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Abstract

In this paper homomorphic cryptosystems are designed for the �rst time over

any �nite group. Applying Barrington's construction we produce for any boolean

circuit of the logarithmic depth its encrypted simulation of a polynomial size over

an appropriate �nitely generated group.

1 Homomorphic cryptography over groups

1.1. De�nitions and results. An important problem of modern cryptography con-

cerns secret public-key computations in algebraic structures. There is a lot of public-key

cryptosystems using groups (see e.g. [2, 10, 11, 12, 14, 15, 16, 21, 22] and also Subsec-

tion 1.3) but only a few of them have a homomorphic property in the sense of the following

de�nition (cf. [11]).

De�nition 1.1 Let H be a �nite nonidentity group, G a �nitely generated group and

f : G ! H an epimorphism. Suppose that R is a right transversal of ker(f) in G, A is

a set and P : A ! G is a mapping such that im(P ) = ker(f). A triple S = (A;P;R) is

called a homomorphic cryptosystem over H with respect to f , if the following conditions

are satis�ed for a certain integer N � 1 (called the size of S):

(H1) the elements of the set A are represented by words in a certain alphabet; one can get

randomly an element of A of size N within probabilistic time N

O(1)

,
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(H2) the elements of the group G are represented by words in a certain alphabet; one

can test the equality of elements in G and perform group operations in G (taking

the inverse and computing the product) in time N

O(1)

, provided that the sizes of

corresponding words are at most N ,

(H3) the set R, the group H and the bijection R ! H induced by f , are given by the

list of elements, the multiplication table and the list of pairs (r; f(r)), respectively;

jRj = jHj = O(1),

(H4) the mapping P is a trapdoor function (cf. [8]), i.e. given a word a 2 A of the length

jaj an element P (a) can be computed within probabilistic time jaj

O(1)

, whereas the

problem INVERSE(P ) is computationaly hard, while it can be solved by means of

some additional secret information,

where for any mapping P : A! G we de�ne INVERSE(P ) to be the problem of testing

whether given g 2 G belongs to im(P ) and yielding a random element a 2 A such that

P (a) = g whenever g 2 im(P ).

Remark 1.2 Having random generating in the set A one can easily generate elements of

the group G in a form P (a)r, a 2 A, r 2 R.

In a homomorphic cryptosystem S the elements of H playing the role of the alphabet

of plaintext messages are publically encrypted in a probabilistic manner by the elements

of G playing the role of the alphabet of ciphertext messages, all the computations are

performed in G and the result is decrypted to H. More precisely:

Public Key: homomorphic cryptosystem S.

Secret Key: INVERSE(P ).

Encryption: given a plaintext h 2 H encrypt as follows: take r 2 R such that f(r) = h

(invoking (H3)) and a random element a 2 A (using (H1); the ciphertext of h is the

element P (a)r of G (computed by means of (H2) and (H4)).

Decryption: given a cyphertext g 2 G decrypt as follows: �nd the elements r 2 R and

a 2 A such that rg

�1

= P (a) (using (H4)); the plaintext of g is the element f(r) of H

(computed by means of (H3)).

The main result of the present paper consists in the construction of a homomorphic

cryptosystem over arbitrary �nite nonidentity group; the security of it is based on the

di�culty of the following slight generalization of the factoring problem FACTOR(n;m):

given a positive integer n = pq with p and q being primes (of the same size), a number

m � 2 of a constant size such that G=(Z

�

n

)

m

�

=

Z

+

m

where G = fg 2 Z

�

n

: J

n

(g) 2

2



f1; (�1)

m (mod2)

gg with J

n

being the Jacobi symbol, and a transversal of (Z

�

n

)

m

in G, �nd

the numbers p; q. In addition, we assume that mjp� 1 and GCD(m; q� 1) = GCD(m; 2),

although one could get rid of this extra assumption.

Theorem 1.3 Let H be a �nite nonidentity group and N 2 N. Then one can design

a homomorphic cryptosystem S(H;N) of the size O(N) over the group H; the problem

INVERSE(P ) where P is the trapdoor function, is probabilistic polynomial time equivalent

to the problems FACTOR(n;m) for appropriate n = exp(O(N)) and m running over the

divisors of jHj.

First this result is proved for a cyclic group H (see Section 2), in this case the group G

being a �nite Abelian group. Then in Section 3 a homomorphic cryptosystem is yielded

for an arbitrary H, in this case the group G being a free product of certain Abelian groups

produced in Section 2. In Section 4 we recall the result from [1] designing a polynomial size

simulation of any boolean circuit B of the logarithmic depth over an arbitrary unsolvable

group H (in particular, one can take H to be the symmetric group Sym(5)). Combining

this result with Theorem 1.3 provides an encrypted simulation of B over the group G: the

output of this simulation at a particular input is a certain element g 2 G, and thereby to

know the output of B one has to be able to calculate f(g) 2 H, which is supposedly to be

di�cult due to Theorem 1.3. We mention that a di�erent approach to encrypt boolean

circuits was undertaken in [24].

1.2. Discussion on complexity and security. One can see that the encryption

procedure can be performed by means of public keys e�ciently. However, the decryption

procedure is a secret one in the following sense. To �nd the element r one has to solve

in fact, the membership problem for the subgroup ker(f) of the group G. We assume

that a solution for each instance g

0

2 ker(f) of this problem must have a \proof", which

is actually an element a 2 P

�1

(g

0

). Thus, the secrecy of the system is based on the

assumption that �nding an element in the set P

�1

(g

0

) i.e. solving INVERSE(P ) is an

intractable computation problem. On the other hand, our ability to compute P

�1

enables

us to e�ciently implement the decryption algorithm. One can treat P as a proof system

for membership to ker(f) in the sense of [3]. Moreover, in case when A is a certain group

and P is a homomorphism we have the following exact sequence of group homomorphisms

A

P

!G

f

!H!f1g (1)

(recall that the exact sequence means that the image of each homomorphism in it coincides

with the kernel of the next one).

