
Computing Partial Walsh Transform from the Algebrai
 Normal Form of

a Boolean Fun
tion

Kishan Chand Gupta and Palash Sarkar

Cryptology Resear
h Group

Applied Statisti
s Unit

Indian Statisti
al Institute

203, B.T. Road

Kolkata 700108, India

e-mail:fkishan t,palashg�isi
al.a
.in

Abstra
t

We study the relationship between the Walsh transform and the algebrai
 normal form of a Boolean

fun
tion. In the �rst part of the paper, we
arry out a
ombinatorial analysis to obtain a formula for

the Walsh transform at a
ertain point in terms of parameters derived from the algebrai
 normal form.

The se
ond part of the paper is devoted to simplify this formula and develop an algorithm to evaluate

it. Our algorithm
an be applied in situations where it is pra
ti
ally impossible to use the fast Walsh

transform algorithm. Experimental results show that under
ertain
onditions it is possible to exe
ute

our algorithm to evaluate the Walsh transform (at a small set of points) of fun
tions on a few s
ores of

variables having a few hundred terms in the algebrai
 normal form.

Keywords : Boolean fun
tion, Algebrai
 Normal Form, Walsh Transform.

1 Introdu
tion

Boolean fun
tions are used for a wide variety of appli
ations in engineering and
omputer s
ien
e. An m-

variable Boolean fun
tion g(x) is a map g : f0; 1g

m

! f0; 1g. One of the most useful tools for the study of

Boolean fun
tions is the Walsh transform, whi
h is essentially the Fourier transform applied to the fun
tion

(�1)

g(x)

. The Walsh transform measures the
orrelations between an m-variable Boolean fun
tion and all

the m-variable linear fun
tions. These
orrelations uniquely determine the fun
tion and hen
e it is possible

to work entirely with the Walsh transform. In fa
t, many properties of Boolean fun
tions are most easily

stated in terms of Walsh transform.

For pra
ti
al appli
ations it is often useful to be able to
ompute the Walsh transform of a Boolean

fun
tion. It turns out that there is an ex
ellent algorithm to do so, namely, the fast Walsh transform [1℄. For

an m-variable fun
tion the fast Walsh transform takes time O(m2

m

) and hen
e
an be used for fun
tions

of around 30 variables. The fast Walsh transform is
omputed from the des
ription of the fun
tion itself.

More pre
isely, the fast Walsh transform takes as input the bit string f(�

0

) : : : f(�

2

m

�1

) of length 2

m

,

where for 0 � i � 2

m

� 1, �

i

is the m-bit binary representation of i.

There is another way to uniquely represent a Boolean fun
tion, namely by its algebrai
 normal form,

whi
h expresses a Boolean fun
tion as a multivariate polynomial over F

2

, the �nite �eld of two elements.

The number of nonzero terms in the polynomial
an be 2

m

in the worst
ase. However, many interesting

1

lasses of Boolean fun
tions do have
ompa
t algebrai
 normal form representation. (For example, an

m = 2k-variable bent fun
tion
an have as few as k many terms in their ANF.)

In this paper, we study the relationship between the algebrai
 normal form and the Walsh transform of

a Boolean fun
tion. We obtain a formula for the Walsh transform of a Boolean fun
tion at a
ertain point

v 2 F

m

2

in terms of
ertain parameters derived from the algebrai
 normal form. We present an eÆ
ient

algorithm to evaluate the formula and hen
e
ompute the Walsh transform at v.

Our algorithm
an be used to
ompute the Walsh transform in
ases where it is not possible to use the

fast Walsh transform. For example, it is possible in
ertain
ases to run our algorithm for 50 to 100 variable

fun
tions having a few hundred terms in their algebrai
 normal form. For su
h fun
tions it is possible to

ompute the Walsh transform for a small set of points v. Note that it is pra
ti
ally impossible to
ompute

the Walsh transform of anm-variable fun
tion at all points in F

m

2

ifm is around 50 or more. Our algorithm

provides a method to probe the spe
tral domain of large variable fun
tions. This will provide some useful

information about the fun
tion su
h as the size of its support and an estimate of its nonlinearity. Note

that for small number of variables, the fast Walsh transform is faster than our algorithm. Hen
e we do not

provide a substitute for the fast Walsh transform; rather we provide a tool to analyse a Boolean fun
tion

in situations where the fast Walsh transform
annot be used.

Carlet and Guillot [3℄ study an alternative representation of Boolean fun
tions { the numeri
al normal

form (NNF). In Theorem 5 of [3℄, they obtain a formula for
omputing the NNF from the ANF rep-

resentation and in Equation (6) of [3℄, they obtain a formula for
omputing the Walsh transform from

the NNF representation. Using these two results, it is possible to obtain a formula for
omputing the

Walsh transform from the ANF representation. In fa
t, in prin
iple this formula
an be used to derive

the expli
it relationship between the Walsh transform and ANF that we obtain in this paper. However,

arrying out this task appears to be a non-trivial exer
ise. More importantly, we do more than just obtain

the relationship between the Walsh transform and the ANF. We analyse this relationship and ultimately

obtain an algorithm to
ompute the Walsh transform from the ANF. Obtaining this algorithm is the major

motivation of our paper. We note that our analysis and algorithm is not present in [3℄. (A
tually, the

purpose of [3℄ is to study the NNF and its relationship with the other representations.)

Boolean fun
tions are studied extensively from di�erent perspe
tives {
oding theory [7, 6℄,
ir
uit

omplexity [2, 8℄ and
ryptography [4, 9℄ are some examples. In all these areas, the Walsh transform is the

main tool in the analysis of Boolean fun
tions. However, to the best of our knowledge, the only previously

known algorithm for
omputing the Walsh transform is the fast Walsh transform [1℄. Hopefully the present

work will motivate resear
hers to study the algorithmi
 issues of the Walsh transform more deeply.

2 Preliminaries

Let F

2

= GF (2). An m-variable Boolean fun
tion g(x) is a map g : F

m

2

! F

2

. We
onsider the domain

of an m-variable Boolean fun
tion to be the ve
tor spa
e (F

m

2

;�) over F

2

, where � is used to denote the

addition operator over both F

2

and the ve
tor spa
e F

m

2

. The symbol + is used to denote addition over

integers. The inner produ
t of two ve
tors u; v 2 F

m

2

will be denoted by hu; vi. The weight of an m-bit

ve
tor u is the number of ones in u and will be denoted by wt(u). The support of a Boolean fun
tion g is

denoted by Sup(g) and is de�ned to be Sup(g) = fx : g(x) = 1g. The weight of g is denoted by wt(g) and

is de�ned to be wt(g) = jSup(g)j. The Walsh Transform of a Boolean fun
tion g(x) is an integer valued

fun
tion W

g

: f0; 1g

m

! [�2

m

; 2

m

℄ de�ned by (see [7, page 414℄)

W

g

(u) =

X

w2F

m

2

(�1)

g(w)�hu;wi

: (1)

2

Let H

m

be the 2

m

� 2

m

Hadamard matrix (see [7, page 44℄) whose rows and
olumns are indexed by the

elements of F

m

2

su
h that H

m

(u; v) = (�1)

hu;vi

. Then we
an write

[(�1)

g(0)

; : : : ; (�1)

g(2

m

�1)

℄H

m

= [W

g

(0); : : : ;W

g

(2

m

� 1)℄: (2)

An m-variable Boolean fun
tion g(x

1

; x

2

; � � � ; x

m

)
an be uniquely written as

g(x

1

; x

2

; : : : ; x

m

) =

M

(�

1

;�

2

;���;�

m

)2F

m

2

A

g

(�

1

; �

2

; � � � ; �

m

)x

�

1

1

x

�

2

2

� � � x

�

m

m

(3)

where A

g

(x

1

; x

2

; � � � ; x

m

) is a Boolean fun
tion. This representation is
alled the algebrai
 normal form

(ANF) of g. We will
all the Boolean fun
tion A

g

the ANF of g.

