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Abstract. In this paper we extend the conditional correlation attack
([LCPP96]) against the nonlinear filter generator (NLFG) by introduc-
ing new conditions and generalisations and present two known-plaintext
attacks, called hybrid correlation attack and concentration attack. The
NLFG is a well known LFSR-based keystream generator which could be
used as a basic building block in a synchronous stream cipher system.
Both new attacks use methods from the conditional correlation attack
and additional from fast correlation attacks to derive the unknown initial
state of the LFSR of the NLFG. The basic principle of iteratively cumu-
lating and updating conditional correlations for the NLFG was proposed
in [Löh01] and for general combiners with memory in [GBM02]. With the
hybrid correlation attack it is possible to successfully attack the NLFG
by applying a fast correlation attack, even if the filter function f of the
NLFG is highly nonlinear, e.g. the normalised nonlinearity pe,f is ≥ 0.45.
The concentration attack maps all computed conditional correlations to
D−B unknown LFSR bits, where D ≥ k and 1 ≤ B ≤ k are parameters
which can be chosen by the attacker, and k is the length of the LFSR of
the NLFG. Even with low values of conditional correlations, it is possible
to mount the hybrid correlation attack and the concentration attack suc-
cessfully. This is not the case for the originally version of the conditional
correlation attack ([LCPP96]) in a time lower than a full search over all
possible initial states.
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1 Introduction

The nonlinear filter generator (NLFG, Fig. 1 and left part of Fig. 3) consists
of a linear feedback shift register (LFSR) of length k and a boolean function
f : GF(2)n → GF(2), called filter function, whose n inputs are taken from some
shift register stages Γ , called taps, to produce the GF(2) keystream sequence
z̃ = z0, z1, z2, . . .. In this paper all sequence elements are considered over the
field GF(2) which consists of the two elements {0, 1}.



Fig. 1. The nonlinear filter generator with LFSR, consisting of the connection poly-
nomial c and state vector st, the taps Γ = (γ1, . . . , γn) and the filter function f to
produce the GF(2) keystream sequence z̃.

The NLFG can be used as a keystream generator itself or as a building
block in a more complex shift register based system in cryptographic stream
cipher applications. An example is the use of the nonlinear filter generator as a
synchronous secret key encryption and decryption system in a communication
system (see Fig. 2). In this scenario we suppose that the secret key K between
two parties is used to initialise the stages s0 of the LFSR of the NLFG at time
t = 0. The encryption is done by a bitwise XOR operation of the keystream
z̃ and the message m̃ (plaintext) to the ciphertext sequence c̃. The encrypted
sequence c̃ is sent to the receiver over an unsecure channel and is decrypted by
a bitwise XOR operation of c̃ and z̃ .

The LFSR of the NLFG has the connection polynomial

c(x) = xk −
k−1∑

j=0

cjx
j ,

c ∈ GF(2)[x]. This LFSR produces the GF(2) sequence s̃ = s0, s1, . . ., namely

st+k =
k−1∑

j=0

cjst+j

Fig. 2. The application of a keystream generator (i.e. NLFG) in a synchronous secret
key encryption and decryption system.
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for t ≥ 0, when it is initialised with s0 = (s0, s1, . . . , sk−1)
T ∈ GF(2)k, where

T stands for transposition. Let the state of the LFSR at time t ≥ 0 be st =
(st, st+1, . . . , st+k−1)

T ∈ GF(2)k. Any state st and sequence element st, t ≥ 0,
can be written as a linear combination

st =
(
Ct

)T
s0,

and

st =
(

c(t−k)
)T

s0

where C is the k × k companion matrix over GF(2) w.r.t. to the connection
polynomial c and c(t−k) ∈ GF(2)k is a vector which can be derived from one of
the matrices Ct−k+1, Ct−k+2, . . . , Ct. The regular matrix C is given by

C =












0 0 . . . 0 c0

1 0
... c1

0 1
. . .

...
...

. . .
. . . 0 ck−2

0 . . . 0 1 ck−1












=
(

c(1−k), c(2−k), . . . , c(0)
)

and the k row vectors of Ct are then defined as

Ct =
(

c(t−k), c(t−k+1), . . . , c(t−1)
)

.

The GF(2) keystream sequence z̃ = z0, z1, . . . of the NLFG is generated by
applying n stages (taps) Γ = (γ1, γ2, . . . , γn), 0 ≤ γ1 < γ2 < . . . γn < k, from
the LFSR as inputs to the filter function f : GF(2)n → GF(2),

zt = f(st+γ1
, st+γ2

, . . . , st+γn
)

for t ≥ 0. The span of the taps Γ is denoted by M = γn −γ1. Usually c is chosen
as a primitive polynomial so the period of the sequences s̃ and z̃ is 2k − 1 if f is
balanced ([Sch99]).

In the process of designing a secure NLFG, all known attacks should be con-
sidered. The objective of a known-plaintext attack against the nonlinear filter
generator is to determine the unknown initial state vector s0 by observing N
keystream symbols z0, . . . , zN−1 and assuming knowledge of the complete struc-
ture of the system, namely c, Γ , and f .

The paper is organised as follows: In section 2 the published attacks on the
nonlinear filter generator are reviewed. The conditional correlation attack is de-
scribed in section 3, and extended by introducing new conditional correlation
coefficients and several generalisations concerning the taps Γ and the time pat-
tern T (m). These are specialised versions of the coefficient defined in [LCPP96]
(in our notation B3) and used for the conditional correlation and our new at-
tacks. In section 4 we present the hybrid correlation attack and in section 5 the
concentration attack.
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2 Properties and known attacks against the NLFG

In the past years, several properties and attacks on the nonlinear filter generator
were published. With the Berlekamp-Massey algorithm it is possible to rapidly
construct an equivalent LFSR which produces the sequence z̃ with the knowledge
of N = 2L(z̃) keystream symbols in O(N2), where L(z̃) is the linear complexity
of the sequence z̃. General lower and upper bounds for L(z̃) were derived in
[Key76] and [FSCG95], i.e.

(
k
2

)
≤ L(z̃) ≤ ∑g

j=1

(
k
j

)
, where the lower bound

is valid for c primitive and k prime and g is the algebraic degree of the filter
function f . Better lower bounds for L(z̃) can be found in [Rue86] and [Sch99]
for special cases.