The usual way in the public-key cryptography of providing an evidence of the security

of a cryptosystem is to �x a certain type of an attack (being an algorithm) of cryptosystems

and to prove that a cryptosystem is resistant with respect to this type of an attack. The
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resistancy means usually that breaking a cryptosystem with the help of the �xed type of

an attack implies a certain statement commonly believed to be unplausible. The most

frequently used in the cryptography such statement (which we involve as well) is the

possibility to factorize an integer being a product of a pair of primes. Thus a type of

an attack we �x is that to break a homomorphic cryptosystem means to be able to solve

INVERSE(P ) (in other words, reveal the trapdoor).

Notice that in the present paper the group H is always rather small, while the group G

could be in�nite but being always �nitely generated. However, the in�nitness of G is not

an obstacle for performing algorithms of encrypting and decrypting (using the trapdoor

information) since G is a free product of groups of a number-theoretic nature like Z

�

n

;

therefore one can easily verify the condition (H2) and on the other hand this allows one

to provide evidence for the di�culty of a decryption. In this connection we mention a

public-key cryptosystem from [6] in which f was the natural epimorphism from a free

group G onto the group H (in�nite, non-abelian in general) given by generators and

relations. In this case for any element of H one can produce its preimages (encryptions)

by inserting in a word (being already a produced preimage of f) from G any relation

de�ning H. In other terms, decrypting of f reduces to the word problem in H. In our

approach the word problem is solvable easily due to a special presentation of the group

G (rather than given by generators and relations).

1.3. Cryptosystems based on groups. To our best knowledge all known at present

homomorphic cryptosystems are more or less modi�cations of the following one. Let n

be the product of two distinct large primes of size of the order log n. Set G = fg 2 Z

�

n

:

J

n

(g) = 1g and H =Z

+

2

. Then given a non-square r 2 G the triple (A;P;R) where

R = f1; rg; A =Z

�

n

; P (g) : g 7! g

2

;

is a homomorphic cryptosystem over H with respect to the natural epimorphism f : G!

H with ker(f) = fg

2

: g 2 Z

�

n

g (see [9, 8]). We call it the quadratic residue cryptosystem.

It can be proved (see [9, 8]) that in this case solving the problem INVERSE(P ) is not

easier than factoring n, whereas given a prime divisor of n this problem can be solved in

probabilistic polynomial time in log n.

It is an essential assumption (being a shortcoming) in the quadratic residue cryptosys-

tem as well as other cryptosystems cited below that its security relies on a �xed a priori

(proof system) P . Indeed, it is not excluded that an adversary could verify whether an

element of G belongs to ker(f) avoiding making use of P , for example, in case of the

quadratic residue cryptosystem that would mean verifying that g 2 G is a square without

providing a square root of g. Although, there is a common conjecture that verifying for

an element to be a square (as well as some power) is also di�cult.

Let us mention that a cryptosystem from [19] over H =Z

+

n

(for the same assumptions

on n as in the quadratic residue cryptosystem) with respect to the homomorphism f :
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G ! H where G = Z

�

n

2

and ker(f) = fg

n

: g 2 Gg, in which A = G and P : g 7! g

n

, is

not homomorphic in the sense of De�nition 1.1 because condition (H3) of it does not hold.

(In particular, since jGj � jHj

2

, one can inverse P in a polynomial time in jHj.) By the

same reason the cryptosystem from [17] over H =Z

+

p

with respect to the homomorphism

f : G! H where G =Z

�

p

2

q

and ker(f) = fg

pq

: g 2 Gg (here the integers p; q are distinct

large primes of the same size) is also not homomorphic (besides, in this system only a

part of the group H is encrypted). Some cryptosystems over certain dihedral groups were

studied in [21]. More general, in [11] homomorphic cryptosystems were designed over an

arbitrary nonidentity solvable group.

We note in addition that an alternative setting of a homomorphic (in fact, isomorphic)

encryption E (and a decryption D = E

�1

) was proposed in [14]. Unlike De�nition 1.1

the encryption E : G ! G is executed in the same set G (being an elliptic curve over

the ring Z

n

) treated as the set of plaintext messages. If n is composite, then G is not a

group while being endowed with a partially de�ned binary operation which converts G

in a group when n is prime. The problem of decrypting this cryptosystem is close to the

factoring of n. In this aspect [14] is similar to the well-known RSA scheme (see e.g. [8])

if to interprete RSA as a homomorphism (in fact, isomorphism) E : Z

�

n

! Z

�

n

, for which

the security relies on the di�culty of �nding the order of the group Z

�

n

.

We complete the section by mentioning some cryptosystems using groups but not being

homomorphic in the sense of De�nition 1.1. The well-known example is a cryptosystem

which relies on the Di�e-Hellman key agreement protocol (see e.g. [8]). It involves cyclic

groups and relates to the discrete logarithm problem [15]; the complexity of this sys-

tem was studied in [4]. Some generalizations of this system to non-abelian groups (in

particular, the matrix groups over some rings) were suggested in [18] where secrecy was

based on an analog of the discrete logarithm problems in groups of inner automorphisms.

Certain variations of the Di�e-Hellman systems over the braid groups were described

in [12]; here several trapdoor one-way functions connected with the conjugacy and the

taking root problems in the braid groups were proposed. Finally it should be noted that

a cryptosystem from [16] is based on a monomorphismZ

+

m

!Z

�

n

by means of which x is

encrypted by g

x

(modn) where n; g constitute a public key; its decrypting relates to the

discrete logarithm problem and is feasible in this situation due to a special choice of n

and m (cf. also [2]).

2 Homomorphic cryptosystems over cyclic groups

In this section we present an explicit homomorphic cryptosystem over a cyclic group of an

order m > 1 whose decription is based on taking m-roots in the group Z

�

n

for a suitable

n 2 N. It can be considered in a sense as a generalization of the quadratic residue

cryptosystem over Z

+

2

. Throughout this section given n 2 N we denote by jnj the size of
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the number n.

