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Abstra
t. We introdu
e 
ryptography based on algebrai
 tori, give a new publi


key system 
alled CEILIDH, and 
ompare it to other dis
rete log based systems

in
luding LUC and XTR. Like those systems, we obtain small key sizes. While

LUC and XTR are essentially restri
ted to exponentiation, we are able to perform

multipli
ation as well. We also disprove the open 
onje
tures from [2℄, and give a

new algebro-geometri
 interpretation of the approa
h in that paper and of LUC

and XTR.

1. Introdu
tion

This paper a

omplishes several goals. We introdu
e a new 
on
ept, namely torus-

based 
ryptography, and give a new torus-based publi
 key 
ryptosystem that we


all CEILIDH. We 
ompare CEILIDH with other dis
rete log based systems, and

show that it improves on DiÆe-Hellman and Lu
as-based systems and has some

advantages over XTR. Moreover, we show that there is mathemati
s underlying

XTR and Lu
as-based systems that allows us to interpret them in terms of algebrai


tori. We also show that a 
ertain 
onje
ture about algebrai
 tori has as a 
onsequen
e

new torus-based 
ryptosystems that would generalize and improve on CEILIDH and

XTR. Further, we disprove the open 
onje
tures from [2℄, and thereby show that

the approa
h to generalizing XTR that was suggested in [2℄ 
annot su

eed.

What makes dis
rete log based 
ryptosystems work is that they are based on

the mathemati
s of algebrai
 groups. An algebrai
 group is both a group and an

algebrai
 variety. The group stru
ture allows you to multiply and exponentiate.

The variety stru
ture allows you to express all elements and operations in terms of

polynomials, and therefore in a form that 
an be eÆ
iently handled by a 
omputer.

In 
lassi
al DiÆe-Hellman, the underlying algebrai
 group is G

m

, the multipli
a-

tive group. Algebrai
 tori (not to be 
onfused with 
omplex tori of ellipti
 
urve

fame) are generalizations of the multipli
ative group. By de�nition, an algebrai


torus is an algebrai
 variety that over some extension �eld is isomorphi
 to (G

m

)

d

,

namely, d 
opies of the multipli
ative group. For the tori we 
onsider, the group

operation is just the usual multipli
ation in a (larger) �nite �eld.

The Lu
as-based systems, the 
ubi
 �eld system in [4℄, and XTR have the dis
rete

log se
urity of the �eld F

p

n

, for n = 2, 3, and 6, resp., while the data required to

be transmitted 
onsists of m = '(n) elements of F

p

. Sin
e these systems have

n log p bits of se
urity when ex
hanging m log p bits of information, they are more

eÆ
ient than DiÆe-Hellman by a fa
tor of n=m = 2, 3=2, and 3, respe
tively. See

Rubin was partially supported by NSF grant DMS-0140378.

1



2 KARL RUBIN AND ALICE SILVERBERG

[9, 12, 13, 16, 17, 1℄ for Lu
as-based systems and LUC, and [3, 6, 7℄ for XTR and

related work.

The 
ryptosystems based on algebrai
 tori introdu
ed in this paper a

omplish

the same goal of attaining dis
rete log se
urity in the �eld F

p

n

while requiring the

transmission of '(n) elements of F

p

. However, they additionally take advantage

of the fa
t that an algebrai
 torus is a multipli
ative group. For every n one 
an

de�ne an algebrai
 torus T

n

with the property that T

n

(F

p

) 
onsists of the elements

in F

�

p

n

whose norms are 1 down to every intermediate sub�eld. This torus T

n

has

dimension '(n). When the torus is \rational", then its elements 
an be 
ompa
tly

represented by '(n) elements of F

p

. Doing 
ryptography inside this subgroup of F

�

p

n

has the dis
rete log se
urity of F

�

p

n

(see Lemma 7 below), but only '(n) elements of

F

p

need to be transmitted.

The CEILIDH

1

publi
 key system is Compa
t, EÆ
ient, Improves on LUC, and

Improves on DiÆe-Hellman. It also has some advantages over XTR. The system

is based on the 2-dimensional algebrai
 torus T

6

. The CEILIDH system does dis-


rete log 
ryptography in a subgroup of F

�

p

6

while representing the elements in F

2

p

,

giving a savings 
omparable to that of XTR. While XTR and the Lu
as-based 
ryp-

tosystems are essentially restri
ted to exponentiation, CEILIDH allows full use of

multipli
ation, thereby enabling a wider range of appli
ations. In parti
ular, where

XTR uses a hybrid ElGamal en
ryption s
heme that ex
hanges a key and then does

symmetri
 en
ryption with that shared key, CEILIDH 
an do an exa
t analogue of

(non-hybrid) ElGamal, sin
e it has group multipli
ation at its disposal. Be
ause of

this multipli
ation, any 
ryptographi
 appli
ation that 
an be done in an arbitrary

group 
an be done in a torus-based 
ryptosystem su
h as CEILIDH.

We also show that XTR, rather than being based on the torus T

6

, is based on a

quotient of this torus by the symmetri
 group S

3

. The reason that XTR does not

have a straightforward multipli
ation is that this quotient variety is not a group. (We

note, however, that XTR has additional features that permit eÆ
ient 
omputations.)

We exhibit a similar, but easier, 
onstru
tion based on the 1-dimensional torus

T

2

, obtaining a system similar to LUC but with the advantage of being able to

eÆ
iently perform the group operation (in fa
t, dire
tly in F

p

). This system has the

se
urity of F

p

2 while transmitting elements of the �eld F

p

itself.

The next 
ase where n='(n) is \large" is when n = 30 (and '(n) = 8). Here,

the 8-dimensional torus T

30

is not known to be rational, though this is believed

to be the 
ase. An expli
it rational parametrization of T

30

would give a 
ompa
t

representation of this group by 8 elements of F

p

, with dis
rete log se
urity of the

�eld F

p

30
. It would also refute the statement made in the abstra
t to [2℄ that \it is

unlikely that su
h a 
ompa
t representation of elements 
an be a
hieved in extension

�elds of degree thirty."

