
A Polynomial Time Algorithm for the Braid

DiÆe-Hellman Conjugay Problem

Jung Hee Cheon

1

and Byungheup Jun

2

1

Information and Communiations University (ICU), Taejon, Republi of Korea

jhheon�iu.a.kr, http://vega.iu.a.kr/�jhheon,

2

Korea Institute for Advaned Study

bhjun�kias.re.kr

Abstrat. We propose the �rst polynomial time algorithm for the braid DiÆe-

Hellman onjugay problem (DHCP) on whih the braid key exhange sheme and

the braid enryption sheme are based [10℄. We show the proposed method solves the

DHCP for the image of braids under the Lawrene-Krammer representation and the

solutions play the equivalent role of the original key for the DHCP of braids. Given a

braid index n and a anonial length `, the omplexity is about 2

�2

`

3

n

4�+2

log n bit

operations, where � = log

2

7 � 2:8 (Theoretially, it an be redued to O(`

3

n

8:3

log n)

using � = 2:376). Further, we show that the generalization into the deomposition

problem auses only 8 times of the omplexity.

Keywords: Braid group, Non-abelian group, Conjugay Problem

1 Introdution

In 2000, a key agreement and an enryption sheme based on braid groups were

proposed by Ko et. al [10℄. The shemes are analogous to the DiÆe-Hellman key

agreement sheme and the ElGamal enryption sheme on abelian groups. Their

basi mathematial problem is the Conjugay Problem (CP) on braids: For a braid

group B

n

, we are asked to �nd a braid a from u; b 2 B

n

satisfying b = aua

�1

2 B

n

.

The seurity is based on the DiÆe-Hellman Conjugay Problem (DHCP) to �nd

baua

�1

b

�1

2 B

n

for given u; aua

�1

; bub

�1

2 B

n

for a and b in two ommuting

subgroups of B

n

respetively. There are only brute-fore attak and super-submit

set attak as the analysis. Both yields a omplexity of exponential time [10, 5℄.

Reently, several heuristi algorithms were proposed using Burau representation.

Though they may be implemented in quite eÆient way, they do not solve the

whole problem (their methods do not work for some parameters), so no theoretial

bounds have been written yet [7, 15℄.

One may approah the CP using a representation in another group whose stru-

ture we know better. As mathematiians have developed linear algebra for more

than hundred years, linear algebrai groups are possible andidates. There are two

andidates as linear representations of braid groups: Burau and Lawrene-Krammer

representations. Burau representation was used in lo. it. to make a quite reason-

able reords. Unfortunately, it is known to be unfaithful, they annot bound the

omplexity of the sheme as we expeted.

Lawrene-Krammer representation is now hosen to analyze the PKC. It has

been proved faithful for arbitrary index of Braids, several times in independent

ways by several authors. In general it inreases the rank of the representations, so

it is ompliated to desribe. Nevertheless, it is known, but not written learly, one
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an easily reover the original braid from its matrix of the representation [14℄. Under

this assumption, we desribe an algorithm to solve the CP.

1. Find the images of u and v = aua

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄) via the Lawrene-

Krammer representation K : B

n

! GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

2. Solve the CP for K(u) and K(v) = K(a)K(u)K(a)

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

3. Reover the braid a in B

n

from the matrix obtained above.

The above algorithm ontains a ouple of diÆulties. Firstly, diret appliations

of Gaussian elimination should deal with oeÆients as large as 2

2

n

. Seondly, a

solution of the CP in the matrix group might not be in the image of the represen-

tation. It is not easy to hoose a matrix in the solution spae whih lies inside the

image of the representation.

To avoid these diÆulties, we take the DHCP into our onsideration, instead of

the CP. The algorithm is modi�ed, roughly as follows:

1. Assume a 2 LB

n

, b 2 RB

n

, and u 2 B

n

where LB

n

and RB

n

are two ommuting

subgroups of B

n

.

2. Find the images of u, v = aua

�1

, and w = bub

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄) via

the Lawrene-Krammer representation K : B

n

! GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

3. By estimating the entries of K(awa

�1

), take a prime p and irreduible polyno-

mials f(t) over Z=p and g(q) over Z[t℄=(p; f(t)) satisfying

K(awa

�1

) = t

�d

N

�1

ft

d

NK(awa

�1

) mod (p; f(t); g(q))g

for some positive integer d and N .

4. Solve the simultaneous equations K(v)A = AK(u) and K(�

i

)A = AK(�

i

) with

n=2 < i � n over a residue lass �eld k = Z[t; q℄=(p; f(t); g(q)), where �

i

with

n=2 < i � n generates RB

n

.

