
Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

Palash Sarkar

Applied Statistis Unit

Indian Statistial Institute

203, B.T. Road

Kolkata 700108, India

e-mail: palash�isial.a.in

Abstrat

We obtain a �nite binary tree algorithm to extend the domain of a UOWHF. The assoiated key

length expansion is only a onstant number of bits more than the minimum possible. Our �nite binary

tree algorithm is a pratial parallel algorithm to seurely extend the domain of a UOWHF. Also the

speed-up obtained by our algorithm is approximately proportional to the number of proessors.

Keywords : UOWHF, hash funtion, binary tree.

1 Introdution

Universal one-way hash funtion (UOWHF) was introdued by Naor and Yung [5℄ to prove that seure

digital signatures an be based on one-way, 1-1 funtions. A UOWHF is a family of funtions fh

k

g

k2K

for whih the following task of the adversary is omputationally infeasible. The adversary has to hoose

a x from the domain, is then given a random k 2 K and subsequently has to �nd a y suh that x 6= y but

h

k

(x) = h

k

(y). Intutively, a UOWHF is a weaker primitive than a ollision-resistant funtion, sine the

task of the adversary is more diÆult, i.e., the adversary has to ommit to the string x before knowing

the atual hash funtion h

k

for whih the ollision has to be found. Simon [10℄ has shown that there is

a orale relative to whih UOWHFs exist but ollision resistant hash funtions do not exist. See [6℄ for

a survey on hash funtions and [11℄ for some properties and redutions between di�erent kinds of hash

funtions.

The study of UOWHF was later undertaken by several authors. Bellare and Rogaway [1℄ showed

that it is possible to build pratial and provably seure \hash-then-sign" shemes, where the hashing

is done using a UOWHF. The paper also addresses the problem of onstruting UOWHFs. Like most

basi ryptographi primitives it is virtually impossible to de�ne a family fh

k

g

k2K

and prove it to be a

UOWHF. The idea suggested in [1℄ is to use one of the standard hash funtions like SHA or RIPEMD

in a keyed mode and assume it to be a UOWHF. It seems more reasonable to make this assumption

when the domain is a short string rather than an arbitrarily long string. This leads to the question of

extending the domain of a UOWHF while preserving the UOWHF property.

The Merkle-Damg�ard algorithm [2, 3℄ is a well known method of extending the domain of a ollision-

resistant hash funtion. However, as shown in [1℄ this method does not work in the ase of a UOWHF.

Several onstrutions for extending the domain of a UOWHF is presented in [1℄. These onstrutions

1

assume the existene of a UOWHF fh

k

g

k2K

, with h

k

: f0; 1g

n

! f0; 1g

m

and show how to onstrut

a UOWHF fH

p

g

p2P

where the input to H

p

an be a very long message. The onstrutions have an

assoiated key length expansion of jpj � jkj. One of the major goals in extending the domain of a

UOWHF is to minimise the expansion of the key length.

Shoup [9℄ provides a modi�ation of the Merkle-Damg�ard algorithm to extend the domain of a

UOWHF. The Merkle-Damg�ard onstrution and hene the Shoup onstrution is a sequential algo-

rithm. A tree based sheme for extending the domain of a UOWHF was presented in [1℄. For binary

trees the sheme an be used to hash a message of length L = 2

T

(n�m)� (n� 2m) using a full binary

of height T and 2

T

� 1 proessors, where the base UOWHF takes as input a message of length n and

produes a digest of length m. The key length expansion made by the algorithm is 2m(T � 1). In

a reent work [7℄, an improved binary tree based onstrution has been presented whih makes a key

length expansion of m(T+blog(T�1)) bits for T � 2. The main disadvantage of both the above binary

tree algorithms is that the number of proessors grows with the length of the message. See Table 1 in

Setion 6 for a omparison of di�erent algorithms.

We obtain a binary tree algorithm for whih the key length expansion is a onstant number of bits

more than the minimum possible. This is made possible by using a �nite binary tree of proessors in

ontrast to [1, 7℄ where the height of the binary tree inreases with the length of the message. Thus our

algorithm yields a pratial parallel algorithm for seurely extending the domain of a UOWHF. Another

important onsequene of using a �nite binary tree is the fat that for moderately long messages the

speed-up over sequential (Shoup's) algorithm is equal to the number of proessors. Thus our algorithm

makes eÆient use of resoures. We note that the speed-up obtained in [1, 7℄ is logarithmi in the

number of proessors.

The �nite binary tree algorithm is built using ideas from several existing work. The basi algorithm

has been used to extend the domain of a ollision resistant funtion in [8℄. To this algorithm we add

the masking tehniques of [9℄ and [7℄. The masking tehnique of [7℄ is itself built around the masking

tehniques of [9℄ and that of [1℄. We show that all these tehniques �t together niely to provide a

orret domain extender for UOWHFs.

2 Preliminaries

Let fh

k

g

k2K

be a keyed family of hash funtions, where eah h

k

: f0; 1g

n

! f0; 1g

m

. Consider the

following adversarial game.

