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Abstract

An (s;n; q; t)-perfect hash family is a set of functions �

1

; �

2

; : : : ; �

s

from a set V of cardinality n to a set F of cardinality q with the

property that every t-subset of V is injectively mapped into F by at

least one of the functions �

i

.

The paper shows that the maximum value n

s;t

(q) that n can take

for �xed s and t has a leading term that is linear in q if and only if

t > s. Moreover, for any s and t such that t > s, the paper shows how

to calculate the coe�cient of this linear leading term; this coe�cient

is explicitly calculated in some cases. As part of this process, new

classes of good perfect hash families are constructed.

1 Introduction

Let � be a function from a set V to a set F . We say that � separates a set

X � V if � is injective when restricted to X.

Let �

1

; �

2

; : : : ; �

s

: V ! F . Suppose V has cardinality n and F has car-

dinality q. Let t be an integer such that 2 � t � q. We say that �

1

; �

2

; : : : ; �

s

�
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is an (s;n; q; t)-perfect hash family if for all X � V such that jXj = t, there

exists i 2 f1; 2; : : : ; sg such that �

i

separates X.

Perfect hash families were �rst used by Mehlhorn [13] to prove a theoret-

ical result in compiler design. They have continued to �nd new applications

| in cryptography (see Blackburn [4], Blackburn, Burmester, Desmedt and

Wild [6], Fiat and Naor [9], Safavi-Naini and Wang [15], Staddon, Stinson

and Wei [16] and Stinson, van Trung, Wei [17]) in circuit design (see New-

man and Wigderson [14]) and to reducing the random input of an algorithm

(see Alon and Naor [2]). They have been studied as combinatorial objects by

Alon [1], Atici, Magliveras, Stinson and Wei [3], Blackburn [5], Blackburn and

Wild [7], Fredman and Koml�os [10], K�orner and Marton [11], Martirosyan

and Martirosyan [12] and Stinson, Wei and Zhu [18].

Perfect hash families may also be regarded as sets of partitions. We say

that a partition � of a set V separates a subset X � V if distinct elements

of X lie in distinct parts of �. Let �

1

; �

2

; : : : ; �

s

be a sequence of partitions

of a set V . We say that �

1

; �

2

; : : : ; �

s

form an (s;n; q; t)-perfect hash family

if jV j = n, if each partition �

i

has at most q parts and if for all X �

V such that jXj = t, there exists i 2 f1; 2; : : : ; sg such that �

i

separates

X. The `partition' and `function' de�nitions are equivalent: given a set of

partitions, we may construct appropriate functions by labelling the parts of

each partition �

i

with distinct elements of F , and then de�ning �

i

to map

x 2 V to the label of the part of �

i

containing x. In the reverse direction,

we de�ne x; y 2 V to be in the same part of �

i

if and only if �

i

(x) = �

i

(y).

We will use the partition representation of a perfect hash family throughout

this paper.

When s, q and t are �xed, what is the largest value n

s;t

(q) of n such

that an (s;n; q; t)-perfect hash family exists? In particular, we are interested

in the case when t > s, so there are few partitions when compared to the

value of t. This is a natural class of parameters to consider, as there is an

upper bound on n that is linear in q if and only if t > s, as we shall prove in

Section 2. In fact, when t > s the leading term of n

s;t

(q) is linear in q. We will

show how to calculate the coe�cient of this leading term. As a byproduct of

this process, we construct several new classes of good perfect hash families.

These constructions are better than the perfect hash families that are shown

to exist by probabilistic methods, and than the explicit constructions from

error correcting codes due to Alon [1].

Martirosyan and Martirosyan [12] recently observed that n � q whenever
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t � 2s. (This bound is clearly tight: it is met by a `trivial' perfect hash

family with a partition whose parts are all singletons.) They also showed

that n �

s

s�1

(q � 1) when t = 2s � 1, and proved by construction that this

bound is attained when

s

s�1

is an integer. The constructions in this paper

include the Martirosyan{Martirosyan construction as a special case.

The paper is organised as follows. In Section 2, we construct a class

of perfect hash families that are basic building blocks in our constructions,

and we show that the parameters we are considering are precisely those

where there is an upper bound on n that is linear in q. In Section 3, we

provide new constructions for perfect hash families. We introduce a method

involving linear programming to prove linear upper bounds on n, and we use

the building blocks of Section 2 to show that these bounds are tight. Finally,

in Section 4 we simplify the linear programming method and explicitly derive

the coe�cient of the linear leading term in several special cases.

2 A Linear Upper Bound

We aim to show that the parameters we are considering are precisely those

where there is an upper bound on n that is linear in q. We will use the

following collection of partitions in our proof | this collection will be used

as a basic building block in all the constructions in this paper.

Proposition 1 Let k and a be positive integers. Let A be a set of cardinality

a. De�ne V = A

k

. De�ne partitions �

1

; �

2

; : : : ; �

k

by de�ning (a

1

; a

2

; : : : ; a

k

)

and (a

0

1

; a

0

2

; : : : ; a

0

k

) to lie in the same part of �

i

if and only if a

j

= a

0

j

for

all j 2 f1; 2; : : : ; kg n fig. Let t be a positive integer and let X � V be such

that jXj = t. Then X is separated by at least k � (t � 1) of the partitions

�

1

; �

2

; : : : ; �

k

.

