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Abstrat. In smartard enryption and signature appliations, randomized

algorithms an be used to inrease tamper resistane against attaks based

on averaging data-dependent power or EMR variations. Reently, Oswald

and Aigner desribed suh an algorithm suitable for point multipliation in

ellipti urve ryptography (ECC). With the assumption that an attaker

an identify additions and doublings and distinguish them from eah other

during a single point multipliation, it is shown that the algorithm is inseure

for repeated use of the same seret key without blinding of that key. This

sothes hopes that the expense of suh blinding might be avoided by using

the algorithm unless the di�erenes between point additions and doublings

an be obsured suessfully.
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1 Introdution

Major progress in the theory and pratie of side hannel attaks [6, 7℄ on embedded

ryptographi systems shows that substantial data about seret keys an leak from

a single appliation of a ryptographi funtion through data-dependent power vari-

ation and eletro-magneti radiation [12, 13℄. This is partiularly true for the more

omputationally intensive funtions suh as exponentiation, whih is a major pro-

ess in many rypto-systems suh as RSA, ECC and DiÆe-Hellman. Initial attaks

of this type required averaging over a number of exponentiations [9℄ to extrat

meaningful data, but improved tehniques mean that single exponentiations using

traditional algorithms are no longer safe. In partiular, it should be assumed that

the pattern of squares and multiplies an be extrated fairly aurately from side

hannel leakage. If the standard binary \square-and-multiply" algorithm is used,

this pattern reveals the seret exponent immediately. More generally, operand re-

use might be determined as well and this used to extrat the seret key when sliding

windows are employed [16℄. Deterministi re-oding does little to improve matters

[11℄.

In this ontext, Oswald and Aigner proposed a randomized point multipliation

algorithm [10℄ for whih there is no bijetion between salar key values and sequenes

of urve operations. They randomly swith to an alternative proedure for whih

multipliations our for zero bits but not for one bits, and they allow other non-zero

digits than 1;

�

1 for example. This alternative orresponds to a standard reoding
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of the input bits to remove long sequenes of 1s. On the one hand, the pattern

of squares and multipliations is no longer �xed, so that averaging power traes

from several exponentiations does not make sense, and, on the other hand, there is

ambiguity about whih digit value is assoiated with eah multipliation.

This artile analyses the set of randomized traes that would be generated by

repeated re-use of the same unblinded key k. By aligning orresponding doublings

in a number of traes, the possible operation sequenes assoiated with bit pairs

and bit triples of the seret key k an be extrated. With only a few traes (10 or

so) this provides enough information to determine most bits of k unequivoally, and

most of the rest with a high degree of ertainty.

Previous work in this area inludes [11℄ and [14℄. Oswald [11℄ takes a similar

but deterministi algorithm and shows how to determine a spae of possible keys

from one sequene of urve operations, but not how to ombine suh results from

di�erent sequenes. Here the freedom a�orded by the randomization minimises the

inter-dependene between onseutive operations and so it is unlear whether or not

her tehniques would lead to an intratable amount of omputing. Okeya & Sakurai

[14℄ treat the simple version of the randomized algorithm and sueed in ombining

results from di�erent multipliations by the same key. They require the key k to be

re-used 100+ log

2

k times. Here we treat the more omplex version of the algorithm,

one whih is also slightly extended in order to inrease seurity against side hannel

attaks. The analysis of Okeya & Sakurai is inappliable in this more general ase

beause it depends on a �xed �nite automaton state ouring after proessing a zero

bit. However, using new methods we �nd that a) measurements from only O(10)

uses of the seret key reveal the key by applying theory whih onsiders pairs of

bits at a time, b) software whih onsiders longer sequenes of bits an proess just

two uses to obtain the key in O(log k) time, and ) for standard key lengths and

perfet identi�ation of adds and doubles, a single use will dislose the key in a

tratable amount of time. In addition, our attak seems less suseptible to error:

bits are dedued in parallel so that inorret dedutions of some bits a�et at most

the neighboring one or two bits. In omparison, the attak of Okeya & Sakurai

reovers bits sequentially, making reovery from errors more omplex.

Although only one algorithm is studied here, a similar overall approah an be

used to break most randomized reoding proedures under the same onditions.

The two main properties required are: i) after a given sequene of point operations,

the unproessed part k

0

of the key an only have one of a small, bounded number

of possible values (determined from k by the length of the operation sequene but

independent of other hoies); and ii) it is possible to identify an assoiated subset

of trae suÆxes for whih all members orrespond to the same value of k

0

. These

also hold for the algorithm proposed by Liardet & Smart [8℄, whih uses a sliding

window of random, variable width. They seem to be the key properties required

in [20℄ to demonstrate similar weaknesses in that algorithm also. Two alternatives,

Mist [18℄ and overlapping windows [3℄, provide a muh wider range of values for

the unproessed parts k

0

of keys. Without property (i) holding, they appear to be

safer, partiularly when keys are re-used.

Several ounter-measures exist for reduing the quantity of data that leaks in

this way. For ellipti urve ryptography (ECC), the likelihood of distinguishing

between point additions and doublings an be redued by making eah follow the

same pattern of �eld (and other) operations. Several solutions have been proposed

[4, 2, 1℄, but squares and multipliations in the �eld behave di�erently [15℄ and so
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there is no reason to believe that suh reoding will neessarily hide the distintion

between additions and doublings ompletely.