1. Adversary hooses an x 2 f0; 1g

n

.

2. Adversary is given a k whih is hosen uniformly at random from K.

3. Adversary has to �nd y suh that y 6= x and h

k

(x) = h

k

(y).

A strategy A for the adversary runs in two stages. In the �rst stage A

guess

, the adversary �nds the

x to whih he has to ommit in Step 1. It also produes some auxiliary state information �. In the

seond stage A

�nd

(x; k; �), the adversary either �nds a y 6= x suh that h

k

(x) = h

k

(y) or it reports

failure. Both A

guess

and A

�nd

(x; k; �) are probabilisti algorithms. The suess probability of the

strategy is measured over the random hoies made by A

guess

and A

�nd

(x; k; �) and the random hoie

of k in Step 2 of the game. We say that A is an (�; a)-strategy if the suess probability of A is at

least � and it invokes the hash funtion h

k

at most a times. In this ase we say that the adversary has

2

an (�; a)-strategy for fh

k

g

k2K

. We say that fh

k

g

k2K

is a universal one way hash family (UOWHF) if

the adversary has a negligible probability of suess with respet to any probabilisti polynomial time

strategy.

In this paper we are interested in extending the domain of a UOWHF. Thus given a UOWHF

fh

k

g

k2K

, with h

k

: f0; 1g

n

! f0; 1g

m

and a positive integer L, we would like to onstrut another

UOWHF fH

p

g

p2P

, with H

p

: f0; 1g

L

! f0; 1g

m

. We also onsider the following situation. Given

a UOWHF fh

k

g

k2K

where h

k

: f0; 1g

n

! f0; 1g

m

, we onstrut a UOWHF fH

�

p

g

p2P

where H

�

p

:

[

2

n�m

i=1

f0; 1g

i

! f0; 1g

m

. Sine we require n � 2m, we have n � m � m. For pratial appliations

m is at least 64 bits, hene messages upto length 2

64

an be hashed by H

�

p

. This is suÆient for any

oneivable purpose.

We say that the adversary has an (�; a)-extended strategy for fH

p

g

p2P

if there is a strategy B for

the adversary with probability of suess at least � and whih invokes the hash funtion h

k

at most a

times. Note that H

p

is built using h

k

and hene while studying strategies for H

p

we are interested in

the number of invoations of the hash funtion h

k

.

The orretness of our onstrution will essentially be a Turing redution. We will show that if there

is an (�; a)-extended strategy for fH

p

g

p2P

, then there is an (�

1

; a

1

)-strategy for fh

k

g

k2K

, where a

1

is

not muh larger than a and �

1

is not signi�antly lesser than �. This will show that if fh

k

g

k2K

is a

UOWHF, then so is fH

p

g

p2P

.

The key length for the base hash family fh

k

g

k2K

is dlog

2

jKje. On the other hand, the key length

for the family fH

p

g

p2P

is dlog

2

jPje. Thus inreasing the size of the input from n bits to L bits results

in an inrease of the key size by an amount dlog

2

jPje � dlog

2

jKje. From a pratial point of view a

major motivation is to minimise this inrease in the key length.

3 Known Algorithms

We briey disuss sequential and binary tree based domain extending algorithms for UOWHFs.

3.1 Sequential Algorithm

The Merkle-Damg�ard onstrution [3, 2℄ is a well known onstrution for extending the domain of a

ollision resistant hash funtion. However, Bellare and Rogaway [1℄ showed that the onstrution does

not diretly work in the ase of UOWHF. In [9℄, Shoup presented a modi�ation of the MD onstrution.

We briey desribe the Shoup onstrution.

Let fh

k

g

k2K

, h

k

: f0; 1g

n

! f0; 1g

m

, K = f0; 1g

K

be the UOWHF whose domain is to be extended.

Let x be the input to H

p

with jxj = n+r(n�m). We de�ne p = kjj�

0

jj�

1

jj : : : jj�

l�1

where l = 1+blog r

and �

i

are m-bit binary strings alled masks. The inrease in key length is lm bits. The output of H

p

is omputed by the following algorithm. For integer i, de�ne �(i) = j if 2

j

ji and 2

j+1

6 ji.

Algorithm SeqUOWHF

1. Let x = x

0

jjx

1

jjx

2

jj : : : jjx

r

, where jx

0

j = n and jx

i

j = n�m for 1 � i � r.

2. De�ne z

0

= h

k

(x

0

).

3. For 1 � i � r, de�ne s

i

= z

i�1

� �

j

and z

i

= h

k

(s

i

jjx

i

) where j = �(i).

4. De�ne z

r

to be the output of H

p

(x).

3

For the sake of simpliity we do not inlude an initialisation vetor. The funtion h

k

is invoked (r + 1)

times and the algorithm requires dlog

2

(r + 1)e = 1 + blog

2

r masks. This algorithm was initially

desribed in [9℄ and in [4℄ it was shown that the number of masks required is the minimum possible for

any suh sequential onstrution to be orret.