Proof: Suppose, for a contradiction, that X � V is such that jXj = t, but

X fails to be separated by t partitions. Without loss of generality, assume

that these partitions are �

1

; �

2

; : : : ; �

t

. We de�ne a graph G with coloured

edges as follows (we allow G to have multiple edges). The vertex set of G is

X. For each i 2 f1; 2; : : : ; tg, we choose one pair of distinct vertices x; y 2 X

that lie in the same part of �

i

and add an edge of colour i between x and y.

Note that an edge of colour i between x; y 2 V implies that x and y di�er in

their ith position and no other. Now, G has t vertices and t edges, and so G
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contains a cycle x

1

; x

2

; : : : ; x

c

, where x

1

= x

c

. Let the edge between x

1

and

x

2

be coloured j. Then x

1

and x

2

di�er in position j. Moreover, since each

colour occurs once in the graph, for all i 2 f2; 3; : : : ; c � 1g we have that x

i

and x

i+1

agree in their jth position. But this implies that the jth position

of x

1

di�ers from the jth position of x

c

. Since x

1

= x

c

, we have our required

contradiction.2

Corollary 1 The partitions �

1

; �

2

; : : : ; �

k

de�ned in Proposition 1 form a

(k; a

k

; a

k�1

; k)-perfect hash family.

Proof: Clearly, each partition �

i

has a

k�1

parts. Moreover, by Proposition 1,

every subset X of V is size k is separated by at least k � (k � 1) of the

partitions �

1

; �

2

; : : : ; �

k

.2

[We remark that this construction in the case when k = 2 was known to

Mehlhorn [13], and the case when k = 3 is a construction of Blackburn [5,

Theorem 3].]

Theorem 1 Let s and t be positive integers such that t � 2. For any positive

integer q, let n

s;t

(q) be the largest integer n such that an (s;n; q; t)-perfect hash

family exists. Then n

s;t

(q) = O(q) if and only if t > s.

Proof: When s = t, the (s; q

s=(s�1)

; q; s)-perfect hash families constructed in

Corollary 1 show that n

s;s

(q) 6= O(q). An (s;n; q; t)-perfect hash family is a

(s;n; q; t

0

)-perfect hash family for all t

0

� t; in particular, the constructions

in Corollary 1 are (s; q

s=(s�1)

; q; t)-perfect hash families for any t such that

2 � t � s. Thus n

s;t

(q) 6= O(q) whenever t � s. To prove the theorem, it

remains to show that n

s;t

(q) = O(q) whenever t > s.

Suppose that �

1

; �

2

; : : : ; �

s

form a (s;n; q; t)-perfect hash family, and sup-

pose that t > s. For all i 2 f1; 2; : : : ; sg, de�ne R

i

� V by

R

i

= fx 2 V : the part of �

i

containing x contains at least two elementsg:

Note that jV n R

i

j � q, since every element not in R

i

lies in a part of �

i

consisting of a single element, and �

i

has at most q parts. (If n > q, so R

i

is

non-empty, jV nR

i

j � q � 1.)

We show that \

s

i=1

R

i

= ;. Suppose, for a contradiction, that x 2 \

s

i=1

R

i

.

Let x

1

; x

2

; : : : ; x

s

2 V n fxg be such that x and x

i

are distinct and lie in the

same part of �

i

(such x

i

exist by our choice of x). De�ne X to be any set of
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size t containing fx; x

1

; x

2

; : : : ; x

s

g; such a set exists since t > s. But X is

not separated by any of �

1

; �

2

; : : : ; �

s

, since x and x

i

are distinct elements of

X that lie in the same part of �

i

. This contradicts the perfect hash family

property, and so \

s

i=1

R

i

= ;.

But now V = [

s

i=1

(V nR

i

) and so n = jV j �

P

s

i=1

(jV nR

i

j) � sq. Hence

n

s;t

(q) = O(q) when t > s, as required.2

3 Some Constructions

This section constructs new classes of perfect hash families, and then shows

that lim

q!1

(n

s;t

(q))=q exists and that computing this limit can be reduced

to a collection of linear programming problems.

The constructions in this section are all variations of the (3; 3a

2

; a

2

+2a; 4)-

perfect hash family de�ned as follows. We imagine the elements of the set

V as the disjoint union of three a � a squares C

1

, C

2

, C

3

(arranged in a

horizontal line, see Figure 1). We describe the partitions �

1

, �

2

and �

3

as

follows. Elements in distinct squares are never in the same part of �

i

. All

the elements of C

1

are in parts of size 1 with respect to �

1

; the square C

2

is

partitioned into rows and the square C

3

into columns. The partitions �

2

and

�

3

are similar, except the role of the squares changes cyclically. So �

2

divides

C

2

into its individual elements, C

3

into rows and C

1

into columns. Similarly,

�

3

divides C

3

into its individual elements, C

1

into rows and C

2

into columns.

Since each partition �

i

clearly has a

2

+ 2a parts, to show that �

1

; �

2

; �

3

form a (3; 3a

2

; a

2

+ 2a; 4)-perfect hash family it su�ces to show that every

4-subset of V is separated by at least one of the partitions.

Note that every pair of points in distinct squares is separated by every

partition �

i

. Moreover, if x; y 2 C

i

are distinct, then fx; yg is separated

by at least two partitions | the partition �

i

that divides C

i

into individual

elements, and at least one of the two remaining partitions, depending on

whether x and y are in distinct rows of C

i

or distinct columns of C

i

.

