
TORUS-BASED CRYPTOGRAPHY

KARL RUBIN AND ALICE SILVERBERG

Abstrat. We introdue ryptography based on algebrai tori, give a new publi

key system alled CEILIDH, and ompare it to other disrete log based systems

inluding LUC and XTR. Like those systems, we obtain small key sizes. While

LUC and XTR are essentially restrited to exponentiation, we are able to perform

multipliation as well. We also disprove the open onjetures from [2℄, and give a

new algebro-geometri interpretation of the approah in that paper and of LUC

and XTR.

1. Introdution

This paper aomplishes several goals. We introdue a new onept, namely torus-

based ryptography, and give a new torus-based publi key ryptosystem that we

all CEILIDH. We ompare CEILIDH with other disrete log based systems, and

show that it improves on DiÆe-Hellman and Luas-based systems and has some

advantages over XTR. Moreover, we show that there is mathematis underlying

XTR and Luas-based systems that allows us to interpret them in terms of algebrai

tori. We also show that a ertain onjeture about algebrai tori has as a onsequene

new torus-based ryptosystems that would generalize and improve on CEILIDH and

XTR. Further, we disprove the open onjetures from [2℄, and thereby show that

the approah to generalizing XTR that was suggested in [2℄ annot sueed.

What makes disrete log based ryptosystems work is that they are based on

the mathematis of algebrai groups. An algebrai group is both a group and an

algebrai variety. The group struture allows you to multiply and exponentiate.

The variety struture allows you to express all elements and operations in terms of

polynomials, and therefore in a form that an be eÆiently handled by a omputer.

In lassial DiÆe-Hellman, the underlying algebrai group is G

m

, the multiplia-

tive group. Algebrai tori (not to be onfused with omplex tori of ellipti urve

fame) are generalizations of the multipliative group. By de�nition, an algebrai

torus is an algebrai variety that over some extension �eld is isomorphi to (G

m

)

d

,

namely, d opies of the multipliative group. For the tori we onsider, the group

operation is just the usual multipliation in a (larger) �nite �eld.

The Luas-based systems, the ubi �eld system in [4℄, and XTR have the disrete

log seurity of the �eld F

p

n

, for n = 2, 3, and 6, resp., while the data required to

be transmitted onsists of m = '(n) elements of F

p

. Sine these systems have

n log p bits of seurity when exhanging m log p bits of information, they are more

eÆient than DiÆe-Hellman by a fator of n=m = 2, 3=2, and 3, respetively. See
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[9, 12, 13, 16, 17, 1℄ for Luas-based systems and LUC, and [3, 6, 7℄ for XTR and

related work.

The ryptosystems based on algebrai tori introdued in this paper aomplish

the same goal of attaining disrete log seurity in the �eld F

p

n

while requiring the

transmission of '(n) elements of F

p

. However, they additionally take advantage

of the fat that an algebrai torus is a multipliative group. For every n one an

de�ne an algebrai torus T

n

with the property that T

n

(F

p

) onsists of the elements

in F

�

p

n

whose norms are 1 down to every intermediate sub�eld. This torus T

n

has

dimension '(n). When the torus is \rational", then its elements an be ompatly

represented by '(n) elements of F

p

. Doing ryptography inside this subgroup of F

�

p

n

has the disrete log seurity of F

�

p

n

(see Lemma 7 below), but only '(n) elements of

F

p

need to be transmitted.

The CEILIDH

1

publi key system is Compat, EÆient, Improves on LUC, and

Improves on DiÆe-Hellman. It also has some advantages over XTR. The system

is based on the 2-dimensional algebrai torus T

6

. The CEILIDH system does dis-

rete log ryptography in a subgroup of F

�

p

6

while representing the elements in F

2

p

,

giving a savings omparable to that of XTR. While XTR and the Luas-based ryp-

tosystems are essentially restrited to exponentiation, CEILIDH allows full use of

multipliation, thereby enabling a wider range of appliations. In partiular, where

XTR uses a hybrid ElGamal enryption sheme that exhanges a key and then does

symmetri enryption with that shared key, CEILIDH an do an exat analogue of

(non-hybrid) ElGamal, sine it has group multipliation at its disposal. Beause of

this multipliation, any ryptographi appliation that an be done in an arbitrary

group an be done in a torus-based ryptosystem suh as CEILIDH.

We also show that XTR, rather than being based on the torus T

6

, is based on a

quotient of this torus by the symmetri group S

3

. The reason that XTR does not

have a straightforward multipliation is that this quotient variety is not a group. (We

note, however, that XTR has additional features that permit eÆient omputations.)

We exhibit a similar, but easier, onstrution based on the 1-dimensional torus

T

2

, obtaining a system similar to LUC but with the advantage of being able to

eÆiently perform the group operation (in fat, diretly in F

p

). This system has the

seurity of F

p

2 while transmitting elements of the �eld F

p

itself.

The next ase where n='(n) is \large" is when n = 30 (and '(n) = 8). Here,

the 8-dimensional torus T

30

is not known to be rational, though this is believed

to be the ase. An expliit rational parametrization of T

30

would give a ompat

representation of this group by 8 elements of F

p

, with disrete log seurity of the

�eld F

p

30
. It would also refute the statement made in the abstrat to [2℄ that \it is

unlikely that suh a ompat representation of elements an be ahieved in extension

�elds of degree thirty."

Conjetures were made in [2℄ suggesting a way to generalize LUC and XTR to

obtain the seurity of the �eld F

p

30
while transmitting only 8 elements of F

p

. In

addition to showing that a rational parametrization of the torus T

30

would aom-

plish this, we also show that the method suggested in [2℄ for doing this annot. The

1
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reason is that, reinterpreting the onjetures in [2℄ in the language of algebrai tori,

they say that the oordinate ring of the quotient of T

30

by a ertain produt of sym-

metri groups is generated by the �rst 8 of the symmetri funtions on 30 elements.