3.2 Tree Based Algorithm

Extending the domain of a UOWHF using a full binary tree of proessors have been onsidered in the

literature [1, 7℄. A full binary tree of 2

T

� 1 proessors numbered P

1

; : : : ; P

2

T

�1

is used. The length

of the message x to be hashed is jxj = L = 2

T�1

n + (2

T�1

� 1)(n � 2m). Let T

T

= (V

T

; A

T

) be the

full binary tree of 2

T

� 1 proessors, where V

T

= f1; : : : ; 2

T

� 1g and A

T

= f(i; b(i=2)) : 1 < i < 2

T

g.

We set a

i

= (i; b(i=2)) and so A

T

= fa

2

; : : : ; a

2

T

�1

g. There is a set M of m-bit masks and a funtion

 : A

T

! M , whih assigns an m-bit string to eah ar of T

T

. The algorithms of [1℄ and [7℄ have the

same general form and di�er only in the desription of M and . We �rst desribe the general form of

the algorithm.

Algorithm TreeUOWHF

1. Write x = x

1

jjx

2

jj : : : jjx

2

T

�1

, where jx

1

j = : : : = jx

2

T�1

�1

j = n� 2m and jx

2

T�1

j = : : : = jx

2

T

�1

j = n.

2. For i = 2

T�1

; : : : ; 2

T

� 1, do in parallel

z

i

= h

k

(x

i

).

s

i

= z

i

� (a

i

).

3. For j = T � 1 downto 2 do

For i = 2

j�1

to 2

j

� 1 do in parallel

z

i

= h

k

(s

2i

jjs

2i+1

jjx

i

).

s

i

= z

i

� (a

i

).

4. Output h

k

(s

2

jjs

3

jjx

1

) as the output of H

p

(x).

To omplete the desription of Algorithm 1 we have to de�ne M and . We do this separately for [1℄

and [7℄.

Bellare and Rogaway [1℄ : In this ase M = f�

1

; : : : ; �

T�1

; �

1

; : : : ; �

T�1

g and (a

i

) is de�ned as

follows: (a

i

) = �

T+1�l

if i � 0 mod 2; and (a

i

) = �

T+1�l

if i � 1 mod 2. Here l = level(i), i.e.,

2

l�1

� i � 2

l

� 1.

Sarkar [7℄ : In this ase M = f�

1

; : : : ; �

T�1

; �

0

; : : : ; �

r�1

g where r = 1 + blog

2

(T � 1) and (a

i

) is

de�ned as follows: (a

i

) = �

�(T+1�l)

if i � 0 mod 2; and (a

i

) = �

T+1�l

if i � 1 mod 2. Here again

l = level(i).

Note that the Bellare-Rogaway algorithm requires 2(T�1) masks whereas Sarkar's algorithm requires

T + blog

2

(T � 1) masks.

4 Finite Binary Tree Algorithm

Let fh

k

g

k2K

, h

k

: f0; 1g

n

! f0; 1g

m

be a UOWHF whose domain is to be extended. For our �nite binary

tree algorithm we require n � 2m. A set of 2

t

proessors P

0

; : : : ; P

2

t

�1

will be used in the algorithm.

De�ne Æ(t) = 2

t

n + (2

t

� 1)(n � 2m) = 2

t

(2n � 2m) � (n � 2m) and �(t) = 2

t�1

n + 2

t�1

(n � 2m) =

2

t�1

(2n � 2m). The message x is of length jxj = L. We assume that L � Æ(t). Otherwise we

4

hoose a t

0

2 f1; : : : ; t � 1g, suh that L � Æ(t

0

) and use only 2

t

0

of the 2

t

proessors. We de�ne

I = f0; : : : ; 2

t�1

� 1g, L = f2

t�1

; : : : ; 2

t

� 1g.

We �rst de�ne three parameters q

t

(L); r

t

(L) and b

t

(L). If L > Æ(t), then q

t

(L) and r

t

(L) are de�ned

by the following equation: L� Æ(t) = q

t

(L)�(t) + r

t

(L), where r

t

(L) is the unique integer from the set

f1; : : : ; �(t)g. If L = Æ(t), then q

t

(L) = r

t

(L) = 0. De�ne b

t

(L) = d(r

t

(L)=(2n� 2m))e. We will usually

write q; r and t instead of q

t

(L); r

t

(L) and b

t

(L) respetively.

The message x is padded with b(2n � 2m) � r many 0's to ensure that the length beomes Æ(t) +

q�(t) + b(2n� 2m). The maximum number of 0's that are padded is (2n� 2m)� 1 and is independent

of the message length. The algorithm goes through R = q + t + 2 rounds. In round 1, eah proessor

gets an n-bit substring of the message x as input and produes an m-bit output. Also in rounds 2 to R

and for 2

t�1

� i � 2

t

� 1, eah proessor P

i

gets as input either an n-bit substring of the message x or

the empty string hi and orrespondingly produes as output either an m-bit string or the empty string

hi.

