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Abstra
t. We propose the �rst polynomial time algorithm for the braid DiÆe-

Hellman 
onjuga
y problem (DHCP) on whi
h the braid key ex
hange s
heme and

the braid en
ryption s
heme are based [10℄. We show the proposed method solves the

DHCP for the image of braids under the Lawren
e-Krammer representation and the

solutions play the equivalent role of the original key for the DHCP of braids. Given a

braid index n and a 
anoni
al length `, the 
omplexity is about 2

�2

`

3

n

4�+2

log n bit

operations, where � = log

2

7 � 2:8 (Theoreti
ally, it 
an be redu
ed to O(`

3

n

8:3

log n)

using � = 2:376). Further, we show that the generalization into the de
omposition

problem 
auses only 8 times of the 
omplexity.

Keywords: Braid group, Non-abelian group, Conjuga
y Problem

1 Introdu
tion

In 2000, a key agreement and an en
ryption s
heme based on braid groups were

proposed by Ko et. al [10℄. The s
hemes are analogous to the DiÆe-Hellman key

agreement s
heme and the ElGamal en
ryption s
heme on abelian groups. Their

basi
 mathemati
al problem is the Conjuga
y Problem (CP) on braids: For a braid

group B

n

, we are asked to �nd a braid a from u; b 2 B

n

satisfying b = aua

�1

2 B

n

.

The se
urity is based on the DiÆe-Hellman Conjuga
y Problem (DHCP) to �nd

baua

�1

b

�1

2 B

n

for given u; aua

�1

; bub

�1

2 B

n

for a and b in two 
ommuting

subgroups of B

n

respe
tively. There are only brute-for
e atta
k and super-submit

set atta
k as the analysis. Both yields a 
omplexity of exponential time [10, 5℄.

Re
ently, several heuristi
 algorithms were proposed using Burau representation.

Though they may be implemented in quite eÆ
ient way, they do not solve the

whole problem (their methods do not work for some parameters), so no theoreti
al

bounds have been written yet [7, 15℄.

One may approa
h the CP using a representation in another group whose stru
-

ture we know better. As mathemati
ians have developed linear algebra for more

than hundred years, linear algebrai
 groups are possible 
andidates. There are two


andidates as linear representations of braid groups: Burau and Lawren
e-Krammer

representations. Burau representation was used in lo
. 
it. to make a quite reason-

able re
ords. Unfortunately, it is known to be unfaithful, they 
annot bound the


omplexity of the s
heme as we expe
ted.

Lawren
e-Krammer representation is now 
hosen to analyze the PKC. It has

been proved faithful for arbitrary index of Braids, several times in independent

ways by several authors. In general it in
reases the rank of the representations, so

it is 
ompli
ated to des
ribe. Nevertheless, it is known, but not written 
learly, one
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an easily re
over the original braid from its matrix of the representation [14℄. Under

this assumption, we des
ribe an algorithm to solve the CP.

1. Find the images of u and v = aua

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄) via the Lawren
e-

Krammer representation K : B

n

! GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

2. Solve the CP for K(u) and K(v) = K(a)K(u)K(a)

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

3. Re
over the braid a in B

n

from the matrix obtained above.

The above algorithm 
ontains a 
ouple of diÆ
ulties. Firstly, dire
t appli
ations

of Gaussian elimination should deal with 
oeÆ
ients as large as 2

2

n

. Se
ondly, a

solution of the CP in the matrix group might not be in the image of the represen-

tation. It is not easy to 
hoose a matrix in the solution spa
e whi
h lies inside the

image of the representation.

To avoid these diÆ
ulties, we take the DHCP into our 
onsideration, instead of

the CP. The algorithm is modi�ed, roughly as follows:

1. Assume a 2 LB

n

, b 2 RB

n

, and u 2 B

n

where LB

n

and RB

n

are two 
ommuting

subgroups of B

n

.

2. Find the images of u, v = aua

�1

, and w = bub

�1

in GL

n(n�1)=2

(Z[t

�1

; q

�1

℄) via

the Lawren
e-Krammer representation K : B

n

! GL

n(n�1)=2

(Z[t

�1

; q

�1

℄).

3. By estimating the entries of K(awa

�1

), take a prime p and irredu
ible polyno-

mials f(t) over Z=p and g(q) over Z[t℄=(p; f(t)) satisfying

K(awa

�1

) = t

�d

N

�1

ft

d

NK(awa

�1

) mod (p; f(t); g(q))g

for some positive integer d and N .

4. Solve the simultaneous equations K(v)A = AK(u) and K(�

i

)A = AK(�

i

) with

n=2 < i � n over a residue 
lass �eld k = Z[t; q℄=(p; f(t); g(q)), where �

i

with

n=2 < i � n generates RB

n

.

5. This solution may not be K(a), but it plays an equivalent role of the key for the

DHCP in braid groups. That is, any solution A of the above system of equations

satis�es AK(w)A

�1

= K(b)K(v)K(b)

�1

= K(awa

�1

) sin
e K(b)A = AK(b) for

b 2 RB

n

. The inverse of A 
an be 
omputed in a similar way to the above

method.