The attak here depends on the same key being reused on eah oasion. One

standard ounter-measure to frustrate averaging the traes of many exponentiations

is to modify the seret exponent eah time from e to e+rg where r is a random

number, typially 32-bits, and g is the order of the (multipliative) group in whih

the exponentiation is performed [6℄. Then property (i) above annot hold. Although

this blinding results in a di�erent exponentiation every time, for ECC it adds 20% to

the number of point operations for a typial key of 160 bits. It had been hoped that

randomized algorithms might avoid this extra ost. This is no longer seems to be

the ase unless ode for adds and doubles an be made to exeute indistinguishably.

2 The Oswald-Aigner Exponentiation Algorithm

This setion ontains a brief outline of the Oswald-Aigner algorithm [10℄. It is

written in terms of the additive group of points on an ellipti urve E de�ned over

a �eld F with identity element O. Field elements and rational integers are written in

lowerase while points on the urve are written in apitals. The algorithm omputes

the point Q = kP for a given positive integer k (the seret key) and a given point

P on E.
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introdues alternative re-odings to the representation

of k. It an be viewed as pre-proessing bits of k from right to left into a new

digit set f�1; 0;+1;+2g. Then the resulting sheme for point multipliation an

be performed in either diretion. The onversion uses a arry bit set initially to

0. When this bit is summed with the urrent bit of k, the result 0, 1 or 2 an be
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re-oded in di�erent ways: 0 always gives a new digit 0 with arry 0; 1 an give

either new digit 1 and arry 0 or new digit

�

1 with arry 1; and 2 gives either new

digit 0 and arry 1, or new digit 2 and arry 0.

Fig. 1 illustrates this as a �nite automaton for an inonsequential extension of

the original algorithm. It has 4 states, numbered 0 to 3 with the arry being 1 if, and

only if, the state is 2. For the transition from state 2 to state 1, the normal order of

doubling and adding is reversed. This ahieves the proessing for digit value 2. The

extension here allows a new transition from state 0 to state 2; the original algorithm

is the speial ase in whih the random bit rb = 1 always for state 0. Rather than

taking a uniform distribution in every ase, we will also allow the random bits to

be expliitly biased. However, if the same distribution of random bits is used for

eah of the states 0, 1 and 3, the automaton an be simpli�ed to onsist of just two

states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent ode for the assoiated right-to-left point multi-

pliation. A left-to-right version is also possible, and an be attaked in the same

way.

Q  O ;

State  0 ;

While k > 0 do

{

If (k mod 2) = 0 then

ase State of

{

0,1,3 : Q  2Q ; State  0 ;

2 : P  P+Q ; Q  2Q ; State  3 ;

}

else

ase State of

{

0,1,3 : If rb = 0 then /* rb is a Random Bit */

{ P  P-Q ; Q  2Q ; State  2 }

else

{ P  P+Q ; Q  2Q ; State  1 } ;

2 : If rb = 0 then /* rb is a Random Bit */

{ Q  2Q ; P  P+Q ; State  1 }

else

{ Q  2Q } ;

} ;

k  k div 2 ;

} ;

If State = 2 then P  P+Q ;

Fig. 2. Oswald & Aigner's randomized signed binary exponentiation (extended).
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3 EÆieny Considerations

Although the algorithm appears to be fully desribed, there are still some details

to deide. Spei�ally, the hoie of the random bits rb an be skewed to favour

ertain transitions. As we shall see, this a�ets both eÆieny and seurity.

Every bit of the key k is assoiated with a orresponding doubling operation.

This means that the number of doublings is �xed, and time eÆieny depends only

on the total number of additions and subtrations. We will assume that, for seurity

reasons, point subtrations have been made indistinguishable from point additions

as far as is possible. Then eÆieny depends entirely on the total number of suh

operations, whih we will heneforth always refer to as additions.

De�nition 1. Let �, �,  and Æ be the hosen probabilities that the random bit rb

is 1 when the urrent state is 0, 1, 2 or 3 respetively.

Then, for a key k whose bits are seleted independently and at random from a

uniform distribution, the matrix of transition probabilities between states of the

automaton is

2
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Lemma 1. The transition matrix has an eigen-vetor (

1

2

��;

1

2

�2�, 2�; �) where

� =

2����

12�2��4��4+2Æ

and this ontains, as elements, the probabilities assoiated

with eah state. Moreover, 0 � � �

1

4

.

This is an easy exerise for the reader. Taking the dot produt of this with the

vetor (

1

2

;

1

2

; 1�

1

2

;

1

2

) of average additions assoiated with eah state provides the

expeted number of additions per bit:

1

2

+(1�)�. Similarly, taking the dot produt

with the orresponding vetor (1; 1; 1; 1) for doublings provides 1 as the expeted

number of doublings per bit.