To illustrate di�erent de�nitions, terms and and notations we take two small examples.

Example 1 : g

1

(x

1

; x

2

; x

3

) = x

1

x

2

� x

2

x

3

� x

3

x

1

, and Sup(A

g

1

) = f(1; 1; 0); (0; 1; 1); (1; 0; 1)g.

Example 2 : g

2

(x

1

; x

2

; x

3

) = x

1

x

2

�x

2

x

3

�x

1

�x

2

, and Sup(A

g

2

) = f(1; 1; 0); (0; 1; 1); (1; 0; 0); (0; 1; 0)g.

3 Walsh Transform

In this se
tion, we express the Walsh transform of a Boolean fun
tion in terms of
ertain parameters derived

from its ANF. The approa
h that we take is the following. Equation (2) expresses the relation between

(�1)

g(x)

and W

g

(u). Our �rst task is to obtain a formula for (�1)

g(x)

in terms of the ANF of g(x). Then

using Equation (2) we obtain the desired relationship between the Walsh transform and the ANF.

In obtaining a formula for (�1)

g(x)

in terms of the ANF, we �rst ta
kle the spe
ial
ase when g(x) =

g(x

1

; : : : ; x

m

) = x

1

: : : x

m

. The result of this
ase is used to analyse the general
ase.

3.1 Case g(x

1

;x

2

; � � � ;x

m

) = x

1

x

2

� � �x

m

For x = (x

1

; � � � ; x

m

) 2 f0; 1g

m

, de�ne

N

(m)

r

(x)

4

= N

(m)

r

(x

1

; � � � ; x

m

)

4

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�����x

i

r

:

Lemma 3.1 Let x = (x

1

; : : : ; x

m

) 2 F

m

2

be su
h that wt(x) = k. Then

N

(m)

r

(x) =

r

X

j=0

(�1)

j

�

k

j

��

m�k

r�j

�

:

Consequently, N

(m)

r

(x) is the Krawt
houk polynomial p

r

(k;m) [7, page 130℄.

Proof : In the ve
tor (x

1

; � � � ; x

m

), k of the x

i

's are 1 and (m � k) of the x

i

's are 0. Hen
e the number

of terms of the type (x

i

1

� � � � � x

i

r

) with j number of 1's (0 � j � r) and (r � j) number of 0's

is equal to

�

k

j

��

m�k

r�j

�

: Sin
e j of the x

i

's are ones, we have, (�1)

x

i

1

�����x

i

r

= (�1)

j

. Hen
e we get

N

(m)

r

(x

1

; � � � ; x

m

) =

P

r

j=0

(�1)

j

�

k

j

��

m�k

r�j

�

whi
h is the Krawt
houk polynomial p

r

(k;m) [7, page 130℄.

Corollary 3.1 1.

P

m

r=0

(�1)

r�1

N

(m)

r

(x

1

; � � � ; x

m

) = 0 for any ve
tor x = (x

1

; � � � ; x

m

) 6= (1; � � � ; 1).

2.

P

m

r=0

(�1)

r�1

N

(m)

r

(1; � � � ; 1) = �2

m

.

3

Proof : From [7, Equation (16), page 130℄ we have

P

m

r=0

(�1)

r�1

p

r

(k;m) = 0 for 0 � k < m and

P

m

r=0

(�1)

r�1

p

r

(k;m) = �2

m

for k = m. Hen
e using Lemma 3.1 the result follows.

Theorem 3.1 Let g(x) = x

1

x

2

� � � x

m

: Then

(�1)

g(x)

=

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(x)

!

:

Proof : Case 1: x 2 f0; 1g

m

su
h that x = (1; � � � ; 1). Then L.H.S = (�1)

1

= �1. By Corollary 3.1(2) we

have

P

m

r=0

(�1)

r�1

N

(m)

r

(x) =

P

m

r=0

(�1)

r�1

N

(m)

r

(1; � � � ; 1) = �2

m

. Hen
e R.H.S =

1

2

m�1

(2

m�1

�2

m

) = �1.

Case 2: x 2 f0; 1g

m

su
h that x 6= (1; � � � ; 1). Then L.H.S = (�1)

0

= 1. By Corollary 3.1(1) we have

P

m

r=0

(�1)

r�1

N

(m)

r

(x) = 0. Hen
e R.H.S =

1

2

m�1

(2

m�1

� 0) = 1.

3.2 Arbitrary g

Let g be a Boolean fun
tion and A

g

be its ANF. For �; x 2 F

m

2

and r 2 [m℄ = f1; : : : ;mg de�ne

N

(m)

r

(�; x)

4

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�

i

1

�����x

i

r

�

i

r

:

For � = (�

1

; �

2

; � � � ; �

m

) 2 F

m

2

and x = (x

1

; � � � ; x

m

), de�ne x

�

4

= x

�

1

1

x

�

2

2

� � � x

�

m

m

: Note that if �

i

= 1, then

x

�

i

i

= x

i

else x

�

i

i

= 1.

Proposition 3.1

(�1)

x

�

=

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

Proof : Let 1 = (1; : : : ; 1) and note that N

(m)

r

(1; x) = N

(m)

r

(x). We de�ne y = (y

1

; � � � ; y

m

) as follows.

For 1 � i � m, if �

i

= 1 then y

i

= x

i

else y

i

= 1. Now it is easy to
he
k the following

1. x

�

i

i

= y

i

and hen
e (�1)

x

�

= (�1)

y

.

2. N

(m)

r

(�; x) = N

(m)

r

(y).

From this the result follows.

The next result expresses (�1)

g(x)

in terms of A

g

.

Proposition 3.2

(�1)

g(x)

=

�

1

2

m�1

�

wt(A

g

)

Y

�:A

g

(�)=1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

Proof :

(�1)

g(x)

= (�1)

L

�2F

m

2

A

g

(�)x

�

=

Y

�2F

m

2

(�1)

A

g

(�)x

�

=

Y

�2F

m

2

�

(�1)

x

�

�

A

g

(�)

=

Y

�:A

g

(�)=1

(�1)

x

�

4

=

Y

�:A

g

(�)=1

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

=

�

1

2

m�1

�

wt(A

g

)

Y

�:A

g

(�)=1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

For � = (�

1

; � � � ; �

m

) and u = (u

1

; � � � ; u

m

) we de�ne u � � if u

i

� �

i

for 1 � i � m: In the rest of the

paper we will denote (wt(u) mod 2) by wt

2

(u). In the next two results we present a two step simpli�
ation

of the sum

P

m

r=0

(�1)

r�1

N

(m)

r

(�; x) whi
h o

urs in Proposition 3.2.