Conje
tures were made in [2℄ suggesting a way to generalize LUC and XTR to

obtain the se
urity of the �eld F

p

30
while transmitting only 8 elements of F

p

. In

addition to showing that a rational parametrization of the torus T

30

would a

om-

plish this, we also show that the method suggested in [2℄ for doing this 
annot. The

1

The S
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reason is that, reinterpreting the 
onje
tures in [2℄ in the language of algebrai
 tori,

they say that the 
oordinate ring of the quotient of T

30

by a 
ertain produ
t of sym-

metri
 groups is generated by the �rst 8 of the symmetri
 fun
tions on 30 elements.

(This would generalize the fa
t that the 
oordinate ring of T

6

=S

3

is generated by

the tra
e, whi
h is what enables the su

ess of XTR.) In x2 we disprove the open


onje
tures from [2℄. This 
on�rms the idea in [2℄ that the approa
h in [2℄ is unlikely

to work.

Se
tion 2 gives 
ounterexamples to the open questions in [2℄. Se
tion 3 gives

ba
kground on algebrai
 tori, de�nes the tori T

n

, shows that T

n

(F

q

) is the subgroup

of F

�

q

n

of order �

n

(q), and shows that the se
urity of 
ryptosystems based on this

group is the dis
rete log se
urity of F

�

q

n

. Se
tion 4 dis
usses rational parametrizations

and 
ompa
t representations, while x5 gives expli
it rational parametrizations of T

6

and T

2

. In x6 we introdu
e torus-based 
ryptography, and give the CEILIDH system

(based on the torus T

6

), a system based on T

2

, and 
onje
tured systems based on T

n

for all n (most interesting for n = 30 or 210). In x7 we reinterpret the Lu
as-based


ryptosystems, XTR, and the point of view in [2℄ in terms of algebrai
 tori, and


ompare these systems to our torus-based systems.

1.1. Notation. Let F

q

denote the �nite �eld with q elements, where q is a prime

power. Write ' for the Euler '-fun
tion. Write �

n

for the n-th 
y
lotomi
 poly-

nomial, and let G

q;n

be the subgroup of F

�

q

n

of order �

n

(q). Let A

n

denote n-

dimensional aÆne spa
e, i.e., the variety whose F

q

-points are F

n

q

for every q.

2. Counterexamples to the open questions in [2℄

Four 
onje
tures are stated in [2℄. The two \strong" 
onje
tures are disproved

there. Here we disprove the two remaining 
onje
tures (Conje
tures 1 and 3 of

[2℄, whi
h are also 
alled (d; e)-BPV and n-BPV). In fa
t, we do better. We give

examples that show not only that the 
onje
tures are false, but also that weaker

forms of the 
onje
tures (i.e., with less stringent 
on
lusions) are also false.

Fix an integer n > 1, a prime power q, and a fa
torization n = de with e >

1. Re
all that G

q;n

is the subgroup of F

�

q

n

of order �

n

(q), where �

n

is the n-th


y
lotomi
 polynomial. Let S

q;n

be the set of elements of G

q;n

not 
ontained in any

proper sub�eld of F

q

n


ontaining F

q

. For h 2 G

q;n

, let P

(d)

h

be the 
hara
teristi


polynomial of h over F

q

d

, and de�ne fun
tions a

j

: G

q;n

! F

q

d

by

P

(d)

h

(X) = X

e

+ a

e�1

(h)X

e�1

+ � � � + a

1

(h)X + a

0

(h):

Then a

0

(h) = (�1)

e

, and if also n is even then

a

j

(h) = (�1)

e

(a

e�j

(h))

q

n=2

(1)

for all j 2 f1; : : : ; e� 1g (see for example Theorem 1 of [2℄).

The following 
onje
ture is a 
onsequen
e of Conje
ture (d; e)-BPV of [2℄.

Conje
ture (p; d; e)-BPV

0

([2℄). Let u = d'(n)=de. There are polynomials Q

1

,. . . ,

Q

e�u�1

2 Z[x

1

; : : : ; x

u

℄ su
h that for all h 2 S

p;n

and j 2 f1; : : : ; e� u� 1g,

a

j

(h) = Q

j

(a

e�u

(h); : : : ; a

e�1

(h)):
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We will prove below the following result.

Theorem 1. Conje
ture (p; d; e)-BPV

0

is false when (p; d; e) is any one of the

triples (7; 1; 30); (7; 2; 15); (11; 1; 30); (11; 2; 15).

If n > 1 is �xed, then Conje
ture n-BPV of [2℄ says that there exists a divisor d

of both n and '(n) su
h that (d; n=d)-BPV holds. Sin
e g
d(30; '(30)) = 2, when

n = 30 we need only 
onsider d = 1 and 2. Sin
e (d; n=d)-BPV implies (p; d; n=d)-

BPV

0

for every p, the following is an immediate 
onsequen
e of Theorem 1.

Corollary 2. Conje
tures (1; 30)-BPV, (2; 15)-BPV, and 30-BPV of [2℄ are false.

Thus, Conje
tures 1 and 3 of [2℄ are both false.

Remark 3. The 
ase n = 30 is parti
ularly relevant for 
ryptographi
 appli
ations,

be
ause this is the smallest value of n for whi
h n='(n) > 3. If Conje
ture 30-BPV

of [2℄ were true it would have had 
ryptographi
 appli
ations.

Proof of Theorem 1. If Conje
ture (p; d; e)-BPV

0

were true, then for every h 2 S

p;n

the values a

e�u

(h); : : : ; a

e�1

(h) would determine a

j

(h) for every j. We will disprove

Conje
ture (p; d; e)-BPV

0

by exhibiting two elements h; h

0

2 S

p;n

su
h that a

j

(h) =

a

j

(h

0

) whenever e� u � j � e� 1 but a

j

(h) 6= a

j

(h

0

) for at least one j < e� u.

Let n = 30, and p = 7 or 11. Note that �

30

(7) = 6568801 (a prime) and

�

30

(11) = 31 � 7537711. Sin
e �

30

(p) is relatively prime to 30, by Lemma 1 of

[2℄ we have S

p;30

= G

p;30

� f1g. We view the �eld F

p

30 as F

p

[x℄=f(x) with an

irredu
ible polynomial f(x) 2 F

p

[x℄, and we �x a generator g of G

p;n

. Spe
i�
ally,

let r = (p

30

� 1)=�

30

(p) and let

f(x) = x

30

+ x

2

+ x+ 5; g = x

r

; if p = 7,

f(x) = x

30

+ 2x

2

+ 1; g = (x+ 1)

r

; if p = 11.