In order to minimise the total number of additions and hene the addition hain

length, we need to pik (1�)� = 0, i.e. (1�)(2����) = 0, i.e. either never take

the transition from state 2 bak to state 1, or never take either of the transitions

from states 0 and 1 to state 2. Of ourse, one might bak away from these extremes

to retain greater randomness in the hains. In partiular, � and/or � should be

kept away from 1 so that states 2 and 3 are reahable. In the limit as ��Æ!1

(whih optimises eÆieny), on average there is half an addition per bit of k. Thus,

a typial addition hain has a little over

1

2

log

2

k additions (or subtrations). Even

a modest bias towards eÆieny, suh as taking � = � =  = Æ �

3

4

, hanges this

by just 2% or less.
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4 The Attak

4.1 Introdution & Initial Hypotheses

The purpose of randomized exponentiation algorithms is to frustrate side han-

nel analysis by an attaker. In partiular, they are ounter-measures against using

knowledge of the exponentiation proess to extrat the seret key k. Several dif-

ferent levels of leakage are possible, depending on the resoures of the attaker.

A poor signal-to-noise ratio (SNR) means that many samples have to be taken,

and averaging the side hannel leakage is one way of improving the SNR. So a

ritial parameter is whether or not the attaker's equipment is good enough for

him to extrat suÆient meaningful data from the side hannel trae of a single

salar multipliation. If it is, then the standard key blinding desribed earlier sud-

denly fails to provide the data hiding protetion a�orded by averaging away loal

data dependenies. Improved equipment and laboratory tehniques mean that this

barrier an now be breahed without too muh expenditure [12, 13℄.

The ategories of leakage whih ould be onsidered inlude the following: i)

individual point operations an be observed on power, EM or other side hannel

traes; ii) point doublings and point additions an be distinguished from eah other;

iii) re-use of operands an be observed; and iv) operand addresses an be dedued.

Point (i) may hold simply beause program instrutions and data need to be fethed

at the start of eah point operation, and these ause di�erent e�ets on the side

hannels than �eld operations. Point (ii) may then hold as a result of di�erent

patterns of �eld operations for point additions than for point doublings. Properties

(iii) and (iv) might hold as a result of being able to dedue Hamming weights of

data and address words travelling along the bus.

Randomization prevents the obvious averaging of the traes of many point multi-

pliations whih was used in initial power analysis attaks on the binary \square-

and-multiply" algorithm. There are no longer any orresponding doublings whih

an be aligned sine every point multipliation determines a di�erent sequene of

doublings and additions. With mathed ode for additions and doublings [1, 2, 4,

8℄, averaging may hide the di�erene between the two operations beause they are

no longer separated in time, but in urrent implementations suh averaging will

ertainly reveal the start and end of the individual point operations whih make up

the salar multipliation.

The attak desribed here requires the SNR to be good enough to extrat some

useful data from single point multipliations on the urve. Spei�ally, initially we

assume that:

{ Adds and doublings an always be identi�ed orretly and distinguished from

eah other using traes obtained from side hannel leakage for a single point

multipliation; and

{ A number of traes are available orresponding to the same seret key value

applied to independent salar multipliations.

The insistene on \always" in �rst hypothesis an be relaxed to provide a more

realisti senario. It is a onveniene that allows us to provide a more aurate

assessment of the strength of the attak. If doublings and additions an be dis-

tinguished suessfully with a known probability, then the alulations below an

easily be modi�ed appropriately to yield similar results.
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4.2 Overview of the Attak & Notation

The outline of the attak is as follows. For simpliity, by the �rst hypothesis,

{ every trae tr is viewed as a word over the alphabet fA;Dg

where A denotes the ourrene of an addition and D the ourrene of a doubling.

As usual, the trae is written with time inreasing from left to right. However, this

is the opposite of the binary representation of the seret key k whih is proessed

from right to left, least signi�ant bit �rst. Consequently, the two fae in opposite

diretions. In partiular, if the mahine were to yle round only states 0 and 1

giving the sequene of operations for square-and-multiply exponentiation, then the

trae would be essentially the same as the binary, but reversed: every ourrene of

0 would appear as D, and every ourrene of 1 would appear as AD. The binary

representation 11001 would then generate the trae ADDDADAD. There is one D

for every bit, and we index them similarly:

De�nition 2. The position of an instane of D in a trae is the number of our-

renes of D to its left.

Thus, the �rst (leftmost) D of ADDDADAD has position 0 and arises from pro-

essing the last (rightmost) bit of 11001, whih has index 0.

It is readily veri�ed that the only transition whih plaes D before rather than

after an assoiated ourrene of A is the transition (21). Hene, every ourrene of

the substring DAAD in a trae tr orresponds to the proessing path traversing the

transitions (21) then (12) or (11) in the �nite automaton. This substring splits the

trae between the As into a pre�x and a suÆx. There is a orresponding splitting

of the binary representation of the seret key k into a least signi�ant part and a

most signi�ant part. Sine the key and trae are proessed in opposite diretions

with one doubling per transition, i.e. per bit, the least signi�ant part of k has a

number of bits equal to the number of Ds in the assoiated pre�x of tr.

Every ourrene of the triplet 111 in k enables the pair AA to our in some

traes (aording to the values of the random bits) when proessing the seond

and third least signi�ant bits. Even with a small number of independent traes,

almost all triples 111 an be found using these relatively frequent ourrenes. It

will be shown that similar properties for the distributions of substrings assoiated

with eah possible bit pair enable most other bits to be reovered. Sine every bit

is determined essentially independently of the others, the unertainties due to noise

and errors do not grow unreasonably, and so the attak is feasible in pratie.