5. This solution may not be K(a), but it plays an equivalent role of the key for the

DHCP in braid groups. That is, any solution A of the above system of equations

satis�es AK(w)A

�1

= K(b)K(v)K(b)

�1

= K(awa

�1

) sine K(b)A = AK(b) for

b 2 RB

n

. The inverse of A an be omputed in a similar way to the above

method.

6. Reover the braid awa

�1

in B

n

by inverting the representation.

To redue the omplexity of this algorithm, we use 1=2 instead of q (it is also faithful),

redue the bound of Krammer matries, and remove several trivial variables and

equations in the simultaneous equations. When ` is the Charney length of a, b, and

u in B

n

, the omplexity of this algorithm analyzed in this artile reahes about

2

�2

`

3

n

4�+2

log n for � = log

2

7 � 2:8. This is not a feasible omplexity for the

parameters reommended in [10, 5℄. For example, for n = 90 and ` = 12 as in [5℄ it

is about 2

97

bit operations. But even for n = 10

5

and ` = 10

4

, the omplexity is just

2

261

. Hene the braid enryption sheme an not be used in the future in this style.

The generalization into the deomposition problem [5℄ auses only 8 times of

the omplexity. We would suggest that the protool should be revised to use the

full diÆulty of the CP to overome the attak. In the near future, there may be

modi�ations of this kind of attaks, sine the hosen bounds of oeÆients of the

Krammer matries are rather rough whereas an image of an Artin generator is almost
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sparse matrix with small oeÆients. We also remark that the proposed algorithm

does not give an answer to the CP. Thus the CP is still hard and unsolved.

The rest of the paper is omposed as follows: In Setion 2, we briey review braid

groups and braid ryptography. In Setion 3, we introdue the Lawrene-Krammer

representation and develop its properties. Also inverting algorithm is given in more

onrete way with the omplexity. In Setion 4, we introdue an equivalent key

whih plays an equivalent role as the original braid and analyze the ryptosystem

using this. Also the generalization into the deomposition problem will be analyzed.

Setion 5 gives the onlusion of this paper.

2 An Overview of Braid Group Cryptography

2.1 Braid Groups

A braid is obtained by laying down a number of parallel strands and intertwining

them so that they run in the same diretion. The number of strands is alled the

braid index. The set B

n

of isotopy lasses of braids of index n is naturally equipped

with a group struture, alled the n-braid group, where the produt of two braids x

and y is nothing more than laying down the two braids in a row and then mathing

the end of x to the beginning of y.

Any braid an be deomposed as a produt of simple braids. One type of simple

braids is the Artin generator �

i

that have a single rossing between i-th and (i+1)-

th strand. B

n

is presented with the Artin generators �

1

; : : : ; �

n�1

and relations

�

i

�

j

= �

j

�

i

for ji � jj > 1 and �

i

�

j

�

i

= �

j

�

i

�

j

for ji � jj = 1. When a braid a is

expressed as a produt of Artin generators, the minimum number of terms in the

produt is alled the word length of a.

We have still other other presentations. Let S

n

be the symmetri group of an

n-element set I

n

= f1; 2; : : : ; ng. Let Ref be the set of reetions (that interhange

two elements and �x the other elements of I

n

) in S

n

= f(i; j)j1 � i < j � ng and S

the subset f(i; i + 1)j1 � i < ng of Ref. We de�ne `(s) the length of a permutation

s in S

n

as

`(s) := minfkjs = s

1

� � � s

k

for s

i

2 Sg:

B

n

admits another presentation with generators frsjs 2 S

n

g with relations r(st) =

(rs)(rt) if `(st) = `(s) + `(t). In this presentation, the longest permutation w

0

with

w

0

(i) = n + 1 � i yields a braid �, whih is alled the fundamental braid or the

half-twist depending on authors. Let B

+

n

denote the submonoid of B

n

generated by

S

n

. A braid in B

+

n

is said to be positive. A braid x is written uniquely, x = �

k

x

0

where x

0

is in B

+

n

��B

+

n

. This is alled the normal form of x.

There is a partial order on B

+

n

: x � y , y 2 xB

+

n

. The ordering is inherited to S

n

(We identify a permutation � with the orresponding braid r� in B

+

n

.). We denote

rS

n

by 
 for simpliity reason. For a braid x 2 B

+

n

, the greatest element of the set

fy 2 
jy � xg is alled the left most fator of x and denoted by LF(x). A sequene

of braids (x

1

; : : : ; x

k

) in 
 � f1g is alled the greedy form of x if x

1

� � � x

k

= x,

LF(x

i

x

i+1

) = x

i

for all i. The above k in the greedy form is alled the Charney

length of x. This length funtion is easily extended to general braids using Thurston

normal form, but we don't need it so general for our purpose and we will omit the

general de�nition.
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2.2 Braid Cryptography

Let G be a non-abelian group and u; a; b;  2 G. In order to perform the DiÆe-

Hellman key agreement on G we need to hoose a; b in G satisfying ab = ba in the

DHCP. Hene we introdue two ommuting subgroupsG

1

; G

2

� G satisfying ab = ba

for any a 2 G

1

and b 2 G

2

. More preisely, the problems the braid ryptography

are based on are as follows:

{ Input: A non-abelian group G, two ommuting subgroups G

1

; G

2

� G

{ Conjugay Problem (CP): Given (u; aua

�1

) with u; a 2 G, ompute a. (Note

that if we denote aua

�1

by u

a

, it looks like the DLP.)

