Computing Partial Walsh Transform from the Algebraic Normal Form of
a Boolean Function

Kishan Chand Gupta and Palash Sarkar
Cryptology Research Group
Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road
Kolkata 700108, India
e-mail:{kishan_t,palash }@isical.ac.in

Abstract

We study the relationship between the Walsh transform and the algebraic normal form of a Boolean
function. In the first part of the paper, we carry out a combinatorial analysis to obtain a formula for
the Walsh transform at a certain point in terms of parameters derived from the algebraic normal form.
The second part of the paper is devoted to simplify this formula and develop an algorithm to evaluate
it. Our algorithm can be applied in situations where it is practically impossible to use the fast Walsh
transform algorithm. Experimental results show that under certain conditions it is possible to execute
our algorithm to evaluate the Walsh transform (at a small set of points) of functions on a few scores of
variables having a few hundred terms in the algebraic normal form.

Keywords : Boolean function, Algebraic Normal Form, Walsh Transform.

1 Introduction

Boolean functions are used for a wide variety of applications in engineering and computer science. An m-
variable Boolean function g(z) is a map ¢ : {0,1}"™ — {0,1}. One of the most useful tools for the study of
Boolean functions is the Walsh transform, which is essentially the Fourier transform applied to the function
(—=1)9%). The Walsh transform measures the correlations between an m-variable Boolean function and all
the m-variable linear functions. These correlations uniquely determine the function and hence it is possible
to work entirely with the Walsh transform. In fact, many properties of Boolean functions are most easily
stated in terms of Walsh transform.

For practical applications it is often useful to be able to compute the Walsh transform of a Boolean
function. It turns out that there is an excellent algorithm to do so, namely, the fast Walsh transform [1]. For
an m-variable function the fast Walsh transform takes time O(m2™) and hence can be used for functions
of around 30 variables. The fast Walsh transform is computed from the description of the function itself.
More precisely, the fast Walsh transform takes as input the bit string f(og) ... f(oem_1) of length 2™,
where for 0 < i < 2™ — 1, g; is the m-bit binary representation of ¢.

There is another way to uniquely represent a Boolean function, namely by its algebraic normal form,
which expresses a Boolean function as a multivariate polynomial over F5, the finite field of two elements.
The number of nonzero terms in the polynomial can be 2™ in the worst case. However, many interesting

classes of Boolean functions do have compact algebraic normal form representation. (For example, an
m = 2k-variable bent function can have as few as k many terms in their ANF.)

In this paper, we study the relationship between the algebraic normal form and the Walsh transform of
a Boolean function. We obtain a formula for the Walsh transform of a Boolean function at a certain point
v € FJ" in terms of certain parameters derived from the algebraic normal form. We present an efficient
algorithm to evaluate the formula and hence compute the Walsh transform at v.

Our algorithm can be used to compute the Walsh transform in cases where it is not possible to use the
fast Walsh transform. For example, it is possible in certain cases to run our algorithm for 50 to 100 variable
functions having a few hundred terms in their algebraic normal form. For such functions it is possible to
compute the Walsh transform for a small set of points v. Note that it is practically impossible to compute
the Walsh transform of an m-variable function at all points in F3" if m is around 50 or more. Our algorithm
provides a method to probe the spectral domain of large variable functions. This will provide some useful
information about the function such as the size of its support and an estimate of its nonlinearity. Note
that for small number of variables, the fast Walsh transform is faster than our algorithm. Hence we do not
provide a substitute for the fast Walsh transform; rather we provide a tool to analyse a Boolean function
in situations where the fast Walsh transform cannot be used.