Proposition 3.3

N

(m)

r

(�; x) = (�1)

r

X

fu2F

m

2

:u��;wt(u)�rg

�

m�wt(�)

r�wt(u)

�

(�1)

hu;xi�wt

2

(u)

Proof : Note x

i

1

�

i

1

= x

i

1

if �

i

1

= 1 and x

i

1

�

i

1

= 1 if �

i

1

= 0: So x

i

1

�

i

1

= 1� (1� x

i

1

)�

i

1

= 1� (x

i

1

)�

i

1

and hen
e x

i

1

�

i

1

� � � � � x

i

r

�

i

r

= (r mod 2)� h(x

i

1

; � � � ; x

i

r

); (�

i

1

; � � � ; �

i

r

)i: We have

N

(m)

r

(�; x) =

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�

i

1

�����x

i

r

�

i

r

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

(r mod 2)�h(x

i

1

;���;x

i

r

);(�

i

1

;���;�

i

r

)i

:

= (�1)

r

X

1�i

1

<i

2

<���<i

r

�m

(�1)

h(x

i

1

;���;x

i

r

);(�

i

1

;���;�

i

r

)i

:

Given � = (�

1

; : : : ; �

m

) and 1 � i

1

< i

2

< : : : < i

r

� m, de�ne an m-bit ve
tor u in the following manner.

For 1 � j � m, if j 2 fi

1

; : : : ; i

r

g, then u

j

= �

j

else u

j

= 0. We say that fi

1

; : : : ; i

r

g produ
es u from �. If

fi

1

; : : : ; i

r

g produ
es u from �, then it is easy to verify the following relations.

1. h(x

i

1

; � � � ; x

i

r

); (�

i

1

; � � � ; �

i

r

)i = h(x

1

; : : : ; x

m

); (u

1

; : : : ; u

m

)i = h(x

1

; : : : ; x

m

); (u

1

; : : : ; u

m

)i � wt

2

(u);

2. u � � and wt(u) � r.

It is possible that two distin
t sets fi

1

; i

2

; : : : ; i

r

g and fi

0

1

; i

0

2

; : : : ; i

0

r

g produ
e the same u � �. This

will happen if and only if wt(�

i

1

; : : : ; �

i

r

) = wt(�

i

0

1

; : : : ; �

i

0

r

) = wt(�

j

1

; : : : ; �

j

s

); where fj

1

; : : : ; j

s

g =

fi

1

: : : ; i

r

g \ fi

0

1

; : : : ; i

0

r

g. We now
laim that the number of distin
t sets fi

1

; i

2

; : : : ; i

r

g whi
h produ
e the

same u is

�

m�k

r�l

�

, where k = wt(�) and l = wt(u): To see this �x u � � with wt(u) = l � r. Let j

1

; : : : ; j

l

be su
h that u

j

1

= : : : = u

j

l

= 1 and u

j

= 0 for j =2 fj

1

; : : : ; j

l

g. If fi

1

; : : : ; i

r

g produ
es u, we must have

fj

1

; : : : ; j

l

g � fi

1

; : : : ; i

r

g and �

j

= 0 for j 2 S = fi

1

; : : : ; i

r

g n fj

1

; : : : ; j

l

g

Thus the number of sets fi

1

; : : : ; i

r

g whi
h produ
e u is the number of ways we
an
hoose the set S of

r� l elements su
h that �

j

= 0 for j 2 S. Sin
e wt(�) = k, the number of j 2 f1; : : : ;mg su
h that �

j

= 0

is m�k. Sin
e S has r� l elements, the number of possible sets S is

�

m�k

r�l

�

, whi
h proves our
laim. Hen
e

we
an write

N

(m)

r

(�; x) = (�1)

r

X

fu2F

m

2

:u��;wt(u)�rg

m� k

r � l

!

(�1)

hu;xi�wt

2

(u)

This
ompletes the proof.

5

Proposition 3.4

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x) = (�1)�

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

Proof : By Proposition 3.3

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x) = (�1)

2r�1

m

X

r=0

X

fu2F

m

2

:u��;wt(u)�rg

m� wt(�)

r � wt(u)

!

(�1)

hu;xi�wt

2

(u)

= (�1)

X

fu2F

m

2

:u��g

m

X

r=wt(u)

m� wt(�)

r � wt(u)

!

(�1)

hu;xi�wt

2

(u)

= �

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

:

This
ompletes the proof.

Let Sup(A

g

) = f�

(1)

; � � � ; �

(p)

g and k

i

= wt(�

(i)

). De�ne

V (Sup(A

g

))

4

= V (f�

(1)

; � � � ; �

(p)

g)

4

= fu

(i

1

)

� � � � � u

(i

r

)

: u

(i

j

)

� �

(i

j

)

; fi

1

; : : : ; i

r

g � [p℄; 1 � j � rg:

Example 1 (
ontinued) For Boolean fun
tion g

1

(x

1

; x

2

; x

3

) = x

1

x

2

� x

2

x

3

� x

3

x

1

,

Sup(A

g

1

) = f(1; 1; 0); (0; 1; 1); (1; 0; 1)g and k

1

= k

2

= k

3

= 2.

Note that V (Sup(A

g

)) is a subspa
e of (F

m

2

;�). A Boolean fun
tion g(x

1

; � � � ; x

n

) is said to be degenerate

on variable x

i

if g(x

1

; � � � ; x

i�1

; 1; x

i+1

; � � � ; x

n

) = g(x

1

; � � � ; x

i�1

; 0; x

i+1

; � � � ; x

n

). The fun
tion g is said to

be degenerate if it is degenerate on some variable, else it is said to be non-degenerate. It is easy to verify

that V (Sup(A

g

)) = F

m

2

if and only if g is non-degenerate. Suppose v = u

(i

1

)

�� � ��u

(i

r

)

where u

(i

j

)

� �

(i

j

)

then we say that R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g is a representation of v. For v 2 F

m

2

, de�ne

S(v)

4

= set of all representations of v in the ve
tor spa
e V (Sup(A

g

)):

Example 1 (
ontinued) For v = 000, we have S(v) = S(000) = fR

1

; R

2

; R

3

; � � � ; R

15

; R

16

; R

17

g where

R

1

= f((0; 0; 0); (1; 1; 0))g, R

2

= f((0; 0; 0); (0; 1; 1))g, R

3

= f((0; 0; 0); (1; 0; 1))g,

R

4

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1))g, R

5

= f((0; 0; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

6

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (1; 0; 1))g, R

7

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1))g,

R

8

= f((1; 0; 0); (1; 1; 0)); ((1; 0; 0); (1; 0; 1))g, R

9

= f((0; 0; 1); (0; 1; 1)); ((0; 0; 1; 1; 0; 1))g,

R

10

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

11

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

12

= f((1; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1)); ((1; 0; 0); (1; 0; 1))g,

R

13

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 1); (0; 1; 1)); ((0; 0; 1); (1; 0; 1))g,