Case 1: n = 30, e = 30, d = 1. Then u = d'(n)=de = 8. For h 2 S

p;30

= G

p;30

�f1g

and 1 � j � 29 we have a

j

(h) = a

30�j

(h) by (1), so we need only 
onsider a

j

(h) for

15 � j � 29.

By 
onstru
ting a table of g

i

and their 
hara
teristi
 polynomials P

(d)

g

i

for i =

1; 2; : : :, and 
he
king for mat
hing 
oeÆ
ients, we found the examples in Tables

1 and 2. The examples in Table 1 disprove Conje
ture (7; 1; 30)-BPV

0

and the

examples in Table 2 disprove Conje
ture (11; 1; 30)-BPV

0

.

h n j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g

2754

3 2 0 6 4 4 2 5 4 0 2 2 1 4 4

g

6182

5 4 4 5 5 3 1 5 4 0 2 2 1 4 4

g

5374

2 0 5 2 1 6 4 6 1 1 5 6 4 2 6

g

23251

4 2 0 2 3 6 4 6 1 1 5 6 4 2 6

Table 1. Values of a

j

(h) 2 F

7

for several h 2 G

7;30
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h n j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g

7525

10 2 9 7 7 5 6 9 2 1 8 10 4 1 10

g

31624

10 2 2 4 2 3 10 9 2 1 8 10 4 1 10

g

46208

9 9 6 10 6 10 10 8 1 3 2 7 4 6 5

g

46907

7 8 0 0 1 7 10 8 1 3 2 7 4 6 5

Table 2. Values of a

j

(h) 2 F

11

for several h 2 G

11;30

Case 2: n = 30, e = 15, d = 2. Then u = d'(n)=de = 4. For h 2 S

p;30

= G

p;30

�f1g

and 1 � j � 14 we have a

j

(h) = a

15�j

(h) by (1), where a denotes 
onjugation in

F

p

2
. Thus we need only 
onsider a

j

(h) for 8 � j � 14. View F

p

2
as F

p

(i) where

i

2

= �1. A 
omputer sear
h as above leads to the examples in Tables 3 and 4. The

examples in Table 3 disprove Conje
ture (7; 2; 15)-BPV

0

and the examples in Table

4 disprove Conje
ture (11; 2; 15)-BPV

0

.

h n j 8 9 10 11 12 13 14

g

173

4 + 4i 5 + i 1 + 6i 4i 2+ 3i 6+ 3i 3+i

g

2669

6 6 + 3i 5 + i 4i 2+ 3i 6+ 3i 3+i

g

764

6 + 6i 5 5 0 0 6 2

g

5348

6 + i 5 5 0 0 6 2

Table 3. Values of a

j

(h) 2 F

49

for 
ertain h 2 G

7;30

h n j 8 9 10 11 12 13 14

g

9034

10 + i 10i 3 + 3i 1+ 4i 8+ 9i 5+ 4i 9

g

18196

6 + 8i 9 + 10i 8 + i 1+ 4i 8+ 9i 5+ 4i 9

Table 4. Values of a

j

(h) 2 F

121

for 
ertain h 2 G

11;30

This 
on
ludes the proof of Theorem 1. �

Remark 4. Using these examples and some algebrai
 geometry, we 
an prove that

Conje
tures (p; 1; 30)-BPV

0

and (p; 2; 15)-BPV

0

are ea
h false for almost every

prime p. The proof will appear elsewhere.

Remark 5. For d = 1 and e = 30, the last two lines of Table 1 (resp., Table 2) show

that even the larger 
olle
tion of values a

18

(h), a

20

(h), . . . , a

29

(h) (resp., a

21

(h),

. . . , a

29

(h)) does not determine any of the other values when p = 7 (resp., p = 11).

We also found that no 8 
oeÆ
ients determine all the rest; we found 64 pairs of
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elements so that given any set of 8 
oeÆ
ients, one of these 64 pairs mat
h up on

these 
oeÆ
ients but not everywhere. In fa
t, we 
omputed additional examples

that show that when p = 7, no ten 
oeÆ
ients determine all the rest. We also

show that when p = 7 no set of eight 
oeÆ
ients determines even one additional


oeÆ
ient.

Suppose now d = 2, e = 15, and p = 7. Then the last two lines of Table 3 show

that even the larger 
olle
tion of values a

9

(h), . . . , a

14

(h) does not determine the

remaining value a

8

(h) 2 F

49

. We have 
omputed additional examples that show

that no 
hoi
e of four of the values a

8

(h); : : : ; a

14

(h) determines the other three.

3. Algebrai
 tori

A good referen
e for algebrai
 tori is the book [14℄.

De�nition 6. An algebrai
 torus T over F

q

is an algebrai
 group de�ned over

F

q

that over some �nite extension �eld is isomorphi
 to (G

m

)

d

, where G

m

is the

multipli
ative group and d is ne
essarily the dimension of T . If T is isomorphi
 to

(G

m

)

d

over F

q

n

, then one says that F

q

n

splits T .

Let k = F

q

and L = F

q

n

. Writing Res

L=k

for the Weil restri
tion of s
alars from

L to k (see x3.12 of [14℄ for the de�nition and properties), then Res

L=k

G

m

is a torus.

The universal property of the Weil restri
tion of s
alars gives an isomorphism:

(Res

L=k

G

m

)(k)

�

=

G

m

(L) = L

�

: (2)

If k � F � L then the universal property also gives a norm map:

Res

L=k

G

m

N

L=F

���! Res

F=k

G

m

whi
h makes the following diagram 
ommute:

(Res

L=k

G

m

)(k)

�

=

��

N

L=F

//

(Res

F=k

G

m

)(k)

�

=

��

L

�

N

L=F

//

F

�

(3)

(re
all that the norm of an element is the produ
t of its 
onjugates).

De�ne the torus T

n

to be the interse
tion of the kernels of the norm maps N

L=F

,

for all sub�elds k � F ( L.

T

n

:= ker

"

Res

L=k

G

m

�N

L=F

����!

L

k�F(L

Res

F=k

G

m

#

:

By (3), for k-points we have:

T

n

(k)

�

=

f� 2 L

�

: N

L=F

(�) = 1 whenever k � F ( Lg: (4)

The dimension of T

n

is '(n) (see [14℄).

The group T

n

(F

q

) is a subgroup of the multipli
ative group F

�

q

n

. Lemma 7 below

identi�es T

n

(F

q

) with the 
y
li
 subgroup G

q;n

� F

�

q

n

of order �

n

(q), and shows that
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the dis
rete log se
urity of the group T

n

is really that of the multipli
ative group of

F

q

n

and not any smaller �eld. We prove Lemma 7 in Appendix A.

Lemma 7. (i) T

n

(F

q

)

�

=

G

q;n

.

(ii) #T

n

(F

q

) = �

n

(q).

(iii) If h 2 T

n

(F

q

) is an element of prime order not dividing n, then h does not

lie in a proper sub�eld of F

q

n

=F

q

.

4. Rationality of tori and 
ompa
t representations

De�nition 8. Suppose T is an algebrai
 torus of dimension d over F

q

. Then T is

rational if and only if there is a birational map � : T ! A

d

de�ned over F

q

. In other

words, if T is 
ontained in aÆne spa
e A

t

, then T is rational if and only if there

are Zariski open subsets W � T and U � A

d

, and (rational) fun
tions �

1

; : : : ; �

d

2

F

q

(x

1

; : : : ; x

t

) and  

1

; : : : ;  

t

2 F

q

(y

1

; : : : ; y

d

) su
h that � = (�

1

; : : : ; �

d

) : W ! U

and  = ( 

1

; : : : ;  

t

) : U ! W are inverse isomorphisms. Call su
h a map � a

rational parametrization of T .

A rational parametrization of a torus T gives a 
ompa
t representation of the

group T (F

q

), i.e., a way to represent every element of the subset W (F

q

) � T (F

q

)

by d 
oordinates in F

q

. In general this is \best possible" (in terms of the number

of 
oordinates), sin
e a rational variety of dimension d has approximately q

d

points

over F

q

, and therefore 
annot be represented by fewer than d elements of F

q

.

Letting X = T � W , then dim(X) � d � 1, so jX(F

q

)j = O(q

d�1

). Thus the

fra
tion of elements in T (F

q

) that are \missed" by a 
ompa
t representation is

jX(F

q

)j=jT (F

q

)j = O(1=q). For 
ryptographi
ally interesting values of q this will

be very small, and in spe
ial 
ases (by des
ribing X expli
itly as in the examples

below) we obtain an even better bound.

Conje
ture 9 (Voskresenskii [14℄). The torus T

n

is rational.

The 
onje
ture is true for n if n is a prime power (see Chapter 2 of [14℄) or a

produ
t of two prime powers ([5℄; see also x6.3 of [14℄). In the next se
tion we will

exhibit expli
it rational parametrizations when n = 6 and 2.

When n is divisible by more than two distin
t primes the 
onje
ture is still open.

Note that [15℄ 
laims a proof of a result that would imply that for every n, T

n

is

rational over F

q

for almost all q. However, there is a serious 
aw in the proof. Even

the 
ase n = 30, whi
h would have interesting 
ryptographi
 appli
ations, is not

settled.

5. Expli
it rational parametrizations

5.1. Rational parametrization of T

6

. Next we obtain an expli
it rational par-

ametrization of the torus T

6

, thereby giving a 
ompa
t representation of T

6

(F

q

).

More pre
isely, we will show that T

6

is birationally isomorphi
 to A

2

, and therefore

every element of T

6

(F

q

) 
an be represented by two elements of F

q

.

Fix x 2 F

q

2
� F

q

, so F

q

2
= F

q

(x), and 
hoose an F

q

-basis f�

1

; �

2

; �

3

g of F

q

3
.

Then f�

1

; �

2

; �

3

; x�

1

; x�

2

; x�

3

g is an F

q

-basis of F

q

6 . Let � 2 Gal(F

q

6 =F

q

) be the
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element of order 2. De�ne a (one-to-one) map  

0

: A

3

(F

q

) ,! F

�

q

6

by

 

0

(u

1

; u

2

; u

3

) =


 + x


 + �(x)

where 
 = u

1

�

1

+u

2

�

2

+u

3

�

3

. Then N

F

q

6

=F

q

3

( 

0

(u)) = 1 for every u = (u

1

; u

2

; u

3

).

Let U = fu 2 A

3

: N

F

q

6

=F

q

2

( 

0

(u)) = 1g: By (4),  

0

(u) 2 T

6

(F

q

) if and only if

u 2 U , so restri
ting  

0

to U gives a morphism  

0

: U ! T

6

. It follows from

Hilbert's Theorem 90 that every element of T

6

(F

q

) � f1g is in the image of  

0

, so

 

0

de�nes an isomorphism

 

0

: U

�

�! T

6

� f1g:

We will next de�ne a birational map from A

2

to U . A 
al
ulation in Mathemati
a

shows that U is a hypersurfa
e in A

3

de�ned by a quadrati
 equation in u

1

; u

2

; u

3

.

Fix a point a = (a

1

; a

2

; a

3

) 2 U(F

q

). By adjusting the basis f�

1

; �

2

; �

3

g of F

q

6
if

ne
essary, we 
an assume without loss of generality that the tangent plane at a to

the surfa
e U is the plane u

1

= a

1

. If (v

1

; v

2

) 2 F

q

� F

q

, then the interse
tion of

U with the line a + t(1; v

1

; v

2

) 
onsists of two points, namely a and a point of the

form a+

1

f(v

1

;v

2

)

(1; v

1

; v

2

) where f(v

1

; v

2

) 2 F

q

[v

1

; v

2

℄ is an expli
it polynomial that

we 
omputed in Mathemati
a. The map that takes (v

1

; v

2

) to this latter point is an

isomorphism

g : A

2

� V (f)

�

�! U � fag;

where V (f) denotes the subvariety of A

2

de�ned by f(v

1

; v

2

) = 0. Thus  

0

Æ g

de�nes an isomorphism

 : A

2

� V (f)

�

�! T

6

� f1;  

0

(a)g:

For the inverse isomorphism, suppose that � = �

1

+ �

2

x 2 T

6

(F

q

) � f1;  

0

(a)g

with �

1

; �

2

2 F

q

3
. One 
he
ks easily that �

2

6= 0, and if 
 = (1 + �

1

)=�

2

then


=�(
) = �. Write (1 + �

1

)=�

2

= u

1

�

1

+ u

2

�

2

+ u

3

�

3

with u

i

2 F

q

, and de�ne

�(�) =

�

u

2

� a

2

u

1

� a

1

;

u

3

� a

3

u

1

� a

1

�

:

It follows from the dis
ussion above that � : T

6

(F

q

)� f1;  

0

(a)g

�

�! A

2

� V (f) is

the inverse of the isomorphism  . We obtain the following.

