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Abstra
t. In smart
ard en
ryption and signature appli
ations, randomized

algorithms 
an be used to in
rease tamper resistan
e against atta
ks based

on averaging data-dependent power or EMR variations. Re
ently, Oswald

and Aigner des
ribed su
h an algorithm suitable for point multipli
ation in

ellipti
 
urve 
ryptography (ECC). With the assumption that an atta
ker


an identify additions and doublings and distinguish them from ea
h other

during a single point multipli
ation, it is shown that the algorithm is inse
ure

for repeated use of the same se
ret key without blinding of that key. This

s
ot
hes hopes that the expense of su
h blinding might be avoided by using

the algorithm unless the di�eren
es between point additions and doublings


an be obs
ured su

essfully.
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1 Introdu
tion

Major progress in the theory and pra
ti
e of side 
hannel atta
ks [6, 7℄ on embedded


ryptographi
 systems shows that substantial data about se
ret keys 
an leak from

a single appli
ation of a 
ryptographi
 fun
tion through data-dependent power vari-

ation and ele
tro-magneti
 radiation [12, 13℄. This is parti
ularly true for the more


omputationally intensive fun
tions su
h as exponentiation, whi
h is a major pro-


ess in many 
rypto-systems su
h as RSA, ECC and DiÆe-Hellman. Initial atta
ks

of this type required averaging over a number of exponentiations [9℄ to extra
t

meaningful data, but improved te
hniques mean that single exponentiations using

traditional algorithms are no longer safe. In parti
ular, it should be assumed that

the pattern of squares and multiplies 
an be extra
ted fairly a

urately from side


hannel leakage. If the standard binary \square-and-multiply" algorithm is used,

this pattern reveals the se
ret exponent immediately. More generally, operand re-

use might be determined as well and this used to extra
t the se
ret key when sliding

windows are employed [16℄. Deterministi
 re-
oding does little to improve matters

[11℄.

In this 
ontext, Oswald and Aigner proposed a randomized point multipli
ation

algorithm [10℄ for whi
h there is no bije
tion between s
alar key values and sequen
es

of 
urve operations. They randomly swit
h to an alternative pro
edure for whi
h

multipli
ations o

ur for zero bits but not for one bits, and they allow other non-zero

digits than 1;

�

1 for example. This alternative 
orresponds to a standard re
oding
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of the input bits to remove long sequen
es of 1s. On the one hand, the pattern

of squares and multipli
ations is no longer �xed, so that averaging power tra
es

from several exponentiations does not make sense, and, on the other hand, there is

ambiguity about whi
h digit value is asso
iated with ea
h multipli
ation.

This arti
le analyses the set of randomized tra
es that would be generated by

repeated re-use of the same unblinded key k. By aligning 
orresponding doublings

in a number of tra
es, the possible operation sequen
es asso
iated with bit pairs

and bit triples of the se
ret key k 
an be extra
ted. With only a few tra
es (10 or

so) this provides enough information to determine most bits of k unequivo
ally, and

most of the rest with a high degree of 
ertainty.

Previous work in this area in
ludes [11℄ and [14℄. Oswald [11℄ takes a similar

but deterministi
 algorithm and shows how to determine a spa
e of possible keys

from one sequen
e of 
urve operations, but not how to 
ombine su
h results from

di�erent sequen
es. Here the freedom a�orded by the randomization minimises the

inter-dependen
e between 
onse
utive operations and so it is un
lear whether or not

her te
hniques would lead to an intra
table amount of 
omputing. Okeya & Sakurai

[14℄ treat the simple version of the randomized algorithm and su

eed in 
ombining

results from di�erent multipli
ations by the same key. They require the key k to be

re-used 100+ log

2

k times. Here we treat the more 
omplex version of the algorithm,

one whi
h is also slightly extended in order to in
rease se
urity against side 
hannel

atta
ks. The analysis of Okeya & Sakurai is inappli
able in this more general 
ase

be
ause it depends on a �xed �nite automaton state o

uring after pro
essing a zero

bit. However, using new methods we �nd that a) measurements from only O(10)

uses of the se
ret key reveal the key by applying theory whi
h 
onsiders pairs of

bits at a time, b) software whi
h 
onsiders longer sequen
es of bits 
an pro
ess just

two uses to obtain the key in O(log k) time, and 
) for standard key lengths and

perfe
t identi�
ation of adds and doubles, a single use will dis
lose the key in a

tra
table amount of time. In addition, our atta
k seems less sus
eptible to error:

bits are dedu
ed in parallel so that in
orre
t dedu
tions of some bits a�e
t at most

the neighboring one or two bits. In 
omparison, the atta
k of Okeya & Sakurai

re
overs bits sequentially, making re
overy from errors more 
omplex.

Although only one algorithm is studied here, a similar overall approa
h 
an be

used to break most randomized re
oding pro
edures under the same 
onditions.

The two main properties required are: i) after a given sequen
e of point operations,

the unpro
essed part k

0

of the key 
an only have one of a small, bounded number

of possible values (determined from k by the length of the operation sequen
e but

independent of other 
hoi
es); and ii) it is possible to identify an asso
iated subset

of tra
e suÆxes for whi
h all members 
orrespond to the same value of k

0

. These

also hold for the algorithm proposed by Liardet & Smart [8℄, whi
h uses a sliding

window of random, variable width. They seem to be the key properties required

in [20℄ to demonstrate similar weaknesses in that algorithm also. Two alternatives,

Mist [18℄ and overlapping windows [3℄, provide a mu
h wider range of values for

the unpro
essed parts k

0

of keys. Without property (i) holding, they appear to be

safer, parti
ularly when keys are re-used.

Several 
ounter-measures exist for redu
ing the quantity of data that leaks in

this way. For ellipti
 
urve 
ryptography (ECC), the likelihood of distinguishing

between point additions and doublings 
an be redu
ed by making ea
h follow the

same pattern of �eld (and other) operations. Several solutions have been proposed

[4, 2, 1℄, but squares and multipli
ations in the �eld behave di�erently [15℄ and so
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there is no reason to believe that su
h re
oding will ne
essarily hide the distin
tion

between additions and doublings 
ompletely.