The basic correlation attack against the nonlinear filter generator was pub-
lished in 1985 by Siegenthaler ([Sie85]), where correlations between z̃ and linear
transformations of s̃ are used to build an equivalent generator. This generator
consists of m ≤ n LFSRs with connection polynomial c and a combining function
g : GF(2)m → GF(2). The drawback of this attack is the huge amount of time
of O(N2), N ≈ 2k, needed for computing the necessary correlations and that
the filter function f must have high correlation to an affine function. One conse-
quence of the basic correlation attack is that the designer has to choose a highly
nonlinear filter function for his NLFG. The nonlinearity Nf of a boolean function
f : GF(2)n → GF(2) is defined as Nf = minl d(f, l), where l : GF(2)n → GF(2)
is an affine function, i.e. l(x) = wT x + a with w, x ∈ GF(2)n, a ∈ GF(2), and
d(f, l) is the Hamming-distance between f and l. The Hamming-distance d(f, l)
between two boolean functions f and l with n inputs is the number of different
outputs over all 2n inputs:

d(f, l) :=
∑

x∈GF(2)n

(f(x) + l(x)),

where the sum is taken over GF(2).
For balanced boolean functions f with n inputs the following bound for Nf

holds ([SZZ93]):

Nf ≤ Nmax,bal(n) =

{
2n−1 − 2n/2−1 − 2, if n even,
⌊⌊

2n−1 − 2n/2−1
⌋⌋

, if n odd,

where y = ⌊⌊x⌋⌋ denotes the biggest even integer y with y ≤ x. We consider
the normalised nonlinearity pe,f = 2−nNf of a boolean function f : GF(2)n →
GF(2). We call a boolean function f highly nonlinear if pe,f ≥ 0.45. In literature
there are many methods to construct highly nonlinear and balanced boolean
functions with appropriate cryptographic properties.

In the following years, the concept of correlation attacks of Siegenthaler on
LFSR-based keystream generators was improved by the basic fast correlation
attack of Meier and Staffelbach ([MS89]). Recently, e.g. [CJS01], [JJ00], [CT00],
[MFI01a] and [CJM02], more advanced decoding techniques have been proposed
to mount a fast correlation attack. Their common method is to find low weight
parity check polynomials of c and/or to apply an iterative decoding procedure
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to realise the attack. These fast correlation attacks can also be applied with
minor modifications to the NLFG ([For90], [GSSD97], [JJ02]). Fast correlation
attacks dedicated to the NLFG perform better on the NLFG than on combiner
generators because they can exploit all nonzero correlation between the filter
function and all linear functions simultaneously. A common disadvantage of these
fast correlation attacks is the large number N of observed keystream symbols
needed to perform a successful attack and the assumption that the filter function
f is not highly nonlinear, i.e. they are only successful, if pe,f ≤ 0.45, and the
computation complexity is lower than a full search.

In [Gol96], [GCD99], [GCD00] the special and the general inversion attacks
were published and analysed. The first one only works for filter functions f
which are linear-separable in the first or last variable, i.e. f(x1, . . . , xn) = x1 +
g(x2, . . . , xn) or f(x1, . . . , xn) = g(x1, . . . , xn−1) + xn, where g : GF(2)n−1 →
GF(2) is an arbitrary boolean function. The general inversion attack is appli-
cable to any filter function. Both attacks have time complexity of O(2M−1) on
average and are successful for highly nonlinear filter functions and small N . The
inversion attack was improved for certain NLFG configurations in [GG02] to
O(2k−r−1), where r is the largest gap between LFSR cells, which have taps to
the filter function or the connection polynomial c. The filter generator can be
made resistant against the inversion attack if one chooses γ1 = 0, γn = k − 1
and gcd(γ1, . . . , γn) = 1. In [LBGZ01] ideas from the inversion attack and the
conditional correlation attack are used to form a trellis based decoding proce-
dure. Like the inversion attack, it has a time complexity of O(2M−1) and is
conceptually the same as the basic generalized inversion attack from [GCD99]
and [GCD00].

In [GR94] and [Fil00] the decimation attack is proposed for LFSR based
keystream generators. The idea is to consider a decimated sequence z̃[d], with
z̃[d] = z0, zd, z2d, . . . of the observed keystream sequence z̃ = z0, z1, z2, . . .. For
the NLFG the decimation attack is applicable to a d with 1 ≤ d ≤ g, d|g and
g = gcd(γ1, . . . , γn) ([Gol96]). For such a d, the decimated keystream sequence
z̃[d] can now be written as

zdt = f(sdt+γ1
, . . . , sdt+γn

) = f(s′t+γ1/d, . . . , s
′
t+γn/d)

for all t ≥ 0. Thus, the decimated sequence z̃[d] can be generated from the
decimated LFSR sequence s̃[d]. If the decimated sequence s̃[d] can be generated
by a smaller LFSR with length k′ < k, then all known attacks against the NLFG
can be applied to this smaller NLFG. Properties of decimated sequences have
been developed in [Rue86]. If k is chosen as prime or 1 ≤ k ≤ 89, then it always
holds that k′ = k and the decimation attack provides no further advantages.

In [BP00] N = 2k keystream symbols are used to build an equation system
with 2k nonlinear equations of the form zt = f(st+γ1

, . . . , st+γn
) for 0 ≤ t ≤

2k−1 and k+γn linear equations for the variables sk, sk+1, . . . , s2k+γn−1 from the
linear recurrence relation of the LFSR. For any nonlinear equation the solution
set is computed, i.e. the set of all tuples fulfil the nonlinear equation. Then the
solution sets of two nonlinear equations with overlapping variables are iteratively
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merged and common values are removed from the merged set and substituted
into the other equations. This process is called local reduction technique and is
iterated until k independent variables from {s0, s1, . . . , s2k+γn−1} have a solution
or no further merging and substituting is possible. In the latter case, a tree-based
search is done over the unsolved variables. The attack is only feasible for small
values of n and there must be enough overlapping in the solution sets of the
nonlinear equations.