4.3 Properties of Traes

Lemma 2. Suppose trae tr is given. If 11 ours at some point in the binary repre-

sentation of k then the probability of the left-hand 1 being represented by transition

(21) in tr is � = 4�(1�).

Proof. 4� is the probability of being in state 2 as a result of the right-hand 1 and

1� is the probability of seleting transition (21) next. ut

Transition (21) leads to the harateristi pattern DAAD for 111 with whih

this attak starts. Although there may be other measures to take into aount,
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as a �rst approximation we should expet to have to derease ourrenes of this

transition in order to maximise seurity. Over the ranges 0 to 1 for eah variable,

the probability of the transition is a dereasing funtion for eah of �, �,  and Æ.

Hene, to maximise eÆieny and seurity, it would probably be best to hoose all

of these � 1. This will make DAAD appear only rarely. Of ourse, hoosing � = 1

as in the original mahine [10℄ and taking � = 1 makes states 2 and 3 unreahable,

so that all randomization is lost and hene also any seurity that might arue from

use of the algorithm.

Typially, one might hoose all the variables equal to

3

4

, say. This gives the

transition (21) a probability of � =

1

12

. With this usefully high probability of the

assoiated pattern DAAD in a trae tr, it an reasonably be assumed that almost

every ourrene of 111 in k will be reognised from a small set of traes for typial

key lengths. For n traes, the probability of not observing DAAD at a given point

where 111 ours is (1��)

n

. So, to determine 90% of the substrings 111 with these

parameter hoies, we just need a sample of 27 traes in whih the adds and doubles

are obtained orretly. If all four variables default to

1

2

, then � =

1

4

and so only 8

traes would enable a similar perentage of the 111s to be established.

In the ase of ambiguities or errors in distinguishing additions from doublings,

it may be helpful to determine whih operations belong to whih transition or bit of

k. There is one doubling D per bit, but an addition A between onseutive Ds may

belong to the transition of either the �rst bit or the seond. Figure 3 lists all possible

ombinations of transitions for onseutive pairs of bits. Clearly DAAD must split

as DA:AD sine eah transition applies at most one addition. DA only ours for

the transition (21) and so must arise from bit 1. From the available options at state

1 of the automaton, the next bit proessed is 1 if, and only if the DA is followed

by AD. Otherwise, for the pair 11, the �rst bit proessed is represented by D or

AD, and so we know that the D marks the end of proessing for that transition.

Figure 3 shows all these hoies for the bit pair 11. Thus, ourrenes of DAAD in

some traes enable all traes to be split orretly at the point orresponding to the

middle of DAAD.

To summarize, sine DA arises on a single transition only after a preeding 1

has enabled state 2 to be reahed,

Lemma 3. Every ourrene of DAAD orresponds to 111 in the seret key k and

enables all traes to be split at the same point. If the middle 1 has index i then the

subtraes orresponding to the bits from index 0 to i are given by all haraters up

to and inluding the D at position i, plus the next A when two As our (but no

additional A otherwise).

To reover more of k, we look next at other pairs of bits, and see how many As

an and do appear in traes between the two Ds orresponding to the bits. As just

noted, there an be up to 2 intervening As between onseutive Ds.

Lemma 4. i) For a given trae, if the Ds in positions i and i+1 are not separated

by any As, then the bit pair k

i+1

k

i

is 00 with probability (2�2�(1�))

�1

, whih

exeeds

1

2

. If the Ds are separated by one or more As in any trae, then the bit pair

is ertainly not 00.
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ii) For a given trae, if the Ds in positions i and i+1 are separated by one A, then

the bit pair k

i+1

k

i

is 10 with probability

1

2

. If the Ds are separated by no As or two

As in any trae, then the bit pair is ertainly not 10.

iii) For a given trae, if the Ds in positions i and i+1 are separated by two As, then

the bit pair k

i+1

k

i

is ertainly 11. The probability of two As when the bit pair is 11

is 2�(1�), assuming bit k

i�1

is unknown.

iv) For a set of n traes, suppose the Ds in positions i and i+1 are separated by no

As in some ases, by one A in some ases, and by two As in no ases. Then the bit

pair k

i+1

k

i

is 01 with probability (1+(1�2�(1�))

n

)

�1

.

Proof. i) First, by inspetion of the �nite automaton, we see that the only possible

operation sequenes for 00 are ADD and DD. So the Ds are always adjaent. The

intervention of an A will prove that the bit pair is not 00.

Bit Operation State Probabilities;

Pair Patterns Sequenes given the bit pair

00 D:D 000; 100; 300 1�2�

AD:D 230 2�

10 D:AD 001; 002

1

2

��

D:AD 101; 102

1

2

�2�

AD:AD 231; 232 2�

D:AD 301; 302 �

01 AD:D; AD:AD 010; 023 (

1

2

��)�; (

1

2

��)(1��)

AD:D; AD:AD 110; 123 (

1

2

�2�)�; (

1

2

�2�)(1��)

DA:D; D:AD 210; 223 2�(1�); 2�

AD:D; AD:AD 310; 323 �Æ; �(1�Æ)

11 AD:AD; AD:AD 011; 012 (

1

2

��)��; (

1

2

��)�(1��)

AD:DA; AD:D 021; 022 (

1

2

��)(1��)(1�); (

1

2

��)(1��)

AD:AD; AD:AD 111; 112 (

1

2

�2�)�

2

; (

1

2

�2�)�(1��)

AD:DA; AD:D 121; 122 (

1

2

�2�)(1��)(1�); (

1

2

�2�)(1��)

DA:AD; DA:AD 211; 212 2�(1�)�; 2�(1�)(1��)

D:DA; D:D 221; 222 2�(1�); 2�

2

AD:AD; AD:AD 311; 312 �Æ�; �Æ(1��)

AD:DA; AD:D 321; 322 �(1�Æ)(1�); �(1�Æ)

Fig. 3. All possible operation sequenes for all bit pairs, and probabilities given the bit

pair ours. (The bit pairs are proessed right to left.)

