
Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

Palash Sarkar

Applied Statisti
s Unit

Indian Statisti
al Institute

203, B.T. Road

Kolkata 700108, India

e-mail: palash�isi
al.a
.in

Abstra
t

We obtain a �nite binary tree algorithm to extend the domain of a UOWHF. The asso
iated key

length expansion is only a
onstant number of bits more than the minimum possible. Our �nite binary

tree algorithm is a pra
ti
al parallel algorithm to se
urely extend the domain of a UOWHF. Also the

speed-up obtained by our algorithm is approximately proportional to the number of pro
essors.

Keywords : UOWHF, hash fun
tion, binary tree.

1 Introdu
tion

Universal one-way hash fun
tion (UOWHF) was introdu
ed by Naor and Yung [5℄ to prove that se
ure

digital signatures
an be based on one-way, 1-1 fun
tions. A UOWHF is a family of fun
tions fh

k

g

k2K

for whi
h the following task of the adversary is
omputationally infeasible. The adversary has to
hoose

a x from the domain, is then given a random k 2 K and subsequently has to �nd a y su
h that x 6= y but

h

k

(x) = h

k

(y). Intutively, a UOWHF is a weaker primitive than a
ollision-resistant fun
tion, sin
e the

task of the adversary is more diÆ
ult, i.e., the adversary has to
ommit to the string x before knowing

the a
tual hash fun
tion h

k

for whi
h the
ollision has to be found. Simon [10℄ has shown that there is

a ora
le relative to whi
h UOWHFs exist but
ollision resistant hash fun
tions do not exist. See [6℄ for

a survey on hash fun
tions and [11℄ for some properties and redu
tions between di�erent kinds of hash

fun
tions.

The study of UOWHF was later undertaken by several authors. Bellare and Rogaway [1℄ showed

that it is possible to build pra
ti
al and provably se
ure \hash-then-sign" s
hemes, where the hashing

is done using a UOWHF. The paper also addresses the problem of
onstru
ting UOWHFs. Like most

basi

ryptographi
 primitives it is virtually impossible to de�ne a family fh

k

g

k2K

and prove it to be a

UOWHF. The idea suggested in [1℄ is to use one of the standard hash fun
tions like SHA or RIPEMD

in a keyed mode and assume it to be a UOWHF. It seems more reasonable to make this assumption

when the domain is a short string rather than an arbitrarily long string. This leads to the question of

extending the domain of a UOWHF while preserving the UOWHF property.

The Merkle-Damg�ard algorithm [2, 3℄ is a well known method of extending the domain of a
ollision-

resistant hash fun
tion. However, as shown in [1℄ this method does not work in the
ase of a UOWHF.

Several
onstru
tions for extending the domain of a UOWHF is presented in [1℄. These
onstru
tions

1

assume the existen
e of a UOWHF fh

k

g

k2K

, with h

k

: f0; 1g

n

! f0; 1g

m

and show how to
onstru
t

a UOWHF fH

p

g

p2P

where the input to H

p

an be a very long message. The
onstru
tions have an

asso
iated key length expansion of jpj � jkj. One of the major goals in extending the domain of a

UOWHF is to minimise the expansion of the key length.

Shoup [9℄ provides a modi�
ation of the Merkle-Damg�ard algorithm to extend the domain of a

UOWHF. The Merkle-Damg�ard
onstru
tion and hen
e the Shoup
onstru
tion is a sequential algo-

rithm. A tree based s
heme for extending the domain of a UOWHF was presented in [1℄. For binary

trees the s
heme
an be used to hash a message of length L = 2

T

(n�m)� (n� 2m) using a full binary

of height T and 2

T

� 1 pro
essors, where the base UOWHF takes as input a message of length n and

produ
es a digest of length m. The key length expansion made by the algorithm is 2m(T � 1). In

a re
ent work [7℄, an improved binary tree based
onstru
tion has been presented whi
h makes a key

length expansion of m(T+blog(T�1)
) bits for T � 2. The main disadvantage of both the above binary

tree algorithms is that the number of pro
essors grows with the length of the message. See Table 1 in

Se
tion 6 for a
omparison of di�erent algorithms.

We obtain a binary tree algorithm for whi
h the key length expansion is a
onstant number of bits

more than the minimum possible. This is made possible by using a �nite binary tree of pro
essors in

ontrast to [1, 7℄ where the height of the binary tree in
reases with the length of the message. Thus our

algorithm yields a pra
ti
al parallel algorithm for se
urely extending the domain of a UOWHF. Another

important
onsequen
e of using a �nite binary tree is the fa
t that for moderately long messages the

speed-up over sequential (Shoup's) algorithm is equal to the number of pro
essors. Thus our algorithm

makes eÆ
ient use of resour
es. We note that the speed-up obtained in [1, 7℄ is logarithmi
 in the

number of pro
essors.

The �nite binary tree algorithm is built using ideas from several existing work. The basi
 algorithm

has been used to extend the domain of a
ollision resistant fun
tion in [8℄. To this algorithm we add

the masking te
hniques of [9℄ and [7℄. The masking te
hnique of [7℄ is itself built around the masking

te
hniques of [9℄ and that of [1℄. We show that all these te
hniques �t together ni
ely to provide a

orre
t domain extender for UOWHFs.