6. Re
over the braid awa

�1

in B

n

by inverting the representation.

To redu
e the 
omplexity of this algorithm, we use 1=2 instead of q (it is also faithful),

redu
e the bound of Krammer matri
es, and remove several trivial variables and

equations in the simultaneous equations. When ` is the Charney length of a, b, and

u in B

n

, the 
omplexity of this algorithm analyzed in this arti
le rea
hes about

2

�2

`

3

n

4�+2

log n for � = log

2

7 � 2:8. This is not a feasible 
omplexity for the

parameters re
ommended in [10, 5℄. For example, for n = 90 and ` = 12 as in [5℄ it

is about 2

97

bit operations. But even for n = 10

5

and ` = 10

4

, the 
omplexity is just

2

261

. Hen
e the braid en
ryption s
heme 
an not be used in the future in this style.

The generalization into the de
omposition problem [5℄ 
auses only 8 times of

the 
omplexity. We would suggest that the proto
ol should be revised to use the

full diÆ
ulty of the CP to over
ome the atta
k. In the near future, there may be

modi�
ations of this kind of atta
ks, sin
e the 
hosen bounds of 
oeÆ
ients of the

Krammer matri
es are rather rough whereas an image of an Artin generator is almost
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sparse matrix with small 
oeÆ
ients. We also remark that the proposed algorithm

does not give an answer to the CP. Thus the CP is still hard and unsolved.

The rest of the paper is 
omposed as follows: In Se
tion 2, we brie
y review braid

groups and braid 
ryptography. In Se
tion 3, we introdu
e the Lawren
e-Krammer

representation and develop its properties. Also inverting algorithm is given in more


on
rete way with the 
omplexity. In Se
tion 4, we introdu
e an equivalent key

whi
h plays an equivalent role as the original braid and analyze the 
ryptosystem

using this. Also the generalization into the de
omposition problem will be analyzed.

Se
tion 5 gives the 
on
lusion of this paper.

2 An Overview of Braid Group Cryptography

2.1 Braid Groups

A braid is obtained by laying down a number of parallel strands and intertwining

them so that they run in the same dire
tion. The number of strands is 
alled the

braid index. The set B

n

of isotopy 
lasses of braids of index n is naturally equipped

with a group stru
ture, 
alled the n-braid group, where the produ
t of two braids x

and y is nothing more than laying down the two braids in a row and then mat
hing

the end of x to the beginning of y.

Any braid 
an be de
omposed as a produ
t of simple braids. One type of simple

braids is the Artin generator �

i

that have a single 
rossing between i-th and (i+1)-

th strand. B

n

is presented with the Artin generators �

1

; : : : ; �

n�1

and relations

�

i

�

j

= �

j

�

i

for ji � jj > 1 and �

i

�

j

�

i

= �

j

�

i

�

j

for ji � jj = 1. When a braid a is

expressed as a produ
t of Artin generators, the minimum number of terms in the

produ
t is 
alled the word length of a.

We have still other other presentations. Let S

n

be the symmetri
 group of an

n-element set I

n

= f1; 2; : : : ; ng. Let Ref be the set of re
e
tions (that inter
hange

two elements and �x the other elements of I

n

) in S

n

= f(i; j)j1 � i < j � ng and S

the subset f(i; i + 1)j1 � i < ng of Ref. We de�ne `(s) the length of a permutation

s in S

n

as

`(s) := minfkjs = s

1

� � � s

k

for s

i

2 Sg:

B

n

admits another presentation with generators frsjs 2 S

n

g with relations r(st) =

(rs)(rt) if `(st) = `(s) + `(t). In this presentation, the longest permutation w

0

with

w

0

(i) = n + 1 � i yields a braid �, whi
h is 
alled the fundamental braid or the

half-twist depending on authors. Let B

+

n

denote the submonoid of B

n

generated by

S

n

. A braid in B

+

n

is said to be positive. A braid x is written uniquely, x = �

k

x

0

where x

0

is in B

+

n

��B

+

n

. This is 
alled the normal form of x.

There is a partial order on B

+

n

: x � y , y 2 xB

+

n

. The ordering is inherited to S

n

(We identify a permutation � with the 
orresponding braid r� in B

+

n

.). We denote

rS

n

by 
 for simpli
ity reason. For a braid x 2 B

+

n

, the greatest element of the set

fy 2 
jy � xg is 
alled the left most fa
tor of x and denoted by LF(x). A sequen
e

of braids (x

1

; : : : ; x

k

) in 
 � f1g is 
alled the greedy form of x if x

1

� � � x

k

= x,

LF(x

i

x

i+1

) = x

i

for all i. The above k in the greedy form is 
alled the Charney

length of x. This length fun
tion is easily extended to general braids using Thurston

normal form, but we don't need it so general for our purpose and we will omit the

general de�nition.
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2.2 Braid Cryptography

Let G be a non-abelian group and u; a; b; 
 2 G. In order to perform the DiÆe-

Hellman key agreement on G we need to 
hoose a; b in G satisfying ab = ba in the

DHCP. Hen
e we introdu
e two 
ommuting subgroupsG

1

; G

2

� G satisfying ab = ba

for any a 2 G

1

and b 2 G

2

. More pre
isely, the problems the braid 
ryptography

are based on are as follows:

{ Input: A non-abelian group G, two 
ommuting subgroups G

1

; G

2

� G

{ Conjuga
y Problem (CP): Given (u; aua

�1

) with u; a 2 G, 
ompute a. (Note

that if we denote aua

�1

by u

a

, it looks like the DLP.)

