ".

Consider for example the threshold ase. Denote by T

s;n

the s-out-of-n threshold aess stru-

ture, then it is easy to verify that T

l;n

⊎ T

s;n

= T

l+s−1;n

. On the other hand eah player t

holds vetors w = (1; �

t

; : : : ; �

s−1

t

) and v = (1; �

t

; : : : ; �

l−1

t

) from MSPs omputing T

s;n

and T

l;n

orrespondingly. Thus the onstrution proposed above gives

v ⊗ w = (1; �

t

; : : : ; �

s−1

t

; �

t

; �

2

t

; : : : ; �

s

t

; : : : : : : : : : ; �

l−1

t

; : : : ; �

s+l−2

t

) :

It is well known that the number of olumns (here d = sl−1) an be inreased without hanging

the aess struture omputed by an MSP. The spae generated by the 2nd up to the d-th

olumn of M does not ontain even a non-zero multiple of the �rst olumn. Without hanging

the aess struture that is omputed, we an always replae the 2nd up to the d-th olumn of

M by any set of vetors that generates the same spae.

Hene v⊗w is equivalent to (1; �

t

; : : : ; �

s+l−2

t

), whih is exatly the row owned by the player t in

MSP omputing T

l+s−1;n

. This means that in the threshold ase we have equality in Proposition

3.4. This example shows something more: it is very important to hoose the MSPs M
1

and M
2

orretly.

Let the player t holds vetors w = (1; �

t

; : : : ; �

s−1

t

) and v = (1; �

t

; : : : ; �

l−1

t

) from MSPs om-

puting T

s;n

and T

l;n

, and �

t

6= �

t

. Let also MSP M = M
1

⋄M
2

omputes �. Sine �

t

6= �

t

it

is easy to hek that � is not T

l+s−1;n

as should be expeted from the example above.

Atually the importane of the hoie of the MSPs M
1

and M
2

ould be illustrated also with

the addition of shared serets. Reall that in the ase of addition eah player adds up the shares

he holds. It means that we use the same MSP (i.e., M
1

= M
2

) to share two serets the sum

of whih we want to alulate. Now if we take M
1

6= M
2

and share two serets by M
1

and

M
2

simple additions of the shares eah player holds are not enough. This observation leads

us to the onlusion that (may be) for an MSP M
1

there exists another MSP M
2

suh that

for their strongly multipliative resulting MSP M, omputing the aess struture �, we have

� = �

1

⊎ �

2

. The �rst step in this diretion is [4, Theorem 7℄, where M
1

and M
2

are dual,

i.e., �

⊥
2

= �

1

and in this ase we have  

1

=  

2

, "

1

= "

2

and '

1

= '

2

. Cramer et al. proved in

[4, Theorem 7℄ that " = "

1

⋄ "
1

belongs to the linear span of the rows of M = M

1

⋄M⊥
1

, when

the matries M

1

and M

⊥
1

satisfy the ondition M

T

1

M

⊥
1

= E. Here E is the matrix that is zero

everywhere, exept in its upper-left orner where the entry is 1. It is known how to derive the

matrix M

⊥
1

from matrix M

1

suh that they satisfy the equation above.

We are ready to prove our seond main result.

Theorem 3.5 Let �

1

and �

⊥
1

be the onneted aess strutures omputed by the MSPs M
1

and M⊥
1

. Let the MSP M be the strongly multipliative result of MSPs M
1

and M⊥
1

, and let

the aess struture � be omputed by the MSP M. Then � = �

1

⊎ �

⊥
1

= {P}.

Proof: It is known that {P} ∈ �. On the other hand from Proposition 3.4 we have � ⊆ �

1

⊎�⊥
1

,

thus it is suÆient to prove that �

1

⊎ �

⊥
1

⊆ {P}.
For any set A ∈ �

+

1

and any player i ∈ P , i =∈ A we have (A∪ i) ∈ �

1

. Set B



= A∪ i and hene

B = P \B ∈ �

⊥
1

. Therefore A ∪B = (P \ i) ∈ (�

1

⊎�

⊥
1

).