(This would generalize the fat that the oordinate ring of T

6

=S

3

is generated by

the trae, whih is what enables the suess of XTR.) In x2 we disprove the open

onjetures from [2℄. This on�rms the idea in [2℄ that the approah in [2℄ is unlikely

to work.

Setion 2 gives ounterexamples to the open questions in [2℄. Setion 3 gives

bakground on algebrai tori, de�nes the tori T

n

, shows that T

n

(F

q

) is the subgroup

of F

�

q

n

of order �

n

(q), and shows that the seurity of ryptosystems based on this

group is the disrete log seurity of F

�

q

n

. Setion 4 disusses rational parametrizations

and ompat representations, while x5 gives expliit rational parametrizations of T

6

and T

2

. In x6 we introdue torus-based ryptography, and give the CEILIDH system

(based on the torus T

6

), a system based on T

2

, and onjetured systems based on T

n

for all n (most interesting for n = 30 or 210). In x7 we reinterpret the Luas-based

ryptosystems, XTR, and the point of view in [2℄ in terms of algebrai tori, and

ompare these systems to our torus-based systems.

1.1. Notation. Let F

q

denote the �nite �eld with q elements, where q is a prime

power. Write ' for the Euler '-funtion. Write �

n

for the n-th ylotomi poly-

nomial, and let G

q;n

be the subgroup of F

�

q

n

of order �

n

(q). Let A

n

denote n-

dimensional aÆne spae, i.e., the variety whose F

q

-points are F

n

q

for every q.

2. Counterexamples to the open questions in [2℄

Four onjetures are stated in [2℄. The two \strong" onjetures are disproved

there. Here we disprove the two remaining onjetures (Conjetures 1 and 3 of

[2℄, whih are also alled (d; e)-BPV and n-BPV). In fat, we do better. We give

examples that show not only that the onjetures are false, but also that weaker

forms of the onjetures (i.e., with less stringent onlusions) are also false.

Fix an integer n > 1, a prime power q, and a fatorization n = de with e >

1. Reall that G

q;n

is the subgroup of F

�

q

n

of order �

n

(q), where �

n

is the n-th

ylotomi polynomial. Let S

q;n

be the set of elements of G

q;n

not ontained in any

proper sub�eld of F

q

n

ontaining F

q

. For h 2 G

q;n

, let P

(d)

h

be the harateristi

polynomial of h over F

q

d

, and de�ne funtions a

j

: G

q;n

! F

q

d

by

P

(d)

h

(X) = X

e

+ a

e�1

(h)X

e�1

+ � � � + a

1

(h)X + a

0

(h):

Then a

0

(h) = (�1)

e

, and if also n is even then

a

j

(h) = (�1)

e

(a

e�j

(h))

q

n=2

(1)

for all j 2 f1; : : : ; e� 1g (see for example Theorem 1 of [2℄).

The following onjeture is a onsequene of Conjeture (d; e)-BPV of [2℄.

Conjeture (p; d; e)-BPV

0

([2℄). Let u = d'(n)=de. There are polynomials Q

1

,. . . ,

Q

e�u�1

2 Z[x

1

; : : : ; x

u

℄ suh that for all h 2 S

p;n

and j 2 f1; : : : ; e� u� 1g,

a

j

(h) = Q

j

(a

e�u

(h); : : : ; a

e�1

(h)):
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We will prove below the following result.

Theorem 1. Conjeture (p; d; e)-BPV

0

is false when (p; d; e) is any one of the

triples (7; 1; 30); (7; 2; 15); (11; 1; 30); (11; 2; 15).

If n > 1 is �xed, then Conjeture n-BPV of [2℄ says that there exists a divisor d

of both n and '(n) suh that (d; n=d)-BPV holds. Sine gd(30; '(30)) = 2, when

n = 30 we need only onsider d = 1 and 2. Sine (d; n=d)-BPV implies (p; d; n=d)-

BPV

0

for every p, the following is an immediate onsequene of Theorem 1.

Corollary 2. Conjetures (1; 30)-BPV, (2; 15)-BPV, and 30-BPV of [2℄ are false.

Thus, Conjetures 1 and 3 of [2℄ are both false.

Remark 3. The ase n = 30 is partiularly relevant for ryptographi appliations,

beause this is the smallest value of n for whih n='(n) > 3. If Conjeture 30-BPV

of [2℄ were true it would have had ryptographi appliations.

Proof of Theorem 1. If Conjeture (p; d; e)-BPV

0

were true, then for every h 2 S

p;n

the values a

e�u

(h); : : : ; a

e�1

(h) would determine a

j

(h) for every j. We will disprove

Conjeture (p; d; e)-BPV

0

by exhibiting two elements h; h

0

2 S

p;n

suh that a

j

(h) =

a

j

(h

0

) whenever e� u � j � e� 1 but a

j

(h) 6= a

j

(h

0

) for at least one j < e� u.

Let n = 30, and p = 7 or 11. Note that �

30

(7) = 6568801 (a prime) and

�

30

(11) = 31 � 7537711. Sine �

30

(p) is relatively prime to 30, by Lemma 1 of

[2℄ we have S

p;30

= G

p;30

� f1g. We view the �eld F

p

30 as F

p

[x℄=f(x) with an

irreduible polynomial f(x) 2 F

p

[x℄, and we �x a generator g of G

p;n

. Spei�ally,

let r = (p

30

� 1)=�

30

(p) and let

f(x) = x

30

+ x

2

+ x+ 5; g = x

r

; if p = 7,

f(x) = x

30

+ 2x

2

+ 1; g = (x+ 1)

r

; if p = 11.