{ DiÆe-Hellman Conjuga
y Problem (DHCP): Given (u; aua

�1

; bub

�1

) with u 2

G, a 2 G

1

and b 2 G

2

, 
ompute baua

�1

b

�1

.

{ De
isional DiÆe-Hellman Conjuga
y Problem (DDHCP): Given (u; aua

�1

; bub

�1

;


u


�1

) with u; 
 2 G, a 2 G

1

and b 2 G

2

, de
ide whether 
 = ba.

In braids, we 
an easily take two 
ommuting subgroups G

1

and G

2

of B

n

(For

simpli
ity, we only 
onsider a braid group with an even braid index. But it is easy

to extend this to an odd braid index.). For example, G

1

= LB

n

(resp. G

2

= RB

n

)

is the subgroup of B

n


onsisting of braids made by braiding left n=2 strands(resp.

right n=2 strands) among n strands. Thus LB

n

is generated by �

1

; : : : ; �

n=2�1

and

RB

n

is generated by �

n=2+1

; : : : ; �

n�1

. Then we have the 
ommutative property that

for any a 2 G

1

and b 2 G

2

, ab = ba.

[Key agreement℄ This is the braid group version of the DiÆe-Hellman key agree-

ment.

1. Initial setup: (a) Choose system parameters n and ` from positive integers.

(b) Sele
t a suÆ
iently 
ompli
ated positive braid u 2 B

n

with ` 
anoni
al

fa
tors.

2. Key agreement: Perform the following steps ea
h time a shared key is required.

(a) A 
hooses a random se
ret positive braid a 2 LB

n

with ` 
anoni
al fa
tors

and sends v

1

= aua

�1

to B.

(b) B 
hooses a random se
ret braid b 2 RB

n

with ` 
anoni
al fa
tors and sends

v

2

= bub

�1

to A.

(
) A re
eives v

2

and 
omputes the shared key K = av

2

a

�1

.

(d) B re
eives v

1

and 
omputes the shared key K = bv

1

b

�1

.

Sin
e a 2 LB

n

and b 2 RB

n

, ab = ba. It follows

av

2

a

�1

= a(bub

�1

)a

�1

= b(aua

�1

)b

�1

= bv

1

b

�1

:

Thus Ali
e and Bob obtain the same braid.

[Publi
-key 
ryptosystem℄ Let H : B

n

! f0; 1g

k

be a 
ryptographi
ally se
ure

hash fun
tion from the braid group to the message spa
e.
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1. Initial setup: (a) Choose system parameters n and ` from positive integers.

(b) Sele
t a suÆ
iently 
ompli
ated positive braid u 2 B

n

with ` 
anoni
al

fa
tors.

2. Key generation:

(a) Choose a suÆ
iently 
ompli
ated positive braid u 2 B

n

with ` 
anoni
al

fa
tors.

(b) Choose a positive braid a 2 LB

n

with ` 
anoni
al fa
tors.

(
) Publi
 key is (u; v), where v = aua

�1

; Private key is a.

3. En
ryption: Given a message m 2 f0; 1g

k

and the publi
 key (u; v),

(a) Choose a positive braid b 2 RB

n

with ` 
anoni
al fa
tors.

(b) Ciphertext is (
; d), where 
 = bub

�1

and d = H(bvb

�1

)�m.

4. De
ryption:Given a 
iphertext (
; d) and private key a, 
omputem = H(a
a

�1

)�

d.

Sin
e a and b 
ommute, a
a

�1

= abub

�1

a

�1

= baua

�1

b

�1

= bvb

�1

. So H(a
a

�1

)�

d = H(bvb

�1

) �H(bvb

�1

)�m = m and the de
ryption re
overs the original braid

m.

We may take a non-positive braid for a system braid or se
ret braids. But sin
e

the problem in that 
ase is redu
ed to the positive braid 
ases, positive braids are

enough for the random braids in this 
ryptosystem.

3 The Lawren
e-Krammer Representation

3.1 De�nitions and Properties

Most de�nitions and fa
ts in this se
tion are taken from two papers [11℄ [12℄ of

Krammer. Let us re
all the Lawren
e-Krammer representation of braid groups. This

is a representation of B

n

in GL

m

(Z[t

�1

; q

�1

℄) = Aut(V

0

), where m = n(n�1)=2 and

V

0

is the free module of rank m over Z[t

�1

; q

�1

℄. We shall denote the representation

by K. With respe
t to fx

ij

g

1�i<j�n

the free basis of V

0

the image of ea
h Artin

generator under K is written as

K(�

k

)(x

ij

) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

tq

2

x

k;k+1

; i = k; j = k + 1;

(1� q)x

i;k

+ qx

i;k+1

; j = k; i < k;

x

ik

+ tq

k�i+1

(q � 1)x

k;k+1

; j = k + 1; i < k;

tq(q � 1)x

k;k+1

+ qx

k+1;j

; i = k; k + 1 < j;

x

kj

+ (1� q)x

k+1;j

; i = k + 1; k + 1 < j;

x

ij

; i < j < k or k + 1 < i < j;

x

ij

+ tq

k�i

(q � 1)

2

x

k;k+1

; i < k < k + 1 < j:

(1)

The matrix K(�

k

) with respe
t to the basis x

ij

will be 
alled by the Krammer matrix

of a braid �

k

.