{ DiÆe-Hellman Conjugay Problem (DHCP): Given (u; aua

�1

; bub

�1

) with u 2

G, a 2 G

1

and b 2 G

2

, ompute baua

�1

b

�1

.

{ Deisional DiÆe-Hellman Conjugay Problem (DDHCP): Given (u; aua

�1

; bub

�1

;

u

�1

) with u;  2 G, a 2 G

1

and b 2 G

2

, deide whether  = ba.

In braids, we an easily take two ommuting subgroups G

1

and G

2

of B

n

(For

simpliity, we only onsider a braid group with an even braid index. But it is easy

to extend this to an odd braid index.). For example, G

1

= LB

n

(resp. G

2

= RB

n

)

is the subgroup of B

n

onsisting of braids made by braiding left n=2 strands(resp.

right n=2 strands) among n strands. Thus LB

n

is generated by �

1

; : : : ; �

n=2�1

and

RB

n

is generated by �

n=2+1

; : : : ; �

n�1

. Then we have the ommutative property that

for any a 2 G

1

and b 2 G

2

, ab = ba.

[Key agreement℄ This is the braid group version of the DiÆe-Hellman key agree-

ment.

1. Initial setup: (a) Choose system parameters n and ` from positive integers.

(b) Selet a suÆiently ompliated positive braid u 2 B

n

with ` anonial

fators.

2. Key agreement: Perform the following steps eah time a shared key is required.

(a) A hooses a random seret positive braid a 2 LB

n

with ` anonial fators

and sends v

1

= aua

�1

to B.

(b) B hooses a random seret braid b 2 RB

n

with ` anonial fators and sends

v

2

= bub

�1

to A.

() A reeives v

2

and omputes the shared key K = av

2

a

�1

.

(d) B reeives v

1

and omputes the shared key K = bv

1

b

�1

.

Sine a 2 LB

n

and b 2 RB

n

, ab = ba. It follows

av

2

a

�1

= a(bub

�1

)a

�1

= b(aua

�1

)b

�1

= bv

1

b

�1

:

Thus Alie and Bob obtain the same braid.

[Publi-key ryptosystem℄ Let H : B

n

! f0; 1g

k

be a ryptographially seure

hash funtion from the braid group to the message spae.
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1. Initial setup: (a) Choose system parameters n and ` from positive integers.

(b) Selet a suÆiently ompliated positive braid u 2 B

n

with ` anonial

fators.

2. Key generation:

(a) Choose a suÆiently ompliated positive braid u 2 B

n

with ` anonial

fators.

(b) Choose a positive braid a 2 LB

n

with ` anonial fators.

() Publi key is (u; v), where v = aua

�1

; Private key is a.

3. Enryption: Given a message m 2 f0; 1g

k

and the publi key (u; v),

(a) Choose a positive braid b 2 RB

n

with ` anonial fators.

(b) Ciphertext is (; d), where  = bub

�1

and d = H(bvb

�1

)�m.

4. Deryption:Given a iphertext (; d) and private key a, omputem = H(aa

�1

)�

d.

Sine a and b ommute, aa

�1

= abub

�1

a

�1

= baua

�1

b

�1

= bvb

�1

. So H(aa

�1

)�

d = H(bvb

�1

) �H(bvb

�1

)�m = m and the deryption reovers the original braid

m.

We may take a non-positive braid for a system braid or seret braids. But sine

the problem in that ase is redued to the positive braid ases, positive braids are

enough for the random braids in this ryptosystem.

3 The Lawrene-Krammer Representation

3.1 De�nitions and Properties

Most de�nitions and fats in this setion are taken from two papers [11℄ [12℄ of

Krammer. Let us reall the Lawrene-Krammer representation of braid groups. This

is a representation of B

n

in GL

m

(Z[t

�1

; q

�1

℄) = Aut(V

0

), where m = n(n�1)=2 and

V

0

is the free module of rank m over Z[t

�1

; q

�1

℄. We shall denote the representation

by K. With respet to fx

ij

g

1�i<j�n

the free basis of V

0

the image of eah Artin

generator under K is written as

K(�

k

)(x

ij

) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

tq

2

x

k;k+1

; i = k; j = k + 1;

(1� q)x

i;k

+ qx

i;k+1

; j = k; i < k;

x

ik

+ tq

k�i+1

(q � 1)x

k;k+1

; j = k + 1; i < k;

tq(q � 1)x

k;k+1

+ qx

k+1;j

; i = k; k + 1 < j;

x

kj

+ (1� q)x

k+1;j

; i = k + 1; k + 1 < j;

x

ij

; i < j < k or k + 1 < i < j;

x

ij

+ tq

k�i

(q � 1)

2

x

k;k+1

; i < k < k + 1 < j:

(1)

The matrix K(�

k

) with respet to the basis x

ij

will be alled by the Krammer matrix

of a braid �

k

.

