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Abstra
t

We use a general treatment of both information-theoreti
 and 
ryptographi
 settings for

Multi-Party Computation (MPC), based on the underlying linear se
ret sharing s
heme. Our

goal is to study the Monotone Span Program (MSP), whi
h is the result of lo
al multipli
ation

of shares distributed by two given MSPs as well as the a

ess stru
ture that this resulting

MSP 
omputes. First, we expand the 
onstru
tion proposed by Cramer et al. multiplying

two di�erent general a

ess stru
tures and we prove some properties of the resulting MSPM.

Next we expand the de�nition of multipli
ative MSPs and we prove that when one uses dual

MSPs only all players together 
an 
ompute the produ
t, i.e., the 
onstru
tion proposed by

Cramer et al. gives only multipli
ative MPC. Third, we propose a solution for the strongly

multipli
ative MPC (in presen
e of adversary). The knowledge of the resulting MSP and

the a

ess stru
ture it 
omputes allows us to build an analog of the algebrai
 simpli�
ation

proto
ol of Gennaro et al. We show how to a
hieve in the 
omputational model MPC se
ure

against adaptive adversary in the zero-error 
ase, through the appli
ation of homomorphi



ommitments. There is an open problem how eÆ
iently we 
an determine � the a

ess

stru
ture of the resulting MSP M. This open problem re
e
ts negatively on the eÆ
ien
y

of the proposed solution.

1 Introdu
tion

The 
on
ept of se
ret sharing was introdu
ed by Shamir as a tool to prote
t a se
ret simultane-

ously from exposure and from being lost. It allows a so 
alled dealer to share the se
ret among

a set of entities, usually 
alled players, in su
h a way that only 
ertain spe
i�ed subsets of the

players are able to re
onstru
t the se
ret while smaller subsets have no information about it.

We 
all the groups who are allowed to re
onstru
t the se
ret quali�ed (denoted by �), and the

groups who should not be able to obtain any information about the se
ret forbidden (denoted

by �). The tuple (�;�) is 
alled an a

ess stru
ture if � ∩ � = ∅. Denote by P the set of
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parti
ipants in the s
heme. If � = �




is the 
omplement of �, then we say that (�;�) is


omplete and we denote it only by �.

It is 
ommon to model 
heating by 
onsidering an adversary who may 
orrupt some subset of

the players. One 
an distinguish between passive and a
tive 
orruption, see Fehr and Maurer

[6℄ for re
ent results. The adversary is 
hara
terized by a priva
y stru
ture � and an adversary

stru
ture �

A

⊆ �. Denote the 
omplement �

A

= �




A

. Fehr and Maurer [6℄ and Nikov et al. [10℄


alled this set honest (or good) players stru
ture, whi
h in fa
t appears to be misleading term.

A
tually its dual a

ess stru
ture �

⊥
A

should be 
alled the honest (or good) players stru
ture,

sin
e for any set G of good players the 
omplement G




is the set of 
orrupted players from �

A

:

Both passive and a
tive adversaries may be either stati
, meaning that the set of 
orrupted

players is 
hosen on
e and for all before the proto
ol starts, or adaptive meaning that the

adversary 
an at any time during the proto
ol 
hoose to 
orrupt a new player based on all the

information he has at the time, as long as the total set is in �

A

.

Most proposed Se
ret Sharing S
hemes (SSS) are linear, but the 
on
ept of a Linear Se
ret

Sharing S
heme (LSSS) was �rst 
onsidered in its full generality by Kar
hmer and Wigderson,

who introdu
ed the equivalent notion of Monotone Span Program (MSP), whi
h we des
ribe

later. Ea
h linear SSS 
an be viewed as derived from a monotone span program M 
omputing

its a

ess stru
ture. On the other hand, ea
h monotone span program gives rise to an LSSS.

Hen
e, one 
an identify an LSSS with its underlying monotone span program. Su
h an MSP

always exists, be
ause MSPs 
an 
ompute any monotone fun
tion. Now we will 
onsider any


omplete a

ess stru
ture �, whi
h des
ribes subsets of parti
ipants that are quali�ed to re
over

the se
ret s ∈ F (F here is a �nite �eld) in the set of possible se
ret values, as long as � admits

a linear se
ret sharing s
heme.

Sin
e an LSSS neither guarantees re
onstru
tability when some shares are in
orre
t, nor veri�a-

bility of a shared value a stronger primitive veri�able se
ret sharing (VSS) has been introdu
ed

in [5, 1℄. In VSS a dealer distributes a se
ret value among the players, where the dealer and/or

some of the players may be 
heating. It is guaranteed that if the dealer is honest, then the


heaters obtain no information about the se
ret, and all honest players will later be able to

re
onstru
t it, without the help of the dealer. Even if the dealer 
heats, a unique value will be

determined and is re
onstru
tible without the 
heaters' help. Se
ure multi-party 
omputation

(MPC) 
an be de�ned as follows: n players 
ompute an agreed fun
tion of their inputs in a

\se
ure" way, where \se
ure" means guaranteeing the 
orre
tness of the output as well as the

priva
y of the players' inputs, even when some players 
heat. A key tool for se
ure MPC, is

VSS. We will 
onsider the standard syn
hronous model with a broad
ast 
hannel.

The paper is organized as follows: In the next Se
tion 3 we propose the main 
onstru
tion

diamond ⋄ and investigate its properties. Then in Se
tion 4 an algebrai
 simpli�
ation for

multipli
ation is des
ribed. In the last se
tion 
onditions for existen
e of MPC se
ure against

adaptive adversary are 
onsidered.