Case 1: n = 30, e = 30, d = 1. Then u = d'(n)=de = 8. For h 2 S

p;30

= G

p;30

�f1g

and 1 � j � 29 we have a

j

(h) = a

30�j

(h) by (1), so we need only onsider a

j

(h) for

15 � j � 29.

By onstruting a table of g

i

and their harateristi polynomials P

(d)

g

i

for i =

1; 2; : : :, and heking for mathing oeÆients, we found the examples in Tables

1 and 2. The examples in Table 1 disprove Conjeture (7; 1; 30)-BPV

0

and the

examples in Table 2 disprove Conjeture (11; 1; 30)-BPV

0

.

h n j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g

2754

3 2 0 6 4 4 2 5 4 0 2 2 1 4 4

g

6182

5 4 4 5 5 3 1 5 4 0 2 2 1 4 4

g

5374

2 0 5 2 1 6 4 6 1 1 5 6 4 2 6

g

23251

4 2 0 2 3 6 4 6 1 1 5 6 4 2 6

Table 1. Values of a

j

(h) 2 F

7

for several h 2 G

7;30
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h n j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g

7525

10 2 9 7 7 5 6 9 2 1 8 10 4 1 10

g

31624

10 2 2 4 2 3 10 9 2 1 8 10 4 1 10

g

46208

9 9 6 10 6 10 10 8 1 3 2 7 4 6 5

g

46907

7 8 0 0 1 7 10 8 1 3 2 7 4 6 5

Table 2. Values of a

j

(h) 2 F

11

for several h 2 G

11;30

Case 2: n = 30, e = 15, d = 2. Then u = d'(n)=de = 4. For h 2 S

p;30

= G

p;30

�f1g

and 1 � j � 14 we have a

j

(h) = a

15�j

(h) by (1), where a denotes onjugation in

F

p

2
. Thus we need only onsider a

j

(h) for 8 � j � 14. View F

p

2
as F

p

(i) where

i

2

= �1. A omputer searh as above leads to the examples in Tables 3 and 4. The

examples in Table 3 disprove Conjeture (7; 2; 15)-BPV

0

and the examples in Table

4 disprove Conjeture (11; 2; 15)-BPV

0

.

h n j 8 9 10 11 12 13 14

g

173

4 + 4i 5 + i 1 + 6i 4i 2+ 3i 6+ 3i 3+i

g

2669

6 6 + 3i 5 + i 4i 2+ 3i 6+ 3i 3+i

g

764

6 + 6i 5 5 0 0 6 2

g

5348

6 + i 5 5 0 0 6 2

Table 3. Values of a

j

(h) 2 F

49

for ertain h 2 G

7;30

h n j 8 9 10 11 12 13 14

g

9034

10 + i 10i 3 + 3i 1+ 4i 8+ 9i 5+ 4i 9

g

18196

6 + 8i 9 + 10i 8 + i 1+ 4i 8+ 9i 5+ 4i 9

Table 4. Values of a

j

(h) 2 F

121

for ertain h 2 G

11;30

This onludes the proof of Theorem 1. �

Remark 4. Using these examples and some algebrai geometry, we an prove that

Conjetures (p; 1; 30)-BPV

0

and (p; 2; 15)-BPV

0

are eah false for almost every

prime p. The proof will appear elsewhere.

Remark 5. For d = 1 and e = 30, the last two lines of Table 1 (resp., Table 2) show

that even the larger olletion of values a

18

(h), a

20

(h), . . . , a

29

(h) (resp., a

21

(h),

. . . , a

29

(h)) does not determine any of the other values when p = 7 (resp., p = 11).

We also found that no 8 oeÆients determine all the rest; we found 64 pairs of
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elements so that given any set of 8 oeÆients, one of these 64 pairs math up on

these oeÆients but not everywhere. In fat, we omputed additional examples

that show that when p = 7, no ten oeÆients determine all the rest. We also

show that when p = 7 no set of eight oeÆients determines even one additional

oeÆient.

Suppose now d = 2, e = 15, and p = 7. Then the last two lines of Table 3 show

that even the larger olletion of values a

9

(h), . . . , a

14

(h) does not determine the

remaining value a

8

(h) 2 F

49

. We have omputed additional examples that show

that no hoie of four of the values a

8

(h); : : : ; a

14

(h) determines the other three.

3. Algebrai tori

A good referene for algebrai tori is the book [14℄.

De�nition 6. An algebrai torus T over F

q

is an algebrai group de�ned over

F

q

that over some �nite extension �eld is isomorphi to (G

m

)

d

, where G

m

is the

multipliative group and d is neessarily the dimension of T . If T is isomorphi to

(G

m

)

d

over F

q

n

, then one says that F

q

n

splits T .

Let k = F

q

and L = F

q

n

. Writing Res

L=k

for the Weil restrition of salars from

L to k (see x3.12 of [14℄ for the de�nition and properties), then Res

L=k

G

m

is a torus.

The universal property of the Weil restrition of salars gives an isomorphism:

(Res

L=k

G

m

)(k)

�

=

G

m

(L) = L

�

: (2)

If k � F � L then the universal property also gives a norm map:

Res

L=k

G

m

N

L=F

���! Res

F=k

G

m

whih makes the following diagram ommute:

(Res

L=k

G

m

)(k)

�

=

��

N

L=F

//

(Res

F=k

G

m

)(k)

�

=

��

L

�

N

L=F

//

F

�

(3)

(reall that the norm of an element is the produt of its onjugates).

De�ne the torus T

n

to be the intersetion of the kernels of the norm maps N

L=F

,

for all sub�elds k � F ( L.

T

n

:= ker

"

Res

L=k

G

m

�N

L=F

����!

L

k�F(L

Res

F=k

G

m

#

:

By (3), for k-points we have:

T

n

(k)

�

=

f� 2 L

�

: N

L=F

(�) = 1 whenever k � F ( Lg: (4)

The dimension of T

n

is '(n) (see [14℄).