Theorem 10. The above maps � and  indu
e inverse birational maps between T

6

and A

2

.

To implement the CEILIDH system, one must 
hoose a �nite �eld F

q

and 
ompute

the rational maps � and  expli
itly. We do this in two families of examples. Note

that in ea
h family the 
oeÆ
ients of the rational maps � and  are independent of

q. When (n; q) = 1, write �

n

for a primitive n-th root of unity.

Example 11. Fix q � 2 or 5 (mod 9). Let x = �

3

and y = �

9

+ �

�1

9

. Then

F

q

6 = F

q

(�

9

), F

q

2 = F

q

(x), and F

q

3 = F

q

(y). The basis we take for F

q

3 is f1; y; y

2

�2g,
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and we take a = (0; 0; 0). Then  

0

(a) = �

2

3

, and a 
al
ulation gives f(v

1

; v

2

) =

1� v

2

1

� v

2

2

+ v

1

v

2

. Thus

 (v

1

; v

2

) =

1 + v

1

y + v

2

(y

2

� 2) + f(v

1

; v

2

)x

1 + v

1

y + v

2

(y

2

� 2) + f(v

1

; v

2

)x

2

:

For � = �

1

+ �

2

x 2 T

6

(F

q

)� f1; �

2

3

g, we have

�(�) = (u

2

=u

1

; u

3

=u

1

) where (1 + �

1

)=�

2

= u

1

+ u

2

y + u

3

(y

2

� 2):

Example 12. Fix q � 3 or 5 (mod 7). Let x =

p

�7 and y = �

7

+ �

�1

7

. Then

F

q

6
= F

q

(�

7

), F

q

2
= F

q

(x), and F

q

3
= F

q

(y). The basis we take for F

q

3
is f1; y; y

2

�1g,

and we take a = (1; 0; 2). A 
al
ulation gives f(v

1

; v

2

) = (2v

2

1

+ v

2

2

� v

1

v

2

+ 2v

1

�

4v

2

� 3)=14. Thus

 (v

1

; v

2

) =


 + f(v

1

; v

2

)x


 � f(v

1

; v

2

)x

where 
 = f(v

1

; v

2

) + 1 + v

1

y + (2f(v

1

; v

2

) + v

2

)(y

2

� 1). If � = �

1

+ �

2

x 2

T

6

(F

q

)� f1;  

0

(a)g, then

�(�) =

�

u

2

u

1

� 1

;

u

3

� 2

u

1

� 1

�

where (1 + �

1

)=�

2

= u

1

+ u

2

y + u

3

(y

2

� 1):

5.2. Rational parametrization of T

2

. We give an expli
it birational isomorphism

between T

2

and P

1

. For simpli
ity we assume that q is not a power of 2, and we write

F

q

2
= F

q

(

p

d) for some non-square d 2 F

�

q

. Let � be the non-trivial automorphism

of F

q

2 =F

q

, so �(

p

d) = �

p

d.

De�ne a map  : A

1

(F

q

)! T

2

(F

q

) by

 (a) =

a+

p

d

a�

p

d

=

a

2

+ d

a

2

� d

+

2a

a

2

� d

p

d:

Conversely, suppose � = �

1

+ �

2

p

d 2 T

2

(F

q

), with � 6= �1 (so �

2

6= 0). Then

� =

1 + �

1 + �(�)

=  

�

1 + �

1

�

2

�

:

Thus if we let �(�) = (1 + �

1

)=�

2

, then � and  de�ne inverse isomorphisms

T

2

� f�1g

�

++

A

1

� f0g

 

kk

:

In fa
t, these maps extend naturally to give an isomorphism T

2

(F

q

)

�

�! F

q

[ f1g

by sending 1 to 1 and �1 to 0. A simple 
al
ulation shows that if a; b 2 F

q

and

a 6= �b, then

 (a) (b) =  

�

ab+ d

a+ b

�

: (5)

Therefore instead of doing 
ryptography in the subgroup T

2

of F

q

2 , we 
an do all

operations (i.e., multipli
ations and exponentiations in T

2

) dire
tly in F

q

itself, where

now multipli
ation in T

2

has been translated into the map (a; b) 7!

ab+d

a+b

from F

q

�F

q

to F

q

.
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6. Torus-based 
ryptosystems

Next we introdu
e publi
 key 
ryptosystems based on a torus T

n

with a ratio-

nal parametrization. The 
ase n = 6 is the CEILIDH system. By Lemma 7(iii),

T

n

(F

q

) has the same dis
rete log se
urity as F

�

q

n

. However, thanks to the 
ompa
t

representation that allows us to represent an element of T

n

(F

q

) by '(n) elements of

F

q

, the size of any data represented by a group element is de
reased by a fa
tor of

'(n)=n 
ompared to 
lassi
al 
ryptosystems using F

�

q

n

. This give an improvement

of a fa
tor of 3 (resp., 2) using CEILIDH (resp., T

2

).

Any dis
rete log based 
ryptosystem for a general group 
an be done using a

torus T

n

with a rational parametrization. Below we des
ribe torus-based versions of

DiÆe-Hellman key ex
hange, ElGamal en
ryption, and ElGamal signatures. Other

examples where this 
an be done in a straightforward way in
lude DSA and Nyberg-

Rueppel signatures (see also x5 of [7℄).