To estimate the 
omplexity of the algorithm proposed here, we need to estimate

bounds for the entries of a Krammer matrix.

Two useful results in [12℄ follow below:
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Fa
t 1 [12℄ �x

n+1�j;n+1�i

= tq

i+j�1

x

ij

for 1 � i < j � n.

Fa
t 2 [12℄ Let x 2 B

n

. Consider the Laurent series of K(x) with respe
t to t,

K(x) =

`

X

i=k

A

i

(q)t

i

; A

i

2M

m

(Z[q

�1

℄); A

k

6= 0; A

`

6= 0: (2)

Then `




(x) = max(`� k;�k; `).

If we 
onsider a di�erent generator Q = fs(i; j)j the permutation braid of the

re
e
tion (i; j) 2 S

n

g, we 
an de�ne another length fun
tion `

Q

with respe
t to Q.

This length is the 
anoni
al length in the band generator presentation. Remark that

`

Q

(x) is bounded by (n� 1)-times of the 
anoni
al length in the Artin presentation,

be
ause a band generator is written with upto (n� 1) Artin generators.

De�ne the anti-automorphism of B

n

, written x 7! �x, by giving [ij℄ 7! [n +

1 � i; n + 1 � j℄. This preserves B

+

n

as well as the 
anoni
al length. Then the dual

representation is de�ned as K

�

: B

n

! GL(V

0

) by K

�

(x) = K(�x)

T

, where T denotes

the transpose. Consider another basis fv

ij

j1 � i < j � ng of V

0

. It is related to

fx

ij

g by

v

ij

= x

ij

+ (1� q)

X

i<k<j

x

kj

; x

ij

= v

ij

+ (q � 1)

X

i<k<j

q

k�1�i

v

kj

: (3)

Fa
t 3 [11℄ Let x 2 B

n

. Consider the Laurent series of K

�

(x) with respe
t to q,

K

�

(x) =

`

X

i=k

A

i

(t)q

i

; A

i

2M

m

(Z[t

�1

℄); A

k

6= 0; A

`

6= 0: (4)

Then `

Q

(x) =

1

2

max(`� k;�k; `).

From the above three fa
ts, we get the following theorem.

Theorem 1. Let x be a braid with the 
anoni
al form �

k

x

1

x

2

� � � x

`

where x

i

is a

permutation braid whi
h is not the fundamental braid. Let Æ be the minimal number

of Artin generators in x. Then we have the following bounds for the 
oeÆ
ients of

K(x):

(a) The degree in t is bounded below by k and above by k + `.

(b) The degree in q is bounded below by 2(n � 1)min(0; k) + (n � 2) and above by

2(n� 1)max(k + `; k) + (n� 2).

(
) The 
oeÆ
ients of ea
h entry inside the Krammer matrix are bounded by 2

Æ

when

we 
onsider the entries as a polynomial in t, q, and 1� q.

Proof. (a) It is 
lear from Fa
t 2.

(b) Sin
e �x has the same 
anoni
al length with x and the band 
anoni
al length is

bounded by (n� 1) times the Artin 
anoni
al length, the degree in q is bounded

below by 2(n � 1)min(0; k) and above by 2(n � 1)max(k + `; k) in the fv

ij

g

basis. While taking the basis 
hange from fv

ij

g to fx

ij

g, we have at most (n�2)

in
rease in the degree of q. Hen
e we get (b).
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(
) If we 
onsider entries of a Krammer matrix as a polynomial in t, q, and 1 � q,

every entry of any Artin generator is a monomial with 
oeÆ
ients in f0;�1g.

For any Artin generator �, ea
h 
olumn of K(�) has at most two nonzero terms

(See the equation (1)). Hen
e a multipli
ation by a Krammer matrix of an Artin

generator results in the in
rease of the 
oeÆ
ients by at most 2 times for ea
h

entries. Note that it happens when the same monomial o

urs twi
e at an entry

in the result matrix. Hen
e the 
oeÆ
ients of entries is bounded by 2

Æ

for the

number of Artin generator in x.

For any positive integer n, the Krammer representation is faithful even if q is a

real number with 0 < q < 1 [12℄. Also the inverting algorithm does not 
hange even

if q is repla
ed by a real number with 0 < q < 1. From now on, we will 
onsider

the modi�ed Krammer representation K

0

(x) = K(x)

q=1=2

. In that 
ase, q is equal to

1� q.