Let X be a 4-subset of V . The intersection of X with C

1

; C

2

and C

3

partitions X into 3 parts. The possibilities for the orders of these parts

are 4; 0; 0; 3; 1; 0; 2; 1; 1 and 2; 2; 0. If one of the �rst three possibilities

occurs, then X is separated by �

i

, where C

i

is the square containing the

most elements of X. Suppose the last case occurs, and let C

i

and C

j

have

non-trivial intersection with X. Now, C

i

\X is separated by at least two of

5



�

3

�

1

C

1

C

2

C

3

�

2

Figure 1: A (3; 3a

2

; a

2

+ 2a; 4)-perfect hash family
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the three partitions, as is C

j

\X. So there is a partition �

k

that separates

C

i

\ X and C

j

\ X. But this partition separates X, since no element of

C

i

\X can be in the same part of �

k

as an element of C

j

\X. Thus every

4-subset is separated, and we have a perfect hash family as required.

All the constructions of this section share many features with the con-

struction of Figure 1. We will partition V into parts C

i

and each of our

partitions �

j

will be a re�nement of this partition. Moreover, restricting our

partitions to C

i

we �nd that a partition either has all parts of cardinality 1

or may be regarded as one of the partitions in the perfect hash family con-

structed in Section 2. A more complicated example is shown in Figure 2. In

this example, we divide V into 7 parts. If the number of elements in C

1

, C

2

,

C

3

, C

4

and C

5

is chosen to be approximately

1

5

q,

1

5

q,

2

5

q,

2

5

q and

3

5

q respec-

tively, then it is possible to check that the partitions form a (5;n; q; 7)-perfect

hash family where n is approximately

9

5

q.

We will now de�ne a class of linear programming problems, and we will go

on to show the relationship between perfect hash families and these problems.

Let � � P(s) be a collection of subsets of f1; 2; : : : ; sg. We de�ne the

constant c

�

to be the maximum value of

P

S2�

z

S

where the variables z

S

are

real variables subject to the conditions that

z

S

� 0 (1)

for all S 2 � and

X

j 62S2�

z

S

� 1 (2)

for all j 2 f1; 2; : : : ; sg.

We say that f1; 2; : : : ; sg has a d set �-covering if there exist subsets

S

1

; S

2

; : : : ; S

d

2 � (not necessarily distinct) such that [

d

i=1

S

i

= f1; 2; : : : ; sg.

De�ne C

d

(s) to be the set of all � � P(s) such that f1; 2; : : : ; sg has no d set

�-covering, and de�ne

c

s;d

= max

�2C

d

(s)

c

�

:

We claim that for all positive integers s and d, lim

q!1

(n

s;s+d

(q))=q = c

s;d

.

Once we have proved this claim, we will have reduced the determination

of the coe�cient in the leading term of n

s;s+d

(q) to a collection of linear

programming problems.
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5

�

�

�

�

C

1

C

2

C

3

C

4

C

5

�

1

�

2

�

3

�

4

Figure 2: A more complicated construction
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Theorem 2 Let �

1

; �

2

: : : ; �

s

be a (s;n; q; s+ d)-perfect hash family, where

n > q and d is positive. Then, de�ning c

s;d

as above, n=q � c

s;d

.

Proof: For all i 2 f1; 2; : : : ; sg, let R

i

� V be the set de�ned (just as in

Section 2) by

R

i

= fx 2 V : the part of �

i

containing x contains at least two elementsg:

As in Section 2, we have that jV nR

i

j � q. De�ne a collection � � P(s) of

subsets of f1; 2; : : : ; sg by

� = fS � f1; 2; : : : ; sg : \

i2S

R

i

6= ;g:

We show that f1; 2; : : : ; sg does not have a d set �-covering. Suppose,

for a contradiction, that subsets S

1

; S

2

; : : : ; S

d

2 � have the property that

[

d

i=1

S

i

= f1; 2; : : : ; sg. For all i 2 f1; 2; : : : ; dg, let x

i

2 V be such that x

i

2

\

j2S

i

R

j

; such an element exists by de�nition of �. For all k 2 f1; 2; : : : ; sg,

there exists i

k

2 f1; 2; : : : ; dg such that k 2 S

i

k

, since S

1

; S

2

; : : : ; S

d

is an

d-covering. Now, x

i

k

2 \

j2S

i

k

R

j

� R

k

and so there exists y

k

2 V n fx

i

k

g

that is in the same part of �

k

as x

i

k

. Let X be a subset of V of cardinality

s + d containing fx

1

; x

2

; : : : ; x

d

; y

1

; y

2

; : : : ; y

s

g. Now, none of the partitions

�

1

; �

2

; : : : ; �

s

separates X, since x

i

k

and y

k

are in the same part of �

k

and are

distinct. This contradicts the perfect hash family property of �

1

; �

2

; : : : ; �

s

.

Hence f1; 2; : : : ; sg does not have a d set �-covering and so � 2 C

d

(s).

For every S 2 �, de�ne the non-negative real number z

S

by

z

S

=

1

q

jfx 2 V : x 2 R

i

if and only if i 2 Sgj :

[In the example of Figure 1 we �nd that d = 1, R

1

= C

2

[C

3

, R

2

= C

1

[C

3

,

R

3

= C

1

[ C

2

. Since R

1

\ R

2

\ R

3

= ; but any R

i

and R

j

intersect non-

trivially, � consists of every proper subset of f1; 2; 3g. Every element of V is

contained in precisely two subsets R

i

, and so z

S

= 0 whenever jSj � 1. When

jSj = 2, it is not di�cult to check that z

s

=

a

2

a

2

+2a

(for example, z

f1;2g

=

jC

3

j

q

)

and so z

S

approaches 1 from below as q !1 whenever jSj = 2.]