Note that it is easy to turn any torus-based 
ryptosystem into an RSA-like system

whose se
urity is based on the diÆ
ulty of fa
toring, analogous to the LUC system

of [12℄. Here, one views the torus T

n

over a ring Z=NZ. However, as shown in [1℄,

su
h RSA-based systems do not seem to have signi�
ant advantages over RSA.

Parameter sele
tion: Choose a prime power q and an integer n su
h that the

torus T

n

over F

q

has an expli
it rational parametrization, n log(q) � 1024 (to obtain

1024 bit se
urity), and �

n

(q) is divisible by a prime ` that has at least 160 bits.

Let m = '(n), and �x a birational map � : T

n

(F

q

)! F

m

q

and its inverse  . Choose

� 2 T

n

of order ` (taking an arbitrary element of F

�

q

n

and raising it to the power

(q

n

�1)=` will usually work), and let g = �(�) 2 F

m

q

. Note that n is a small number

(2, 6, . . . ).

For the proto
ols below, the publi
 data is n, q, �,  , `, and either g or � =  (g).

Key agreement s
heme (torus-based DiÆe-Hellman):

1. Ali
e 
hooses a random a (mod �

n

(q)). She 
omputes P

A

:= �( (g)

a

) 2

F

m

q

and sends it to Bob.

2. Bob 
hooses a random b (mod �

n

(q)). He 
omputes P

B

:= �( (g)

b

) 2 F

m

q

and sends it to Ali
e.

3. Ali
e 
omputes �( (P

B

)

a

) 2 F

m

q

.

4. Bob 
omputes �( (P

A

)

b

) 2 F

m

q

.

Sin
e  Æ � is the identity, we have �( (P

B

)

a

) = �( (g)

ab

) = �( (P

A

)

b

), and this

is Ali
e's and Bob's shared se
ret.

En
ryption s
heme (torus-based ElGamal en
ryption):

(i) Key Generation: Ali
e 
hooses a random a (mod �

n

(q)) as her private

key. Her publi
 key is P

A

:= �( (g)

a

) 2 F

m

q

.

(ii) En
ryption: Bob represents the message M as an element of F

m

q

, sele
ts a

random integer k in the range 1 � k � `� 1, 
omputes 
 = �( (g)

k

) 2 F

m

q

and Æ = �( (M) (P

A

)

k

) 2 F

m

q

, and sends the 
iphertext (
; Æ) to Ali
e.

(iii) De
ryption: Ali
e 
omputes M = �( (Æ) (
)

�a

) 2 F

m

q

.
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The torus-based en
ryption proto
ol is the generalized ElGamal proto
ol (see

p. 297 of [8℄) applied to T

n

. Similarly, the torus-based signature s
heme is the

generalized ElGamal signature s
heme (see p. 458 of [8℄) for the group T

n

, where as

above the maps � and  are used to go ba
k and forth between the group law on

T

n

and the 
ompa
t representation in F

m

q

.

Note that the shared key sizes for key agreement, the publi
 key and 
iphertext

sizes for en
ryption, and the publi
 key sizes for the signature s
hemes are all '(n)=n

as long of those for the 
orresponding 
lassi
al s
hemes, for the same se
urity. Fur-

ther, torus-based signatures have '(n) log(q) + log(`) bits, while the 
orresponding


lassi
al ElGamal signature s
heme with the same se
urity using a subgroup of order

` has n log(q) + log(`) bit signatures.

The CEILIDH key ex
hange, en
ryption, and signature s
hemes are the above

proto
ols with n = 6 and with � and  as in x5.1. Note that �

6

(q) = q

2

� q + 1,

m = 2, and q and ` 
an be 
hosen as in XTR.

The T

2

key ex
hange, en
ryption, and signature s
hemes are the above proto
ols

with n = 2 and with � and  as in x5.2. However, we obtain an extra savings in the

T

2


ase, sin
e there is no need to go ba
k and forth between T

2

and F

q

using the

fun
tions � and  . Using (5), all the group 
omputations 
an be done dire
tly and

simply in F

q

, rather than in the group T

2

(F

q

).

The T

n


ryptosystem uses the above proto
ols, whenever we have an n for whi
h

the torus T

n

has an expli
it and eÆ
iently 
omputable rational parametrization �

and inverse map  . Conje
ture 9 states that for every n, the torus T

n

is rational.

This is most interesting in the 
ase n = 30 = 2 � 3 � 5, where n='(n) = 3

3

4

, but might

also be of interest when n = 210 = 2 � 3 � 5 � 7, where n='(n) = 4

3

8

. An expli
it

rational parametrization of the 8-dimensional torus T

30

(analogous to the maps �

and  of the CEILIDH and T

2

systems) would allow us to represent elements of

T

30

(F

q

) by 8 elements of F

q

.

7. Understanding LUC, XTR, and \beyond" in terms of tori

The LUC systems, the 
ubi
 �eld system in [4℄, and XTR have the dis
rete log

se
urity of F

p

2
, F

p

3
, and F

p

6
, respe
tively, while representing elements in F

p

, F

2

p

,

and F

p

2 , respe
tively. However, unlike the above torus-based systems, they do not

make full use of the �eld multipli
ation. Here, we give a 
on
eptual framework that

explains why. We interpret these s
hemes in terms of varieties that are quotients of

tori, and 
ompare these s
hemes to the torus-based s
hemes of x3.

Consider two 
ases: n = 2 (the LUC 
ase) and n = 6 (the XTR 
ase). (It is

straightforward to do the 
ubi
 
ase of [4℄ similarly.) Let F be F

q

in the LUC 
ase

and F

q

2
in the XTR 
ase. Let t = [F

q

n

: F ℄, so t = 2 for LUC and t = 3 for XTR.

In LUC and XTR, instead of g 2 G

q;n

one 
onsiders the tra
e

Tr(g) := Tr

F

q

n
=F

(g) 2 F;

where the tra
e is the sum of the 
onjugates. One 
an show that for g 2 G

q;n

,

the tra
e Tr(g) determines the entire 
hara
teristi
 polynomial of g over F . In

other words, knowing the tra
e of g is equivalent to knowing its unordered set of
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onjugates (but not the 
onjugates themselves). Let S

g

= fg

�

: � 2 Gal(F

q

n

=F )g,

the set of Galois 
onjugates of g.