R

14

= f((1; 1; 0); (1; 1; 0)); ((0; 1; 1); (0; 1; 1)); ((1; 0; 1); (1; 0; 1))g,

R

15

= f((1; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1)); ((1; 0; 0); (1; 0; 1))g,

R

16

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 1); (0; 1; 1)); ((0; 0; 1); (1; 0; 1))g,

R

17

= f((1; 0; 0); (1; 1; 0)); ((0; 0; 1); (0; 1; 1)); ((1; 0; 1); (1; 0; 1))g:

Note:

1. S(v) = � if and only if v =2 V (Sup(A

g

)):

2. If v = (0; � � � ; 0), then S(v) 6= �:

6

Let v 2 F

m

2

and R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g 2 S(v). De�ne

C(R)

4

=

(�1)

r

2

(k

i

1

�1)+���+(k

i

r

�1)

:

C

v

4

= (�1)

wt

2

(v)

P

R2S(v)

C(R):

9

=

;

(4)

Example 1 (
ontinued) C

000

= C(R

1

)+C(R

2

)+C(R

3

)+� � �+C(R

15

)+C(R

16

)+C(R

17

) =

(�1)

1

2

2�1

+

(�1)

1

2

2�1

+

(�1)

1

2

2�1

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

3

2

6�3

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

=

�1

Note that if S(v) = �, then

P

R2S(v)

C(R) = 0 and hen
e, if v =2 V (Sup(A

g

)) then C

v

= 0:

The parameters C

v

for v 2 F

m

2

are derived entirely from the ANF of g. Our next result expresses

(�1)

g(x)

in terms of C

v

.

Theorem 3.2

(�1)

g(x)

= 1 +

X

v2F

m

2

C

v

(�1)

hv;xi

where C

v

is as de�ned by Equation 4.

Proof : As before let Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g where wt(�

(i)

) = k

i

. Using Proposition 3.2 and Propo-

sition 3.4 we
an write.

(�1)

g(x)

=

Y

�:A

g

(�)=1

0

�

1�

1

2

m�1

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

1

A

The �rst term in the expansion of the above expression is
learly 1. For 1 � r � p = wt(A

g

), the general

term is of the form

�

�1

2

m�1

�

r

X

u

(i

1

)

��

(i

1

)

� � �

X

u

(i

r

)

��

(i

r

)

2

(m�k

i

1

)+���+(m�k

i

r

)

(�1)

hu

(i

1

)

�����u

(i

r

)

;xi�wt

2

(u

(i

1

)

�����u

(i

r

)

)

Let v = u

(i

1

)

� � � ��u

(i

r

)

. Then R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g is a representation of v. Therefore the

general term is of the form

X

v2F

m

2

X

R2S(v)

C(R)(�1)

hv;xi�wt

2

(v)

=

X

v2F

m

2

C

v

(�1)

hv;xi

:

This gives us the desired result.

Now we are in a position to state the main result of this se
tion whi
h relates W

g

(v) to C

v

.

Theorem 3.3 If g is an m-variable Boolean fun
tion then

W

g

(v) = 2

m

(C

v

+ Æ

v

) (5)

where Æ

v

= 1 if v = 0 else Æ

v

= 0:

Proof : From Theorem 3.2 we have

(�1)

g(x)

� 1 =

X

v2F

m

2

C

v

(�1)

hv;xi

:

So [(�1)

g(0)

� 1; : : : ; (�1)

g(2

m

�1)

� 1℄ = [C

0

; : : : ; C

2

m

�1

℄H

m

; where H

m

is the (2

m

� 2

m

) Hadamard matrix

(see [7, page 44℄). Post multiplying both sides by H

m

and noting that H

m

H

m

= 2

m

I

2

m

we get

[(�1)

g(0)

; : : : ; (�1)

g(2

m

�1)

℄H

m

� [1; : : : ; 1℄H

m

= 2

m

[C

0

; : : : ; C

2

m

�1

℄:

i.e. [W

g

(0); : : : ;W

g

(2

m

� 1)℄� [2

m

; 0; : : : ; 0℄ = 2

m

[C

0

; : : : ; C

2

m

�1

℄: Hen
e 2

m

C

v

=W

g

(v)� 2

m

Æ

v

7

4 Simplifying C

v

Theorem 3.3 relates W

g

(v) to C

v

. Thus to
ompute W

g

(v) it is suÆ
ient to
ompute C

v

. However, the

de�nition of C

v

given by 4 is in purely algebrai
 terms. We need to obtain a formula for C

v

whi
h
an be

omputed by an algorithm. In this se
tion we perform this task of simplifying C

v

.

We start by de�ning
ertain terms. As in Se
tion 3, we assume Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g. Given ; 6=

S � [p℄ = f1; 2; � � � ; pg and v 2 F

m

2

, we de�ne �(S; v) as follows. Let v = (v

1

; � � � ; v

m

) and S = fi

1

; � � � ; i

r

g.

Write �

(i

j

)

= (�

j;1

; � � � ; �

j;m

) where �

j;k

2 f0; 1g for 1 � j � r, 1 � k � m. Let �(S; v) be a Boolean

formula whi
h is true if and only if there is a k 2 [m℄; su
h that �

j;k

= 0 for all j 2 [r℄ and v

k

= 1: Let

�(S) =

W

i2S

�

(i)

= �

(i

1

)

_ � � � _ �

(i

r

)

);

�(S) = wt(�(S)):

)

(6)

Here _ represents the bitwise logi
al OR of two binary strings of the same length. De�ne

�(S; v) = 0 if �(S; v) = 1

=

1

2

�(S)�jSj

otherwise:

)

(7)

Remark: If �(S; v) > 0, then the value of �(S; v) is independent of v and depends only on S.

Theorem 4.1

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

r

�(S; v):

Proof : Fix a set S, su
h that, ; 6= S = fi

1

; : : : ; i

r

g � [p℄ and a ve
tor v = (v

1

; : : : ; v

m

) 2 F

m

2

: De�ne

�(S) =

2

r

2

k

i

1

+���+k

i

r

where k

i

j

= wt(�

(i

j

)

). As before, let �

(i

j

)

= (�

j;1

; � � � ; �

j;m

), 1 � j � r and de�ne

�

k

=

P

r

j=1

�

j;k

. For 1 � k � m, de�ne

b

k

= 2

�

k

�1

if �

k

6= 0

= 1 if �

k

= 0; v

k

= 0

= 0 if �

k

= 0; v

k

= 1

9

>

=

>

;

(8)

De�ne n(S; v) = b

1

� � � b

m

.

Claim 1: �(S; v) = n(S; v)�(S)

Proof of Claim 1: There are two
ases to
onsider.

Case �(S; v) = 1 : In this
ase, �(S; v) = 0 by Equation 7. Also �(S; v) = 1 implies that there is a k 2 [m℄

su
h that �

j;k

= 0 for all j 2 [r℄ and v

k

= 1. This implies that �

k

= 0 and v

k

= 1. Hen
e b

k

= 0 and so

n(S; v) = 0. Thus in this
ase we have �(S; v) = n(S; v)�(S).