Given a positive integer m > 1 denote by D

m

the set of all pairs (p; q) where p and q

are distinct odd primes such that

p � 1 = 0 (modm) and GCD(m; q � 1) = GCD(m; 2): (2)

Let (p; q) 2 D

m

, n = pq and G

n;m

be a group de�ned by

G

n;m

= fg 2Z

�

n

: J

n

(g) 2 f1; (�1)

m (mod2)

gg: (3)

Thus G

n;m

= Z

�

n

for an odd m and [Z

�

n

: G

n;m

] = 2 for an even m. In any case this

group contains each element h = h

p

� h

q

such that hh

p

i = Z

�

p

and hh

q

i = Z

�

q

where

h

p

and h

q

are the p-component and the q-component of h with respect to the canonical

decomposition Z

�

n

= Z

�

p

�Z

�

q

. From (2) it follows that m divides the order of any such

element h and f1; h; � � � ; h

m�1

g is a transversal of the group G

m

n;m

= fg

m

: g 2 G

n;m

g in

G

n;m

. This implies that G

n;m

=G

m

n;m

�

=

Z

+

m

where the corresponding epimorphism is given

by the mapping

f

n;m

: G

n;m

!Z

+

m

; g 7! i

g

with i

g

being the element ofZ

+

m

such that g 2 G

m

n;m

h

i

g

. From (2) it follows that ker(f

n;m

) =

G

m

n;m

= im(P

n;m

) where

P

n;m

: A

n;m

! G

n;m

; g 7! g

m

is a homomorphism from the group A

n;m

=Z

�

n

to the group G

n;m

. In particular, we have

the exact sequence (1) with A = A

n;m

, P = P

n;m

, f = f

n;m

, G = G

n;m

and H = Z

+

m

.

Next, it is easily seen that any element of the set

R

n;m

= fR � G

n;m

: jf

n;m

(R)j = jRj = mg

is a right transversal of G

m

n;m

in G

n;m

. We notice that by the Dirichlet theorem on primes

in arithmetic progressions (see e.g. [5]) the set D

m

is not empty. Moreover, by the same

reason the set

D

N;m

= fn 2 N : n = pq; (p; q) 2 D

m

; jpj = jqj = Ng

is also nonempty for su�ciently large N 2 N.

Theorem 2.1 Let H be a cyclic group of order m > 1. Then given N 2 N and n 2 D

N;m

one can design a homomorphic cryptosystem S

n

(H;N) of the size O(N) over the group

H; the problem INVERSE(P ) where P is the trapdoor function, is probabilistic polynomial

time equivalent to the problem FACTOR(n;m).
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Proof. First we desribe a probabilistic polynomial time algorithm which yields a certain

n 2 D

N;m

. The algorithm picks randomly integers p = 1 (modm) and q = �1 (modm)

from the interval [2

N

; 2

N+1

] and tests primality of the picked numbers by means of e.g. [23].

According to [5] there is a constant c > 0 such that for any b relatively prime with m there

are at least c2

N

=('(m)N) primes of the form mx+b in the interval [2

N

; 2

N+1

]. Therefore,

after O(N) attempts the algorithm would yield a pair (p; q) 2 D

m

with a probability

greater than 2=3 (actually, one can replace 2=3 by an arbitrary constant less than 1).

Thus given N 2 N one can design in probabilistic time N

O(1)

a number n 2 D

N;m

, a

random element R 2 R

n;m

(see e.g. [16]) and the triple

S

n

(H;N) = (A;P;R) (4)

where A = A

n;m

and P = P

n;m

(below without loss of generality we assume that H =Z

+

m

).

We will show that for any n 2 D

N;m

and R 2 R

n;m

the triple S

n

(H;N) is a homomor-

phic cryptosystem of the size O(N) over the group H with respect to the epimorphism

f : G ! H where f = f

n;m

and G = G

n;m

. For this purpose we note that in this case

there is the exact sequence (1) (see above). Next, we will represent the elements of the set

A and of the group G by integers modulo n, and those of the group H by integers modulo

m. Then conditions (H1), (H2) and (H3) of De�nition 1.1 are trivially satis�ed. Since the

epimorphism P is obviously a polynomial time computable one, it su�ces to verify con-

dition (H4), i.e. that the problems INVERSE(P ) and FACTOR(n;m) are probabilistic

polynomial time equivalent.

Suppose that we are given an algorithm solving the problem FACTOR(n;m). Then

we can �nd the decomposition n = pq. Now using Rabin's probabilistic polynomial-time

algorithm for �nding roots of polynomials over �nite prime �elds (see [20]), we can solve

the problem INVERSE(P ) for an element g 2 G as follows:

Step 1. Find the numbers g

p

2 Z

�

p

and g

q

2 Z

�

q

such that g = g

p

� g

q

, i.e.

g

p

= g (mod p), g

q

= g (mod q).

Step 2. Apply Rabin's algorithm for the �eld of order p to the polynomial x

m

� g

p

and for the �eld of order q to the polynomial x

m

� g

q

. If at least one of this

polynomials has no roots, then output \P

�1

(g) = ;"; otherwise let h

p

and h

q

be

corresponding roots.

Step 3. Output \P

�1

(g) 6= ;" and h = h

p

� h

q

.

We observe that the set P

�1

(g) is empty, i.e. the g is not an m-power in G, i� at least one

of the elements g

p

and g

q

found at Step 1 is not an m-power in Z

�

p

and Z

�

q

respectively.

This implies the correctness of the output at Step 2. On the other hand, if the procedure
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terminates at Step 3, then h

m

= h

m

p

� h

m

q

= g

p

� g

q

= g, i.e. h 2 P

�1

(g). Thus the

problem INVERSE(P ) is reduced to the problem FACTOR(n;m) in probabilistic time

N

O(1)

.