Corollary 1. Let x be a braid with the 
anoni
al form �

k

x

1

x

2

� � � x

`

where x

i

is a

permutation braid whi
h is not the fundamental braid. Let Æ be the number of Artin

generators in x. Then we have the following bounds for K

0

(x):

(a) The degree in t is bounded below by k and above by max(k + `; k).

(b) The 
oeÆ
ients of ea
h entry inside K

0

(x) is given by a ratio of two integers.

The absolute values of numerators and denominators are bounded by 2

Æ�2(n�1)k

and 2

2(n�1)max(k+`;k)

, respe
tively.

3.2 Inverting the Lawren
e-Krammer representation

Here we develop a way to re
over a braid from its image matrix under the Lawren
e-

Krammer representation. As mentioned earlier, the faithfulness of the Lawren
e-

Krammer representation of B

n

in a linear group has been proven in several ways

by di�erent authors. Moreover, it has been known to be so easy that it takes a

polynomial time of low degree in braid length and the index but we haven't found

any referen
e with an expli
it 
omplexitiy available at hand.

The proof of faithfulness was due to Krammer [12℄, whi
h enables us to 
onstru
t

an algorithmi
 way to re
over the original braid from a matrix of the representation.

From Fa
t 1 we 
an easily obtain the matrix of � as tA, for a matrix A whose

entries are from Z[q

�1

℄. Together with Fa
t 2, it suÆ
es to re
over the original braid

x

0

of the matrix (tA)

�d

0

K(x). Note that x

0

lies in B

+

n

��B

+

n

, whi
h 
orresponds to

the nontrivial part in the normal form of x. x

0

has obviously smaller Charney length

than x.

Suppose now x is a positive braid. Let us take fv

ij

g as the basis of V

0

. The

Lawren
e-Krammer representation K yields a natural a
tion of the monoid B

+

n

over

V

0

. Let A be the subset of Ref, f(i; j) 2 Refj(x(1; : : : ; 1))

(i;j);t=0

6= 0g. This A 
orre-

sponds to a permutation y in S

n

whi
h 
orresponds to the braid ry in 
. It makes

the left most fa
tor of x, so one has x = yx

0

. Applying the same steps to K(x

0

) re-


ursively, we obtain the greedy form of x after all, as it de
reases the Charney length.

In this way, given K(x) =

P

`

i=d

t

A

i

(q)t

i

, we 
an re
over x 2 B

n

in polynomial

time. We shall des
ribe the algorithm roughly as follows:
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Algorithm 1 Invert the Lawren
e-Krammer representation.

Input: A matrix K(x) 2 GL

m

(t

�1

; q

�1

) where m = n(n� 1)=2

Output: A braid x 2 B

n

.

1. Compute K(x

0

) = K(�)

�d

t

K(x)

2. Perform the basis 
hange from (v

ij

)

ij

to (x

ij

)

ij

.

3. For k = 1 to ` do

2.1 Take a nonzero element y 2 D

�

and 
ompute

A = f


ij

jK(x

0

)y has a nonzero 
oeÆ
ient at the ij 
oordinateg

(For the de�nition of the set D

�

one 
an refer to [12℄.)

2.2 Compute the maximal element �

k

2 S

n

su
h that L(�

k

) � A as follows.

{ Find the set I � f1; 2; � � � ; n � 1g su
h that i 2 I implies L(s

i

) � A for

s

i

= (i; i + 1) with 1 � i < n

{ Write I as a disjoint union of I

j

where I

j


onsists of 
onse
utive integers.

{ Take a half-twist on ea
h I

j

.

{ Take �

k

to be the produ
t of all the above half-twists.

{ For i = 1 to n, if L(�

k

s

i

) � A then repla
e �

k

by �

k

s

i

.

{ Repeat the above pro
edure until L(�

k

s

i

) 6� A for all i

2.3 Compute the positive braid x

k


orresponding to �

k

{ Let x

k

be an identity.

{ For i = 1 to n, if �

k

(i) > �

k

(i+1) then repla
e x

k

by �

i

x

k

and �

k

by s

i

�

k

.

{ Repeat the above pro
edure until x

k

is trivial.

2.4 Repla
e K(x

0

) by K(x

k

)

�1

K(x

0

)

4. Output x = �

d

t

x

1

x

2

� � � x

k

Note that Step 2.2 has only n

2

steps. Thus the 
omplexity of this algorithm

is dominated by the d

t

power of an m � m matrix, whi
h is at most 2m log d

t

multipli
ations of the m�m matrix. Sin
e the matrix multipli
ation takes O(m

2

)

multipli
ations of entries, we have the followings:

Theorem 2. Given K(x) =

P

`

i=d

t

A

i

(q)t

i

, we 
an re
over x 2 B

n

in O(2m

3

log d

t

)

multipli
ations of entries.

Note that it works even when a (nonzero) 
onstant multiple of K

0

(x) is given

sin
e we only 
he
k whether the 
oeÆ
ient is zero in ea
h stage. Hen
e we may deal

with integer 
oeÆ
ients instead of rational 
oeÆ
ients.