The group T

n

(F

q

) is a subgroup of the multipliative group F

�

q

n

. Lemma 7 below

identi�es T

n

(F

q

) with the yli subgroup G

q;n

� F

�

q

n

of order �

n

(q), and shows that
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the disrete log seurity of the group T

n

is really that of the multipliative group of

F

q

n

and not any smaller �eld. We prove Lemma 7 in Appendix A.

Lemma 7. (i) T

n

(F

q

)

�

=

G

q;n

.

(ii) #T

n

(F

q

) = �

n

(q).

(iii) If h 2 T

n

(F

q

) is an element of prime order not dividing n, then h does not

lie in a proper sub�eld of F

q

n

=F

q

.

4. Rationality of tori and ompat representations

De�nition 8. Suppose T is an algebrai torus of dimension d over F

q

. Then T is

rational if and only if there is a birational map � : T ! A

d

de�ned over F

q

. In other

words, if T is ontained in aÆne spae A

t

, then T is rational if and only if there

are Zariski open subsets W � T and U � A

d

, and (rational) funtions �

1

; : : : ; �

d

2

F

q

(x

1

; : : : ; x

t

) and  

1

; : : : ;  

t

2 F

q

(y

1

; : : : ; y

d

) suh that � = (�

1

; : : : ; �

d

) : W ! U

and  = ( 

1

; : : : ;  

t

) : U ! W are inverse isomorphisms. Call suh a map � a

rational parametrization of T .

A rational parametrization of a torus T gives a ompat representation of the

group T (F

q

), i.e., a way to represent every element of the subset W (F

q

) � T (F

q

)

by d oordinates in F

q

. In general this is \best possible" (in terms of the number

of oordinates), sine a rational variety of dimension d has approximately q

d

points

over F

q

, and therefore annot be represented by fewer than d elements of F

q

.

Letting X = T � W , then dim(X) � d � 1, so jX(F

q

)j = O(q

d�1

). Thus the

fration of elements in T (F

q

) that are \missed" by a ompat representation is

jX(F

q

)j=jT (F

q

)j = O(1=q). For ryptographially interesting values of q this will

be very small, and in speial ases (by desribing X expliitly as in the examples

below) we obtain an even better bound.

Conjeture 9 (Voskresenskii [14℄). The torus T

n

is rational.

The onjeture is true for n if n is a prime power (see Chapter 2 of [14℄) or a

produt of two prime powers ([5℄; see also x6.3 of [14℄). In the next setion we will

exhibit expliit rational parametrizations when n = 6 and 2.

When n is divisible by more than two distint primes the onjeture is still open.

Note that [15℄ laims a proof of a result that would imply that for every n, T

n

is

rational over F

q

for almost all q. However, there is a serious aw in the proof. Even

the ase n = 30, whih would have interesting ryptographi appliations, is not

settled.

5. Expliit rational parametrizations

5.1. Rational parametrization of T

6

. Next we obtain an expliit rational par-

ametrization of the torus T

6

, thereby giving a ompat representation of T

6

(F

q

).

More preisely, we will show that T

6

is birationally isomorphi to A

2

, and therefore

every element of T

6

(F

q

) an be represented by two elements of F

q

.

Fix x 2 F

q

2
� F

q

, so F

q

2
= F

q

(x), and hoose an F

q

-basis f�

1

; �

2

; �

3

g of F

q

3
.

Then f�

1

; �

2

; �

3

; x�

1

; x�

2

; x�

3

g is an F

q

-basis of F

q

6 . Let � 2 Gal(F

q

6 =F

q

) be the
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element of order 2. De�ne a (one-to-one) map  

0

: A

3

(F

q

) ,! F

�

q

6

by

 

0

(u

1

; u

2

; u

3

) =

 + x

 + �(x)

where  = u

1

�

1

+u

2

�

2

+u

3

�

3

. Then N

F

q

6

=F

q

3

( 

0

(u)) = 1 for every u = (u

1

; u

2

; u

3

).

Let U = fu 2 A

3

: N

F

q

6

=F

q

2

( 

0

(u)) = 1g: By (4),  

0

(u) 2 T

6

(F

q

) if and only if

u 2 U , so restriting  

0

to U gives a morphism  

0

: U ! T

6

. It follows from

Hilbert's Theorem 90 that every element of T

6

(F

q

) � f1g is in the image of  

0

, so

 

0

de�nes an isomorphism

 

0

: U

�

�! T

6

� f1g:

We will next de�ne a birational map from A

2

to U . A alulation in Mathematia

shows that U is a hypersurfae in A

3

de�ned by a quadrati equation in u

1

; u

2

; u

3

.

Fix a point a = (a

1

; a

2

; a

3

) 2 U(F

q

). By adjusting the basis f�

1

; �

2

; �

3

g of F

q

6
if

neessary, we an assume without loss of generality that the tangent plane at a to

the surfae U is the plane u

1

= a

1

. If (v

1

; v

2

) 2 F

q

� F

q

, then the intersetion of

U with the line a + t(1; v

1

; v

2

) onsists of two points, namely a and a point of the

form a+

1

f(v

1

;v

2

)

(1; v

1

; v

2

) where f(v

1

; v

2

) 2 F

q

[v

1

; v

2

℄ is an expliit polynomial that

we omputed in Mathematia. The map that takes (v

1

; v

2

) to this latter point is an

isomorphism

g : A

2

� V (f)

�

�! U � fag;

where V (f) denotes the subvariety of A

2

de�ned by f(v

1

; v

2

) = 0. Thus  

0

Æ g

de�nes an isomorphism

 : A

2

� V (f)

�

�! T

6

� f1;  

0

(a)g:

For the inverse isomorphism, suppose that � = �

1

+ �

2

x 2 T

6

(F

q

) � f1;  

0

(a)g

with �

1

; �

2

2 F

q

3
. One heks easily that �

2

6= 0, and if  = (1 + �

1

)=�

2

then

=�() = �. Write (1 + �

1

)=�

2

= u

1

�

1

+ u

2

�

2

+ u

3

�

3

with u

i

2 F

q

, and de�ne

�(�) =

�

u

2

� a

2

u

1

� a

1

;

u

3

� a

3

u

1

� a

1

�

:

It follows from the disussion above that � : T

6

(F

q

)� f1;  

0

(a)g

�

�! A

2

� V (f) is

the inverse of the isomorphism  . We obtain the following.