Clearly the real numbers z

S

satisfy (1). For any j 2 f1; 2; : : : ; sg,

q � jV nR

j

j

= j [

j 62S2�

fx 2 V : x 2 R

i

if and only if i 2 Sgj

9



=

X

j 62S2�

jfx 2 V : x 2 R

i

if and only if i 2 Sgj

(as the sets in the union are disjoint)

= (

X

j 62S2�

z

S

)q:

Hence (2) holds. This implies that

P

S2�

z

S

� c

�

� c

s;d

.

Now,

n = jV j = j [

S2�

fx 2 V : x 2 R

i

if and only if i 2 Sgj

=

X

S2�

jfx 2 V : x 2 R

i

if and only if i 2 Sgj

(as the sets in the union are disjoint)

= (

X

S2�

z

S

)q

� c

s;d

q:

Hence n=q � c

s;d

as required. 2

Theorem 2 shows that c

s;d

provides an upper bound for lim

q!1

(n

s;s+d

(q))=q.

The next theorem shows that this limit exists and that the bound is tight by

constructing a good class of perfect hash families.

Theorem 3 Let s and d be positive integers. Let � � C

d

(s). Let fz

S

: S 2 �g

be a set of real numbers satisfying (1) and (2). Let m be the largest cardinality

of a set in �, and let c =

P

S2�

z

S

. Then there exists a constant c

0

such that

an (s;n; q; s+ d)-perfect hash family exists with n � cq � c

0

q

(m�1)=m

for all

su�ciently large q.

Proof: Let q be a positive integer. When q is su�ciently large, we construct

an (s;n; q; s+ d)-perfect hash family as follows.

De�ne p = bq � j�jq

(m�1)=m

c. Assume that q is large enough so that p is

positive.

Let S 2 �. De�ne a

S

=

j

(z

S

p)

1=jSj

k

, and let A

S

be a set of cardinality

a

S

. De�ne C

S

= (A

S

)

jSj

. Note that z

S

p � jC

S

j � z

S

p � f , where f =

O(p

(jSj�1)=jSj

). Hence, since q = p+O(q

(m�1)=m

), we �nd that jC

S

j � z

S

q�f

0

,

where f

0

= O(q

(m�1)=m

).

We de�ne V to be the disjoint union V = [

S2�

C

S

and de�ne n = jV j.

By our lower bound on jC

S

j, there exists a constant c

0

such that n � cq �

c

0

q

(m�1)=m

for all su�ciently large q.
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We de�ne partitions �

1

; �

2

; : : : �

s

as follows. We de�ne each partition so

that x 2 C

S

and y 2 C

S

0

lie in distinct parts of �

i

whenever S 6= S

0

. If i 62 S,

we let �

i

restrict to equality on C

S

. If i 2 S we de�ne �

i

restricted to C

S

by the rule that x; y 2 C

S

lie in the same part of �

i

if they only disagree in

their jth components, where jf1; 2; : : : ; ig\ Sj = j. Now, �

i

has at most z

S

p

parts on C

S

when i 62 S and has at most p

(jSj�1)=jSj

parts on C

S

when i 2 S.

Hence, since (2) is satis�ed, the number of parts of �

i

is at most

X

i2S2�

p

(jSj�1)=jSj

+

X

i 62S2�

z

S

p � j�jp

(m�1)=m

+ p

� j�jq

(m�1)=m

+ p

= q:

The theorem will follow if we show that this set of partitions form a

(s;n; q; s+d)-perfect hash family. We must show that every set X contained

in V such that jXj = s + d is separated by at least one of the partitions

�

1

; �

2

; : : : ; �

s

.

Suppose that X is a subset of V such that jXj = s + d. De�ne, for all

S 2 �, the set X

S

by X

S

= X \ C

S

. Note that a partition �

i

separates X

if and only if it separates X

S

for all S 2 � such that X

S

6= ;. Suppose that

at most d of the sets X

S

are non-empty. So there exist S

1

; S

2

; : : : S

d

2 �

such that X

S

6= ; implies that S 2 fS

1

; S

2

; : : : S

d

g. Since � 2 C

d

(s), we

have that f1; 2; : : : ; sg does not have a d set �-covering, and so there exists

k 2 f1; 2; : : : ; sg such that k 62 S

1

[S

2

[� � �[S

d

. But then �

k

acts as equality

when restricted to any of C

S

1

; C

S

2

; : : : ; C

S

d

, and so �

k

separates all of the sets

X

S

. Hence we may assume that X

S

is non-empty for more than d choices of

S.

For S 2 �, de�ne t

S

= jX

S

j, so

P

S2�

t

S

= s + d and at least d + 1 of

the integers t

S

are non-zero. For any S 2 � the set X

S

is separated by all

partitions �

i

where i 62 S. Moreover, when t

S

> 0, Proposition 1 shows that

at most t

S

� 1 of the remaining partitions fail to separate X

S

. Hence the

number of partitions that fail to separate X is at most

X

fS2�:t

S

>0g

(t

S

� 1) �

0

@

X

fS2�:t

S

>0g

t

S

1

A

� (d+ 1)

� (

X

S2�

t

S

)� (d+ 1)

= s+ d� (d + 1) = s� 1 < s:

11



So there is at least one partition that separates X in this case, and so the

theorem is proved.2

Theorem 4 Let s and d be �xed positive integers, and de�ne c

s;d

as above.