2 Preliminaries

2.1 Related Work

The basi
 notation and linear algebra te
hniques that we will use from now on are summarized

in the Appendix. The following operation (
alled element-wise union) for monotone de
reasing

sets was introdu
ed in [10, 6℄.
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De�nition 2.1 [10, 6℄ We de�ne the operation ⊎ for any monotone de
reasing sets �

1

;�

2

as follows: �

1

⊎�

2

= {A = A

1

∪A
2

;A

1

∈ �

1

; A

2

∈ �

2

} and the operation ⊎ for any monotone

in
reasing sets �

1

;�

2

as follows: �

1

⊎ �

2

= {A = A

1

∪A
2

;A

1

=∈ �

1

; A

2

=∈ �

2

}
.

De�nition 2.2 [2, 4℄ A Monotone Span Program (MSP) M is a quadruple (F;M; ";  ),

where F is a �nite �eld, M is a matrix (with m rows and d ≤ m 
olumns) over F,  :

{1; : : : ;m} → {1; : : : ; n} is a surje
tive fun
tion and " is a �xed ve
tor, 
alled target ve
tor,

e.g. , 
olumn ve
tor (1; 0; :::; 0) ∈ F
d

: The size of M is the number m of rows.

As  labels ea
h row with a number from [1; : : : ;m℄ 
orresponding to a �xed player, we 
an

think of ea
h player as being the \owner" of one or more rows. For every player we 
onsider a

fun
tion ' whi
h gives the set of rows owned by the player, i.e., ' is \inverse" of  .

An MSP is said to 
ompute a (
omplete) a

ess stru
ture � when " ∈ Im(M

T

'(G)

) if and only

if G is a member of �. Hen
e, the players 
an re
onstru
t the se
ret pre
isely if the rows they

own 
ontain in their linear span the target ve
tor of M, and otherwise they get no information

about the se
ret, i.e., there exists a so 
alled re
ombination ve
tor r su
h that 〈r;M
G

(s; �)〉 = s

and M

T

G

r = " for any se
ret s and any �. It is well known that the ve
tor " =∈ Im(M

T

N

) if and

only if there exists a k ∈ F
d

su
h that M

N

k = 0 and k

1

= 1.

The main goal of our paper is to study the properties of a 
onstru
tion whi
h builds MPCs from

any LSSS. Be
ause of the linearity LSSS provide it is easy to add se
rets se
urely { it is suÆ
ient

for ea
h player to add up the shares he holds. Therefore, to a
hieve general MPC, it suÆ
es

to implement multipli
ation of shared se
rets. That is, we need a proto
ol where ea
h player

initially holds shared se
rets s and s

′
, and ends up holding a share of the produ
t ss

′
. Several

su
h proto
ols are known for the threshold 
ase [1, 3, 7, 8℄ and for general a

ess stru
ture [2, 4℄.

We follow the approa
h proposed by Cramer et al. in [2, 4℄ to build an MPC from any LSSS,

provided that the LSSS is what they 
all (strongly) multipli
ative. Loosely speaking, an LSSS is

(strongly) multipli
ative if ea
h player i 
an, from his shares of se
rets s and s

′
, 
ompute a value




i

, su
h that the produ
t ss

′

an be obtained using all values (only values from honest players).

One possible 
onstru
tion for MSP, introdu
ed by Cramer [2℄, is M⊗, i.e., a matrix obtained

from matrix M by repla
ing ea
h row v of M with v ⊗ v. Denote the new MSP by M⊗ =

(F;M⊗; "⊗ ";  ). Hen
e M = (F;M; ";  ) is an MSP with multipli
ation if and only if " ⊗ " ∈
Im(M

T

⊗ ) : It is shown also in [2℄ that for any MSP M, and for all b and b

′
, the following

equality holds s ∗ s′ = (Mb) ∗ (Mb

′
) =M⊗(b⊗ b

′
) : where s ∗ s′ is the so-
alled star produ
t, i.e.,

s ∗ s′ = (s

1

; : : : ; s

n

) ∗ (s′
1

; : : : ; s

′
n

) = (s

1

s

′
1

; : : : ; s

n

s

′
n

):

Let � be an a

ess stru
ture, 
omputed by the MSP M = (F;M; ";  ). Given two m-ve
tors

x and y, Cramer et al. in [2, 4℄ denote x ⋄ y to be the ve
tor 
ontaining all the entries of the

form x

i

y

j

, where  (i) =  (j). Thus, if m

i

= |'(i)| is the number of rows owned by a player

i, then x ⋄ y has m =

P

i

m

2

i

entries. So, if x and y 
ontain shares resulting from sharing two

se
rets using M, then the ve
tor x ⋄ y 
an be 
omputed using only lo
al 
omputations by the

players, i.e., ea
h 
omponent of the ve
tor 
an be 
omputed by one player. Hen
e when ea
h

player owns exa
tly one row in M the operations ⋄ and ∗ 
oin
ide.

Denote by M
A

the MSP obtained from M by keeping only the rows owned by players in A, for

any players subset A.

De�nition 2.3 [2, 4℄ A multipli
ative MSP is an MSP M for whi
h there exists an m-ve
tor

r 
alled a re
ombination ve
tor, su
h that for any two se
rets s

′
and s

′′
and any �

′
and �

′′
,
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it holds that

s

′
s

′′
= 〈r;M(s

′
; �

′
) ⋄M(s

′′
; �

′′
)〉 :

It is said that M is strongly multipli
ative if for any subset A of players that is not quali�ed

by M, M
A




is multipli
ative.

Throughout the paper we will 
onsider presen
e of adaptive adversary. Sin
e the adversary we


an tolerate is at least a Q

2

adversary and sin
e the 
ondition Q

2

is equivalent to �

A

∩ �

⊥
A

= ∅
(and to �

⊥
A

⊆ �

A

), we have that the honest players stru
ture has no interse
tion with the

adversary stru
ture.

Re
ently Maurer [9℄ has proved that general perfe
t information-theoreti
ally MPC se
ure

against a (�

1

;�

A

)-adversary is possible if and only if P =∈ �

1

⊎ �

1

⊎ �

A

or equivalently if

and only if �

⊥
A

⊆ �

1

⊎ �

1

: Noti
e that thanks to the lo
al 
omputation model for MPC the

intera
tion between players is redu
ed, and in this way we may think of the MPC as a kind of

VSS.