For 1 < j � R and 0 � i � 2

t�1

� 1, in round j proessor P

i

reads the outputs of proessors

P

2i

and P

2i+1

in round j � 1. Thus the same set of proessors is used in eah round. However, for

onveniene of desription of our algorithm, we will onsider R opies of the set of proessors, denoted

by P

i;j

, 0 � i � 2

t

� 1 and 1 � j � R. Thus we onsider a direted graph D = (V;A), where

V = fP

i;j

: 0 � i � 2

t

� 1; 1 � j � Rg and

A =

[

0�i��

[

1<j�R

f(P

2i;j�1

; P

i;j

); (P

2i+1;j�1

; P

i;j

)g

where � = 2

t�1

� 1. Sine the outdegree of eah vertex of D is at most one, we label the ars as A

i;j

(0 � i � 2

t

� 1, 1 � j � R� 1), where A

i;j

= (P

i;j

; P

b(i=2);j+1

). For 0 � i � 2

t�1

� 1 and 1 � j � R� 1,

we denote by z

i;j

the m-bit string whih is the output of proessor P

i;j

. It is assumed that z

i;j

is

assoiated with the ar A

i;j

. Let M be a set of m-bit masks and : A!M be an assignment of these

masks to the ars of the proessor graph D = (V;A).

Eah of the proessors P

i;j

is given a string u

i;j

as input. For 1 � j � R � 1, de�ne UList

j

=

hu

0;j

; : : : ; u

2

t

�1;j

i and U

j

to be the onatenation of all the strings in UList

j

. The strings U

j

's are

obtained from the message and x = U

1

jj : : : jjU

R�1

jjU

R

, where the lengths of the strings u

i;j

's and U

R

is de�ned as follows. (See [8℄ for orretness of this formatting algorithm.)

ju

R

j =

(

n� 2m if b > 0;

0 otherwise.

ju

i;j

j =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

n if (j = 1) or (2 � j � q + 1 and i 2 L);

n if j = q + 2 and 2

t�1

� i � 2

t�1

+ b� 1;

0 if j = q + 2 and 2

t�1

+ b � i � 2

t

;

0 if q + 2 < j < R and i 2 L;

n� 2m if 2 � j � q + 2 and i 2 I;

n� 2m if q + 2 < j < R and 0 � i � K

j

� 1;

0 if q + 2 < j < R and K

j

� i � 2

t�1

� 1:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(1)

Here K

j

= 2

s�1

+ k

s

, where s = R � j and k

s

=

j

2

t�s�1

+b�1

2

t�s

k

. For 0 � i � 2

t

� 1 and 1 � j � R � 1,

the strings z

i;j

's are either m-bit strings or the empty string. If z

i;j

is an m-bit string, then de�ne

s

i;j

= z

i;j

� (A

i;j

); (2)

5

We are now in a position to de�ne the parallel UOWHF algorithm (PUA).

Parallel UOWHF Algorithm PUA(t; x)

(a) Case 1 (j = 1 and 0 � i � 2

t

� 1) : z

i;1

= h

k

(u

i;1

).

(b) Case 2 (j > 1 and 2

t�1

� i � 2

t

� 1) :

(

z

i;j

= h

k

(u

i;j

) if ju

i;j

j = n;

= hi otherwise.

() Case 3 (j > 1 and 0 � i � 2

t�1

� 1) :

(

z

i;j

= h

k

(s

2i;j�1

jjs

2i+1;j�1

jju

i;j

) if ju

i;j

j = n� 2m;

= z

2i;j�1

otherwise.

(d) return z

0;R

.

end PUA

Note that for eah j (1 � j � R), all the proessors P

i;j

an operate in parallel to produe the strings

z

i;j

.

4.1 De�nition of M and

Algorithm PUA depends on the set of masks M and the map : A ! M . Here we present our set of

masks and our de�nition of . Reall that �(i) = j if 2

j

ji and 2

j+1

6 ji. Also l = level(i) is suh that

2

l�1

� i � 2

l

� 1. The set of masks M is the union of two disjoint sets of masks M

0

and M

1

de�ned

as follows: M

0

= fm

0

; : : : ;m

�1

g, where = 1 + blog

2

(R � 1); M

1

= f�

1

; : : : ; �

t

; �

0

; : : : ; �

d�1

g, where

d = 1+ blog

2

(t� 1). Thus jM j = 2+ t+ blog

2

(R� 1)+ blog

2

(t� 1). The assignment of masks to the

ars is de�ned in the following manner.

 (A

i;j

) = m

�(j)

if i = 0;

= �

t+1�l

if i � 1 mod 2; l = level(i);

= �

�(t+1�l)

if i > 0 and i � 0 mod 2; l = level(i):

We provide an explanation of the above assignment proedure. The assignment atually onsists of

two parts. In the �rst part, ars of the type A

0;1

; A

0;2

; : : : ; A

0;R�1

are assigned masks aording to the

Shoup algorithm (see Setion 3.1). The rest of the ars are divided into rounds. Ars A

i;j

1

and A

i;j

2

get the same mask for i > 0 and 1 � j

1

; j

2

� R � 1. The ars for a �xed round are assigned masks

using the algorithm of Sarkar from Setion 3.2. Thus the mask assigment algorithm ombines the mask

assignment algorithms of [9℄ and [7℄.