The atta
k here depends on the same key being reused on ea
h o

asion. One

standard 
ounter-measure to frustrate averaging the tra
es of many exponentiations

is to modify the se
ret exponent ea
h time from e to e+rg where r is a random

number, typi
ally 32-bits, and g is the order of the (multipli
ative) group in whi
h

the exponentiation is performed [6℄. Then property (i) above 
annot hold. Although

this blinding results in a di�erent exponentiation every time, for ECC it adds 20% to

the number of point operations for a typi
al key of 160 bits. It had been hoped that

randomized algorithms might avoid this extra 
ost. This is no longer seems to be

the 
ase unless 
ode for adds and doubles 
an be made to exe
ute indistinguishably.

2 The Oswald-Aigner Exponentiation Algorithm

This se
tion 
ontains a brief outline of the Oswald-Aigner algorithm [10℄. It is

written in terms of the additive group of points on an ellipti
 
urve E de�ned over

a �eld F with identity element O. Field elements and rational integers are written in

lower
ase while points on the 
urve are written in 
apitals. The algorithm 
omputes

the point Q = kP for a given positive integer k (the se
ret key) and a given point

P on E.
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introdu
es alternative re-
odings to the representation

of k. It 
an be viewed as pre-pro
essing bits of k from right to left into a new

digit set f�1; 0;+1;+2g. Then the resulting s
heme for point multipli
ation 
an

be performed in either dire
tion. The 
onversion uses a 
arry bit set initially to

0. When this bit is summed with the 
urrent bit of k, the result 0, 1 or 2 
an be



4 Published at eprint.ia
r.org

re-
oded in di�erent ways: 0 always gives a new digit 0 with 
arry 0; 1 
an give

either new digit 1 and 
arry 0 or new digit

�

1 with 
arry 1; and 2 gives either new

digit 0 and 
arry 1, or new digit 2 and 
arry 0.

Fig. 1 illustrates this as a �nite automaton for an in
onsequential extension of

the original algorithm. It has 4 states, numbered 0 to 3 with the 
arry being 1 if, and

only if, the state is 2. For the transition from state 2 to state 1, the normal order of

doubling and adding is reversed. This a
hieves the pro
essing for digit value 2. The

extension here allows a new transition from state 0 to state 2; the original algorithm

is the spe
ial 
ase in whi
h the random bit rb = 1 always for state 0. Rather than

taking a uniform distribution in every 
ase, we will also allow the random bits to

be expli
itly biased. However, if the same distribution of random bits is used for

ea
h of the states 0, 1 and 3, the automaton 
an be simpli�ed to 
onsist of just two

states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent 
ode for the asso
iated right-to-left point multi-

pli
ation. A left-to-right version is also possible, and 
an be atta
ked in the same

way.

Q  O ;

State  0 ;

While k > 0 do

{

If (k mod 2) = 0 then


ase State of

{

0,1,3 : Q  2Q ; State  0 ;

2 : P  P+Q ; Q  2Q ; State  3 ;

}

else


ase State of

{

0,1,3 : If rb = 0 then /* rb is a Random Bit */

{ P  P-Q ; Q  2Q ; State  2 }

else

{ P  P+Q ; Q  2Q ; State  1 } ;

2 : If rb = 0 then /* rb is a Random Bit */

{ Q  2Q ; P  P+Q ; State  1 }

else

{ Q  2Q } ;

} ;

k  k div 2 ;

} ;

If State = 2 then P  P+Q ;

Fig. 2. Oswald & Aigner's randomized signed binary exponentiation (extended).
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3 EÆ
ien
y Considerations

Although the algorithm appears to be fully des
ribed, there are still some details

to de
ide. Spe
i�
ally, the 
hoi
e of the random bits rb 
an be skewed to favour


ertain transitions. As we shall see, this a�e
ts both eÆ
ien
y and se
urity.

Every bit of the key k is asso
iated with a 
orresponding doubling operation.

This means that the number of doublings is �xed, and time eÆ
ien
y depends only

on the total number of additions and subtra
tions. We will assume that, for se
urity

reasons, point subtra
tions have been made indistinguishable from point additions

as far as is possible. Then eÆ
ien
y depends entirely on the total number of su
h

operations, whi
h we will hen
eforth always refer to as additions.

De�nition 1. Let �, �, 
 and Æ be the 
hosen probabilities that the random bit rb

is 1 when the 
urrent state is 0, 1, 2 or 3 respe
tively.

Then, for a key k whose bits are sele
ted independently and at random from a

uniform distribution, the matrix of transition probabilities between states of the

automaton is

2
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Lemma 1. The transition matrix has an eigen-ve
tor (

1

2

��;

1

2

�2�, 2�; �) where

� =

2����

12�2��4��4
+2Æ

and this 
ontains, as elements, the probabilities asso
iated

with ea
h state. Moreover, 0 � � �

1

4

.

This is an easy exer
ise for the reader. Taking the dot produ
t of this with the

ve
tor (

1

2

;

1

2

; 1�

1

2


;

1

2

) of average additions asso
iated with ea
h state provides the

expe
ted number of additions per bit:

1

2

+(1�
)�. Similarly, taking the dot produ
t

with the 
orresponding ve
tor (1; 1; 1; 1) for doublings provides 1 as the expe
ted

number of doublings per bit.