A re
ent result, whi
h gives ne
essary and suÆ
ient 
onditions for the existen
e of VSS has been

proved by Fehr and Maurer in [6℄: the robustness, strong robustness and very strong robustness


onditions for VSS are ful�lled if and only if P =∈ � ⊎ �

A

⊎ �

A

or equivalently if and only if

(�

A

⊎ �

A

)

⊥ ⊆ �.

2.2 Our Results

We fo
us on the general treatment of non-
ryptographi
 (i.e., information-theoreti
ally se
ure)

multi-party 
omputation, based on an underlying linear se
ret sharing s
heme. Our resear
h

relies mainly on the de�nitions and results by Cramer et al. in [4℄ about General Se
ure Multi-

Party Computation.

First we expand the 
onstru
tion proposed by Cramer et al. in [2, 4℄. Let �

1

and �

2

be a

ess

stru
tures, 
omputed by MSPs M
1

= (F;M
1

; "

1

;  

1

) and M
2

= (F;M
2

; "

2

;  

2

): Let also M

1

be

an m

1

× d

1

matrix, M

2

be an m

2

× d

2

matrix and '

1

, '

2

are the \inverse" fun
tions of  

1

and

 

2

. Given an m

1

-ve
tor x and an m

2

-ve
tor y, we denote x ⋄ y to be the ve
tor 
ontaining all

entries of form x

i

y

j

, where  

1

(i) =  

2

(j). Thus x ⋄ y has m =

P

i

|'
1

(i)||'
2

(i)| entries (noti
e
that m < m

1

m

2

). So, if x and y 
ontain shares resulting from sharing two se
rets using M
1

and M
2

, then the ve
tor x ⋄ y 
an be 
omputed using only lo
al 
omputation by the players,

i.e., ea
h 
omponent of the ve
tor 
an be 
omputed by one player. In other words we de�ne

the operation diamond ⋄ for ve
tors (and analogously for matri
es) as 
on
atenation of ve
tors

(matri
es), whi
h are tensor (⊗) multipli
ation of the sub-ve
tors (sub-matri
es) belonging to a

�xed player, see (1) and (2).

Following this new model we expand the de�nition for a multipli
ative MSP.

De�nition 2.4 De�ne MSP M to be (F;M = M

1

⋄M
2

; " = "

1

⋄ "
2

;  ), where  (i; j) = r if

and only if  

1

(i) =  

2

(j) = r. Given two MSPs M
1

and M
2

, the MSP M is 
alled their

multipli
ative resulting MSP if there exists an m-ve
tor r 
alled a re
ombination ve
tor,

su
h that for any two se
rets s

′
and s

′′
and any �

′
and �

′′
, it holds that

s

′
s

′′
= 〈r;M

1

(s

′
; �

′
) ⋄M

2

(s

′′
; �

′′
)〉 = 〈r;M((s

′
; �

′
)⊗ (s

′′
; �

′′
))〉 :

This means that one 
an 
onstru
t a multipli
ative resulting MSP that 
omputes the produ
t

of the se
rets shared by MSPs M
1

and M
2

.
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De�nition 2.5 Given two MSPs M
1

and M
2

, the MSP M is 
alled their strongly multi-

pli
ative resulting MSP if the a

ess stru
ture � 
omputed by M is su
h that for any players'

subset A ∈ �, M
A

is the multipli
ative resulting MSP of (M
1

)

A

and (M
2

)

A

.

The last de�nition means that one 
an 
onstru
t a strongly multipli
ative resulting MSP, 
om-

puting the produ
t of the se
rets shared by MSPs M
1

and M
2

, with some a

ess stru
ture

�. The di�eren
e between the multipli
ative resulting MSP and the strongly multipli
ative

resulting MSP is that in the �rst one � = {P}.
Let �

1

and �

2

be the a

ess stru
tures 
omputed by the MSPs M
1

and M
2

, and su
h that

satisfy the VSS 
onditions given in [6℄. Let the MSP M be the strongly multipli
ative result of

MSPs M
1

and M
2

, and let the a

ess stru
ture � be 
omputed by the MSP M. Our �rst goal

will be to investigate the properties that the a

ess stru
ture � and the MSP M posses. We

will prove in Proposition 3.4 that for the resulting MSP M we have � ⊆ �

1

⊎ �

2

. (Noti
e that

� may be equal to ∅.) Note that, if we know the requirements for the a

ess stru
tures �

1

and

�

2

su
h that the equality in Proposition 3.4 holds, then in fa
t we will have an eÆ
ient solution

for the strongly multipli
ative 
ase.

Our se
ond main result Theorem 3.5 shows that the a

ess stru
ture � 
omputed by the resulting

MSP M of MSPs M
1

and M⊥
1

is in fa
t the whole set of players P . Theorem 3.5 implies that

only all players together 
an 
ompute the produ
t of the se
rets, hen
e M is the multipli
ative

resulting MSP, but not the strongly multipli
ative resulting MSP. Therefore the 
onstru
tion

proposed by Cramer et al. in [4℄ is not appli
able in the strongly multipli
ative 
ase.

The use of strongly multipli
ative LSSS allows us to think about the MPC as a kind of VSS,

sin
e no intera
tion between the players is needed to 
ompute the produ
t of two se
rets. Un-

fortunately in the general 
ase the pi
ture 
oin
ides with the threshold 
ase. As Ben-Or et al.

note in their seminal paper [1℄ the new shares 
omputed after lo
al multipli
ation 
orrespond

to a higher (double) degree polynomial whi
h is not random. To over
ome this problem they

introdu
ed a degree redu
tion and randomization proto
ols. Later Gennaro et al. [7℄ a
hieve

both tasks in a single step, whi
h they 
all an algebrai
 simpli�
ation for the multipli
ation

proto
ol. As we will prove in the 
ase of general a

ess stru
tures we have the same problem as

des
ribed by Ben-Or et al. The new shares 
omputed after lo
al multipli
ation 
orrespond to

a mu
h \smaller" a

ess stru
ture � and the shares are 
omputed using a non-random ve
tor.