To estimate the omplexity of the algorithm proposed here, we need to estimate

bounds for the entries of a Krammer matrix.

Two useful results in [12℄ follow below:
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Fat 1 [12℄ �x

n+1�j;n+1�i

= tq

i+j�1

x

ij

for 1 � i < j � n.

Fat 2 [12℄ Let x 2 B

n

. Consider the Laurent series of K(x) with respet to t,

K(x) =

`

X

i=k

A

i

(q)t

i

; A

i

2M

m

(Z[q

�1

℄); A

k

6= 0; A

`

6= 0: (2)

Then `




(x) = max(`� k;�k; `).

If we onsider a di�erent generator Q = fs(i; j)j the permutation braid of the

reetion (i; j) 2 S

n

g, we an de�ne another length funtion `

Q

with respet to Q.

This length is the anonial length in the band generator presentation. Remark that

`

Q

(x) is bounded by (n� 1)-times of the anonial length in the Artin presentation,

beause a band generator is written with upto (n� 1) Artin generators.

De�ne the anti-automorphism of B

n

, written x 7! �x, by giving [ij℄ 7! [n +

1 � i; n + 1 � j℄. This preserves B

+

n

as well as the anonial length. Then the dual

representation is de�ned as K

�

: B

n

! GL(V

0

) by K

�

(x) = K(�x)

T

, where T denotes

the transpose. Consider another basis fv

ij

j1 � i < j � ng of V

0

. It is related to

fx

ij

g by

v

ij

= x

ij

+ (1� q)

X

i<k<j

x

kj

; x

ij

= v

ij

+ (q � 1)

X

i<k<j

q

k�1�i

v

kj

: (3)

Fat 3 [11℄ Let x 2 B

n

. Consider the Laurent series of K

�

(x) with respet to q,

K

�

(x) =

`

X

i=k

A

i

(t)q

i

; A

i

2M

m

(Z[t

�1

℄); A

k

6= 0; A

`

6= 0: (4)

Then `

Q

(x) =

1

2

max(`� k;�k; `).

From the above three fats, we get the following theorem.

Theorem 1. Let x be a braid with the anonial form �

k

x

1

x

2

� � � x

`

where x

i

is a

permutation braid whih is not the fundamental braid. Let Æ be the minimal number

of Artin generators in x. Then we have the following bounds for the oeÆients of

K(x):

(a) The degree in t is bounded below by k and above by k + `.

(b) The degree in q is bounded below by 2(n � 1)min(0; k) + (n � 2) and above by

2(n� 1)max(k + `; k) + (n� 2).

() The oeÆients of eah entry inside the Krammer matrix are bounded by 2

Æ

when

we onsider the entries as a polynomial in t, q, and 1� q.

Proof. (a) It is lear from Fat 2.

(b) Sine �x has the same anonial length with x and the band anonial length is

bounded by (n� 1) times the Artin anonial length, the degree in q is bounded

below by 2(n � 1)min(0; k) and above by 2(n � 1)max(k + `; k) in the fv

ij

g

basis. While taking the basis hange from fv

ij

g to fx

ij

g, we have at most (n�2)

inrease in the degree of q. Hene we get (b).
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() If we onsider entries of a Krammer matrix as a polynomial in t, q, and 1 � q,

every entry of any Artin generator is a monomial with oeÆients in f0;�1g.

For any Artin generator �, eah olumn of K(�) has at most two nonzero terms

(See the equation (1)). Hene a multipliation by a Krammer matrix of an Artin

generator results in the inrease of the oeÆients by at most 2 times for eah

entries. Note that it happens when the same monomial ours twie at an entry

in the result matrix. Hene the oeÆients of entries is bounded by 2

Æ

for the

number of Artin generator in x.

For any positive integer n, the Krammer representation is faithful even if q is a

real number with 0 < q < 1 [12℄. Also the inverting algorithm does not hange even

if q is replaed by a real number with 0 < q < 1. From now on, we will onsider

the modi�ed Krammer representation K

0

(x) = K(x)

q=1=2

. In that ase, q is equal to

1� q.