2 Preliminaries

Let fh

k

g

k2K

be a keyed family of hash fun
tions, where ea
h h

k

: f0; 1g

n

! f0; 1g

m

. Consider the

following adversarial game.

1. Adversary
hooses an x 2 f0; 1g

n

.

2. Adversary is given a k whi
h is
hosen uniformly at random from K.

3. Adversary has to �nd y su
h that y 6= x and h

k

(x) = h

k

(y).

A strategy A for the adversary runs in two stages. In the �rst stage A

guess

, the adversary �nds the

x to whi
h he has to
ommit in Step 1. It also produ
es some auxiliary state information �. In the

se
ond stage A

�nd

(x; k; �), the adversary either �nds a y 6= x su
h that h

k

(x) = h

k

(y) or it reports

failure. Both A

guess

and A

�nd

(x; k; �) are probabilisti
 algorithms. The su

ess probability of the

strategy is measured over the random
hoi
es made by A

guess

and A

�nd

(x; k; �) and the random
hoi
e

of k in Step 2 of the game. We say that A is an (�; a)-strategy if the su

ess probability of A is at

least � and it invokes the hash fun
tion h

k

at most a times. In this
ase we say that the adversary has

2

an (�; a)-strategy for fh

k

g

k2K

. We say that fh

k

g

k2K

is a universal one way hash family (UOWHF) if

the adversary has a negligible probability of su

ess with respe
t to any probabilisti
 polynomial time

strategy.

In this paper we are interested in extending the domain of a UOWHF. Thus given a UOWHF

fh

k

g

k2K

, with h

k

: f0; 1g

n

! f0; 1g

m

and a positive integer L, we would like to
onstru
t another

UOWHF fH

p

g

p2P

, with H

p

: f0; 1g

L

! f0; 1g

m

. We also
onsider the following situation. Given

a UOWHF fh

k

g

k2K

where h

k

: f0; 1g

n

! f0; 1g

m

, we
onstru
t a UOWHF fH

�

p

g

p2P

where H

�

p

:

[

2

n�m

i=1

f0; 1g

i

! f0; 1g

m

. Sin
e we require n � 2m, we have n � m � m. For pra
ti
al appli
ations

m is at least 64 bits, hen
e messages upto length 2

64

an be hashed by H

�

p

. This is suÆ
ient for any

on
eivable purpose.

We say that the adversary has an (�; a)-extended strategy for fH

p

g

p2P

if there is a strategy B for

the adversary with probability of su

ess at least � and whi
h invokes the hash fun
tion h

k

at most a

times. Note that H

p

is built using h

k

and hen
e while studying strategies for H

p

we are interested in

the number of invo
ations of the hash fun
tion h

k

.

The
orre
tness of our
onstru
tion will essentially be a Turing redu
tion. We will show that if there

is an (�; a)-extended strategy for fH

p

g

p2P

, then there is an (�

1

; a

1

)-strategy for fh

k

g

k2K

, where a

1

is

not mu
h larger than a and �

1

is not signi�
antly lesser than �. This will show that if fh

k

g

k2K

is a

UOWHF, then so is fH

p

g

p2P

.

The key length for the base hash family fh

k

g

k2K

is dlog

2

jKje. On the other hand, the key length

for the family fH

p

g

p2P

is dlog

2

jPje. Thus in
reasing the size of the input from n bits to L bits results

in an in
rease of the key size by an amount dlog

2

jPje � dlog

2

jKje. From a pra
ti
al point of view a

major motivation is to minimise this in
rease in the key length.

3 Known Algorithms

We brie
y dis
uss sequential and binary tree based domain extending algorithms for UOWHFs.

3.1 Sequential Algorithm

The Merkle-Damg�ard
onstru
tion [3, 2℄ is a well known
onstru
tion for extending the domain of a

ollision resistant hash fun
tion. However, Bellare and Rogaway [1℄ showed that the
onstru
tion does

not dire
tly work in the
ase of UOWHF. In [9℄, Shoup presented a modi�
ation of the MD
onstru
tion.

We brie
y des
ribe the Shoup
onstru
tion.

Let fh

k

g

k2K

, h

k

: f0; 1g

n

! f0; 1g

m

, K = f0; 1g

K

be the UOWHF whose domain is to be extended.

Let x be the input to H

p

with jxj = n+r(n�m). We de�ne p = kjj�

0

jj�

1

jj : : : jj�

l�1

where l = 1+blog r

and �

i

are m-bit binary strings
alled masks. The in
rease in key length is lm bits. The output of H

p

is
omputed by the following algorithm. For integer i, de�ne �(i) = j if 2

j

ji and 2

j+1

6 ji.

Algorithm SeqUOWHF

1. Let x = x

0

jjx

1

jjx

2

jj : : : jjx

r

, where jx

0

j = n and jx

i

j = n�m for 1 � i � r.

2. De�ne z

0

= h

k

(x

0

).

3. For 1 � i � r, de�ne s

i

= z

i�1

� �

j

and z

i

= h

k

(s

i

jjx

i

) where j = �(i).

4. De�ne z

r

to be the output of H

p

(x).

3

For the sake of simpli
ity we do not in
lude an initialisation ve
tor. The fun
tion h

k

is invoked (r + 1)

times and the algorithm requires dlog

2

(r + 1)e = 1 + blog

2

r
 masks. This algorithm was initially

des
ribed in [9℄ and in [4℄ it was shown that the number of masks required is the minimum possible for

any su
h sequential
onstru
tion to be
orre
t.

