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Abstract

In this paper we present a general framework for password-based authenticated key exchange
protocols, in the common reference string model. Our protocol is actually an abstraction of
the key exchange protocol of Katz et al. and is based on the recently introduced notion of
smooth projective hashing by Cramer and Shoup. We gain a number of benefits from this
abstraction. First, we obtain a modular protocol that can be described using just three high-
level cryptographic tools. This allows a simple and intuitive understanding of its security.
Second, our proof of security is significantly simpler and more modular. Third, we are able
to derive analogues to the Katz et al. protocol under additional cryptographic assumptions.
Specifically, in addition to the DDH assumption used by Katz et al., we obtain protocols under
both the Quadratic and N -Residuosity assumptions. In order to achieve this, we construct new
smooth projective hash functions.

1 Introduction

A central problem in cryptography is that of enabling parties to communicate secretly and reliably
in the presence of an adversary. This is often achieved by having the parties run a protocol for
generating a mutual and secret session key. This session key can then be used for secure communi-
cation using known techniques (e.g., applying encryption and message authentication codes to all
communication). Two important parameters to define regarding this problem relate to the strength
of the adversary and the initial setup for the parties.

Adversarial power. The problem of session-key generation was initially studied by Diffie and
Hellman [14] who considered a passive adversary that can eavesdrop on the communication of
the parties, but cannot actively modify messages on the communication line. Thus, the parties
are assumed to be connected by reliable, albeit non-private, channels. Many efficient and secure
protocols are known for this scenario. In contrast, in this paper, we consider a far more powerful
adversary who can modify and delete messages sent between the parties, as well as insert messages

∗The protocol presented in the conference version of this paper (EUROCRYPT 2003) is insecure and can be broken
by a trivial offline dictionary attack. In this full version, we fix the error.

1



of its own choice. Such an adversarial attack could be carried out by the owner of a routing server
on the Internet, for example.

Setup assumptions. In order to achieve authenticated key exchange, the parties Alice and Bob
must hold some secret information. Otherwise, there is nothing preventing an adversary from
pretending to be Bob while communicating with Alice (and vice versa). Thus, some initial setup
assumption is required. Known setup assumptions range from the case that the parties share
high entropy secret keys to the case that all they share are low entropy passwords that can be
remembered and typed in by human users. Although many secure and efficient protocols exist for
the high entropy case, our understanding of the low entropy case is far from satisfactory. This is
despite the fact that the most common setup assumption used today in practice is that of passwords.

This paper focuses on the question of password-based key exchange in the face of a powerful,
active adversary. Before proceeding further, we describe this setting in some more detail.

Password-based authenticated key-exchange. We consider a multi-party scenario where
each pair of parties share a password that is chosen uniformly from some small dictionary (the
assumption of uniformity is made for simplicity only). The parties interact in a network in which
an active adversary has full control over the communication lines. Essentially, this means that
the parties cannot communicate directly with each other; rather, all communication is carried out
via the adversary. Nevertheless, the parties attempt to generate session keys that they can then
use to secretly and reliably communicate with each other. An immediate observation is that in
this scenario it is impossible to guarantee that the adversary’s success is negligible (where success
means, for example, that it succeeds in learning the session key). This is because it can guess the
password and then impersonate Bob while communicating with Alice. If its password guess was
correct, then it clearly obtains the session key. Since the password dictionary may be small (i.e.,
polynomial in the security parameter), the success by the adversary in this naive attack may be
quite high. This type of attack is called an on-line guessing attack and is inherent whenever security
depends on low entropy passwords. The aim of password-based authenticated key exchange is thus
to limit the adversary to such an attack only.

Prior related work. The first (unbroken) protocol suggested for password-based session-key
generation was by Bellovin and Merritt [4]. This work was very influential and became the basis for
much future work in this area [5, 27, 20, 23, 26, 28]. However, these protocols have not been proven
secure and their conjectured security is based on heuristic arguments. Despite the strong need for
secure password-based protocols, the problem was not treated rigorously until quite recently.

A first rigorous treatment of the problem was provided by Halevi and Krawczyk [18]. They
actually considered an asymmetric hybrid model in which one party (the server) may hold a high
entropy key and the other party (the human) may only hold a password. The human is also assumed
to have secure access to a corresponding public-key of the server. The protocol of [18] provides a
password-based solution; however, it requires additional setup assumptions beyond that of human
passwords. The first (and only currently known) protocol to achieve security without any additional
setup is that of Goldreich and Lindell [17]. Their protocol is based on general assumptions (i.e.,
the existence of trapdoor permutations) and constitutes a proof that password-based authenticated
key exchange can actually be obtained. Unfortunately, the protocol of [17] is not very efficient and
thus cannot be used in practice.

Recently, Katz, Ostrovsky and Yung (KOY) [22] presented a highly efficient protocol for the
problem of password-based authenticated key-exchange in the common reference string model. In
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this model, it is assumed that all parties have access to a set of public parameters, chosen by
some trusted third party. Although this is a stronger setup assumption than where only human
passwords are shared, it is still significantly weaker than other models that have been studied
(like, for example, the Halevi–Krawczyk model). Furthermore, in practice there are settings in
which such a setup can reasonably be implemented at little cost.1 The KOY protocol is based on
the Decisional Diffie-Hellman (DDH) assumption and has complexity that is only 5–8 times the
complexity of unauthenticated key-exchange protocols. We remark that the starting point of our
work was the KOY protocol.

We note that password-based authenticated key-exchange protocols in the password only setting
have been presented in the random oracle model [1, 6]. In this model, all parties are assumed to
have oracle access to a totally random (universal) function [2]. The common interpretation of such
results is that security is likely to hold even if the random oracle is replaced by a (“reasonable”)
concrete function known explicitly to all parties (e.g., SHA-1). However, it has been shown that
it is impossible to replace the random oracle in a generic manner with any concrete function [7].
Thus, the proofs of security of these protocols are actually heuristic in nature.

1.1 Our Contributions

In this paper, we present a framework for password-based authenticated key-exchange protocols in
the common reference string model. Our construction is an abstraction of the KOY protocol [22]
and uses non-malleable commitments [15], one-time signature schemes and the smooth projective
hash functions of Cramer and Shoup [11]. The advantages of this abstraction are as follows:

1. The security of the resulting protocol can be intuitively understood. Our work can thus also
be seen as an “explanation” of the KOY protocol (in a similar way to the fact that [11] can
be seen as an explanation of [10]).

2. The proof of our protocol is significantly simpler than that of [22], although there are definite
similarities in the high-level overview of the proof (see [21] for a full proof of the [22] protocol).
Having abstracted out the building blocks of the protocol, the exact requirements on each
element of the protocol also become clearer. One specific result of this is that by slightly
modifying the [22] protocol, we are able to show that non-malleable commitments suffice (in
contrast to [22] whose proof heavily relies on the fact that they use an encryption scheme
that is secure against adaptive chosen-ciphertext attacks (CCA2)).

3. The KOY protocol assumes the DDH assumption. We demonstrate additional instantiations
of the framework and obtain password-based authenticated key-exchange protocols under both
the Quadratic Residuosity and N -Residuosity assumptions. The resulting protocol for N -
Residuosity is also highly efficient. In contrast, the protocol based on Quadratic Residuosity
is less efficient, but has the advantage of being based on a more standard assumption.

Before presenting our protocol, we briefly (and informally) describe its components (we stress that
the descriptions below are very high-level and thus are not accurate):

1An example of where it is reasonable to assume a common reference string is when a large organization wishes
to implement secure login for its employees. In this case, the organization is trusted to choose the common reference
string properly, and this string can then be hardwired into the software code. Another advantage of using a common
reference string over something like the Halevi–Krawczyk model is that no secret keys are needed, saving problems
of key management.
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Non-interactive non-malleable commitments [15]: A non-malleable commitment scheme has
the property that given a commitment to a value x, it is hard to generate a commitment to a re-

lated value y (with probability that is greater than the a priori probability). Non-interactive non-
malleable commitments are known to exist in the common reference string model [12, 13]. We
actually need these commitments to be perfectly binding. In the common reference string model,
such schemes can be obtained from any public-key encryption scheme that is non-malleable
against chosen-plaintext attacks [13]. The common reference string for our password protocol
is simply the common reference string of the non-malleable commitment scheme.

Smooth projective hashing [11]: Let X be a set and L ⊂ X a language. Loosely speaking,
a hash function Hk that maps X to some set is projective if there exists a projection key that
defines the action of Hk over the subset L of the domain X. That is, there exists a projection
function α(·) that maps keys k into their projections s = α(k). The projection key s is such that
for every x ∈ L it holds that the value of Hk(x) is uniquely determined by s and x. In contrast,
nothing is guaranteed for x 6∈ L, and it may not be possible to compute Hk(x) from s and x. A
smooth projective hash function has the additional property that for x /∈ L, the projection key
s actually says nothing about the value of Hk(x). More specifically, given x and s = α(k), the
value Hk(x) is uniformly distributed (or statistically close) to a random element in the range of
Hk.

An interesting feature of smooth projective hashing is that if L is an NP-language, then for
every x ∈ L it is possible to efficiently compute Hk(x) using the projection key s = α(k) and a
witness of the fact that x ∈ L. Alternatively, given k itself, it is possible to efficiently compute
Hk(x) even without knowing a witness.

In this paper we prove another important property of smooth projective hash functions that
holds when L is a hard-on-the-average NP-language. For a random x ∈R L, given x and s = α(k)
the value Hk(x) is computationally indistinguishable from a random value in the range of Hk(x).
Thus, even if x ∈ L, the value Hk(x) is pseudorandom, unless a witness is known. (Of course,
as described above, for x 6∈ L the value of Hk(x) is statistically close to a random element in
the range of Hk.)

Our protocol uses a very simple combination of the above tools. In particular, we define a hard-on-
the-average NP-language L = {(c,m)}, where c is a non-malleable commitment to m. (Notice that
for a randomly generated commitment, it is hard to know whether or not c is a commitment to m,
even given m.) The basic idea behind the protocol is to have the parties exchange non-malleable
commitments of the joint password and compute the session key by applying smooth projective
hash functions to these commitments. The smooth projective hash functions that they use are
based on the hard language L described above. That is, let w be the parties’ joint password. Then,
for a commitment c we have that (c, w) ∈ L if and only if c is a commitment to the password w.
An informal (and incomplete) description of the protocol appears in Figure 1. We stress that this
protocol description is incomplete. Among other slight changes, a one-time signature scheme and
an additional test value are also included in the full protocol.

Security of the protocol framework. We now explain why the protocol is secure. First,
consider the case that the adversary passively eavesdrops on a protocol execution between two
parties. The security of the session key in this case is based on the above-described property of
smooth projective hash functions over hard languages. Specifically, the adversary sees (c, s, c′, s′)
where c and c′ are randomly generated commitments of w; in other words, (c, w), (c′ , w) ∈R L.
Therefore, Hk(c, w) and Hk′(c′, w) are pseudorandom and the generated session key is secure. Next,
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Password-Based Session-Key Exchange

• Common reference string: a common reference string ρ for a non-malleable non-interactive com-
mitment scheme.

• Common input: a shared (low-entropy) password w.

• The protocol:

1. Party P1 computes a commitment c = Cρ(w) using common reference string ρ and sends it to
party P2.

2. Party P2 chooses a key k for the smooth projective hash function (for the language L described
above), and sends its projection s = α(k) to P1.

In addition, P2 computes another commitment c′ = Cρ(w) and sends it to party P1.

3. Party P1 chooses another key k′ for the smooth projective hash function, and sends its projection
s′ = α(k′) to P2.

• Session key definition: Both parties compute the session key to be Hk(c, w) ⊕ Hk′(c′, w).

1. P1 computes Hk(c, w) using the projection s and its knowledge of a witness for the fact that c
is a commitment to the password w (it knows a witness because it generated c). In contrast, it
computes Hk′(c′, w) using its knowledge of k′ (and without a witness).

2. P2 computes Hk(c, w) using its knowledge of k, and Hk′(c′, w) using s′ and its knowledge of a
witness.

Figure 1: An informal and incomplete description of the protocol framework

assume that the adversary sends one of the parties a commitment c that it generated itself. If c is
a commitment to some value w′ which is not the correct password, then the statement (c, w) is not

in the language L. Therefore, by the smoothness of Hk, the part of the key Hk(c, w) is statistically
close to uniform with respect to the adversary (who only sees s and not k). Thus, as above, the
generated key meets the requirements for a secret session key. (That is, the adversary has only
a negligible advantage in distinguishing the session key output by the parties from a uniformly
distributed key that is chosen independently of the protocol.)

The only “bad event” that can occur is if the adversary itself generates a commitment to the
correct password w. In this case, we cannot say anything about the security of the session key.
However, the adversary can succeed in generating such a commitment with only the same proba-
bility as guessing the password outright. This is due to the non-malleability of the commitment
scheme which implies that all the “correct” commitments that the adversary sees throughout the
executions do not help it in generating any new “correct” commitment. Thus, the adversary’s
success probability is essentially limited to its probability of guessing the password on-line.

Our constructions of smooth projective hash functions. One of the main contributions of
this paper regards our use of the recently introduced notion of smooth projective hash functions [11].
First, we find a new and novel application of this notion to password-based key exchange. Second,
we construct new smooth projective hash functions for languages not considered by [11]. Specifi-
cally, we construct smooth projective hash functions for the language of pairs (c,m) where c is an
encryption of m by a CCA2-secure encryption scheme [15]. This suffices for our protocol framework
since any CCA2-secure encryption scheme can be used as a non-interactive non-malleable commit-
ment scheme in the common reference string model. The KOY protocol implicitly contains one such
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construction for the encryption scheme of Cramer and Shoup based on the DDH assumption [10].
We prove this fact and then build new smooth projective hash functions for the recent CCA2-secure
encryption schemes of Cramer and Shoup [11] that are based on the quadratic residuosity and N -
residuosity assumptions.2 Our constructions of these smooth projective hash functions build on
the work of [11]. However, it is important to notice the difference between their constructions and
ours. Consider the case of quadratic residuosity, for example. The smooth projective hash function
constructed by [11] is for the language of quadratic residues in Z∗N . In contrast, our construction is
for the far more involved language of pairs of plaintexts and ciphertexts for the entire encryption
scheme of [11]. We remark that our constructions require a careful combination of ideas from both
[11] and [22].

In addition to providing new constructions, we also make some modifications to the definition
of smooth projective hash functions, as presented in [11]. We both strengthen and weaken their
definition (in different ways) so that it suffices for our application. These variants may also open
the door to further applications.

1.2 Organization

In Section 2 we present the definitions of password-based authenticated key exchange. Then, in
Sections 3 and 4 we define the notions of smooth projective hash functions and non-malleable
commitments. The protocol framework and its proof of security are presented in Sections 5 and 6,
respectively. The remainder of the paper contains our constructions of smooth projective hash
functions for CCA2-secure encryption schemes (which also constitute non-malleable commitments
in the common reference string model). That is, in Section 7 we present a warm-up example
of smooth projective hash functions for the El-Gamal encryption scheme and then describe the
KOY smooth projective hash function for the Cramer-Shoup encryption scheme based on the
DDH assumption. Then, in Section 8, a relaxed version of smooth projective hash functions that
suffices for our protocol is defined, and constructions of relaxed smooth projective hash functions
for the Cramer-Shoup encryption schemes based on the N -residuosity and quadratic residuosity
assumptions are presented. Finally, in Section 8.6, we compare the efficiency of the three different
schemes.

2 Password-Based Authenticated Key Exchange

In this section, we briefly recall the formal security model for password key exchange protocols as
presented in [1] (which is in turn based on [3]). For more details and motivation, we refer the reader
to [1]. A protocol for password key exchange assumes that there is a set of principals which are the
clients and the servers who will engage in the protocol. Each client stores its own private password
w, while each server stores all the passwords of the clients who have access to that server.3 The
passwords for all pairs of parties are uniformly (and independently) chosen from a fixed dictionary
D.4 Each principal may start various executions of the protocol, with different partners. Thus we

2Actually, we devise a new CCA2-secure scheme based on the N-residuosity assumption, which is a variant of the
original one by Cramer and Shoup. The modifications are needed in order to obtain more efficient projective hash
functions (see Section 8.5 for details). The same variant was independently discovered by Camenisch and Shoup and
later published in [9]

3We actually make no use of the asymmetry between clients and servers. Indeed, the protocol is stated for a
general scenario where arbitrary pairs of parties share secret passwords.

4This uniformity requirement is made for simplicity and can be easily removed by adjusting the security of an
individual password to be the min-entropy of the distribution, instead of 1/|D|.
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denote with Πl
i the lth instance that user Pi runs. The adversary is given oracle access to these

instances and may also control some of the instances itself. We remark that unlike the standard
notion of an “oracle”, in this model instances maintain state which is updated as the protocol
progresses. In particular the state of an instance Πli

i includes the following variables (initialized as
null):

• sid
li
i : the session identifier of this particular instance;

• pidli
i : the partner identifier which is the name of the principal with whom Πli

i believes it is

interacting (we note that pid
li
i can never equal i);

• accli
i : a boolean variable denoting whether Πli

i accepts or rejects at the end of the execution.

Partnering. We say that two instances Πli
i and Π

lj
j are partnered if the following properties hold:

(1) pidli
i = j and pid

lj
j = i; and (2) sidli

i = sid
lj
j 6= null. The notion of partnering is important for

defining security, as we will see.

The adversarial model. The adversary is given total control of the external network (i.e. the
network connecting clients to servers). In particular we assume that the adversary has the ability
to not only listen to the messages exchanged by players, but also to interject messages of its choice
and modify or delete messages sent by the parties. In addition, the adversary is given control over
a subset of the oracles. (This actually makes no difference in the password-only setting and is
ignored from here on.) The above-described adversarial power is modeled by giving the adversary
oracle access to the instances of the protocol that are run by the principals. Notice that this means
that the parties actually only communicate through the adversary. The oracles provided to the
adversary are as follows:

• Execute(i, li, j, lj): When this oracle is called, a complete protocol execution between instances

Πli
i and Π

lj
j takes place. The oracle-output is the protocol transcript (i.e., the complete series

of messages exchanged by the instances throughout the execution). These oracle calls reflect
the adversary’s ability to passively eavesdrop on protocol executions. As we shall see, the
adversary should learn nothing from such oracle calls.

• Send(i, li,M): This call sends the message M to the instance Πli
i . The output of the oracle

is whatever message the instance Πli
i would send after receiving the message M (given its

current state). This oracle allows the adversary to carry out an active man-in-the-middle
attack on the protocol executions.

• Reveal(i, li): This call outputs the secret key skli
i which resulted from instance Πli

i . This oracle
allows the adversary to learn session keys from previous and concurrent executions, modeling
improper exposure of past session keys and insuring independence of different session keys in
different executions.

• Test(i, li): This call is needed for the definition of security and does not model any real
adversarial ability. The adversary is only allowed to query it once, and the output is either
the private session key of Πli

i , denoted skli
i , or a random key sk that is chosen independently

of the protocol executions (each case happens with probability 1/2). The adversary’s aim is
to distinguish these two cases.

The security of key exchange protocols is comprised of two components: correctness and privacy.
We begin by stating the correctness requirement:
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Correctness: If two partnered instances Πli
i and Π

lj
j accept (i.e. accli

i = acc
lj
j = 1), then they

must both conclude with the same session key (i.e. skli
i = sk

lj
j ).

Privacy: We now define what it means for a protocol to be private. Intuitively, a protocol
achieves privacy if the adversary cannot distinguish real session keys from random ones. (This then
implies that the parties can use their generated session keys in order to establish secure channels;
see [8] for more discussion on this issue.) Formally, we say that the adversary succeeds if it correctly
guesses the bit determining whether it received the real session key or a random session key in the
Test oracle query. Of course, the adversary can always correctly guess the bit in a Test(i, li) query

if it queried Reveal(i, li) or Reveal(j, lj) when Πli
i and Π

lj
j are partnered. Therefore, A is only said

to have succeeded if these oracles were not queried. Now, the adversary’s advantage is formally
defined by:

Adv(A) = |2 · Prob[A succeeds ]− 1|

We reiterate that an adversary is only considered to have succeeded if it correctly guesses the bit

used by the Test(i, li) oracle and it did not query Reveal(i, li) or Reveal(j, lj) when Πli
i and Π

lj
j are

partnered.
As we have mentioned, when low entropy passwords are used, the adversary can always gain a

non-negligible advantage (by just guessing passwords in an on-line guessing attack). A protocol is
therefore called private if it is limited to such an on-line guessing attack. Notice that in Execute

oracle calls, the adversary is passive (and thus is not carrying out any on-line attack). Therefore,
we only count password guesses when the adversary queries the Send oracle. Furthermore, we also
only count one Send query for each protocol instance (i.e., if the adversary sends two Send oracle
queries to a single protocol instance, it should still only count as a single password guess). Formally,
a protocol is said to be private if the advantage of the adversary is at most negligibly more than
Qsend/|D|, where Qsend is the number of Send oracle queries made by the adversary to different
protocol instances and D is the dictionary. In summary,

Definition 1 (password-based key exchange): A password-based authenticated key exchange proto-

col is said to be secure if for every dictionary D and every (non-uniform) polynomial-time adversary

A that makes at most Qsend queries of type Send to different protocol instances,

Adv(A) <
Qsend

|D|
+ negl(n)

Furthermore, the probability that the correctness requirement is violated is at most negligible in the

security parameter n.

We note that the bound of Qsend/|D| for A’s advantage is actually optimal. That is, one can always
construct an adversary who obtains this exact advantage by guessing a password, and then playing

Πli
i ’s role in a protocol execution with Π

lj
j , using the guessed password. It is easily verified that

A’s advantage in this attack is exactly Qsend/|D|.

3 Smooth Projective Hash Functions

A central element of our new framework for password-based key exchange is the recently introduced
notion of smooth projective hashing of Cramer and Shoup [11]. However, their precise definition
actually does not suffice for our application. Rather, we use a variant of their definition. We begin
by recalling the original notion of smooth projective hashing (as defined in [11]).
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Notation. The security parameter is denoted by n. For a distribution D, x ← D denotes the
action of choosing x according to D. We denote by x ∈R S the action of uniformly choosing an

element from the set S. Finally, we denote statistical closeness of probability ensembles by
s
≡, and

computational indistinguishability (with respect to non-uniform polynomial-time machines5) by
c
≡.

3.1 The Cramer-Shoup Definition6

We begin by defining hard subset membership problems which form the basis for the smooth
projective hash functions that are of interest to us.

Subset membership problems. Intuitively, a hard subset membership problem is a problem
for which “hard instances” can be efficiently sampled. More formally, a subset membership problem
I specifies a collection {In}n∈N such that for every n, In is a probability distribution over problem

instance descriptions Λ. A problem instance description defines a set and a hard language for that
set. Formally, each instance description Λ specifies the following:

1. Finite, non-empty sets Xn, Ln ⊆ {0, 1}
poly(n) such that Ln ⊂ Xn, and distributions D(Ln)

over Ln and D(Xn\Ln) over Xn\Ln.

2. A witness set Wn ⊆ {0, 1}
poly(n) and an NP-relation Rn ⊆ Xn ×Wn. Rn and Wn must have

the property that x ∈ Ln if and only if there exists w ∈Wn such that (x,w) ∈ Rn.

We are interested in subset membership problems I which are efficiently samplable. That is, the
following algorithms must exist:

1. Problem instance samplability: a probabilistic polynomial-time algorithm that upon input 1n,
samples an instance Λ = (Xn,D(Xn\Ln), Ln,D(Ln),Wn, Rn) from In.

2. Instance member samplability: a probabilistic polynomial-time algorithm that upon input 1n

and an instance (Xn,D(Xn\Ln), Ln,D(Ln),Wn, Rn), samples x ∈ Ln according to distribu-
tion D(Ln), together with a witness w for which (x,w) ∈ Rn.

3. Instance non-member samplability: a probabilistic polynomial-time algorithm that upon input
1n and an instance (Xn,D(Xn\Ln), Ln,D(Ln),Wn, Rn), samples x ∈ Xn\Ln according to
distribution D(Xn\Ln).

We are now ready to define hard subset membership problems:

Definition 2 (hard subset membership problems): Let V (Ln) be the following random variable:

Choose a problem instance Λ according to In, a value x ∈ Ln according to D(Ln) (as specified in

Λ), and then output (Λ, x). Similarly, define V (Xn\Ln) as follows: Choose a problem instance Λ
according to In, a value x ∈ Xn\Ln according to D(Xn\Ln) (as specified in Λ) and then output

(Λ, x). Then, we say that a subset membership problem I is hard if

{

V (Ln)
}

n∈N

c
≡

{

V (Xn\Ln)
}

n∈N

5All of our results also hold with respect to uniform adversaries.
6We note that our presentation here contains a number of minor differences to the presentation of Cramer-Shoup

[11]. Where important, these differences are mentioned.
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In other words, I is hard if random members of Ln cannot be distinguished from random non-
members. In order to simplify notation, from here on we drop the subscript of n from all sets.
However, all mention of sets X and L etc., should be understood as having being sampled according
to the security parameter n. We remark that our definition here differs from the one in [11] in the
following way. The definition in [11] relates only to the uniform distributions over X and L, whereas
we allow the hard problem to be for any samplable distributions over L and X\L. This is needed
for our application of smooth hash functions.

Smooth projective hash functions. We present the notion of smooth projective hash functions
in the context of hard subset membership problems. Thus, the sets X and L mentioned below
should be thought of those derived from such a problem.7 Loosely speaking a smooth projective
hash function is a function with two keys. The first key maps the entire set X to some set G. The
second key (called the projection key) is such that it can be used to correctly compute the mapping
of L to G. However, it gives no information about the mapping of X\L to G. In fact, given the
projection key, the distribution over the mapping of X\L to G is statistically close to uniform (or
“smooth”). We now present the formal definition.

Let X and G be finite, non-empty sets and let H = {Hk}k∈K be a collection of hash functions
from X to G. We call K the key space of the family. Now, let L be a non-empty, proper subset
of X (i.e., L is a language). Then, we define a key projection function α : K → S, where S is the
space of key projections. Informally, the above system defines a projective hash system if for x ∈ L,
the projection key s = α(k) uniquely determines Hk(x). (Ignoring issues of efficiency, this means
that Hk(x) can be computed given only s and x ∈ L.) We stress that the projection key s = α(k)
is only guaranteed to determine Hk(x) for x ∈ L, and nothing is guaranteed for x 6∈ L. Formally,

Definition 3 (projective hash functions): The family (H,K,X,L,G, S, α) is a projective hash fam-

ily if for all k ∈ K and x ∈ L, it holds that the value of Hk(x) is uniquely determined by α(k)
and x.

Of course, projective hash functions can always be defined by taking α(·) to be the identity function.
However, we will be interested in smooth projective hash functions which have the property that
for a random x 6∈ L, the projection key α(k) reveals (almost) nothing about Hk(x). More exactly,
for x 6∈ L chosen according to D(X\L), the distribution of Hk(x) given α(k) should be statistically
close to uniform. Formally,

Definition 4 (smooth projective hash functions [11]): Let (H,K,X,L,G, S, α) be a projective hash

family. Then, let V (x, α(k),Hk(x)) be the following random variable: choose x ∈ X\L according

to D(X\L), k ∈R K and output (x, α(k),Hk(x)). Similarly, define V (x, α(k), g) as follows: choose

x ∈ X\L according to D(X\L), k ∈R K, g ∈R G and output (x, α(k), g). Then, the projective

hash family (H,K,X,L,G, S, α) is smooth if

{

V (x, α(k),Hk(x))
}

n∈N

s
≡

{

V (x, α(k), g)
}

n∈N

To summarize, a smooth projective hash function has the property that a projection of a key may
be computed which enables the computation of Hk(x) for x ∈ L, but gives almost no information
about the value of Hk(x) for a random x 6∈ L.

7This is different to the presentation by [11]; they present the notion of smooth projective hash functions inde-
pendently of hard subset membership problems.
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Efficient smooth projective hash functions. We say that a smooth projective hash family is
efficient if the following algorithms exist:8

1. Key sampling: a probabilistic polynomial-time algorithm that upon input 1n samples k ∈ K
uniformly at random.

2. Projection computation: a deterministic polynomial-time algorithm that upon input 1n and
k ∈ K outputs s = α(k).

3. Efficient hashing from key: a deterministic polynomial-time algorithm that upon input 1n,
k ∈ K and x ∈ X, outputs Hk(x).

4. Efficient hashing from projection key and witness: a deterministic polynomial-time algorithm
that upon input 1n, α(k) (for some k ∈ K), x ∈ L and a witness w such that (x,w) ∈ R,
computes Hk(x).

We note an interesting and important property of such hash functions. For x ∈ L, it is possible to
compute Hk(x) in two ways: either by knowing the key k (as in item 3 above) or by knowing the
projection s of the key, and a witness for x (as in item 4 above). This property plays a central role
in our password-based protocol.

3.2 A Variant of Smooth Projective Hash Functions

As we have mentioned, the precise definition of smooth hashing presented in [11] does not suffice
for our application. Rather, we define a variant which is stronger in one way and weaker in another.

Weakening the projection function. The first difference relates to the definition of the pro-

jection function α. We do not require the existence of a projection function α : K → S such that
s = α(k) uniquely defines the value of Hk(x) for every x ∈ L. Rather we allow the restriction to be
element based. That is, the restriction function receives a key k and an element x ∈ X and outputs
a projection sx = α(k, x). The requirement is that if x ∈ L, then the value Hk(x) is uniquely deter-
mined given sx. However, we do not have any requirement regarding the value of Hk(x

′) for x′ 6= x
given sx, even if x′ ∈ L. In other words, the projection only guarantees unique determinability
for the element x upon which it was computed. Notice that this is a weaker requirement because
smooth hashing of the original definition always satisfies this condition (i.e., define α(k, x) = α(k)
for all x).

Strengthening the smoothness property. The smoothness property required in Definition 4
relates to the case that the element x is randomly chosen in X\L (according to the distribution
D(X\L)). However, for our application, we need to deal with the case that x is adversarially

chosen. We therefore require smoothness with respect to every x ∈ X\L. That is, redefine
V (x, α(k, x),Hk(x)) to be a random variable where x is fixed, k ∈R K is chosen at random and
(x, α(k, x),Hk(x)) is output. Similarly, redefine V (x, α(k, x), g) where x is fixed, k ∈R K, g ∈R G
are chosen at random and (x, α(k, x), g) is output. Then, we require that for every x ∈ X\L:

{

V (x, α(k, x),Hk(x))
}

n∈N

s
≡

{

V (x, α(k, x), g)
}

n∈N

8Cramer and Shoup [11] call this structure a smooth projective hash proof system, since it serve the role of a proof

in their construction. We divert from the Cramer-Shoup terminology, and call such families “efficient”.
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This is clearly a strengthening of the requirement. (We note that the notion of ǫ-universal hashing
in [11] does relate to the case of an arbitrary x ∈ X\L; however, their notion of smooth hashing
does not.)

We remark that the weakening of the projection requirement actually makes it harder to satisfy
the stronger smoothness property. This is because we must rule out the case that the adversary
finds a “bad” x such that sx reveals more than it should. Indeed, this technical difficulty arises
in our constructions of smooth hash functions under the N -Residuosity and Quadratic Residuosity
assumptions. Fortunately, it can be shown that these “bad” x’s are hard to find and this will
suffice. See Section 8 for more details. From here on, when we refer to smooth projective hashing,
we mean the variant defined here.

3.3 A Technical Lemma

By the definition of projective hash functions, in order to compute Hk(x) it suffices to know either
the key k, or the projection sx = α(k, x) and a witness for x. We now prove that for smooth
projective hash functions (based on hard subset membership problems), these are actually the only
ways to compute Hk(x). Specifically, we show that for x ← D(L) (where an appropriate witness
w is not known), the value Hk(x) is computationally indistinguishable from random, given the
projection sx.

Since we use smooth projective hashing in our password protocol, it is necessary to prove the
above statement even when the adversary sees many tuples (x, sx,Hk(x)) with x← D(L). Let M
be a (non-uniform) polynomial-time oracle machine. Define the following two experiments.

Expt-Hash(M): An instance Λ = (X,D(X\L), L,D(L),W,R) of a hard subset membership prob-
lem is chosen from In. Then, the machine M is given access to two oracles: ΩL and Hash(·).
The ΩL oracle receives an empty input and returns x ∈ L chosen according to the distribution
D(L). The Hash oracle receives an input x. It first checks that x was previously output by
the ΩL oracle. If no, then it returns nothing. Otherwise, it chooses a key k ∈R K and returns
the pair (α(k, x),Hk(x)) . We stress that the Hash oracle only answers for inputs x that were
generated by ΩL. The output of the experiment is whatever machine M outputs.

Expt-Unif(M): This experiment is defined exactly as above except that the Hash oracle is replaced
by the following Unif oracle. On input x, Unif first checks that x was previously output by the
ΩL oracle. If no, it returns nothing. Otherwise, it chooses a key k ∈R K and a random element
g ∈R G, and returns the pair (α(k, x), g). As above, the output of the experiment is whatever
M outputs.

We now prove that no efficient M can distinguish between the experiments. In other words, when
x ← D(L), the value Hk(x) is pseudorandom in G, even given α(k, x). This lemma is used a
number of times in the proof of our password protocol.

Lemma 3.1 Assume that I is a hard subset membership problem. Then, for every (non-uniform)
polynomial-time oracle machine M it holds that,

∣

∣

∣Pr[Expt-Hash(M) = 1]− Pr[Expt-Unif(M) = 1]
∣

∣

∣ < negl(n)

Proof: We begin by proving a preliminary claim. Let ΩX\L be an oracle that when queried on
an empty input returns x ∈ X\L distributed according to D(X\L). Consider the experiment
Expt-HashX\L (resp. Expt-UnifX\L) which is identical to Expt-Hash (resp. Expt-Unif), except that
the oracle ΩL is replaced with ΩX\L. Then, we prove the following claim.
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Claim 3.2 Assume that I is a hard subset membership problem. Then, for every (non-uniform)
polynomial-time oracle machine M , the following two equations hold:

∣

∣

∣Pr[Expt-HashX\L(M) = 1]− Pr[Expt-Hash(M) = 1]
∣

∣

∣ < negl(n) (1)
∣

∣

∣Pr[Expt-UnifX\L(M) = 1]− Pr[Expt-Unif(M) = 1]
∣

∣

∣ < negl(n) (2)

Proof: This claim follows from the fact that the Hash and Unif oracles do not need to know
whether or not x ∈ L. Now, let M ′ be a machine who has oracle access to either ΩL or ΩX\L

and attempts to distinguish these cases. M ′ receives x values from its oracle, and can perfectly
emulate the Hash and Unif oracles itself (without knowing whether or not x ∈ L). This implies
that if M ′ has oracle access to ΩL then it perfectly emulates Expt-Hash (resp., Expt-Unif). Likewise,
if M ′ has oracle access to ΩX\L then it perfectly emulates Expt-HashX\L (resp., Expt-UnifX\L). We
conclude that if there exists an efficient machine M that can distinguish the experiments in Eq. (1)
or Eq. (2), then M ′ can distinguish between ΩL and ΩX\L. This contradicts the hardness of the
subset membership problem. (The full details are straightforward and are therefore omitted.)

We now resume the proof of the lemma. The quantity we wish to bound can be written as follows:
∣

∣

∣Pr[Expt-Hash(D) = 1]− Pr[Expt-Unif(D) = 1]
∣

∣

∣

≤
∣

∣

∣Pr[Expt-Hash(D) = 1]− Pr[Expt-HashX\L(D) = 1]
∣

∣

∣ (3)

+
∣

∣

∣Pr[Expt-HashX\L(D) = 1]− Pr[Expt-UnifX\L(D) = 1]
∣

∣

∣ (4)

+
∣

∣

∣Pr[Expt-UnifX\L(D) = 1]− Pr[Expt-Unif(D) = 1]
∣

∣

∣ (5)

Equations (3) and (5) are both negligible by Claim 3.2. Furthermore, the fact that Eq. (4) is negli-
gible immediately follows from the definition of smooth hashing (the experiments in this equation
are actually statistically close). This completes the proof of Lemma 3.1.

Hard partitioned subset membership problems. We now consider a variant of hard subset
membership problems, where the set X can be partitioned into disjoint subsets of hard problems.
That is, assume that the set X contains pairs of the form (i, x), where i ∈ {1, . . . , ℓ} is an index. We
denote by X(i) the subset of pairs in X of the form (i, x). Furthermore, we denote by L(i) the subset
of pairs in the language L of the form (i, x). (We also associate sampling distributions D(L(i))
and D(X(i)\L(i)) to each partition.) Then, such a problem constitutes a hard partitioned subset
membership problem if for every i, it is hard to distinguish x← D(L(i)) from x← D(X(i)\L(i)). (In
the notation of Definition 2, we require that for every i, the ensembles {V (L(i))} and {V (X(i)\L(i))}
are computationally indistinguishable.) We stress that the definition of smooth projective hashing
is unchanged when considered in the context of hard partitioned subset problems. That is, the
smoothness is required to hold with respect to the entire sets X and L, and not with respect to
individual partitions.

We now show that Lemma 3.1 also holds for hard partitioned subset membership problems.
Specifically, the definitions of the oracles in the experiments are modified as follows. The ΩL oracle
is modified so that instead of receiving the empty input, it is queried with an index i, and returns
x ← D(L(i)). Likewise, ΩX\L receives an index i and returns an element x ← D(X(i)\L(i)).
Notice that in this scenario, the distinguishing machine M is given some control over the choice
of x. Specifically, M can choose the index i that determines from which partition an element x is
sampled.
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It is easy to verify that Claim 3.2 still holds and thus the proof of Lemma 3.1 goes through.
We therefore have the following corollary:

Corollary 3.3 Assume that I is a family of hard partitioned subset membership problem. Then,

for every (non-uniform) polynomial-time oracle machine M

|Pr[Expt-Hash(M) = 1]− Pr[Expt-Unif(M) = 1]| < negl(n)

3.4 Our Usage of Smooth Projective Hashing

As we have mentioned, for our password protocol, we construct smooth projective hash functions
for a specific family of hard (partitioned) subset membership problems. In this section we describe
this family.

Let C be a non-interactive non-malleable perfectly-binding commitment scheme; such schemes
are known to exist in the common reference string model (see Section 4). We denote by Cρ(m; r)
a commitment to m using random-coins r and common reference string ρ. Such a commitment
scheme is the basis for our hard problem. Let Cρ denote the space of all strings that may be output
by the commitment scheme C when the CRS is ρ, and let M denote the message space. We note
that actually, Cρ and M must be supersets of these spaces that are efficiently recognizable; the
actual definition of the supersets depends on the specific commitment scheme used; see Sections 7
and 8. Next, define the following sets:

• Xρ = Cρ ×M .

• Lρ = {(c,m) | ∃r c = Cρ(m; r)}

Furthermore, define the partitioning of Xρ to be by index m (i.e., consider Xρ(m) = Cρ ×m and
Lρ(m) = {(c,m) | ∃r c = Cρ(m; r)} (i.e., Lρ(m) is the language of all commitments to m using
ρ). The distribution D(Lρ(m)) is defined by choosing a random r and outputting (Cρ(m; r),m).
In contrast, the distribution D(Xρ(m)\Lρ(m)) is defined by choosing a random r and outputting
(Cρ(0

|m|; r),m). Clearly, by the hiding property of C, it holds that for every m, random elements
chosen from D(Lρ(m)) are computationally indistinguishable from random elements chosen from
D(Xρ(m)\Lρ(m)). This therefore constitutes a hard partitioned subset membership problem. (The
witness set Wρ and NP-relation Rρ are defined in the natural way.)

To summarize, the problem instance sampler for this problem uniformly chooses a common
reference string ρ from CRS. This then defines the sets Xρ, Lρ,Wρ and the NP-relation Rρ.
Taking the distributions D(Lρ(m)) and D(Xρ(m)\Lρ(m)) as defined above, we have that Λ =
(Xρ,D(Xρ\Lρ), Lρ,D(Lρ),Wρ, Rρ) is a hard partitioned subset membership problem.9

Our password-based key exchange protocol assumes the existence of a smooth projective hash
family for the problem Λ. This hash family H is indexed by the key space K and it holds that for

9We remark on an important subtlety here. On the one hand, Xρ is defined over strings that may contain a c
that is not a valid commitment to any value (recall that Cρ is actually a superset of the commitments using ρ).
On the other hand, the distribution D(Xρ(m)\Lρ(m)) always outputs c that is a valid commitment to something
(specifically to 0|m|). We define the sets and distributions this way for the following reason. First, the distribution
D(Xρ(m)\Lρ(m)) is not defined over invalid commitments because we cannot claim that an invalid commitment
is indistinguishable from a valid one. (For example, if D(Xρ(m)\Lρ(m)) were to uniformly choose an element in
Xρ(m)\Lρ(m), then the resulting problem is not necessarily hard.) In contrast, Xρ \ Lρ does include “everything”
that is not a valid (commitment,message) pair. This is because we need the smooth projective hash function to send
everything that is not a valid pair to a random point (even strings that are not a valid commitment to anything). Of
course, if we can efficiently verify that c is not a valid commitment to any message, then this can be excluded from
Xρ. We therefore take Xρ to be an efficiently recognizable superset of Cρ × M .
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every k ∈ K,
Hk : Cρ ×M → G

where G is a group of super-polynomial size. Let α be the key projection function. We require that
α be a function of the hash key and the commitment only. That is,

α : K × Cρ → S

In Section 3.2, we allowed α to depend on the element x, which in this case is a pair (c,m). In our
application, m will contain the secret password and we require that α can be computed without
knowledge of the password. Therefore, α is a function of k and c, rather than a function of k
and (c,m). This restriction is crucial for the security of the protocol and is used in the proof
of Claim 6.8. We remark that our specific constructions of projective hash functions fulfill this
additional requirement. For the sake of clarity, we restate some properties of smooth projective
hash functions in the context of our specific usage of them:

1. Efficient hashing from key: Given any pair (c,m) ∈ Xρ and a key k, it is possible to efficiently
compute Hk(c,m).

2. Efficient hashing from projection and witness: Given a pair (c,m) ∈ Lρ, the random coins
r such that c = Cρ(m; r) and the projection key α(k, c), it is possible to efficiently compute
Hk(c,m).

3. Smoothness: For every pair (c,m) ∈ Xρ\Lρ (i.e., for every pair in which c is not a commitment
to m), it holds that

{

V ((c,m), α(k, c),Hk(c,m))
}

s
≡

{

V ((c,m), α(k, c), g)
}

4. Application of Lemma 3.1: Let ρ be a randomly chosen CRS and let m be a message. Then,
for k ∈R K and uniformly chosen coins r, it holds that {c = C(m; r),m, α(k, c),Hk(c,m)} is
computationally indistinguishable from {c = C(m; r),m, α(k, c), g}, where g ∈R G. That is,
for a randomly generated commitment c of m, we have that Hk(c,m) is pseudorandom. Of
course, this holds even when seeing many such commitments (as stated in Lemma 3.1).

4 Non-Malleable Commitment Schemes

Our protocol uses non-interactive non-malleable perfectly-binding commitment schemes. In this
section we will describe such schemes, as well as a subtle issue that arises regarding these schemes.
Loosely speaking, a non-malleable string commitment scheme is a commitment scheme with the
additional requirement that a commitment c to a value α is of no help in generating a commitment
to a related value β. We note that most standard commitment schemes are easily malleable.
The concept of non-malleability was introduced by Dolev et al. in [15], where they also provide a
perfectly binding, (interactive) non-malleable commitment scheme based on any one-way function.

We now present the definition of non-interactive non-malleable commitment schemes. Let A
be an adversary who receives a commitment to a value α chosen from some efficiently samplable
distribution D, and attempts to output a commitment to a value β that is related to α. (More
accurately, A outputs a commitment to a vector β̄ that it hopes is related to α.) Then, we say
that the commitment scheme is non-malleable if there exists a simulation machine A′ who does

not receive a commitment to α, yet succeeds in outputting a commitment to a related β̄ with
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probability that is at most negligibly smaller than for A (who does receive a commitment to α).
Thus, seeing a commitment to α is essentially of no help in generating a commitment to a related
value β̄. This definition has the flavor of semantic security for encryption, in that the success of
the adversary is compared to the a priori success of finding a related commitment.

Formally, let C be a perfectly-binding commitment scheme and denote by Cn the scheme when
the security parameter n is used. We write Cn(α) to mean a commitment to α generated with
uniformly distributed coin tosses. Finally, we denote by decommit(c) the value committed to in
c (i.e., decommit(Cn(α)) = α) and likewise by decommit(c̄) the vector of values committed to in
c̄. We remark that since C is perfectly binding, every commitment c defines at most one value
decommit(c). We are now ready to define non-malleable commitments:

Definition 5 (non-interactive non-malleable perfectly-binding commitments): A non-interactive

perfectly-binding commitment scheme C is non-malleable if for every efficiently samplable distri-

bution D, every polynomial-time relation R, every auxiliary-information function h and every ad-

versary A that outputs a vector of commitments, there exists an adversarial simulator A′ such

that

Prα←D[(α, decommit(A(Cn(α), h(α)))) ∈ R] < Prα←D[(α, decommit(A′(h(α))) ∈ R] + negl(n)

The auxiliary-information function h represents partial information on α that may have been ob-
tained. This information is given to both A and A′.

Non-interactive non-malleable commitment schemes are known to exist in the common reference
string model [12, 13]. Perfectly binding schemes of this type can be constructed from non-malleable
public-key encryption as follows. Fix the common reference string to be a randomly chosen public-
key and commit to a string by encrypting it. Decommitment is carried out in the canonical way by
sending the value committed to along with the random coins. The fact that this is a secure perfectly-
binding commitment scheme follows immediately from the properties of any (chosen plaintext
attack secure) encryption scheme. Non-malleability of the commitment likewise follows from the
non-malleability of the encryption scheme. We conclude that any public-key encryption scheme
that is non-malleable under chosen plaintext attack can be used as a non-interactive non-malleable
perfectly-binding commitment scheme in the common reference string model. This was formally
proven in [13].

Non-malleability for multiple commitments. Observe that in the above definition, the adver-
sary is given only a single commitment which it then attempts to maul (we call this non-malleability

for a single commitment). However, we actually need a stronger definition in which the adversary
is given a vector of commitments, rather than a single commitment. Formally,

Definition 6 (non-malleability for multiple commitments): Let ℓ(·) be a polynomial. Then, a non-

interactive perfectly-binding commitment scheme C is non-malleable for ℓ multiple commitments if for

every efficiently samplable distribution D (outputting vectors ᾱ of ℓ(n) elements), every polynomial-

time 2ℓ-ary relation R, every auxiliary-information function h and every adversary A, there exists

an adversarial simulator A′ such that

Prᾱ←D[(ᾱ, decommit(A(Cn(ᾱ), h(ᾱ)))) ∈ R] < Prᾱ←D[(ᾱ, decommit(A′(h(ᾱ))) ∈ R] + negl(n)
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Achieving non-malleability for multiple commitments. We first note that (perhaps sur-
prisingly) non-malleability for a single commitment does not imply non-malleability for multiple
commitments. In particular, the DDN-Lite [16] public-key encryption scheme that is non-malleable
under chosen plaintext attack (and thus constitutes a non-malleable commitment scheme in the
common reference string model) is malleable under chosen-plaintext attack in the case of multiple
encryptions. (This is in contrast to semantic security for public-key encryption in which security for
a single encryption implies security for multiple encryptions.) We remark that in order to obtain
a non-malleable commitment scheme of this type from a public-key encryption scheme, one would
need to explicitly prove security for multiple encryptions. Another possibility is to use any adap-

tive chosen-ciphertext (CCA2) secure scheme (for which non-malleability and security for multiple
encryptions are both implied).

5 The Protocol

Our protocol below uses a non-interactive and non-malleable perfectly-binding commitment scheme.
The only known such schemes are in the common reference string (CRS) model, and we therefore
write the protocol accordingly. Let ρ denote the CRS and let Cρ(m; r) denote a commitment to the
message m using random coin tosses r and the CRS ρ. We also denote by Cρ(m) a commitment to
m using unspecified random coins. As described in Section 3.4, we use a family of smooth projective
functions H = {Hk} such that for every k in the key space K, Hk : Cρ ×M → G, where M is the
message space, Cρ is an efficiently recognizable superset of {Cρ(m; r) | m ∈M & r ∈ {0, 1}∗}, and
G is a group of super-polynomial size. Recall that the key projection function α is defined as a
function of K and Cρ. See Section 3.4 for more details.

We also use a family of universal hash functions that takes elements from the group G to the
set of strings {0, 1}2ℓ, where ℓ = ω(log n) and n is the security parameter (this ensures that the
set {0, 1}ℓ is of size super-polynomial in n). As part of the CRS we include a randomly selected
function UH from the family. Notice that as a consequence of the entropy smoothing theorem [19],
if g is selected uniformly at random in G, then UH(g) follows a distribution which is statistically
close to the uniform one over {0, 1}2ℓ. Finally we denote with UH1(g) the first ℓ bits of UH(g) and
with UH2(g) the remaining ℓ bits.

Finally, we assume that there is a mechanism that enables the parties to differentiate between
different concurrent executions and to identify who they are interacting with. This can easily be
implemented by having Pi choose a sufficiently long random string r and send the pair (i, r) to Pj

along with its first message. Pi and Pj will then include r in any future messages of the protocol.
We stress that the security of the protocol does not rest on the fact that these values are not
modified by the adversary. Rather, this just ensures correct communication for protocols that are
not under attack. The protocol appears in Figure 2.

Motivation for the protocol. First notice that both Pi and Pj can compute the session key as
instructed. Specifically, Pi can compute Hk(c, V K ◦w◦ i◦j) because it has the projection key s and
the witness r for c. Furthermore, it can compute Hk′(c′, w) because it has the key k′ (and therefore
does not need the witness r′ for c′). Likewise, Pj can also correctly compute both the hash values
(and thus the session key). Second, when both parties Pi and Pj see the same messages (c, s, c′, s′),
the session keys that they compute are the same. This is because the same hash value is obtained
when using the hash keys (k and k′) and when using the projection keys (s and s′). This implies
that the correctness property holds for the protocol.
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F-PaKE

Common reference string: A common reference string ρ for a non-interactive and non-malleable
perfectly-binding commitment scheme C. A randomly chosen function UH from a family of universal
hash functions with domain G and output in {0, 1}2ℓ.

Common private input: A password w = wi,j .

Messages:

1. Party Pi chooses a key-pair (V K, SK) from a one-time signature scheme, generates a commitment
c = Cρ(V K ◦ w ◦ i ◦ j; r), and sends (V K, c) to Pj .

2. Party Pj receives (V K, c), and checks that c is of the proper format (i.e., c ∈ Cρ as defined in
Section 3.4). Then, Pj does the following:

(a) Choose a key k for the smooth projective hash function family H defined in Section 3.4 and
compute the projection s = α(k, c).

(b) Generate a commitment c′ = Cρ(w; r′).

Pj sends (s, c′) to Pi.

3. Pi receives (s, c′), checks that c′ ∈ Cρ, and does the following:

(a) Choose a key k′ for H and compute the projection s′ = α(k′, c′).

(b) Compute the signature σ = SignSK(c, s, c′, s′).

(c) Compute the master key K = Hk(c, V K ◦w◦ i◦j)+Hk′ (c′, w), where addition is in the group
G (K is called the “master key” since it is used for deriving a test value and the session key).
Pi computes the first element using the projection key s and the witness r, and the second
element using the key k′.

(d) Set test = UH1(K).

Pi then sends (s′, σ, test) to Pj .

Session-Key Definition:

• Pi sets sk = UH2(K).

• Pj computes the master key K = Hk(c, V K ◦ w ◦ i ◦ j) + Hk′(c′, w); the first element is computed
using the key k, and the second element is computed using the projection key s′ and the witness r′.
Then Pj checks that the following two conditions hold:

1. test = UH1(K);

2. VerifyV K((c, s, c′, s′), σ) = 1.

If at least one of the above conditions does not hold, then Pj aborts (setting acc = 0). Otherwise,
Pj sets sk = UH2(K).

Session-Identifier Definition: Both parties take the series of messages (c, s, c′, s′) to be their session
identifiers.

Figure 2: A framework for Password Based Key Exchange

18



We now proceed to motivate why the adversary cannot distinguish a session key from a random
key with probability greater that Qsend/|D|, where Qsend equals the number of Send oracle calls
made by the adversary to different protocol instances and D is the password dictionary. In order
to see this, notice that if Pi, for example, receives c′ that is not a commitment to w by CRS ρ,
then Pi’s session key will be statistically close to uniform. This is because Pi computes Hk′(c′, w),
and for c′ 6∈ Cρ(w) we have that the statement (c′, w) is not in the language Lρ defined for H (see
Section 3.4). Therefore, by the definition of smooth projective hashing, {c′, w, α(k, c′),Hk(c

′, w)}
is statistically close to {c′, w, α(k, c′), g}, where g ∈R G is a random element. The same argument
holds if Pj receives c that is not a commitment to V K ◦ w ◦ i ◦ j. It therefore follows that if
the adversary is to distinguish the session key from a random element, it must hand the parties
commitments of the valid messages (and in particular containing the correct passwords). One way
for the adversary to do this is to copy (valid) commitments that are sent by the honest parties in
the protocol executions. However, in this case, the adversary does not know the random coins used
in generating the commitment, and once again the result of the hash function is pseudorandom in
G (see Section 3.3). This means that the only option left to the adversary is to come up with valid
commitments that were not previously sent by honest parties. However, by the non-malleability
of the commitment scheme, the adversary cannot succeed in doing this with probability non-
negligibly greater than just a priori guessing the password. Thus, its success probability is limited
to Qsend/|D|+negl(n). We remark that the value test constitutes a test that c is a valid commitment;
this is included to ensure that Pj rejects in case it receives an invalid commitment c. This is needed
in the proof.

We note one more important point regarding the protocol. Based on the above explanation,
one may wonder why it does not suffice to exchange c and s only, without the second exchange of
c′ and s′. The need for this additional exchange is best demonstrated with the following “attack”.
Assume that the parties only exchange c and s. Then, the adversary A can interact with Pi and
obtain the commitment c. Next, A chooses k and returns s = α(k, c) to Pi. Now, if the session
key was defined to be Hk(c, w), then A can distinguish this from random as follows. By traversing
the dictionary D with all possible w’s, A can compile a list of all |D| possible candidates for the
session key (A can do this because it knows k and so can compute Hk(c, w) without a witness for
c). Since D may be small, this enables A to easily distinguish the session key from random. This
problem is overcome, however, by having the parties repeat the commitment/projection exchange
in both directions.

Using CCA2-encryption instead of non-malleable commitments. If a CCA2-encryption
scheme is used to implement the non-malleable commitments, then the computation of the test
value can be removed from the protocol, slightly improving its efficiency. A full proof of the
security of the protocol with this modification is available upon request from the authors. (The
proof in this case is actually very different from our proof here and is quite similar to the proof
of [22].)

Protocol F-PaKE and the protocol of KOY [22]. Consider the above-mentioned modification
of the protocol that relies on CCA2 encryption. Then, a protocol almost identical to that of [22]
is obtained by using the CCA2-encryption scheme of Cramer and Shoup [10] that is based on the
DDH assumption. Indeed, as we have mentioned, our protocol framework was obtained through
an abstraction of [22].
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6 Proof of Security

Our proof of security differs from the proof of [22] in a number of ways. First, our proof is based on
more generic primitives and is therefore more modular. Second, our protocol uses a non-malleable
commitment, whereas the [22] protocol is based on CCA2-encryption. In particular, their proof
uses the capability of decryption in an essential way, whereas ours does not.

Theorem 7 Assume that C is a non-interactive and non-malleable perfectly-binding commitment

scheme that is secure under multiple commitments, and assume that H is a family of smooth

projective hash functions as defined in Section 3.2. Then, Protocol F-PaKE in Figure 2 is a secure

password-based session-key generation protocol.

Proof: We begin by proving the correctness requirement. Notice that the session identifiers are
defined to be (c, s, c′, s′) as seen by the parties in the execution. Since the session key is fully defined
by these values, it follows that parties with the same identifiers must always have the same session
key. Thus, correctness holds.

We now proceed to prove the privacy requirement through a series of hybrid experiment. In
each new hybrid, we modify the way the master keys are chosen for certain protocol instances. We
begin by choosing random master keys for protocol instances for which the Execute oracle is called.
We then proceed to choose random master keys for instances that receive Send oracle calls. These
instances are gradually changed over six hybrid experiments, depending on specific sub-cases. In
the last hybrid experiment, all the master keys are random elements in the group G, and so all
session keys are (almost) uniform ℓ-bit strings. Thus, the adversary clearly cannot distinguish them
from random. We denote these hybrid experiments by H0, . . . ,H6 and by Adv(A,Hi) the advantage
of A when participating in experiment Hi. The real adversarial attack is denoted by H0 and in this
experiment all the oracles are as defined in the protocol. Thus Adv(A,H0) = Adv(A) and we wish
to bound this advantage by Qsend/|D| + negl(n), where Qsend denotes the number of Send queries
that A makes to different protocol instances during its attack.

Hybrid experiment H1: In this experiment, the Execute oracle is modified so that the master
keys of protocol instances for which Execute is called are all chosen uniformly at random from the
group G, rather than being computed from hashes of the commitments. We prove that the view of
the adversary in H1 is indistinguishable from its view in a real execution. Intuitively, this is due to
Lemma 3.1 which states that without knowing k or the randomness used to generate a commitment,
the distribution {s, V K ◦w ◦ i ◦ j,Hk(c, V K ◦ w ◦ i ◦ j)} is computationally indistinguishable from
{s, V K ◦w ◦ i ◦ j, g}, where g ∈R G. We now formally prove that modifying the oracles in this way
can make at most a negligible difference. That is,

Claim 6.1 For every non-uniform polynomial-time adversary A,

|Adv(A,H1)− Adv(A,H0)| < negl(n)

Proof: The proof of this claim works by showing how any advantage that A has in distinguishing
H1 from H0 can be used to construct a polynomial-time machine that distinguishes between Expt-

Hash and Expt-Unif as defined in Section 3. We recall the definition of these two experiments,
specified to our setting:
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Expt-Hash(D): A common reference string ρ is chosen and given to the machine D. D can then
query two oracles: Commit(·) and Hash(·, ·). The Commit oracle receives a message m and
returns a commitment c = Cρ(m; r) (generated using random coins r). The Hash oracle receives
an input c that was output by the Commit oracle on input m. It chooses a key k ∈R K and
computes the projection s = α(k, c). It then outputs (s,Hk(c,m)). We stress that the Hash

oracle only answers on inputs c which were generated by Commit on input m. The output of
the experiment is whatever the machine D outputs.

Expt-Unif(D): This experiment is defined exactly as above except that the Hash oracle works as
follows. Upon input c, which was output by the Commit oracle, it chooses a key k ∈R K and
computes the projection s = α(k, c). It then chooses a random element g ∈R G and outputs
(s, g).

In Corollary 3.3, we showed that for every (non-uniform) probabilistic polynomial-time machine D,

|Pr[Expt-Hash(D) = 1]− Pr[Expt-Unif(D) = 1]| < negl(n)

Indeed we can see this as a family of partitioned hard subset membership problem where X is
partitioned by the message m (see Section 3.4). In this context, the Commit oracle plays the role
of ΩL.

We now show that |Pr[Expt-Hash = 1]−Pr[Expt-Unif = 1]| upper bounds the difference between
an adversary A’s advantage in H0 and H1. Loosely speaking, this is shown as follows. For all
instances involved in Execute calls, the Commit and Hash oracles from the Expt-Hash and Expt-Unif

experiments are used to obtain the commitments and projection keys, and to compute the master
key K. Then, if Expt-Hash is being used, the result is identical to the protocol specification, and
therefore H0. In contrast, if Expt-Unif is being used, then the master keys are chosen at random
for all Execute calls (and everything else remains the same as in the protocol specification). The
result is therefore exactly H1. We conclude that any distinguisher for H0 and H1 can be used to
distinguish between Expt-Hash and Expt-Unif, with the same probability.

Formally, let A be an adversary interacting in either H0 or H1. Then, we construct a machine
D for the Expt-Hash and Expt-Unif experiments as follows. D receives a randomly chosen common
reference string ρ, and chooses random passwords w1, w2, . . . for all the pairs of parties. Then, D
emulates the H0/H1 experiment exactly as prescribed. The only difference relates to the emulation
of the Execute oracles. Rather than computing c, s, c′, s′ as prescribed by the protocol, D queries
its Commit oracle with V K ◦w ◦ i ◦ j and w obtaining c and c′ respectively. Then, the Hash oracle
is queried with c and c′, returning (s, h) and (s′, h′) respectively. The projection keys are included
in the transcript and the master keys for these instances are chosen as h + h′. Everything else in
the emulation remains the same. At the conclusion of the emulation, D outputs whatever A does.

Now, if D interacts in Expt-Hash, then the emulation carried out by D is exactly that of H0. In
contrast, if D interacts in Expt-Unif, then the master keys of protocol instances for which Execute

is invoked are all random elements of the group G. Thus, the emulation by D is exactly that of
H1. We conclude that D distinguishes between Expt-Hash and Expt-Unif with probability exactly
|Adv(A,H0)− Adv(A,H1)|. Thus, by Corollary 3.3, this value is negligible. This completes the
proof of Claim 6.1.

At this point, the Execute oracles provide almost no advantage to the adversary A because the
master keys are chosen uniformly at random from the group G, and so by the properties of universal
hash functions, the session keys are statistically close to the uniform distribution over {0, 1}ℓ. We
now proceed to show that the Send oracles are also not of “too much” help to the adversary. We
divide the Send oracles into four different types:
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• Send0(i, li): this oracle returns the first message (V K, c) as sent by the initiator Pi in protocol
instance Πli

i .

• Send1(j, lj , V K, c): this oracle returns the reply (s, c′) of Pj upon receiving the message (V K, c)

in protocol instance Π
lj
j .

• Send2(i, li, s, c
′): this oracle returns the final message (s′, σ, test) sent by Pi upon receiving the

message (s, c′) in protocol instance Πli
i .

• Send3(j, lj , s
′, σ, test): this oracle returns nothing, but it updates the state of Π

lj
j by feeding it

the message (s′, σ, test).

Before defining the next hybrid experiment, we prove a lemma stating that if A forwards the first
message (V K, c) of an execution unmodified, then it cannot modify the projection keys s and s′ or
the commitments c and c′ sent between the parties during the execution, without the party receiving
(V K, c) eventually aborting. Formally, denote by main(Πli

i ) the projection keys and commitments

(c, s, c′, s′) seen by Πli
i in the execution. The above-mentioned lemma is formally stated as follows:

Lemma 6.2 Denote by Send0-unmodified(Πli
i ,Π

lj
j ) the event of Π

lj
j receiving the exact message

output by Πli
i upon a Send0 oracle call. Then,

Pr
[

Send0-unmodified(Πli
i ,Π

lj
j ) & main(Πli

i ) 6= main(Π
lj
j ) & acc

lj
j = 1

]

< negl(n)

Proof: The proof of this lemma is based on the security of the one-time signature scheme. By

the assumption in the lemma, Π
lj
j received the same first message (V K, c) sent by Πli

i . Fur-

thermore, Πli
i ’s last message includes a signature on main(Πli

i ) = (c, s, c′, s′). Now, Π
lj
j accepts

only if VerifyV K(main(Π
lj
j ), σ) = 1 (where V K is the verification key sent by Πli

i ). Therefore, if

main(Πli
i ) 6= main(Π

lj
j ), it follows that Π

lj
j would reject the signature sent by Πli

i . Under the as-
sumption that A cannot forge a different signature except with negligible probability, we obtain
the lemma. This is formally shown using a reduction to the security of the signature scheme. The
reduction is straightforward and is therefore omitted.

Terminology. Before proceeding, we introduce the following terminology: a commitment c is
said to have been oracle-generated if it was output by a Send0 or Send1 oracle (otherwise, it is said
to have been adversarially-generated). Likewise, if a commitment c was generated by oracle Πli

i ,

then we say that it was Πli
i -oracle-generated. We say that a commitment c is valid for a protocol

instance if it is of the correct format. Thus, c is valid for Π
lj
j when received in a Send1 oracle query

if and only if c = Cρ(V K ◦ w ◦ i ◦ j) where V K is the verification key received by Π
lj
j along with

c, w is Pi and Pj ’s shared password and pid
lj
j = i. Likewise, if c is received by Πli

i in a Send2

oracle query, then it is valid if and only if c = Cρ(w). Note that a commitment may be valid for

one instance and not for another (by default, when we say that an instance Π
lj
j receives a valid or

invalid commitment c, the validity refers to Π
lj
j ). Finally, we denote by commitments(Πli

i ) the pair

(c, c′) of commitments that Πli
i sees in the execution. We are now ready to define H2.
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Hybrid experiment H2: In this experiment, we consider a protocol instance Π
lj
j that receives an

invalid Πli
i -oracle-generated commitment c in a Send1 oracle call. If this occurs, then the experiment

is modified so that Π
lj
j always aborts (setting acc = 0); everything else remains the same. We remark

that this event can be easily recognized because a Πli
i -oracle-generated commitment c is valid for its

recipient Π
lj
j in a Send1 oracle call if and only if Send0-unmodified(Πli

i ,Π
lj
j ), pidli

i = j and pid
lj
j = i.

We now show that this modification makes at most a negligible difference.

Claim 6.3 For every non-uniform polynomial-time adversary A,

|Adv(A,H2)− Adv(A,H1)| < negl(n)

Proof: This claim is proven by showing that when Π
lj
j receives an invalid Πli

i -oracle-generated

commitment, the master key computed by Π
lj
j is almost uniform in G. Intuitively, this implies that

A will be able to generate the correct test value to give to Π
lj
j with at most negligible probability.

Let (V K, c) be the message that Π
lj
j received in its Send1 oracle call and let pid

lj
j = ĩ (̃i may

or may not equal i). Now, in the case that we are considering here, the commitment c received by

Π
lj
j is not valid for Π

lj
j . Therefore, (c, V K ◦w ◦ ĩ ◦ j) 6∈ Lρ (recall that Lρ = {(Cρ(m),m)}). By the

definition of smooth projective hashing, we therefore have that {c, V K◦w◦ĩ◦j, s,Hk(c, V K◦w◦ĩ◦j)}
is statistically close to {c, V K ◦w ◦ ĩ◦ j, s, g} where g ∈R G. Intuitively, this means that the master

key generated by Π
lj
j is uniformly distributed in G, and so the test value that Π

lj
j receives from A

will be correct with at most negligible probability.
Formally, we need to show thatA cannot generate the correct test value, even given the messages

sent by Πli
i (which seemingly contain information about Π

lj
j ’s test value as well). Actually, what

we will show is that Hk(c, V K ◦ w ◦ ĩ ◦ j) is statistically close to g ∈R G, even given A’s entire
view, including the messages sent by Πli

i . In order to see this, notice that all of Πli
i ’s messages can

be computed by the adversary itself, albeit not efficiently. Specifically, consider an (unbounded)
machine M that receives a projection key s = α(k, c) and a commitment c of the format generated

by Πli
i that is invalid for Π

lj
j . Then, given this, M generates A’s entire view in the execution. In

order to do this, it simulates all of Πli
i ’s actions by first “breaking” the commitment c and finding

the value committed to and the random coins used for generating the commitment. Given this
information, D can generate all of Πli

i ’s messages by itself, including the signature and test value.
In addition, M simulates the messages from all other executions (this is straightforward). Since the
distribution {c, V K ◦w ◦ ĩ ◦ j, s,Hk(c, V K ◦w ◦ ĩ ◦ j)} is statistically close to {c, V K ◦w ◦ ĩ ◦ j, s, g},
and A’s entire view can be generated given (c, V K ◦ w ◦ ĩ ◦ j, s), it follows that the master key

generated by Π
lj
j is statistically close to g ∈R G even given A’s entire view. This then implies that

the test value that Π
lj
j expects to receive is statistically close to a uniformly distributed ℓ-bit string,

even given A’s view (recall that test is obtained by applying the universal hash function to Π
lj
j ’s

master key). Therefore, Π
lj
j accepts in this case with at most negligible probability.

Hybrid experiment H3: In this experiment, we consider a protocol instance Π
lj
j that receives a

valid Πli
i -oracle-generated commitment c in a Send1 oracle call. If this occurs then the experiment

is modified as follows:
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1. If commitments(Πli
i ) = commitments(Π

lj
j ), then both Πli

i and Π
lj
j are given the same random

master key K ∈R G.10

2. If commitments(Πli
i ) 6= commitments(Π

lj
j ), then Πli

i ’s master key is chosen as in H2, whereas

Π
lj
j always aborts.

We now show that the advantage of A in H3 is negligibly close to its advantage in H2; this follows
from the properties of smooth projective hash functions.

Claim 6.4 For every non-uniform polynomial-time adversary A,

|Adv(A,H3)− Adv(A,H2)| < negl(n)

Proof: Throughout the proof we will refer to oracle instances Πli
i and Π

lj
j where pid

li
i = j and

pid
lj
j = i. (Notice that since the commitment c that was generated by Πli

i is valid for Π
lj
j , it must

be that pidli
i = j and pid

lj
j = i.) We denote by w the joint password of Pi and Pj . Without loss of

generality, we assume that Πli
i plays the first party and Π

lj
j the second party. That is, we consider

the case that Π
lj
j receives a valid Πli

i -oracle-generated c. An important observation here is that

since c is valid, it must be that A also forwarded the same verification key V K that was sent by Πli
i ,

because this V K is included in c. That is, this case occurs when Send0-unmodified(Πli
i ,Π

lj
j ) = 1.

The fact that A’s advantage in H2 is negligibly close to its advantage in H3 is demonstrated in
almost the same way as in Claim 6.1. That is, we construct a machine D to distinguish between
Expt-Hash and Expt-Unif with probability negligibly close to |Adv(A,H3)−Adv(A,H2)|. Machine D
receives a randomly chosen common reference string ρ, and chooses random passwords w1, w2, . . .
for all the pairs of parties. Then, D emulates the H2 experiment as prescribed, with the following
differences:

Consider the event that A sends Π
lj
j a valid Πli

i -oracle-generated c in a Send1 oracle query (this

case happens when A forwards a message (V K, c) generated by Πli
i to Π

lj
j , where pid

li
i = j and

pid
lj
j = i). When this occurs, D does not compute a commitment c′. Rather, it obtains c′ by

querying its Commit oracle with w, and then obtains (s′, h′) by querying its Hash oracle with c′.

The oracles Πli
i and Π

lj
j are modified by D as follows:

1. Modification of Π
lj
j : Instance Π

lj
j ’s Send1 oracle response is (s, c′). The value s is generated

as in H2 (i.e., as specified in the protocol), whereas the commitment c′ is as obtained by

D from the Commit oracle query. In the case that Π
lj
j accepts, its master key is set to

Hk(c, vk ◦ w ◦ i ◦ j) + h′, where h′ is as obtained by D from the Hash oracle (as described
above).

2. Modification of Πli
i : If commitments(Πli

i ) 6= commitments(Π
lj
j ), then no modification is made

to Πli
i ’s specification. However, if commitments(Πli

i ) = commitments(Π
lj
j ), then the following

10We note that there is at most one instance Πli
i for which commitments(Πli

i ) = commitments(Π
lj
j ). Therefore, this

specification is well defined and there is no case that Πli
i must be given two different random session keys (one for

Π
lj
j and one for Π

l′
j

j ).
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modifications are made. Instance Πli
i ’s response to its Send2 oracle call is (s′, σ, test), which

is generated as follows. The projection key s′ is as obtained by D from the Hash oracle call
described above, and the signature σ is generated as in H2. Furthermore, the master key of
Πli

i is set to Hk̃(c, vk ◦w ◦ i◦ j)+h′ , where s̃ is the projection key received by Πli
i in its Send2

oracle call and h′ is as obtained by D from the Hash oracle. The test value and session key
are derived from the master key as specified in H2.

Everything else in the emulation remains unchanged (in particular, commitments c output by the
Send0 oracles and the part of the key Hk(c, V K ◦w ◦ i ◦ j) are computed by D as in the protocol).
At the conclusion of the emulation, D outputs whatever A does.

We begin by claiming that if Π
lj
j accepts, then, except with negligible probability, main(Πli

i ) =

main(Π
lj
j ). This follows from the fact that Π

lj
j received a valid Πli

i -oracle-generated commitment c

and so Send0-unmodified(Πli
i ,Π

lj
j ) = 1. Thus, Lemma 6.2 can be directly applied.11

Now, if D interacts in Expt-Hash, then the emulation carried out by D is negligibly close

to H2. This can be seen as follows. If Π
lj
j accepts, then except with negligible probability the

value s′ that it received in its Send3 oracle call is the one obtained by D from its Hash oracle
query (this is the argument made in the previous paragraph). Therefore, its master key should
be Hk(c, V K ◦ w ◦ i ◦ j) + Hk′(c′, w), where k′ is the hash key from which s′ is derived. By

the definition of the Hash oracle in Expt-Hash, h′ = Hk′(c′, w) and thus Π
lj
j ’s master key in the

emulation by D is statistically close to its master key in H2 (the only difference being in the case

that Π
lj
j accepts and main(Πli

i ) 6= main(Π
lj
j ); however, this is negligible). We now turn to Πli

i . If

commitments(Πli
i ) 6= commitments(Π

lj
j ), then no modifications are made and so the result is exactly

H2. Otherwise, consider the case that commitments(Πli
i ) = commitments(Π

lj
j ). In H2, the master

key of Πli
i would be Hk̃(c, V K ◦ w ◦ i ◦ j) + Hk′(c′, w) (where s̃ is the projection key received by

Πli
i in its Send2 oracle call). As above, when h′ is obtained from the Hash oracle in Expt-Hash,

h′ = Hk′(c′, w) and so Πli
i ’s master key is distributed exactly as in H2. We conclude that the result

of D’s emulation when running Expt-Hash is negligibly close to H2.
Next, if D interacts in Expt-Unif, then we claim that the emulation carried out by D is negligibly

close to H3. First, if commitments(Πli
i ) 6= commitments(Π

lj
j ), then it follows that main(Πli

i ) 6=

main(Π
lj
j ) and so Π

lj
j accepts with at most negligible probability. In H3, instance Π

lj
j always

rejects in this case, and so this makes at most a negligible difference. Notice that in this case, no
modification is made to Πli

i , and so it remains the same as in H2 (which is as specified for H3).

Second, if commitments(Πli
i ) = commitments(Π

lj
j ), then if Π

lj
j accepts, it must be that main(Πli

i ) =

main(Π
lj
j ) except with negligible probability. This implies that both Πli

i and Π
lj
j received the same

projection keys and so their defined master keys Hk(c, V K◦w◦i◦j)+h′ and Hk̃(c, V K◦w◦i◦j)+h′

are equal. The fact that these master keys are uniformly distributed in G follows from the fact
that h′ is obtained from the Hash oracle which in this experiment returns a random element in G.

(If Π
lj
j rejects, the Πli

i ’s master key is still uniformly distributed in G, as required.) Combining the
above, we have that D’s emulation is negligibly close to H3.

11The fact that main(Πli
i ) = main(Π

lj
j ) implies that Πli

i received the projection key s′ that D obtained from its

Hash oracle and included in Π
lj
j ’s message to Πli

i . This is important because if A sent Π
lj
j a different projection key

s̃′, then D would be unable to compute the value Hk̃′(c
′, w). This is because D obtained c′ from its Commit oracle

and does not know the random coins r′. Therefore, knowledge of the projection key s̃′ does not suffice for computing
the hash value. We note that this is exactly the point in the proof where the signature scheme is needed.
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We conclude that D distinguishes between Expt-Hash and Expt-Unif with probability that is
negligibly close to |Adv(A,H3)− Adv(A,H2)|. Thus, by Corollary 3.3, this value is negligible. This
completes the proof of Claim 6.3.12

In the above hybrids we modified Π
lj
j ’s choice of a master key when it received an oracle-generated

commitment in a Send1 oracle call. We now modify Π
lj
j ’s choice of master key when it receives an

adversarially-generated commitment in a Send1 oracle call.

Hybrid experiment H4: In this experiment, we consider an instance Π
lj
j that receives an

adversarially-generated commitment c in a Send1 oracle call. In this case, if Π
lj
j accepts, then

the experiment is halted and the adversary is said to have succeeded. Now, this only improves the
probability of success of the adversary. Therefore,

Claim 6.5 For every non-uniform polynomial-time adversary A:

Adv(A,H3) < Adv(A,H4)

Notice that in H4, whenever Π
lj
j does not abort, its master key is a random element in G. That is,

there are two possible cases. First, Π
lj
j may receive an oracle-generated commitment; this was dealt

with in H2 and H3 and Π
lj
j either rejects or outputs a random master key. Second, Π

lj
j may receive

an adversarially-generated commitment; once again, in this case it either rejects (in which case it
does not conclude with any master key) or the experiment is halted with the adversary succeeding.

Having modified the master keys received by Π
lj
j , we proceed to modify the master keys received

by Πli
i .

Hybrid experiment H5: In this experiment, if a protocol instance Πli
i receives an oracle-

generated commitment c′ in a Send2 oracle call, then its master key is chosen at random. We
stress that if Πli

i is such that its master key is already chosen at random (due to modifications
made in experiment H3), then nothing different is done. The indistinguishability of H4 and H5 is
due to the fact that for oracle-generated commitments, A cannot predict the hash function value.
The argument here is very similar to Claim 6.4.

Claim 6.6 For every non-uniform polynomial-time adversary A,

|Adv(A,H5)− Adv(A,H4)| < negl(n)

12We remark on a special case where Πli
i and Π

lj
j are such that commitments(Πli

i ) = commitments(Πli
i ) and yet

i = j. Such a case would be a problem because by the description of H3, both Πli
i and Π

lj
j should receive the same

random session key. However, since these instances are not partnered (by the definition of partnering, a party cannot

be partnered with itself), the adversary can distinguish Πli
i ’s session key from random by querying Reveal on Π

lj
j ’s

session key. Nevertheless, this is not a problem because when i = j, no Πli
i -oracle-generated commitment c is valid

for Π
lj
j . This is due to the fact that pid

lj
j 6= j and thus the commitment contains the wrong identities. Therefore,

this case is actually already deal with in H2.
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Proof: Let Πli
i be a protocol instance that receives an oracle-generated commitment c′ in a Send2

oracle call. We differentiate between the case that c′ is a valid commitment and the case that c′ is
not valid:

1. c′ is not valid: As previously shown, when c′ is not valid, the definition of smooth projective
hashing implies that the resulting master key is statistically close to uniform. This case
therefore contributes at most a negligible factor to the difference between A’s advantage in
H4 and A’s advantage in H5.

2. c′ is valid: Similarly to the proof of Claim 6.3, we show that this case contributes at most
a negligible difference to A’s advantage by constructing a machine D to distinguish between
Expt-Hash and Expt-Unif with probability negligibly close to |Adv(A,H5)−Adv(A,H4)|. Ma-
chine D receives a randomly chosen common reference string ρ, and chooses random passwords
w1, w2, . . . for all the pairs of parties. Then, D emulates the H4/H5 experiment exactly as
prescribed. The only difference relates to the emulation of the Send1 and Send2 oracles.

Specifically, let Π
lj
j be a protocol instance who was queried with a Send1 oracle call. Then,

rather than computing the commitment c′ by itself, D queries its Commit oracle with the
appropriate password. Furthermore, if this c′ is received unmodified in a Send2 oracle call by
any protocol instance Πli

i , then machine D queries its Hash oracle with c′ obtaining (s′, h′).

The reply of Πli
i then includes s′ and the appropriate portion of the master key is set to be

h′. We stress that D only modifies the choice of the master key for instances in which the
master key is not already chosen randomly in H4. If the key is already chosen at random

(as defined in H3 when commitments(Πli
i ) = commitments(Π

lj
j )), then D leaves it this way.

Everything else in the emulation remains unchanged. At the conclusion of the emulation, D
outputs whatever A does. (We note an important point that facilitates the above emulation.

In H4, protocol instances Π
lj
j who receive Send1 oracle calls always choose their master keys

at random, rather than using the projective hash functions. This is crucial because in the
emulation, the commitment c′ sent by such an instance is obtained by D from the Commit

oracle. Therefore, D does not know the random coins used to generate c′ and cannot compute
the portion of the session key Hk′(c′, w) when given the projection key s′ as chosen by the
adversary.)

Now, on the one hand, if D interacts in Expt-Hash, then the emulation carried out by D
is exactly that of H4. On the other hand, if D interacts in Expt-Unif, then the emulation
is exactly that of H5 because the session keys of instances Πli

i receiving oracle-generated c′

commitments are chosen uniformly at random. Thus D distinguishes between Expt-Hash and
Expt-Unif with probability |Adv(A,H5) − Adv(A,H4)|. By Corollary 3.3, we have that A’s
advantage in H5 is negligibly close to its advantage in H4, as required.

This completes the proof of Claim 6.6

It remains to modify the master keys of protocol instances Πli
i receiving adversarially generated

commitments c′ in Send2 oracle calls:

Hybrid experiment H6: In this experiment, if a protocol instance Πli
i receives an invalid

adversarially-generated commitment c′ in a Send2 oracle call, then its master key is chosen at
random. This makes at most a negligible difference because when c′ is not valid, Πli

i ’s session key
is anyway statistically close to uniform. We remark that we have no way of efficiently checking
whether or not such a c′ is valid; however, we do not need to since the argument here is information
theoretic. We therefore have:
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Claim 6.7 For every non-uniform polynomial-time adversary A

|Adv(A,H6)− Adv(A,H5)| < negl(n)

We are now ready to conclude the proof by bounding the advantage of the adversary in experiment
H6. First, consider the case that all the adversarially-generated commitments are not valid. Then,
in experiment H6, all master keys are actually chosen independently and uniformly at random in

G. The only exception is for partnered protocol instances Πli
i and Π

lj
j who receive the same random

key. Intuitively, since the master keys are all random, A’s advantage in this case is actually zero.
However, if A successfully generates a valid commitment, it may be able to distinguish the real
master key from a random group element. We therefore bound the probability that A generates
such a commitment. Intuitively, by the non-malleability of the commitment scheme, the oracle-
generated commitments that A sees during the execution are of no help. Therefore, it can succeed
in generating a valid commitment with essentially the same probability as guessing the password;
i.e., the number of commitments that A generates divided by |D|.

Claim 6.8 Let A be a non-uniform polynomial-time adversary that makes at most Qsend queries

to the Send1 and Send2 oracles. Then,

Adv(A,H6) <
Qsend

|D|
+ negl(n)

Proof: Let adv-invalid be the event that all adversarially generated commitments are not valid.
Conversely, let adv-valid be the event that at least one adversarially generated commitment was
valid. Then, we have that

Pr[A succeeds in H6]

= Pr[A succeeds in H6 | adv-invalid] · Pr[adv-invalid]

+Pr[A succeeds in H6 | adv-valid] · Pr[adv-valid]

≤ Pr[A succeeds in H6 | adv-invalid] · Pr[adv-invalid] + Pr[adv-valid]

Rewriting this equation, we obtain

Pr[A succeeds in H6] ≤ Pr[A succeeds in H6 | adv-invalid] (6)

+Pr[adv-valid] ·
(

1− Pr[A succeeds in H6 | adv-invalid]
)

We now bound the above quantities.

Bounding A’s success when all adversarially-generated commitments are invalid. We
first bound the probability that A succeeds conditioned on the fact that all the adversarially-
generated commitments are invalid. Recall that in H6, adversary A succeeds if it distinguishes a
session key from random, or if in a Send1 oracle query it gives an adversarially-generated commit-

ment c to a protocol instance Π
lj
j that accepts. The case we are considering here is where all such

commitments c are not valid; therefore, the master key that Π
lj
j computes is (almost) uniformly

distributed in G. By the properties of universal hash functions, it follows that the test value that
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Π
lj
j computes is (almost) uniform over {0, 1}ℓ. Therefore, the probability that Π

lj
j accepts is negli-

gible (the formal proof is almost identical to Claim 6.3). It remains to bound the probability that
A can distinguish a session key from random.

Now, in experiment H6, when all adversarially-generated commitments are invalid, all the mas-
ter keys are chosen at random. Again, applying the properties of universal hash functions, this
implies that the session keys are statistically close to uniformly distributed ℓ-bit strings. There-
fore, the Test oracle generates almost exactly the same distribution when it is outputting the
chosen session key or a random key. Thus, the only way that A can distinguish the session key
from a random key is if it has explicitly seen this key by using the Reveal oracle. However, in
such a case, the key of this instance and its partnered instance cannot be counted as adversarial
success. This leaves the case that the same key is chosen for two instances that are not part-

nered. However, the only case where protocol instances Πli
i and Π

lj
j receive the same session key

is when commitments(Πli
i ) = commitments(Π

lj
j ) and acc

lj
j = 1. Now, in such a case, it must be

that Send0-unmodified(Πli
i ,Π

lj
j ) occurred, pidli

i = j and pid
lj
j = i. (Otherwise, c would not be valid

due to the verification key or identities in the commitment, and with overwhelming probability Π
lj
j

rejects.) Now, since Send0-unmodified(Πli
i ,Π

lj
j ) holds, it follows that except with negligible proba-

bility, both instances saw the same series (c, s, c′, s′); see Lemma 6.2. Since the session identifiers

are defined to be (c, s, c′, s′) it follows that sidli
i = sid

lj
j 6= null. Furthermore, as we have mentioned,

Πli
i and Π

lj
j are such that pidli

i = j and pid
lj
j = i. In other words, Πli

i and Π
lj
j are partnered. We

conclude that non-partnered pairs always have independent and uniformly chosen keys and thus
A’s probability of success in this case is negligibly close to 1/2. That is,

Pr[A succeeds in H6 | adv-invalid] =
1

2
± negl(n) (7)

Bounding the probability that A generates a valid commitment. We now upper bound
the probability that A ever generates a valid commitment by Qsend/|D| + negl(n). This is proved
by a reduction to the non-malleability of the commitment scheme (for multiple commitments). See
Definition 6 (non-malleability for multiple commitments) for the notation used below.

We begin by defining a distribution D and a relation R. Let ℓ(n) equal 3t ·N2 where t is a
bound on the running-time of the (password protocol) adversary A, and N equals the number
of participating parties. Then, the distribution D chooses N2 passwords wi,j randomly from the
dictionary D, so that wi,j is the joint password of Pi and Pj (to be exact, N(N−1)/2 passwords are
needed). In addition, D randomly chooses t ·N2 pairs of signing and verification keys (V K,SK)
for the one-time signature scheme. Then, for every i and j, D generates t strings of the form
(V K ◦ wi,j ◦ i ◦ j), t strings of the form (V K ◦ j ◦ wi,j) and t strings of the form (wi,j). That is, D
outputs all the possible commitment values that could be seen by A through its Execute and Send

oracles. (Notice that since A runs for only t steps, this is the most number of oracle calls it can
make. Since it can make these calls adaptively, we have D prepare all the possible responses ahead
of time.) We remark that the order of the strings is fixed and known.

Next, we define a relation R such that (ᾱ, β̄) ∈ R if ᾱ is a 3tN2-length vector of the format
output by D, and β̄ is a 3tN2-length vector where at most Qsend entries are not ⊥ and there exists
an index l (1 ≤ l ≤ 3tN2) for which αl and βl contain the same password wi,j . In other words, β̄
is a vector that contains a correct guess of at least one of the passwords. (The fact that the same
password should be in the lth entry in both ᾱ and β̄ ensures that A correctly guessed the password
of a specific pair of parties. Furthermore, the requirement that only Qsend places are not ⊥ ensures
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that only Qsend password guesses are counted.)
We now build an attacker M for the non-malleable commitment scheme who succeeds in

outputting a related vector of commitments with the same probability that A sends a valid
adversarially-generated commitment in a Send1 or Send2 oracle call in its attack on the password
protocol. The machine M is given all the V Ki’s that are chosen by D along with all the corre-
sponding SKi’s (this is the auxiliary information function h that is applied to α). In addition, M
receives the series of 3tN2 commitments corresponding to the 3tN2 strings output by D. Then, M
invokes A and emulates an execution of the H6 hybrid experiment. This emulation is carried out as

follows. Whenever, a protocol instance Πli
i or Π

lj
j needs to send a commitment c or c′, machine M

takes the commitment of the appropriate form from the commitments that it received. (Since the
order of strings output by D is known, M can make sure that the same pairs of parties always use
the same password and that the format of the commitments is always correct.) Furthermore, the
projection keys are chosen as instructed13, the appropriate messages are signed as required (recall
that M knows the signature keys and so it can sign), and the session keys are all chosen randomly

(taking care that when commitments(Πli
i ) = commitments(Π

lj
j ) they have the same keys, as specified

in H2). Finally, during the emulation, M records all of the adversarially-generated commitments
sent by A (in Send1 and Send2 oracle calls) and to whom A sent them. At the end of the emulation,
M defines a vector of 3tN2 commitments so that if A sent an adversarially-generated commitment

c in a Send1 oracle call to Π
lj
j where pid

lj
j = i, then c is placed in the same position as a string of

the form (V K ◦ wi,j ◦ i ◦ j) in ᾱ. Likewise, if A sent an adversarially-generated commitment c′ in

a Send2 oracle call to Πli
i where pidli

i = j, then c′ is placed in the same position as a string of the
form (wi,j) in ᾱ. Recall that the order of strings in α is known and so M can do this. The rest of
the commitments in M ’s output vector are to ⊥ (M generates these itself).

Now, if in a Send1 or Send2 oracle call, A sends any valid commitment that was not oracle
generated, then M outputs a commitment to β̄ where (ᾱ, β̄) ∈ R. Furthermore, the probability that
A sends such a valid commitment in the emulation with M is statistically close to the probability
that it sends such a commitment in H6. This can be seen as follows. If A never sent a valid
adversarially-generated commitment during the emulation, then M ’s emulation is exactly that of
H6. In contrast, once A sends such a valid commitment, the emulation by M may not be correct
(specifically, the key chosen by Πli

i should not be random). However, if this occurs, then A already
sent a valid commitment and so the event being considered already occurred. We conclude that
the probability that A generates a valid commitment is bound (up to a negligible difference) by
the probability that M can output a commitment to β̄ for which (ᾱ, β̄) ∈ R. By the definition
of non-malleability, we have that M can succeed in outputting a β̄ for which (ᾱ, β̄) ∈ R with
probability only negligibly greater than a machine M ′ who does not receive a commitment to ᾱ.
This machine M ′ is given all the verification and signing keys (like M), but has no information
about the passwords. Therefore, the probability that any given non-⊥ value in β̄ contains the
correct password is 1/|D|. Since there are at most Qsend non-⊥ values, by the union-bound the
probability that M ′ can output a commitment to β̄ such that (ᾱ, β̄) ∈ R is at most Qsend/|D|. In
summary, the probability that in a Send1 or Send2 oracle call, A sends a valid non oracle-generated
commitment is at most Qsend/|D|+ negl(n). That is,

Pr[adv-valid] <
Qsend

|D|
+ negl(n) (8)

13This is the point in the proof where it is needed that the projection key is chosen as a function of k and c only,
and not a function of the message m committed to in c as well (see Section 3.4). This is needed because M does not
know the passwords and therefore does not know m. Were it necessary to know m to compute the projection key, M
could not carry out the emulation.
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Combining Equations (6), (7) and (8), we obtain:

Pr[A succeeds in H6] <
1

2
+

1

2
·
Qsend

|D|
+ negl(n)

and therefore Adv(A,H6) < Qsend

|D| + negl(n). This completes the proof of Claim 6.8.

By combining Claims 6.1 to 6.8, we obtain that A’s advantage in a real execution is at most
Qsend/|D|+ negl(n), as required. This completes the proof of Theorem 7.

7 Encryption Schemes With Smooth Projective Hashing

In this section we describe some examples of encryption schemes that admit efficient constructions
of smooth projective hashing. (Recall that although our protocol framework uses non-interactive
non-malleable commitments, all specific instantiations are via CCA2-secure encryption schemes.
Thus, in all our constructions, we refer directly to the notion of encryption.) As we discussed in
Section 3.4, the underlying language for the hard subset membership problem that we refer to is the
language of pairs (c,m) where c = Epk(m). (In the context of our protocol, the common reference
string ρ is defined to be the public-key pk of the encryption scheme, and a commitment to m is
defined as an encryption of m.)

In the remainder of this paper, we construct smooth projective hash functions for the three
CCA2-secure encryption schemes proposed by Cramer and Shoup [10, 11]. Our presentation as-
sumes basic familiarity with these encryption schemes. We actually begin by presenting smooth
projective hash functions for the El-Gamal encryption scheme. This scheme is only secure against
chosen plaintext attack. Nevertheless, the specific construction is quite straightforward and there-
fore serves as a good warm-up. For an outline of the organization of the rest of the paper, see
Section 1.2.

7.1 El-Gamal Encryption

The El-Gamal encryption scheme is defined as follows:

• Key and message spaces: Let n be the security parameter, let G be a cyclic group of prime
order q where |q| = n, and let g be a generator g of G. Then, the space of messages and public
keys is G, and the space of ciphertexts is G2. These parameters are the same for all public-keys
generated with security parameter n.

• Key generation: The key generation algorithm chooses a random z ∈R Z∗q . The secret-key is
then defined to be z and the public-key is defined to be h = gz .

• Encryption: To encrypt m ∈ G, a random r ∈R Zq is chosen and the ciphertext is defined to be
(u, e) = (gr, hr ·m).

• Decryption: Upon input (u, e), decryption is carried out by computing m = e · u−z.

It is well known that under the Decisional Diffie-Hellman Assumption over G, the El-Gamal scheme
is semantically secure against chosen-plaintext attacks. Now, in order to define a smooth projective
hash function for this encryption scheme, we need to specify the key space K, the projection function
α, and the hash function Hk:

• Key space: The key space is defined by K = Z2
q (i.e., a key is a pair (a1, a2), with ai ∈R Zq).

31



• Projection: The key projection function α is defined by sx = α(a1, a2, c) = ga1ha2 . (We note
that in this specific example, the projection depends only on the hash key k = (a1, a2) and
not on the specific ciphertext. This coincides with the original formulation of projective hash
functions by Cramer and Shoup [11].)

• Smooth hash function: The hash function is defined as

Hk((u, e),m) = ua1

(

e

m

)a2

We first show correctness. That is, we show that given sx, a plaintext/ciphertext pair ((u, e),m)
and the random coins r used in computing (u, e), it is possible to compute Hk((u, e),m). This
follows from the fact that

(sx)r = (ga1)r(ha2)r = (gr)a1(hr)a2 = ua1

(

e

m

)a2

= Hk((u, e),m)

It now remains to prove the smoothness property. Consider x = ((u, e),m) /∈ L (i.e., x such that
(u, e) is not an encryption of m, under the public key h). Then this implies that (u, e) = (gr, hr′ ·m)
with r 6= r′. Now consider the distribution of Hk(x) = ua1( e

m)a2 = gra1+r′za2 given sx = ga1+za2 .
Since r 6= r′, we have that the two equations

a1 + za2 = logg sx

ra1 + r′za2 = logg Hk(x)

are linearly independent. That is, for every choice of sx and Hk(x), there exists a pair (a1, a2)
that fulfills this equation. Therefore, sx provides no information on Hk(x) and Hk(x) is uniformly

distributed over G, given sx. We conclude that the projective hash function is smooth.

7.2 The DDH Cramer-Shoup Scheme

We now extend the above smooth projective hashing scheme to the Cramer-Shoup CCA2-secure
encryption scheme [10]. This family of smooth projective hash functions is actually implicit in the
KOY protocol [22]. In the [10] scheme, for every n, the values q and G are fixed as in the El-
Gamal scheme described above. Now, the key generation algorithm chooses two additional random
generators g1, g2 ∈R G and a universal one-way hash function H [24]. The key generation algorithm
also chooses z, z̃1, z̃2, ẑ1, ẑ2 ∈R Zq, with z 6= 0. All of these values are taken as the secret key. The

public-key is defined to be h = gz
1 , h̃ = gz̃1

1 gz̃2

2 , ĥ = gẑ1

1 gẑ2

2 . Thus the public key space is PK = G3.
We assume w.l.o.g. that h, h̃, ĥ are all different from the identity.

To encrypt a message m ∈ G, the sender chooses r ∈R Z∗q , and computes u1 = gr
1, u2 = gr

2,

e = hr ·m, θ = H(u1, u2, e) and v = (h̃ · ĥθ)r. The ciphertext is c = (u1, u2, e, v).
The decryption algorithm is not important in our context, but we describe it anyway for com-

pleteness. On input c = (u1, u2, e, v), the receiver computes θ = H(u1, u2, e), and tests if v equals
uz̃1+θẑ1

1 uz̃2+θẑ2

2 . If equality does not hold, it outputs ⊥; otherwise, it outputs m = eu−z
1 .

The Smooth Projective Hash Function. We define a smooth projective hashing for this
encryption scheme by specifying the key space K, the projection function α, and the hash function
Hk (in this case, the superset of all possible ciphertexts X can be set to {0, 1}∗ and there is no
limitation):

• The key space is K = Z4
q , i.e. a key is a tuple (a1, a2, a3, a4), with ai ∈R Zq.
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• The key projection function α is defined by

sx = α(a1, a2, a3, a4, u1, u2, e, v) = ga1

1 ga2

2 ha3

(

h̃ĥθ
)a4

(Notice that here α depends on θ and therefore the specific ciphertext c = (u1, u2, e, v).)

• The hash function is defined as

Hk(x) = ua1

1 ua2

2

(

e

m

)a3

va4

We first show correctness. That is, we show that given sx, a plaintext/ciphertext pair ((u1, u2, e, v),m)
and the random coins r used in computing (u1, u2, e, v), it is possible to compute Hk((u1, u2, e, v),m).
This follows from the fact that

(sx)r = (gr
1)

a1(gr
2)

a2(hr)a3

(

h̃ĥθ
)r·a4

= ua1

1 ua2

2

(

e

m

)a3

va4 = Hk((u1, u2, e, v),m)

We now prove the smoothness property. Consider x = (c,m) = ((u1, u2, e, v),m) /∈ L (i.e., x
such that c = (u1, u2, e, v) is not a correct encryption of m under public key (h, h̃, ĥ)). Let θ =
H(u1, u2, e).

Denote with λ, λ′ and λ̂ the discrete logs in base g1 of the values g2, (h̃ĥθ) and v respectively.
Also, let r1, r2 and r3 be such that the ciphertext c equals u1 = gr1

1 , u2 = gr2

2 and e = hr3m.
Now, the values sx and Hk(x) define two linear equations in the unknown variables ai:

logg1
sx = a1 + λa2 + za3 + λ′a4 (9)

and
logg1

Hk(x) = r1a1 + r2λa2 + r3za3 + λ̂a4 (10)

We now prove that the above two equations are linearly independent. This then implies that given
sx, the distribution of Hk(x) is uniform over G (since any value of Hk(x) can be obtained with the
same number of solutions of Equations (9) and (10).) We consider three cases:

1. λ′ = λ̂ = 0 (i.e., v = h̃ĥθ = 1):

Since c is not a correct encryption of m, it must be that |{r1, r2, r3}| > 1, i.e. the ri’s are not
all equal. Recall that both λ 6= 0 (since g2 is a generator) and z 6= 0 (enforced by the key
generation algorithm). Thus we obtain the desired linear independence.

2. λ′ = 0 but λ̂ 6= 0 (i.e., h̃ĥθ = 1, but v 6= 1):

This immediately yields the desired linear independence.

3. Both λ′ 6= 0 and λ̂ 6= 0 (i.e., both h̃ĥθ 6= 1 and v 6= 1):

Then h̃ĥθ is a generator of G and we can write v = (h̃ĥθ)r4 , i.e. λ̂ = r4λ
′. Since c is not a

correct encryption of m it must be that |{r1, r2, r3, r4}| > 1, i.e. the ri’s are not all equal.
Again since z, λ, λ′ are all non-zero, this yields the desired linear independence.

The KOY protocol [22]. We remark that a protocol that is almost identical to that of [22] can be
described in terms of the Cramer-Shoup CCA2-encryption scheme based on the DDH assumption,
combined with the above construction of a smooth projective hash function (which is thus implicit
in the work of [22]).
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8 Constructions Using a Relaxed Notion of Smooth Projective

Hashing

We were unable to construct smooth projective hashing for encryption schemes based on assump-
tions other than the DDH assumption. However by relaxing the definition, we are able to obtain
constructions based on the Quadratic Residuosity and N -Residuosity Assumptions. The resulting
weaker notion is still sufficient to prove the security of our password-based key exchange protocol.
The original (stronger) notion was presented earlier for the sake of clarity.

8.1 The Relaxed Notion

The relaxation here involves modifying the stronger smoothness condition as defined in Section 3.2.
Informally speaking, we no longer require that the smoothness condition hold for all values x ∈ X\L
(as required in Section 3.2). Rather, we define a subset ∆ ⊂ X\L in which the smoothness property
may not hold. However, we require that it is computationally hard to find any element in ∆. This
suffices because the result is that a computationally bound adversary cannot produce any “bad”
elements for which the smoothness property will not hold. Formally, we say that the family H is a
weak smooth projective hash family if the stronger smoothness condition is replaced by the following
two conditions:

1. There exists a subset ∆ ⊂ X\L which is hard to sample, i.e. for all probabilistic polynomial-
time Turing Machines A

Pr[A(1n,X,L) ∈ ∆] < negl(n)

Furthermore, it is easy to verify membership in ∆. That is, there exists a probabilistic polynomial-
time Turing Machine T such that for every x ∈ ∆, Pr[T (X,L, x) = 1] > 1 − negl(|x|) and for
every x 6∈ ∆, Pr[T (X,L, x) = 1] < negl(|x|);

2. For every x′ ∈ X \ (∆ ∪ L):

{

V (x′, α(k, x′),Hk(x
′))

}

n∈N

s
≡

{

V (x′, α(k, x′), g)
}

n∈N

The definition of the random variable V appears in Section 3.1.

In other words, the strong smoothness property only holds for values x /∈ ∆. In particular, it may
be possible to distinguish Hk(x

′) from a random g for x′ ∈ ∆. This would be worrisome were it
not for the first condition above that tells us that the probability that the adversary will find such
an x ∈ ∆ is negligible.

We now show how to adapt the main proof of security of our password-based key exchange
protocol so that it works even with this weaker notion of smooth projective hashing. Later we
present two examples that satisfy this weaker definition.

8.2 Adapting The Proof of Security

There are two places in which the weaker definition of smooth projective hashing requires changes
into the proof. One is in the proof of Lemma 3.1 and one is in the main proof.

Adapting the proof of Lemma 3.1. The whole proof goes through unchanged except when
we have to bound

∣

∣

∣Pr[Expt-UnifX\L(D) = 1]− Pr[Expt-HashX\L(D) = 1]
∣

∣

∣ ≤ negl(n)
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Here we need to consider the possibility that the oracle ΩX\L outputs an x ∈ ∆. However, for all
efficiently samplable distribution (and in particular for D(X\L)), the weight of the set ∆ must be
negligible. (Otherwise, it would be easy to find x ∈ ∆.) The rest of the proof remains unchanged.

In the specific case of our protocol (where x is defined as a pair (c,m) with c a commitment and
m a message), we require that the definition of the subset ∆ depends only on c. I.e. if (c,m) ∈ ∆
for some m, then (c,m′) ∈ ∆ for all m′. This is required by the adaptation of the protocol proof of
security as it can be seen below.

Adapting the proof of Theorem 7. We create a new hybrid experiment H ′0 which is the first
hybrid we use. In this experiment if the adversary ever presents a ciphertext c such that c ∈ ∆
then we stop and count this as a success for the adversary. We note that because it is easy to verify
if c ∈ ∆, we can detect this “bad event” and halt (as required in the experiment). This is where we
need the definition of ∆ to depend only on c and not on m, since the message includes the password
w and the simulation would not know if (c,m) ∈ ∆ or not. Everything else remains unchanged with
respect to H0 (i.e., the real protocol). We include this clause in all the other hybrids H1, ...,H5 as
well.

Clearly the above “bad” event can happen with only negligible probability. Therefore, the
advantage of the adversary in H ′0 can be at most negligibly more that its advantage in H0. Now
that the possibility of the adversary producing c ∈ ∆ has been ruled out, the rest of the proof
remains unchanged.

8.3 Universal Hashing

We assume that the reader is familiar with the concept of universal hashing and their application
for entropy smoothing, which we are going to use in the following. The reader is referred to [19] for
more details.

8.4 The Cramer-Shoup Scheme Based on Quadratic Residuosity

We now recall the Cramer-Shoup CCA-2 secure encryption scheme based on Quadratic Residuosity.
Let N = pq be the product of two safe primes, i.e. p = 2p′ + 1 and q = 2q′ + 1, with p′, q′ prime as
well. Assume w.l.o.g. that q′ < p′ and that |q′| = |p′| = poly(n) the security parameter14.

With JN we denote the subgroup of elements of Z∗N with Jacobi symbol 1. With QRN ⊂ JN

we denote the subgroup of quadratic residues. The Quadratic Residuosity Assumption says that it
is computationally infeasible to distinguish between the uniform distributions over JN and QRN .

It is not hard to see that QRN is a cyclic group of order N ′ = p′q′. We can obtain a generator
by choosing at random µ ∈ Z∗N and setting g = µ2 mod N . This g will be a generator with
overwhelming probability and its distribution is statistically close to the uniform distribution over
all generators of QRN . We can sample QRN almost at random, by choosing w ∈ [0..N/4] and
setting x = gw mod N . This also is a distribution over QRN which is statistically close to uniform.

A preliminary Lemma. Before describing the scheme we prove a technical Lemma that will be
useful later in the construction of the smooth projective hash function for it. The Lemma basically
says that, if factoring is hard, it is computationally infeasible to find elements of “low order” in
Z∗N .

14The length of the primes should be such that the probability of factoring N in polynomial-time should be
negligible in n
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Lemma 8.1 Let N = pq, with p = 2p′+1, q = 2q′+1 and p, q, p′, q′ all distinct primes. Let g be a

generator of QRN and let h = gz mod N , with h 6= ±1. If GCD(z,N ′) > 1 then GCD(h± 1, N) 6=
1, N .

Proof: Assume that GCD(z,N ′) = p′ (the argument is the same if GCD(z,N ′) = q′). Then
hq′ = gzq′ = 1 mod N since N ′|zq′. This implies that hq′ = 1 mod p. If h = ±1 mod p then
GCD(h± 1, N) = p as desired (the GCD is not N since h 6= ±1 mod N). If h 6= ±1 mod p then q′

must divide the order of the group Z∗p , i.e. we have that q′|(p − 1) = 2p′, a contradiction.

We now describe the scheme, assuming that the message space is {0, 1}t. We assume we have a
universal one-way hash function [24] H that maps inputs to {0, 1}n.

Key Generation: Choose µ ∈R Z∗N and set g = µ2 mod N . Randomly choose

z1, . . . , zt, z̃1, . . . , z̃n, ẑ1, . . . , ẑ2n−1 ∈ [0..N/2]

which constitute the secret key. Compute

hi = gzi h̃i = gz̃i ĥi = gẑi

which (together with g and N) is the public key. We assume w.l.o.g. that hi 6= 1 and that
GCD(zi, N

′) 6= p′, q′ since both cases happen with negligible probability.

Encryption: To encrypt a message m = m1...mt where mi ∈ {0, 1}, one does the following.
Choose r randomly in [0..N/4] and compute u = gr mod N . Then compute

ei = (−1)mihr
i ∈ JN for i = 1...t

and denote e = [e1 . . . et]. Compute θ = H(u, e) = θ1...θn with θi ∈ {0, 1}. Finally compute

vi = wr
i for i = 1...n

where wi = h̃i
∏n

j=1 ĥ
θj

i+j−1. Denote with v = [v1 . . . vn]. The ciphertext is (u, e, v).

Decryption: Once again we are not interested in how to decrypt but we report it anyway for
completeness. On input (u, e, v), the receiver checks that it is of the right format (including testing
that u ∈ JN ). Then computes θ = H(u, e) and verifies that for all i = 1, . . . , n

vi = u
z̃i+

∑n

j=1
ẑi+j−1θj

If the test fails, outputs “?” otherwise compute m̃i = eiu
−zi . If for all i = 1, . . . , t, m̃i = (−1)mi

for some mi ∈ {0, 1}, then output m = m1...mt, otherwise output “?”.

A smooth projective hash function. We define a smooth projective hashing for this encryption
scheme, by specifying the sets X,L,K, the projection function α, and the hash function Hk. In
order to define the set C (that must be an efficiently recognizable superset of all possible ciphertexts;
see Section 3.4), we first define the notion of a proper ciphertext: A ciphertext c = (u, e, v) is called
proper if u,ei and vj (for all i, j) have Jacobi symbol equal to 1. Also consider the n values wi

defined as above, wi = h̃i
∏n

j=1 ĥ
θj

i+j−1. We require that when wi = 1, then the corresponding
vi = 1 as well (otherwise the ciphertext is clearly not valid). We now define X = {(c,m)}, where c
is any proper ciphertext and m is any message (note that an invalid ciphertext may still be proper).
Observe that proper ciphertexts can be easily recognized, as required. As defined in Section 3.4,
the language L is the subset of X where c is a correct encryption of m with public-key pk. The
hash function is defined as Hk : X −→ {0, 1}n.
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• The key space is K = [0..2N ′]2n(n+t+1), i.e. a key is an n-tuple (k1, . . . , k2n). For clarity
of presentation we drop the indices on the keys, but the reader should keep in mind that
each key is selected independently at random. Each component of the key is of the form
k = (a, a1, . . . , at, ã1, . . . , ãn), with each item in Z2N ′ . However this space is not efficiently
samplable, so we replace it with a good approximation K ′ = [0..N/2]2n(n+t+1) . It’s not hard
to see that the uniform distribution over K ′ is statistically close to the uniform distribution
over K; The description of the family also includes a hash function UH randomly chosen
from a universal hash family. UH : J2n

N −→ {0, 1}
n.

• Given an input x = (c,m) where pk = (N, g, h1, . . . , ht, h̃1, . . . , h̃n, ĥ1, . . . , ĥ2n−1), c = (u, e, v)
as above, and m ∈ {0, 1}t, the generalized projection is the vector [sx,1, . . . , sx,2n]. Each sx,i

is computed using only the component ki of the key, i.e., sx,i = α(ki, x).

Again dropping the indices on the keys:

sx = ga
t

∏

i=1

hai
i

n
∏

i=1

wãi
i

where wi = h̃i
∏n

j=1 ĥ
θj

i+j−1 and θ = H(u, e);

• The hash function is defined as Hk(x) = UH[fk1
(x), . . . , fk2n

(x)] where (again dropping the
indices on the keys):

fk(x) = ua
t

∏

i=1

(
ei

(−1)mi
)ai

n
∏

i=1

vãi

i

If x ∈ L, i.e. c is a correct encryption of m, under public key pk above, then one can compute
fki

(x) = sr
x,i where r is the randomness used to construct c. Therefore, it is possible to

compute Hk(x) given only sx and a witness w for x.

We need to prove the smoothness property. Consider x = (c,m) ∈ X\L; i.e., c = (u, e, v) is a
proper ciphertext but is not a correct encryption of m, under public key pk as above. Then let
θ = H(u, e) and define the wi’s as above. Denote with λi the discrete log in base g of wi (i.e.
λi = z̃i +

∑n
j=1 ẑi+j−1θj).

We are going to prove that Hk is a weak smooth projective hash. Thus we need to define a set ∆
of ciphertexts for which the smoothness property may not hold, but such that finding an element in
∆ is infeasible. We say that a ciphertext is in ∆ if there exist a λj such that GCD(λj, N

′) 6= 1, N ′.
Lemma 8.1 shows that producing a ciphertext with this property is equivalent to factoring N . It
also shows how to easily recognize such elements (just test if GCD(wi±1, N) is a non-trivial factor
of N). From now on, we assume to be outside of ∆.

By assumption then, if wi 6= 1 then it is a generator of QRN so we can write the ciphertext as:
u = (−1)bgr, ei = hri

i (−1)mi+bi and vi = (−1)b̃iwr̃i
i , for those indices such that wi 6= 1.

To prove smoothness we are going to work independently on each key ki so we drop the index
relative to the key for clarity. Consider now the equation in the a, ai, ãj ’s defined by the projection
sx:

logg sx = a +
t

∑

i=1

ziai +
n

∑

i=1

λiãi mod N ′ (11)

Let us distinguish two cases:
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• 1 ∈ {b, b1, . . . , bt, b̃1, . . . , b̃n}. Then we have that

fk(x) = (−1)ab+
∑t

i=1
aibi+

∑n

i=1
ãi b̃igσ (12)

for some σ. Let [a, a1, . . . , at, ã1, . . . , ãn] be a solution of Equation (11), mod N ′. Consider the
set of keys obtained as

Aa,ai,ãi
= [a + dN ′, a1 + d1N

′, . . . , at + dtN
′, ã1 + d̃1N

′, . . . , ãn + d̃nN ′]

with d, di, d̃i ∈ {0, 1}. Given sx, the key k is uniformly distributed in the union of the Aa,ai,ãi

over all [a, a1, . . . , at, ã1, . . . , ãn] which are solutions of Eq.(11). Let’s focus on one specific set
Aa,ai,ãi

. It’s not hard to see that for half of the keys in the set one gets fk(x) = gσ , while one
gets fk(x) = −gσ with the other half. Thus the value fx(x) can be guessed with probability at
most 1/2.

• b = b1 = . . . = bt = b̃1 = . . . = b̃n = 0. Then fk(x) is a quadratic residue and thus its discrete
log with respect to g defines another equation in the a’s:

logg fk(x) = ra +
t

∑

i=1

riziai +
n

∑

i=1

r̃iλiãi (13)

Notice that the last term of the above equation should be
∑n

i=1(logg vi)ãi. But since we are
only considering proper ciphertexts, we have that if λi = 0 then logg vi = 0 so the two terms are
equivalent.

We want to prove that Equations (11) and (13) are “linearly independent”, i.e. the 2× (n +
t + 1) matrix of the coefficients of these equations in the a, ai, ãj , has at least one 2 × 2 minor
whose determinant is non-zero mod N ′.

Since c is not a correct encryption of m then we must have that there exist an index i (resp.
j) such that r 6= ri (resp. r 6= r̃j). Then the corresponding minor has determinant zi(r − ri)
(resp. λj(r − r̃j)). Since zi (resp. λj) is co-prime with N ′ (recall that we are outside of ∆), we
have that this minor has non-zero determinant.

If this determinant is invertible mod N ′, then it is easy to see that Hk(x) is uniformly
distributed over QRN given sx.

Assume now that all 2 × 2 minors of the above form have non-invertible determinant, then
it must be that for all indices i, j ri − r and r̃j − r are multiples of either p′ or q′. Assume
w.l.o.g. that there exists an index i such that ri = r + γp′ and an index j such that rj = r + δq′

(the argument is the same if the one or both of the indices correspond to one of the r̃i’s). Then
the corresponding minor has determinant zizj(ri − rj) which is invertible mod N ′. Thus again
Hk(x) is uniformly distributed over QRN given sx.

Finally we are left with the case in which for all indices i, j we have that ri = r + γip
′ and

r̃j = r + γ̃jp
′ (again w.l.o.g. since the argument is the same for q′). This means that Equations

(11) and (13) are linearly dependent mod p′ but they must be linearly independent mod q′

(recall that for at least one index i or j, r 6= ri or r 6= r̃j mod N ′). Thus logg Hk(x) is uniformly
distributed mod q′.

In any case we can bound the probability of guessing Hk(x) given sx, with 1/q′.

Since q′ > 2, the whole vector [fk1
(x), . . . , fk2n

(x)] can be guessed with probability at most 2−2n.
Applying the properties of universal hash functions we have that the distribution of Hk(x) is 2−n/3

close to uniform.
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Remark: In the proof of smoothness we could have included the case in which ri − r 6= 0 mod N ′

but is a multiple of p′ or q′, in the “forbidden” cases defined by the set ∆. Indeed in this case too
we could show that we could use such a ciphertext to factor. But to get the value gr−ri we would
need to use the secret key of the encryption scheme (since we are not given gri but only hri

i ). The
two approaches are basically equivalent.

8.5 A variant of the Cramer-Shoup scheme based on N-residuosity

The last example is for the Cramer-Shoup CCA2-secure encryption scheme based on the hardness
of deciding N -residuosity in Z∗N2 [11]. This assumption was originally introduced by Paillier in [25].
We describe a small variation of the original Cramer-Shoup scheme, which can easily be proven
secure using the same techniques used in [10, 11]. The modifications are needed in order to obtain
more efficient projective hash functions. This variant was independently discovered by Camenisch
and Shoup and later published in [9].

Let N = pq be the product of two safe primes, i.e. p = 2p′+ 1 and q = 2q′+ 1, with p′, q′ prime
as well. Let N ′ = p′q′. Assume w.lo.g. that q′ < p′ and that |q′| = |p′| = poly(n) > 2n where n is
the security parameter.

Consider the group Z∗N2 ; its order is 4NN ′. Let us consider the subgroup JN of Z∗N2 which
contains all the elements whose Jacobi symbol with respect to N is 1. It is not hard to see that
JN is cyclic, has order 2NN ′ and can be written as the direct product of three cyclic subgroup
JN = G · G1 · G2 where G is the subgroup of JN which contains all the (2N)-residues. Clearly G
has order N ′. On the other hand G1 is a group of order N and G2 is the group generated by (−1).
Denote G′ = G ·G2. See [11] for details.

A generator g for G′ can be found by selecting µ ∈R Z∗N2 and setting g = −µ2N . It is not hard
to see that this results in a generator with overwhelming probability, and that the distribution is
statistically close to uniform over all generators of G′. Clearly g2 will then be a generator for G.

The N -residuosity assumption says that it’s hard to distinguish between a random element of
Z∗N2 and a random N -residue mod N2. The following encryption scheme is CCA2-secure under
this assumption.

A preliminary Lemma. Before describing the scheme we prove a technical Lemma that will be
useful later in the construction of the smooth projective hash function for it. Again the Lemma
states that, if factoring is hard, it is computationally infeasible to find elements of “low” order in
the group G.

Lemma 8.2 Let N = pq, with p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ all distinct primes. Let g′

be a generator of G as above and let h = (g′)z mod N , with h 6= ±1. If GCD(z,N ′) > 1 then

GCD(h± 1, N) > 1.

The proof is identical to the one of Lemma 8.1

Key Generation. Randomly choose the secret key z, z̃, ẑ ∈ [0..N2/2] and publish the public key
h = gz , h̃ = gz̃ and ĥ = gẑ. We assume w.l.o.g that h 6= 1 and GCD(z̃, N ′) = 1 since the opposite
happens only with negligible probability. The public key also includes a universal one-way hash
function [24] H which maps inputs to ZN .

Encryption. To encrypt a message m ∈ ZN , choose r ∈R [0..N/4] and compute u = gr, e =
(1 + mN)hr and v = ‖(h̃ĥθ)r‖, where θ = H(u, e) and the function ‖ · ‖ is defined as ‖v‖ = v if
v ≤ N2/2 and ‖v‖ = N2 − v otherwise.

We remark below on the need for the use of the absolute value function ‖ · ‖.
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Decryption. We describe the decryption mechanism for completeness. Given a ciphertext (u, e, v)
the receiver checks that v ≤ N2/2, then computes θ = H(u, e) and checks if v2 = u2(z̃+θẑ). If either
test fails it outputs “?”, otherwise let m̃ = eu−z. If m̃ = (1+mN) for some m, output m, otherwise
output “?”.

A smooth projective hash function. We define a smooth projective hashing for this encryption
scheme, by specifying the sets X,L,K, the projection function α, and the hash function Hk. In
order to define the set C (that must be an efficiently recognizable superset of all possible ciphertexts;
see Section 3.4), we first define the notion of a proper ciphertext: A ciphertext c = (u, e, v) is called
proper if u, e, v all have Jacobi symbol equal to 1, with respect to N . Also given θ = H(u, e),
we require that if h̃ĥθ = 1 then v = 1 as well. Finally we require that v ≤ N2/2. We now
define X = {(c,m)}, where c is any proper ciphertext and m is any message. Observe that proper
ciphertexts can be easily recognized, as required. As defined in Section 3.4, the language L is the
subset of X where c is an encryption of m with public-key pk.

The key space is [0..2NN ′]3 i.e. the key for a hash function is k = (a1, a2, a3) such that
ai ∈R [0..2NN ′]. However this space is not efficiently samplable so we replace it with [0..N2/2].
The uniform distribution over [0..N2/2] is statistically close to the uniform one over [0..2NN ′].
The description of the family also includes a hash function UH randomly chosen from a universal
family. UH : JN −→ {0, 1}

n.
Given an input x = (c,m) = ((u, e, v),m) the projection is defined as

sx = α(k, x) = g2a1h2a2(h̃ĥθ)2a3 (14)

where (g, h, h̃, ĥ) constitutes the public key and θ = H(u, e).
Given an input x = (c,m) = ((u, e, v),m) the hash function is defined as Hk(x) = UH[fk(x)]

where

fk(x) = u2a1

(

e

1 + mN

)2a2

v2a3 (15)

Notice that if c is a proper encryption of m under key pk, then fk(x) = sr
x, where r is the randomness

used to construct c. Thus, it is possible to compute Hk(x) given only the projection and the witness,
as required.

We need to prove the smoothness property. Consider x = (c,m) ∈ X\L; i.e., c = (u, e, v)
is a proper ciphertext, but is not a correct encryption of m using the public key (g, h, h̃, ĥ). Let
θ = H(u, e) and consider λ = z̃ + θẑ mod N ′. Notice that we can write (h̃ĥθ)2 = g2λ.

We are going to prove that Hk is a weak smooth projective hash. Thus we need to define a
set ∆ of commitments for which the smoothness property may not hold, but such that finding an
element in ∆ is infeasible. We say that a commitment is in ∆ if GCD(λ,N ′) 6= 1, N ′. Lemma 8.2
shows that producing a commitment with this property is equivalent to factoring N . It also shows
how to easily recognize such elements (just test if GCD((h̃ĥθ)2±1, N) is a non-trivial factor of N).
From now on, we assume to be outside of ∆.

By assumption, if (h̃ĥθ)2 is different than 1, it is also a generator for G. Notice that g2

and h2 are also generators of G, thus we can write the commitment as u = (−1)b1γ1(g
2)r1 , e =

(−1)b2γ2(h
2)r2(1+mN) and v = (−1)b3γ3[(h̃ĥθ)2]r3 where γi ∈ G1. Notice that in the computation

of Hk(x) the (−1) components are irrelevant since we raise each term to the power 2a. So we ignore
them from now on.

Consider now the equation in the ai’s defined by the projection sx. Notice that sx ∈ G since
we are squaring each term. Therefore,

logg2 sx = a1 + za2 + λa3 mod N ′ (16)
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Let us distinguish two cases:

• There exists γi 6= 1. Then we have that

fk(x) = (γ2
i )ai · σ

for some σ ∈ JN . Let [a1, a2, a3] be a solution of Equation (16), mod N ′. Consider the set of
keys obtained as

Aa1,a2,a3
= [a1 + d1N

′, a2 + d2N
′, a3 + d3N

′]

for di ∈ [0..2N − 1]. Given sx the key k is uniformly distributed in the union over all [a1, a2, a3]
which are solutions of Eq.(16) of the sets Aa1,a2,a3

. Let’s focus on one specific set Aa1,a2,a3
.

Recall that γi ∈ G1 and γi 6= 1 so its order is either p, q,N . Since 2 is co-prime with these
values, the order of γ2

i is the same as the one of γi. And since GCD(N,N ′) = 1 we have that
keys of the form ai + diN map (γ2

i )ai+diN uniformly over the group generated by γi.
In conclusion, given sx the value (γ2

i )ai and consequently fk(x), can be guessed with proba-
bility at most 1/q.

• γi = 1 for all i = 1, 2, 3. Then fk(x) is an element of G and thus its discrete log with respect
to g2 defines another equation in the ai’s (recall that GCD(2, N ′) = 1 thus 2−1 is well defined
mod N ′):

2−1 logg2 fk(x) = r1a1 + r2za3 + r3λa3 mod N ′ (17)

We want to prove that Equations (16) and (17) are “linearly independent”, i.e. the 2×3 matrix
of the coefficients of these equations in the ai’s has at least one 2× 2 minor whose determinant
is non-zero mod N ′.

Since c is not a correct commitment to m then we must have that either r2 6= r1 or r3 6= r1.
Then the corresponding minors have determinant z(r2 − r1) and λ(r3 − r2). Since z and λ are
co-prime with N ′ (recall that we are outside of ∆), we have that at least one of these minors
has non-zero determinant.

If this determinant is invertible mod N ′, then it is easy to see that fk(x) is uniformly
distributed over G given sx.

Assume now that both determinants are non-invertible. Then it must be that both r2−r1 and
r3−r1 are multiples of either p′ or q′. Assume w.l.o.g. that r2 = r1 +γ2p

′ and r3 = r1 +γ3q
′ (the

argument is the same if you switch p′ and q′). Then the corresponding minor has determinant
zλ(r3 − r2) which is invertible mod N ′. Thus again fk(x) is uniformly distributed over G given
sx.

Finally we are left with the case in which r2 = r1 + γ2p
′ and r3 = r1 + γ3p

′ (again w.l.o.g.
since the argument is the same for q′). This means that Equations (16) and (17) are linearly
dependent mod p′ but they must be linearly independent mod q′ (recall that either r2 6= r1 or
r3 6= r1 mod N ′). Thus logg fk(x) is uniformly distributed mod q′.

In any case we can bound the probability of guessing Hk(x) given sx, with 1/q′.

In conclusion we have that given sx the value fk(x) can be guessed with probability at most
1/q′ < 2−2n by choice of the security parameter. Applying the properties of universal hash functions
we have that the distribution of Hk(x) is 2−n/3 close to uniform over {0, 1}n.

Remark: We briefly remark on why we introduced the absolute value function ‖·‖ in the definition
of the encryption scheme.

Notice that in the definition of the projection function and of the hash function (Eqs. (14)
and (15)) we square each term. We do this in order to “remove” the subgroup of order 2 from
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the computation. Indeed it is possible to define the projective hash function without the squaring,
but if we do that, the probability of guessing Hk(x) would be 1/2, and we would need to repeat
the computation with several independent keys to get an exponentially small probability (a similar
phenomena appears in the Quadratic Residuosity scheme).

Thus the squaring is needed in the definition of the projective hash function for the sake of
efficiency. But at that point if we defined v without the absolute value, i.e. v = (h̃ĥθ)r (and
remove the squaring from the decryption test), then the two ciphertexts (u, e, v) and (u, e,−v)
would define the same projective hash value, even if only one of them can be correct. Which means
that the adversary can guess Hk(x) for an x not in the language, which contradicts the definition
of projective hash function.

8.6 A Note on Efficiency

The following table summarizes the efficiency of the three schemes we have presented. For each
scheme (DDH, Quadratic Residuosity, and N -Residuosity) we present the cost of each operation
(Encryption, computation of the projection function and computation of the hash function).

There are two numbers on each box. The first is the number of “full” exponentiations required
(i.e. if the modulus is 1024 bits, these exponentiations take a 1024-bit exponent). The second is
the number of “small” exponentiations (in typical applications the exponent in this case will be
160-bit).

For the Quadratic Residuosity case, the value t is the length of the message, while n is the
security parameter.

DDH Q-Residuosity N -Residuosity

Encryption 0, 5 t + n + 1, 0 3, 1

Projection 0, 5 2n(t + n + 1), 0 3, 1

Hash 0, 4 2n(n + t + 1), 0 3, 0

It should be clear that the Quadratic Residuosity based scheme is the least efficient of the schemes.
The DDH and N -Residuosity schemes are comparable in cost, except that all the exponentiations
in the DDH case are performed with small exponents, which in practice makes a considerable
difference.
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