While in the last years fast correlation attacks where the main subject of
research on attacks against LFSR-based keystream generators, algebraic at-
tacks on stream cipher systems get more attention. If an attacker observes the
keystream bits zt1 , zt2 , . . . , ztN

at time positions t1, . . . , tN he receives N equa-
tions zti

= f(sti+γ1
, . . . , sti+γn

). By substituting the sequence elements st, t ≥ k,
with the help of the linear relation to s0, . . . , sk−1 a nonlinear system of N poly-
nomial equations zti

= fi(s0, . . . , sk−1) in k variables can be obtained, where
the algebraic degree of each boolean function fi is ≤ g ([Bab01]). The problem
of solving a nonlinear system of multivariate equations is NP-hard even if all the
equations are quadratic and the underlying field is GF(2) ([GJ79]). There will
be at most V =

∑g
j=1

(
k
j

)
distinct monomials of the variables s0, . . . , sk−1 in the

nonlinear system of equations. By substituting any distinct monomial by a new
variable a linear system with V variables can be received. If V ≤ N , then this new
system of linear equations can be solved in O(V w) operations, where w = 2.3788
if the matrix inversion algorithm from [CW90] is used, w = log2(7) ≈ 2.807 with
Strassen’s algorithm ([Str69]), and w = 3 with the Gaussian reduction algo-
rithm. Alternativly, if k ≈ N , then the algebraic method XL ([CKPS00]) or
its improved versions XL’ or XL2 ([CP03]) can be used to solve the nonlinear
system of quadratic equations. The authors of [CKPS00] have evidence that the
XL algorithm can solve randomly generated systems of polynomial equations in
subexponential time (w.r.t. k) when N exceeds k by a number that increases
slowly with k. In [Cou02] the XL method was extended to polynomial equations
of arbitrary algebraic degree and applied to stream ciphers1. The attack against
the NLFG with the extended version of XL can be mounted in two directions:

1. The algebraic degree g of f is low (ǫ = 0).
2. The algebraic degree g of f is high and the function f (fi) is approximated

by a function h (hi), which has a low algebraic degree, with high probability
1 − ǫ. In this case the system of equations consists of zti

= hi(s0, . . . , sk−1)
for 0 ≤ i ≤ N .

The overall complexity for solving the nonlinear system is then approximately
(

k

k/N1/g

)w

(1 − ǫ)−N .

In the view of the XL attack, the filter function f should be not only highly
nonlinear, but also have a large distance to approximations of low algebraic
degree.

1 N. Courtois et al. have announced further articles on algebraic attacks on stream
ciphers, see http://www.cryptosystem.net/stream/.
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In [BS00] tradeoff attacks (Time/Memory/Data tradeoffs) are developed and
analysed for synchronous stream cipher systems. Two main variants of a tradeoff
attack are discovered, which differ in the generation of special states: Rivest and
BSW sampling. Special states generate output prefixes of a keystream generator
with a predefined bit pattern of l bit length. In the case of BSW sampling the
special states of the keystream generator can be enumerated in an efficient way,
i.e. in polynomial time. Both variants have a tradeoff relationship given by

TS2N2 = Z2,

where T is time complexity in the realtime phase of the attack (i.e. one time
unit equals the generation of O(log2(Z)) bit keystream), S represents the storage
requirement (typically access on a hard disk), N is the amount of keystream,
and Z is the size of the state space of the stream cipher, i.e. Z = 2k in the
case of the NLFG. The time for preprocessing is P = Z/N and the number of
disk operations in the realtime phase is then given by Tdisk =

√
T in the case

of Rivest sampling and Tdisk =
√

T2−l for BSW sampling. In the case of Rivest
sampling D2 ≤ T ≤ N is allowed and (2−lD)2 ≤ T ≤ N for BSW sampling.
Such if a keystream generator allows efficient BSW sampling for an appropriate
l > 0 the number of disk operations and the lower bound on T can be further
reduced. Typical values could be P = Z2/3, T = Z2/3, S = Z1/3, N = Z1/3.

In [Löh01] the linear transformation attack against the NLFG was presented.

It transforms the given NLFG with a linear and regular transformation A(u) in
an equivalent NLFG with the same connection polynomial c, a filter function g :
GF(2)m → GF(2) with m ≥ n inputs and taps Γ ′ = (γ′

1, . . . , γ
′
m). The objective

was to find a transformation A(u) so that the parameters of g or the span γ′
m−γ′

1

are better suited for one of the above described attacks. In a theoretical analysis
and a case study it was shown that the probability of existence of an equivalent
NLFG, which is better suited for an attack, is negligible for reasonable values of
k and n ([Löh01]).

Also the BDD attack (binary decision diagrams, [Kra01], [Kra02]), which
can be applied to several classes of LFSR based keystream generators, has to be
considered in the design and analysis of the NLFG.

In the next section the conditional correlation attack, including our improve-
ments, is described. In appendix A examples for the notations and definitions
can be found.

3 The conditional correlation attack

The conditional correlation attack was described in [LCPP96] and the basic con-
cept of searching for optimum correlations between a keystream sequence z̃ and a
LFSR sequence s̃ by the augmented function Fm of f was presented in [And95].
The main idea of the conditional correlation attack is to study the statistical
dependence between a fixed and known output of length m of the nonlinear fil-
ter generator and its corresponding input by analysing the augmented function
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Fm. It turns out that some of these correlations can be much larger than what
one could expect from the unconditional correlations.

3.1 Notations

For arbitrary taps Γ = (γ1, . . . , γn), 0 ≤ γ1 < . . . < γn < k, and t ≥ 0 let
Γ (t) = (t + γ1, . . . , t + γn) and for an output pattern T (m) = (t1, . . . , tm), ti
integers, Γ (T (m)) = (i1, . . . , iM ′), 0 ≤ i1 < . . . < iM ′ , is defined as the tupel
of {γr + ts : 1 ≤ r ≤ n, 1 ≤ s ≤ m} with cardinality M ′ = |Γ (T (m))|. For an
arbitrary tupel D = (d1, . . . , dl), sequence s̃, and t ≥ 0 the vector st(D) is given
by st(D) = (st+d1

, . . . , st+dl
). The dependence between the M ′ input symbols

st(Γ (T (m))) = (st+i1 , . . . , st+iM′ )
T and the corresponding m outputs at time t1,

. . . , tm by applying f is described by the augmented function Fm : GF(2)M ′ →
GF(2)m of f , where

Fm(st(Γ (T (m)))) := (f(st(Γ (t1))), . . . , f(st(Γ (tm))))T .

If the index t is omitted in the above definitions it will be set to zero.
In the original paper ([LCPP96]) only the special case Γ = (0, . . . , n − 1)

and T (m) = (0, . . . ,m−1) is considered. With an optimal time pattern T (m) the
effort for computing the conditional correlations is minimised and the values of
them are maximised.

3.2 Conditional correlation coefficients

The main purpose of the conditional correlation attack is to find linear conditions
Bl on the vector s(Γ (T (m))) such that the conditional correlation coefficients

λl(f, Γ, T (m), y(T (m)), .) :=
∣
∣
∣P

(

Cond. Bl on s(Γ (T (m)))|B
)

− 0.5
∣
∣
∣

are near 0.5. The vector s(Γ (T (m))) in the computation of the above probability
is regarded as a vector of independent bits. The abbreviation B stands for the
condition Fm(s(Γ (T (m)))) = y(T (m)) ∈ GF(2)m. The symbol ”.” on the left
hand side of the above equation is a wildcard for arguments which depend on
the condition Bl.

In our extensions of the conditional attack we define the following four linear
conditions Bl , 1 ≤ l ≤ 4, on the vector s(Γ (T (m))), where i 6= i′ and i, i′ ∈
Γ (T (m)).

1. B1: si = 0,
2. B2: si = si′ ,
3. B3: s(Γ (T (m)))T d = 0, with d = (di1 , di2 , . . . , diM′ )

T 6= 0 and

4. B4: s(Γ (T (m))) = e, with e = (ei1 , . . . , eiM′ )
T .

Note that d ∈ GF(2)M ′

and the components of the vector e are elements in
GF(2)∪ {∗}, where the symbol ∗ means that in the comparison in condition B4
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the corresponding value of the component of s(Γ (T (m))) does not count. Note
that condition B1 is a special case of B3 and B4, and B3 is a generalisation of
B2. Currently there is no mathematical method to find high correlations. The
only way for finding them is to perform a full search. This is the main reason
for the introduction of B1 and B2 is that the full search may be feasible for
this coefficients and that they are needed in the hybrid correlation attack and
the concentration attack. The time complexities Cl(m) for computing a full set
of coefficients for condition Bl, 1 ≤ l ≤ 4, are: C1(m) = M ′2M ′

, C2(m) =
(M ′ − 1)/2M ′2M ′

, C3(m) = M ′22M ′

and C4(m) = M ′2M ′

3M ′

.
In the original description of the conditional correlation attack in [LCPP96]

only the condition B3 has been considered and analysed. In [Löh00] it is shown
that for some classes of filter functions the conditional correlation coefficients for
B1 and B2 can also be used to perform a conditional correlation attack, which
have a significant lower time and space complexity as B3 and B4. From the con-
ditions Bl, the appropriate conditional probabilities and correlation coefficients
can be specified as follows.

1. B1 and i ∈ Γ (T (m)):
p1(f, Γ, T (m), y(T (m)), i) := P (si = 0|B)

λ1(f, Γ, T (m), y(T (m)), i) := |P (si = 0|B) − 0.5|

2. B2, i, i′ ∈ Γ (T (m)) and i 6= i′:
p2(f, Γ, T (m), y(T (m)), i, i′) := P (si = si′ |B)

λ2(f, Γ, T (m), y(T (m)), i, i′) := |P (si = si′ |B) − 0.5|

3. B3 and d 6= 0:
p3(f, Γ, T (m), y(T (m)), d) := P (s(Γ (T (m)))T d = 0|B)

λ3(f, Γ, T (m), y(T (m)), d) := |P (s(Γ (T (m)))T d = 0|B) − 0.5|

4. B4:
p4(f, Γ, T (m), y(T (m)), e) := P (s(Γ (T (m))) = e|B)

λ4(f, Γ, T
(m)

, y(T (m)), e) :=







0, if w∗(e) = 0,

0, if w∗(e) ≥ 1 ∧ p4(f, Γ, T (m), y(T (m)), e) ≤ 0.5,

p4(f, Γ, T (m), y(T (m)), e) − 0.5, else,

where w∗(e) is the number of zeros and ones in vector e.

The main task of an attacker is to find conditional correlation coefficients
which are close to 0.5.

As an illustration, we show for condition B1 how an attacker, who has ob-
served N keystream symbols z0, . . . , zN−1 and has computed the correlation
coefficients λ1(f, Γ, T (m), y(T (m)), i) > 0, can obtain a linear equation for the

initial state vector s0. An occurrence of a vector y(T (m)) = (yt1 , yt2 , . . . , ytm
)T is

searched in z0, . . . , zN−1, i.e. finding an index t with zt+t1 = yt1 , . . . , zt+tm
= ytm

,
with a high conditional correlation coefficient λ1(f, Γ, T (m), y(T (m)), i). A linear

equation can be obtained as follows: If p = p1(f, Γ, T (m), y(T (m)), i) > 0.5, the
linear equation

st+i = 0 =
(

c(t+i−k)
)T

s0,
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holds with probability p, and for p < 0.5

st+i = 1 =
(

c(t+i−k)
)T

s0

holds with probability 1 − p. For the other conditions the procedure is similar.
With k independent linear equations of the above form a regular system of
linear equations can be obtained, which can be solved for the unknown initial
state vector s0. We note here that for the conditions B1, B2 and B3 exactly one
equation and for condition B4 w∗(e) equations can be established simultaneously.

Theorem 1. Let Γ and T (m) be arbitrary, g : GF(2)n−2 → GF(2) be an

arbitrary boolean function, f : GF(2)n → GF(2) defined as f(x1, . . . , xn) =
x1 + g(x2, . . . , xn−1) + xn, then it holds

λl(f, Γ, T (m), y(T (m)), .) = 0

for all y(T (m)) ∈ GF(2)m and l = 1, 4.

Proof. [Löh00] or [Löh01] ⊓⊔

This is currently the only known class of boolean functions with this prop-
erty. If Γ is considered as a set, and if it is a (n, e) positive difference set,
and f is a correlation immune boolean function of order d, then it holds that
λ1(f, Γ, T (m), y(T (m)), .) = 0 for 1 ≤ m ≤ ⌊d/e⌋ + 1 and all T (m) ([Gol96]).

3.3 The algorithm for the conditional correlation attack

Assuming that an attacker knows the components of the NLFG, i.e. c, f , and Γ ,
and has observed N keystream symbols z0, . . . , zN−1. For choosing appropriate
m, 0 < λmin ≤ 0.5 and L ⊂ {1, 2, 3, 4}, the following steps have to be performed:

Step 1 Determine the set T (m) = (t1, t2, . . . , tm), so that

|Γ (T (m))| = min
T ′(m)

|Γ (T ′(m))|, (1)

where T ′(m) = (t′1, . . . , t
′
m).

Step 2 Compute

D = {(l, y(T (m)), .) : λl(f, Γ, T (m), y(T (m)), .) ≥ λmin},

for l ∈ L.
Step 3 Search in z0, . . . , zN−1 for an occurrence of y(T (m)) with (l, y(T (m)), .) ∈

D.
Step 4 Obtain k′ ≥ k linear equations for the initial state vector s0 from the

tuples (l, y(T (m)), .) found in step 3.
Step 5 Choose randomly k linear independent equations from the k′ in step 4

and solve the system of linear equations for s0.
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Step 6 Test possible solutions found in step 5 to see whether they produce the
correct observed keystream sequence z0, . . . , zN−1. If yes, then terminate,
else go to step 5.

The steps 1 and 2 can be performed in a pre-computation stage, independent
of the observed keystream. In step 4 the required matrices Ct or vectors c(t) for
forming the linear equations can be efficiently computed by a caching procedure
([Löh01]).

3.4 Discussion and drawbacks

The computational effort of the pre-computations (step 2) in the conditional
correlation attack is at least exponential in M ′. If Γ is a (full positive) difference
set ([Gol96]) or is optimised w.r.t. to equ. (1) ([Löh01]), then M ′ is lower bounded
by

M ′ ≥ nm − m(m − 1)

2

for any T (m) such that small values of m are feasible in an attack. In the attacking
phase of the conditional correlation attack the expected number of rounds (step
5) is asymptotically given by (λmin + 0.5)−k/g ([LCPP96], [Löh01]), where g is
the number of equations which can be obtained for one conditional correlation
coefficient in the set D. The value of g is 1 for the conditions B1, B2 and B3

and w∗(e) for B4. In each round a linear equation system has to be solved with
a cost of k3 operations in GF(2), such that the computational runing time is
O(k3(λmin + 0.5)−k/g) in the attacking phase.

If m is small, then the values of the conditional correlation coefficients will
be very small and near 0 for n ≥ 10 and the expected number of rounds will
be higher than the computational efforts for a full search or a fast correlation
attack for large k. This drawback can be avoided with the hybrid correlation
attack and the concentration attack presented in the next sections.

4 The hybrid correlation attack

The fast correlation attacks against the NLFG have the disadvantage that they
are only successful up to a certain nonlinearity of the filter function f , i.e. pe,f

should be lower than 0.45. Even for n = 10, balanced filter functions with good
cryptographic properties exist, which exceed this nonlinearity bound. In addi-
tion, the conditional correlation attack could fail or have a higher running time
than other attacks, if only a few conditional correlation coefficients with high
values (≥ 0.8) are availible. In this section we introduce the hybrid correlation
attack which utilises ideas from conditional correlation attacks (phase 1 and 2)
and fast correlation attacks (phase 3) to overcome the mentioned drawbacks. In
contrast to the conditional correlation attack, where only one coefficient is used
for a linear equation, the hybrid correlation attack uses at most M ′ coefficients
to make a first estimate of a sequence element in phase 1 (condition B1). The

11



basic principle of iteratively updating conditional correlations for the NLFG was
proposed in [Löh01] and for general combiners with memory in [GBM02].

In the next subsections we will give an overview and a detailed description
of the hybrid correlation attack.

4.1 Overview

The hybrid correlation attack is divided into three computational phases, where
the second phase is optional. First we will give an overview of all involved phases.

Phase 1 In the first phase conditional correlation coefficients are computed for
the conditions B1 and/or B4. They are used to make a first error correction, e.g.
soft-decision decoding ([HOP96]), on the keystream sequence z̃, to derive the
intermediate sequence ũ and log-likelihood values L(t) ∈ IR for every sequence
element st, 0 ≤ t ≤ N − 1. We give a short introduction in the log-likelihood
algebra in appendix C. Therefore, L(t) is a abbreviation for L(St), where St ∈
GF(2) is the binary random variable for the event of the LFSR sequence element
st. If L(t) > 0 then the event st = 0 is more likely than st = 1. The absolute
value of L(t) is a measure of prediction. Phase 1 is mandatory.

Phase 2 In the second phase the attacker has the additional possibility to use
conditional correlations (conditions B2 and/or B3) to further improve the correc-
tion. In this phase only conditional correlation coefficients with a value greater
than 0.45 should be applied. The values L(t) of the first phase are transformed
to L′(t) ∈ IR and the resulting sequence will be r̃. If phase 2 is omitted, we set
L′(t) := L(t) and r̃ := ũ. The sequences ũ and r̃ are an estimate for the unknown
s̃. Note that phase 2 is optional.

Phase 3 In the third phase the attacker has the choice between applying a fast
correlation attack or a majority information set procedure:

1. The attacker can apply a fast correlation attack on the sequence r̃. In contrast
to the application of fast correlation attacks on the sequence z̃, it doesn’t
converge to a linear transformation of s̃, but directly to s̃. We recommend
[CT00] as fast correlation attack because the log-likelihood values L′(t) from
phase 2 can be utilised as input to the decoding procedure which is based on
low-weight parity checks of c. Any other fast correlation attack for LFSR-
based keystream generators is also suitable.

2. With a majority decoding rule the most reliable log-likelihood values are
selected to form an information set to recover the initial state of the LFSR.

The underlying error model of the hybrid correlation attack is compared with
that of the fast correlation attacks in Fig. 3.
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Fig. 3. Comparison of the error models of the fast correlation attacks (middle, l :
GF(2)n → GF(2) is a linear transformation) and the hybrid correlation attack (right).
The normal operation of the NLFG is displayed on the left side.

4.2 Details

Phase 1 In the first phase conditional correlations on B1 and/or B4 have to
be applied on the observed keystream sequence z̃ to obtain log-likelihood values
L(t) and an intermediate sequence ũ. Because of lack of space we only describe
the case that coefficients have been computed for condition B1 and given m and
T (m) = (t1, . . . , tm). The case for condition B4 is straight forward. First we set
L(t) := 0 for 0 ≤ t ≤ N − 1.

For min(Γ (T (m))) − tm ≤ t ≤ N + max(Γ (T (m))) − tm − 1 let us define the
vectors y

t,i
(T (m)), i ∈ Γ (T (m)), as

y
t,i

(T (m)) = (yt,i,t1 , yt,i,t2 , . . . , yt,i,tm
)T := (zt+t1−i, zt+t2−i, . . . , zt+tm−i)

T .

For every i ∈ Γ (T (m)) we have a probability p1(f, Γ, T (m), y
t,i

(T (m)), i) re-

lated to a conditional correlation for which we can associate a log-likelihood
value

ln

(
p1(f, Γ, T (m), y

t,i
(T (m)), i)

1 − p1(f, Γ, T (m), y
t,i

(T (m)), i)

)

,

which contributes to L(t):

L(t) :=
∑

i∈Γ (T (m))

ln

(
p1(f, Γ, T (m), y

t,i
(T (m)), i)

1 − p1(f, Γ, T (m), y
t,i

(T (m)), i)

)

.

If a p1(f, Γ, T (m), y
t,i

(T (m)), i) is 0 resp. 1, we set L(t) := ∞ resp. L(t) := −∞.
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With the values L(t) we can compute the intermediate sequence ũ as follows:

ut :=







0, if L(t) > 0,
1, if L(t) < 0,
0 or 1, if L(t) = 0.

The computational effort of phase 1, without the pre-computations for the
coefficients, is only O(NM ′).

Phase 2 In the second phase the attacker has the option to use conditional
correlations w.r.t. B2 or B3, whose correlation should be higher than λmin,2 ≥
0.45 or λmin,3 ≥ 0.45, to further correct the sequence ũ. Suppose that after the
first phase the values L(t), 0 ≤ t ≤ N , are computed. First, the values L′(t) have
to be initialised: L′(t) := L(t) for 0 ≤ t ≤ N − 1.

For 0 ≤ t ≤ N − tm − 1 we set

y
t
(T (m)) = (yt,t1 , yt,t2 , . . . , yt,tm

)T := (zt+t1 , zt+t2 , . . . , zt+tm
)T .

We first describe the case for condition B2 and then the general case for B3.
For every i, i′ ∈ Γ (T (m)) and i 6= i′ with

λ2(f, Γ, T (m), y
t
(T (m)), i, i′) ≥ λmin,2

we receive the equation
st+i = st+i′ ,

which holds with probability p2(f, Γ, T (m), y
t
(T (m)), i, i′).

Then we define

g :=

{
0, if p2(f, Γ, T (m), y

t
(T (m)), i, i′) ≥ 0.5,

1, else.

and update the log-likelihood values for t + i and t + i′:

L′(t + i) := L′(t + i) + (−1)g · L(t + i′) and

L′(t + i′) := L′(t + i′) + (−1)g · L(t + i).

If we have correlations for condition B3, with

λ3(f, Γ, T (m), y
t
(T (m)), d) ≥ λmin,3,

d = (di1 , di2 , . . . , diM′ )
T , and w(d) ≥ 2, we set

g :=

{
0, if p3(f, Γ, T (m), y

t
(T (m)), d) ≥ 0.5,

1, else.

From the conditional correlation coefficient we receive the equation

M ′

∑

j=1

dij
st+ij

= 0
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which holds with probability p3(f, Γ, T (m), y
t
(T (m)), d).

For any 1 ≤ j ≤ M ′ und dij
6= 0 the value L′(t + ij) is updated as:

L′(t+ij) := L′(t+ij)+(−1)g ·
∏

1≤j′≤M′,j 6=j′

di
j′

6=0

sgn(L(t+ij′))· min
1≤j′≤M′,j 6=j′

di
j′

6=0

(|L(t+ij′)|).

With the values L′(t) we can compute the intermediate sequence r̃ as follows:

rt :=







0, if L′(t) > 0,
1, if L′(t) < 0,
0 or 1, if L′(t) = 0.

The computational effort of phase 2, without the pre-computations for the
coefficients, is at most O(NM ′2) if we only consider condition B2, and at most
O(N2M ′

) if we also consider condition B3. Note that in general only a few
coefficients have values ≥ λmin,2 resp. ≥ λmin,3 so that the real effort is much
less.

Phase 3 In the third phase the attacker has the choice between applying a
fast correlation attack on the sequence r̃ or forming an information set of the
sequence r̃. We describe two possibilities to perform the latter approach and
refer the reader to the literature on fast correlation attacks for the former.

1. Choose the largest k′ > k values of |L(t)|, 0 ≤ t ≤ N − 1, randomly select
k of them, and solve the corresponding linear system to obtain the initial
state of the LFSR. If this state generates the observed sequence z̃, then the
right solution is found. If not, try the next k randomly chosen values.

2. Alternatively, we can search for a time value t, for which

L′
min(t) := min

0≤j≤k−1
|L′(t + j)|

is maximal. Solve the independent set rt, rt+1, . . . , rt+k−1 to an initial state
r0 = (r0, r1, . . . , rk−1)

T , and check, if it generates the sequence z̃.

4.3 Summary and discussion

We have implemented the conditional correlation attack and the hybrid correla-
tion attack. An illustrative example for conditional correlation coefficients and
the error correction of phase 1 of the hybrid correlation attack can be found
in the appendix B. Even if the error correction of phase 1 and 2 is small, it
may be good enough to let a fast correlation attack succeed in phase 3. Phase 1
and 2 of the hybrid correlation attack can be further improved by choosing not

only one T (m), but different T
(m1)
1 , T

(m2)
2 , . . . with minimal intersection, small

mi ≥ 1, i ≥ 1 and
∑

i≥1 mi > m, and computing and applying the corresponding

conditional correlation coefficients λl(f, Γ, T
(mi)
i , y(T

(mi)
i ), .).
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5 The concentration attack

The concentration attack combines methods from the hybrid correlation attack
and the fast correlation attack described in [MFI01a]. The idea is to concentrate
the log-likelihood values L′(t) after phase 2 of the hybrid correlation attack to
the elements at time B, B + 1, . . . , D − 1, where D ≥ k and the first B bits
(positions 0, 1, . . . , B−1) of the LFSR sequence s̃ are guessed. The concentration
is done via check equations which are derived from the recurrence relation of the
LFSR sequence. From the first D bits the most reliable are chosen to form an
information set of size k. The concentration attack can be subdivided into the
following steps.

Step 1 Perform phase 1 and 2 of the hybrid correlation attack and receive the
log-likelihood values L′(t).

Step 2 Choose the parameters 1 ≤ B ≤ k, D ≥ k and W ≥ 1 and compute the
following consistency and check equations for 1 ≤ w ≤ W :
2a Set of consistency equations:

E(w) :=

{

({j1, j2, . . . , jw},

w∑

i=1

c
(ji−k)) : k ≤ j1 < . . . < jw ≤ N − 1,

w∑

i=1

c
(ji−k) = ak

}

2b Set of check equations for B ≤ t ≤ k − 1:

E(t, w) :=

{

({j1, j2, . . . , jw},
w∑

i=1

c
(ji−k)) : k ≤ j1 < . . . < jw ≤ N − 1,

w∑

i=1

c
(ji−k) = at

}

2c Set of check equations for k ≤ t ≤ D − 1:

E(t, w) :=

{

({j1, j2, . . . , jw}, c
(t−k) +

w∑

i=1

c
(ji−k)) : D ≤ j1 < . . . < jw ≤ N − 1,

c
(t−k) +

w∑

i=1

c
(ji−k) = ak

}

,

where at = (at,0, at,1, . . . , at,k−1)
T ∈ (GF(2) ∪ {∗})k, with

at,i :=







∗, if 0 ≤ i ≤ B − 1,
1, if i = t and t 6= k,
0, else.

For B ≤ t ≤ k − 1 we have

at = (∗, . . . , ∗
︸ ︷︷ ︸

B

, 0, . . . , 0
︸ ︷︷ ︸

t−B

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−t−1

)T

and
ak = (∗, . . . , ∗

︸ ︷︷ ︸

B

, 0, . . . , 0
︸ ︷︷ ︸

k−B

)T .
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Step 3 Choose appropriate large log-likelihood bounds L′′
min and L′′′

min.
Step 4 Guess the first B bits s0, s1, . . . , sB−1, set L′′(t) := L′(t) for 0 ≤ t ≤ N ,

and evaluate the consistency and check equations E(w) and E(t, w) to receive
the log-likelihood values L′′′(t) for B ≤ t ≤ D − 1 (details below).

Step 5 Select the most reliable bits to form an information set of size k.
Step 6 Check if the current solution generates the observed keystream z̃. If not,

go to step 4 and make the next guess, else the correct solution is found.

Note that the computation of the conditional correlation coefficients in step
1 and of the check equations in step 2 can be done in the pre-computations.
Efficient algorithms can be derived from methods presented in [CJM02] and
[Wag02].

We will now describe the tests and evaluations in step 4. Suppose we have
guessed the bits s0, s1, . . . , sB−1. First it is tested if the guess is correct and is
consistent:

1. Check if for 0 ≤ t ≤ B − 1 and |L′′(t)| ≥ L′′
min, (−1)st = sgn(L′′(t)) is valid.

2. For a test equation ({j1, j2, . . . , jw}, (b0, . . . , bk−1)
T ) in E(w) we can estab-

lish the equation
∑w

i=1 sji
=

∑B−1
i=0 bisi =: b. If minw

i=1(|L′′(ji)|) ≥ L′′
min,

then we test, if
∏w

i=1 sgn(L′′(ji)) = (−1)b holds.

If one of these conditions is not fulfilled, then the guess is not correct with
high probability and we try the next guess.

If all conditions are valid, then we set L′′(j) = (−1)b, with b =
∑B−1

i=0 bisi,
for any ({j}, (b0, . . . , bk−1)

T ) in E(1) and afterwards set L′′′(t) = L′′(t) for 0 ≤
t ≤ D − 1.

We now briefly describe how to evaluate a check equation E(t, w), B ≤ t ≤
k − 1, in step 4 under a guess for s0, s1, . . . , sB−1. Suppose we have an equation
({j1, j2, . . . , jw}, (b0, . . . , bk−1)

T ) in E(t, w). Note, that we have

bi =







0 or 1, if 0 ≤ i ≤ B − 1,
1, if i = t,
0, else.

Then the following equations can be established

w∑

i=1

c(ji−k) = (b1, . . . , bB−1, 0, . . . , 0, 1, 0, . . . , 0)T

sT
0

w∑

i=1

c(ji−k) = sT
0 (b1, . . . , bB−1, 0, . . . , 0, 1, 0, . . . , 0)T

w∑

i=1

sji
=

B−1∑

i=0

bisi + st

The last equation can be rewritten as

st =

w∑

i=1

sji
+

B−1∑

i=0

bisi =

w∑

i=1

sji
+ b
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and the transformation of this equation in an update of the corresponding log-
likelihood value is as follows

L′′′(t) := L′′′(t) + (−1)b ·
w∏

i=1

sgn(L′′(ji)) ·
w

min
i=1

(|L′′(ji)|).

The evaluation of check equations in E(t, w) for k ≤ t ≤ D − 1 is straight
forward.

The expected number of check equations µ(t, w) in E(t, w) is given by 2B−k
(
N−k

w

)

for B ≤ t ≤ k − 1 and 2B−k
(
N−D

w

)
for k ≤ t ≤ D − 1 ([MFI01b]). Note that the

values µ(t, w) does not depend on a particular connection polynomial c.
The number of check equations µ(t, w) can be increased significantly by a

factor of 2t−B if we evaluate the equations in step 4 in the order B,B+1, . . . ,D−
1. The estimated values L′′′(t′) can then included in the evaluation of L′′(t) for
t′ ∈ {B,B + 1, . . . , t− 1}, if |L′′′(t′)| exceeds a threshold L′′′

min. The components
of the vector at are then given by

at,i :=







∗, if 0 ≤ i ≤ t − 1,
1, if i = t and t 6= k,
0, else.

6 Conclusions

With the hybrid correlation attack against the NLFG we have proposed a gen-
eral framework for embedding any fast correlation attack against LFSR-based
keystream generators. The hybrid correlation attack reduces the real error prob-
ability introduced by the nonlinearity of the filter function f so that fast corre-
lation attacks will be more successful and efficient.

Note that the application of the hybrid correlation and concentration attack
is only possible if there are conditional correlations for conditions B1 or B4, which
are greater than zero. With Theorem 1, a class of filter functions, is classified
for which these conditional correlation coefficients are zero for any m ≥ 1 and
arbitrary T (m) and Γ . With the linear transformation attack (end of section 2)
the attacker is able to find an equivalent NLFG for which the filter function
doesn’t have the structure as required in Theorem 1 and conditional correlation
coefficients for B1 and B4 greater than zero may exist. But in this case, M ′

which determines the computational effort for computing the coefficients will in
most cases be much larger than the original value.

The concentration attack uses the first and second phase of the hybrid corre-
lation attack and then concentrates the computed log-likelihood values to D−B
unknowns with the help of a partial search over 2B possible states.

A convergence analysis for the two new attacks and comparisons with other
attacks against the NLFG are still missing. We think that these tasks can only
be solved if more insight in the cumulated frequency values of the conditional
correlation coefficients is gained.
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A Examples for notations and definitions

In this section we provide some examples on the notations and definitions intro-
duced in section 3.
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Consider a NLFG with the filter function f : GF(2)3 → GF(2), f(x1, x2, x3) =
x1x2 + x2x3 + x3, Γ = (0, 3, 10) and an arbitrary LFSR of length k = 40. f has
n = 3 inputs, is balanced, has an algebraic degree of 2, and a nonlinearity of
Nf = 2 (pe,f = 0.25).