Theorem 10. The above maps � and  indue inverse birational maps between T

6

and A

2

.

To implement the CEILIDH system, one must hoose a �nite �eld F

q

and ompute

the rational maps � and  expliitly. We do this in two families of examples. Note

that in eah family the oeÆients of the rational maps � and  are independent of

q. When (n; q) = 1, write �

n

for a primitive n-th root of unity.

Example 11. Fix q � 2 or 5 (mod 9). Let x = �

3

and y = �

9

+ �

�1

9

. Then

F

q

6 = F

q

(�

9

), F

q

2 = F

q

(x), and F

q

3 = F

q

(y). The basis we take for F

q

3 is f1; y; y

2

�2g,
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and we take a = (0; 0; 0). Then  

0

(a) = �

2

3

, and a alulation gives f(v

1

; v

2

) =

1� v

2

1

� v

2

2

+ v

1

v

2

. Thus

 (v

1

; v

2

) =

1 + v

1

y + v

2

(y

2

� 2) + f(v

1

; v

2

)x

1 + v

1

y + v

2

(y

2

� 2) + f(v

1

; v

2

)x

2

:

For � = �

1

+ �

2

x 2 T

6

(F

q

)� f1; �

2

3

g, we have

�(�) = (u

2

=u

1

; u

3

=u

1

) where (1 + �

1

)=�

2

= u

1

+ u

2

y + u

3

(y

2

� 2):

Example 12. Fix q � 3 or 5 (mod 7). Let x =

p

�7 and y = �

7

+ �

�1

7

. Then

F

q

6
= F

q

(�

7

), F

q

2
= F

q

(x), and F

q

3
= F

q

(y). The basis we take for F

q

3
is f1; y; y

2

�1g,

and we take a = (1; 0; 2). A alulation gives f(v

1

; v

2

) = (2v

2

1

+ v

2

2

� v

1

v

2

+ 2v

1

�

4v

2

� 3)=14. Thus

 (v

1

; v

2

) =

 + f(v

1

; v

2

)x

 � f(v

1

; v

2

)x

where  = f(v

1

; v

2

) + 1 + v

1

y + (2f(v

1

; v

2

) + v

2

)(y

2

� 1). If � = �

1

+ �

2

x 2

T

6

(F

q

)� f1;  

0

(a)g, then

�(�) =

�

u

2

u

1

� 1

;

u

3

� 2

u

1

� 1

�

where (1 + �

1

)=�

2

= u

1

+ u

2

y + u

3

(y

2

� 1):

5.2. Rational parametrization of T

2

. We give an expliit birational isomorphism

between T

2

and P

1

. For simpliity we assume that q is not a power of 2, and we write

F

q

2
= F

q

(

p

d) for some non-square d 2 F

�

q

. Let � be the non-trivial automorphism

of F

q

2 =F

q

, so �(

p

d) = �

p

d.

De�ne a map  : A

1

(F

q

)! T

2

(F

q

) by

 (a) =

a+

p

d

a�

p

d

=

a

2

+ d

a

2

� d

+

2a

a

2

� d

p

d:

Conversely, suppose � = �

1

+ �

2

p

d 2 T

2

(F

q

), with � 6= �1 (so �

2

6= 0). Then

� =

1 + �

1 + �(�)

=  

�

1 + �

1

�

2

�

:

Thus if we let �(�) = (1 + �

1

)=�

2

, then � and  de�ne inverse isomorphisms

T

2

� f�1g

�

++

A

1

� f0g

 

kk

:

In fat, these maps extend naturally to give an isomorphism T

2

(F

q

)

�

�! F

q

[ f1g

by sending 1 to 1 and �1 to 0. A simple alulation shows that if a; b 2 F

q

and

a 6= �b, then

 (a) (b) =  

�

ab+ d

a+ b

�

: (5)

Therefore instead of doing ryptography in the subgroup T

2

of F

q

2 , we an do all

operations (i.e., multipliations and exponentiations in T

2

) diretly in F

q

itself, where

now multipliation in T

2

has been translated into the map (a; b) 7!

ab+d

a+b

from F

q

�F

q

to F

q

.
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6. Torus-based ryptosystems

Next we introdue publi key ryptosystems based on a torus T

n

with a ratio-

nal parametrization. The ase n = 6 is the CEILIDH system. By Lemma 7(iii),

T

n

(F

q

) has the same disrete log seurity as F

�

q

n

. However, thanks to the ompat

representation that allows us to represent an element of T

n

(F

q

) by '(n) elements of

F

q

, the size of any data represented by a group element is dereased by a fator of

'(n)=n ompared to lassial ryptosystems using F

�

q

n

. This give an improvement

of a fator of 3 (resp., 2) using CEILIDH (resp., T

2

).

Any disrete log based ryptosystem for a general group an be done using a

torus T

n

with a rational parametrization. Below we desribe torus-based versions of

DiÆe-Hellman key exhange, ElGamal enryption, and ElGamal signatures. Other

examples where this an be done in a straightforward way inlude DSA and Nyberg-

Rueppel signatures (see also x5 of [7℄).