In order to minimise the total number of additions and hen
e the addition 
hain

length, we need to pi
k (1�
)� = 0, i.e. (1�
)(2����) = 0, i.e. either never take

the transition from state 2 ba
k to state 1, or never take either of the transitions

from states 0 and 1 to state 2. Of 
ourse, one might ba
k away from these extremes

to retain greater randomness in the 
hains. In parti
ular, � and/or � should be

kept away from 1 so that states 2 and 3 are rea
hable. In the limit as ��
Æ!1

(whi
h optimises eÆ
ien
y), on average there is half an addition per bit of k. Thus,

a typi
al addition 
hain has a little over

1

2

log

2

k additions (or subtra
tions). Even

a modest bias towards eÆ
ien
y, su
h as taking � = � = 
 = Æ �

3

4

, 
hanges this

by just 2% or less.
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4 The Atta
k

4.1 Introdu
tion & Initial Hypotheses

The purpose of randomized exponentiation algorithms is to frustrate side 
han-

nel analysis by an atta
ker. In parti
ular, they are 
ounter-measures against using

knowledge of the exponentiation pro
ess to extra
t the se
ret key k. Several dif-

ferent levels of leakage are possible, depending on the resour
es of the atta
ker.

A poor signal-to-noise ratio (SNR) means that many samples have to be taken,

and averaging the side 
hannel leakage is one way of improving the SNR. So a


riti
al parameter is whether or not the atta
ker's equipment is good enough for

him to extra
t suÆ
ient meaningful data from the side 
hannel tra
e of a single

s
alar multipli
ation. If it is, then the standard key blinding des
ribed earlier sud-

denly fails to provide the data hiding prote
tion a�orded by averaging away lo
al

data dependen
ies. Improved equipment and laboratory te
hniques mean that this

barrier 
an now be brea
hed without too mu
h expenditure [12, 13℄.

The 
ategories of leakage whi
h 
ould be 
onsidered in
lude the following: i)

individual point operations 
an be observed on power, EM or other side 
hannel

tra
es; ii) point doublings and point additions 
an be distinguished from ea
h other;

iii) re-use of operands 
an be observed; and iv) operand addresses 
an be dedu
ed.

Point (i) may hold simply be
ause program instru
tions and data need to be fet
hed

at the start of ea
h point operation, and these 
ause di�erent e�e
ts on the side


hannels than �eld operations. Point (ii) may then hold as a result of di�erent

patterns of �eld operations for point additions than for point doublings. Properties

(iii) and (iv) might hold as a result of being able to dedu
e Hamming weights of

data and address words travelling along the bus.

Randomization prevents the obvious averaging of the tra
es of many point multi-

pli
ations whi
h was used in initial power analysis atta
ks on the binary \square-

and-multiply" algorithm. There are no longer any 
orresponding doublings whi
h


an be aligned sin
e every point multipli
ation determines a di�erent sequen
e of

doublings and additions. With mat
hed 
ode for additions and doublings [1, 2, 4,

8℄, averaging may hide the di�eren
e between the two operations be
ause they are

no longer separated in time, but in 
urrent implementations su
h averaging will


ertainly reveal the start and end of the individual point operations whi
h make up

the s
alar multipli
ation.

The atta
k des
ribed here requires the SNR to be good enough to extra
t some

useful data from single point multipli
ations on the 
urve. Spe
i�
ally, initially we

assume that:

{ Adds and doublings 
an always be identi�ed 
orre
tly and distinguished from

ea
h other using tra
es obtained from side 
hannel leakage for a single point

multipli
ation; and

{ A number of tra
es are available 
orresponding to the same se
ret key value

applied to independent s
alar multipli
ations.

The insisten
e on \always" in �rst hypothesis 
an be relaxed to provide a more

realisti
 s
enario. It is a 
onvenien
e that allows us to provide a more a

urate

assessment of the strength of the atta
k. If doublings and additions 
an be dis-

tinguished su

essfully with a known probability, then the 
al
ulations below 
an

easily be modi�ed appropriately to yield similar results.
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4.2 Overview of the Atta
k & Notation

The outline of the atta
k is as follows. For simpli
ity, by the �rst hypothesis,

{ every tra
e tr is viewed as a word over the alphabet fA;Dg

where A denotes the o

urren
e of an addition and D the o

urren
e of a doubling.

As usual, the tra
e is written with time in
reasing from left to right. However, this

is the opposite of the binary representation of the se
ret key k whi
h is pro
essed

from right to left, least signi�
ant bit �rst. Consequently, the two fa
e in opposite

dire
tions. In parti
ular, if the ma
hine were to 
y
le round only states 0 and 1

giving the sequen
e of operations for square-and-multiply exponentiation, then the

tra
e would be essentially the same as the binary, but reversed: every o

urren
e of

0 would appear as D, and every o

urren
e of 1 would appear as AD. The binary

representation 11001 would then generate the tra
e ADDDADAD. There is one D

for every bit, and we index them similarly:

De�nition 2. The position of an instan
e of D in a tra
e is the number of o

ur-

ren
es of D to its left.

Thus, the �rst (leftmost) D of ADDDADAD has position 0 and arises from pro-


essing the last (rightmost) bit of 11001, whi
h has index 0.

It is readily veri�ed that the only transition whi
h pla
es D before rather than

after an asso
iated o

urren
e of A is the transition (21). Hen
e, every o

urren
e of

the substring DAAD in a tra
e tr 
orresponds to the pro
essing path traversing the

transitions (21) then (12) or (11) in the �nite automaton. This substring splits the

tra
e between the As into a pre�x and a suÆx. There is a 
orresponding splitting

of the binary representation of the se
ret key k into a least signi�
ant part and a

most signi�
ant part. Sin
e the key and tra
e are pro
essed in opposite dire
tions

with one doubling per transition, i.e. per bit, the least signi�
ant part of k has a

number of bits equal to the number of Ds in the asso
iated pre�x of tr.

Every o

urren
e of the triplet 111 in k enables the pair AA to o

ur in some

tra
es (a

ording to the values of the random bits) when pro
essing the se
ond

and third least signi�
ant bits. Even with a small number of independent tra
es,

almost all triples 111 
an be found using these relatively frequent o

urren
es. It

will be shown that similar properties for the distributions of substrings asso
iated

with ea
h possible bit pair enable most other bits to be re
overed. Sin
e every bit

is determined essentially independently of the others, the un
ertainties due to noise

and errors do not grow unreasonably, and so the atta
k is feasible in pra
ti
e.