Carlet and Guillot [3] study an alternative representation of Boolean functions — the numerical normal
form (NNF). In Theorem 5 of [3], they obtain a formula for computing the NNF from the ANF rep-
resentation and in Equation (6) of [3], they obtain a formula for computing the Walsh transform from
the NNF representation. Using these two results, it is possible to obtain a formula for computing the
Walsh transform from the ANF representation. In fact, in principle this formula can be used to derive
the explicit relationship between the Walsh transform and ANF that we obtain in this paper. However,
carrying out this task appears to be a non-trivial exercise. More importantly, we do more than just obtain
the relationship between the Walsh transform and the ANF. We analyse this relationship and ultimately
obtain an algorithm to compute the Walsh transform from the ANF. Obtaining this algorithm is the major
motivation of our paper. We note that our analysis and algorithm is not present in [3]. (Actually, the
purpose of [3] is to study the NNF and its relationship with the other representations.)

Boolean functions are studied extensively from different perspectives — coding theory [7, 6], circuit
complexity [2, 8] and cryptography [4, 9] are some examples. In all these areas, the Walsh transform is the
main tool in the analysis of Boolean functions. However, to the best of our knowledge, the only previously
known algorithm for computing the Walsh transform is the fast Walsh transform [1]. Hopefully the present
work will motivate researchers to study the algorithmic issues of the Walsh transform more deeply.

2 Preliminaries

Let F» = GF(2). An m-variable Boolean function g(z) is a map ¢ : Fy" — F». We consider the domain
of an m-variable Boolean function to be the vector space (F3",®) over Fy, where @ is used to denote the
addition operator over both F» and the vector space F;". The symbol + is used to denote addition over
integers. The inner product of two vectors u,v € F3" will be denoted by (u,v). The weight of an m-bit
vector v is the number of ones in v and will be denoted by wt(u). The support of a Boolean function g is
denoted by Sup(g) and is defined to be Sup(g) = {z : g(z) = 1}. The weight of ¢ is denoted by wt(g) and
is defined to be wt(g) = |Sup(g)|. The Walsh Transform of a Boolean function g(z) is an integer valued
function Wy : {0,1}™ — [-2™,2™] defined by (see [7, page 414])

Wolu) = 3 (—1)s)otul, (1)

weF ™

Let H,, be the 2™ x 2™ Hadamard matrix (see [7, page 44]) whose rows and columns are indexed by the
elements of FJ" such that H,,(u,v) = (—1)(*"). Then we can write

(17O, (—1)IC" I H, = [Wy(0),..., W, (2™ — 1)]. (2)
An m-variable Boolean function g(x1,xs, -, Z;) can be uniquely written as
9(T1, 20, Ty = @ Ag(ar, an, -+ o)zt xg? - - (3)

(a17a27"'7am)€F2”n

where Ag(z1,22, -, zp) is a Boolean function. This representation is called the algebraic normal form
(ANF) of g. We will call the Boolean function A, the ANF of g.

To illustrate different definitions, terms and and notations we take two small examples.
Example 1 : gi(z1,%2,23) = 2122 ® 2223 ® 371, and Sup(A4,,) = {(1,1,0),(0,1,1),(1,0,1)}.
Example 2 : go(21,22,23) = 2122 D 2223 B 21 D22, and Sup(Ay,) = {(1,1,0),(0,1,1),(1,0,0), (0,1,0)}.

3 Walsh Transform

In this section, we express the Walsh transform of a Boolean function in terms of certain parameters derived
from its ANF. The approach that we take is the following. Equation (2) expresses the relation between
(=1)9) and W, (u). Our first task is to obtain a formula for (—1)9(*) in terms of the ANF of g(z). Then
using Equation (2) we obtain the desired relationship between the Walsh transform and the ANF.

In obtaining a formula for (—1)9(®) in terms of the ANF, we first tackle the special case when g(z) =
g(Z1,...,Tm) =1 ... Ty. The result of this case is used to analyse the general case.

3.1 Case g(x1,X2," *,Xm) = X1Xg - Xpm
For z = (21, -+, Zm) € {0,1}"™, define

NT(m)(Il’ ,‘fbm) é Z (_1)331'1@...@33”.

1< <o <+ <ir <m

Lemma 3.1 Let z = (z1,...,zy) € F3" be such that wt(xz) = k. Then

r

N @) = 317 (5) ()

=0
Consequently, Ném) (x) is the Krawtchouk polynomial p,(k,m) [7, page 130].