Let us assume that there exists a player j suh that (P \ j) =∈ (�

1

⊎�

⊥
1

). So, j ∈ A for every

set A ∈ �

+

1

, beause otherwise using the onstrution given above we arrive at a ontradition.
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Hene the aess struture �

1

has the star topology for the forbidden sets, i.e., there exists a

player j suh that for any set A ∈ [�℄

+

, j ∈ A. Hene �

1

is not onneted { ontradition whih

proves the statement of the theorem. 2

As example let us onsider again the threshold ase. Taking into aount that (T

l;n

)

⊥
= T

n−l+1;n

,

we have T

l;n

⊎ (T

l;n

)

⊥
= T

n;n

= {P}, whih is in aordane with Theorem 3.5.

4 Algebrai Simpli�ation for the Multipliation Protool on a

General Aess Struture

Now it is easy to desribe an analog of the algebrai simpli�ation protool by Gennaro et al.

in [7℄. From Lemma 3.3 we have S

1

= M

1

(s

1

; a) and S

2

= M

2

(s

2

; b) so S = S

1

⋄ S
2

=

(M

1

⋄M
2

)((s

1

; a)⊗ (s

2

; b)) =M(s

1

s

2

; �). For any set A ∈ � there exists a reombination vetor

� suh that M

T

A

� = " or in other words 〈�; S
A

〉 = s

1

s

2

, where as usual S

A

=M

A

(s

1

s

2

; �).

Let us hoose a new aess struture �

3

with MSP M
3

(it is possible for example �

1

= �

2

= �

3

)

and vetors h(i) for i = 1; : : : ;m suh that the �rst oordinate of h(i) is S

i

, i.e., 〈h(i); e"〉 = S

i

.

We use vetors h(i) to re-share the shares S

i

. Denote by H the matrix onsisting of olumns

h(i). It is easy to see that 〈H
A

�; e"〉 = s

1

s

2

, sine

〈H
A

�; e"〉 =
X

i∈A

�

i

〈h(i); e"〉 =
X

i∈A

�

i

S

i

= 〈�; S
A

〉 = s

1

s

2

:

Re-sharing the vetors h(i) with M
3

we have M

3

h(i) = TS(i) whih are temporary shares

for the seret S

i

. Note that for any B ∈ �

3

there exists a reombination vetor

e

� suh that

(M

3

)

T

B

e

� = e" or in other words 〈e�; TS(i)
B

〉 = S

i

, where as usual TS(i)

B

= (M

3

)

B

h(i). Let the

matrix G onsists of olumns TS(i), hene G = M

3

H. Notie that this matrix orresponds to

the temporary shares of all h(i)'s. And �nally denote by NS = G � =

P

�

j

TS(j).

Note that NS

j

= G

j

� = G

j;A

�

A

is the new share of the player j to the seret s

1

s

2

distributed

by MSP M
3

and it is obtained using only the temporary shares of the players from A ∈ �.

Indeed for j ∈ B we have NS

B

= G

B;A

�

A

and

〈NS
B

;

e

�〉 = 〈G
B;A

�

A

;

e

�〉 =
X

i∈A

〈TS(i)
B

�

i

;

e

�〉 =
X

i∈A

�

i

〈(M
3

)

B

h(i);

e

�〉

=

X

i∈A

�

i

〈h(i); (M
3

)

T

B

e

�〉 =
X

i∈A

�

i

〈h(i); e"〉 = 〈H
A

�; e"〉 = s

1

s

2

:

Thus the simpli�ed multipliation protool is as follows:

1) Eah player i multiply loally his shares (for simpliity let they own one share from eah

of the aess strutures) (S

1

)

i

and (S

2

)

i

.

2) The player i hooses a random vetor h(i) suh that its �rst oordinate is the produt,

(i.e., (S

1

)

i

(S

2

)

i

= S

i

.)

3) Using the vetor h(i) and M
3

he re-shares (using VSS) the produt.

4) Every player k reeives from player i a temporary share TS(i)

k

.

5) For some set of \good" players A ∈ � with reombination vetor �

A

, eah player k alu-

lates his new-share NS

k

as NS

k

=

P

i∈A TS(i)k �i.
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6) The new-shares have the property that any set of \good" players B ∈ �

3

ould restore the

seret s

1

s

2

.

5 Adaptive Adversary: The Zero-Error Case

Reall that in our adaptive adversary model we have adversary with two privay strutures �

1

,

�

2

and with one adversary struture �

A

⊆ �

1

, �

A

⊆ �

2

. For ommitments based on MSPs

one an onstrut error-free ommitment protool, provided that the MSP we have is strongly

multipliative.