Case �(S; v) = 0 : In this
ase �(S; v) =

1

2

m

1

�r

by Equation 7, where m

1

= �(S) and r = jSj. Also

b

k

= 2

�

k

�z

k

where z

k

= 0 if �

k

= 0; and z

k

= 1 if �

k

> 0. So

n(S; v) = (2

�

1

�z

1

)(2

�

2

�z

2

) � � � (2

�

m

�z

m

) = 2

(�

1

+���+�

m

)�(z

1

+���+z

m

)

:

Sin
e m

1

= �(S) = wt(�

(i

1

)

_ � � � _ �

(i

r

)

) we have (z

1

+ z

2

+ � � �+ z

m

) = m

1

. Also we have

m

X

k=1

�

k

=

m

X

k=1

r

X

j=1

�

j;k

=

r

X

j=1

m

X

k=1

�

j;k

=

r

X

j=1

k

i

j

:

So we get

n(S; v) = 2

(�

1

+���+�

m

)�m

1

=

2

(k

i

1

+:::+k

i

r

)

2

m

1

:

8

By de�nition �(S) =

2

r

2

k

i

1

+���+k

i

r

and so �(S; v) =

1

2

m

1

�r

= n(S; v)�(S). This
ompletes the proof of

Claim 1.

Claim 2:

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

r

n(S; v)�(S):

Proof of Claim 2: From Equation 4, we have C

v

= (�1)

wt

2

(v)

P

R2S(v)

C(R).

Given S = fi

1

; � � � ; i

r

g, the ve
tors �

(i

1

)

; : : : ; �

(i

r

)

are �xed. Let D(S; v) be the set of all representations

of v of the form f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g. The value of C(R) for any su
h representation R is equal to

2

r

2

k

i

1

+���+k

i

r

and depends only on S. From de�nition, this value is equal to �(S). In evaluating C

v

we have

to sum over all representations of v. The
ontribution of the set S to this sum is
learly jD(S; v)j�(S).

Thus we obtain

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

jD(S; v)j�(S):

From this it is suÆ
ient to show that n(S; v) = jD(S; v)j. There are two
ases to
onsider.

Case b

k

= 0 for some k 2 [m℄ : This implies that v
annot be represented as f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g

for any
hoi
e of u

(i

j

)

� �

(i

j

)

. Hen
e D(S; v) = ; and so we have n(S; v) = 0 = jD(S; v)j.

Case b

k

> 0 for all k 2 [m℄ : In this
ase D(S; v) 6= ;. Suppose R = f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g 2

D(S; v), where for 1 � j � r, u

(i

j

)

= (u

j;1

; : : : ; u

j;m

) 2 F

m

2

and �

(i

j

)

= (�

j;1

; : : : ; �

j;m

) 2 F

m

2

.

De�ne two r�m matri
es M

1

and M

2

in the following manner. The (j; k)th entry of M

1

(resp. M

2

) is

�

j;k

(resp. u

j;k

). The
onditions u

(i

j

)

� �

(i

j

)

is equivalent to M

2

�M

1

, where the matri
es are
ompared

entrywise. Sin
e R is a representation of v, we must have,

u

1;k

� : : :� u

r;k

= v

k

for ea
h k 2 [m℄. (9)

Thus the problem of enumerating the set D(S; v) is equivalent to enumerating matri
es M

2

su
h that

M

2

� M

1

and Equation (9) holds. Let

k

be the number of possible
hoi
es for the kth
olumn of M

2

.

Then jD(S; v)j =

1

: : :

m

and it is suÆ
ient to show that

k

= b

k

for ea
h k 2 [m℄. There are two
ases

to
onsider.

Sub
ase �

k

= 0 : In this
ase v

k

= 0 and b

k

= 1. Sin
e �

k

= 0, the kth
olumn ofM

1

is the all zero
olumn.

Hen
e the only possible
hoi
e for the kth
olumn of M

2

is also the all zero
olumn and so

k

= 1 = b

k

.

Sub
ase �

k

> 0 : In this
ase b

k

= 2

�

k

�1

. We �rst observe that the XOR of the ones in the kth
olumn

of M

2

must be equal to v

k

. Thus we have to
onsider two
ases a

ording as v

k

= 0 or v

k

= 1. First

suppose v

k

= 0. The kth
olumn of M

1

ontains �

k

ones. Sin
e v

k

= 0, we
an
hoose an even number of

these ones to form a
olumn for the matrix M

2

. Thus the number of
hoi
es for the kth
olumn of M

2

is

k

=

�

�

i

0

�

+

�

�

i

2

�

+ � � �+

�

�

i

2b

�

i

2

�

= 2

�

k

�1

= b

k

. A similar argument holds when v

k

= 1.

This
ompletes the proof of Claim 2. Theorem 4.1 is a dire
t
onsequen
e of Claim 1 and Claim 2.

Theorem 4.1 provides a method for
omputing C

v

. However, this requires an algorithm to
onsider

all possible subsets of [p℄ = f1; : : : ; pg. If p is even moderately large, this yields an impra
ti
al algorithm.

Our next task is to show that it is a
tually not required to
onsider all the subsets of [p℄. In this se
tion

we present one su
h spe
ial
ase and in the next se
tion we present a general algorithm to
ompute C

v

without generating all the subsets of [p℄.

Theorem 4.2 Let Sup(A

g

) = f�

1

; � � � ; �

p

g and t > 0 be su
h that for any fi

1

; : : : ; i

t+1

g � f1; : : : ; pg, we

have wt(�

i

1

_ � � � _ �

i

t+1

) = m: Then

C

v

= (�1)

wt

2

(v)

0

�

p

X

j=t+1

(�1)

j

2

m�j

�

p

j

�

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

9

Proof : We have from Theorem 4.1

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

jSj

4 (S; v)

= (�1)

wt

2

(v)

0

�

X

;6=S�[p℄;jSj�t+1

(�1)

jSj

4 (S; v) +

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

:

Under the given
ondition if jSj � t+ 1 then using Equation 7 we have �(S) = m. Hen
e

C

v

= (�1)

wt

2

(v)

0

�

X

;6=S�[p℄;jSj�t+1

(�1)

jSj

1

2

m�r

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

= (�1)

wt

2

(v)

0

�

p

X

j=t+1

(�1)

j

1

2

m�r

�

p

j

�

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

This
ompletes the proof.

Under the
ondition of Theorem 4.2, to evaluate C

v

we only have to
onsider all non empty subsets of

[p℄ of
ardinality at most t. If t is reasonably small, this is mu
h better than
onsidering all non empty

subsets of [p℄. In the next se
tion, we develop this idea to obtain an algorithm to
ompute C

v

.

5 Algorithm

In general we are interested in
omputing the Walsh transform of g at all the points u 2 F

m

2

. However, if m

is relatively large (say around 50), then it will be pra
ti
ally impossible to
ompute the Walsh transform at

all the 2

m

points. In su
h a situation, it will be of interest to
ompute the Walsh transform at a parti
ular

point or for a small set of points. The fast Walsh transform takes time O(m2

m

) and
omputes the Walsh

transform at all the 2

m

points. In fa
t, to the best of our knowledge, there is no known algorithm whi
h

an
ompute the Walsh transform at a parti
ular point in time less than 2

m

.

Our approa
h is to design an algorithm that
onsists of two parts. In the �rst part, the algorithm

does a
ertain amount of prepro
essing and prepares a list. In the se
ond part, the algorithm takes as

input a parti
ular v 2 F

m

2

and
omputes C

v

. (Using Theorem 3.3 this also gives us W

g

(v)). On
e the

prepro
essing is
omplete, the se
ond part
an be run for di�erent v without running the �rst part. This

makes it eÆ
ient to
ompute W

g

(v) for a set of v.

We start by de�ning
ertain parameters. For ; 6= S � [p℄ re
all from equation (6) that �(S) =

W

i2S

�

(i)

and �(S) = wt(�(S)). For j = 0; � � � ;m de�ne

B

j

4

=

X

�(S)=j

(�2)

jSj

and B

4

=

m�1

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v):

Note that if S = fig and �

(i)

= (0; : : : ; 0), then �(S) = 0. The ve
tor (0; : : : ; 0) 2 Sup(A

g

) implies that

the
onstant term in the ANF of g is equal to 1. The values of B

0

; : : : ; B

m

are independent of v and only

the value of B depends on v.

Theorem 5.1 For any v 2 F

m

2

, we have

C

v

= (�1)

wt

2

(v)

�

(�1)

p

� 1�B

0

� � � � �B

m�1

2

m

+B

�

: (10)

10

Proof : De�ne

A

4

=

X

;6=S�[p℄

(�2)

jSj

=

p

X

j=1

(�2)

j

�

p

j

�

= �1 + (�1)

p

:

Then A =

P

m

j=0

B

j

. Consequently, B

m

= A � B

0

� � � � � B

m�1

. To see this note that

P

m

j=0

B

j

=

P

m

j=0

P

�(S)=j

(�2)

jSj

=

P

;6=S�[p℄

(�2)

jSj

= A:

From Theorem 4.1 we have

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

jSj

�(S; v)

= (�1)

wt

2

(v)

2

4

m

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v)

3

5

= (�1)

wt

2

(v)

2

4

X

�(S)=m

(�1)

jSj

�(S; v) +

m�1

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v)

3

5

= (�1)

wt

2

(v)

�

B

m

2

m

+B

�

= (�1)

wt

2

(v)

�

A�B

0

� � � � �B

m�1

2

m

+B

�

This
ompletes the proof.

Our algorithm is based on Equation (10). The intuition behind the algorithm is the following. For

most sets S, the value of �(S) will be equal to m and will be a

ounted for by B

m

. Thus if we
an avoid

omputing B

m

dire
tly, then we will be saving a lot of
omputation. We will
ompute B

0

; : : : ; B

m�1

and

then use Equation (10) to
ompute the value of C

v

. However, the value of B has to be
omputed. We next

des
ribe how this is done.

De�ne

S

1

= fS � [p℄ : �(S) < mg;

S

2

= �(S

1

) = f�(S) : S 2 S

1

g:

)

(11)

Example 2 (
ontinued) From now onward, we
onsider the Boolean fun
tion g

2

(x

1

; x

2

; x

3

) = x

1

x

2

�

x

2

x

3

�x

1

�x

2

, so Sup(A

g

2

) = f(1; 1; 0); (0; 1; 1); (1; 0; 0); (0; 1; 0)g. This Boolean fun
tion is taken di�erent

from the previous one so that jS

1

j and jS

2

j are di�erent. Here p = 4, m = 3. It is easy to see

S

1

= ff1g; f2g; f3g; f4g; f1; 3g; f1; 4g; f2; 4g; f3; 4g; f1; 3; 4gg,

S

2

= f�(f1g) = (1; 1; 0); �(f2g) = (0; 1; 1); �(f3g) = (1; 0; 0); �(f4g) = (0; 1; 0)g and hen
e jS

1

j = 9 and

jS

2

j = 4. Note by de�nition of �, �(f1; 3g) = (1; 1; 0) _ (1; 0; 0) = (1; 1; 0) = �(f1g). And this is the reason

for jS

2

j � jS

1

j.

Write S

2

= fstr

1

; : : : ; str

n

g for some n > 0. For 1 � i � n de�ne val

i

=

P

�(S)=str

i

(�2)

jSj

. In the �rst

part of our algorithm we prepare the list L = ((str

1

; val

1

); : : : ; (str

n

; val

n

)). Note that this part does not

depend on v.

Example 2 (
ontinued) S

2

= fstr

1

= (1; 1; 0); str

2

= (0; 1; 1); str

3

= (1; 0; 0); str

4

= (0; 1; 0)g: Now

val

1

=

P

�(S)=str

1

(�2)

jSj

= (�2)

1

+ (�2)

2

+ (�2)

2

+ (�2)

2

+ (�2)

3

= �2. Similarly val

2

= 2, val

3

= �2

and val

4

= �2

For str; v 2 F

m

2

, de�ne (str; v)

4

= str ^ v where str is bitwise
omplement of str and ^ is the bitwise

logi
al AND. The operation ^ is performed bitwise on str and v. Suppose ; 6= S � [p℄ su
h that �(S) = str

11

and v 2 F

m

2

. Then �(S; v) > 0 if and only if (str; v) = (0; : : : ; 0). Thus

B =

X

 (str

i

;v)=(0;:::;0)

val

i

2

wt(str

i

)

:

Also for j = 0; : : : ;m� 1,

B

j

=

X

wt(str

i

)=j

val

i

:

Hen
e on
e the list L is prepared, it is easy to
ompute B

0

; : : : ; B

m�1

and B. Now we des
ribe a method

for preparing the list L.

Example 2 (
ontinued) We take v = (1; 0; 0), then ((1; 1; 0); (1; 0; 0)) = (0; 0; 1) ^ (1; 0; 0) = (0; 0; 0):

Similarly ((0; 1; 1); (1; 0; 0)) = (1; 0; 0), ((1; 0; 0); (1; 0; 0)) = (0; 0; 0) and ((0; 1; 0); (1; 0; 0)) = (1; 0; 0):

So B =

val

1

2

wt(str

1

)

+

val

3

2

wt(str

3

)

=

2

4

+

�2

2

= �

1

2

Again from de�nition B

0

= 0; B

1

= val

3

+ val

4

= �2 + (�2) =

�4; B

2

= val

1

+ val

2

= 2 + 2 = 4: Now A = �1 + (�1)

p

= 0. So C

v

= (�1)

wt

2

(v)

h

A�B

0

�B

1

�B

2

2

m

+B

i

=

�[

0�0+4�4

2

3

+

1

2

℄ = �

1

2

:

First we des
ribe a rooted dire
ted tree T whose nodes are the subsets of [p℄ = f1; : : : ; pg. The root

node of T is the empty set. The
hildren of a set S are the sets S

1

; : : : ; S

k

, where for 1 � i � k,

S

i

= S [fmax(S) + ig and k = p�max(S). This ensures that if S

0

is a node in the subtree rooted at S,

then S � S

0

.

Our algorithm will traverse all the nodes S of T for whi
h �(S) < m. (Note that T has 2

p

nodes and

if an algorithm is required to traverse all the nodes of T , then the algorithm will be exponential in p.)

From the stru
ture of T we know that if �(S) = m for some node S, then �(S

0

) = m for all nodes S

0

in

the subtree rooted at S. This
ru
ial fa
t makes the traversal parti
ularly eÆ
ient. If during the traversal

we rea
h a node S with �(S) = m, then we need not visit any of the nodes in the subtree rooted at S.