Note that it is easy to turn any torus-based ryptosystem into an RSA-like system

whose seurity is based on the diÆulty of fatoring, analogous to the LUC system

of [12℄. Here, one views the torus T

n

over a ring Z=NZ. However, as shown in [1℄,

suh RSA-based systems do not seem to have signi�ant advantages over RSA.

Parameter seletion: Choose a prime power q and an integer n suh that the

torus T

n

over F

q

has an expliit rational parametrization, n log(q) � 1024 (to obtain

1024 bit seurity), and �

n

(q) is divisible by a prime ` that has at least 160 bits.

Let m = '(n), and �x a birational map � : T

n

(F

q

)! F

m

q

and its inverse  . Choose

� 2 T

n

of order ` (taking an arbitrary element of F

�

q

n

and raising it to the power

(q

n

�1)=` will usually work), and let g = �(�) 2 F

m

q

. Note that n is a small number

(2, 6, . . . ).

For the protools below, the publi data is n, q, �,  , `, and either g or � =  (g).

Key agreement sheme (torus-based DiÆe-Hellman):

1. Alie hooses a random a (mod �

n

(q)). She omputes P

A

:= �( (g)

a

) 2

F

m

q

and sends it to Bob.

2. Bob hooses a random b (mod �

n

(q)). He omputes P

B

:= �( (g)

b

) 2 F

m

q

and sends it to Alie.

3. Alie omputes �( (P

B

)

a

) 2 F

m

q

.

4. Bob omputes �( (P

A

)

b

) 2 F

m

q

.

Sine  Æ � is the identity, we have �( (P

B

)

a

) = �( (g)

ab

) = �( (P

A

)

b

), and this

is Alie's and Bob's shared seret.

Enryption sheme (torus-based ElGamal enryption):

(i) Key Generation: Alie hooses a random a (mod �

n

(q)) as her private

key. Her publi key is P

A

:= �( (g)

a

) 2 F

m

q

.

(ii) Enryption: Bob represents the message M as an element of F

m

q

, selets a

random integer k in the range 1 � k � `� 1, omputes  = �( (g)

k

) 2 F

m

q

and Æ = �( (M) (P

A

)

k

) 2 F

m

q

, and sends the iphertext (; Æ) to Alie.

(iii) Deryption: Alie omputes M = �( (Æ) ()

�a

) 2 F

m

q

.
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The torus-based enryption protool is the generalized ElGamal protool (see

p. 297 of [8℄) applied to T

n

. Similarly, the torus-based signature sheme is the

generalized ElGamal signature sheme (see p. 458 of [8℄) for the group T

n

, where as

above the maps � and  are used to go bak and forth between the group law on

T

n

and the ompat representation in F

m

q

.

Note that the shared key sizes for key agreement, the publi key and iphertext

sizes for enryption, and the publi key sizes for the signature shemes are all '(n)=n

as long of those for the orresponding lassial shemes, for the same seurity. Fur-

ther, torus-based signatures have '(n) log(q) + log(`) bits, while the orresponding

lassial ElGamal signature sheme with the same seurity using a subgroup of order

` has n log(q) + log(`) bit signatures.

The CEILIDH key exhange, enryption, and signature shemes are the above

protools with n = 6 and with � and  as in x5.1. Note that �

6

(q) = q

2

� q + 1,

m = 2, and q and ` an be hosen as in XTR.

The T

2

key exhange, enryption, and signature shemes are the above protools

with n = 2 and with � and  as in x5.2. However, we obtain an extra savings in the

T

2

ase, sine there is no need to go bak and forth between T

2

and F

q

using the

funtions � and  . Using (5), all the group omputations an be done diretly and

simply in F

q

, rather than in the group T

2

(F

q

).

The T

n

ryptosystem uses the above protools, whenever we have an n for whih

the torus T

n

has an expliit and eÆiently omputable rational parametrization �

and inverse map  . Conjeture 9 states that for every n, the torus T

n

is rational.

This is most interesting in the ase n = 30 = 2 � 3 � 5, where n='(n) = 3

3

4

, but might

also be of interest when n = 210 = 2 � 3 � 5 � 7, where n='(n) = 4

3

8

. An expliit

rational parametrization of the 8-dimensional torus T

30

(analogous to the maps �

and  of the CEILIDH and T

2

systems) would allow us to represent elements of

T

30

(F

q

) by 8 elements of F

q

.

7. Understanding LUC, XTR, and \beyond" in terms of tori

The LUC systems, the ubi �eld system in [4℄, and XTR have the disrete log

seurity of F

p

2
, F

p

3
, and F

p

6
, respetively, while representing elements in F

p

, F

2

p

,

and F

p

2 , respetively. However, unlike the above torus-based systems, they do not

make full use of the �eld multipliation. Here, we give a oneptual framework that

explains why. We interpret these shemes in terms of varieties that are quotients of

tori, and ompare these shemes to the torus-based shemes of x3.

Consider two ases: n = 2 (the LUC ase) and n = 6 (the XTR ase). (It is

straightforward to do the ubi ase of [4℄ similarly.) Let F be F

q

in the LUC ase

and F

q

2
in the XTR ase. Let t = [F

q

n

: F ℄, so t = 2 for LUC and t = 3 for XTR.

In LUC and XTR, instead of g 2 G

q;n

one onsiders the trae

Tr(g) := Tr

F

q

n
=F

(g) 2 F;

where the trae is the sum of the onjugates. One an show that for g 2 G

q;n

,

the trae Tr(g) determines the entire harateristi polynomial of g over F . In

other words, knowing the trae of g is equivalent to knowing its unordered set of
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onjugates (but not the onjugates themselves). Let S

g

= fg

�

: � 2 Gal(F

q

n

=F )g,

the set of Galois onjugates of g.