Corollary 1. Let x be a braid with the anonial form �

k

x

1

x

2

� � � x

`

where x

i

is a

permutation braid whih is not the fundamental braid. Let Æ be the number of Artin

generators in x. Then we have the following bounds for K

0

(x):

(a) The degree in t is bounded below by k and above by max(k + `; k).

(b) The oeÆients of eah entry inside K

0

(x) is given by a ratio of two integers.

The absolute values of numerators and denominators are bounded by 2

Æ�2(n�1)k

and 2

2(n�1)max(k+`;k)

, respetively.

3.2 Inverting the Lawrene-Krammer representation

Here we develop a way to reover a braid from its image matrix under the Lawrene-

Krammer representation. As mentioned earlier, the faithfulness of the Lawrene-

Krammer representation of B

n

in a linear group has been proven in several ways

by di�erent authors. Moreover, it has been known to be so easy that it takes a

polynomial time of low degree in braid length and the index but we haven't found

any referene with an expliit omplexitiy available at hand.

The proof of faithfulness was due to Krammer [12℄, whih enables us to onstrut

an algorithmi way to reover the original braid from a matrix of the representation.

From Fat 1 we an easily obtain the matrix of � as tA, for a matrix A whose

entries are from Z[q

�1

℄. Together with Fat 2, it suÆes to reover the original braid

x

0

of the matrix (tA)

�d

0

K(x). Note that x

0

lies in B

+

n

��B

+

n

, whih orresponds to

the nontrivial part in the normal form of x. x

0

has obviously smaller Charney length

than x.

Suppose now x is a positive braid. Let us take fv

ij

g as the basis of V

0

. The

Lawrene-Krammer representation K yields a natural ation of the monoid B

+

n

over

V

0

. Let A be the subset of Ref, f(i; j) 2 Refj(x(1; : : : ; 1))

(i;j);t=0

6= 0g. This A orre-

sponds to a permutation y in S

n

whih orresponds to the braid ry in 
. It makes

the left most fator of x, so one has x = yx

0

. Applying the same steps to K(x

0

) re-

ursively, we obtain the greedy form of x after all, as it dereases the Charney length.

In this way, given K(x) =

P

`

i=d

t

A

i

(q)t

i

, we an reover x 2 B

n

in polynomial

time. We shall desribe the algorithm roughly as follows:
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Algorithm 1 Invert the Lawrene-Krammer representation.

Input: A matrix K(x) 2 GL

m

(t

�1

; q

�1

) where m = n(n� 1)=2

Output: A braid x 2 B

n

.

1. Compute K(x

0

) = K(�)

�d

t

K(x)

2. Perform the basis hange from (v

ij

)

ij

to (x

ij

)

ij

.

3. For k = 1 to ` do

2.1 Take a nonzero element y 2 D

�

and ompute

A = f

ij

jK(x

0

)y has a nonzero oeÆient at the ij oordinateg

(For the de�nition of the set D

�

one an refer to [12℄.)

2.2 Compute the maximal element �

k

2 S

n

suh that L(�

k

) � A as follows.

{ Find the set I � f1; 2; � � � ; n � 1g suh that i 2 I implies L(s

i

) � A for

s

i

= (i; i + 1) with 1 � i < n

{ Write I as a disjoint union of I

j

where I

j

onsists of onseutive integers.

{ Take a half-twist on eah I

j

.

{ Take �

k

to be the produt of all the above half-twists.

{ For i = 1 to n, if L(�

k

s

i

) � A then replae �

k

by �

k

s

i

.

{ Repeat the above proedure until L(�

k

s

i

) 6� A for all i

2.3 Compute the positive braid x

k

orresponding to �

k

{ Let x

k

be an identity.

{ For i = 1 to n, if �

k

(i) > �

k

(i+1) then replae x

k

by �

i

x

k

and �

k

by s

i

�

k

.

{ Repeat the above proedure until x

k

is trivial.

2.4 Replae K(x

0

) by K(x

k

)

�1

K(x

0

)

4. Output x = �

d

t

x

1

x

2

� � � x

k

Note that Step 2.2 has only n

2

steps. Thus the omplexity of this algorithm

is dominated by the d

t

power of an m � m matrix, whih is at most 2m log d

t

multipliations of the m�m matrix. Sine the matrix multipliation takes O(m

2

)

multipliations of entries, we have the followings:

Theorem 2. Given K(x) =

P

`

i=d

t

A

i

(q)t

i

, we an reover x 2 B

n

in O(2m

3

log d

t

)

multipliations of entries.

Note that it works even when a (nonzero) onstant multiple of K

0

(x) is given

sine we only hek whether the oeÆient is zero in eah stage. Hene we may deal

with integer oeÆients instead of rational oeÆients.