On the other hand the knowledge of the a

ess stru
ture � allows us to build an analog of the

algebrai
 simpli�
ation proto
ol of Gennaro et al.

The adversary is 
alled (�

1

;�

A

)-adversary if �

1

is his priva
y stru
ture and �

A

⊆ �

1

is

his adversary stru
ture. In our adaptive adversary model we have adversary with two priva
y

stru
tures �

1

, �

2

and with one adversary stru
ture �

A

⊆ �

1

, �

A

⊆ �

2

. Finally, we propose

solutions in both information-theoreti
 and 
omputational models for the strongly multipli
ative

MPC.

In the information-theoreti
ally se
ure general MPC model it is suÆ
ient � to satisfy the VSS


onditions form [6℄ and � to be the strongly multipli
ative result of MSPs 
omputing �

1

(MSP

M
1

) and �

2

(MSP M
2

). Combining these 
onditions we prove our third main result Theorem

5.1, whi
h gives that suÆ
ient 
onditions for existen
e of general perfe
t information-theoreti-


ally se
ure MPC, se
ure against (�

1

;�

2

;�

A

)-adversary is (�

A

⊎ �

A

)

⊥ ⊆ � ⊆ �

1

⊎ �

2

.

In the 
omputational model for se
ure general MPC we use the algebrai
 simpli�
ation for multi-

pli
ation proto
ol, presented in Se
tion 4, and the homomorphi
 
ommitments [7, 4℄ to \redu
e"

the a

ess stru
ture � to any a

ess stru
ture �

3

, provided the VSS 
onditions for �

3

holds. As
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we will prove in our fourth main result Theorem 5.2 here we need weaker 
onditions for � than

in the information-theoreti
 model. In other words, if trapdoor one-way permutation exists,

then the suÆ
ient 
onditions for existen
e of general perfe
t se
ure MPC in the 
ryptographi


s
enario, se
ure against (�

1

;�

2

;�

A

)-adversary is �

⊥
A

⊆ � ⊆ �

1

⊎ �

2

.

As a 
onsequen
e of the 
onsidered model we obtain a requirement for the a

ess stru
ture �

i.e. �

⊥
A

⊆ �, whi
h turns out to be equivalent to the Cramer et al. de�nition of the strongly

multipli
ative MSP.

3 Main Results

3.1 The Diamond ⋄ Constru
tion

A natural 
onstru
tion for the resulting MSP is the well known Krone
ker produ
t (
onstru
tion

⊗) of matri
es. The problem with this 
onstru
tion is that we do not know whom ea
h row

belongs to and that the lo
al 
omputation 
ase is not appli
able. In the appendix we give some

useful properties of the matrixM =M

1

⊗M
2

. To avoid the inherent problem of the 
onstru
tion

⊗, we study the diamond ⋄ 
onstru
tion.

Consider the ve
tor x. Let us 
olle
t the 
oordinates in x, whi
h belong to the player t in

a sub-ve
tor x

t

or x = (�x

1

; : : : ; �x

n

). Hen
e �x

t

∈ F
|'(t)|

. Thus we have obviously 〈x; y〉 =

〈(�x
1

; : : : ; �x

n

); (�y

1

; : : : ; �y

n

)〉 =
P

t

〈�x
t

; �y

t

〉 . Also noti
e that the operation diamond ⋄ for ve
tors


ould be de�ned as:

x ⋄ y = (�x

1

⊗ �y

1

; : : : ; �x

n

⊗ �y

n

) : (1)

We de�ne an operation diamond for the matri
es and 
onstru
t a new matrix M as follows. We

will denote it by M =M

1

⋄M
2

.

For ea
h parti
ipant t 
onsider the rows he owns in both matri
es. Then for ea
h row (M

1

)

i

of

M

1

, su
h that  

1

(i) = t and for ea
h row (M

2

)

j

of M

2

, su
h that  

2

(j) = t, 
al
ulate a new row

(M

1

)

i

⊗ (M

2

)

j

of M , and write  (i; j) = t. Hen
e m is de�ned as m =

P

t∈P |'
1

(t)||'
2

(t)|, and
M is an m× d

1

d

2

matrix.

Remarks on the Constru
tion: We assume, without restri
tion for the MSP, that its rows

are ordered as follows: �rst we have |'(1)| rows that belong to the player 1, next |'(2)| rows
belonging to the player 2, et
. Then the 
onstru
tion shows that ea
h row (M

1

)

i

of M

1

, su
h

that  

1

(i) = t is tensor multiplied to ea
h row (M

2

)

j

of M

2

, su
h that  

2

(j) = t. In other words

for any sub-matrix, whi
h belongs to a �xed player we apply the 
onstru
tion ⊗.
On the other hand for the 
olumns in M we have the following result: the �rst 
olumn of M

1

is ⋄ multiplied to ea
h 
olumn of M

2

, next the se
ond 
olumn of M

1

is ⋄ multiplied to ea
h


olumn of M

2

, and so on. Thus the pro
ess is analogous to the 
ase of ⊗ 
onstru
tion, with the

di�eren
e that the operation ⊗ is repla
ed by ⋄.
To make the explanations 
learer let us denote by (M

1

)

t

the matrix formed by rows ofM

1

owned

by player t and 
orrespondingly by (M

2

)

t

the matrix formed by rows of M

2

owned by player t.