4.3 Properties of Tra
es

Lemma 2. Suppose tra
e tr is given. If 11 o

urs at some point in the binary repre-

sentation of k then the probability of the left-hand 1 being represented by transition

(21) in tr is � = 4�(1�
).

Proof. 4� is the probability of being in state 2 as a result of the right-hand 1 and

1�
 is the probability of sele
ting transition (21) next. ut

Transition (21) leads to the 
hara
teristi
 pattern DAAD for 111 with whi
h

this atta
k starts. Although there may be other measures to take into a

ount,
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as a �rst approximation we should expe
t to have to de
rease o

urren
es of this

transition in order to maximise se
urity. Over the ranges 0 to 1 for ea
h variable,

the probability of the transition is a de
reasing fun
tion for ea
h of �, �, 
 and Æ.

Hen
e, to maximise eÆ
ien
y and se
urity, it would probably be best to 
hoose all

of these � 1. This will make DAAD appear only rarely. Of 
ourse, 
hoosing � = 1

as in the original ma
hine [10℄ and taking � = 1 makes states 2 and 3 unrea
hable,

so that all randomization is lost and hen
e also any se
urity that might a

rue from

use of the algorithm.

Typi
ally, one might 
hoose all the variables equal to

3

4

, say. This gives the

transition (21) a probability of � =

1

12

. With this usefully high probability of the

asso
iated pattern DAAD in a tra
e tr, it 
an reasonably be assumed that almost

every o

urren
e of 111 in k will be re
ognised from a small set of tra
es for typi
al

key lengths. For n tra
es, the probability of not observing DAAD at a given point

where 111 o

urs is (1��)

n

. So, to determine 90% of the substrings 111 with these

parameter 
hoi
es, we just need a sample of 27 tra
es in whi
h the adds and doubles

are obtained 
orre
tly. If all four variables default to

1

2

, then � =

1

4

and so only 8

tra
es would enable a similar per
entage of the 111s to be established.

In the 
ase of ambiguities or errors in distinguishing additions from doublings,

it may be helpful to determine whi
h operations belong to whi
h transition or bit of

k. There is one doubling D per bit, but an addition A between 
onse
utive Ds may

belong to the transition of either the �rst bit or the se
ond. Figure 3 lists all possible


ombinations of transitions for 
onse
utive pairs of bits. Clearly DAAD must split

as DA:AD sin
e ea
h transition applies at most one addition. DA only o

urs for

the transition (21) and so must arise from bit 1. From the available options at state

1 of the automaton, the next bit pro
essed is 1 if, and only if the DA is followed

by AD. Otherwise, for the pair 11, the �rst bit pro
essed is represented by D or

AD, and so we know that the D marks the end of pro
essing for that transition.

Figure 3 shows all these 
hoi
es for the bit pair 11. Thus, o

urren
es of DAAD in

some tra
es enable all tra
es to be split 
orre
tly at the point 
orresponding to the

middle of DAAD.

To summarize, sin
e DA arises on a single transition only after a pre
eding 1

has enabled state 2 to be rea
hed,

Lemma 3. Every o

urren
e of DAAD 
orresponds to 111 in the se
ret key k and

enables all tra
es to be split at the same point. If the middle 1 has index i then the

subtra
es 
orresponding to the bits from index 0 to i are given by all 
hara
ters up

to and in
luding the D at position i, plus the next A when two As o

ur (but no

additional A otherwise).

To re
over more of k, we look next at other pairs of bits, and see how many As


an and do appear in tra
es between the two Ds 
orresponding to the bits. As just

noted, there 
an be up to 2 intervening As between 
onse
utive Ds.

Lemma 4. i) For a given tra
e, if the Ds in positions i and i+1 are not separated

by any As, then the bit pair k

i+1

k

i

is 00 with probability (2�2�(1�
))

�1

, whi
h

ex
eeds

1

2

. If the Ds are separated by one or more As in any tra
e, then the bit pair

is 
ertainly not 00.
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ii) For a given tra
e, if the Ds in positions i and i+1 are separated by one A, then

the bit pair k

i+1

k

i

is 10 with probability

1

2

. If the Ds are separated by no As or two

As in any tra
e, then the bit pair is 
ertainly not 10.

iii) For a given tra
e, if the Ds in positions i and i+1 are separated by two As, then

the bit pair k

i+1

k

i

is 
ertainly 11. The probability of two As when the bit pair is 11

is 2�(1�
), assuming bit k

i�1

is unknown.

iv) For a set of n tra
es, suppose the Ds in positions i and i+1 are separated by no

As in some 
ases, by one A in some 
ases, and by two As in no 
ases. Then the bit

pair k

i+1

k

i

is 01 with probability (1+(1�2�(1�
))

n

)

�1

.

Proof. i) First, by inspe
tion of the �nite automaton, we see that the only possible

operation sequen
es for 00 are ADD and DD. So the Ds are always adja
ent. The

intervention of an A will prove that the bit pair is not 00.

Bit Operation State Probabilities;

Pair Patterns Sequen
es given the bit pair

00 D:D 000; 100; 300 1�2�

AD:D 230 2�

10 D:AD 001; 002

1

2

��

D:AD 101; 102

1

2

�2�

AD:AD 231; 232 2�

D:AD 301; 302 �

01 AD:D; AD:AD 010; 023 (

1

2

��)�; (

1

2

��)(1��)

AD:D; AD:AD 110; 123 (

1

2

�2�)�; (

1

2

�2�)(1��)

DA:D; D:AD 210; 223 2�(1�
); 2�


AD:D; AD:AD 310; 323 �Æ; �(1�Æ)

11 AD:AD; AD:AD 011; 012 (

1

2

��)��; (

1

2

��)�(1��)

AD:DA; AD:D 021; 022 (

1

2

��)(1��)(1�
); (

1

2

��)(1��)


AD:AD; AD:AD 111; 112 (

1

2

�2�)�

2

; (

1

2

�2�)�(1��)

AD:DA; AD:D 121; 122 (

1

2

�2�)(1��)(1�
); (

1

2

�2�)(1��)


DA:AD; DA:AD 211; 212 2�(1�
)�; 2�(1�
)(1��)

D:DA; D:D 221; 222 2�
(1�
); 2�


2

AD:AD; AD:AD 311; 312 �Æ�; �Æ(1��)

AD:DA; AD:D 321; 322 �(1�Æ)(1�
); �(1�Æ)


Fig. 3. All possible operation sequen
es for all bit pairs, and probabilities given the bit

pair o

urs. (The bit pairs are pro
essed right to left.)