4 Cryptanalysis of Braid Cryptosystems

4.1 An equivalent Key

The seurity of the key exhange sheme and the enryption sheme in braids are

based on the DHCP. The DHCP asks to �nd baua

�1

b

�1

from u; v = aua

�1

; w =

bub

�1

given two ommuting subgroups LB

n

and RB

n

of B

n

, a 2 LB

n

, b 2 RB

n

and u 2 B

n

. In this setion, �rstly, we will show that we don't need the original

key a but a \fake" key A to solve the DHCP. The DHCP on a linear group is

equivalent to a system of linear equations, whose solutions roles the fake key. Note
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that it breaks the enryption sheme and key agreement sheme, but does not solve

the original onjugay problem to the bottom. The onjugay problem in a general

non-ommutative group is, nevertheless, still diÆult.

Without solving the problem in B

n

, we try to solve it in GL

m

(Z[t

�1

; q

�1

℄) for

q = 1=2 and m = n(n � 1)=2 via the modi�ed Lawrene-Krammer representation.

Denote by A;B;U; V , andW the image of a; b; u; v, and w under this representation

K

0

, respetively. We will ompute a matrix A from GL

m

(Z[t℄) satisfying the following

equations:

UA = AV (5)

AK

0

(�

i

) = K

0

(�

i

)A; n=2 < i < n: (6)

The solutions in Z[t℄

m

2

make a nontrivial vetor spae N over Z[t℄, sine we

have already a nontrivial solution K(a). As the set of invertible matries in N is

dense under Zariski topology, we an take an invertible matrix over Q(t) from N

with overwhelming probability. Let A

0

be an invertible matrix solution. Using A

0

,

one an ompute K

0

(baua

�1

b

�1

) in the matrix ring as follows:

A

0

WA

0�1

= A

0

BUB

�1

A

0�1

= BA

0

UA

0�1

B

�1

= BV B

�1

= K

0

(baua

�1

b

�1

): (7)

That is, the matrix A

0

plays the same role that the key a does. Thus we all suh

A

0

a pseudo-key.

4.2 A System of Linear Equations

We are able to hange the above into an overdetermined system of linear equations

of A. That is, we obtain the system of equations of the following form:

T

0

N =

2

6

6

6

4

K

L

n=2+1

.

.

.

L

n�1

3

7

7

7

5

X = 0; (8)

where X is the olumn vetor [a

11

; : : : ; a

1m

; a

21

; : : : ; a

2m

; : : : ; a

m1

: : : ; a

mm

℄

t

made

from A = [a

ij

℄ and K;L

i

's are the m

2

�m

2

matrix of the linear relations in Equation

(5) and (6), respetively.

The system has (8) hasm

2

variables and (n=2)m

2

equations. However, by preise

analysis of Krammer matries, we an redue the number of variables and equations

as follows:

Theorem 3. Equation (8) has at most

1

7

n

4

nontrivial variables and

1

8

n

4

nontrivial

equations.

Proof. De�ne V

k

to be a subspae of V

0

generated by fx

ij

j(i; j) =2 I

k

g where I =

f(i; j)j1 � i < j < k or k + 1 < i < j � ng. From Equation (1), we see that the

Krammer matrix K(�

k

) transforms V

k

to itself and ats as the identity on the basis

element x

ij

when (i; j) 2 I

k

. Thus it an be written as

�

M

k

0

0 I

�

by reordering of the

basis, where M

k

is a square matrix of size k(n� k) + n (=

�

n

2

�

�

�

k�1

2

�

�

�

n�k�1

2

�

).
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Sine \

1�k<n=2

I

k

= f(i; j)jn=2 � i < j � ng, a Krammer matrix of any left-braid

a 2 LB

n

an be written as

�

M 0

0 I

�

whereM is a square matrix of size

1

8

(3n

2

�2n�8)

(=

�

n

2

�

�

�

n=2+1

2

�

). Therefore only

1

8

2

(3n

2

� 2n� 8)

2

entries of A in Equation (5) are

unknown.

This property of A redues the number of equation in Equation (5) into

�

n

2

�

2

�

�

n=2

2

�

2

�

15

64

n

4

. Also eah equation in Equation (6) has only k(n� k) +n non-trivial

equations, whose sum for n=2 � k < n is about

1

12

n

3

. Hene the total number of

non-trivial equations are at most

1

8

n

4

.

4.3 Estimate the DiÆe-Hellman key

Theorem 4. Let u 2 B

n

, a 2 LB

n

, and b 2 RB

n

with ` anonial fators. Then

abub

�1

a

�1

an be written as a produt of at most ` number of �

�1

and at most 3`

number of anonial fators. Further eah entry inside K

0

(abub

�1

a

�1

) is a Laurent

polynomial of t

4`

X

d=�`

a

i

b

i

t

d

with ja

i

j � 2

Æ+2n`

and jb

i

j � 2

8n`

;

where Æ is the number of Artin generators in abub

�1

a

�1

bounded by 2`n(n� 1).