Figure 3 shows the operation sequenes whih an our for eah bit pair. It

inludes the probability of eah, assuming that the bit pair ours and that the initial

states have the probabilities determined by Lemma 1. Knowledge of neighbouring

bits would require these values to be modi�ed.

Suppose there is no intervening A between the two spei�ed Ds. If the bit pair

is 00 then the probability of this is �

00

= 1; if the bit pair is 10 then the probability

is �

10

= 0; if the bit pair is 01 then the probability is �

01

= (

1

2

��)�+(

1

2

�2�)�+�Æ;

and if the bit pair is 11 then the probability is �

11

= (

1

2

��)(1��)+(

1

2

�2�)(1��)+

2�+�(1�Æ). Thus, the orret dedution of 00 is made with probability

�

00

=(�

00

+�

10

+�

01

+�

11

) = 1=(2�2�(1�)).
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ii) From the table or the automaton, we an see that the bit pair 10 must always

inlude the operation A one between the two ourrenes of D, but this is not the

ase for any other bit pair. Thus the absene of an A, or the presene of two As,

guarantees the bit pair is not 01. However, suppose there is exatly one A between

the spei�ed Ds. If the bit pair is 00 then the probability of this is �

0

00

= 1��

00

= 0;

if the bit pair is 10 then the probability is �

0

10

= 1��

10

= 1; if the bit pair is 01

then the probability is �

0

01

= 1��

01

; and if the bit pair is 11 then the probability is

�

0

11

= 1��

11

�2�(1�). Thus, the orret dedution of 10 is made with probability

�

0

10

=(�

0

00

+�

0

10

+�

0

01

+�

0

11

) =

1

2

.

iii) This part is lear from the table in Figure 3.

iv) Finally, by parts (i) and (ii), a bit pair whih inludes both the possibilities of

no As and of one A between the spei�ed Ds annot be 00 or 10; it must be 01 or

11. The probability of not having two As in any trae when the digit pair is 01 is

1, of ourse. The probability of not having two As in any of the n traes when the

digit pair is 11 is �

n

= (1�2�(1�))

n

. Hene the probability of the pair being 01

rather than 11 is 1=(1+�

n

). ut

We must be areful in the appliation of this lemma. Eah part assumes no

knowledge of bit k

i�1

. Knowing it hanges the probabilities. In most ases, the

di�erenes are small enough to be onsidered negligible; for aurate �gures the

table an be used to selet just the ases starting in states 0 or 3 when the preeding

proessed bit is 0, and the ases starting in states 1 or 2 when that bit is 1. The

only ase where a qualitative di�erene ours is for 11 when AA only ours if

k

i�1

= 1. In the ase of k

i�1

= 0 this means we annot distinguish 01 from 11 so

easily. However, no use has yet been made of the distribution of haraters adjaent

to, or between, the two Ds of interest: for example, using the relative probabilities,

one ould distinguish orretly between the pairs 01 and 11 with a better than evens

hane on the basis of the proportion of As whih our between the Ds. This pre-

supposes knowledge of the values of the parameters �, �,  and Æ, but, if neessary,

these an be dedued with suÆient auray from the relative frequenies of various

patterns in the traes. We will not go into detail here sine the aim is to establish

the feasibility of the attak, rather than the minimal number of traes required for a

given hane of suess. This last is, in any ase, dependent on the ounter-measures

employed by the rypto-system and the quality of the tehniques and monitoring

equipment used by the attaker.

4.4 Reonstruting the Key

From parts (i) and (ii) of Lemma 4, we an establish every ourrene of the bit pairs

00 and 10 with any desired degree of on�dene if a suÆieny of independently

generated traes for the same key is available.

The probability that a 1 bit belongs to one of these pairs 00 or 10 is

1

2

beause

a 1 has 50% hane of being followed by a 0 to give 10. Also, the probability that

a 0 bit belongs to one of the pairs 00 or 10 is 1 beause it must be preeded by a

0 or a 1 to produe 00 or 10 respetively. Hene, with enough traes,

3

4

of the bits

of k will be established easily and orretly using Lemma 4, (i) or (ii). Half of all

bits belong to exatly one of these pairs, and a quarter of all bits belong to two

suh pairs (namely, in the latter ase, the entral bit of triplets of the form �00).

On average, half of all bit pair positions are used to determine these bits of k using

the �rst two parts of the lemma.
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For isolated bit pairs 00 and 10, i.e. those whih do not overlap with another bit

pair of the same type, the lemma shows that n traes would lead to less than one

error per 2

n

dedutions of the pair. However, for those bits belonging to a longer

sequene of overlapping suh bit pairs, the probability of a orret dedution is

muh higher. Suh sequenes are maximal substrings of the form 10

i

if no errors

have been made. In an in�nitely long sequene of independent random bits,

1

4

of 0s

would belong to a sequene 101, so about

1

4

of the bits of k are determined as isolated

pairs. The other

3

4

of 0s and

1

4

of 1s belong to longer sequenes of overlapping pairs.