4 Cryptanalysis of Braid Cryptosystems

4.1 An equivalent Key

The se
urity of the key ex
hange s
heme and the en
ryption s
heme in braids are

based on the DHCP. The DHCP asks to �nd baua

�1

b

�1

from u; v = aua

�1

; w =

bub

�1

given two 
ommuting subgroups LB

n

and RB

n

of B

n

, a 2 LB

n

, b 2 RB

n

and u 2 B

n

. In this se
tion, �rstly, we will show that we don't need the original

key a but a \fake" key A to solve the DHCP. The DHCP on a linear group is

equivalent to a system of linear equations, whose solutions roles the fake key. Note
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that it breaks the en
ryption s
heme and key agreement s
heme, but does not solve

the original 
onjuga
y problem to the bottom. The 
onjuga
y problem in a general

non-
ommutative group is, nevertheless, still diÆ
ult.

Without solving the problem in B

n

, we try to solve it in GL

m

(Z[t

�1

; q

�1

℄) for

q = 1=2 and m = n(n � 1)=2 via the modi�ed Lawren
e-Krammer representation.

Denote by A;B;U; V , andW the image of a; b; u; v, and w under this representation

K

0

, respe
tively. We will 
ompute a matrix A from GL

m

(Z[t℄) satisfying the following

equations:

UA = AV (5)

AK

0

(�

i

) = K

0

(�

i

)A; n=2 < i < n: (6)

The solutions in Z[t℄

m

2

make a nontrivial ve
tor spa
e N over Z[t℄, sin
e we

have already a nontrivial solution K(a). As the set of invertible matri
es in N is

dense under Zariski topology, we 
an take an invertible matrix over Q(t) from N

with overwhelming probability. Let A

0

be an invertible matrix solution. Using A

0

,

one 
an 
ompute K

0

(baua

�1

b

�1

) in the matrix ring as follows:

A

0

WA

0�1

= A

0

BUB

�1

A

0�1

= BA

0

UA

0�1

B

�1

= BV B

�1

= K

0

(baua

�1

b

�1

): (7)

That is, the matrix A

0

plays the same role that the key a does. Thus we 
all su
h

A

0

a pseudo-key.

4.2 A System of Linear Equations

We are able to 
hange the above into an overdetermined system of linear equations

of A. That is, we obtain the system of equations of the following form:

T

0

N =

2

6

6

6

4

K

L

n=2+1

.

.

.

L

n�1

3

7

7

7

5

X = 0; (8)

where X is the 
olumn ve
tor [a

11

; : : : ; a

1m

; a

21

; : : : ; a

2m

; : : : ; a

m1

: : : ; a

mm

℄

t

made

from A = [a

ij

℄ and K;L

i

's are the m

2

�m

2

matrix of the linear relations in Equation

(5) and (6), respe
tively.

The system has (8) hasm

2

variables and (n=2)m

2

equations. However, by pre
ise

analysis of Krammer matri
es, we 
an redu
e the number of variables and equations

as follows:

Theorem 3. Equation (8) has at most

1

7

n

4

nontrivial variables and

1

8

n

4

nontrivial

equations.

Proof. De�ne V

k

to be a subspa
e of V

0

generated by fx

ij

j(i; j) =2 I

k

g where I =

f(i; j)j1 � i < j < k or k + 1 < i < j � ng. From Equation (1), we see that the

Krammer matrix K(�

k

) transforms V

k

to itself and a
ts as the identity on the basis

element x

ij

when (i; j) 2 I

k

. Thus it 
an be written as

�

M

k

0

0 I

�

by reordering of the

basis, where M

k

is a square matrix of size k(n� k) + n (=

�

n

2

�

�

�

k�1

2

�

�

�

n�k�1

2

�

).
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Sin
e \

1�k<n=2

I

k

= f(i; j)jn=2 � i < j � ng, a Krammer matrix of any left-braid

a 2 LB

n


an be written as

�

M 0

0 I

�

whereM is a square matrix of size

1

8

(3n

2

�2n�8)

(=

�

n

2

�

�

�

n=2+1

2

�

). Therefore only

1

8

2

(3n

2

� 2n� 8)

2

entries of A in Equation (5) are

unknown.

This property of A redu
es the number of equation in Equation (5) into

�

n

2

�

2

�

�

n=2

2

�

2

�

15

64

n

4

. Also ea
h equation in Equation (6) has only k(n� k) +n non-trivial

equations, whose sum for n=2 � k < n is about

1

12

n

3

. Hen
e the total number of

non-trivial equations are at most

1

8

n

4

.

4.3 Estimate the DiÆe-Hellman key

Theorem 4. Let u 2 B

n

, a 2 LB

n

, and b 2 RB

n

with ` 
anoni
al fa
tors. Then

abub

�1

a

�1


an be written as a produ
t of at most ` number of �

�1

and at most 3`

number of 
anoni
al fa
tors. Further ea
h entry inside K

0

(abub

�1

a

�1

) is a Laurent

polynomial of t

4`

X

d=�`

a

i

b

i

t

d

with ja

i

j � 2

Æ+2n`

and jb

i

j � 2

8n`

;

where Æ is the number of Artin generators in abub

�1

a

�1

bounded by 2`n(n� 1).