Proof. Denote by len(x) the Charney length of x. Observe that len(xy) � len(x) +

len(y) for x; y 2 B

n

and len(ab) � max(len(a); len(b)) for a 2 LB

n

and b 2 RB

n

.

Also the inverse of x for x 2 B

n

with r anonial fators is written as a produt of at

most r number of �

�1

and at most r number of anonial fators. Sine ab onsists

of at most ` anonial fators, we get the �rst assertion. The seond assertion follows

from Theorem 1.

Sine u; v, and �

k

are positive braids, the entries of orresponding Krammer

matries are polynomial with rational oeÆients. By multiplying the appropriate

salars to the both sides of Equations (5) and (6), we an onsider U; V;K

0

(�

i

), and

even A as matries whose entries are polynomials with integer oeÆients.

Let p be a prime with p > 2

Æ+10n`+1

and f(t) an irreduible polynomial of degree

5` over Z=p. Sine eah entry of K(abub

�1

a

�1

) is a polynomial of degree 5` and with

oeÆient < p, we know that

K

0

(baua

�1

b

�1

) = t

�`

2

�8n`

ft

`

2

8n`

K

0

(baua

�1

b

�1

) mod (p; f(t))g (9)

if we take a representative of a residue lass for oeÆients from the interval (�p=2; p=2).

Therefore we are enough to ompute A mod (p; f(t)) in Equation (5) and (6). From

the famous Bertrand's postulate below, it is guaranteed that p < 2

Æ+10n`+2

.

Fat 4 (Bertrand's postulate) [8℄ There exists a prime between n and 2n.



11

4.4 Algorithm and Complexity

The proposed algorithm to solve the braid DiÆe-Hellman problem is desribed

roughly as follows:

Algorithm 2 Find an equivalent key using Gaussian Elimination.

Input: u 2 B

n

, a 2 LB

n

, b 2 RB

n

, m = n(n � 1)=2, a prime p, and an

irreduible polynomial f(t) of the degree d satisfying Equation (9).

Output: K

0

(baua

�1

b

�1

).

1. Compute the images of u and v = aua

�1

in GL

m

(k) via K

0

, where k is the

residue �eld k = Z[t℄=(p; f(t)).

2. Indue a system

1

8

n

4

linear equations in

1

7

n

4

variables from the simultaneous

equations K

0

(v)A = AK

0

(u) and K

0

(�

i

)A = AK

0

(�

i

) for n=2 < i � n over k

3. Apply Gaussian elimination for the system in order to ompute A. We may

multiply an appropriate integer to the both side of eah equation to get integer

oeÆients.

4. If A is nonsingular, ompute A

�1

. Otherwise, go bak to the above step and take

another solution.

5. Compute K

0

(w) for w = bub

�1

and output AK

0

(w)A

�1

= K

0

(baua

�1

b

�1

)

6. Use Algorithm 1 to ompute baua

�1

b

�1

.

To evaluate the omplexity of Gaussian elimination step, we need the following

two fats:

Fat 5 [18, p.15℄ The Gaussian elimination of an m �m matrix takes

1

3

m

�

for

� = log

2

7, whih an be redued to 2:376 theoretially.

We know that a multipliation in a �nite �eld F

p

d

takes d

2

multipliations of

elements in F

p

. When the prime p is small, one multipliation takes O(log

2

p) or

O(log

�

p) using Karatsuba method [17℄. By Shonhage and Strassen method, this

bound an be redued to O(log p log log p log log log p), whih is pratial only when

p is more than several hundred digits. Sine our base �eld is very large, we an take

this bound even pratially.

Fat 6 [4, p.3℄ One multipliation or one inversion in a �nite �eld with ardinality

p

d

takes O(d

2

log p log log p log log log p) bit operations.

Using the above fats, we an estimate the omplexity of our algorithm as follows:

Theorem 5. Assume LB

n

and RB

n

are two ommuting subgroups of the n-braid

group B

n

. Given u 2 B

n

; a

�1

ua; b

�1

ub for a 2 LB

n

and b 2 RB

n

, b

�1

a

�1

uab

an be omputed in about 2

�5

`

2

n

4�

f(Æ) (or 2

�2

`

3

n

4�+2

logn) bit operations where

f(x) = x log x log log x and Æ is the maximum word length of abub

�1

a

�1

bounded by

2`n

2

.

Proof. First, evaluate the omplexity of Step 3. Sine p < 2

Æ+10n`+2

and d < 5`, it

is

1

3

(

1

7

n

4

)

�

d

2

f(log p) � 2

�5

n

4�

`

2

f(Æ + 10n`+ 2) � 2

�4

n

4�

`

2

f(Æ); (10)
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where f(x) = x log x log log x. The inverse of A an be omputed in O(n

3

log

2

(p

d

)).