Then lim

q!1

n

s;s+d

=q exists and

lim

q!1

n

s;s+d

=q = c

s;d

:

Moreover, c

s;d

is a rational number.

Proof: The upper bound is provided by Theorem 2. To establish the lower

bound, let � � C

d

(s) be such that c

�

= c

s;d

, and let fz

S

: S 2 �g satisfy (1)

and (2) and have the property that

P

S2�

z

s

= c

s;d

. Theorem 3 now implies

that there exists a collection of (s;n(q); q; s+ d)-perfect hash families for all

su�ciently large q such that n(q)=q ! c

s;d

as q !1.

Finally, c

s;d

is a rational number as it is derived from a �nite collection

of linear programming problems with integer coe�cients. 2

4 Explicit Calculation of the Leading Term

In this section, we compute the constants c

s;d

de�ned at the end of the

previous section in several cases. In particular, we derive the values of c

s;d

given in Table 1. We �nish the section with some brief remarks on the

asymptotic properties of the constants c

s;d

.

Lemma 1 Let � � P(s) have the property that [

S2�

S is strictly contained

in f1; 2; : : : ; sg. Then c

�

� 1.

Proof: Let i 2 f1; 2; : : : ; sg be such that i 62 [

S2�

S. Then since i 62 S for all

S 2 �, the corresponding inequality (2) becomes

P

S2�

z

S

� 1.2

Proposition 2 For all positive integers s, we have c

s;1

= s. When s and d

are positive integers such that d � s, we have c

s;d

= 1.

Proof: The proof of Theorem 1 shows that an (s;n; q; s + 1)-perfect hash

family cannot have n > sq. Hence c

s;1

� s. To show that c

s;1

� s, consider

the set � consisting of the subsets of f1; 2; : : : ; sg of cardinality s� 1. Since

12



d

1 2 3 4 5 6

1 1 1 1 1 1 1

2 2 1 1 1 1 1

s 3 3 3=2 1 1 1 1

4 4 5=3 4=3 1 1 1

5 5 9=5 7=5 5=4 1 1

6 6 2 3=2 9=7 6=5 1

Table 1: c

s;d

for 1 � s; d � 6

all these sets are proper, � 2 C

1

(s). For any i 2 f1; 2; : : : ; sg there is a unique

set f1; 2; : : : ; sg n fig 2 � that does not contain i, and so the inequalities (2)

become z

S

� 1 for all S 2 �. Thus setting z

S

= 1 for all S 2 � we �nd that

the inequalities (1) and (2) are satis�ed and

P

S2�

z

S

= s. This shows that

c

s;1

= s, as required. The construction corresponding to � in the case s = 3

is shown in Figure 1.

Clearly, c

s;d

� 1 for any positive integers s and d (as any set of partitions

that includes equality is an (s; q; q; s+ d)-perfect hash family). Suppose that

d � s. Let � 2 C

d

(s). If [

S2�

S = f1; 2; : : : ; sg, then f1; 2; : : : ; sg has an s

set �-covering (for each i 2 f1; 2; : : : ; sg choose a set S

i

containing i; then

S

1

; S

2

; : : : ; S

s

is a �-covering). Hence, since d � s, any � 2 C

d

(s) must have

the property that [

S2�

S 6= f1; 2; : : : ; sg. But in this case, Lemma 1 implies

that c

�

� 1, and so the lemma is proved. Here is another way of seeing this

last result: If we have an (s;n; q; s+d)-perfect hash family �

1

; �

2

; : : : ; �

s

with

n > q then for all i 2 f1; 2; : : : ; sg there exist distinct elements x

i

; y

i

2 V

contained in the same part of �

i

. But then fx

i

; y

i

: 1 � i � sg is a set of

cardinality at most 2s that is not separated by any partition in the perfect

hash family. Since 2s � s + d, this is a contradiction and so n � q. Thus

c

s;d

= 1. 2

Let � � C

d

(s), and suppose that there exist S

1

; S

2

2 � such that S

1

� S

2

.

De�ne �

0

= � n fS

1

g. Since f1; 2; : : : ; sg has a d set �-covering if and only if

f1; 2; : : : ; sg has a d set �

0

-covering, we �nd that �

0

2 C

d

(s). The maximum

value c

�

of

P

S2�

z

S

may be obtained in the subregion produced by imposing

the extra condition that z

S

1

= 0 | for we may increment z

S

2

by the value of

13



z

S

1

and then set z

S

1

= 0 without changing the sum we are trying to maximise

or violating the conditions (1) and (2). This implies that c

�

0

� c

�

. (It is not

di�cult to see that in fact c

�

0

= c

�

.) We may repeat this process, removing

any subset that is contained in another, until we obtain �

00

2 C

d

(s) such that

c

�

00

� c

�

and that consists of incomparable sets (so S

1

; S

2

2 �

00

with S

1

� S

2

implies that S

1

= S

2

).

Hence we may restrict ourselves to the case when � consists of incompa-

rable subsets.

Lemma 2 Let d and s be integers such that d; s � 2. Then

c

s;d

� maxfc

s;d+1

; c

s�1;d

; 2� (1=c

s�1;d�1

)g:

Because of this lemma, we say that a set � 2 C

d

(s) is (s; d)-interesting if �

consists of incomparable subsets and

c

�

> maxfc

s;d+1

; c

s�1;d

; 2� (1=c

s�1;d�1

)g:

Since the values of s and d are always clear by context, we omit them and

merely refer to a collection of subsets as being interesting.