3.2 Tree Based Algorithm

Extending the domain of a UOWHF using a full binary tree of pro
essors have been
onsidered in the

literature [1, 7℄. A full binary tree of 2

T

� 1 pro
essors numbered P

1

; : : : ; P

2

T

�1

is used. The length

of the message x to be hashed is jxj = L = 2

T�1

n + (2

T�1

� 1)(n � 2m). Let T

T

= (V

T

; A

T

) be the

full binary tree of 2

T

� 1 pro
essors, where V

T

= f1; : : : ; 2

T

� 1g and A

T

= f(i; b(i=2)
) : 1 < i < 2

T

g.

We set a

i

= (i; b(i=2)
) and so A

T

= fa

2

; : : : ; a

2

T

�1

g. There is a set M of m-bit masks and a fun
tion

 : A

T

! M , whi
h assigns an m-bit string to ea
h ar
 of T

T

. The algorithms of [1℄ and [7℄ have the

same general form and di�er only in the des
ription of M and . We �rst des
ribe the general form of

the algorithm.

Algorithm TreeUOWHF

1. Write x = x

1

jjx

2

jj : : : jjx

2

T

�1

, where jx

1

j = : : : = jx

2

T�1

�1

j = n� 2m and jx

2

T�1

j = : : : = jx

2

T

�1

j = n.

2. For i = 2

T�1

; : : : ; 2

T

� 1, do in parallel

z

i

= h

k

(x

i

).

s

i

= z

i

� (a

i

).

3. For j = T � 1 downto 2 do

For i = 2

j�1

to 2

j

� 1 do in parallel

z

i

= h

k

(s

2i

jjs

2i+1

jjx

i

).

s

i

= z

i

� (a

i

).

4. Output h

k

(s

2

jjs

3

jjx

1

) as the output of H

p

(x).

To
omplete the des
ription of Algorithm 1 we have to de�ne M and . We do this separately for [1℄

and [7℄.

Bellare and Rogaway [1℄ : In this
ase M = f�

1

; : : : ; �

T�1

; �

1

; : : : ; �

T�1

g and (a

i

) is de�ned as

follows: (a

i

) = �

T+1�l

if i � 0 mod 2; and (a

i

) = �

T+1�l

if i � 1 mod 2. Here l = level(i), i.e.,

2

l�1

� i � 2

l

� 1.

Sarkar [7℄ : In this
ase M = f�

1

; : : : ; �

T�1

; �

0

; : : : ; �

r�1

g where r = 1 + blog

2

(T � 1)
 and (a

i

) is

de�ned as follows: (a

i

) = �

�(T+1�l)

if i � 0 mod 2; and (a

i

) = �

T+1�l

if i � 1 mod 2. Here again

l = level(i).

Note that the Bellare-Rogaway algorithm requires 2(T�1) masks whereas Sarkar's algorithm requires

T + blog

2

(T � 1)
 masks.

4 Finite Binary Tree Algorithm

Let fh

k

g

k2K

, h

k

: f0; 1g

n

! f0; 1g

m

be a UOWHF whose domain is to be extended. For our �nite binary

tree algorithm we require n � 2m. A set of 2

t

pro
essors P

0

; : : : ; P

2

t

�1

will be used in the algorithm.

De�ne Æ(t) = 2

t

n + (2

t

� 1)(n � 2m) = 2

t

(2n � 2m) � (n � 2m) and �(t) = 2

t�1

n + 2

t�1

(n � 2m) =

2

t�1

(2n � 2m). The message x is of length jxj = L. We assume that L � Æ(t). Otherwise we

4

hoose a t

0

2 f1; : : : ; t � 1g, su
h that L � Æ(t

0

) and use only 2

t

0

of the 2

t

pro
essors. We de�ne

I = f0; : : : ; 2

t�1

� 1g, L = f2

t�1

; : : : ; 2

t

� 1g.

We �rst de�ne three parameters q

t

(L); r

t

(L) and b

t

(L). If L > Æ(t), then q

t

(L) and r

t

(L) are de�ned

by the following equation: L� Æ(t) = q

t

(L)�(t) + r

t

(L), where r

t

(L) is the unique integer from the set

f1; : : : ; �(t)g. If L = Æ(t), then q

t

(L) = r

t

(L) = 0. De�ne b

t

(L) = d(r

t

(L)=(2n� 2m))e. We will usually

write q; r and t instead of q

t

(L); r

t

(L) and b

t

(L) respe
tively.

The message x is padded with b(2n � 2m) � r many 0's to ensure that the length be
omes Æ(t) +

q�(t) + b(2n� 2m). The maximum number of 0's that are padded is (2n� 2m)� 1 and is independent

of the message length. The algorithm goes through R = q + t + 2 rounds. In round 1, ea
h pro
essor

gets an n-bit substring of the message x as input and produ
es an m-bit output. Also in rounds 2 to R

and for 2

t�1

� i � 2

t

� 1, ea
h pro
essor P

i

gets as input either an n-bit substring of the message x or

the empty string hi and
orrespondingly produ
es as output either an m-bit string or the empty string

hi.

For 1 < j � R and 0 � i � 2

t�1

� 1, in round j pro
essor P

i

reads the outputs of pro
essors

P

2i

and P

2i+1

in round j � 1. Thus the same set of pro
essors is used in ea
h round. However, for

onvenien
e of des
ription of our algorithm, we will
onsider R
opies of the set of pro
essors, denoted

by P

i;j

, 0 � i � 2

t

� 1 and 1 � j � R. Thus we
onsider a dire
ted graph D = (V;A), where

V = fP

i;j

: 0 � i � 2

t

� 1; 1 � j � Rg and

A =

[

0�i��

[

1<j�R

f(P

2i;j�1

; P

i;j

); (P

2i+1;j�1

; P

i;j

)g

where � = 2

t�1

� 1. Sin
e the outdegree of ea
h vertex of D is at most one, we label the ar
s as A

i;j

(0 � i � 2

t

� 1, 1 � j � R� 1), where A

i;j

= (P

i;j

; P

b(i=2)
;j+1

). For 0 � i � 2

t�1

� 1 and 1 � j � R� 1,

we denote by z

i;j

the m-bit string whi
h is the output of pro
essor P

i;j

. It is assumed that z

i;j

is

asso
iated with the ar
 A

i;j

. Let M be a set of m-bit masks and : A!M be an assignment of these

masks to the ar
s of the pro
essor graph D = (V;A).

Ea
h of the pro
essors P

i;j

is given a string u

i;j

as input. For 1 � j � R � 1, de�ne UList

j

=

hu

0;j

; : : : ; u

2

t

�1;j

i and U

j

to be the
on
atenation of all the strings in UList

j

. The strings U

j

's are

obtained from the message and x = U

1

jj : : : jjU

R�1

jjU

R

, where the lengths of the strings u

i;j

's and U

R

is de�ned as follows. (See [8℄ for
orre
tness of this formatting algorithm.)

ju

R

j =

(

n� 2m if b > 0;

0 otherwise.

ju

i;j

j =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

n if (j = 1) or (2 � j � q + 1 and i 2 L);

n if j = q + 2 and 2

t�1

� i � 2

t�1

+ b� 1;

0 if j = q + 2 and 2

t�1

+ b � i � 2

t

;

0 if q + 2 < j < R and i 2 L;

n� 2m if 2 � j � q + 2 and i 2 I;

n� 2m if q + 2 < j < R and 0 � i � K

j

� 1;

0 if q + 2 < j < R and K

j

� i � 2

t�1

� 1:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(1)

Here K

j

= 2

s�1

+ k

s

, where s = R � j and k

s

=

j

2

t�s�1

+b�1

2

t�s

k

. For 0 � i � 2

t

� 1 and 1 � j � R � 1,

the strings z

i;j

's are either m-bit strings or the empty string. If z

i;j

is an m-bit string, then de�ne

s

i;j

= z

i;j

� (A

i;j

); (2)

5

We are now in a position to de�ne the parallel UOWHF algorithm (PUA).

Parallel UOWHF Algorithm PUA(t; x)

(a) Case 1 (j = 1 and 0 � i � 2

t

� 1) : z

i;1

= h

k

(u

i;1

).

(b) Case 2 (j > 1 and 2

t�1

� i � 2

t

� 1) :

(

z

i;j

= h

k

(u

i;j

) if ju

i;j

j = n;

= hi otherwise.

(
) Case 3 (j > 1 and 0 � i � 2

t�1

� 1) :

(

z

i;j

= h

k

(s

2i;j�1

jjs

2i+1;j�1

jju

i;j

) if ju

i;j

j = n� 2m;

= z

2i;j�1

otherwise.

(d) return z

0;R

.

end PUA

Note that for ea
h j (1 � j � R), all the pro
essors P

i;j

an operate in parallel to produ
e the strings

z

i;j

.

4.1 De�nition of M and

Algorithm PUA depends on the set of masks M and the map : A ! M . Here we present our set of

masks and our de�nition of . Re
all that �(i) = j if 2

j

ji and 2

j+1

6 ji. Also l = level(i) is su
h that

2

l�1

� i � 2

l

� 1. The set of masks M is the union of two disjoint sets of masks M

0

and M

1

de�ned

as follows: M

0

= fm

0

; : : : ;m

�1

g, where
 = 1 + blog

2

(R � 1)
; M

1

= f�

1

; : : : ; �

t

; �

0

; : : : ; �

d�1

g, where

d = 1+ blog

2

(t� 1)
. Thus jM j = 2+ t+ blog

2

(R� 1)
+ blog

2

(t� 1)
. The assignment of masks to the

ar
s is de�ned in the following manner.

 (A

i;j

) = m

�(j)

if i = 0;

= �

t+1�l

if i � 1 mod 2; l = level(i);

= �

�(t+1�l)

if i > 0 and i � 0 mod 2; l = level(i):

We provide an explanation of the above assignment pro
edure. The assignment a
tually
onsists of

two parts. In the �rst part, ar
s of the type A

0;1

; A

0;2

; : : : ; A

0;R�1

are assigned masks a

ording to the

Shoup algorithm (see Se
tion 3.1). The rest of the ar
s are divided into rounds. Ar
s A

i;j

1

and A

i;j

2

get the same mask for i > 0 and 1 � j

1

; j

2

� R � 1. The ar
s for a �xed round are assigned masks

using the algorithm of Sarkar from Se
tion 3.2. Thus the mask assigment algorithm
ombines the mask

assignment algorithms of [9℄ and [7℄.

4.2 De�nition of fH

p

g

p2P

The UOWHF family fH

p

g

p2P

is de�ned from the hash family fh

k

g

k2K

using algorithm PUA(t; x) in

the following manner.

H

p

(x) = PUA(t; x): (3)

Here p = kjj

~

M , where

~

M is the
on
atenation of all the masks used by PUA(t; x).

4.3 Coping with Di�erent Size Trees

The output of H

p

(x) depends on the parameter t whi
h is the depth of the pro
essor tree. Thus the

output
an be
orre
tly re
omputed only if the re
eiver has a

ess to a binary tree of 2

t

pro
essors.

6

This is
learly an undesirable situation. The way out of this situation is to have an algorithm where it

is possible to simulate a binary tree of 2

t

pro
essors with a binary tree of 2

t

0

pro
essors for any t

0

in

f0; : : : ; t� 1g. In fa
t, it is possible to perform su
h a simulation. For
ollision resistant hash fun
tions

the simulation algorithm has been presented in [8℄. The same algorithm will also work in the
ase of

UOWHF. Hen
e we do not present the simulation algorithm in this paper.

4.4 Speed-Up Over Sequential Algorithm

The number of invo
ations of h

k

depends on the length of the message length L. Let �(L) denote the

number of invo
ations of h

k

for a message of length L. Then �(L) = �(L + b

t

(L)(2n � 2m) � r

t

(L)).

The value of �(L) has been
omputed in [8℄ and is given by �(L) = (q

t

(L)+2)2

t

+2b

t

(L)�1. The same

value also applies to the present
ase.

As shown in [8℄, �(L) is also the number of invo
ations required in the sequential algorithm. The

number of parallel rounds is q

t

(L) + t + 2. Hen
e
ompared to the sequential
onstru
tion, the tree

onstru
tion is faster by a fa
tor of SF =

�(L)

q+t+2

=

(q+2)2

t

+2b�1

q+t+2

: If b > 0, then SF �

2

t

(q+2)

q+2+t

=

2

t

1+

t

q+2

:

The parameter q grows linearly with the length of the message whereas t is �xed. Hen
e for moderately

large messages, the speed-up is almost linear in the number of pro
essors.

5 Se
urity Redu
tion for fH

p

g

p2P

Theorem 1 If there is an (�;N)-extended strategy for fH

p

g

p2P

, then there is an (

�

�(L)

; N + 2�(L))

strategy for fh

k

g

k2K

, where h

k

: f0; 1g

n

! f0; 1g

m

and H

p

: f0; 1g

L

! f0; 1g

m

. Consequently, if the

family fh

k

g

k2K

is a UOWHF, then the family fH

p

g

p2P

is also a UOWHF.

Proof. Our proof is a redu
tion. We assume that there is an (�; a)-extended strategy B for the family

fH

p

g

p2P

and
onstru
t an (

�

�(L)

; N + 2�(L)) strategy A for the family fh

k

g

k2K

. Thus if fH

p

g

p2P

is

not a UOWHF then fh

k

g

k2K

is also not a UOWHF. The
ontrapositive of this statement gives us the

desired result. We now turn to the a
tual redu
tion. The strategy A has two parts, A

guess

and A

�nd

.

The algorithm A

�nd

is as follows.

1. Run B

guess

to obtain a string x of length L and state information �

1

.

2. Randomly
hoose an I; J (0 � I � 2

t

� 1, 1 � J � R) su
h that the string u

I;J

6= hi.

3. If ju

I;J

j = n, then set w = u

I;J

.

4. If ju

I;J

j = n� 2m, then randomly
hoose two m-bit strings w

0

; w

1

and set w = w

0

jjw

1

jju

I;J

.

5. Output string w and state information � = (�

1

; I; J).

After A

guess

produ
es an n-bit output w, the adversary is given a random k 2 K. Now the adversary

runs the algorithm A

�nd

given below.

1. If I and J are su
h that ju

I;J

j = n, then de�ne all the masks in M randomly.

2. If I = 0, then run mask de�ning algorithm MDef 1 to de�ne all the masks in M .

3. If I > 0, then run mask de�ning algorithm MDef 2 to de�ne all the masks in M .

4. Let

~

M be the
on
atenation of all the masks in M and set p = kjj

~

M .

5. Run B

�nd

(x; p; �

1

) to obtain string x

0

.

7

6. Run algorithm PUA on x

0

and store all the intermediate values u

0

i;j

, z

0

i;j

and s

0

i;j

.

7. If ju

I;J

j = n, w = u

I;J

6= u

0

I;J

and z

I;J

= z

0

I;J

, then return u

I;J

and u

0

I;J

.

8. If ju

I;J

j = n� 2m, w = w

0

jjw

1

jju

I;J

6= s

0

2I;J�1

jjs

0

2I+1;J�1

jju

0

I;J

and z

I;J

= z

0

I;J

,

then return w and s

0

2I;J�1

jjs

0

2I+1;J�1

jju

0

I;J

.

9. Else return failure.

The task of the mask de�ning algorithms is to de�ne the masks so that the input to pro
essor P

I;J

is

the string w. If ju

I;J

j = n, then w = u

I;J

and so the masks are de�ned randomly. On the other hand,

if ju

I;J

j = n� 2m, then w = w

0

jjw

1

jju

I;J

, where w

0

and w

1

are m-bit random strings. In this situation,

we would like to have w

0

= s

2I;J�1

and w

1

= s

2I+1;J�1

. However, the algorithm B

�nd

produ
es the

string x before knowing the key p. The key p
an only be determined after the key k be
omes known.

Thus after k is revealed, the masks in M are de�ned so that w

0

= s

2I;J�1

and w

1

= s

2I+1;J�1

. The key

for the algorithm B

�nd

is then determined to be kjj

~

M . While de�ning the masks we must ensure that

ea
h mask is
hosen a

ording to the uniform distribution on the set of m-bit strings. We now des
ribe

the two mask de�ning algorithms.

The algorithm MDef 1 does the following. First it randomly de�nes the masks �

1

; : : : ; �

t�1

. Then

it does a partial run of the algorithm PUA in the following manner. It operates ea
h pro
essor P

i;j

for i > 0 and 1 � j � R. (Note that sin
e the masks m

0

; : : : ;m

�1

are as yet unde�ned, it is not

possible to operate P

0;j

for any j.) This partial exe
ution of the algorithm de�nes all the strings z

1;J

for 1 � J � R. MDef 1 now de�nes �

t

= w

1

� z

1;J�1

. On
e �

t

is de�ned, all the strings s

1;j

an be

de�ned, sin
e s

1;j

= z

1;j

� (A

1;j

) = z

i;j

� �

t

. Now we
onsider the operation of P

0;1

; P

0;2

; : : : ; P

0;R

to

be a sequential operation. For j > 1, the inputs to P

0;j

are s

0;j�1

; s

1;j�1

and u

0;j

. Of these the inputs

s

1;j�1

and u

0;j

are already known. So we have to de�ne the inputs s

0;j�1

for j � 1. Moreover, we have

to ensure that s

0;J�1

= w

1

. This is exa
tly the problem for the sequential
onstru
tion of UOWHF

given in Se
tion 3.1. Now the mask de�ning algorithm presented in [4℄ is used to
orre
tly de�ne the

masks m

0

; : : : ;m

�1

.

The �rst step of Algorithm MDef 2 is to randomly de�ne the masks m

0

; : : : ;m

�1

and the mask

�

t

. Let L = level(I). There are two
ases to
onsider: (a) L � J and (b) L > J . We �rst des
ribe Case

(a).

In Case (a) we have L � J and no pro
essor P

i;j

with j < J � L will be used in de�ning the masks

in M

1

n f�

t

g. In this situation, for i � 1, we merge all pro
essors P

i;j

for J � L � j � J into a single

pro
essor P

i

. Then the algorithm be
omes the binary tree based UOWHF algorithm of Sarkar des
ribed

in Se
tion 3.2. The mask de�ning algorithm of [7℄ is used to properly de�ne the masks in this
ase.

In Case (b), it will not be possible to des
end L steps in the tree starting from P

I;J

. After J steps

we will rea
h round 1. The mask de�ning algorithm of [7℄ uses the algorithm of [4℄ along
ertain paths

in the full binary tree. In this
ase su
h paths will not be
omplete. However, it is not diÆ
ult to verify

that this makes the task of mask de�nition easier. The details are quite straightforward and hen
e are

omitted.

Thus in both Cases (a) and (b) it is possible to properly de�ne the masks in the set M . Further,

any mask is either
hosen to be random or is obtained by XOR with a random string. Hen
e ea
h mask

is
hosen independently and uniformly at random from the set of all m-bit strings, whi
h shows that

~

M is a random string.

To
omplete the proof we need to lower bound the probability of su

ess. Supppose that x and x

0

produ
e a
ollision for H

p

. Then using a ba
kward indu
tion it is possible to prove that for some I

1

; J

1

,

8

Parameter Sequential [9℄ [1℄ [7℄ PUA

pro
essors 1 2

T

� 1 2

T

� 1 2

t

masks T 2(T � 1) T + blog(T � 1)
 ' T + 2 + blog(t� 1)

speed-up 1

2

T

T

2

T

T

2

t

1+2

t�T

(t+2)

Table 1: Comparison of domain extenders for UOWHF.

pro
essor P

I

1

;J

1

must produ
e a
ollision for h

k

. (Details of this ba
kward indu
tion for
ollision resistant

fun
tion
an be found in [8℄.) The probability that (I; J) = (I

1

; J

1

) is

1

�(L)

. Sin
e the probability that x

and x

0

provide a
ollision for H

p

is at least �, it follows that the su

ess probability for �nding a
ollision

for h

k

is at least

�

�(L)

. Strategy B invokes h

k

at most N times and strategy A invokes h

k

at most 2�(L)

additional times.

6 Comparison to Previous Algorithms

In Table 1 we
ompare the performan
e of the di�erent known algorithms with PUA. The
omparison

is for messages of length L = 2

T

(n�m)� (n� 2m) with T > 2. The parameters n and m are
onstant

and hen
e L grows as T grows. For the purpose of
omparison we assume that Algorithm PUA uses

2

t

pro
essors where t is a
onstant less than T � 1. Table 1
learly shows the superiority of PUA over

previous binary tree algorithms in terms of key expansion and eÆ
ien
y of speed-up.