4.2 De�nition of fH

p

g

p2P

The UOWHF family fH

p

g

p2P

is de�ned from the hash family fh

k

g

k2K

using algorithm PUA(t; x) in

the following manner.

H

p

(x) = PUA(t; x): (3)

Here p = kjj

~

M , where

~

M is the onatenation of all the masks used by PUA(t; x).

4.3 Coping with Di�erent Size Trees

The output of H

p

(x) depends on the parameter t whih is the depth of the proessor tree. Thus the

output an be orretly reomputed only if the reeiver has aess to a binary tree of 2

t

proessors.

6

This is learly an undesirable situation. The way out of this situation is to have an algorithm where it

is possible to simulate a binary tree of 2

t

proessors with a binary tree of 2

t

0

proessors for any t

0

in

f0; : : : ; t� 1g. In fat, it is possible to perform suh a simulation. For ollision resistant hash funtions

the simulation algorithm has been presented in [8℄. The same algorithm will also work in the ase of

UOWHF. Hene we do not present the simulation algorithm in this paper.

4.4 Speed-Up Over Sequential Algorithm

The number of invoations of h

k

depends on the length of the message length L. Let �(L) denote the

number of invoations of h

k

for a message of length L. Then �(L) = �(L + b

t

(L)(2n � 2m) � r

t

(L)).

The value of �(L) has been omputed in [8℄ and is given by �(L) = (q

t

(L)+2)2

t

+2b

t

(L)�1. The same

value also applies to the present ase.

As shown in [8℄, �(L) is also the number of invoations required in the sequential algorithm. The

number of parallel rounds is q

t

(L) + t + 2. Hene ompared to the sequential onstrution, the tree

onstrution is faster by a fator of SF =

�(L)

q+t+2

=

(q+2)2

t

+2b�1

q+t+2

: If b > 0, then SF �

2

t

(q+2)

q+2+t

=

2

t

1+

t

q+2

:

The parameter q grows linearly with the length of the message whereas t is �xed. Hene for moderately

large messages, the speed-up is almost linear in the number of proessors.

5 Seurity Redution for fH

p

g

p2P

Theorem 1 If there is an (�;N)-extended strategy for fH

p

g

p2P

, then there is an (

�

�(L)

; N + 2�(L))

strategy for fh

k

g

k2K

, where h

k

: f0; 1g

n

! f0; 1g

m

and H

p

: f0; 1g

L

! f0; 1g

m

. Consequently, if the

family fh

k

g

k2K

is a UOWHF, then the family fH

p

g

p2P

is also a UOWHF.

Proof. Our proof is a redution. We assume that there is an (�; a)-extended strategy B for the family

fH

p

g

p2P

and onstrut an (

�

�(L)

; N + 2�(L)) strategy A for the family fh

k

g

k2K

. Thus if fH

p

g

p2P

is

not a UOWHF then fh

k

g

k2K

is also not a UOWHF. The ontrapositive of this statement gives us the

desired result. We now turn to the atual redution. The strategy A has two parts, A

guess

and A

�nd

.

The algorithm A

�nd

is as follows.

1. Run B

guess

to obtain a string x of length L and state information �

1

.

2. Randomly hoose an I; J (0 � I � 2

t

� 1, 1 � J � R) suh that the string u

I;J

6= hi.

3. If ju

I;J

j = n, then set w = u

I;J

.

4. If ju

I;J

j = n� 2m, then randomly hoose two m-bit strings w

0

; w

1

and set w = w

0

jjw

1

jju

I;J

.

5. Output string w and state information � = (�

1

; I; J).

After A

guess

produes an n-bit output w, the adversary is given a random k 2 K. Now the adversary

runs the algorithm A

�nd

given below.

1. If I and J are suh that ju

I;J

j = n, then de�ne all the masks in M randomly.

2. If I = 0, then run mask de�ning algorithm MDef 1 to de�ne all the masks in M .

3. If I > 0, then run mask de�ning algorithm MDef 2 to de�ne all the masks in M .

4. Let

~

M be the onatenation of all the masks in M and set p = kjj

~

M .

5. Run B

�nd

(x; p; �

1

) to obtain string x

0

.

7

6. Run algorithm PUA on x

0

and store all the intermediate values u

0

i;j

, z

0

i;j

and s

0

i;j

.

7. If ju

I;J

j = n, w = u

I;J

6= u

0

I;J

and z

I;J

= z

0

I;J

, then return u

I;J

and u

0

I;J

.

8. If ju

I;J

j = n� 2m, w = w

0

jjw

1

jju

I;J

6= s

0

2I;J�1

jjs

0

2I+1;J�1

jju

0

I;J

and z

I;J

= z

0

I;J

,

then return w and s

0

2I;J�1

jjs

0

2I+1;J�1

jju

0

I;J

.