Proof : In the vector (z1,---,%m), k of the z;’s are 1 and (m — k) of the z;’s are 0. Hence the number
of terms of the type (z;, ® --- ® z;,) with j number of 1’s (0 < j < r) and (r — j) number of 0’s

is equal to (];)(T__]k) Since j of the z;’s are ones, we have, (—1)%1®®%ir — (_1)J. Hence we get

N,gm) (1, zm) = ;ZU(—l)j (I;) (T__Jk) which is the Krawtchouk polynomial p,(k,m) [7, page 130]. m

Corollary 3.1 1. Z;,":O(—l)r_lN,gm) (1, +,zm) =0 for any vector x = (x1, -+, zp) # (1,---,1).

2. Z;":O(_l)r—lN1§M)(1, s 1) = —2m,

Proof : From [7, Equation (16), page 130] we have >/ (—1)""!p.(k,m) = 0 for 0 < k < m and
"o (=1)" p.(k,m) = —2™ for k = m. Hence using Lemma 3.1 the result follows.]

Theorem 3.1 Let g(z) = x122 -+ Ty Then

m
(1)) = b <2m—1 + Z(—l)T—lN,S%)) .
r=0
Proof : Case I: x € {0,1}™ such that z = (1,--+,1). Then L.H.S = (—1)! = —1. By Corollary 3.1(2) we
have 7o (= 1) N () = (= 1) NI (1, -+, 1) = =27, Hence RHLS = g (2771 —2m) = —1.
Case 2: z € {0,1}™ such that z # (1,---,1). Then L.H.S = (-1)° = 1. By Corollary 3.1(1) we have
™o (=1 N () = 0. Hence R.H.S = 51 (2™ —0) = 1. =

r=

3.2 Arbitrary g
Let g be a Boolean function and A, be its ANF. For o,z € F3" and r € [m] = {1,...,m} define

oy a;
N(a) = 3T (et
1<iy <ip < <ip<m
A] .
For o = (ovg, v, -+,) € FS and ¢ = (z1, -+ -, T,,), define 2% = 28252 - - - 2% Note that if a; = 1, then
))) 2))) 1 2 m)
T = z; else) = 1.

Proposition 3.1

(17" = 5 (2"“ + i(—l)’"lN,ﬂm)(a,x))

r=0

Proof : Let 1 = (1,...,1) and note that Nﬁm)(l,x) = N™ (z). We define y = (y1,---,Yym) as follows.
For 1 <1 <m, if @; = 1 then y; = z; else y; = 1. Now it is easy to check the following

1. 27" = y; and hence (=1)%" = (=1)Y.
2. N{™ (o) = N ().

From this the result follows. [
The next result expresses (—1)9(*) in terms of Ay

Proposition 3.2

_ 1 m—1 r 1
= o (2 + Z N™ (e,))
a:Ag(a)=1
1 wilAy) m—1 - r—1 pr(m)
= <2m1> H 2 + Z(_l) Nr (0[,:17)
a:Ag(a)=1 r=0
|]
For a = (o, -+,) and u = (uy, -+, up,) we define u < a if u; < o for 1 < i < m. In the rest of the

paper we will denote (wt(u) mod 2) by wty(u). In the next two results we present a two step simplification
of the sum Z,’TL:O(—l)T*IN,gm)(a, z) which occurs in Proposition 3.2.

Proposition 3.3

N(m) (a,z) = (—=1)" Z (mfwt(a)) (_1)(u,x>€9wtz(u)

r r—wt(u)
{ueFimu<a,wt(u)<r}
Proof : Note z;,*1 =x;, if o, =1 and z;,"1 =1if a;; =0. So z;,"1 =1® (1 B z4,);, =1 (T4, i,
and hence z; *1 @ --- @ x;, “r = (r mod 2) ® ((T;,, -+, T,), (i, -+, ;). We have

N™(a,z) = > (—1)%i "1 ©-Gwi, i
1<iy <ip <<ip <

= Z (=1)(r mod 2)&((@iy r++Tir)y (@i +0ir)
1<iy <ig <<ip <

=Y (@A),

1<y <ig <-++<ip<m

Given o = (aq,...,ap) and 1 <4y < iy < ... < i, < m, define an m-bit vector u in the following manner.
For 1 <j <m,ifj € {i1,..., i}, then u; = o else u; = 0. We say that {i,...,4,} produces u from a. If
{i1,...,%,} produces u from «, then it is easy to verify the following relations.