6.1 Comparison of Key Length Expansion

The key length expansion is m times the number of masks used. Hen
e it is suÆ
ient to
ompare the

number of masks used by the di�erent algorithms. First we
ompare the number of masks used by

Algorithm PUA to the number of masks used by Algorithm SeqUOWHF.

Theorem 2 Let x be a message of length L and N

1

be the number of masks required by Algorithm PUA

to hash x. Further, let N

2

be the lower bound on the number of masks required by any algorithm in A

to hash x. Then log

�

1 +

t�2

q+3

�

< N

1

�N

2

� blog(t� 1)
 < 2 + "+ log

�

1 +

t�1

q+2

�

where "� 1, and t is

the height of the binary pro
essor tree used by PUA.

Proof. From Se
tion 4.1, we have N

1

= 2 + t+ blog(R� 1)
 + blog(t� 1)
.

For Algorithm SeqUOWHF, the number of masks used is N

2

= 1 + blog(r � 1)
, where r is the

number of times the hash fun
tion h

k

is invoked. The number of times the hash fun
tion h

k

is invoked

by PUA is �

t

(L) = (q+2)2

t

+2b� 1 (see Proposition 4.4). Also it has been proved in [8℄ that this is the

number of times the hash fun
tion h

k

will be invoked by SeqUOWHF. Hen
e N

2

= 1+ blog(�

t

(L)� 1)
.

Thus

N

1

�N

2

= (2 + t+ blog(R� 1)
blog(t� 1)
) � (1 + blog(�

t

(L)� 1)
)

= (2 + t+ blog(q + t+ 1)
+ blog(t� 1)
) � (1 + blog(2

t

(q + 2) + 2b� 2)
)

The parameter b is either 0 or equal to d

r

2n�2m

e, where r ranges from 1 to �(t) = 2

t�1

(2n� 2m). Hen
e

0 � b � 2

t�1

. Thus we have 1 + blog(2

t

(q + 2) � 2)
 � N

2

� 1 + blog(2

t

(q + 3) � 2)
: From this we

9

get log(2

t

(q + 2) � 2) < N

2

� 1 + log(2

t

(q + 3) � 2): We
an write this as t + log(q + 2) � " < N

2

�

t + 1 + log(q + 3) � � where " = � log(1 �

1

2

t�1

(q+2)

) and � = � log(1 �

1

2

t�1

(q+3)

). Clearly, "; � � 1.

Thus we have

1 + blog(q + t+ 1)
 � log(q + 3) + � � N

1

�N

2

� blog(t� 1)
 < 2 + "+ blog(q + t+ 1)
 � log(q + 2):

This gives log

�

1 +

t�2

q+3

�

< N

1

�N

2

� blog(t� 1)
 < 2 + "+ log

�

1 +

t�1

q+2

�

whi
h is the required result.

The height t of the binary tree is independent of the message length and is a
onstant for a parti
ular

implementation. For moderately long messages, Algorithm PUA requires at most blog(t� 1)
+ 2 more

masks than the minimum possible number of masks. Consequenly PUA makes only a
onstant amount

of key length expansion
ompared to the best algorithm in the
lass A.

We now
ompare the number of masks used by PUA to the number of masks used by TreeUOWHF.

For TreeUOWHF we use the mask assignment pro
edure used by Sarkar [7℄ (see Se
tion 3.2) and not the

assignment pro
edure used by Bellare and Rogaway [1℄. This is be
ause the number of masks required

in the �rst
ase is less than the number of masks required in the se
ond
ase.

Theorem 3 Suppose x is a message of length L = 2

T

(n � m) � (n � 2m) and TreeUOWHF uses a

pro
essor tree of height T > 2 to hash x. Suppose PUA is used to hash x using a pro
essor tree of size

t < T � 1. Let A and B be the number of masks used by TreeUOWHF and PUA respe
tively. Then

A�B > blog(T � 1)
 � blog(t� 1)
 � 2�

j

log(1 +

t�2

2

T�t

)

k

:

Proof. The number of masks used by TreeUOWHF is A = T + blog(T � 1)
 for T > 2 (see [7℄). The

parameters q and r of PUA are determined as follows: L� Æ(t) = (2

T

� 2

t+1

)(n�m) = q2

t

(n�m) + r,

where q = 2

T�t

� 3 and r = �(t). The number of masks required by PUA is B = 2 + t+ blog(t� 1)
 +

blog(q + t+ 1)
 = 2 + t+ blog(t� 1)
 + blog(2

T�t

+ t� 2)
.

Note that log(2

T�t

+ t� 2) = T � t+ log(1 +

t�2

2

T�t

). Using this in B, we get the required result.

Note that the parameter T grows with the length of the message while t is a
onstant. Hen
e the

di�eren
e A � B grows with the length of the message, whi
h means that
ompared to TreeUOWHF,

algorithm PUA be
omes more and more eÆ
ient as the length of the message grows.