Then (M

1

)

t

is a |'
1

(t)|×d
1

matrix and (M

2

)

t

is a |'
2

(t)|×d
2

matrix. Hen
e we 
an presentM

1

as a 
on
atenation of the matri
es (M

1

)

t

for t = 1; : : : ; n and analogously we 
an present M

2

as a 
on
atenation of the matri
es (M

2

)

t

for t = 1; : : : ; n. Now from the 
onstru
tion diamond

⋄ follows that the matrix M = M

1

⋄M
2

is the 
on
atenation of matri
es (M

1

)

t

⊗ (M

2

)

t

for
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t = 1; : : : ; n. i.e.,

M

1

=

0

�

(M

1

)

1

: : :

(M

1

)

n

1

A

; M

2

=

0

�

(M

2

)

1

: : :

(M

2

)

n

1

A

; and M =

0

�

(M

1

)

1

⊗ (M

2

)

1

: : :

(M

1

)

n

⊗ (M

2

)

n

1

A

: (2)

3.2 Properties of the Diamond ⋄ Constru
tion

We present some useful properties of the new 
onstru
tion diamond ⋄ as well as some properties

of the Krone
ker produ
t in the Appendix. Here, �rst we show that the 
onstru
tion is symmetri


regarding to the MSPs M
1

and M
2

.

Lemma 3.1 The MSPs M = M
1

⋄M
2

and

fM = M
2

⋄M
1

a
tually 
ompute the same a

ess

stru
ture �.

Lemma 3.2 Let M

1

be an m

1

×d
1

matrix, and M

2

be an m

2

×d
2

matrix. Constru
t the matrix

M following the 
onstru
tion ⋄ (i.e., M = M

1

⋄M
2

is m × d

1

d

2

matrix), then for arbitrary


olumn ve
tors �

1

∈ F
d

1

, �

2

∈ F
d

2

the following equality holds

M(�

1

⊗ �

2

) = (M

1

⋄M
2

)(�

1

⊗ �

2

) = (M

1

�

1

) ⋄ (M
2

�

2

) :

Note that the 
onstru
tion diamond ⋄ and Lemma 3.2 
on�rm our intuitive expe
tations, as

shown in the following lemma.

Lemma 3.3 Let us denote by S

1

=M

1

(s

1

; a) and S

2

=M

2

(s

2

; b) the shares distributed by MSPs

M
1

and M
2

, for the se
rets s

1

and s

2

respe
tively. Then MSP M a
tually distributes shares

S = S

1

⋄ S
2

for the se
ret s

1

s

2

.

Note that we have S = (M

1

⋄M
2

)((s

1

; a) ⊗ (s

2

; b)) and that the ve
tor (s

1

; a)⊗ (s

2

; b) is not a

random any more.

Now we are in position to prove our �rst main proposition.

Proposition 3.4 Let �

1

and �

2

be the a

ess stru
tures 
omputed by the MSPs M
1

and M
2

.

Let the MSP M be the strongly multipli
ative result of MSPs M
1

and M
2

, and let the a

ess

stru
ture � be 
omputed by the MSP M. Then � ⊆ �

1

⊎ �

2

. (Noti
e that � may be equal to ∅.)

Proof: Let A

1

=∈ �

1

. Hen
e there exists a ve
tor k ∈ Ker((M

1

)

A

1

) su
h that k

1

= 1. Analo-

gously, let A

2

=∈ �

2

. Hen
e there exists a ve
tor r ∈ Ker((M

2

)

A

2

) su
h that r

1

= 1. Noti
e that

k ∈ F
d

1

and r ∈ F
d

2

. Let A = A

1

∪A
2

, so we have A =∈ �

1

⊎�
2

. Form a new ve
tor k⊗r ∈ F
d

1

d

2

.

Now using Lemma 6.5 it follows that the ve
tor k ⊗ r ∈ Ker(M

A

) and (k ⊗ r)

1

= 1. Hen
e

A =∈ �, thus � ⊆ �

1

⊎ �

2

. 2

3.3 Properties of the Resulting MSP

An interesting open question is when the \equality" holds? One 
an see from the examples given

in the appendix that \equality" does not always hold.

Note that � = �

1

⋄ �
2

may not be the re
ombination ve
tor for M = M

1

⋄ M
2

. For ea
h

B ∈ �

1

⊎ �

2

we have that B ∈ �

1

and B ∈ �

2

, hen
e there exist re
ombination ve
tors

�

1

and �

2

su
h that M

T

1

�

1

=

P

n

t=1

(M

1

)

T

t

(

�

�

1

)

t

= "

1

and M

T

2

�

2

=

P

n

t=1

(M

2

)

T

t

(

�

�

2

)

t

= "

2

.

7



On the other hand we have "

1

⋄ "
2

= " and ea
h 
olumn in M is equal to a 
olumn of M

1

⋄ a 
olumn of M

2

. Unfortunately � may not satisfy the 
ondition (applying Lemma 6.11)

M

T

� =M

T

(�

1

⋄ �
2

) =

P

n

t=1

((M

1

)

T

t

(

�

�

1

)

t

)⊗ ((M

2

)

T

t

(

�

�

2

)

t

) = ".

Consider for example the threshold 
ase. Denote by T

s;n

the s-out-of-n threshold a

ess stru
-

ture, then it is easy to verify that T

l;n

⊎ T

s;n

= T

l+s−1;n

. On the other hand ea
h player t

holds ve
tors w = (1; �

t

; : : : ; �

s−1

t

) and v = (1; �

t

; : : : ; �

l−1

t

) from MSPs 
omputing T

s;n

and T

l;n


orrespondingly. Thus the 
onstru
tion proposed above gives

v ⊗ w = (1; �

t

; : : : ; �

s−1

t

; �

t

; �

2

t

; : : : ; �

s

t

; : : : : : : : : : ; �

l−1

t

; : : : ; �

s+l−2

t

) :

It is well known that the number of 
olumns (here d = sl−1) 
an be in
reased without 
hanging

the a

ess stru
ture 
omputed by an MSP. The spa
e generated by the 2nd up to the d-th


olumn of M does not 
ontain even a non-zero multiple of the �rst 
olumn. Without 
hanging

the a

ess stru
ture that is 
omputed, we 
an always repla
e the 2nd up to the d-th 
olumn of

M by any set of ve
tors that generates the same spa
e.