Conversely, suppose that we are given an algorithm solving the problem INVERSE(P ).

Then the following procedure using well-known observations [8] enables us to �nd the

decomposition n = pq.

Step 1. Randomly choose g 2Z

�

n

. Set T = fgg.

Step 2. While jT j < 3 � (m (mod 2)), add to T a random m-root of the element

g

m

yielded by the algorithm for the problem INVERSE(P ).

Step 3. Choose h

1

; h

2

2 T such that q = GCD(h

1

� h

2

; n) 6= 1. Output q and

p = n=q.

To prove the correctness of the procedure we observe that there exists at least 2 (resp. 4)

di�erent m-roots of the element g

m

for odd m (resp. for even m) where g is the element

chosen at Step 1. So the loop at Step 2 and hence the entire procedure terminates with a

large probability after a polynomial number of iterations. Moreover, let T

q

= fh

q

: h 2 Tg

where h

q

is the q-component of h. Then from (2) it follows that jT

q

j = 1 for odd m, and

jT

q

j � 2 for even m. Due to the construction of T at Step 2 this implies that there exist

di�erent elements h

1

; h

2

2 T such that (h

1

)

q

= (h

2

)

q

, and consequently

h

1

= (h

1

)

q

= (h

2

)

q

= h

2

(mod q):

Since h

1

6= h

2

(modn), we conclude that h

1

� h

2

is a multiple of q and output at Step 3

is correct.

We complete the section by mentioning that the decryption algorithm of the homo-

morphic cryptosystem S

N;m;n

can be slightly modi�ed to avoid applying Rabin's algorithm

for �nding roots of polynomials over �nite �elds. Indeed, it is easy to see that an ele-

ment g = g

p

� g

q

of the group G belongs to the group G

m

i� g

(p�1)=m

p

= 1 (mod p) and

g

(q�1)=m

0

q

= 1 (mod q) where m

0

= GCD(m; q � 1).

3 Homomorphic cryptosystems using free products

Throughout the section we denote by W

X

the set of all the words w in the alphabet X;

the length of w is denoted by jwj. We use the notation G = hX;Ri for a presentation of

a group G by the set X of generators and the set R of relations. Sometimes we omit R

to stress that the group G is generated by the set X. The unity of G is denoted by 1

G

and we set G

#

= G n f1

G

g. Finally, given a positive integer n we set n = f1; : : : ; ng.

8



3.1. Calculations in free products of groups. Let us remind the basic facts on

free products of groups (see e.g. [13, Ch. 4]). Let G

1

; : : : ; G

n

be �nite groups, n � 1.

Given a presentation G

i

= hX

i

;R

i

i, i 2 n, one can form a group G = hX; Ri where

X = [

i2n

X

i

(the disjoint union) and R = [

i2n

R

i

. It can be proved that this group does

not depend on the choice of presentations of hX

i

;R

i

i, i 2 n. It is called the free product

of the groups G

i

and is denoted by G = G

1

� � � � �G

n

; one can see that it does not depend

on the order of factors. Without loss of generality we assume below that G

i

is a subgroup

of G and X

i

= G

#

i

for all i. In this case G � W

X

and 1

G

equals the empty word of W

X

.

Moreover, it can be proved that

G = fx

1

� � � x

k

2 W

X

: x

j

2 G

i

j

for j 2 k; and i

j

6= i

j+1

for j 2 k � 1g: (5)

Thus each element of G is a word of W

X

in which no two adjacent letters belong to the

same set among the sets X

i

, and any two such di�erent words are di�erent elements of G.

To describe the multiplication in G let us �rst de�ne recursively the mapping W

X

! G,

w 7! w as follows

w =

�

w; if w 2 G,

: : : (x � y) : : :; if w = : : : xy : : : with x; y 2 X

i

for some i 2 n,

(6)

where x � y is the product of x by y in the group G

i

. One can prove that the word w

is uniquely determined by w and so the mapping is correctly de�ned. In particular, this

implies that given i 2 n we have

x

1

� � �x

k

2 G

i

, x

1

� � � x

k

= x

j

1

� � � x

j

k

0

(7)

where fj

1

; : : : ; j

k

0

g = fj 2 k : x

j

2 G

i

g. Now given g; h 2 G the product of g by h in G

equals gh.

Lemma 3.1 Let G = G

1

�� � ��G

n

, K = K

1

�� � ��K

n

be groups and f

i

be an epimorphism

from G

i

onto K

i

, i 2 n. Then the mapping

' : G! K; x

1

� � �x

k

7! f

i

1

(x

1

) � � � f

i

k

(x

k

) (8)

where x

j

2 G

i

j

, j 2 k, is an epimorphism. Moreover, 'j

G

i

= f

i

for all i 2 n.

Proof. Since K = hY i where Y = [

i2n

K

#

i

, the surjectivity of the mapping ' follows

from the surjectivity of the mappings f

i

, i 2 n. Next, let '

0

: W

X

! W

Y

be the mapping

taking x

1

� � � x

k

to f

i

1

(x

1

) � � � f

i

k

(x

k

). Then it is easy to see that '(g) = '

0

(g) for all g 2 G

and '

0

(ww

0

) = '

0

(w)'

0

(w

0

) for all w;w

0

2 W

X

. Since ww

0

= ww

0

for all w;w

0

2 W

X

,

this implies that

'(g)'(h) = '

0

(g)'

0

(h) = '

0

(g)'

0

(h) = '

0

(gh) = '(gh)

9



for all g; h 2 G. Thus the mapping ' is a homomorphism. Since obviously 'j

G

i

= f

i

for

all i 2 n, we are done.