9. Else return failure.

The task of the mask de�ning algorithms is to de�ne the masks so that the input to proessor P

I;J

is

the string w. If ju

I;J

j = n, then w = u

I;J

and so the masks are de�ned randomly. On the other hand,

if ju

I;J

j = n� 2m, then w = w

0

jjw

1

jju

I;J

, where w

0

and w

1

are m-bit random strings. In this situation,

we would like to have w

0

= s

2I;J�1

and w

1

= s

2I+1;J�1

. However, the algorithm B

�nd

produes the

string x before knowing the key p. The key p an only be determined after the key k beomes known.

Thus after k is revealed, the masks in M are de�ned so that w

0

= s

2I;J�1

and w

1

= s

2I+1;J�1

. The key

for the algorithm B

�nd

is then determined to be kjj

~

M . While de�ning the masks we must ensure that

eah mask is hosen aording to the uniform distribution on the set of m-bit strings. We now desribe

the two mask de�ning algorithms.

The algorithm MDef 1 does the following. First it randomly de�nes the masks �

1

; : : : ; �

t�1

. Then

it does a partial run of the algorithm PUA in the following manner. It operates eah proessor P

i;j

for i > 0 and 1 � j � R. (Note that sine the masks m

0

; : : : ;m

�1

are as yet unde�ned, it is not

possible to operate P

0;j

for any j.) This partial exeution of the algorithm de�nes all the strings z

1;J

for 1 � J � R. MDef 1 now de�nes �

t

= w

1

� z

1;J�1

. One �

t

is de�ned, all the strings s

1;j

an be

de�ned, sine s

1;j

= z

1;j

� (A

1;j

) = z

i;j

� �

t

. Now we onsider the operation of P

0;1

; P

0;2

; : : : ; P

0;R

to

be a sequential operation. For j > 1, the inputs to P

0;j

are s

0;j�1

; s

1;j�1

and u

0;j

. Of these the inputs

s

1;j�1

and u

0;j

are already known. So we have to de�ne the inputs s

0;j�1

for j � 1. Moreover, we have

to ensure that s

0;J�1

= w

1

. This is exatly the problem for the sequential onstrution of UOWHF

given in Setion 3.1. Now the mask de�ning algorithm presented in [4℄ is used to orretly de�ne the

masks m

0

; : : : ;m

�1

.

The �rst step of Algorithm MDef 2 is to randomly de�ne the masks m

0

; : : : ;m

�1

and the mask

�

t

. Let L = level(I). There are two ases to onsider: (a) L � J and (b) L > J . We �rst desribe Case

(a).

In Case (a) we have L � J and no proessor P

i;j

with j < J � L will be used in de�ning the masks

in M

1

n f�

t

g. In this situation, for i � 1, we merge all proessors P

i;j

for J � L � j � J into a single

proessor P

i

. Then the algorithm beomes the binary tree based UOWHF algorithm of Sarkar desribed

in Setion 3.2. The mask de�ning algorithm of [7℄ is used to properly de�ne the masks in this ase.

In Case (b), it will not be possible to desend L steps in the tree starting from P

I;J

. After J steps

we will reah round 1. The mask de�ning algorithm of [7℄ uses the algorithm of [4℄ along ertain paths

in the full binary tree. In this ase suh paths will not be omplete. However, it is not diÆult to verify

that this makes the task of mask de�nition easier. The details are quite straightforward and hene are

omitted.

Thus in both Cases (a) and (b) it is possible to properly de�ne the masks in the set M . Further,

any mask is either hosen to be random or is obtained by XOR with a random string. Hene eah mask

is hosen independently and uniformly at random from the set of all m-bit strings, whih shows that

~

M is a random string.

To omplete the proof we need to lower bound the probability of suess. Supppose that x and x

0

produe a ollision for H

p

. Then using a bakward indution it is possible to prove that for some I

1

; J

1

,

8

Parameter Sequential [9℄ [1℄ [7℄ PUA

proessors 1 2

T

� 1 2

T

� 1 2

t

masks T 2(T � 1) T + blog(T � 1) ' T + 2 + blog(t� 1)

speed-up 1

2

T

T

2

T

T

2

t

1+2

t�T

(t+2)

Table 1: Comparison of domain extenders for UOWHF.

proessor P

I

1

;J

1

must produe a ollision for h

k

. (Details of this bakward indution for ollision resistant

funtion an be found in [8℄.) The probability that (I; J) = (I

1

; J

1

) is

1

�(L)

. Sine the probability that x

and x

0

provide a ollision for H

p

is at least �, it follows that the suess probability for �nding a ollision

for h

k

is at least

�

�(L)

. Strategy B invokes h

k

at most N times and strategy A invokes h

k

at most 2�(L)

additional times.

6 Comparison to Previous Algorithms

In Table 1 we ompare the performane of the di�erent known algorithms with PUA. The omparison

is for messages of length L = 2

T

(n�m)� (n� 2m) with T > 2. The parameters n and m are onstant

and hene L grows as T grows. For the purpose of omparison we assume that Algorithm PUA uses

2

t

proessors where t is a onstant less than T � 1. Table 1 learly shows the superiority of PUA over

previous binary tree algorithms in terms of key expansion and eÆieny of speed-up.