Given a set S = fs

1

; : : : ; s

t

g � F

q

n

, let S

(j)

= fs

j

1

; : : : ; s

j

t

g. If S = S

g

, then

S

(j)

= S

g

j
. In pla
e of exponentiation (g 7! g

j

), the XTR and LUC systems


ompute Tr(g

j

) from Tr(g). In the above interpretation, they 
ompute S

g

j
from

S

g

, without needing to distinguish between the elements of S

g

.

On the other hand, given sets of 
onjugates fg

1

; : : : ; g

t

g and fh

1

; : : : ; h

t

g, it is not

possible (without additional information) to multiply them to produ
e a new set of


onjugates, be
ause we do not know if we are looking for S

g

1

h

1

, or S

g

1

h

2

, for example,

whi
h will be di�erent. Therefore, XTR and LUC do not have straightforward

multipli
ation algorithms.

However, XTR in
ludes a partial multipli
ation algorithm (see Algorithm 2.4.8 of

[6℄). Given Tr(g), Tr(g

j�1

), Tr(g

j

), Tr(g

j+1

), and a and b, the algorithm outputs

Tr(g

a+bj

). Thus for an XTR-based system, any transmission of data that needs to

be multiplied requires sending three times as mu
h data, e�e
tively negating the

improvement of 3 = 6='(6) that 
omes from XTR's 
ompa
t representation. An

analogous situation holds true for the signature s
heme LUCELG DS in [13℄.

The CEILIDH system, sin
e its operations take pla
e in the group G

q;6

, 
an do

both multipli
ation and exponentiation, while taking full advantage of the 
ompa
t

representation for transmitting data. In parti
ular, XTR-ElGamal en
ryption is key

ex
hange followed by symmetri
 en
ryption with the shared key, while CEILIDH has

full-
edged ElGamal en
ryption and signature s
hemes.

In the torus-based systems above, the information being ex
hanged 
orresponds

to an element of a torus T

n

. Further, the 
omputations that are performed are

multipli
ations in this group. We will see below that for XTR, the information

being ex
hanged 
orresponds to an element of the quotient of T

6

by a 
ertain a
tion

of the symmetri
 group on three letters, S

3

. Similarly for LUC, the elements being

ex
hanged are in T

2

=S

2

. The set of equivalen
e 
lasses T

6

=S

3

is not a group, be
ause

multipli
ation in T

6

does not preserve S

3

-orbits. This explains why XTR does not

have a straightforward way to multiply. However, exponentiation in T

6

does preserve

S

3

-orbits, and it indu
es a well-de�ned exponentiation in T

6

=S

3

, and therefore in

the set of XTR tra
es (the set XTR(q) de�ned below).

What XTR takes advantage of is the fa
t that the quotient variety T

6

=S

3

is ratio-

nal, and the tra
e map to the quadrati
 sub�eld gives an expli
it rational parame-

trization. This rational parametrization embeds T

6

=S

3

in A

2

, as shown in Theorem

13 below, and therefore gives a 
ompa
t representation of T

6

=S

3

.

Let k = F

q

, L = F

q

6
, and F = F

q

2
. If G is a group and V is a variety, then G

a
ts on �


2G

V by permuting the fa
tors. We have

Res

L=k

G

m

�

�!

L


2Gal(L=k)

G

m

�

�!

�

L


2Gal(F=k)

G

m

�

3

(6)

where the �rst isomorphism is de�ned over L and preserves the a
tion of the Ga-

lois group Gal(L=k) on both sides. The symmetri
 group S

3

a
ts naturally on

(�


2Gal(F=k)

G

m

)

3

. Pulling ba
k this a
tion via the above 
omposition de�nes an

a
tion of S

3

on Res

L=k

G

m

that preserves the torus T

6

� Res

L=k

G

m

. The quotient
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map T

6

! T

6

=S

3

indu
es a (non-surje
tive) map on k-points T

6

(k) ! (T

6

=S

3

)(k).

Let

XTR(q) = fTr

L=F

(�) : � 2 T

6

(k)g � F;

the set of tra
es used in XTR.

Theorem 13. The set XTR(q) 
an be naturally identi�ed with the image of T

6

(k)

in (T

6

=S

3

)(k). More pre
isely, there is a birational embedding

T

6

=S

3

,! Res

F=k

A

1

�

=

A

2

su
h that XTR(q) is the image of the 
omposition

T

6

(k) �! (T

6

=S

3

)(k) ,! (Res

F=k

A

1

)(k)

�

=

F:

We prove Theorem 13 in Appendix B.1.

Similarly for LUC, the tra
e map indu
es a birational embedding T

2

=S

2

,! A

1

,

the variety T

2

=S

2

is not a group, and

LUC(q) = fTr

F

q

2

=F

q

(�) : � 2 T

2

(k)g � F

q

is the image of T

2

(F

q

) under the tra
e map T

2

! T

2

=S

2

,! A

1

.
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Appendix A. Proof of Lemma 7

The group F

�

q

n

is 
y
li
 of order q

n

� 1, and Gal(F

q

n

=F

q

) is generated by the

Frobenius automorphism whi
h sends x 2 F

�

q

n

to x

q

. Hen
e if t divides n, then

N

F

q

n
=F

q

t

(x) = x

(q

n

�1)=(q

t

�1)

. Thus by (4),

T

n

(F

q

)

�

=

fx 2 F

�

q

n

: x




= 1g (7)

where 
 = g
df(q

n

� 1)=(q

t

� 1) : t j n and t 6= ng. Sin
e q

t

� 1 =

Q

jjt

�

j

(q), we

have that �

n

(q) divides 
. By Lemma 14 below, there are polynomials a

t

(u) 2 Z[u℄

su
h that

X

tjn;t 6=n

a

t

(u)

u

n

� 1

u

t

� 1

= �

n

(u);

and so 
 divides �

n

(q) as well. Thus 
 = �

n

(q), so T

n

(F

q

)

�

=

G

q;n

by (7) and the

de�nition of G

q;n

. Part (ii) of Lemma 7 follows from (i). Part (iii) now follows from

Lemma 1 of [2℄.