Proof: Since every (s;n; q; s+ d+1)-perfect hash family is an (s;n; q; s+ d)-

perfect hash family, it is clear that c

s;d

� c

s;d+1

. (Another way of seeing this

is to observe that if f1; 2; : : : ; sg has no d+1 set �-covering then it has no d

set �-covering.)

Since an (s � 1;n; q; s + d)-perfect hash family may be extended to a

(s;n; q; s + d)-perfect hash family by adding any partition, it is clear that

c

s;d

� c

s�1;d

. (Another way of seeing this is to observe that any incomparable

� 2 C

d

(s � 1) gives rise to an incomparable � 2 C

d

(s) by adding s to each

set S 2 �. Moreover, the inequalities (1) and (2) associated with � are the

same as those corresponding to �, with the addition of the trivial inequality

0 � 1.)

Let � 2 C

d�1

(s � 1) consist of incomparable subsets, and suppose that

c

�

= c

s�1;d�1

. Let fa

S

2 R : S 2 �g have the property that when z

S

= a

S

for all S 2 �, we have

P

S2�

z

S

= c

s�1;d�1

and (1) and (2) are satis�ed. Let

� = � [ fsg. Then � is a set of incomparable subsets of f1; 2; : : : ; sg. Any d

set �-covering of f1; 2; : : : ; sg must consist of fsg and a d� 1 set �-covering

of f1; 2; : : : ; s � 1g, and so f1; 2; : : : ; sg does not have a d set �-covering.

14



Moreover, the inequalities (2) may be written

0

@

X

i 62S2�

z

S

1

A

+ z

fsg

� 1 for i 2 f1; 2; : : : ; s� 1g and

X

S2�

z

S

� 1:

Setting z

S

= a

S

=c

s�1;d�1

for all S 2 � and setting z

fsg

= 1 � 1=c

s�1;d�1

we

�nd that the above inequalities are satis�ed and

P

S2�

z

S

= 2 � 1=c

s�1;d�1

.

So c

s;d

� 2 � 1=c

s�1;d�1

as required.2

Lemma 3 Let s and d be such that s; d � 2. Let � 2 C

d

(s) be interesting.

(i) We have \

S2�

S = ;.

(ii) For all i 2 f1; 2; : : : ; sg, there are at least two sets S 2 � such

that i 2 S. In particular, jSj � 2 for all S 2 �.

(iii) There is a subset �

0

� � such that c

�

0

= c

�

, �

0

2 C

d

(s),

j�

0

j � s and �

0

is interesting.

(iv) For any integer k such that 1 � k � d, the union of any k

subsets in � has cardinality at most s� d+ k � 1. In particular,

jSj � s� d for all S 2 �.

Proof: Suppose that \

S2�

S 6= ;. Without loss of generality, assume that

s 2 \

S2�

S. De�ne the set �

0

of subsets of f1; 2; : : : ; s � 1g by �

0

= fS n

fsg : S 2 �g. The fact that f1; 2; : : : ; sg has no d set �-cover implies that

f1; 2; : : : ; s � 1g has no d set �

0

-cover and so �

0

2 C

d

(s � 1). There is a

one-to-one correspondence between the members of � and the members of �

0

.

Moreover, the inequalities (1) and (2) also correspond in a one-to-one manner,

except � has the additional trivial relation 0 � 1 arising from considering

the point s. Hence c

�

= c

�

0

� c

s�1;d

and so � is not interesting. This proves

part (i).

Every i 2 f1; 2; : : : ; sg is contained in at least one member of � by

Lemma 1 and the fact that � is interesting. Suppose that there exists

i 2 f1; 2; : : : ; sg that is contained in precisely one member of �. Without

loss of generality, we may assume that i = s. De�ne � = fS [ fsg : S 2 �g.
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A (d � 1) set �-covering of f1; 2; : : : ; sg gives rise to a d set �-covering of

f1; 2; : : : ; sg by adding the element of � containing s to the covering. Hence

� 2 C

d�1

(s). Since the sets in � are incomparable, there is a one-to-one

correspondence between the sets in � and the sets in �. Since every mem-

ber of � corresponds to a member of � that contains it, the inequalities (2)

are no stronger for � and so c

�

� c

�

. But Part (i) shows that � is not

interesting, and so � is not interesting. This contradiction shows that every

i 2 f1; 2; : : : ; sg is contained in at least two members of �. Since � consists

of incomparable sets, ; 62 � (for otherwise � would contain no other sets,

and so every i 2 f1; 2; : : : ; sg would not be contained in any set S 2 �).

Moreover, if fig 2 � for some i 2 f1; 2; : : : ; sg then i is contained in no other

set S 2 � (for then fig; S 2 � would be comparable). Hence jSj � 2 for all

S 2 �.

We claim that whenever j�j > s, there exists �

0

2 C

d

(s) such that �

0

� �,

j�

0

j = j�j � 1 and c

�

0

= c

�

; this will establish Part (iii) of the lemma.

The maximum value of

P

S2�

z

S

subject to (1) and (2) must occur at a basic

feasible solution, i.e. at a vertex of the convex polytope obtained by imposing

j�j of the conditions (1) and (2) as equalities. At most s of these equalities

can correspond to the inequalities (2), and so when j�j > s we impose at

least one condition of the form z

S

= 0 (corresponding to an inequality of the

form (1)) and still achieve the maximum value c

s;t

. But in this case, de�ning

�

0

2 C

d

(s) by �

0

= � n fSg we have that c

�

0

= c

�

. This establishes our claim.