6.1 Comparison of Key Length Expansion

The key length expansion is m times the number of masks used. Hene it is suÆient to ompare the

number of masks used by the di�erent algorithms. First we ompare the number of masks used by

Algorithm PUA to the number of masks used by Algorithm SeqUOWHF.

Theorem 2 Let x be a message of length L and N

1

be the number of masks required by Algorithm PUA

to hash x. Further, let N

2

be the lower bound on the number of masks required by any algorithm in A

to hash x. Then log

�

1 +

t�2

q+3

�

< N

1

�N

2

� blog(t� 1) < 2 + "+ log

�

1 +

t�1

q+2

�

where "� 1, and t is

the height of the binary proessor tree used by PUA.

Proof. From Setion 4.1, we have N

1

= 2 + t+ blog(R� 1) + blog(t� 1).

For Algorithm SeqUOWHF, the number of masks used is N

2

= 1 + blog(r � 1), where r is the

number of times the hash funtion h

k

is invoked. The number of times the hash funtion h

k

is invoked

by PUA is �

t

(L) = (q+2)2

t

+2b� 1 (see Proposition 4.4). Also it has been proved in [8℄ that this is the

number of times the hash funtion h

k

will be invoked by SeqUOWHF. Hene N

2

= 1+ blog(�

t

(L)� 1).

Thus

N

1

�N

2

= (2 + t+ blog(R� 1)blog(t� 1)) � (1 + blog(�

t

(L)� 1))

= (2 + t+ blog(q + t+ 1)+ blog(t� 1)) � (1 + blog(2

t

(q + 2) + 2b� 2))

The parameter b is either 0 or equal to d

r

2n�2m

e, where r ranges from 1 to �(t) = 2

t�1

(2n� 2m). Hene

0 � b � 2

t�1

. Thus we have 1 + blog(2

t

(q + 2) � 2) � N

2

� 1 + blog(2

t

(q + 3) � 2): From this we

9

get log(2

t

(q + 2) � 2) < N

2

� 1 + log(2

t

(q + 3) � 2): We an write this as t + log(q + 2) � " < N

2

�

t + 1 + log(q + 3) � � where " = � log(1 �

1

2

t�1

(q+2)

) and � = � log(1 �

1

2

t�1

(q+3)

). Clearly, "; � � 1.

Thus we have

1 + blog(q + t+ 1) � log(q + 3) + � � N

1

�N

2

� blog(t� 1) < 2 + "+ blog(q + t+ 1) � log(q + 2):

This gives log

�

1 +

t�2

q+3

�

< N

1

�N

2

� blog(t� 1) < 2 + "+ log

�

1 +

t�1

q+2

�

whih is the required result.

The height t of the binary tree is independent of the message length and is a onstant for a partiular

implementation. For moderately long messages, Algorithm PUA requires at most blog(t� 1)+ 2 more

masks than the minimum possible number of masks. Consequenly PUA makes only a onstant amount

of key length expansion ompared to the best algorithm in the lass A.

We now ompare the number of masks used by PUA to the number of masks used by TreeUOWHF.

For TreeUOWHF we use the mask assignment proedure used by Sarkar [7℄ (see Setion 3.2) and not the

assignment proedure used by Bellare and Rogaway [1℄. This is beause the number of masks required

in the �rst ase is less than the number of masks required in the seond ase.

Theorem 3 Suppose x is a message of length L = 2

T

(n � m) � (n � 2m) and TreeUOWHF uses a

proessor tree of height T > 2 to hash x. Suppose PUA is used to hash x using a proessor tree of size

t < T � 1. Let A and B be the number of masks used by TreeUOWHF and PUA respetively. Then

A�B > blog(T � 1) � blog(t� 1) � 2�

j

log(1 +

t�2

2

T�t

)

k

:

Proof. The number of masks used by TreeUOWHF is A = T + blog(T � 1) for T > 2 (see [7℄). The

parameters q and r of PUA are determined as follows: L� Æ(t) = (2

T

� 2

t+1

)(n�m) = q2

t

(n�m) + r,

where q = 2

T�t

� 3 and r = �(t). The number of masks required by PUA is B = 2 + t+ blog(t� 1) +

blog(q + t+ 1) = 2 + t+ blog(t� 1) + blog(2

T�t

+ t� 2).

Note that log(2

T�t

+ t� 2) = T � t+ log(1 +

t�2

2

T�t

). Using this in B, we get the required result.

Note that the parameter T grows with the length of the message while t is a onstant. Hene the

di�erene A � B grows with the length of the message, whih means that ompared to TreeUOWHF,

algorithm PUA beomes more and more eÆient as the length of the message grows.