From Theorem 2, we know that reovering the braid awa

�1

takes O(2m

3

log `) mul-

tipliations in k, whih is about O(n

6

(`Æ)

2

). The remainder takes very little. Hene

the omplexity of this algorithm is dominated by that of Gaussian elimination.

If we take � = 2:8, the omplexity is O(`

3

n

13:2

logn). Theoretially, we an take

� = 2:376 so that the omplexity is O(`

3

n

8:3

logn).

In Table 1, we ompare the attak omplexity of braid enryption sheme, where

n is the braid index and ` is the anonial length of a, b and u. The olumn [10℄

shows the omplexity of the brute fore attak with omplexity (

n

2

!)

`

(the �rst three

numbers were ited from [10℄ and the remainder was omputed by 2

n`

roughly sine it

is enough for this large number.) and the olumn [5℄ shows the super-summit attak

with omplexity (n=2)

`

. The omplexity of the proposed algorithm is evaluated by

2

�2

`

3

n

4�+2

log n for � = log

2

7. The olumn for ECC means the key size of ellipti

urve ryptography with orresponding omplexity (whih was estimated roughly

by square-root attaks suh as Pollard �).

Note that the super-summit attak [5℄ is eÆient for small n, but the proposed

attak is eÆient for large n sine it has a polynomial omplexity. The table shows

that it is very hard to inrease the omplexity of braid enryption sheme, for

example, in order to obtain similar omplexity to 522 bit ellipti urve ryptography,

the braid index should be about 10

5

(huge!!). Also in this ase one ipher text must

be about 10

9

� 2

30

bits.

n ` [10℄ [5℄ Proposed Alg. Key size of ECC

50 5 2

251

2

13

2

82

164

70 7 2

665

2

35

2

90

180

90 12 2

1863

2

66

2

97

194

200 30 2

6000

2

199

2

117

234

1000 100 2

10

5

2

900

2

153

306

10000 1000 2

10

7

2

12330

2

207

414

100000 10000 2

10

9

2

1566666

2

261

522

Table 1. The performane of the attak algorithm

4.5 A Variant Using the Deomposition Problem

The onjugay problem an be generalized to deomposition problem [5℄: Given

u; v 2 B

n

, �nd a; a

0

2 LB

n

satisfying v = aua

0

. The DiÆe-Hellman deomposition

problem is similar: Given u; v = aua

0

; w = bub

0

2 B

n

for a; a

0

2 LB

n

and b; b

0

2 RB

n

,

�nd abua

0

b

0

2 B

n

. Our algorithm works very similar for this problem.

Denote by A;A

0�1

; U; V , and W the image of a; a

0

; u; v, and w under this rep-

resentation K

0

, respetively. We will ompute a matrix A and A

0

from GL

m

(Z[t℄)
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satisfying the following equations:

UA = A

0

V (11)

AK

0

(�

i

) = K

0

(�

i

)A; n=2 < i < n: (12)

A

0

K

0

(�

i

) = K

0

(�

i

)A

0

; n=2 < i < n: (13)

By the similar argument to the setion 4.2, we an see that this system of linear

equations has at most

2

7

n

4

nontrivial variables and

1

8

n

4

). Sine the Gaussian elimi-

nation step takes at most 8 times of the original omplexity and the remaining step

is unhanged, the total omplexity for the DiÆe-Hellman deomposition problem

inreases upto at most 8 times.

5 Conlusion

In this paper we proposed a polynomial time algorithm to solve the DHCP in braid

groups. Though the omplexity is too large to break the enryption sheme with the

proposed parameters in [10℄ in real time, the braid enryption sheme is onsidered

to be inseure sine inreasing the key size inreases the attak omplexity only a

little. For example, to get the same omplexity with 522 bit ellipti urve ryptog-

raphy, the braid index should be about 10

5

, whih is impossible sine one iphertext

must be more than 10

9

bits. Furthermore, this analysis an be applied even to the

generalized sheme based the deomposition problem [5℄ with at most 8 times of

the original omplexity sine hanges our only in the number of variables in the

system of equations, whih are doubled in the generalized version. We expet that

the omplexity an be redued by more preise analysis on the Lawrene-Krammer

representation.

Sine this ryptanalysis is based on the faithfulness of the Krammer representa-

tion, losing the group struture would be a possible way to avoid this kind of attaks.

Currently, the key agreement sheme in [2℄ or the �rst key agreement sheme in [1℄

resists against this attak sine it loses the group struture through the extrator

map, so we annot diretly apply the same steps to obtain a pseudo-key [10℄.
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