Hen
e v⊗w is equivalent to (1; �

t

; : : : ; �

s+l−2

t

), whi
h is exa
tly the row owned by the player t in

MSP 
omputing T

l+s−1;n

. This means that in the threshold 
ase we have equality in Proposition

3.4. This example shows something more: it is very important to 
hoose the MSPs M
1

and M
2


orre
tly.

Let the player t holds ve
tors w = (1; �

t

; : : : ; �

s−1

t

) and v = (1; �

t

; : : : ; �

l−1

t

) from MSPs 
om-

puting T

s;n

and T

l;n

, and �

t

6= �

t

. Let also MSP M = M
1

⋄M
2


omputes �. Sin
e �

t

6= �

t

it

is easy to 
he
k that � is not T

l+s−1;n

as should be expe
ted from the example above.

A
tually the importan
e of the 
hoi
e of the MSPs M
1

and M
2


ould be illustrated also with

the addition of shared se
rets. Re
all that in the 
ase of addition ea
h player adds up the shares

he holds. It means that we use the same MSP (i.e., M
1

= M
2

) to share two se
rets the sum

of whi
h we want to 
al
ulate. Now if we take M
1

6= M
2

and share two se
rets by M
1

and

M
2

simple additions of the shares ea
h player holds are not enough. This observation leads

us to the 
on
lusion that (may be) for an MSP M
1

there exists another MSP M
2

su
h that

for their strongly multipli
ative resulting MSP M, 
omputing the a

ess stru
ture �, we have

� = �

1

⊎ �

2

. The �rst step in this dire
tion is [4, Theorem 7℄, where M
1

and M
2

are dual,

i.e., �

⊥
2

= �

1

and in this 
ase we have  

1

=  

2

, "

1

= "

2

and '

1

= '

2

. Cramer et al. proved in

[4, Theorem 7℄ that " = "

1

⋄ "
1

belongs to the linear span of the rows of M = M

1

⋄M⊥
1

, when

the matri
es M

1

and M

⊥
1

satisfy the 
ondition M

T

1

M

⊥
1

= E. Here E is the matrix that is zero

everywhere, ex
ept in its upper-left 
orner where the entry is 1. It is known how to derive the

matrix M

⊥
1

from matrix M

1

su
h that they satisfy the equation above.

We are ready to prove our se
ond main result.

Theorem 3.5 Let �

1

and �

⊥
1

be the 
onne
ted a

ess stru
tures 
omputed by the MSPs M
1

and M⊥
1

. Let the MSP M be the strongly multipli
ative result of MSPs M
1

and M⊥
1

, and let

the a

ess stru
ture � be 
omputed by the MSP M. Then � = �

1

⊎ �

⊥
1

= {P}.

Proof: It is known that {P} ∈ �. On the other hand from Proposition 3.4 we have � ⊆ �

1

⊎�⊥
1

,

thus it is suÆ
ient to prove that �

1

⊎ �

⊥
1

⊆ {P}.
For any set A ∈ �

+

1

and any player i ∈ P , i =∈ A we have (A∪ i) ∈ �

1

. Set B




= A∪ i and hen
e

B = P \B
 ∈ �

⊥
1

. Therefore A ∪B = (P \ i) ∈ (�

1

⊎�

⊥
1

).

Let us assume that there exists a player j su
h that (P \ j) =∈ (�

1

⊎�

⊥
1

). So, j ∈ A for every

set A ∈ �

+

1

, be
ause otherwise using the 
onstru
tion given above we arrive at a 
ontradi
tion.
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Hen
e the a

ess stru
ture �

1

has the star topology for the forbidden sets, i.e., there exists a

player j su
h that for any set A ∈ [�℄

+

, j ∈ A. Hen
e �

1

is not 
onne
ted { 
ontradi
tion whi
h

proves the statement of the theorem. 2

As example let us 
onsider again the threshold 
ase. Taking into a

ount that (T

l;n

)

⊥
= T

n−l+1;n

,

we have T

l;n

⊎ (T

l;n

)

⊥
= T

n;n

= {P}, whi
h is in a

ordan
e with Theorem 3.5.

4 Algebrai
 Simpli�
ation for the Multipli
ation Proto
ol on a

General A

ess Stru
ture

Now it is easy to des
ribe an analog of the algebrai
 simpli�
ation proto
ol by Gennaro et al.

in [7℄. From Lemma 3.3 we have S

1

= M

1

(s

1

; a) and S

2

= M

2

(s

2

; b) so S = S

1

⋄ S
2

=

(M

1

⋄M
2

)((s

1

; a)⊗ (s

2

; b)) =M(s

1

s

2

; �). For any set A ∈ � there exists a re
ombination ve
tor

� su
h that M

T

A

� = " or in other words 〈�; S
A

〉 = s

1

s

2

, where as usual S

A

=M

A

(s

1

s

2

; �).

Let us 
hoose a new a

ess stru
ture �

3

with MSP M
3

(it is possible for example �

1

= �

2

= �

3

)

and ve
tors h(i) for i = 1; : : : ;m su
h that the �rst 
oordinate of h(i) is S

i

, i.e., 〈h(i); e"〉 = S

i

.