Given a set S = fs

1

; : : : ; s

t

g � F

q

n

, let S

(j)

= fs

j

1

; : : : ; s

j

t

g. If S = S

g

, then

S

(j)

= S

g

j
. In plae of exponentiation (g 7! g

j

), the XTR and LUC systems

ompute Tr(g

j

) from Tr(g). In the above interpretation, they ompute S

g

j
from

S

g

, without needing to distinguish between the elements of S

g

.

On the other hand, given sets of onjugates fg

1

; : : : ; g

t

g and fh

1

; : : : ; h

t

g, it is not

possible (without additional information) to multiply them to produe a new set of

onjugates, beause we do not know if we are looking for S

g

1

h

1

, or S

g

1

h

2

, for example,

whih will be di�erent. Therefore, XTR and LUC do not have straightforward

multipliation algorithms.

However, XTR inludes a partial multipliation algorithm (see Algorithm 2.4.8 of

[6℄). Given Tr(g), Tr(g

j�1

), Tr(g

j

), Tr(g

j+1

), and a and b, the algorithm outputs

Tr(g

a+bj

). Thus for an XTR-based system, any transmission of data that needs to

be multiplied requires sending three times as muh data, e�etively negating the

improvement of 3 = 6='(6) that omes from XTR's ompat representation. An

analogous situation holds true for the signature sheme LUCELG DS in [13℄.

The CEILIDH system, sine its operations take plae in the group G

q;6

, an do

both multipliation and exponentiation, while taking full advantage of the ompat

representation for transmitting data. In partiular, XTR-ElGamal enryption is key

exhange followed by symmetri enryption with the shared key, while CEILIDH has

full-edged ElGamal enryption and signature shemes.

In the torus-based systems above, the information being exhanged orresponds

to an element of a torus T

n

. Further, the omputations that are performed are

multipliations in this group. We will see below that for XTR, the information

being exhanged orresponds to an element of the quotient of T

6

by a ertain ation

of the symmetri group on three letters, S

3

. Similarly for LUC, the elements being

exhanged are in T

2

=S

2

. The set of equivalene lasses T

6

=S

3

is not a group, beause

multipliation in T

6

does not preserve S

3

-orbits. This explains why XTR does not

have a straightforward way to multiply. However, exponentiation in T

6

does preserve

S

3

-orbits, and it indues a well-de�ned exponentiation in T

6

=S

3

, and therefore in

the set of XTR traes (the set XTR(q) de�ned below).

What XTR takes advantage of is the fat that the quotient variety T

6

=S

3

is ratio-

nal, and the trae map to the quadrati sub�eld gives an expliit rational parame-

trization. This rational parametrization embeds T

6

=S

3

in A

2

, as shown in Theorem

13 below, and therefore gives a ompat representation of T

6

=S

3

.

Let k = F

q

, L = F

q

6
, and F = F

q

2
. If G is a group and V is a variety, then G

ats on �

2G

V by permuting the fators. We have

Res

L=k

G

m

�

�!

L

2Gal(L=k)

G

m

�

�!

�

L

2Gal(F=k)

G

m

�

3

(6)

where the �rst isomorphism is de�ned over L and preserves the ation of the Ga-

lois group Gal(L=k) on both sides. The symmetri group S

3

ats naturally on

(�

2Gal(F=k)

G

m

)

3

. Pulling bak this ation via the above omposition de�nes an

ation of S

3

on Res

L=k

G

m

that preserves the torus T

6

� Res

L=k

G

m

. The quotient
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map T

6

! T

6

=S

3

indues a (non-surjetive) map on k-points T

6

(k) ! (T

6

=S

3

)(k).

Let

XTR(q) = fTr

L=F

(�) : � 2 T

6

(k)g � F;

the set of traes used in XTR.

Theorem 13. The set XTR(q) an be naturally identi�ed with the image of T

6

(k)

in (T

6

=S

3

)(k). More preisely, there is a birational embedding

T

6

=S

3

,! Res

F=k

A

1

�

=

A

2

suh that XTR(q) is the image of the omposition

T

6

(k) �! (T

6

=S

3

)(k) ,! (Res

F=k

A

1

)(k)

�

=

F:

We prove Theorem 13 in Appendix B.1.

Similarly for LUC, the trae map indues a birational embedding T

2

=S

2

,! A

1

,

the variety T

2

=S

2

is not a group, and

LUC(q) = fTr

F

q

2

=F

q

(�) : � 2 T

2

(k)g � F

q

is the image of T

2

(F

q

) under the trae map T

2

! T

2

=S

2

,! A

1

.
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Appendix A. Proof of Lemma 7

The group F

�

q

n

is yli of order q

n

� 1, and Gal(F

q

n

=F

q

) is generated by the

Frobenius automorphism whih sends x 2 F

�

q

n

to x

q

. Hene if t divides n, then

N

F

q

n
=F

q

t

(x) = x

(q

n

�1)=(q

t

�1)

. Thus by (4),

T

n

(F

q

)

�

=

fx 2 F

�

q

n

: x



= 1g (7)

where  = gdf(q

n

� 1)=(q

t

� 1) : t j n and t 6= ng. Sine q

t

� 1 =

Q

jjt

�

j

(q), we

have that �

n

(q) divides . By Lemma 14 below, there are polynomials a

t

(u) 2 Z[u℄

suh that

X

tjn;t 6=n

a

t

(u)

u

n

� 1

u

t

� 1

= �

n

(u);

and so  divides �

n

(q) as well. Thus  = �

n

(q), so T

n

(F

q

)

�

=

G

q;n

by (7) and the

de�nition of G

q;n

. Part (ii) of Lemma 7 follows from (i). Part (iii) now follows from

Lemma 1 of [2℄.

Lemma 14. There are polynomials A

`;n

(u) 2 Z[u℄ suh that

X

primes ` j n

A

`;n

(u)

u

n

� 1

u

n=`

� 1

= �

n

(u):

Proof. Apply Lemma 22 of [10℄ indutively, doing indution on the number of prime

divisors of n. �

Appendix B. Understanding LUC, XTR, and \beyond" in terms of tori

B.1. Proof of Theorem 13. Let k = F

q

, L = F

q

6
, and F = F

q

2
. We have a

ommutative diagram (see (6))

T

6

�

�

//

Res

L=k

G

m

�

�

//

Res

L=k

A

1

Tr

L=F

��

�

//

�

L

2Gal(F=k)

A

1

�

3

��

Res

F=k

A

1

�

//

L

2Gal(F=k)

A

1

(8)

where the top and bottom isomorphisms are de�ned over L and F , respetively, and

the right vertial map is the \trae" map (�

1

; �

2

; �

3

) 7! �

1

+ �

2

+ �

3

.

The morphism Tr

L=F

: Res

L=k

A

1

! Res

F=k

A

1

of (8) fators through the quotient

(Res

L=k

A

1

)=S

3

, so by restrition it indues a morphism Tr : T

6

=S

3

! Res

F=k

A

1

.
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By de�nition XTR(q) is the image of the omposition T

6

(k) ! (T

6

=S

3

)(k) !

(Res

F=k

A

1

)(k)

�

=

F , and T

6

and Res

F=k

A

1

are both 2-dimensional varieties, so to

prove the theorem we need only show that Tr : T

6

=S

3

! Res

F=k

A

1

is injetive. Sup-

pose g 2 T

6

(

�

k). Using (6) we an view g = (g

1

; g

2

; g

3

) 2 (�

2Gal(F=k)

�

k

�

)

3

. Let � be

the non-trivial element of Gal(F=k). Sine g 2 T

6

(

�

k), we have g

1

g

2

g

3

= N

L=F

(g) = 1

and g

i

g

�

i

= 1 for i = 1; 2; 3 by the de�nition of T

6

. Hene we also have

g

1

g

2

+ g

1

g

3

+ g

2

g

3

= 1=g

3

+ 1=g

2

+ 1=g

1

= g

�

3

+ g

�

2

+ g

�

1

= Tr(g)

�

:

Thus the trae of g determines all the symmetri funtions of fg

1

; g

2

; g

3

g. Hene

if h = (h

1

; h

2

; h

3

) 2 T

6

(

�

k) and Tr(h) = Tr(g), then fh

1

; h

2

; h

3

g = fg

1

; g

2

; g

3

g, i.e.,

h and g are in the same orbit under the ation of S

3

. Thus Tr is injetive. This

proves Theorem 13.

B.2. Beyond XTR. As in [2℄ and x2 above, let n = de. We will assume that n is

square-free. Further, let k = F

q

, L = F

q

n

, and F = F

q

d

.

As in x7, we have

T

n

� Res

L=k

G

m

�

�!

L

2Gal(L=k)

G

m

�

�!

�

L

2Gal(F

`

=k)

G

m

�

`

�

�!

�

L

2Gal(F=k)

G

m

�

e

where the �rst isomorphism is de�ned over L and preserves the ation of the Galois

group Gal(L=k) on both sides, ` is any prime divisor of n, and F

`

= F

q

n=`

. The

symmetri group S

e

ats naturally on (�

2Gal(F=k)

G

m

)

e

. Pulling bak this ation

via the above omposition de�nes an ation of S

e

on Res

L=k

G

m

. Note that this

ation does not neessarily preserve the torus T

n

. Similarly, S

`

ats naturally on

(�

2Gal(F

`

=k)

G

m

)

`

. Sine N

L=F

`

(g) = 1 for every g 2 T

n

, it follows that T

n

is in fat

�xed under the indued ation of S

`

.

De�nition 15. Let B

(d;e)

denote the image of T

n

in (Res

L=k

G

m

)=S

e

.

If the variety B

(d;e)

is rational, then one an do ryptography. For example, this

was done for the ases (d; e) = (6; 1) and (2; 1) in this paper (CEILIDH and T

2

,

respetively), for (1; 2) in the LUC papers, and for (2; 3) in XTR. Note that (1; 1)

gives the usual DiÆe-Hellman. Our onjetural T

n

ryptosystems are the ases

(n; 1), and [2℄ disusses the ases (d; e) = (1; 30) and (2; 15). The variety B

(d;e)

is

not generally a group. However, when e = 1, then B

(d;e)

= T

n

whih is a group.

The variety B

(d;e)

is birationally isomorphi to the quotient of T

n

by the ation

of

Q

primes ` j e

S

`

.

Thus, the onjetures in [2℄ an be interpreted in this language as asking about

the rationality of the varieties T

30

=(S

3

� S

5

) and T

30

=(S

2

� S

3

� S

5

), and asking in

partiular if the morphisms from B

(1;30)

(resp., B

(2;15)

) to A

8

indued by the �rst

8=d (for d = 1 or 2, respetively) symmetri funtions for the �eld extension L=F

de�ne rational parametrizations. We saw in x2 that these symmetri funtions do

not generate the oordinate ring of B

(1;30)

(resp., B

(2;15)

).

The de�nitions in x3 an be easily extended to apply to an arbitrary yli ex-

tension L=k, not neessarily of �nite �elds. In partiular, for k = Q and L a yli

degree 30 extension of Q , onsider the above morphisms from harateristi zero
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versions of B

(1;30)

and B

(2;15)

to A

8

. We show in [11℄ that these maps are not bira-

tional, and (by reduing mod p) that for all but �nitely many primes p, Conjeture

(p; 1; 30)-BPV

0

(resp., Conjeture (p; 2; 15)-BPV

0

) is false (see Remark 4 above).
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