In order to build a MPC protool seure against ative adversary in the non-omputational

model it is suÆient for the MSPs M
1

, M
2

and M to satisfy the VSS onditions from [6℄ and �

to be the strongly multipliative result of MSPs omputing �

1

and �

2

. Combining Proposition

3.4 and the VSS onditions of Fehr and Maurer our third main result follows.

Theorem 5.1 The suÆient onditions for existene of general perfet information-theoretially

seure MPC, seure against (�

1

;�

2

;�

A

)-adversary are

(�

A

⊎ �

A

)

⊥ ⊆ � ⊆ �

1

⊎ �

2

;

where � is the aess struture omputed by the strongly multipliative resulting MSP M =

M
1

⋄M
2

.

Note that from Theorem 5.1 it follows that we have P =∈ �

1

⊎�

2

⊎�

A

⊎�

A

, whih is weaker

ondition than the ondition of Maurer [9℄.

In order to build a MPC protool seure against ative adversary in the omputational model

it is suÆient for the MSPs M
1

, M
2

, M
3

to satisfy the VSS onditions and that � be the

strongly multipliative result of MSPs omputing �

1

and �

2

. Note that we do not need anymore

M to satisfy the VSS onditions, sine the algebrai simpli�ation for multipliation protool

presented in the previous setion and the homomorphi ommitments [7, 4℄ allow us to detet

heaters and to \redue" the aess struture � to any aess struture �

3

, whih we will all

\redued". Hene we obtain our fourth main result.

Theorem 5.2 If trapdoor one-way permutation exists, then the suÆient onditions for exis-

tene of general perfet seure MPC in the ryptographi senario, seure against (�

1

;�

2

;�

A

)-

adversary are

�

⊥
A

⊆ � ⊆ �

1

⊎ �

2

; �

⊥
A

⊆ �

3

;

where � is the aess struture omputed by the strongly multipliative resulting MSP M =

M
1

⋄M
2

and �

3

is the \redued" aess struture.
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6 Appendix

6.1 Notation

For an arbitrary matrix M over F, with m rows labelled by 1; : : : ;m let M

A

denote the matrix

obtained by keeping only those rows i with i ∈ A, where A is an arbitrary non-empty subset

of {1; : : : ;m}. If {i} = A we write M

i

. Let M

T

A

denote the transpose of M

A

, and let Im(M

T

A

)

denote the F-linear span of the rows of M

A

. We use Ker(M

A

) to denote the kernel of M

A

, i.e.,

all linear ombinations of the olumns of M

A

, leading to 0.

Let v = (v

1

; : : : ; v

t

1

) ∈ F
t

1

and w = (w

1

; : : : ; w

t

2

) ∈ F
t

2

be two vetors. The tensor vetor

produt v ⊗ w is de�ned as a vetor in F
t

1

t

2

suh that the j-oordinate in v (denoted by v

j

)

is replaed by v

j

w, i.e., v ⊗ w = (v

1

w; : : : ; v

t

1

w) ∈ F
t

1

t

2

. De�ne v ⊗M to be the matrix with

olumns v⊗ k-th olumn of M , for k = 1; : : : ; d. Analogously de�ne M ⊗ v to be the matrix

with olumns k-th olumn of M ⊗v, for k = 1; : : : ; d.

De�nition 6.1 The dual �

⊥
of a monotone aess struture � de�ned on P is the olletion of

sets A ⊆ P suh that A



=∈ �.
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De�nition 6.2 For an aess struture (�;�) ore� is de�ned to be the set of players whih

are in some minimal authorized set, that is

ore� = ∪
A∈[�℄−A :

De�nition 6.3 An aess struture (�;�) is onneted if ore� = P , when P is the set of all

players.

6.2 Tehnial Lemmas

Some useful tehnial lemmas.

Lemma 6.4 Let w ∈ F
d

and v ∈ F
m

2

be arbitrary olumn vetors and M be a m

1

× d matrix.