Lemma 14. There are polynomials A

`;n

(u) 2 Z[u℄ su
h that

X

primes ` j n

A

`;n

(u)

u

n

� 1

u

n=`

� 1

= �

n

(u):

Proof. Apply Lemma 22 of [10℄ indu
tively, doing indu
tion on the number of prime

divisors of n. �

Appendix B. Understanding LUC, XTR, and \beyond" in terms of tori

B.1. Proof of Theorem 13. Let k = F

q

, L = F

q

6
, and F = F

q

2
. We have a


ommutative diagram (see (6))

T

6

�

�

//

Res

L=k

G

m

�

�

//

Res

L=k

A

1

Tr

L=F

��

�

//

�

L


2Gal(F=k)

A

1

�

3

��

Res

F=k

A

1

�

//

L


2Gal(F=k)

A

1

(8)

where the top and bottom isomorphisms are de�ned over L and F , respe
tively, and

the right verti
al map is the \tra
e" map (�

1

; �

2

; �

3

) 7! �

1

+ �

2

+ �

3

.

The morphism Tr

L=F

: Res

L=k

A

1

! Res

F=k

A

1

of (8) fa
tors through the quotient

(Res

L=k

A

1

)=S

3

, so by restri
tion it indu
es a morphism Tr : T

6

=S

3

! Res

F=k

A

1

.
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By de�nition XTR(q) is the image of the 
omposition T

6

(k) ! (T

6

=S

3

)(k) !

(Res

F=k

A

1

)(k)

�

=

F , and T

6

and Res

F=k

A

1

are both 2-dimensional varieties, so to

prove the theorem we need only show that Tr : T

6

=S

3

! Res

F=k

A

1

is inje
tive. Sup-

pose g 2 T

6

(

�

k). Using (6) we 
an view g = (g

1

; g

2

; g

3

) 2 (�


2Gal(F=k)

�

k

�

)

3

. Let � be

the non-trivial element of Gal(F=k). Sin
e g 2 T

6

(

�

k), we have g

1

g

2

g

3

= N

L=F

(g) = 1

and g

i

g

�

i

= 1 for i = 1; 2; 3 by the de�nition of T

6

. Hen
e we also have

g

1

g

2

+ g

1

g

3

+ g

2

g

3

= 1=g

3

+ 1=g

2

+ 1=g

1

= g

�

3

+ g

�

2

+ g

�

1

= Tr(g)

�

:

Thus the tra
e of g determines all the symmetri
 fun
tions of fg

1

; g

2

; g

3

g. Hen
e

if h = (h

1

; h

2

; h

3

) 2 T

6

(

�

k) and Tr(h) = Tr(g), then fh

1

; h

2

; h

3

g = fg

1

; g

2

; g

3

g, i.e.,

h and g are in the same orbit under the a
tion of S

3

. Thus Tr is inje
tive. This

proves Theorem 13.

B.2. Beyond XTR. As in [2℄ and x2 above, let n = de. We will assume that n is

square-free. Further, let k = F

q

, L = F

q

n

, and F = F

q

d

.

As in x7, we have

T

n

� Res

L=k

G

m

�

�!

L


2Gal(L=k)

G

m

�

�!

�

L


2Gal(F

`

=k)

G

m

�

`

�

�!

�

L


2Gal(F=k)

G

m

�

e

where the �rst isomorphism is de�ned over L and preserves the a
tion of the Galois

group Gal(L=k) on both sides, ` is any prime divisor of n, and F

`

= F

q

n=`

. The

symmetri
 group S

e

a
ts naturally on (�


2Gal(F=k)

G

m

)

e

. Pulling ba
k this a
tion

via the above 
omposition de�nes an a
tion of S

e

on Res

L=k

G

m

. Note that this

a
tion does not ne
essarily preserve the torus T

n

. Similarly, S

`

a
ts naturally on

(�


2Gal(F

`

=k)

G

m

)

`

. Sin
e N

L=F

`

(g) = 1 for every g 2 T

n

, it follows that T

n

is in fa
t

�xed under the indu
ed a
tion of S

`

.

De�nition 15. Let B

(d;e)

denote the image of T

n

in (Res

L=k

G

m

)=S

e

.

If the variety B

(d;e)

is rational, then one 
an do 
ryptography. For example, this

was done for the 
ases (d; e) = (6; 1) and (2; 1) in this paper (CEILIDH and T

2

,

respe
tively), for (1; 2) in the LUC papers, and for (2; 3) in XTR. Note that (1; 1)

gives the usual DiÆe-Hellman. Our 
onje
tural T

n


ryptosystems are the 
ases

(n; 1), and [2℄ dis
usses the 
ases (d; e) = (1; 30) and (2; 15). The variety B

(d;e)

is

not generally a group. However, when e = 1, then B

(d;e)

= T

n

whi
h is a group.

The variety B

(d;e)

is birationally isomorphi
 to the quotient of T

n

by the a
tion

of

Q

primes ` j e

S

`

.

Thus, the 
onje
tures in [2℄ 
an be interpreted in this language as asking about

the rationality of the varieties T

30

=(S

3

� S

5

) and T

30

=(S

2

� S

3

� S

5

), and asking in

parti
ular if the morphisms from B

(1;30)

(resp., B

(2;15)

) to A

8

indu
ed by the �rst

8=d (for d = 1 or 2, respe
tively) symmetri
 fun
tions for the �eld extension L=F

de�ne rational parametrizations. We saw in x2 that these symmetri
 fun
tions do

not generate the 
oordinate ring of B

(1;30)

(resp., B

(2;15)

).

The de�nitions in x3 
an be easily extended to apply to an arbitrary 
y
li
 ex-

tension L=k, not ne
essarily of �nite �elds. In parti
ular, for k = Q and L a 
y
li


degree 30 extension of Q , 
onsider the above morphisms from 
hara
teristi
 zero
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versions of B

(1;30)

and B

(2;15)

to A

8

. We show in [11℄ that these maps are not bira-

tional, and (by redu
ing mod p) that for all but �nitely many primes p, Conje
ture

(p; 1; 30)-BPV

0

(resp., Conje
ture (p; 2; 15)-BPV

0

) is false (see Remark 4 above).
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