L ATy, T)y (i ey i) = ((T1y oo Tn)s (U, e) = (21, ooy), (U1, o u)) © wita(u);
2. u < aand wt(u) <.

It is possible that two distinct sets {i1,%2,...,%,} and {é},45,...,4.} produce the same u < «. This
will happen if and only if wt(a;,,...,q;,) = wt(aizl, conap) = wt(agy, ..., q5,), where {ji,... 5} =
{iv...,ir} N{i4,...,i.}. We now claim that the number of distinct sets {i1,i2,...,%,} which produce the
same u is (m k) where k = wit(«) and | = wt(u). To see this fix u < o with wt(u) =1 < r. Let ji,...,7

r—l
be such that uj, =... =u; =1and u; =0 for j ¢ {j1,...,5}. If {i1,...,ir} produces u, we must have
{jl,...,jl} - {’il,...,ir} and Qa; =0for j € SZ{il,...,ir}\{jl,...,jl}
Thus the number of sets {i1,...,4,} which produce u is the number of ways we can choose the set S of
r — 1 elements such that «; = 0 for j € S. Since wt(«) = k, the number of j € {1,...,m} such that a; =0
is m — k. Since S has r — I elements, the number of possible sets S is ('~ lk), which proves our claim. Hence

we can write

s ST Y Gy [s
(w)<r}

r—1
{ueFmu<a,wt(u

This completes the proof. [|

Proposition 3.4

m

> (-1 N

r=0

Proof : By Proposition 3.3

m

~)" N ()

r=0

This completes the proof
Let Sup(A,) = {a)

V(Sup(4g)) 2 V({a®

(p)}) 2

:l?) — (_1) % Z 2m7wt(a)(_1)<u,z)@wt2(u)
{ueF":u<a}
1)2r—1 i Z m— wt(O‘) (_1)(u,x>€Bwtz(u)
— r — wt(u)
r=0 {uc F":u<o,wt(u)<r}
(_1) Z Z (m wt)> (_1)<u,:r)EBwt2(u)
{ueF":u<a} r=wt(u - U)t()

_ Z gm— wi(a)(_1)<u,z)@wt2(u)‘

{ueF":u<la}

(p)} and kz = ’u]t(a(z)) Define

é {u(’ll) ®--- @'U/(ZT) : 'U/(Z]) S a(ij),{il,...

Example 1 (continued) For Boolean function gi(x1, %2, x3) = 2122 ® T2x3 ® T371,
SUP(A91) = {(]—7]-7 0)7 (07]-7 1)7 (17 07 1)} and kl = k2 = k3 =2.

Note that V(Sup(A,)) is a subspace
on variable z; if g(z1,---

that V(Sup(4y)) =
then we say that R = {(u

sy Lj—1, 17$i+17 e

of (F3",
7In) = g(xla"'a

@®). A Boolean function g(z1,-- -,
i 1,0,mi41, -,

(ulr), ali)} is a representation of v. For v € F3®, define

S(v) 2 et of all representations of v in the vector space V (Sup(4,)).

Example 1 (continued) For v = 000, we have S(v) = S(000) = {R1, R2, R3,- -, R15, Ri6, R17} where
Ry ={((0,0,0),(1,1,0))}, Ry = {((0,0,0), (0,1,1))}, B3 = {((0,0,0),(1,0,1))},
Ry ={((0,0,0),(1,1,0)), ((0,0,0), (0,1,1))}, Rs ={((0,0,0),(0,1,1)),((0,0,0), (1,0, 1))},
Rs ={((0,0,0),(1,1,0)),((0,0,0), (1,0,1)) }, