
On Modeling IND-CCA Seurity in

Cryptographi Protools

Dennis Hofheinz, J�orn M�uller-Quade, and Rainer Steinwandt

IAKS, Arbeitsgruppe Systemsiherheit, Prof. Dr. Th. Beth,

Fakult�at f�ur Informatik, Universit�at Karlsruhe, Am Fasanengarten 5,

76 131 Karlsruhe, Germany

Abstrat. Two ommon notions of seurity for publi key enryption

shemes are shown to be equivalent: we prove that indistinguishabil-

ity against hosen-iphertext attaks (IND-CCA) is in fat polynomi-

ally equivalent to (yet \slightly" weaker than) seurely realizing the ideal

funtionality F

PKE

in the general modeling of ryptographi protools

of [Can01a℄. This disproves in partiular the laim that seurity in the

sense of IND-CCA stritly implies seurity in the sense of realizing F

PKE

(see [Can01a℄). Moreover, we give onrete redutions among suh se-

urity notions and show that these relations hold for both uniform and

non-uniform adversarial entities.
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1 Introdution

Judging the seurity of publi key enryption shemes using formal methods

has been introdued in the pioneering work [GM84℄, reating the notion of

semanti seurity of a given publi key ryptosystem. To treat situations in

whih an attaker does not remain \passive", but has aess to a deryption

faility, several notions of seurity for publi key ryptosystems have been pro-

posed subsequently; in partiular, when not onsidering a random orale avail-

able [BR95,Sho01℄, \indistinguishability of enryptions with respet to hosen-

iphertext attaks" (IND-CCA, see [RS92℄) is the most stringent generally a-

epted seurity notion for publi key ryptography (see, for example, [BDPR98℄).

On the other hand, when onsidering onrete redutions of adversaries and

omparing their exat omplexities and running times, it turns out that a no-

tion alled \real-or-random seurity with respet to hosen-iphertext attaks"

(ROR-CCA) even implies IND-CCA stritly [BDJR97℄. (Note that in [BDJR97℄,

de�nitions and results are motivated by symmetri ryptography; however, as

mentioned therein, all de�nitions and results immediately arry over to the set-

ting of publi key ryptography.)

Now in [Can01a℄, a general framework for desribing seurity properties of

multi-party protools is proposed. In this framework the multi-party protool in

question is ompared to an ideal funtionality whih represents what we ideally

expet our protool to do. In partiular, to apture on a high level what we



expet from a publi key ryptosystem, in [Can01a℄ an ideal funtionality F

PKE

is desribed (see also Appendix A). Indeed, a publi key ryptosystem an be

regarded as a protool aiming at seurely realizing the ideal funtionality F

PKE

,

and in [Can01a℄ it is laimed that, for a publi key ryptosystem, IND-CCA

seurity stritly implies the property of seurely realizing F

PKE

.

Unfortunately, the proof of the impliation in question assumes adversaries

attaking in the IND-CCA sense to be non-uniform mahines, in ontrast to the

ommon representation of suh adversaries as algorithms without external in-

put (see, e. g., [BDJR97,BDPR98℄). Furthermore, in Setion 2 we show that the

ounterexample given in [Can01a, Setion 8.2.2℄ for the \stritly" statement does

not apply. In fat, subsequently we prove that seurity in the ROR-CCA sense

and seurely realizing F

PKE

in the modeling of [Can01a℄ are equivalent notions

of seurity for a publi key ryptosystem, if we restrit ompletely to uniform or

non-uniform adversarial entities. This implies (polynomial) equivalene with the

notion of IND-CCA with respet to the hosen lass of adversaries. More speif-

ially, we give onrete redutions (f. [BDJR97℄) between adversaries attaking

some publi key ryptosystem P in the ROR-CCA sense and distinguishers be-

tween the ideal funtionality F

PKE

and P in the sense of [Can01a℄; it thereby

turns out that we have a \tight" orrespondene between them. As a tehnial

tool whih might be of interest in itself, we prove that the omposition theorem

of [Can01a℄ still holds when restriting to uniform environments with polynomial

total running time.

2 Preliminaries

We start by �xing some notation. For more details on formal seurity notions like

ROR-CCA and on multi-party omputations we refer to [BDJR97℄ and [Can01a℄,

respetively. A short restatement of the most relevant de�nitions for the sequel

an also be found in the appendix.

To be able to ompare adversarial entities in the sense of [Can01a℄ to ad-

versaries attaking a publi key ryptosystem P in the sense of [BDJR97℄, we

will regard an adversary in the latter sense as a family A = fA

k

g of interative

Turing mahines (ITMs) where ITM is to be understood as in [Can01a℄. When

interpreting algorithms as (families of) ITMs, we will assume a onvenient def-

inition of \ode size" given. One ould think here of a suitable ombination of

the number of states and the size of the alphabet of the Turing mahine in ques-

tion. Furthermore, a sequene A = fA

k

g

k2N

of ITMs will be alled polynomially

bounded, if there is a single polynomial p, suh that for every A

k

we have

1. the ode size of A

k

is less than p(k), and

2. when ativated, A

k

will enter either a waiting or a halt state after running

at most p(k) steps.

Finally, a sequene A = fA

k

g

k2N

of ITMs will be alled a non-uniform family

of ITMs. If A

1

= A

k

for all k 2 N, then the family A is said to be uniform.
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2.1 Seurity of publi key shemes against hosen iphertext attaks

At this point, we should larify what exatly we mean by a publi key enryption

sheme: a publi key enryption sheme is a triple P = (K; E ;D) of algorithms

whih an be exeuted by a polynomially bounded, uniform family of ITMs. P

onsists of the key generation algorithm K, whih takes as input the seurity

parameter k and outputs a private key-publi key pair (d; e). The enryption

algorithm E (parametrized by the publi key e) outputs on input of a plaintext m

a orresponding iphertext . Finally, the deryption algorithm D (parametrized

by the seret key d) outputs on input of a iphertext  either a plaintext m

or a speial symbol indiating that the iphertext  is invalid. We insist on

D

d

(E

e

(m)) = m for all private key-publi key pairs (d; e), plaintexts m, and

at all times. Also, we will freely identify a publi key enryption sheme P

with the orresponding protool �

P

geared towards realizing F

PKE

(see [Can01a,

Setion 8.2.2℄ for more details on �

P

).

For an adversary A = fA

k

g

k2N

attaking some publi key enryption sheme

in the ROR-CCA sense|i. e., taking part in one of the respetive experiments

desribed in [BDJR97℄|we de�ne the (total) running time of A

k

to be the worst-

ase number of steps any of the two ROR-CCA experiments de�ned in [BDJR97℄

runs (ounting the steps used for key generation, enryptions, deryptions, and

of ourse for exeuting A

k

itself) plus the ode size of A

k

. This notion oinides

with the notion of running time de�ned in [BDJR97℄.

The advantage for suh an adversary A in the ROR-CCA game is de�ned

in [BDJR97℄ through

Adv

ror-a

P;A

(k) := P(Exp

ror-a-1

P;A

(k) = 1)�P(Exp

ror-a-0

P;A

(k) = 1):

For U 2 funiform, non-uniformg, we all a publi key enryption sheme P

seure in the sense of ROR-CCA with respet to U -adversaries if for every U -

adversaryA attaking P in the ROR-CCA sense and having a polynomial (in the

seurity parameter k) total running time, Adv

ror-a

P;A

(k) is a negligible funtion

in the seurity parameter k. At this, a funtion f : N ! R, k 7! f(k) is negligible

(in k), if for eah  2 N there is a k



2 N suh that jf(k)j < k

�

for all k > k



.

One easily veri�es that all the redutions of adversaries given in [BDJR97℄

still apply with these onventions, both for uniform and non-uniform adversaries;

in partiular, ROR-CCA seurity with respet to uniform adversaries is exatly

the same notion as the one de�ned in [BDJR97℄, whereas ROR-CCA seurity

with respet to non-uniform adversaries seems to be a stronger notion.

2.2 Seurity with respet to realizing F

PKE

We will assume all partiipants in a protool (inluding adversarial entities) to be

polynomially bounded.

1

In [Can01a℄, non-uniformity is expressed via an external

1

Note that this de�nition of polynomially bounded refers only to a single ativation.

In priniple it is possible to ativate a polynomially bounded party exponentially

often. Also it is worth pointing out, that enforing a polynomial total \life-time" of

eah party through expliit life-time bounds an ause tehnial diÆulties [Can02℄.
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input z = z

k

(depending on the seurity parameter k). For relating seurity in

the sense of [Can01a℄ to ROR-CCA or IND-CCA seurity, we assume the used

extra input to be \hardwired", and therefore utilize families A

(z)

= fA

(z)

k

g

k2N

of ITMs without further input, where z

k

is \hardwired" into A

(z)

k

.

Originating in the idea of omparing a \real" protool with an idealized ver-

sion, in [Can01a℄, several equivalent de�nitions of what it means to seurely

realize an ideal funtionality are given. For our purposes, it is onvenient to

use [Can01a, Setion 4.4, De�nition 4℄, where instead of an \arbitrary" adver-

sary A only a so-alled dummy adversary

~

A is used. Basially, the latter simply

exeutes instrutions of a prede�ned form, whih are obtained from an envi-

ronment mahine Z , modeled as a non-uniform family Z = fZ

k

g of ITMs.

Essentially, the aim of an environment mahine is to distinguish between

(a) running with parties P

1

; : : : ; P

n

(modelled as uniform families of ITMs)

whih are exeuting protool � and the (uniform) dummy adversary

~

A, and,

on the other hand,

(b) running with (uniform) dummy parties

~

P

1

; : : : ;

~

P

n

, whih at as a \ommu-

niation relay" to the (uniform) ideal funtionality F , the ideal funtionality

F itself, and the simulator S (in plae of the dummy adversary

~

A).

The apabilities of the simulator S in ase (b) are rather limited (f. [Can01a℄)

and used to model `inevitable' attaks. Now, if a protool seurely realizes an

ideal funtionality F , then for any �xed Z the respetive output distributions

in (a) and (b) may only di�er by a funtion whih is negligible in the seurity

parameter; for a single protool run, this seurity parameter k is �xed simulta-

neously for all partiipating ITMs. The former requirement reets the desirable

ability of the simulator S to \mimik" any attak arried out by the adversary

~

A on protool � well enough suh that no environment an tell the di�erene

between the ideal funtionality F and protool �.

For an environment mahine Z = fZ

k

g that tries to distinguish between an

\ideal" and a \real" protool, for any �xed k we de�ne the (total) running time

of Z

k

as follows: the (total) running time of Z

k

is the worst-ase total number of

steps all ITMs partiipating in the protool exeution (inluding the adversary

and Z

k

itself) run in the real model (i. e., when the parties P

i

behave aording

to �) plus the ode size of Z

k

. Further on, the advantage of Z in distinguishing

exeution of � from F when running with simulator S in the ideal model and

with the dummy adversary

~

A in the real model is de�ned as

Adv

F ;�

S;Z

(k) :=

�

�

�

P(Z

k

! 1 j �;

~

A)�P(Z

k

! 1 j F ;S)

�

�

�

;

where k denotes the seurity parameter. In other words, Adv

F ;�

S;Z

(k) is the ab-

solute value of the di�erene between the probabilities of Z outputting 1 in the

real and in the ideal model. Saying that protool � seurely realizes funtionality

F now boils down to saying that there exists a simulator S, so that for every

environment Z , the funtion Adv

F ;�

S;Z

(k) is negligible in k. (This an be seen

by omparing our modeling of non-uniformity by families of Turing mahines to

that of [Can01a℄, whih employs additional environmental inputs z.)
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2.3 On relating ROR-CCA, IND-CCA, and F

PKE

Espeially when relating adversaries attaking a publi key enryption sheme

P in a sense similar to ROR-CCA and environments distinguishing between P

(interpreted as a protool) and F

PKE

, it seems helpful to restrit the latter envi-

ronments to the lass of environments with polynomial total running time; oth-

erwise, the total running time of an environment alone might not be bounded by

any polynomial although onfusingly it ould be alled \polynomially bounded":

imagine an environment periodially querying the adversary just for the sake of

giving away ontrol for a moment, thereby staying polynomially bounded in the

sense above, yet doing this an exponential (in k) number of times.

Observe now that if we ompletely restrit to environments Z having poly-

nomial total running time, inspetion of the proof in [Can01a, Setion 5.4℄ shows

that the omposition theorem still holds. The mentioned omposition theorem

is ruial in the work of [Can01a℄; it enables us to formulate protools � whih

are using some ideal funtionality F freely, without losing seurity when later

substituting alls to F by invoations of some sub-protool � whih in turn re-

alizes F . Yet the proof of the omposition theorem does not apply anymore if

we ompletely restrit to uniform environments Z ; in the next setion, we will

give a small modi�ation to the proof in question, so that it will still work when

restriting to uniform environments with polynomial running time.

This variant of the omposition theorem will turn out to be useful when

trying to relate ROR-CCA and IND-CCA seurity with the ideal funtionality

F

PKE

already mentioned. Here, we will propose protools realizing F

PKE

only

with respet to non-adaptive adversaries; a non-adaptive adversary is not allowed

to orrupt parties during the exeution of the protool in question. In partiular,

the non-adaptive dummy adversary is bound to ignore orruption requests from

the environment during the exeution of the protool. In the sequel we show

that realizing F

PKE

in the presene of non-adaptive adversaries is (polynomially)

equivalent to seurity in the sense of IND-CCA.

Remark 1. In [Can01a℄ it is laimed that, for a publi key ryptosystem, IND-

CCA seurity stritly implies the property of seurely realizing F

PKE

. To obtain

a `separating' example, an IND-CCA-seure enryption sheme P is slightly

modi�ed: to eah iphertext a 1 is appended after enryption, while deryption

is preeded by stripping o� the last bit of a iphertext|without validating it to

be a 1. The modi�ed sheme, whih is learly not seure in the IND-CCA sense,

is laimed to be still realizing F

PKE

; yet onsider the following environment Z :

after invoking key-generation,Z ativates some party P

i

with (Enrypt,id,e,r)

for a random r, thereby obtaining a iphertext  = �1. Now deryption of �0

yields r only in the real model, hene it is possible to distinguish the real protool

from the ideal proess and the modi�ed sheme does not realize F

PKE

.

3 Composition in the uniform ase

Here we will desribe a small modi�ation to the proof of the omposition theo-

rem given in [Can01a, Setion 5.4℄, so that we are able to prove the latter theorem
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even in the ase of uniform environment mahines with polynomial total running

time.

Proposition 1. The omposition theorem of [Can01a℄ holds even if we restrit

the omplete framework desribed in [Can01a℄ to uniform environments with

polynomial total running time.

Proof. We give a proof whih works both for uniform and non-uniform environ-

ments. In fat, only a small modi�ation of the onstrution used to prove the

omposition theorem in [Can01a℄ is neessary. To see this, reall that, assuming

an environment Z suessfully distinguishing between an exeution of protool

� in the F-hybrid model and the exeution of the omposed protool �

�

(where

protool � seurely realizes F with respet to a ertain simulator S mimiking

attaks on � arried out by

~

A), the idea is to onstrut an environment Z

�

whih suessfully distinguishes between F and protool �, thereby leading to a

ontradition.

Let's �x a|possibly uniform|environment Z = fZ

k

g and a seurity param-

eter k. With respet to the simulator H expliitly onstruted in [Can01a℄, let

hyb

F

(i)

�;H;Z

(k) denote the probability distribution of Z

k

's output when running

with protool �, where alls to the �rst i instanes of F invoked by � are \redi-

reted" to ideal instanes of F , whereas the remaining instanes of F are handled

by protool �. Let m(k) be an upper bound for the number of F-instanes used

during the exeution of �. Note that m(k) may be assumed to be a polynomial

in the seurity parameter k. Thus, we an assume that the funtion m and so the

value m(k) is known to a, depending on the uniformity of Z , possibly uniform

environment Z

0

�

= f(Z

0

�

)

k

g where (Z

0

�

)

k

�rst guesses a value l 2 f1; : : : ;m(k)g

and then proeeds exatly as environment (Z

�

)

k

(desribed in [Can01a℄) with

input l. We �nd

Adv

F ;�

S;Z

0

�

(k) =

�

�

�

P

�

(Z

0

�

)

k

! 1 j �;

~

A

�

�P

�

(Z

0

�

)

k

! 1 j F ;S

�

�

�

�

=

1

m(k)

�

�

�

�

�

�

m(k)

X

i=1

P

�

(Z

0

�

)

k

! 1 j �;

~

A; l = i

�

�P

�

(Z

0

�

)

k

! 1 j F ;S; l = i

�

�

�

�

�

�

�

=

1

m(k)

�

�

�

�

�

�

m(k)

X

i=1

hyb

F

(i�1)

�;H;Z

(k)� hyb

F

(i)

�;H;Z

(k)

�

�

�

�

�

�

=

1

m(k)

�

�

�

hyb

F

(0)

�;H;Z

(k)� hyb

F

(m(k))

�;H;Z

(k)

�

�

�

=

1

m(k)

�

�

�

P

�

Z

k

! 1 j �

�

;

~

A

�

�P

�

Z

k

! 1 j �

F

;H

�

�

�

�

=

1

m(k)

Adv

�

F

;�

�

H;Z

(k);

whih is, by assumptions about Z and m(k), not negligible in k. ut
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4 Relating ROR-CCA and F

PKE

The spei�ations of the ideal funtionalities F

PKE

and F

M-SMT

from [Can01a℄,

as used in the following, are given in Appendix A. We remark that in [Can01a℄

it is not spei�ed how F

PKE

behaves when being asked multiple times for a key

generation (possibly by di�erent parties). Rather, a request for key generation is

to be the �rst and only the �rst all to F

PKE

. In e�et, for F

PKE

to be seurely

realizable at all (no matter how we might \omplete" its spei�ation), we need

to restrit to environments whih use this funtionality as intended ; i.e. every

environment trying to distinguish F

PKE

from some protool P should only be

allowed to send one key generation query to the funtionality, and this query

has to be sent before any other queries.

Of ourse, in view of the omposition theorem, that also imposes a limitation

on the use of F

PKE

. Namely, in the ase of protool � working in the F

PKE

-hybrid

model as presented below, this translates into the following restrition: environ-

ments trying to distinguish exeution of � from the ideal funtionality F

M-SMT

should be fored to send some message (reeiver,id) as the �rst query to the

funtionality, but no further suh \initialization queries". (The ideal funtional-

ity F

M-SMT

enables parties to ommuniate seurely in the following sense: after

being initialized by some party P

i

, F

M-SMT

allows any other party to send mes-

sages to P

i

in a way that the adversary gains no other information than length

information about the sent messages.) In partiular, all the results presented in

this setion are to be seen in the light of these restritions.

2

The next proposition gives \tight" redutions between di�erent types of at-

takers, i. e., there is an expliit relation between the respetive advantages, and

the redutions essentially preserve running time. As we did not �x, e. g., the

notion of ode size, we annot obtain expliit formul� relating running times

(whih by de�nition depend on the respetive ode size).

Proposition 2. Let P := (K; E ;D) be a publi key enryption sheme. Let

U 2 funiform, non-uniformg. Then, in the following sense, we have a tight

orrespondene between adversaries attaking P in the ROR-CCA game and

environments distinguishing F

PKE

from protool P in the presene of the non-

adaptive dummy adversary:

1. For every U-adversary A in the ROR-CCA game, we an onstrut a U-

environment Z so that for any simulator S we have

Adv

F

PKE

;P

S;Z

(k) =

jAdv

ror-a

P;A

(k)j

2

:

2

Another approah to overome these problems, thereby avoiding restritions on en-

vironments and possible obstales regarding the appliability of the omposition

theorem, ould be based on ideas from [PW00℄. Namely, a family of funtionalities

fF

PKE;i

g

P

i

ould be used, where F

PKE;i

enables only the party P

i

to generate a key

and to derypt. A similar onstrution for F

M-SMT

is possible.
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2. There is a simulator S

ROR

, so that for any U-environment Z interating

with the non-adaptive dummy adversary, there exists a U-adversary A in

the ROR-CCA game with

jAdv

ror-a

P;A

(k)j = Adv

F

PKE

;P

S

ROR

;Z

(k):

Proof. 1. Let A = fA

k

g be a U -adversary attaking P in the ROR-CCA sense.

From A, we will onstrut a U -environment Z = fZ

k

g distinguishing be-

tween F

PKE

and P with the laimed advantage. For this, we de�ne two ex-

periments E

1

andE

2

(to be run by an environment in the setting of [Can01a℄)

as follows: for a given seurity parameter k, E

1

runs A

k

as a blak box with

aess to the failities of F

PKE

and outputs whatever A

k

outputs. E

2

is iden-

tial to E

1

, exept for the responses to A

k

upon enryption requests: if A

k

requests enryption of a message m, E

2

responds with F

PKE

's enryption of

some random plaintext of the same length as m (this random plaintext is

hosen anew upon eah enryption request).

We now desribe the environment Z : when ativated, Z

k

ips a oin r 2

f1; 2g. If r = 1, then Z

k

runs experiment E

1

and outputs 1 if and only if

E

1

outputs 1. On the other hand, if r = 2, then Z

k

runs experiment E

2

and

outputs 1 if and only if E

2

does not output 1.

For analysis, let's �x an arbitrary simulator S and a seurity parameter k

and denote by �

R

i

the probability that experiment E

i

yields output 1 while

operating with P and the dummy adversary

~

A; de�ne �

I

i

to be the probability

for E

i

to output 1 when running with F

PKE

and S. Sine �

I

1

= �

I

2

(reeting

that S's responses to enryption queries annot depend on the plaintext to

be enrypted) and j�

R

1

� �

R

2

j = jAdv

ror-a

P;A

(k)j (by de�nition), it follows that

Z 's suess in distinguishing F

PKE

from P is given by

Adv

F

PKE

;P

S;Z

(k) =

�

�

�

P

�

Z

k

! 1 j P;

~

A

�

�P (Z

k

! 1 j F

PKE

;S)

�

�

�

=

�

�

�

�

1

2

�

�

R

1

+

�

1� �

R

2

��

�

1

2

�

�

I

1

+

�

1� �

I

2

��

�

�

�

�

=

1

2

�

�

�

R

1

� �

R

2

+ �

I

2

� �

I

1

�

�

=

jAdv

ror-a

P;A

(k)j

2

:

It should be lear that our redution applies, no matter if A is uniform or

not.

2. Let Z be an environment distinguishing F

PKE

from protool P . We now

desribe the simulator S

ROR

in question. Enryption requests to S

ROR

are

answered by a P -enryption of some random plaintext r of the respetive

length (as before, r is hosen anew upon eah request). Deryption and

key generation requests are handled just as P would do. (Of ourse, key

generation requests by the environment are answered with the publi key

only.)

Having said this, we an onstrut an adversary A attaking P in the ROR-

CCA game in the obvious way and the laimed equality follows. Note that

there is a small subtlety here: ROR-CCA adversaries are by de�nition not

8



allowed to request deryptions of iphertexts already obtained by the en-

ryption faility. However, as the iphertexts in question result from expliit

enryption requests, A an obtain the same answers Z would have got in

the setting of [Can01a℄ by feeding itself the respetive arguments of these

enryption requests. As before, our transformation applies to both uniform

and non-uniform environments and adversaries. ut

Corollary 1. Suppose we are in the situation of Proposition 2. Then, in the

presene of non-adaptive adversaries, P seurely realizes the funtionality F

PKE

with respet to U-environments if and only if P is seure in the sense of ROR-

CCA (interpreted in the publi key sense) with respet to U-adversaries.

Corollary 2. Suppose we are in the situation of Proposition 2. Then, in the

presene of non-adaptive adversaries, P seurely realizes the funtionality F

PKE

with respet to U-environments if and only if P is seure in the sense of IND-

CCA with respet to U-adversaries.

In the ase of non-uniform environments and non-uniform IND-CCA adver-

saries, the above orollary is nothing else but [Can01a, Claim 15℄.

Remark 2. Observe that the redutions onstruted in the proof of Proposition 2

are \tight" with respet to both total running time and advantage funtion,

whereas there an be no \tight" redution transforming F

PKE

-distinguishers

to IND-CCA adversaries, sine with respet to onrete redutions, IND-CCA-

seurity is weaker ompared to seurity in the ROR-CCA sense [BDJR97℄.

(In [BDJR97℄, the notion of IND-CCA is alled FTG-CCA; there, it is also

proven that FTG-CCA in turn is equivalent in some \tight" sense to SEM-CCA,

an adaption of semanti seurity with respet to hosen-iphertext attaks.)

A remarkable feature of the framework of [Can01a℄ is the omposability of fun-

tionalities; thus it is now worthwhile to ask how we an utilize the ideal fun-

tionality F

PKE

. For this we onsider the ideal funtionality F

M-SMT

explained

in [Can01a℄ (see also Appendix A). Again, we will only deal with non-adaptive

adversaries.

Lemma 1. [Can01a, Claim 16℄. Let U 2 funiform, non-uniformg. Assum-

ing ideally authentiated links, there exists a protool � whih seurely realizes

F

M-SMT

in the F

PKE

-hybrid model in the presene of non-adaptive adversaries.

More spei�ally, for every non-adaptive adversary A attaking �, there is a

simulator S suh that for every U-environment Z = fZ

k

g we have

P(Z

k

! 1 j �

F

PKE

;A) = P(Z

k

! 1 j F

M-SMT

;S)

for every k.

Proof. This is shown in the proof of Claim 16 in [Can01a, Setion 8.2.2℄; this

proof arries over to uniform environments. ut

9



We an utilize the obtained results in order to make the seurity redutions

of [Can01a, Claim 16℄ more expliit and apply the omposition theorem in the

uniform ase:

Corollary 3. Let U 2 funiform, non-uniformg. Assuming ideally authentiated

links, any publi key enryption sheme P whih is seure in the ROR-CCA

sense with respet to U-adversaries an be turned into a protool �

P

seurely

realizing F

M-SMT

with respet to U-environments in the presene of non-adaptive

adversaries.

In partiular, there is a simulator S working in the F

M-SMT

-ideal model,

suh that every U-environment Z distinguishing F

M-SMT

from exeution of the

omposed protool �

P

an be turned into a U-adversary A attaking P in the

ROR-CCA game. We then have

jAdv

ror-a

P;A

(k)j = Adv

F

M-SMT

;�

P

S;Z

(k):

Proof. Of ourse, protool � is the protool mentioned in Lemma 1. We onstrut

a suitable simulator S emulating �

P

in the F

M-SMT

-ideal model. So let H be the

simulator working in the F

PKE

-hybrid model used in the proof of the omposition

theorem of [Can01a℄, assuming omposition of � and P and simulation of P in

the F

PKE

-ideal model through S

ROR

(the following disussion also applies if we

ompletely restrit ourselves to uniform environments). From H, we onstrut

S as mentioned in Lemma 1 and desribed in detail in the proof of Claim 16

in [Can01a, Setion 8.2.2℄.

Now say that, with respet to the simulator S just desribed, Z = fZ

k

g is a

U -environment distinguishing between �

P

and the ideal funtionality F

M-SMT

.

Observe that the output distribution of Z when interating with F

M-SMT

is

idential to the one resulting from interation with � and H in the F

PKE

-hybrid

model. On the other hand, we know from Proposition 1, that there is a U -

environment Z

0

P

distinguishing F

PKE

and S

ROR

from P and

~

A, for whih we

have

Adv

F

PKE

;P

S

ROR

;Z

0

P

(k) =

�

�

�

P

�

Z

k

! 1 j �

P

;

~

A

�

�P

�

Z

k

! 1 j �

F

PKE

;H

�

�

�

�

=

�

�

�

P

�

Z

k

! 1 j �

P

;

~

A

�

�P (Z

k

! 1 j F

M-SMT

;S)

�

�

�

= Adv

F

M-SMT

;�

P

S;Z

(k):

(By onstrution of protool �, the polynomial m(k) used in the proof of Propo-

sition 1 is the onstant polynomial m(k) = 1.) The laimed equality then follows

with Proposition 2 by interpreting Z

0

P

as a U -adversary attaking P in the ROR-

CCA sense. ut

5 Conlusion

We have shown that, for a publi key enryption sheme, being seure in the

ROR-CCA sense is in some \tight" sense equivalent to seurely realizing F

PKE

10



when interpreted as a protool. In view of the results of [BDJR97℄, this means

spei�ally that seurely realizing F

PKE

is a slightly stronger (yet polynomially

equivalent) notion of seurity than indistinguishability with respet to hosen-

iphertext attaks.

Our results hold both for uniform and non-uniform adversarial entities, and

in partiular we have shown that the omposition theorem of [Can01a℄ holds even

with respet to uniform environments with polynomial total running time, thus

enabling seure omposition of protools realizing F

PKE

. Spei�ally, one an use

these results to justify the proposal in [Can01a℄ to \plug" any IND-CCA seure

enryption sheme into protools expeting aess to F

PKE

. Furthermore, we

have foused on onrete seurity redutions, thus allowing to speak of onrete

seurity levels while preserving an intuitive modeling using the ideal funtionality

F

PKE

.

Note

After ompleting this manusript, we learned from Ran Canetti, that in the

independent work [CKN03℄ also the equivalene between seurity in the sense of

realizing F

PKE

and in the IND-CCA sense is shown, but the fous and nature of

the results obtained in [CKN03℄ are quite di�erent: whereas we fous on onrete

seurity redutions for uniform and non-uniform settings, [CKN03℄ investigates

relaxed seurity notions that still preserve ruial seurity properties of publi

key enryption.
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A The funtionalities F

PKE

and F

M-SMT

For ompleteness, we desribe the already mentioned ideal funtionalities F

PKE

and F

M-SMT

introdued in [Can01a℄; indeed, in the following two boxes, we

simply reprodue the desriptions given in [Can01a℄.

Funtionality F

PKE

F

PKE

proeeds as follows, running with parties P

1

; : : : ; P

n

and an ad-

versary S.

1. In the �rst ativation, expet to reeive a value (KeyGen,id) from

some party P

i

. Then, do:

(a) Hand (KeyGen,id) to the adversary.

(b) Reeive a value e from the adversary, and hand e to P

i

.

2. Upon reeiving a value (Enrypt,id,e

0

,m) from some party P

j

,

proeed as follows:

(a) Hand (Enrypt,id,e

0

,jmj) to the adversary, where jmj denotes

the length of m. (If e

0

6= e or e is not yet de�ned then hand also

the entire value m to the adversary.)

(b) Reeive a tag  from the adversary and hand  to P

j

. In addition,

if e

0

= e then store the pair (;m). (If the tag  already appears

in a previously stored pair then halt.)

3. Upon reeiving a value (Derypt,id,) from P

i

(and P

i

only), pro-

eed as follows:

(a) If there is a pair (;m) stored in memory then hand m to P

i

.

(b) Otherwise, hand the value (Derypt,id,) to the adversary, re-

eive a value m from the adversary, and hand m to P

i

.

Funtionality F

M-SMT

F

M-SMT

proeeds as follows, running with parties P

1

; : : : ; P

n

and an

adversary S.

1. In the �rst ativation, expet to reeive a value (reeiver,id) from

some party P

i

. Then, send (reeiver,id,P

i

) to all parties and the

adversary. From now on, ignore all (reeiver,id,P

i

) values.

2. Upon reeiving a value (send,id,m) from some party P

j

, send

(id,P

j

,m) to P

i

and (id,P

j

,jmj) to the adversary.

B Seurity in the ROR-CCA sense

For onveniene, we also reprodue the riterion for seurity in the ROR-CCA

sense. A detailed de�nition an be found in [BDJR97℄; here we give a formulation

for the publi key setting whih is derived in a straightforward way from the

private key ase.
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Let P = (K; E ;D) be a publi key enryption sheme. Let b 2 f0; 1g and

k 2 N. Formally, for (d; e) K with publi key e, we de�ne the real-or-random

orale E

e

(RR(�; b)) to take input m and do the following: if b = 1 it omputes

  E

e

(m) and returns ; else it omputes   E

e

(r) where r

R

 f0; 1g

jmj

(i. e.,

r is a random bitstring of the same length as m) and returns . Let A be an

adversary that has aess to the orales E

e

(RR(�; b)) and D

d

(�). Now, we onsider

the following experiment:

Experiment Exp

ror-a-b

P;A

(k):

(d; e) K(k)

~

b A

E

e

(RR(�;b));D

d

(�)

(k)

Return

~

b

Above it is mandated that A never queries D

d

(�) on a iphertext  output by

the E

e

(RR(�; b)) orale. We de�ne the advantage of the adversary via

Adv

ror-a

P;A

(k) := P(Exp

ror-a-1

P;A

(k) = 1)�P(Exp

ror-a-0

P;A

(k) = 1):

The sheme P is said to be ROR-CCA seure if the funtion Adv

ror-a

P;A

(�) is

negligible for any adversary A whose time omplexity (inluding ode size) is

polynomial in k.
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