Figure 3 shows the operation sequen
es whi
h 
an o

ur for ea
h bit pair. It

in
ludes the probability of ea
h, assuming that the bit pair o

urs and that the initial

states have the probabilities determined by Lemma 1. Knowledge of neighbouring

bits would require these values to be modi�ed.

Suppose there is no intervening A between the two spe
i�ed Ds. If the bit pair

is 00 then the probability of this is �

00

= 1; if the bit pair is 10 then the probability

is �

10

= 0; if the bit pair is 01 then the probability is �

01

= (

1

2

��)�+(

1

2

�2�)�+�Æ;

and if the bit pair is 11 then the probability is �

11

= (

1

2

��)(1��)+(

1

2

�2�)(1��)+

2�
+�(1�Æ). Thus, the 
orre
t dedu
tion of 00 is made with probability

�

00

=(�

00

+�

10

+�

01

+�

11

) = 1=(2�2�(1�
)).
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ii) From the table or the automaton, we 
an see that the bit pair 10 must always

in
lude the operation A on
e between the two o

urren
es of D, but this is not the


ase for any other bit pair. Thus the absen
e of an A, or the presen
e of two As,

guarantees the bit pair is not 01. However, suppose there is exa
tly one A between

the spe
i�ed Ds. If the bit pair is 00 then the probability of this is �

0

00

= 1��

00

= 0;

if the bit pair is 10 then the probability is �

0

10

= 1��

10

= 1; if the bit pair is 01

then the probability is �

0

01

= 1��

01

; and if the bit pair is 11 then the probability is

�

0

11

= 1��

11

�2�(1�
). Thus, the 
orre
t dedu
tion of 10 is made with probability

�

0

10

=(�

0

00

+�

0

10

+�

0

01

+�

0

11

) =

1

2

.

iii) This part is 
lear from the table in Figure 3.

iv) Finally, by parts (i) and (ii), a bit pair whi
h in
ludes both the possibilities of

no As and of one A between the spe
i�ed Ds 
annot be 00 or 10; it must be 01 or

11. The probability of not having two As in any tra
e when the digit pair is 01 is

1, of 
ourse. The probability of not having two As in any of the n tra
es when the

digit pair is 11 is �

n

= (1�2�(1�
))

n

. Hen
e the probability of the pair being 01

rather than 11 is 1=(1+�

n

). ut

We must be 
areful in the appli
ation of this lemma. Ea
h part assumes no

knowledge of bit k

i�1

. Knowing it 
hanges the probabilities. In most 
ases, the

di�eren
es are small enough to be 
onsidered negligible; for a

urate �gures the

table 
an be used to sele
t just the 
ases starting in states 0 or 3 when the pre
eding

pro
essed bit is 0, and the 
ases starting in states 1 or 2 when that bit is 1. The

only 
ase where a qualitative di�eren
e o

urs is for 11 when AA only o

urs if

k

i�1

= 1. In the 
ase of k

i�1

= 0 this means we 
annot distinguish 01 from 11 so

easily. However, no use has yet been made of the distribution of 
hara
ters adja
ent

to, or between, the two Ds of interest: for example, using the relative probabilities,

one 
ould distinguish 
orre
tly between the pairs 01 and 11 with a better than evens


han
e on the basis of the proportion of As whi
h o

ur between the Ds. This pre-

supposes knowledge of the values of the parameters �, �, 
 and Æ, but, if ne
essary,

these 
an be dedu
ed with suÆ
ient a

ura
y from the relative frequen
ies of various

patterns in the tra
es. We will not go into detail here sin
e the aim is to establish

the feasibility of the atta
k, rather than the minimal number of tra
es required for a

given 
han
e of su

ess. This last is, in any 
ase, dependent on the 
ounter-measures

employed by the 
rypto-system and the quality of the te
hniques and monitoring

equipment used by the atta
ker.

4.4 Re
onstru
ting the Key

From parts (i) and (ii) of Lemma 4, we 
an establish every o

urren
e of the bit pairs

00 and 10 with any desired degree of 
on�den
e if a suÆ
ien
y of independently

generated tra
es for the same key is available.

The probability that a 1 bit belongs to one of these pairs 00 or 10 is

1

2

be
ause

a 1 has 50% 
han
e of being followed by a 0 to give 10. Also, the probability that

a 0 bit belongs to one of the pairs 00 or 10 is 1 be
ause it must be pre
eded by a

0 or a 1 to produ
e 00 or 10 respe
tively. Hen
e, with enough tra
es,

3

4

of the bits

of k will be established easily and 
orre
tly using Lemma 4, (i) or (ii). Half of all

bits belong to exa
tly one of these pairs, and a quarter of all bits belong to two

su
h pairs (namely, in the latter 
ase, the 
entral bit of triplets of the form �00).

On average, half of all bit pair positions are used to determine these bits of k using

the �rst two parts of the lemma.
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For isolated bit pairs 00 and 10, i.e. those whi
h do not overlap with another bit

pair of the same type, the lemma shows that n tra
es would lead to less than one

error per 2

n

dedu
tions of the pair. However, for those bits belonging to a longer

sequen
e of overlapping su
h bit pairs, the probability of a 
orre
t dedu
tion is

mu
h higher. Su
h sequen
es are maximal substrings of the form 10

i

if no errors

have been made. In an in�nitely long sequen
e of independent random bits,

1

4

of 0s

would belong to a sequen
e 101, so about

1

4

of the bits of k are determined as isolated

pairs. The other

3

4

of 0s and

1

4

of 1s belong to longer sequen
es of overlapping pairs.