This inreases the probability of orret dedutions for half the bits of k beause of

the need for onsisteny where pairs overlap. We might expet fewer than 1 error

in 2

2n

for these bits, i.e. half of all bits of k are determined with almost omplete

ertainty. This ould be established by extending Figure 3 and Lemma 4 from pairs

to triples of bits, but this level of detail is unneessary to prove the feasibility of

the attak.

Overall, for a standard 192-bit key k, an average of 96 bit pair positions would

have trae operations whih determine the values of 144 bits. So, with only 10 traes,

we an expet every suh pair to be determined orretly beause substantially less

than one error per 2

10

pairs should be made. Thus, all determined bits will be

orret for at least 9 out of every 10 keys whih are attaked.

A quarter of the bits now remain to be determined. The number of traes re-

quired to establish these with a given probability depends muh more on the hoie

of the parameters � to Æ than was the ase for the previous bits. To determine them,

we onsider sequenes of 1s rather than 0s. i(

1

2

)

i+1

of 1 bits belong to maximal se-

quenes of exatly i onseutive 1 bits, i.e. to subsequenes 01

i

0. Hene

1

2

of all 1

bits belong to sequenes of 3 or more 1 bits. Lemma 2 enables us to determine these

bits with a known probability for a given number of traes. Default values for the

parameters � to Æ would mean that around 90% of triples 111 would be deteted

using just 8 traes, whatever the key length. For onveniene, assume the hoie

of parameters and number of traes allow this perentage to be determined. Sine

some of the triples will overlap, well over 90% of the 1s in suh triples should be

identi�ed. In fat,

1

4

of all 1s lie at the ends of sequenes of 3 or more 1 bits,

1

4

of

all 1s lie within suh sequenes, and

1

16

of all 1s are the entral bit of a subsequene

01110. Hene

3

16

of all 1s are internal 1s whih belong to at least two triples 111,

and so at least 99% of these will be determined orretly. Another

5

16

of all 1s lie in

a single triple 111, and, by assumption, 90% of them are determined as a result of

this. None of the initial or internal 1s in a subsequene 01

i

0 (i�3) were onsidered

in the previous paragraphs sine they are not ontained in either of the pairs 00 or

10. So these 1 bits add almost another

1

16

+

1

8

to the fration of all bits determined

so far. On average 10% of these 1s will be undetermined beause DAAD does not

our in any trae. So about one of these bits will fail to be spotted in a 192-bit

key.

This leaves unonsidered only those

1

16

th of all bits whih are the initial 1s of

sequenes 0110. In a sequene of the form 0�10, the omponent 0s are determined

as above, as is the onstituent pair 10. If the remaining bit � were a 0 then the

subsequene 00 would our, it would be identi�ed, and so � determined as a 0.

Sine � is not so determined, � must be 1. So all bits are now determined exept

for some of those whih belong to the triples 111 that failed to exhibit a substring

DAAD in any trae. Thus,
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Theorem 1. Suppose ellipti urve adds and doubles an be distinguished au-

rately on a side hannel. If the Oswald-Aigner exponentiation algorithm is used

with the same unblinded 192-bit ECC key k for 10 point multipliations then all of a

known set of about

3

4

of the bits an be determined orretly with probability exeed-

ing

9

10

. With a uniform distribution of random bits for hoosing the re-oding, all

but about one or two of the remaining bits an be determined with at least similar

on�dene. The undetermined bits are in known positions.

This theorem says that a standard 192-bit key an usually be broken on a �rst

attempt using a dozen traes with essentially no omputational e�ort beyond ex-

trating the add and double patterns from eah trae. By onsidering all possibili-

ties, the few undetermined bits lead to a very small set of possible keys, of whih

the orret one an surely be established by derypting some iphertext. Idential

working shows that a similar theorem holds for keys of any length. In all ases the

number of traes needed to ahieve a very high, spei�ed degree of on�dene in

the determined bits is O(log log k).

4.5 Seure Parameter Choies?

Varying the parameters may inrease the diÆulty of determining the quarter of

bits not overed by (i) and (ii) of Lemma 4. The probability of the sequene DAAD

has to be dereased for this. This requires �! 0 or  ! 1.

For the �rst of these, the probability of states 2 and 3 falls towards 0. Then the

traes losely math the pattern of operations for square-and-multiply. So, roughly

speaking, bits are determined aording to the whether many or few traes have

A before the orresponding D. With Lemma 4 determining most ourrenes of 00

and 10, the only outstanding problem is to distinguish between 01 and 11. This is

easily resolved by onsidering the average number of As between the relevant pair

of Ds: � is very small, so � and � are lose to 1 and therefore 01 has no As almost

always whereas 11 has one A with the same probability, i.e. almost always, if no

AAs appear. Thus � � 0 is not a seure option.