Let m = 2 and the output time pattern T (2) = (t1, t2) = (0, 3), and so
T (1) = (0). This yields Γ (t1) = (0, 3, 10), Γ (t2) = (3, 6, 13), Γ (T (1)) = (0, 3, 10)
and Γ (T (2)) = (0, 3, 10, 6, 13). Note that new numbers in the step from Γ (T (1))
to Γ (T (2)) are appended at the tail of Γ (T (1)). The cardinality M ′ of Γ (T (2)) is
5.

Γ (T (2)) includes the indices of the inputs from the sequence s̃ to the filter
function f to produce the keystream output at time t1 = 0 and t2 = 3.

For the above configuration we compute the probability p1(f, Γ, T (2), 10, (0, 1)T )
and the corresponding conditional correlation coefficient λ1(f, Γ, T (2), 10, (0, 1)T )
for condition B1. For the computation of these values the sequence s̃ is treated
as a random sequence with P (st = 0) = P (st = 1) = 0.5 for any t ≥ 0.

The set S of inputs to the filter function f , which procduce the output
y(T (2)) = (0, 1)T at time t1 = 0 and t2 = 3, is

S = {(0, 0, 0, 0, 1)T
, (0, 1, 0, 0, 1)T

, (0, 1, 0, 1, 0)T
, (0, 1, 0, 1, 1)T

,

(0, 1, 1, 0, 1)T
, (0, 1, 1, 1, 0)T

, (0, 1, 1, 1, 1)T
, (1, 0, 0, 0, 1)T }.

The subset S′ of S, for which the condition s10 = 0 holds, is given by

S
′ = {(0, 0, 0, 0, 1)T

, (0, 1, 0, 0, 1)T
, (0, 1, 0, 1, 0)T

, (0, 1, 0, 1, 1)T
, (1, 0, 0, 0, 1)T }.

Thus, we have p1(f, Γ, T (2), 10, (0, 1)T ) = 5/8 = 0.625 and λ1(f, Γ, T (2), 10, (0, 1)T ) =
|0.625 − 0.5| = 0.125.

B A toy example for the application of the hybrid

correlation attack

In this example we show how the first phase of the hybrid correlation attack (see
section 4) is applied.

We consider the filter function f : GF(2)9 → GF(2),

f(x1, . . . , x9) = x1x2 + x3x4 + x5x6 + x7x8 + x9

with Nf = 240 and pe,f ≈ 0.469. Also let Γ = (0, 1, . . . , 8), the connection poly-
nomial c ∈ GF(2)[x] be primitive and of degree k = 40. In Fig. 4 the normalised
cumulated frequency values h′

1(p) = 2−mh′
1(f, Γ, T (m), p) of the conditional cor-

relation coefficients for condition B1 are displayed for different values of m,
namely for m = 3, 5 and 10 and T (m) = (0, 1, . . . ,m − 1).

For 100 different initialisations of the NLFG we have generated keystream
sequences of length N = 10000. The mean value of the error probability was
pe,f,real = P (et = 1) ≈ 0.455 and was every time greater than 0.45. On z̃ we
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applied phase 1 of the hybrid correlation attack with condition B1 for m =
3, 5 and 10. The average improvements ∆pe,f,real and the rest error probability
pe,1 + pe,2 = P (e1,t = 1) + P (e2,t = 1) are displayed in Table 1. Even for m = 3
the rest error probability achieves pe,1+pe,2 = 0.438416 so that a fast correlation
attack in the third phase of the hybrid correlation attack on the sequence r̃ would
be successful.

In this example, the application of phase 2 of the hybrid correlation is also
possible and brings further error correction.
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10

h’(p)

0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8p
Fig. 4. The normalised cumulated frequency values h′(p) = 2−mh′

1(f, Γ, T (m), p) of
the conditional correlation coefficients for m = 3 (left), 5 (middle) and 10 (right) for
condition B1.

m ∆pe,f,real pe,1 + pe,2

3 0.017207 0.438416

5 0.036875 0.417820

10 0.058812 0.395700

Table 1. Improvements and rest error probability after applying the first phase of the
hybrid correlation attack.
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C Introduction to log-likelihood algebra

In this section we give an introduction to the log-likelihood algebra, which was
introduced in [HOP96] and is used in the hybrid correlation and the concentra-
tion attack in this paper.

Consider a binary random variable X ∈ GF(2) with probability 0 ≤ P (X) ≤
1, i.e. P (X = 0) + P (X = 1) = 1.

The log-likelihood L(X) for the random variable X is then defined as

L(X) := ln

(
P (X = 0)

P (X = 1)

)

= ln

(
P (X = 0)

1 − P (X = 0)

)

.

L(X) is strong monotone and takes values from −∞ to +∞ for 0 ≤ P (X =
0) ≤ 1. L(X) = 0 if P (X = 0) = 0.5. If L(X) > 0 then the event X = 0 is more
likely than X = 1. Such L(X) is a measure for the reliability of the event X = 0.

If we consider two statistic independent, binary random variables X1 ∈ GF(2)
and X2 ∈ GF(2) with probability P (X1) and P (X2).

Then we have for the probability of the summation of the two random vari-
ables X1 and X2

P (X1 + X2 = 0) = P (X1 = 0) · P (X2 = 0) + P (X1 = 1) · P (X2 = 1)

= P (X1 = 0) · P (X2 = 0) + (1 − P (X1 = 0)) · (1 − P (X2 = 0))

= 1 + 2P (X1 = 0) · P (X2 = 0) − P (X1 = 0) − P (X2 = 0).

With

P (X = 0) =
eL(X)

1 + eL(X)

we receive the log-likelihood relation of the summation as

L(X1 + X2 = 0) = ln

(
1 + 2P (X1 = 0)P (X2 = 0) − P (X1 = 0) − P (X2 = 0)

P (X1 = 0) + P (X2 = 0) − 2P (X1 = 0)P (X2 = 0)

)

= ln

(
1 + eL(X1)eL(X2)

eL(X1) + eL(X2)

)

≈ sgn(L(X1)) · sgn(L(X2)) · min(|L(X1)|, |L(X2)|).

This relation can be generalised to the summation of n statistic independent,
binary random variables X1, . . . ,Xn ∈ GF(2) with

tanh
(x

2

)

=
ex − 1

ex + 1

to

L

(
n∑

i=1

Xi = 0

)

= ln




1 +

∏n
i=1 tanh

(
L(Xi)

2

)

1 − ∏n
i=1 tanh

(
L(Xi)

2

)





≈
n∏

i=1

sgn(L(Xi)) · min
1≤i≤n

(|L(Xi)|).
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Such the reliability of the summation of n statistic independent, binary vari-
ables in GF(2) can be approximated with the minimum value over all involved
log-likelihood values.
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