This in
reases the probability of 
orre
t dedu
tions for half the bits of k be
ause of

the need for 
onsisten
y where pairs overlap. We might expe
t fewer than 1 error

in 2

2n

for these bits, i.e. half of all bits of k are determined with almost 
omplete


ertainty. This 
ould be established by extending Figure 3 and Lemma 4 from pairs

to triples of bits, but this level of detail is unne
essary to prove the feasibility of

the atta
k.

Overall, for a standard 192-bit key k, an average of 96 bit pair positions would

have tra
e operations whi
h determine the values of 144 bits. So, with only 10 tra
es,

we 
an expe
t every su
h pair to be determined 
orre
tly be
ause substantially less

than one error per 2

10

pairs should be made. Thus, all determined bits will be


orre
t for at least 9 out of every 10 keys whi
h are atta
ked.

A quarter of the bits now remain to be determined. The number of tra
es re-

quired to establish these with a given probability depends mu
h more on the 
hoi
e

of the parameters � to Æ than was the 
ase for the previous bits. To determine them,

we 
onsider sequen
es of 1s rather than 0s. i(

1

2

)

i+1

of 1 bits belong to maximal se-

quen
es of exa
tly i 
onse
utive 1 bits, i.e. to subsequen
es 01

i

0. Hen
e

1

2

of all 1

bits belong to sequen
es of 3 or more 1 bits. Lemma 2 enables us to determine these

bits with a known probability for a given number of tra
es. Default values for the

parameters � to Æ would mean that around 90% of triples 111 would be dete
ted

using just 8 tra
es, whatever the key length. For 
onvenien
e, assume the 
hoi
e

of parameters and number of tra
es allow this per
entage to be determined. Sin
e

some of the triples will overlap, well over 90% of the 1s in su
h triples should be

identi�ed. In fa
t,

1

4

of all 1s lie at the ends of sequen
es of 3 or more 1 bits,

1

4

of

all 1s lie within su
h sequen
es, and

1

16

of all 1s are the 
entral bit of a subsequen
e

01110. Hen
e

3

16

of all 1s are internal 1s whi
h belong to at least two triples 111,

and so at least 99% of these will be determined 
orre
tly. Another

5

16

of all 1s lie in

a single triple 111, and, by assumption, 90% of them are determined as a result of

this. None of the initial or internal 1s in a subsequen
e 01

i

0 (i�3) were 
onsidered

in the previous paragraphs sin
e they are not 
ontained in either of the pairs 00 or

10. So these 1 bits add almost another

1

16

+

1

8

to the fra
tion of all bits determined

so far. On average 10% of these 1s will be undetermined be
ause DAAD does not

o

ur in any tra
e. So about one of these bits will fail to be spotted in a 192-bit

key.

This leaves un
onsidered only those

1

16

th of all bits whi
h are the initial 1s of

sequen
es 0110. In a sequen
e of the form 0�10, the 
omponent 0s are determined

as above, as is the 
onstituent pair 10. If the remaining bit � were a 0 then the

subsequen
e 00 would o

ur, it would be identi�ed, and so � determined as a 0.

Sin
e � is not so determined, � must be 1. So all bits are now determined ex
ept

for some of those whi
h belong to the triples 111 that failed to exhibit a substring

DAAD in any tra
e. Thus,



12 Published at eprint.ia
r.org

Theorem 1. Suppose ellipti
 
urve adds and doubles 
an be distinguished a

u-

rately on a side 
hannel. If the Oswald-Aigner exponentiation algorithm is used

with the same unblinded 192-bit ECC key k for 10 point multipli
ations then all of a

known set of about

3

4

of the bits 
an be determined 
orre
tly with probability ex
eed-

ing

9

10

. With a uniform distribution of random bits for 
hoosing the re-
oding, all

but about one or two of the remaining bits 
an be determined with at least similar


on�den
e. The undetermined bits are in known positions.

This theorem says that a standard 192-bit key 
an usually be broken on a �rst

attempt using a dozen tra
es with essentially no 
omputational e�ort beyond ex-

tra
ting the add and double patterns from ea
h tra
e. By 
onsidering all possibili-

ties, the few undetermined bits lead to a very small set of possible keys, of whi
h

the 
orre
t one 
an surely be established by de
rypting some 
iphertext. Identi
al

working shows that a similar theorem holds for keys of any length. In all 
ases the

number of tra
es needed to a
hieve a very high, spe
i�ed degree of 
on�den
e in

the determined bits is O(log log k).

4.5 Se
ure Parameter Choi
es?

Varying the parameters may in
rease the diÆ
ulty of determining the quarter of

bits not 
overed by (i) and (ii) of Lemma 4. The probability of the sequen
e DAAD

has to be de
reased for this. This requires �! 0 or 
 ! 1.

For the �rst of these, the probability of states 2 and 3 falls towards 0. Then the

tra
es 
losely mat
h the pattern of operations for square-and-multiply. So, roughly

speaking, bits are determined a

ording to the whether many or few tra
es have

A before the 
orresponding D. With Lemma 4 determining most o

urren
es of 00

and 10, the only outstanding problem is to distinguish between 01 and 11. This is

easily resolved by 
onsidering the average number of As between the relevant pair

of Ds: � is very small, so � and � are 
lose to 1 and therefore 01 has no As almost

always whereas 11 has one A with the same probability, i.e. almost always, if no

AAs appear. Thus � � 0 is not a se
ure option.

Bit Operation Probabilities;

Pair Patterns given the bit pair

00 D:D 1�2�

AD:D 2�

10 D:AD 1�2�

AD:AD 2�

01 AD:D (

1

2

��)�+(

1

2

�2�)�+�Æ

AD:AD (

1

2

��)(1��)+(

1

2

�2�)(1��)+�(1�Æ)

D:AD 2�

11 AD:AD (

1

2

��)�+(

1

2

�2�)�+�Æ

AD:D (

1

2

��)(1��)+(

1

2

�2�)(1��)+�(1�Æ)

D:D 2�

Fig. 4. Operation sequen
es and probabilities for bit pairs when 
 = 1.
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Alternatively, we must take 
 � 1. Then the table of Fig. 3 redu
es to that of Fig.