7 Variable Length Inputs

Given a UOWHF fh

k

g

k2K

, where h

k

: f0; 1g

n

! f0; 1g

m

, we
onstru
t a UOWHF fH

�

p

g

p2P

, where

H

�

: [

L

i=1

f0; 1g

i

! f0; 1g

m

. The UOWHF fH

�

p

g

p2P

an handle variable length messages with maximum

length 2

n�m

. Sin
e we require n � 2m, we have n �m � m. Pra
ti
al digests must be at least 64

bits long and hen
e fH

�

p

g

p2P

an handle messages of maximum length 2

64

whi
h is suÆ
ient for any

on
eivable purpose. We note that [1℄ provides a method for ta
kling variable length inputs based on

the use of two keys.

The de�nition of fH

�

p

g

p2P

is based on Algorithm PUA. Suppose Algorithm PUA uses a binary

pro
essor tree of height t and a set of masks M to extend the domain of a UOWHF fh

k

g

k2K

. Let

~

M

be the
on
atenation of all the masks in M . Let p = kjj

~

M and let x be a message of maximum length

2

n�m

. Then fH

�

p

g

p2P

is de�ned in the following manner:

H

�

p

(x) = h

k

(PUA(t; x)jjbin

n�m

(jxj)); (4)

10

where bin

k

(i) denotes the k-bit binary representation of i, 0 � i < 2

k

. The idea is to
ompute the output

z of PUA(t; x),
on
atenate jxj as an (n�m)-bit binary number to z and apply h

k

to the resulting n-bit

string u.

Theorem 4 Let A be an (�;N)-extended strategy for fH

�

p

g

p2P

, with H

�

p

: [

2

n�m

i=1

f0; 1g

i

! f0; 1g

m

.

Then there is an (�

0

; N + N

0

+ 2)-strategy B for fh

k

g

k2K

, where �

0

�

�

�(2

n�m

)

and N

0

� �(2

n�m

).

Consequently, if fh

k

g

k2K

is a UOWHF then so is fH

�

p

g

p2P

.

Proof. We have to des
ribe the two stages of the adversarial strategy B for fh

k

g

k2K

. The Algorithm

B

guess

is same as B

guess

in the proof of Theorem 1. B

guess

�rst invokes A

guess

to obtain a string x of

length L � 2

n�m

and then outputs an n-bit string u and some state information s. The adversary is

then given a random k 2 K. Now the algorithm B

�nd

has to be des
ribed. The �rst task of B

�nd

is to

de�ne the masks in M as in the proof of Theorem 1. Then p = kjj

~

M is the key for the hash fun
tion

H

�

p

. B

�nd

now invokes A

�nd

with x and p to obtain a string x

0

. Suppose x and x

0

provide a
ollision

for H

�

p

with probability at least �. If jxj 6= jx

0

j, then bin

n�m

(jxj) 6= bin

n�m

(jx

0

j) and we immediately

have a
ollision for h

k

. On the other hand, if jxj = jx

0

j, then as in the proof of Theorem 1, we obtain

a
ollision for h

k

with probability at least

�

�(L)

. Also the number of times h

k

is invoked is at most N

plus twi
e the number of times h

k

is invoked to
ompute H

�

p

. The number of times h

k

is invoked to

ompute H

�

p

is equal to one plus the number of times h

k

is invoked by Algorithm PUA(t; x) whi
h is

equal to 1 + �(L). This gives us the required result.

Referen
es

[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pra
ti
al.

Pro
eedings of CRYPTO 1997, pp 470-484.

[2℄ I. B. Damg�ard. A design prin
iple for hash fun
tions. Le
ture Notes in Computer S
ien
e, 435

(1990), 416-427 (Advan
es in Cryptology - CRYPTO'89).

[3℄ R. C. Merkle. One way hash fun
tions and DES. Le
ture Notes in Computer S
ien
e, 435 (1990),

428-226 (Advan
es in Cryptology - CRYPTO'89).

[4℄ I. Mironov. Hash fun
tions: from Merkle-Damg�ard to Shoup. Le
ture Notes in Computer S
ien
e,

2045 (2001), 166-181 (Advan
es in Cryptology - EUROCRYPT'01).

[5℄ M. Naor and M. Yung. Universal one-way hash fun
tions and their
ryptographi
 apli
ations.

Pro
eedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

[6℄ B. Preneel. The state of
ryptographi
 hash fun
tions. Le
ture Notes in Computer S
ien
e, 1561

(1999), 158-182 (Le
tures on Data Se
urity: Modern Cryptology in Theory and Pra
ti
e).

[7℄ P. Sarkar. Constru
tion of UOWHF: Tree Hashing Revisited. IACR e-print server, 2002/058,

http://eprint.ia
r.org.

[8℄ P. Sarkar and P. J. S
hellenberg. A Parallelizable Design Prin
iple for Cryptographi
 Hash Fun
-

tions. IACR e-print server, 2002/031, http://eprint.ia
r.org.

11

[9℄ V. Shoup. A
omposition theorem for universal one-way hash fun
tions. Pro
eedings of Euro
rypt

2000, pp 445-452, 2000.

[10℄ D. Simon. Finding
ollisions on a one-way street: Can se
ure hash fun
tion be based on general

assumptions?, Le
ture Notes in Computer S
ien
e - EUROCRYPT'98, pp 334-345, 1998.

[11℄ D. R. Stinson. Some observations on the theory of
ryptographi
 hash fun
tions. IACR preprint

server, http://eprint.ia
r.org/2001/020/.

12