Proof. Denote by len(x) the Charney length of x. Observe that len(xy) � len(x) +

len(y) for x; y 2 B

n

and len(ab) � max(len(a); len(b)) for a 2 LB

n

and b 2 RB

n

.

Also the inverse of x for x 2 B

n

with r 
anoni
al fa
tors is written as a produ
t of at

most r number of �

�1

and at most r number of 
anoni
al fa
tors. Sin
e ab 
onsists

of at most ` 
anoni
al fa
tors, we get the �rst assertion. The se
ond assertion follows

from Theorem 1.

Sin
e u; v, and �

k

are positive braids, the entries of 
orresponding Krammer

matri
es are polynomial with rational 
oeÆ
ients. By multiplying the appropriate

s
alars to the both sides of Equations (5) and (6), we 
an 
onsider U; V;K

0

(�

i

), and

even A as matri
es whose entries are polynomials with integer 
oeÆ
ients.

Let p be a prime with p > 2

Æ+10n`+1

and f(t) an irredu
ible polynomial of degree

5` over Z=p. Sin
e ea
h entry of K(abub

�1

a

�1

) is a polynomial of degree 5` and with


oeÆ
ient < p, we know that

K

0

(baua

�1

b

�1

) = t

�`

2

�8n`

ft

`

2

8n`

K

0

(baua

�1

b

�1

) mod (p; f(t))g (9)

if we take a representative of a residue 
lass for 
oeÆ
ients from the interval (�p=2; p=2).

Therefore we are enough to 
ompute A mod (p; f(t)) in Equation (5) and (6). From

the famous Bertrand's postulate below, it is guaranteed that p < 2

Æ+10n`+2

.

Fa
t 4 (Bertrand's postulate) [8℄ There exists a prime between n and 2n.
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4.4 Algorithm and Complexity

The proposed algorithm to solve the braid DiÆe-Hellman problem is des
ribed

roughly as follows:

Algorithm 2 Find an equivalent key using Gaussian Elimination.

Input: u 2 B

n

, a 2 LB

n

, b 2 RB

n

, m = n(n � 1)=2, a prime p, and an

irredu
ible polynomial f(t) of the degree d satisfying Equation (9).

Output: K

0

(baua

�1

b

�1

).

1. Compute the images of u and v = aua

�1

in GL

m

(k) via K

0

, where k is the

residue �eld k = Z[t℄=(p; f(t)).

2. Indu
e a system

1

8

n

4

linear equations in

1

7

n

4

variables from the simultaneous

equations K

0

(v)A = AK

0

(u) and K

0

(�

i

)A = AK

0

(�

i

) for n=2 < i � n over k

3. Apply Gaussian elimination for the system in order to 
ompute A. We may

multiply an appropriate integer to the both side of ea
h equation to get integer


oeÆ
ients.

4. If A is nonsingular, 
ompute A

�1

. Otherwise, go ba
k to the above step and take

another solution.

5. Compute K

0

(w) for w = bub

�1

and output AK

0

(w)A

�1

= K

0

(baua

�1

b

�1

)

6. Use Algorithm 1 to 
ompute baua

�1

b

�1

.

To evaluate the 
omplexity of Gaussian elimination step, we need the following

two fa
ts:

Fa
t 5 [18, p.15℄ The Gaussian elimination of an m �m matrix takes

1

3

m

�

for

� = log

2

7, whi
h 
an be redu
ed to 2:376 theoreti
ally.

We know that a multipli
ation in a �nite �eld F

p

d

takes d

2

multipli
ations of

elements in F

p

. When the prime p is small, one multipli
ation takes O(log

2

p) or

O(log

�

p) using Karatsuba method [17℄. By S
honhage and Strassen method, this

bound 
an be redu
ed to O(log p log log p log log log p), whi
h is pra
ti
al only when

p is more than several hundred digits. Sin
e our base �eld is very large, we 
an take

this bound even pra
ti
ally.

Fa
t 6 [4, p.3℄ One multipli
ation or one inversion in a �nite �eld with 
ardinality

p

d

takes O(d

2

log p log log p log log log p) bit operations.

Using the above fa
ts, we 
an estimate the 
omplexity of our algorithm as follows:

Theorem 5. Assume LB

n

and RB

n

are two 
ommuting subgroups of the n-braid

group B

n

. Given u 2 B

n

; a

�1

ua; b

�1

ub for a 2 LB

n

and b 2 RB

n

, b

�1

a

�1

uab


an be 
omputed in about 2

�5

`

2

n

4�

f(Æ) (or 2

�2

`

3

n

4�+2

logn) bit operations where

f(x) = x log x log log x and Æ is the maximum word length of abub

�1

a

�1

bounded by

2`n

2

.

Proof. First, evaluate the 
omplexity of Step 3. Sin
e p < 2

Æ+10n`+2

and d < 5`, it

is

1

3

(

1

7

n

4

)

�

d

2

f(log p) � 2

�5

n

4�

`

2

f(Æ + 10n`+ 2) � 2

�4

n

4�

`

2

f(Æ); (10)
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where f(x) = x log x log log x. The inverse of A 
an be 
omputed in O(n

3

log

2

(p

d

)).