4. Unless the probablities are 
arefully 
hosen, ea
h bit pair will be distinguishable

from the others by the o

urren
es of �xed or variable numbers of As between

the 
orresponding Ds: 00 
ontains no As, 10 
ontains one A, and the other two

have instan
es of both no A and one A between the Ds. As in the previous 
ase,

01 and 11 will be distinguishable be
ause they will have di�erent, 
omplementary

probabilities for the o

urren
es of no As. Hen
e, in order to retain some ambiguity,

it is ne
essary to for
e 01 and 11 to have �xed numbers of As between their Ds (so

they are indistinguishable from 00 or 10) or for them to have variable numbers whi
h

o

ur with equal probability

1

2

(so they are indistinguishable from ea
h other).

By assumption, � is not 
lose to 0. Hen
e the last 
ase in Fig. 4 for ea
h of 01

and 11 is non-negligible. Thus 01 and 11 
ould only demonstrate a �xed number of

As over the set of tra
es if their �rst 
ases were to o

ur with negligible probability.

Sin
e 0 < � �

1

4

, this would require � � Æ � 0, whi
h makes � �

1

4

. Then 00 and

11 may be 
onfused, as may 01 and 10. However, the tra
es 
an now be used to

determine the parity of one bit from that of its neighbour { either equal parity or

opposite parity. Sin
e the leading bit is 1, the parity of every bit is determined, and

so the se
ret key k 
an be re
overed. If there is an error, it must arise from 
onfusing

As with Ds and vi
e versa. However, su
h errors 
an be determined simply by taking

several tra
es: if the number of As varies between two Ds, there must be an error.

In fa
t, as long as A and D 
an be obtained 
orre
tly with greater probability than

by guessing, it just requires enough tra
es to determine with any required 
ertitude

whether the two bits of the pair are equal or not. Hen
e, neither is this a se
ure

solution.

The last possible way for perhaps keeping some ambiguity is by pi
king the

probabilities so that 01 and 11 are 
onfused. This requires the �rst 
ase of ea
h in

Fig. 4 to have the same probability as that of the 
ombination of the se
ond and third


ases, namely

1

2

ea
h. Choosing 
 � 1 e�e
tively removes the transition from state 2

to state 1. Thus DA will not o

ur for any bit. This means that every A belongs to

the following D. Thus, every tra
e 
an be 
orre
tly parsed into substrings D or AD

whi
h 
orrespond to whole transitions. In parti
ular, this means that all 
hara
ters

of the operation patterns listed in Fig. 4 are known, not just those between the

Ds. So 01 and 11 
an be distinguished from ea
h other using the o

urren
es of

D:AD and D:D unless � is 
lose to 0. However, � � 0 has already been reje
ted as

a possibility. That 
hoi
e would make the algorithm revert to square-and-multiply:

01 and 11 
ould be distinguished by the di�erent probabilities of :D and :AD in

Fig. 4, 
orresponding to the �rst bit being 0 or 1 respe
tively. In fa
t, � = 0 for
es

� = � = 1, so that the :AD has probability 0 for 01 and probability 1 for 11.

It is now 
lear that any 
hoi
e of parameters produ
es suÆ
ient di�eren
es

between the sub-tra
es asso
iated with pairs of bits for every pair to be identi�ed


orre
tly when enough tra
es are provided. Whenever the parameters are 
hosen

to remove one distinguishing feature, another feature appears, enabling them to

be distinguished again. In this way all the bit pairs are determined with a known


ertainty. This 
ertainty is ampli�ed by the fa
t that ea
h bit pair overlaps two

other bit pairs and the determinations must be 
onsistent with ea
h other.

La
k of spa
e pre
ludes full details, but the outline feasibility proof for these

ex
eptional 
ases with reasonable key lengths is as follows. As in the proof of The-

orem 1, ea
h tra
e determines ea
h bit (or bit pair) 
orre
tly with a given proba-

bility greater than some non-zero �. As above, by sele
ting suitable 
riteria whi
h
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depend on the 
hoi
e of parameters, � 
an be made noti
ably larger than 0 in all


ases. Indeed, from Lemma 4, it is 1 in some 
ases and above

1

2

for many others.

With n independently generated tra
es, ea
h bit will be known with probability at

least 1���

n

. To ensure an average of at most 
 = O(1) bits are in
orre
t, n must be

pi
ked large enough to satisfy 1���

n

> 1�




log k

, and this requires n to be O(log log k).

However, we 
an reasonably assume that it is 
omputationally feasible to 
he
k all

possibilities for every set of 
 � 3:5 bits whi
h might be in error: it requires 
he
king

O((

1

4

log k)

2




) keys be
ause essentially three quarters of the bits are already known.

Thus,

Theorem 2. No 
hoi
e of algorithm parameters is se
ure for a reasonable key

length under the above atta
k if O(log log k) tra
es are available from point multi-

pli
ations using the same unblinded key.

4.6 Counter-Measures

In the absen
e of a se
ure set of parameter 
hoi
es, further 
ounter-measures are

required. The most obvious 
ounter-measure is to restore key blinding. A small

number of blinding bits might still result in the atta
ker's desired 10 or so tra
es for

the same key eventually be
oming available. These might be identi�ed easily within

a mu
h larger set of tra
es by the large number of shared 
hara
ters between their

tra
es. So, to avoid su
h dupli
ation, the size of the random number used in blinding


annot reasonably be mu
h less than the maximum lifespan of the key in terms of

the maximum number of point multipli
ations it is used for. Thus 16 or more bits

are needed, and this will add 10% or more to the 
ost of point multipli
ation.