This means that we are e�e
tively pruning the subtree rooted at S from T . The more we en
ounter this

pruning e�e
t, the more eÆ
ient is our algorithm.

While traversing T we prepare the list L in the following manner. Initially L is the empty list. Let

First(L) = fstr : (str; val) 2 Lg: Suppose we have rea
hed a node S with �(S) < m. If �(S) =2 First(L),

then we add (�(S); (�2)

jSj

) to L. On the other hand, if �(S) 2 First(L), then we update val to val+(�2)

jSj

.

Thus the operations on L are sear
h and insert. We implement L using a height balan
ed binary tree

(see [5℄). Hen
e ea
h sear
h/insert operation requires time O(logL). One su
h sear
h or insert operation

is required for ea
h S su
h that �(S) < m. Also the total time spent at any node whi
h is visited is O(m).

Hen
e the total time required by the algorithm is O(mjS

1

j log(jS

2

j)). We next present the algorithm for

omputing C

v

.

Algorithm ComputeCv

Inputs :

1. sup(A

g

), where g is an m-variable Boolean fun
tion.

2. v 2 F

m

2

.

Output : C

v

.

Part 1 : Computation of list L.

Set L equal to the empty list.

Set str equal to the empty string.

Traverse(str).

Assume L = ((str

1

; val

1

); : : : ; (str

n

; val

n

)) at the end of Traverse.

Part 2 : Computation of C

v

.

Set B

0

= � � � = B

m�1

= 0.

12

For i = 1 to n do

if (wt(str

i

) = j)) then B

j

= B

j

+ val

i

.

if ((str

i

; v) = (0; : : : ; 0)) then B = B +

val

i

2

wt(str

i

)

.

End For.

C

v

= (�1)

wt

2

(v)

(

1

2

m

((�1)

p

� 1�

P

m�1

i=0

B

i

) +B).

Return C

v

.

End Algorithm ComputeCv.

The subroutine Traverse() performs a depth �rst sear
h on the tree T des
ribed before. The details of the

algorithm Traverse() are given below. In the algorithm we use the notation �(tstr) for a p-bit string tstr

to mean �(S) where S = fi : tstr

i

= 1g.

Algorithm Traverse(str)

Input : a binary string str of length at most p.

For i = jstrj to p� 1 do

Set j = i� jstrj.

Set tstr = strjj0

j

jj1.

If (�(tstr) < m) then

If (�(tstr) =2 First(L), then

Add (�(tstr); (�2)

wt(tstr)

to L.

Else suppose (�(tstr); val) is present in L.

Set val = val + (�2)

wt(tstr)

.

End If.

If (jtstrj < p), then Traverse(tstr).

End If.

End For.

End Algorithm Traverse

From the above dis
ussion we obtain the following result.

Theorem 5.2 Let v

1

; : : : ; v

t

2 F

m

2

and g be an m-variable Boolean fun
tion. Then fW

g

(v

i

) : 1 � i � tg

an be
omputed in time O(m(jS

1

j log(jS

2

j) + tjS

2

j)).

Proof : Part 1 of Algorithm ComputeCv has to be exe
uted only on
e for all the ve
tors v

1

; : : : ; v

t

. This

takes time O(jS

1

j log(jS

2

j)). Part 2 of Algorithm ComputeCv has to run on
e for ea
h of the ve
tors

v

1

; : : : ; v

t

. Ea
h exe
ution of Part 2 takes time O(jS

2

j). This gives the time
omplexity of the algorithm.

Corre
tness of the algorithm follows from the previous dis
ussion.

Remark : It is important to note that for small t it is possible to have jS

1

j log(jS

2

j)+ tjS

2

j � min(2

p

; 2

m

).

In su
h situations it is possible to eÆ
iently
ompute the Walsh transform of g for a small set of points.

Cardinality of jS

1

j and jS

2

j depends on ANF and in the worst
ase
an be O(2

p

). To keep jS

1

j and jS

2

j

within a
ontrolable limit, the ANF should be a sparse multinomial and support of ANF should
ontain

terms with very high weights (nearly m). In Se
tion 6, we provide some experimental data to support this

intuition.

6 Experimental Results

Similar to Se
tion 3, let Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g. We write �

(i)

= (�

i;1

; � � � ; �

i;m

) where �

i;j

2 f0; 1g for

1 � i � p, 1 � j �m. For 1 � j � m, de�ne �

j

= p�

P

p

i=1

�

i;j

. Let �

max

= max

j2[m℄

(�

j

), �

avg

=

P

m

i=1

�

i

m

and w

avg

=

P

p

i=1

wt(�

(i)

)

p

: We use the notation S

1

and S

2

as de�ned in Equation 11.

13

Tables 1 and 2
onsider the
ases p > m and p < m respe
tively. (Here we note that the
lass of

Boolean fun
tions for whi
h p is less than m is also very ri
h. For example this
lass in
ludes an important

subset of the
lass of bent fun
tions.) The results in these two tables show that �

i

's (spe
ially �

max

) are

ru
ial to the
omplexity of the algorithm. If �

max

is
omparatively larger than the other �

i

's then the size

of jS

1

j is exponential in �

max

. Also note that in general jS

1

j � 2

�

max

.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 250 546 2135470; 1048576 20; 15; 94

100; 250 547 3184044; 2097152 21; 15; 94

100; 250 549 5288601; 4194304 22; 15; 94

100; 250 549 9482897; 8388608 23; 15; 94

100; 250 550 17871500; 16777216 24; 15; 94

100; 250 552 34648698; 33554432 25; 15; 94

100; 250 553 68203122; 67108864 26; 15; 94

Table 1

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 50 2258 365465; 131072 17; 15; 70

100; 50 2392 1340716; 1048576 20; 15; 70

100; 50 2429 8678491; 8388608 23; 15; 70

100; 50 2465 67386792; 67108864 26; 15; 70

Table 2

From the de�nition, the parameters m, p, �

avg

and w

avg

satisfy the following relationship: m � �

avg

=

p� (m� w

avg

). For �xed m and p, �

avg

de
reases as w

avg

in
reases. Similarly, for �xed m and �

avg

, as p

in
reases so does w

avg

. In Table 3, we show the
hange of w

avg

with p for m = 100 and �

avg

= 16.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 50 9976 5313186; 524288 19; 16; 68

100; 100 2934 6482400; 524288 19; 16; 84

100; 200 1414 4609688; 524288 19; 16; 92

100; 400 827 6644436; 524288 19; 16; 96

Table 3

It is possible to run the algorithm in
ases where m is large but �

max

is small. Table 4 provides some data

whi
h illustrates this fa
t.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

200; 200 725 96213; 32768 15; 12; 188

400; 200 2175 207969; 16384 14; 12; 376

800; 200 1938 528605; 65536 16; 12; 752

3200; 100 2290 243188; 16384 14; 12; 2816

3200; 100 2502 4436706; 4194304 22; 12; 2816

Table 4

In the above examples we see that jS

2

j is small. In Table 5 we provide some examples for whi
h jS

2

j is

large but w

avg

is small.