7 Variable Length Inputs

Given a UOWHF fh

k

g

k2K

, where h

k

: f0; 1g

n

! f0; 1g

m

, we onstrut a UOWHF fH

�

p

g

p2P

, where

H

�

: [

L

i=1

f0; 1g

i

! f0; 1g

m

. The UOWHF fH

�

p

g

p2P

an handle variable length messages with maximum

length 2

n�m

. Sine we require n � 2m, we have n �m � m. Pratial digests must be at least 64

bits long and hene fH

�

p

g

p2P

an handle messages of maximum length 2

64

whih is suÆient for any

oneivable purpose. We note that [1℄ provides a method for takling variable length inputs based on

the use of two keys.

The de�nition of fH

�

p

g

p2P

is based on Algorithm PUA. Suppose Algorithm PUA uses a binary

proessor tree of height t and a set of masks M to extend the domain of a UOWHF fh

k

g

k2K

. Let

~

M

be the onatenation of all the masks in M . Let p = kjj

~

M and let x be a message of maximum length

2

n�m

. Then fH

�

p

g

p2P

is de�ned in the following manner:

H

�

p

(x) = h

k

(PUA(t; x)jjbin

n�m

(jxj)); (4)

10

where bin

k

(i) denotes the k-bit binary representation of i, 0 � i < 2

k

. The idea is to ompute the output

z of PUA(t; x), onatenate jxj as an (n�m)-bit binary number to z and apply h

k

to the resulting n-bit

string u.

Theorem 4 Let A be an (�;N)-extended strategy for fH

�

p

g

p2P

, with H

�

p

: [

2

n�m

i=1

f0; 1g

i

! f0; 1g

m

.

Then there is an (�

0

; N + N

0

+ 2)-strategy B for fh

k

g

k2K

, where �

0

�

�

�(2

n�m

)

and N

0

� �(2

n�m

).

Consequently, if fh

k

g

k2K

is a UOWHF then so is fH

�

p

g

p2P

.

Proof. We have to desribe the two stages of the adversarial strategy B for fh

k

g

k2K

. The Algorithm

B

guess

is same as B

guess

in the proof of Theorem 1. B

guess

�rst invokes A

guess

to obtain a string x of

length L � 2

n�m

and then outputs an n-bit string u and some state information s. The adversary is

then given a random k 2 K. Now the algorithm B

�nd

has to be desribed. The �rst task of B

�nd

is to

de�ne the masks in M as in the proof of Theorem 1. Then p = kjj

~

M is the key for the hash funtion

H

�

p

. B

�nd

now invokes A

�nd

with x and p to obtain a string x

0

. Suppose x and x

0

provide a ollision

for H

�

p

with probability at least �. If jxj 6= jx

0

j, then bin

n�m

(jxj) 6= bin

n�m

(jx

0

j) and we immediately

have a ollision for h

k

. On the other hand, if jxj = jx

0

j, then as in the proof of Theorem 1, we obtain

a ollision for h

k

with probability at least

�

�(L)

. Also the number of times h

k

is invoked is at most N

plus twie the number of times h

k

is invoked to ompute H

�

p

. The number of times h

k

is invoked to

ompute H

�

p

is equal to one plus the number of times h

k

is invoked by Algorithm PUA(t; x) whih is

equal to 1 + �(L). This gives us the required result.

Referenes

[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pratial.

Proeedings of CRYPTO 1997, pp 470-484.

[2℄ I. B. Damg�ard. A design priniple for hash funtions. Leture Notes in Computer Siene, 435

(1990), 416-427 (Advanes in Cryptology - CRYPTO'89).

[3℄ R. C. Merkle. One way hash funtions and DES. Leture Notes in Computer Siene, 435 (1990),

428-226 (Advanes in Cryptology - CRYPTO'89).

[4℄ I. Mironov. Hash funtions: from Merkle-Damg�ard to Shoup. Leture Notes in Computer Siene,

2045 (2001), 166-181 (Advanes in Cryptology - EUROCRYPT'01).

[5℄ M. Naor and M. Yung. Universal one-way hash funtions and their ryptographi apliations.

Proeedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

[6℄ B. Preneel. The state of ryptographi hash funtions. Leture Notes in Computer Siene, 1561

(1999), 158-182 (Letures on Data Seurity: Modern Cryptology in Theory and Pratie).

[7℄ P. Sarkar. Constrution of UOWHF: Tree Hashing Revisited. IACR e-print server, 2002/058,

http://eprint.iar.org.

[8℄ P. Sarkar and P. J. Shellenberg. A Parallelizable Design Priniple for Cryptographi Hash Fun-

tions. IACR e-print server, 2002/031, http://eprint.iar.org.

11

[9℄ V. Shoup. A omposition theorem for universal one-way hash funtions. Proeedings of Eurorypt

2000, pp 445-452, 2000.

[10℄ D. Simon. Finding ollisions on a one-way street: Can seure hash funtion be based on general

assumptions?, Leture Notes in Computer Siene - EUROCRYPT'98, pp 334-345, 1998.

[11℄ D. R. Stinson. Some observations on the theory of ryptographi hash funtions. IACR preprint

server, http://eprint.iar.org/2001/020/.

12