Let H be a �nite nonidentity group and K be the free product of cyclic groups gen-

erated by all the nonidentity elements of H. Set

R

(0)

= fh

(m

h

)

2 W

H

# : h 2 H

#

g;

R

(1)

= fh

(i)

h

0

2 W

H

# : h; h

0

2 H

#

; 0 < i < m

h

; h

i

� h

0

= 1

H

g;

R

(2)

= fhh

0

h

00

2 W

H

# : h; h

0

; h

00

2 H

#

; h

0

62 hhi; h � h

0

� h

00

= 1

H

g

where h

(i)

is the word of length i � 1 with all letters being equal h, m

h

is the order of

h 2 H and � denotes the multiplication in H. Then one can see that

K = hH

#

;R

(0)

i (9)

and there is the natural epimorphism  

0

: K ! H

0

where H

0

= hH

#

;R

(0)

[ R

(1)

[

R

(2)

i. Since relations belonging to R

(i)

, i = 0; 1; 2, are satis�ed in H, we conclude that

ker( 

0

)h

1

6= ker( 

0

)h

2

whenever h

1

and h

2

are di�erent elements of H (we identify 1

K

and

1

H

). On the other hand, it is easy to see that any right coset of K by ker( 

0

) contains a

word of length at most 1, i.e. an element of H. Thus K = [

h2H

ker( 

0

)h, the mapping

 : K ! H; k 7! h

k

(10)

where h

k

is the uniquely detemined element of H for which k 2 ker( 

0

)h

k

, is an epimor-

phism and ker( ) = ker( 

0

).

3.2. Main construction of a homomorphic cryptosystem. Let H be a �nite

nonidentity group and N be a positive integer. We are going to describe a homomorphic

cryptosystem S(H;N) of size O(N) over the group H. Suppose �rst that H is a cyclic

group of an order m > 1. Then we set S(H;N) = S

n

(H;N) where n 2 D

N;m

(see

Theorem 2.1). If H is not a cyclic group, then S(H;N) is de�ned as follows.

Let H

#

= fh

1

; : : : ; h

n

g where n is a positive integer (clearly, n � 3). Set D

N;H

=

[

i2
n

D

N;m

i

where m

i

is the order of the group K

i

= hh

i

i. Given i 2 n choose n

i

2 D

N;m

i

and set S

i

= (A

i

; P

i

; R

i

) to be the homomorphic cryptosystem S

n

i

(K

i

; N) with respect to

the epimorphism f

i

: G

i

! K

i

(see Theorem 2.1). Without loss of generality we assume

that G

i

is a subgroup of the group Z

�

n

i

. Set

G = G

1

� � � � �G

n

; f =  � '; (11)

where the mappings ' and  are de�ned by (8) and (10) respectively, with K = K

1

� � � � �

K

n

. From Lemma 3.1 and the de�nition of  it follows that the mapping f : G ! H is

an epimorphism from G onto H.

10



To de�ne a proof system for membership to ker(f) (see Subsection 1.2) we set

X

'

= X [A

0

X = [

i2
n

G

i

n ker(f

i

); A

0

= [

i2
n

A

i

; (12)

all the unions are assumed to be the disjoint ones. Denote by ! the transitive closure of

the binary relation ) on the set W

X

'

de�ned by

v ) w i� w = x

�1

x

0

vx; v; w 2 W

X

'

(13)

where x 2 X [ f1

A

g and x

0

2 A

0

[ f1

A

g with 1

A

being the empty word of W

X

'

. Thus

v ! w if there exist words w

1

= v;w

2

; : : : ; w

l

= w of W

X

'

such that w

i

) w

i+1

for

i 2 l� 1. We set

A

'

= fa 2 W

X

'

: 1

A

'

! ag; P

'

: A

'

! G; a

1

� � � a

k

7! P

'

(a

1

) � � �P

'

(a

k

) (14)

where P

'

j

X

= id

X

and P

'

j

A

i

= P

i

for all i. We observe that if v 2 ker(') and v ) w

for some v;w 2 W

X

'

then obviously w 2 ker(') (see (13)). By induction on the size of a

word this implies that P

'

(A

'

) � ker('). Next, set

A

 

= fr 2 W

R

 

: f(r) = 1

H

g; P

 

: A

 

! G; a 7! a (15)

where R

 

= [

i2
n

R

i

. It is easily seen that the restriction of ' to the set R

'

= G \W

R

induces a bijection from this set to the group K. This shows that R

'

is a right transversal

of ker(') in G. Finally we de�ne

A = A

'

�A

 

; P : A! G; (a; b) 7! P

'

(a)P

 

(b): (16)

Let R be a right transversal of ker(f) in G, for instance one can take R = f1

G

g [ fr

0

i

g

i2n

where r

0

i

is the element of R

i

such that  (r

0

i

) = h

i

, i 2 n. Set S(H;N) = (A;P;R).

3.3. Proof of Theorem 1.3.

First we observe that if H is a cyclic group, then the required statement follows from

Theorem 2.1. Suppose from now on that the group H is not cyclic. Let us describe the

presentations of the set A and the groups G and K. Given i 2 n the elements a 2 A

i

and g 2 G

i

being the elements of Z

�

n

i

will be represented by the \letters" ]a; i[ and [g; i]

respectively. This completely de�nes the representations of the set A and the group G.

We note that relying on (13), (14) and (15) one can randomly generate elements of A.

The group G is represented by the subset (5) of the set W

X

. To multiply two elements

g; h 2 G one has to �nd the word gh of W

X

. It is easy to see that this can be done by

means of the recursive procedure (6) in time ((jgj+ jhj)N)

O(1)

(here [x; i] � [y; i] = [xy; i] for

all x; y 2Z

�

n

i

where xy is the product modulo n

i

of the numbers x and y, and n

i

� exp

O(N)

because n

i

2 D

N;m

i

). Since taking the inverse of g 2 G can be easily implemented in time

11



(jgjN)

O(1)

, we will estimate further the running time of the algorithms via the number of

performed group operations in G and via the sizes of the involved operands.

Finally the group H as well as the groups K

i

, i 2 n, are given by their multiplication

tables, and the group K is given by the presentation (9). Thus all the group operations

in K can be performed in time polynomial in the lengths of the input words belonging

to W

H

#.

Now, we have the following sequence of the mappings:

A

'

�A

 

P

�! G

1

� � � � �G

n

'

�! K

1

� � � � �K

n

 

�! H:

In the following two lemmas we study the homomorphisms ' and  from the algorithmic

point of view.

Lemma 3.2 For the mapping P

'

de�ned in (14) the following statements hold:

(i1) given a 2 A

'

the element P

'

(a) can be found in time jaj

O(1)

,

(i2) im(P

'

) = ker('),

(i3) given an oracle Q

i

for the problem INVERSE(P

i

) for all i 2 n, the problem

INVERSE(P

'

) for g 2 G can be solved by means of at most jgj

2

calls of oracles

Q

i

, i 2 n,

(i4) for each i 2 n the problem INVERSE(P

i

) is polynomial time reducible to the problem

INVERSE(P

'

).

Proof. Let us prove statement (i1). Let a = a

1

� � � a

k

be an element of A

'

. To �nd P

'

(a)

according to (14) we need to compute the words P

'

(a

j

), j 2 k, and then to compute the

word w where w = P

'

(a

1

) � � �P

'

(a

k

). The �rst stage can be done in time jaj

O(1)

because

each mapping P

i

, i 2 n, is polynomial time computable due to Section 2. Since the size of

w equals jaj, the element P

'

(a) can be found within the similar time bound (one should

take into account that in the recursive procedure (6) applied for computing w from w the

length of a current word decreases at each step of the procedure).

To prove statements (i2) and (i3) we note �rst that the inclusion im(P

'

) � ker(')

was proved after the de�nition of A

'

and P

'

in (14). The converse inclusion as well

as statement (i3) will be proved by means of the following recursive procedure which

for a given element g = x

1

� � � x

k

of G with x

j

2 G

i

j

for j 2 k, produces a certain

pair (a

g

; t

g

) 2 A

'

� G. Below we show that this procedure actually solves the problem

INVERSE(P

'

).

Step 1. If g = 1

G

, then output (1

A

'

; 1

G

).

12



Step 2. If the set J = fj 2 k : x

j

2 ker(f

i

j

)g is empty, then output (1

A

'

; g).

Step 3. Set h = x

j+1

� � � x

k

x

1

� � �x

j�1

where j is the smallest element of the set J .

Step 4. Recursively �nd the pair (a

h

; t

h

). If t

h

6= 1

G

, then output (a

h

; t

h

).

Step 5. If t

h

= 1

G

, then output (a

g

; 1

G

) where a

g

= x

1

� � �x

j�1

a

j

a

h

x

�1

j�1

� � �x

�1

1

with

a

j

being an arbitrary element of A

i

j

such that P

i

j

(a

j

) = x

j

.

Since each recursive call at Step 4 is applied to the word h 2 G of size at most jgj � 1,

the number of recursive calls is at most jgj. So the total number of oracle Q

i

calls, i 2 n,

at Step 2 does not exceed jgj

2

. Thus the running time of the algorithm is (jgj)

O(1)

and

statements (i2), (i3) are consequences of the following lemma.

Lemma 3.3 g 2 ker(') i� t

g

= 1

G

. Moreover, if t

g

= 1

G

, then a

g

2 A

'

and P

'

(a

g

) = g.

Proof. We will prove the both statements by induction on k = jgj. If k = 0, then the

procedure terminates at Step 1 and we are done. Suppose that k > 0. If the procedure

terminates at Step 2, then t

g

6= 1

G

. In this case we have j'(g)j = jgj = k > 0, whence

g 62 ker('). Let the procedure terminate at Step 4 or at Step 5. Then jhj � jgj � 1 (see

Step 3). So by the induction hypothesis we can assume that h 2 ker(') i� t

h

= 1

G

. On

the other hand, taking into account that x

j

2 ker(f

i

j

) (see the de�nition of j at Step 3)

we get that h 2 ker(') i� ux

j

hu

�1

2 ker(') where u = x

1

: : : ; x

j�1

. Since

ux

j

hu

�1

= x

1

� � �x

j�1

x

j

hx

�1

j�1

� � �x

�1

1

= x

1

� � � x

k

= g = g; (17)

this means that g 2 ker(') i� h 2 ker(') i� t

h

= 1

G

. This proves the �rst statement of

the lemma because t

h

= t

g

due to Steps 4 and 5.

To prove the second statement, suppose that t

g

= 1

G

. Then the above argument shows

that h 2 ker(') and so a

h

2 A

'

and P

'

(a

h

) = h by the induction hypothesis. This implies

that 1

A

'

! a

h

. On the other hand, from the de�nition of a

g

at Step 5 it follows that

a

h

! a

g

(see (13)). Thus 1

A

'

! a

g

, i.e. a

g

2 A

'

(see (14)). Besides, from the minimality

of j it follows that x

l

2 X (see (12)) and hence P

'

(x

l

) = x

l

and P

'

(x

�1

l

) = x

�1

l

for all

l 2 j � 1 (see (14)). Since P

'

(a

j

) = x

j

and h = h = x

j+1

� � � x

k

x

1

� � �x

j�1

(see Step 3), we

obtain by (17) that

P

'

(a

g

) = ux

j

P

'

(a

h

)u

�1

= ux

j

hu

�1

= g

which completes the proof of the Lemma 3.3.

To prove statement (i4) let i 2 n and g 2 G

i

. Then since obviously g 2 ker(f

i

)

i� g 2 ker('), one can test whether g 2 ker(f

i

) by means of an algorithm solving the
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problem INVERSE(P

'

). Moreover, if g 2 ker(f

i

), then this algorithm yields an element

a 2 A

'

such that P

'

(a) = g. Then assuming a = a

1

� � � a

k

with a

j

2 X

'

, the set

J

a

= fj 2 k : a

j

=]a

�

j

; i[g can be found in time O(jaj) (we recall that due to our

presentation any element a

j

is of the form either ]a

�

j

; i

j

[ or [a

�

j

; i

j

] where i

j

2 n and

a

�

j

2Z

�

n

i

j

, and P

i

j

(a

j

) 2 ker(f

i

j

) i� a

j

2 A

0

i� a

j

=]a

�

j

; i

j

[). Now the element

a

�

=]

Y

j2J

a

a

�

j

; i[

obviously belongs to the set A

i

� A

0

. On the other hand, since g 2 G

i

, we get by (7) that

g = P

'

(a

1

) � � �P

'

(a

k

) =

Y

j2J

P

'

(a

j

) (18)

where J = fj 2 k : P

'

(a

j

) 2 G

i

g. Taking into account that G

i

is an Abelian group and

the mapping P

i

: A

i

! G

i

is a homomorphism, we have

Y

j2J

P

'

(a

j

) =

Y

j2J

a

P

i

(a

j

)

Y

j2JnJ

a

P

'

(a

j

) = P

i

(a

�

)

Y

j2JnJ

a

P

'

(a

j

): (19)

Moreover, since 1

A

'

! a, from (13) it follows that there exists involution j ! j

0

on the

set J nJ

a

such that a

j

= [a

�

j

; i] i� a

j

0

= [(a

�

j

)

�1

; i] (we recall that a

j

=]a

�

j

; i[ for j 2 J

a

and

a

j

= [a

�

j

; i] for j 2 J n J

a

). This implies that

Q

j2JnJ

a

P

'

(a

j

) = 1

G

. Thus from (18) and

(19) we conclude that:

g = P

i

(a

�

) = P

'

(a

�

) = P

'

(a

�

):

This shows that the element a

�

2 A

i

with P

'

(a

�

) = g can be constructed from a in

time O(jaj). Using condition (H1) for the cryptosystem S

i

, one can e�ciently trans-

form the element a

�

to a random element ea so that P

'

(ea) = P

'

(a

�

) = g. Thus the

problem INVERSE(P

i

) is polynomial time reducible to the problem INVERSE(P

'

). The

Lemma 3.2 is proved.

Lemma 3.4 Let K be the group given by presentation (9) and the epimorphism  is

de�ned by (10). Then given k 2 K one can �nd the element  (k) in time (jkjjHj)

O(1)

.

Proof. It is easy to see that the group K can be identi�ed with the subset of the setW

H

#

so that w 2 K i� the length of any subword of w of the form h � � � h (i.e. the repetition of

a letter h) is at most m

h

� 1. Having this in mind we claim that the following recursive

procedure computes  (k) for all k = x

1

� � �x

t

2 K.

Step 1. If t � 1, then output  (k) = k.
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Step 2. Choose h 2 H such that x

1

x

2

h 2 R

(1)

[R

(2)

.

Step 3. Output  (k) =  (h

�1

x

3

� � � x

t

).

The correctness of the procedure follows from the de�nitions of sets R

(1)

, R

(2)

, and the

fact that recursion at Step 3 is always applied to a word the length of which is smaller than

the length of the current word. In fact, the above procedure produces the representation

of k in the form k = w

1

� � �w

t�1

 (k) where w

j

2 R

(1)

[ R

(2)

for all j 2 t� 1 and

 (k) 2 H. Since obviously w

1

� � �w

t�1

2 ker( ), we conclude that  (k) = h

k

(see (10)).

To complete the proof it su�ces to note that the running time of the above procedure is

O(jkj(jR

(1)

j+ jR

(2)

j)).

Finally, let us complete the proof of Theorem 1.3. First, we observe that by Lemma 3.1

the mapping f : G! H is a composition of two epimorphisms and so is an epimorphism

too. Next, to prove that the mapping P : A ! ker(f) is a surjection, we recall that the

set R

'

de�ned after (15) is a right transversal of ker(') in G. So given g 2 ker(f) there

exist uniquely determined elements g

'

2 ker(') and r

'

2 R

'

such that g = g

'

r

'

. Since

1

H

= f(g) =  ('(g

'

r

'

)) =  ('(r

'

)) = f(r

'

);

we see that r

'

2 A

 

(see 15). Besides, from statement (i2) of Lemma 3.2 it follows that

there exists a 2 A

'

for which P

'

(a) = g

'

. Therefore, due to (16) we have

P (a; r

'

) = P

'

(a)P

 

(r

'

) = g

'

r

'

= g:

Thus the mapping P is a surjection. Since conditions (H1)-(H3) of the De�nition 1.1 are

satis�ed (see the end of Subsection 3.2), it remains to verify the condition (H4), i. e. that

P is a trapdoor function.

First, we observe that by statement (i1) of Lemma 3.2 and by Lemma 3.4 the mappings

P

'

and P

 

are polynomial time computable, whence so does the mapping P . Next,

given an element g 2 G there exists the uniquely determined element r 2 R such that

f(g) = f(r) or, equivalently, f(gr

�1

) = 1

H

. Since jRj = O(1), this implies that the

problem of the computation of the epimorphism f is polynomial time equivalent to the

problem of recognizing elements of ker(f) in G, i. e. in our setting to the problem

INVERSE(P ). Thus, we have to show that

(a) the problem INVERSE(P ) can be e�ciently solved by means of using the trapdoor

information for the homomorphic cryptosystems (R

i

; A

i

; P

i

), i 2 n, i.e. the factoring

of integers n

i

2 D

n;m

i

,

(b) for any i 2 n the problem INVERSE(P

i

) (to which the factoring of integers n

i

is

reduced) is polynomial time reducible to the problem INVERSE(P ).
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Suppose that for each i 2 n there is an oracle for the problem INVERSE(P

i

). Then given

g

i

2 G

i

one can �nd the element f

i

(g

i

) in timeN

O(1)

. So given g 2 G the element k = '(g)

can be found in time (jgjN)

O(1)

(see (8)). Since f(g) =  ('(g)) =  (k) and jkj � jgj, one

can �nd  (k) by Lemma 3.4 and then to test whether g 2 ker(f) within the same time.

Moreover, due to condition (H3) for cryptosystems S

i

, i 2 n, one can e�ciently �nd an

element r belonging to the right transversal R

'

of ker(') in G such that '(r) = k and

jrj � jkj. Now if g 2 ker(f) then  (k) = 1

H

and so r 2 A

 

. Furthermore,

'(gr

�1

) = '(g)'(r

�1

) = kk

�1

= 1

K

:

Finally, from statement (i3) of Lemma 3.2 it follows that one can �nd in time (jgjN)

O(1)

an element a 2 A

'

such that P

'

(a) = gr

�1

. Thus we obtain

P (a; r) = P

'

(a)P

 

(r) = gr

�1

r = g = g;

which proves claim (a).

To prove claim (b) let g 2 G. If g 62 ker(f), then obviously g 62 ker('). Let now

g 2 ker(f) and (a; b) 2 A be such that P

'

(a)P

 

(b) = g. Since P

 

(b) belongs to the

right transversal R

'

of ker(') in G, it follows that g 2 ker(') i� P

 

(b) = 1

G

. Moreover,

if P

 

(b) = 1

G

, then obviously P

'

(a) = g. Taking into account that the element P

 

(b)

can be found in time jbj

O(1)

(see (15)), we conclude that the problem INVERSE(P

'

) is

polynomial time reducible to the problem INVERSE(P ). Thus claim (b) follows from

statement (i4) of Lemma 3.2. Theorem 1.3 is proved.

4 Encrypted simulating of boolean circuits

Let B = B(X

1

; : : : ;X

n

) be a boolean circuit and H be a group. Following [1] we say that

a word

h

X

l

1

1

� � � h

X

l

m

m

; h

1

; : : : ; h

m

2 H; l

1

; : : : ; l

m

2 n; (20)

is a simulation of size m of B in H if there exists a certain element h 2 H

#

such that the

equality

h

x

l

1

1

� � � h

x

l

m

m

= h

B(x

1

;:::;x

n

)

holds for any boolean vector (x

1

; : : : ; x

n

) 2 f0; 1g

n

. It is proved in [1] that given an

arbitrary unsolvable group H and a boolean circuit B there exists a simulation of B in H,

the size of this simulation is exponential in the depth of B ( in particular, when the depth

of B is logarithmic O(log n), then the size of the simulation is n

O(1)

).

We say that the circuit B is encrypted simulated over a homomorphic cryptosystem

with respect to an epimorphism f : G! H (we use the notations from De�nition 1.1) if

there exist g

1

; : : : ; g

m

2 G, and a certain element h 2 H

#

such that

f(g

x

l

1

1

� � � g

x

l

m

m

) = h

B(x

1

;:::;x

n

)

(21)
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for any boolean vector (x

1

; : : : ; x

n

) 2 f0; 1g

n

. Thus having a simulation (20) of the

circuit B in H one can produce an encrypted simulation of B by choosing randomly

g

i

2 G such that f(g

i

) = h

i

, i 2 m (in this case, equality (21) is obvious). Now combining

Theorem 1.3 with the above mentioned result from [1] we get the following statement.

Corollary 4.1 For an arbitrary �nite unsolvable group H, a homomorphic cryptosystem

S of a size N over H and any boolean circuit of the logarithmic depth O(logN) one can

design in time N

O(1)

an encrypted simulation of this circuit over S.

The meaning of an encrypted simulation is that given (publically) the elements

g

1

; : : : ; g

m

2 G and h 2 H

#

from (21) it should be supposedly di�cult to evaluate

B(x

1

; : : : ; x

n

) since for this purpose one has to verify whether an element g

x

l

1

1

� � � g

x

l

m

m

belongs to ker(f). On the other hand, the latter can be performed using the trapdoor

information. In conclusion let us mention the following two known schemes of interaction

(cf. e.g. [2, 24, 21, 22]) based on encrypted simulations.

The �rst scheme is called evaluating an encrypted circuit. Assume that Alice knows a

trapdoor in a homomorphic cryptosystem over a group H with respect to an epimorphism

f : G ! H and possesses a boolean circuit B which she prefers to keep secret, and Bob

wants to evaluate B(x) at an input x = (x

1

; : : : ; x

n

) (without knowing B and without

disclosing x). To accomplish this Alice transmits to Bob an encrypted simulation (21)

of B, then Bob calculates the element g = g

x

l

1

1

� � � g

x

l

m

m

and sends it back to Alice, who

computes and communicates the value f(g) to Bob.

In a di�erent setting one could consider in a similar way evaluating an encrypted

circuit B

H

(y

1

; : : : ; y

n

) over a group H (rather than a boolean one), being a sequence of

group operations in H with inputs y

1

; : : : ; y

n

2 H. The second (dual) scheme is called

evaluating at an encrypted input. Now Alice has an input y = (y

1

; : : : ; y

n

) (desiring to

conceal it) which she encrypts randomly by the tuple z = (z

1

; : : : ; z

n

) belonging to G

n

such that f(z

i

) = y

i

, i 2 n, and transmits z to Bob. In his turn, Bob who knows a

circuit B

H

(which he wants to keep secret) yields its \lifting" f

�1

(B

H

) to G by means of

replacing every constant h 2 H occurring in B

H

by any g 2 G such that f(g) = h and

replacing the group operations in H by the group operations in G, respectively. Then Bob

evaluates the element (f

�1

(B

H

))(z) 2 G and sends it back to Alice, �nally Alice applies

f and obtains f((f

�1

(B

H

))(z)) = B

H

(y) (even without revealing it to Bob).

It would be interesting to design homomorphic cryptosystems over rings rather than

groups.
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