14

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

50; 25 134260 21432167; 1048576 20; 16; 18

60; 30 150554 48852312; 8388608 23; 16; 28

70; 35 92849 61196173; 16777216 24; 16; 38

80; 40 13403 17968626; 33554432 26; 16; 48

90; 45 22728 585495610; 134217728 27; 16; 58

Table 5

As long as �

max

is small (say less than 25), it is possible to run the algorithm for quite large values of both

m and p. Table 6 provides some eviden
e of this fa
t.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

400; 800 1578 1442226; 32768 15; 14; 393

400; 800 1588 2489671; 1048576 20; 14; 393

Table 6

Table 7 provides the a
tual running times taken by a simple C language implementation (Linux operating

system on Pentium IV, 2.4 GHz CPU, 1 GB RAM).

m; p jS

2

j jS

1

j time in se
onds

100; 50 9976 5313186 50

100; 100 625 103455 2

100; 200 1297 71257808 830

400; 800 1588 2489671 1059

Table 7

Note that the following are true for the experiments performed above.

1. jS

1

j is exponential in �

max

and hen
e the run time of the algorithm is exponential in �

max

.

2. The bounds on p are 0 � p � 2

m

. But for our algorithm to be useful the value of p
an not be very

large be
ause in that
ase �

max

an not be restri
ted to low values (say 25) and our algorithm will

not work.

3. The value of w

avg

should be high i.e. ANF should be very sparse multinomial and support of ANF

should
ontain terms with very high weight.

4. In most
ases, jS

2

j is small
ompared to jS

1

j. Also jS

2

j tends to grow as w

avg

de
reases.

5. In all the examples given above, the
hosen fun
tions were non-degenerate on all the variables.

Finally, in summary we note that for
ertain types of Boolean fun
tions on large number of variables

algorithm ComputeCv
an be used to
ompute the Walsh transform for a small set of points. This
an

provide some useful information about the Boolean fun
tion. For example, one
an obtain the weight (or

size of support) of g by
omputing W

g

(0). Also the ability to probe the spe
tral domain of the fun
tion at

random points
an provide an estimate of the nonlinearity of the fun
tion.

15

7 Possible Improvements

In this se
tion we dis
uss possible ways of improving the algorithm. From Theorem 5.2, we see that the

omplexity of the algorithm depends on jS

1

j and jS

2

j. These two parameters are determined by the ANF

of the fun
tion. We dis
uss two ways of improving the eÆ
ien
y.

Let g be the fun
tion under
onsideration whose ANF is A

g

. Suppose we apply an aÆne transformation

to the variables of g to obtain f su
h that jsup(A

f

)j < jsup(A

g

)j. In su
h a situation it might be possible

to improve the run time of the algorithm. The problem is in obtaining an aÆne transformation whi
h will

perform this task.

Another approa
h to improve the eÆ
ien
y is to look for a more general and
ompa
t algebrai
 repre-

sentation of a fun
tion. We brie
y dis
uss this approa
h below and indi
ate the diÆ
ulty of this method.

Let g be of the form

g(x

1

; x

2

; : : : ; x

m

) =

M

(�;�)2list

(x

1

� �

1

)

�

1

� � � (x

m

� �

m

)

�

m

where list = ((�

(1)

; �

(1)

); � � � ; (�

(p)

; �

(p)

)) and �

(i)

; �

(i)

2 F

m

2

. The ANF of g is a spe
ial
ase of the above

form where �

1

= � � � = �

m

= 0.

Let r be su
h that 1 � r � jlistj and suppose v = u

(i

1

)

� � � � � u

(i

r

)

where u

(i

j

)

� �

(i

j

)

then we say

R = f(u

(i

1

)

; �

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

; �

(i

r

)

)g is a representation of v .

Let R 2 S(v), su
h that R = f(u

(i

1

)

; �

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

; �

(i

r

)

)g where u

(i

j

)

� �

(i

j

)

and for

1 � j � r, let k

i

j

= wt(�

(i

j

)

). De�ne

C(R) =

(�1)

r

2

(k

i

1

�1)+���+(k

i

r

�1)

(�1)

hu

(i

1

)

;�

(i

1

)

i�����hu

(i

r

)

;�

(i

r

)

i

:

Now it is simple to
he
k that Theorem 3.3 holds. But in this situation it seems diÆ
ult to simplify the

formula and obtain an algorithm to
ompute C

v

.

8 Con
luding Remarks

In this paper we have developed an algorithm to
ompute the Walsh transform of Boolean fun
tion at a

point from its algebrai
 normal form. This
an also be extended to evaluate the Walsh transform for a set

of points. The advantage of our method is that in
ertain situations it is possible to run our algorithm to

evaluate the Walsh transform (at a small set of points) of Boolean fun
tions with large number of variables

and hen
e
an be used in
ases where the fast Walsh transform is not appli
able.

An important parameter in the study of a Boolean fun
tion is its nonlinearity. To
ompute nonlinearity,

it is ne
essary to
ompute the Walsh transform at all the points. For Boolean fun
tions on a large number

of variables (� 40), it is pra
ti
ally impossible to perform this task. In
ertain situations, our algorithm

an be used to evaluate the Walsh transform at any parti
ular point. In su
h situations, it is possible to use

our algorithm in
onjun
tion with some randomized heuristi
 (simulated annealing/ hill
limbing/ geneti

algorithms) to estimate the nonlinearity of the fun
tion. Thus we feel that the algorithm developed in this

paper is a valuable te
hnique for the study and analysis of Boolean fun
tions.

A
knowledgements: We wish to thank the reviewers for reading the paper and providing several sug-

gestions.

16

Referen
es

[1℄ K. G. Beau
hamp. Appli
ations of Walsh and Related Fun
tions. A
ademi
 Press, 1984.

[2℄ M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi and M. Sudan. Linearity testing in
hara
teristi

two. IEEE Transa
tions on Information Theory, Vol. 42, No. 6, pp. 1781{1795, November 1996.

[3℄ C. Carlet and P. Guillot. A new representation of Boolean fun
tions. Pro
eedings of AAECC'13,

Le
ture Notes in Computer S
ien
e, 1719, pp 94-103, 1999.

[4℄ C. Carlet and P. Sarkar. Spe
tral Domain Analysis of Correlation Immune and Resilient Boolean

Fun
tions. Finite Fields and their Appli
ations, Volume 8, Number 1, January 2002, Pages 120-130.

[5℄ E. Horowitz and S. Sahni. Fundamentals of Data Stru
tures, W. H. Freeman and Co., 1983.

[6℄ X.-D. Hou. Bent Fun
tions, Partial Di�eren
e Sets, and Quasi-Frobenius Lo
al Rings. Designs, Codes

and Cryptography 20(3): 251-268 (2000).

[7℄ F. J. Ma
Willams and N. J. A. Sloane. The Theory of Error Corre
ting Codes. North Holland, 1977.

[8℄ N. Linial, Y. Mansour and N. Nisan. Constant Depth Cir
uits, Fourier Transform, and Learnability.

Journal of the ACM, 40(3): 607-620 (1993).

[9℄ P. Sarkar and S. Maitra. Cross-Correlation Analysis of Cryptographi
ally Useful Boolean Fun
tions

and S-Boxes. Theory of Computing Systems, 35(1): 39-57 (2002).

17