We use ve
tors h(i) to re-share the shares S

i

. Denote by H the matrix 
onsisting of 
olumns

h(i). It is easy to see that 〈H
A

�; e"〉 = s

1

s

2

, sin
e

〈H
A

�; e"〉 =
X

i∈A

�

i

〈h(i); e"〉 =
X

i∈A

�

i

S

i

= 〈�; S
A

〉 = s

1

s

2

:

Re-sharing the ve
tors h(i) with M
3

we have M

3

h(i) = TS(i) whi
h are temporary shares

for the se
ret S

i

. Note that for any B ∈ �

3

there exists a re
ombination ve
tor

e

� su
h that

(M

3

)

T

B

e

� = e" or in other words 〈e�; TS(i)
B

〉 = S

i

, where as usual TS(i)

B

= (M

3

)

B

h(i). Let the

matrix G 
onsists of 
olumns TS(i), hen
e G = M

3

H. Noti
e that this matrix 
orresponds to

the temporary shares of all h(i)'s. And �nally denote by NS = G � =

P

�

j

TS(j).

Note that NS

j

= G

j

� = G

j;A

�

A

is the new share of the player j to the se
ret s

1

s

2

distributed

by MSP M
3

and it is obtained using only the temporary shares of the players from A ∈ �.

Indeed for j ∈ B we have NS

B

= G

B;A

�

A

and

〈NS
B

;

e

�〉 = 〈G
B;A

�

A

;

e

�〉 =
X

i∈A

〈TS(i)
B

�

i

;

e

�〉 =
X

i∈A

�

i

〈(M
3

)

B

h(i);

e

�〉

=

X

i∈A

�

i

〈h(i); (M
3

)

T

B

e

�〉 =
X

i∈A

�

i

〈h(i); e"〉 = 〈H
A

�; e"〉 = s

1

s

2

:

Thus the simpli�ed multipli
ation proto
ol is as follows:

1) Ea
h player i multiply lo
ally his shares (for simpli
ity let they own one share from ea
h

of the a

ess stru
tures) (S

1

)

i

and (S

2

)

i

.

2) The player i 
hooses a random ve
tor h(i) su
h that its �rst 
oordinate is the produ
t,

(i.e., (S

1

)

i

(S

2

)

i

= S

i

.)

3) Using the ve
tor h(i) and M
3

he re-shares (using VSS) the produ
t.

4) Every player k re
eives from player i a temporary share TS(i)

k

.

5) For some set of \good" players A ∈ � with re
ombination ve
tor �

A

, ea
h player k 
al
u-

lates his new-share NS

k

as NS

k

=

P

i∈A TS(i)k �i.
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6) The new-shares have the property that any set of \good" players B ∈ �

3


ould restore the

se
ret s

1

s

2

.

5 Adaptive Adversary: The Zero-Error Case

Re
all that in our adaptive adversary model we have adversary with two priva
y stru
tures �

1

,

�

2

and with one adversary stru
ture �

A

⊆ �

1

, �

A

⊆ �

2

. For 
ommitments based on MSPs

one 
an 
onstru
t error-free 
ommitment proto
ol, provided that the MSP we have is strongly

multipli
ative.

In order to build a MPC proto
ol se
ure against a
tive adversary in the non-
omputational

model it is suÆ
ient for the MSPs M
1

, M
2

and M to satisfy the VSS 
onditions from [6℄ and �

to be the strongly multipli
ative result of MSPs 
omputing �

1

and �

2

. Combining Proposition

3.4 and the VSS 
onditions of Fehr and Maurer our third main result follows.

Theorem 5.1 The suÆ
ient 
onditions for existen
e of general perfe
t information-theoreti
ally

se
ure MPC, se
ure against (�

1

;�

2

;�

A

)-adversary are

(�

A

⊎ �

A

)

⊥ ⊆ � ⊆ �

1

⊎ �

2

;

where � is the a

ess stru
ture 
omputed by the strongly multipli
ative resulting MSP M =

M
1

⋄M
2

.

Note that from Theorem 5.1 it follows that we have P =∈ �

1

⊎�

2

⊎�

A

⊎�

A

, whi
h is weaker


ondition than the 
ondition of Maurer [9℄.

In order to build a MPC proto
ol se
ure against a
tive adversary in the 
omputational model

it is suÆ
ient for the MSPs M
1

, M
2

, M
3

to satisfy the VSS 
onditions and that � be the

strongly multipli
ative result of MSPs 
omputing �

1

and �

2

. Note that we do not need anymore

M to satisfy the VSS 
onditions, sin
e the algebrai
 simpli�
ation for multipli
ation proto
ol

presented in the previous se
tion and the homomorphi
 
ommitments [7, 4℄ allow us to dete
t


heaters and to \redu
e" the a

ess stru
ture � to any a

ess stru
ture �

3

, whi
h we will 
all

\redu
ed". Hen
e we obtain our fourth main result.

Theorem 5.2 If trapdoor one-way permutation exists, then the suÆ
ient 
onditions for exis-

ten
e of general perfe
t se
ure MPC in the 
ryptographi
 s
enario, se
ure against (�

1

;�

2

;�

A

)-

adversary are

�

⊥
A

⊆ � ⊆ �

1

⊎ �

2

; �

⊥
A

⊆ �

3

;

where � is the a

ess stru
ture 
omputed by the strongly multipli
ative resulting MSP M =

M
1

⋄M
2

and �

3

is the \redu
ed" a

ess stru
ture.
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6 Appendix

6.1 Notation

For an arbitrary matrix M over F, with m rows labelled by 1; : : : ;m let M

A

denote the matrix

obtained by keeping only those rows i with i ∈ A, where A is an arbitrary non-empty subset

of {1; : : : ;m}. If {i} = A we write M

i

. Let M

T

A

denote the transpose of M

A

, and let Im(M

T

A

)

denote the F-linear span of the rows of M

A

. We use Ker(M

A

) to denote the kernel of M

A

, i.e.,

all linear 
ombinations of the 
olumns of M

A

, leading to 0.