From Theorem 2, we know that re
overing the braid awa

�1

takes O(2m

3

log `) mul-

tipli
ations in k, whi
h is about O(n

6

(`Æ)

2

). The remainder takes very little. Hen
e

the 
omplexity of this algorithm is dominated by that of Gaussian elimination.

If we take � = 2:8, the 
omplexity is O(`

3

n

13:2

logn). Theoreti
ally, we 
an take

� = 2:376 so that the 
omplexity is O(`

3

n

8:3

logn).

In Table 1, we 
ompare the atta
k 
omplexity of braid en
ryption s
heme, where

n is the braid index and ` is the 
anoni
al length of a, b and u. The 
olumn [10℄

shows the 
omplexity of the brute for
e atta
k with 
omplexity (

n

2

!)

`

(the �rst three

numbers were 
ited from [10℄ and the remainder was 
omputed by 2

n`

roughly sin
e it

is enough for this large number.) and the 
olumn [5℄ shows the super-summit atta
k

with 
omplexity (n=2)

`

. The 
omplexity of the proposed algorithm is evaluated by

2

�2

`

3

n

4�+2

log n for � = log

2

7. The 
olumn for ECC means the key size of ellipti



urve 
ryptography with 
orresponding 
omplexity (whi
h was estimated roughly

by square-root atta
ks su
h as Pollard �).

Note that the super-summit atta
k [5℄ is eÆ
ient for small n, but the proposed

atta
k is eÆ
ient for large n sin
e it has a polynomial 
omplexity. The table shows

that it is very hard to in
rease the 
omplexity of braid en
ryption s
heme, for

example, in order to obtain similar 
omplexity to 522 bit ellipti
 
urve 
ryptography,

the braid index should be about 10

5

(huge!!). Also in this 
ase one 
ipher text must

be about 10

9

� 2

30

bits.

n ` [10℄ [5℄ Proposed Alg. Key size of ECC

50 5 2

251

2

13

2

82

164

70 7 2

665

2

35

2

90

180

90 12 2

1863

2

66

2

97

194

200 30 2

6000

2

199

2

117

234

1000 100 2

10

5

2

900

2

153

306

10000 1000 2

10

7

2

12330

2

207

414

100000 10000 2

10

9

2

1566666

2

261

522

Table 1. The performan
e of the atta
k algorithm

4.5 A Variant Using the De
omposition Problem

The 
onjuga
y problem 
an be generalized to de
omposition problem [5℄: Given

u; v 2 B

n

, �nd a; a

0

2 LB

n

satisfying v = aua

0

. The DiÆe-Hellman de
omposition

problem is similar: Given u; v = aua

0

; w = bub

0

2 B

n

for a; a

0

2 LB

n

and b; b

0

2 RB

n

,

�nd abua

0

b

0

2 B

n

. Our algorithm works very similar for this problem.

Denote by A;A

0�1

; U; V , and W the image of a; a

0

; u; v, and w under this rep-

resentation K

0

, respe
tively. We will 
ompute a matrix A and A

0

from GL

m

(Z[t℄)
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satisfying the following equations:

UA = A

0

V (11)

AK

0

(�

i

) = K

0

(�

i

)A; n=2 < i < n: (12)

A

0

K

0

(�

i

) = K

0

(�

i

)A

0

; n=2 < i < n: (13)

By the similar argument to the se
tion 4.2, we 
an see that this system of linear

equations has at most

2

7

n

4

nontrivial variables and

1

8

n

4

). Sin
e the Gaussian elimi-

nation step takes at most 8 times of the original 
omplexity and the remaining step

is un
hanged, the total 
omplexity for the DiÆe-Hellman de
omposition problem

in
reases upto at most 8 times.

5 Con
lusion

In this paper we proposed a polynomial time algorithm to solve the DHCP in braid

groups. Though the 
omplexity is too large to break the en
ryption s
heme with the

proposed parameters in [10℄ in real time, the braid en
ryption s
heme is 
onsidered

to be inse
ure sin
e in
reasing the key size in
reases the atta
k 
omplexity only a

little. For example, to get the same 
omplexity with 522 bit ellipti
 
urve 
ryptog-

raphy, the braid index should be about 10

5

, whi
h is impossible sin
e one 
iphertext

must be more than 10

9

bits. Furthermore, this analysis 
an be applied even to the

generalized s
heme based the de
omposition problem [5℄ with at most 8 times of

the original 
omplexity sin
e 
hanges o

ur only in the number of variables in the

system of equations, whi
h are doubled in the generalized version. We expe
t that

the 
omplexity 
an be redu
ed by more pre
ise analysis on the Lawren
e-Krammer

representation.

Sin
e this 
ryptanalysis is based on the faithfulness of the Krammer representa-

tion, losing the group stru
ture would be a possible way to avoid this kind of atta
ks.

Currently, the key agreement s
heme in [2℄ or the �rst key agreement s
heme in [1℄

resists against this atta
k sin
e it loses the group stru
ture through the extra
tor

map, so we 
annot dire
tly apply the same steps to obtain a pseudo-key [10℄.
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