Finally, we prove Part (iv) of the lemma. By Lemma 1, [

S2�

S =

f1; 2; : : : ; sg. Suppose for a contradiction that � contains subsets S

1

; S

2

; : : : S

k

such that [

k

i=1

S

i

has cardinality s � d + k or more. There are at most

d � k elements of f1; 2; : : : ; sg that are not in [

k

i=1

S

i

. Since every ele-

ment of f1; 2; : : : ; sg is contained in at least one member of �, there exist

S

k+1

; S

k+2

; : : : ; S

d

2 � such that [

d

i=k+1

S

i

contains every element not in

[

k

i=1

S

i

. But now S

1

; S

2

; : : : ; S

d

is a d set �-covering of f1; 2; : : : ; sg. This

contradiction establishes Part (iv) of the lemma. 2

Proposition 3 Let s be an integer such that s � 2. Then c

s;s�1

= s=(s� 1)

Proof: Let � 2 C

s�1

(s). Suppose that � is interesting. Then Lemma 3 (iv)

implies that jSj � 1 for all S 2 � and Lemma 3 (ii) implies that jSj � 2 for

all S 2 �. Since � is non-empty, this is a contradiction. So no member of

C

s�1

(s) is interesting.
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When s = 2, we have already established that s

2;1

= 2. When s > 2 and

the proposition holds for all smaller values of s,

c

s;s�1

= maxf1; 1; 2 � (s� 2)=(s � 1)g = s=(s � 1);

since no � is interesting. The proposition now follows by induction on s. 2

We remark that the collection of perfect hash families implicit in this

proposition is exactly the collection constructed by Martirosyan and Mar-

tirosyan [12].

Proposition 4 Let s be an integer such that s � 3. Then c

s;s�2

= (2s �

3)=(2s � 5).

Proof: Proposition 2 establishes the result when s = 3. By Lemma 2, c

s;s�2

�

2�1=c

s�1;s�3

. Using this inequality in an inductive argument on s establishes

that c

s;s�2

� (2s� 3)=(2s � 5).

Suppose, for a contradiction, that � 2 C

s�2

(s) consists of incompara-

ble sets and has the property that c

�

> (2s � 3)=(2s � 5). Lemma 2 and

Proposition 3 combine to show that � must be interesting.

By Lemma 3 (ii) and (iv), jSj = 2 for all S 2 �. So we may identify �

with a graph G on s vertices.

Now, G has no vertex of degree 0 or 1, as this would contradict the fact

that � is interesting by Lemma 1 and Lemma 3 (ii) respectively. Lemma 3 (iv)

implies that no two subsets of cardinality 2 in � are disjoint, and soG contains

no pair of disjoint edges. The only graph satisfying all these properties is a

triangle on 3 vertices. But we are assuming that s > 3, and so we have our

required contradiction.2

Proposition 5 Let s be an integer such that s � 4. Then

c

s;s�3

=

8

>

<

>

:

4 if s = 4;

9=5 if s = 5 and

(s� 3)=(s � 4) if s � 6:

Proof: Proposition 2 proves the proposition when s = 4. We now consider

the case when s = 5. Let � 2 C

2

(5) be such that c

�

= c

5;2

. Suppose that �

is interesting. By Lemma 3 (iii), we may assume that � consists of at most

5 subsets. Lemma 3 (ii) and (iv) imply that jSj 2 f2; 3g for all S 2 � and

any two 3-subsets in � must intersect in 2 points.
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Suppose � contains no 3-subsets. As in the previous proposition, the

graph G associated with � has 5 vertices, at most 5 edges and contains no

vertices of degree 0 or 1. Hence G must be a 5-cycle. It is easy to check that

c

�

= 5=3 in this case.

Suppose � contains a 3-set; without loss of generality, we may assume

that f1; 2; 3g 2 �. No set S 2 � contains f4; 5g, as then S; f1; 2; 3g would

cover f1; 2; 3; 4; 5g. Every point is contained in at least 2 members of �, by

Lemma 3 (ii). Hence there must be four more sets in �; precisely two sets

contain 4 and precisely two sets contain 5.

Suppose � contains no other 3-sets. Without loss of generality, we may

assume that the two members of � containing 4 are f1; 4g and f2; 4g. The

remaining two members of � contain 5, and since 3 must be contained in at

least two members of �, we must have f3; 5g 2 �. Without loss of generality,

we may assume the �nal member to be f2; 5g. In summary, if � is interesting

and contains only one 3-subset, we may assume that

� = ff1; 2; 3g; f1; 4g; f2; 4g; f2; 5g; f3; 5gg:

It is not di�cult to calculate that c

�

= 7=4 < 9=5 in this case, the maximum

of the associated linear programming problem being achieved when

z

f1;2;3g

= 1=4;

z

f1;4g

= z

f3;5g

= 1=2;

z

f2;4g

= z

f2;5g

= 1=4:

Suppose � contains a second 3-set; so without loss of generality f1; 2; 4g 2

�. In this case, neither of the two members S

1

; S

2

2 � containing 5 can

contain 3 (as otherwise we would have a covering f1; 2; 4g; S

i

of f1; 2; 3; 4; 5g

for some i). Hence S

1

; S

2

� f1; 2; 5g. These sets are incomparable and both

contain 5, so they must be f1; 5g and f2; 5g. The remaining subset S 2 �

contains f3; 4g, as 3 and 4 must each be contained in at least two members of

�; moreover 5 62 S. But f1; 3; 4g; f2; 3; 4g 62 � as otherwise we would have a

2 set �-covering of f1; 2; 3; 4; 5g. So S = f3; 4g. To summarise, if � contains

two 3-sets, we may assume without loss of generality that

� = ff1; 2; 3g; f1; 2; 4g; f3; 4g; f1; 5g; f2; 5gg:
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It is not di�cult to show that c

�

= 9=5; the maximum of the associated

linear programming problem occurs when:

z

f1;2;3g

= z

f1;2;4g

= 1=5;

z

f3;4g

= 3=5;

z

f1;5g

= z

f2;5g

= 2=5:

This example shows that c

�

� 9=5. Moreover, we have shown that if

� is interesting then c

�

� 9=5. Since the uninteresting case has c

�

�

maxf5=3; 7=5; 2 � 1=4g < 9=5, we have shown that c

5;2

= 9=5. (The per-

fect hash family in Figure 2 is a realisation of this case.)

Now suppose that s � 6 and � is interesting. As before, � consists of

incomparable 2-sets and 3-sets. Suppose � contains a 3-set S. Since the

union of any two member of � has cardinality at most 4, no member of �

contains two points not in S. Now, there are at most s�1 subsets in �nfSg,

and so a point outside S is contained in at most (s� 1)=(s� 3) members of

� on average. Since s � 6, this average is less than 2, and so there exists a

point contained in at most one member of �, contradicting the fact that � is

interesting. So � contains only 2-sets.

The graph G associated with � has s vertices, at most s edges and no

vertices of degree 0 or 1. So G is a union of disjoint cycles. Moreover,

Lemma 3 (iv) implies that there cannot be three disjoint edges in G. This

implies that s = 6 and G consists of two disjoint triangles. In this case, we

may assume without loss of generality that

� = ff1; 2g; f2; 3g; f1; 3g; f4; 5g; f4; 6g; f5; 6gg:

Then c

�

= 3=2, which is achieved by setting z

S

= 1=4 for all S 2 �.

When s = 6, an uninteresting collection of subsets � has

c

�

� maxf7=5; 9=7; 2 � 5=9g < 3=2;

and so c

6;3

= 3=2. When s > 6, there are no interesting choices for � and so

we may prove by induction on s that

c

s;s�3

= maxf(2s � 3)=(2s � 5); (2s � 5)=(2s � 7); 2� (s� 5)=(s � 4)g

= (s� 3)=(s � 4):

This establishes the proposition. 2
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Proposition 6 We have c

6;2

= 2.

Proof: Let � be the subset of (Z=3Z)� (Z=2Z) given by

� = ff(x; y); (x+ 1; y); (x; y + 1)g : x 2Z=3Z; y 2Z=2Zg

It is easy to check that � 2 C

2

(6) (since every pair of subsets in � intersects

non-trivially), and that every element of (Z=3Z) � (Z=2Z) is contained in

exactly 3 members of � (since the group (Z=3Z)� (Z=2Z) acts regularly on

the subsets in �). Setting z

S

= 1=3 for all S 2 �, we �nd that (1) and (2)

are satis�ed and

P

S2�

z

S

= 2.

Let � 2 C

2

(6) be such that c

�

> 2 and consists of incomparable subsets;

in particular, � is interesting. We may assume that there are at most 6

subsets in �. By Lemma 3 (ii) and (iv), � consists of 2-sets, 3-sets and 4-

sets. Suppose there exist x; y 2 f1; 2; 3; 4; 5; 6g such that x 6= y and such

that fx; yg is not contained in any member of �. Then

X

S2�

z

S

�

X

x62S2�

z

S

+

X

y 62S2�

z

S

� 1 + 1 � 2;

by (2). Hence c

�

� 2, which is a contradiction. Hence every pair of elements

from f1; 2; 3; 4; 5; 6g is contained in some member of �. In particular, � does

not contain a 4-set, as this set together with a subset in � containing its

complement would produce a 2 set �-covering.

Let S 2 �. Then z

S

occurs three times in the inequalities (2) if jSj = 3

and four times if jSj = 2. If we sum all the inequalities (2), we �nd that

4(

X

S2�;jSj=2

z

S

) + 3(

X

S2�;jSj=3

z

S

) � 6:

Hence 3(

P

S2�

z

S

) � 6 and so c

�

� 2. This contradiction shows that c

6;2

= 2,

as required. 2

Finally, we make some remarks on the asymptotics of the table entries.

Firstly, it is possible to show that c

s;s�k

! 1 as s ! 1 with k �xed. This

can be shown by proving that there exist no interesting sets � when s is

su�ciently large. Secondly, c

s;d

! 1 as s ! 1 with d �xed. Indeed,

suppose s = k

d

for some integer k and identify f1; 2; : : : ; sg with (Z=kZ)

d

in some way. Take � to consist of all images under the natural action of

(Z=kZ)

d

of the subset (f0; 1; 2 : : : ; k � 2g)

d

. Setting z

S

= 1=(k

d

� (k � 1)

d

)

for all S 2 � we �nd that c

�

� k

d

=(k

d

� (k � 1)

d

). Hence c

s;d

grows at least

as fast as s

1=d

.
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