Identi
al formulae for additions and doublings are in
reasingly eÆ
ient and ap-

pli
able to wider 
lasses of ellipti
 
urves. We single out those of Brier and Joye [1℄

in parti
ular. However, the potential to dedu
e Hamming weights of bus data from

side 
hannel leakage may still enable atta
kers to dis
riminate adds and doubles

from address or data loading 
y
les.

Another favoured 
ounter-measure is the add-and-always-double approa
h whi
h

is applied tom-ary exponentiation. Then ea
h o

urren
e ofDD has an add inserted

to yield the pattern DAD, but the add output is dis
arded without having been

used. This should also be done for the Oswald-Aigner algorithm. In addition, an

extra double needs to be performed to 
onvert ea
h DAAD into DADAD, and the

double's output is likewise ignored.

Alternatives randomized algorithms exist. Standard m-ary exponentiation [5℄

is not subje
t to this type of atta
k, but re-use of operands might be dete
ted

[16℄, making that method unsuitable even with key blinding in pla
e. The MIST

algorithm [17{19℄ and an overlapping windows method [3℄ 
urrently seem to be the

most robust 
hoi
es under these types of atta
k.

5 Overview

The introdu
tion presented an overview of two algorithm properties whi
h appear

to be ne
essary for the above type of atta
k. Here, and in the atta
ks of [14℄ and

[20℄, the randomized algorithms always pro
ess the key through a subset of a small,

�xed set of values: after ea
h iteration of the key pro
essing algorithm, the s
alar

whi
h still needs pro
essing is simply a pre�x of the binary representation of the key
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plus a small 
arry. Thus, at any given point in the pro
essing, the 
orresponding

sub-tra
es must all 
orrespond to the same key bits plus the 
arry. Consequently,

unless perhaps the algorithm is extremely well-designed, it 
an be assumed that

the di�erent frequen
ies of the various tra
e patterns will reveal the 
orre
t key

bit pattern with a 
on�den
e whi
h in
reases with the number of tra
es. No 
ases

require more than O(10) tra
es to re
over the key. Thus, su
h randomized algorithms

are probably best used only for ephemeral keys unless there is 
on�den
e in the

eÆ
a
y of other 
ounter-measures.

6 One Tra
e

It is interesting to spe
ulate on how mu
h data leaks from a single point multi-

pli
ation sin
e this may now be the main 
ontext for the algorithm. Oswald [10℄

noted that for some deterministi
 re-
oding algorithms in whi
h several non-zero

digits generate indistinguishable As, the operation patterns resulting from numbers

of up to 12 bits 
ould only represent at most 3 keys. By breaking a standard ECC

key into 12 bit se
tions, this means very few keys a
tually generate an observed

patterns of operations. Moreover, these 
an be ordered a

ording to their liklihood

of o

urren
e, and this 
onsiderably redu
es the average sear
h time for the 
orre
t

key. Hen
e the key 
an be re
overed quite easily.

She also writes that the same atta
k is possible on randomized algorithms with

weaker results, but provides no detail. Randomized algorithms have mu
h weaker

inter-dependen
ies between adja
ent operation patterns. This should substantially

in
rease the number of keys whi
h mat
h a spe
i�
 pattern of point operations. The

key Lemma 4 above does not provide mu
h 
ertainty for any bits unless a number of

tra
es are available; only the infrequent instan
es of AA allow de�nite determination

of any bits. Of 
ourse, an analysis of subsequen
es of more than two bits is possible,

as in [14℄, but, besides better probabilities, this gives no further insight. Instead,

software was written to enumerate all the keys whi
h 
ould represent a given string.

On average, for the extended version of the algorithm, the trend up to 16-bit keys

indi
ates 
learly that a little over O(

4

p

k) keys will mat
h a given pattern { under

20 mat
h a given 16-bit pattern. This would appear to ensure the strength of the

algorithm when a key is used just on
e but only if the key has at least 2

8

bits or

there is 
onsiderable ambiguity in the side 
hannel about whether the operations

are adds or doubles. The original algorithm has fewer random 
hoi
es, and so has

even fewer keys mat
hing a given pattern.

With only two tra
es available for the same key, an atta
ker 
an use o

urren
es

of D to partition the tra
es into small 
orresponding se
tions whi
h represent the

same key bits. From the two sets of mat
hing key values for ea
h se
tion, he sele
ts

pairs whi
h di�er only by the possible 
arry values at ea
h end of the se
tion. Then,


hoosing the 
ases where the 
arry values mat
h between se
tions, he 
on
atenates

the possible bit strings for ea
h se
tion to re
over the whole key. This is most likely

to produ
e a very small number of possible keys, and 
ertainly a tra
table number

for reasonable key lengths.
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7 Con
lusion

One of several, similar, randomized exponentiation algorithms has been investigated

to assess its strength against a side 
hannel atta
k whi
h 
an di�erentiate between

point additions and point doublings. Straightforward theory shows that at most

O(10) uses of the same unblinded key will enable the se
ret key to be re
overed

easily in a 
omputationally feasible time. No 
hoi
e of parameters improves se
urity

enough to alter this 
on
lusion. Using longer bit sequen
es than the theory, it is also


lear that software 
an sear
h su

essfully for keys when just 2 side 
hannel tra
es,

and perhaps only one, are available. However, this number may need in
reasing if

adds and doubles might be 
onfused or standards for key lengths are in
reased.

The main property whi
h is 
ommon to algorithms whi
h 
an be atta
ked in this

way seems to be that the next subsequen
e of operations at a given point in the

pro
essing of the key must be 
hosen from a small, bounded set of possibilities whi
h

is derived from the key and the position, but is independent of previous 
hoi
es.

Hen
e, our overall 
on
lusion is that su
h algorithms should be avoided for repeated

use of the same unblinded key if adds and doubles 
an be di�erentiated with any

degree of 
ertainty. Furthermore, for typi
al ECC key lengths, a single use may be

suÆ
ient to dis
lose the key when adds and doubles are a

urately distinguishable.
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