Bit Operation Probabilities;

Pair Patterns given the bit pair

00 D:D 1�2�

AD:D 2�

10 D:AD 1�2�

AD:AD 2�

01 AD:D (

1

2

��)�+(

1

2

�2�)�+�Æ

AD:AD (

1

2

��)(1��)+(

1

2

�2�)(1��)+�(1�Æ)

D:AD 2�

11 AD:AD (

1

2

��)�+(

1

2

�2�)�+�Æ

AD:D (

1

2

��)(1��)+(

1

2

�2�)(1��)+�(1�Æ)

D:D 2�

Fig. 4. Operation sequenes and probabilities for bit pairs when  = 1.
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Alternatively, we must take  � 1. Then the table of Fig. 3 redues to that of Fig.

4. Unless the probablities are arefully hosen, eah bit pair will be distinguishable

from the others by the ourrenes of �xed or variable numbers of As between

the orresponding Ds: 00 ontains no As, 10 ontains one A, and the other two

have instanes of both no A and one A between the Ds. As in the previous ase,

01 and 11 will be distinguishable beause they will have di�erent, omplementary

probabilities for the ourrenes of no As. Hene, in order to retain some ambiguity,

it is neessary to fore 01 and 11 to have �xed numbers of As between their Ds (so

they are indistinguishable from 00 or 10) or for them to have variable numbers whih

our with equal probability

1

2

(so they are indistinguishable from eah other).

By assumption, � is not lose to 0. Hene the last ase in Fig. 4 for eah of 01

and 11 is non-negligible. Thus 01 and 11 ould only demonstrate a �xed number of

As over the set of traes if their �rst ases were to our with negligible probability.

Sine 0 < � �

1

4

, this would require � � Æ � 0, whih makes � �

1

4

. Then 00 and

11 may be onfused, as may 01 and 10. However, the traes an now be used to

determine the parity of one bit from that of its neighbour { either equal parity or

opposite parity. Sine the leading bit is 1, the parity of every bit is determined, and

so the seret key k an be reovered. If there is an error, it must arise from onfusing

As with Ds and vie versa. However, suh errors an be determined simply by taking

several traes: if the number of As varies between two Ds, there must be an error.

In fat, as long as A and D an be obtained orretly with greater probability than

by guessing, it just requires enough traes to determine with any required ertitude

whether the two bits of the pair are equal or not. Hene, neither is this a seure

solution.

The last possible way for perhaps keeping some ambiguity is by piking the

probabilities so that 01 and 11 are onfused. This requires the �rst ase of eah in

Fig. 4 to have the same probability as that of the ombination of the seond and third

ases, namely

1

2

eah. Choosing  � 1 e�etively removes the transition from state 2

to state 1. Thus DA will not our for any bit. This means that every A belongs to

the following D. Thus, every trae an be orretly parsed into substrings D or AD

whih orrespond to whole transitions. In partiular, this means that all haraters

of the operation patterns listed in Fig. 4 are known, not just those between the

Ds. So 01 and 11 an be distinguished from eah other using the ourrenes of

D:AD and D:D unless � is lose to 0. However, � � 0 has already been rejeted as

a possibility. That hoie would make the algorithm revert to square-and-multiply:

01 and 11 ould be distinguished by the di�erent probabilities of :D and :AD in

Fig. 4, orresponding to the �rst bit being 0 or 1 respetively. In fat, � = 0 fores

� = � = 1, so that the :AD has probability 0 for 01 and probability 1 for 11.

It is now lear that any hoie of parameters produes suÆient di�erenes

between the sub-traes assoiated with pairs of bits for every pair to be identi�ed

orretly when enough traes are provided. Whenever the parameters are hosen

to remove one distinguishing feature, another feature appears, enabling them to

be distinguished again. In this way all the bit pairs are determined with a known

ertainty. This ertainty is ampli�ed by the fat that eah bit pair overlaps two

other bit pairs and the determinations must be onsistent with eah other.

Lak of spae preludes full details, but the outline feasibility proof for these

exeptional ases with reasonable key lengths is as follows. As in the proof of The-

orem 1, eah trae determines eah bit (or bit pair) orretly with a given proba-

bility greater than some non-zero �. As above, by seleting suitable riteria whih
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depend on the hoie of parameters, � an be made notiably larger than 0 in all

ases. Indeed, from Lemma 4, it is 1 in some ases and above

1

2

for many others.

With n independently generated traes, eah bit will be known with probability at

least 1���

n

. To ensure an average of at most  = O(1) bits are inorret, n must be

piked large enough to satisfy 1���

n

> 1�



log k

, and this requires n to be O(log log k).

However, we an reasonably assume that it is omputationally feasible to hek all

possibilities for every set of  � 3:5 bits whih might be in error: it requires heking

O((

1

4

log k)

2



) keys beause essentially three quarters of the bits are already known.

Thus,

Theorem 2. No hoie of algorithm parameters is seure for a reasonable key

length under the above attak if O(log log k) traes are available from point multi-

pliations using the same unblinded key.

4.6 Counter-Measures

In the absene of a seure set of parameter hoies, further ounter-measures are

required. The most obvious ounter-measure is to restore key blinding. A small

number of blinding bits might still result in the attaker's desired 10 or so traes for

the same key eventually beoming available. These might be identi�ed easily within

a muh larger set of traes by the large number of shared haraters between their

traes. So, to avoid suh dupliation, the size of the random number used in blinding

annot reasonably be muh less than the maximum lifespan of the key in terms of

the maximum number of point multipliations it is used for. Thus 16 or more bits

are needed, and this will add 10% or more to the ost of point multipliation.

Idential formulae for additions and doublings are inreasingly eÆient and ap-

pliable to wider lasses of ellipti urves. We single out those of Brier and Joye [1℄

in partiular. However, the potential to dedue Hamming weights of bus data from

side hannel leakage may still enable attakers to disriminate adds and doubles

from address or data loading yles.

Another favoured ounter-measure is the add-and-always-double approah whih

is applied tom-ary exponentiation. Then eah ourrene ofDD has an add inserted

to yield the pattern DAD, but the add output is disarded without having been

used. This should also be done for the Oswald-Aigner algorithm. In addition, an

extra double needs to be performed to onvert eah DAAD into DADAD, and the

double's output is likewise ignored.

Alternatives randomized algorithms exist. Standard m-ary exponentiation [5℄

is not subjet to this type of attak, but re-use of operands might be deteted

[16℄, making that method unsuitable even with key blinding in plae. The MIST

algorithm [17{19℄ and an overlapping windows method [3℄ urrently seem to be the

most robust hoies under these types of attak.

5 Overview

The introdution presented an overview of two algorithm properties whih appear

to be neessary for the above type of attak. Here, and in the attaks of [14℄ and

[20℄, the randomized algorithms always proess the key through a subset of a small,

�xed set of values: after eah iteration of the key proessing algorithm, the salar

whih still needs proessing is simply a pre�x of the binary representation of the key
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plus a small arry. Thus, at any given point in the proessing, the orresponding

sub-traes must all orrespond to the same key bits plus the arry. Consequently,

unless perhaps the algorithm is extremely well-designed, it an be assumed that

the di�erent frequenies of the various trae patterns will reveal the orret key

bit pattern with a on�dene whih inreases with the number of traes. No ases

require more than O(10) traes to reover the key. Thus, suh randomized algorithms

are probably best used only for ephemeral keys unless there is on�dene in the

eÆay of other ounter-measures.

6 One Trae

It is interesting to speulate on how muh data leaks from a single point multi-

pliation sine this may now be the main ontext for the algorithm. Oswald [10℄

noted that for some deterministi re-oding algorithms in whih several non-zero

digits generate indistinguishable As, the operation patterns resulting from numbers

of up to 12 bits ould only represent at most 3 keys. By breaking a standard ECC

key into 12 bit setions, this means very few keys atually generate an observed

patterns of operations. Moreover, these an be ordered aording to their liklihood

of ourrene, and this onsiderably redues the average searh time for the orret

key. Hene the key an be reovered quite easily.

She also writes that the same attak is possible on randomized algorithms with

weaker results, but provides no detail. Randomized algorithms have muh weaker

inter-dependenies between adjaent operation patterns. This should substantially

inrease the number of keys whih math a spei� pattern of point operations. The

key Lemma 4 above does not provide muh ertainty for any bits unless a number of

traes are available; only the infrequent instanes of AA allow de�nite determination

of any bits. Of ourse, an analysis of subsequenes of more than two bits is possible,

as in [14℄, but, besides better probabilities, this gives no further insight. Instead,

software was written to enumerate all the keys whih ould represent a given string.

On average, for the extended version of the algorithm, the trend up to 16-bit keys

indiates learly that a little over O(

4

p

k) keys will math a given pattern { under

20 math a given 16-bit pattern. This would appear to ensure the strength of the

algorithm when a key is used just one but only if the key has at least 2

8

bits or

there is onsiderable ambiguity in the side hannel about whether the operations

are adds or doubles. The original algorithm has fewer random hoies, and so has

even fewer keys mathing a given pattern.

With only two traes available for the same key, an attaker an use ourrenes

of D to partition the traes into small orresponding setions whih represent the

same key bits. From the two sets of mathing key values for eah setion, he selets

pairs whih di�er only by the possible arry values at eah end of the setion. Then,

hoosing the ases where the arry values math between setions, he onatenates

the possible bit strings for eah setion to reover the whole key. This is most likely

to produe a very small number of possible keys, and ertainly a tratable number

for reasonable key lengths.
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7 Conlusion

One of several, similar, randomized exponentiation algorithms has been investigated

to assess its strength against a side hannel attak whih an di�erentiate between

point additions and point doublings. Straightforward theory shows that at most

O(10) uses of the same unblinded key will enable the seret key to be reovered

easily in a omputationally feasible time. No hoie of parameters improves seurity

enough to alter this onlusion. Using longer bit sequenes than the theory, it is also

lear that software an searh suessfully for keys when just 2 side hannel traes,

and perhaps only one, are available. However, this number may need inreasing if

adds and doubles might be onfused or standards for key lengths are inreased.

The main property whih is ommon to algorithms whih an be attaked in this

way seems to be that the next subsequene of operations at a given point in the

proessing of the key must be hosen from a small, bounded set of possibilities whih

is derived from the key and the position, but is independent of previous hoies.

Hene, our overall onlusion is that suh algorithms should be avoided for repeated

use of the same unblinded key if adds and doubles an be di�erentiated with any

degree of ertainty. Furthermore, for typial ECC key lengths, a single use may be

suÆient to dislose the key when adds and doubles are aurately distinguishable.
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