Let v = (v

1

; : : : ; v

t

1

) ∈ F
t

1

and w = (w

1

; : : : ; w

t

2

) ∈ F
t

2

be two ve
tors. The tensor ve
tor

produ
t v ⊗ w is de�ned as a ve
tor in F
t

1

t

2

su
h that the j-
oordinate in v (denoted by v

j

)

is repla
ed by v

j

w, i.e., v ⊗ w = (v

1

w; : : : ; v

t

1

w) ∈ F
t

1

t

2

. De�ne v ⊗M to be the matrix with


olumns v⊗ k-th 
olumn of M , for k = 1; : : : ; d. Analogously de�ne M ⊗ v to be the matrix

with 
olumns k-th 
olumn of M ⊗v, for k = 1; : : : ; d.

De�nition 6.1 The dual �

⊥
of a monotone a

ess stru
ture � de�ned on P is the 
olle
tion of

sets A ⊆ P su
h that A




=∈ �.
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De�nition 6.2 For an a

ess stru
ture (�;�) 
ore� is de�ned to be the set of players whi
h

are in some minimal authorized set, that is


ore� = ∪
A∈[�℄−A :

De�nition 6.3 An a

ess stru
ture (�;�) is 
onne
ted if 
ore� = P , when P is the set of all

players.

6.2 Te
hni
al Lemmas

Some useful te
hni
al lemmas.

Lemma 6.4 Let w ∈ F
d

and v ∈ F
m

2

be arbitrary 
olumn ve
tors and M be a m

1

× d matrix.

Then the following equations hold

(M ⊗ v)w = (Mw)⊗ v; (v ⊗M)w = v ⊗ (Mw):

Lemma 6.5 Let x; a ∈ F
m

and y; b ∈ F
n

are arbitrary ve
tors, then the following equality holds

〈x⊗ y; a⊗ b〉 = 〈x; a〉〈y; b〉:

Lemma 6.6 The 
onstru
tion for ⊗ is symmetri
 with respe
t to the rows and 
olumns, i.e.,

(M

1

⊗M

2

)

T

=M

T

1

⊗M

T

2

:

Lemma 6.7 LetM

1

be an m

1

×d
1

matrix, and M

2

be an m

2

×d
2

matrix. And letM =M

1

⊗M
2

(i.e., M is an m

1

m

2

× d

1

d

2

matrix), then for arbitrary 
olumn ve
tors �

1

∈ F
d

1

and �

2

∈ F
d

2

the following equality holds

M(�

1

⊗ �

2

) = (M

1

⊗M

2

)(�

1

⊗ �

2

) = (M

1

�

1

)⊗ (M

2

�

2

) :

Using the Lemma 6.7 it is easy to see that " = "

1

⊗ "

2

belongs to the linear span of the rows of

M .

Corollary 6.8 Let �

1

∈ F
m

1

and �

2

∈ F
m

2

be re
ombination ve
tors for M

1

and M

2

(i.e.,

M

T

1

�

1

= "

1

and M

T

2

�

2

= "

2

). Then � = �

1

⊗ �

2

∈ F
m

1

m

2

is the re
ombination ve
tor for

M =M

1

⊗M

2

, i.e., the following equality holds

M

T

� = " :

A property analogous to that in Lemma 6.5 for the operation diamond ⋄ holds.

Lemma 6.9 Let x; a ∈ F
d

1

and y; b ∈ F
d

2

be arbitrary ve
tors, then the following equality holds.

〈x ⋄ y; a ⋄ b〉 =
X

t

〈�x
t

; �a

t

〉〈�y
t

;

�

b

t

〉 :

A lemma analogous to Lemma 6.4 immediately follows from the 
onstru
tion diamond ⋄.

Lemma 6.10 Let w ∈ F
d

and v ∈ F
m

be arbitrary 
olumn ve
tors and M be an m× d matrix.

Then the following equations hold

(M ⋄ v)w = (Mw) ⋄ v; (v ⋄M)w = v ⋄ (Mw):
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Lemma 6.11 Let M

1

be an m

1

× d

1

matrix, and M

2

be an m

2

× d

2

matrix. Constru
t the

matrix M as explained above (i.e., M =M

1

⋄M
2

is m×d
1

d

2

matrix), then for arbitrary 
olumn

ve
tors �

1

∈ F
m

1

, �

2

∈ F
m

2

the following equality holds

M

T

(�

1

⋄ �
2

) = (M

1

⋄M
2

)

T

(�

1

⋄ �
2

) =

n

X

t=1

((M

1

)

T

t

(

�

�

1

)

t

)⊗ ((M

2

)

T

t

(

�

�

2

)

t

) :

6.3 Examples

Example 1

Let �

−
1

= {13; 14; 23; 24; 34} and F = GF (2). It is easy to 
he
k that (�

1

⊎ �

1

)

−
= {234; 134}.

On the other hand for the a

ess stru
ture � 
omputed by the MSPM

1

⋄M
1

we have � = �

1

⊎�
1

.

(sum 3th, 5th, 8th and 9th row with the �rst or the se
ond row).

M

1

=

0

B

B

B

B

B

B

�

0 1 1

0 1 1

1 1 0

0 0 1

1 1 1

0 1 0

1

C

C

C

C

C

C

A

M

1

⋄M
1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1

1 1 0 1 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0

1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Example 2

Let �

−
2

= {12; 14; 23; 24; 34} and F = GF (2). It is easy to 
he
k that (�

1

⊎�
2

)

−
= {234}. On the

other hand for the a

ess stru
ture � 
omputed by the MSPM

1

⋄M
2

we have � = {P} ⊂ �

1

⊎�
2

(sum all rows ex
ept last three ones, for the set {P}). For the set {234} there is a ve
tor

k = (110|101|011) ∈ Ker(M

1

⋄M
2

), i.e., the set {234} =∈ �.

M

2

=

0

B

B

B

B

B

B

�

0 1 1

1 1 0

0 0 1

0 1 1

1 1 1

0 1 0

1

C

C

C

C

C

C

A

M

1

⋄M
2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 0 0 1 1 0 1 1

0 0 0 1 1 0 1 1 0

0 0 0 0 0 1 0 0 1

0 1 1 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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