Then the following equations hold

(M ⊗ v)w = (Mw)⊗ v; (v ⊗M)w = v ⊗ (Mw):

Lemma 6.5 Let x; a ∈ F
m

and y; b ∈ F
n

are arbitrary vetors, then the following equality holds

〈x⊗ y; a⊗ b〉 = 〈x; a〉〈y; b〉:

Lemma 6.6 The onstrution for ⊗ is symmetri with respet to the rows and olumns, i.e.,

(M

1

⊗M

2

)

T

=M

T

1

⊗M

T

2

:

Lemma 6.7 LetM

1

be an m

1

×d
1

matrix, and M

2

be an m

2

×d
2

matrix. And letM =M

1

⊗M
2

(i.e., M is an m

1

m

2

× d

1

d

2

matrix), then for arbitrary olumn vetors �

1

∈ F
d

1

and �

2

∈ F
d

2

the following equality holds

M(�

1

⊗ �

2

) = (M

1

⊗M

2

)(�

1

⊗ �

2

) = (M

1

�

1

)⊗ (M

2

�

2

) :

Using the Lemma 6.7 it is easy to see that " = "

1

⊗ "

2

belongs to the linear span of the rows of

M .

Corollary 6.8 Let �

1

∈ F
m

1

and �

2

∈ F
m

2

be reombination vetors for M

1

and M

2

(i.e.,

M

T

1

�

1

= "

1

and M

T

2

�

2

= "

2

). Then � = �

1

⊗ �

2

∈ F
m

1

m

2

is the reombination vetor for

M =M

1

⊗M

2

, i.e., the following equality holds

M

T

� = " :

A property analogous to that in Lemma 6.5 for the operation diamond ⋄ holds.

Lemma 6.9 Let x; a ∈ F
d

1

and y; b ∈ F
d

2

be arbitrary vetors, then the following equality holds.

〈x ⋄ y; a ⋄ b〉 =
X

t

〈�x
t

; �a

t

〉〈�y
t

;

�

b

t

〉 :

A lemma analogous to Lemma 6.4 immediately follows from the onstrution diamond ⋄.

Lemma 6.10 Let w ∈ F
d

and v ∈ F
m

be arbitrary olumn vetors and M be an m× d matrix.

Then the following equations hold

(M ⋄ v)w = (Mw) ⋄ v; (v ⋄M)w = v ⋄ (Mw):
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Lemma 6.11 Let M

1

be an m

1

× d

1

matrix, and M

2

be an m

2

× d

2

matrix. Construt the

matrix M as explained above (i.e., M =M

1

⋄M
2

is m×d
1

d

2

matrix), then for arbitrary olumn

vetors �

1

∈ F
m

1

, �

2

∈ F
m

2

the following equality holds

M

T

(�

1

⋄ �
2

) = (M

1

⋄M
2

)

T

(�

1

⋄ �
2

) =

n

X

t=1

((M

1

)

T

t

(

�

�

1

)

t

)⊗ ((M

2

)

T

t

(

�

�

2

)

t

) :

6.3 Examples

Example 1

Let �

−
1

= {13; 14; 23; 24; 34} and F = GF (2). It is easy to hek that (�

1

⊎ �

1

)

−
= {234; 134}.

On the other hand for the aess struture � omputed by the MSPM

1

⋄M
1

we have � = �

1

⊎�
1

.

(sum 3th, 5th, 8th and 9th row with the �rst or the seond row).

M

1

=

0

B

B

B

B

B

B

�

0 1 1

0 1 1

1 1 0

0 0 1

1 1 1

0 1 0

1

C

C

C

C

C

C

A

M

1

⋄M
1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1

1 1 0 1 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0

1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Example 2

Let �

−
2

= {12; 14; 23; 24; 34} and F = GF (2). It is easy to hek that (�

1

⊎�
2

)

−
= {234}. On the

other hand for the aess struture � omputed by the MSPM

1

⋄M
2

we have � = {P} ⊂ �

1

⊎�
2

(sum all rows exept last three ones, for the set {P}). For the set {234} there is a vetor

k = (110|101|011) ∈ Ker(M

1

⋄M
2

), i.e., the set {234} =∈ �.

M

2

=

0

B

B

B

B

B

B

�

0 1 1

1 1 0

0 0 1

0 1 1

1 1 1

0 1 0

1

C

C

C

C

C

C

A

M

1

⋄M
2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 0 1 1 0 1 1

0 0 0 1 1 0 1 1 0

0 0 0 0 0 1 0 0 1

0 1 1 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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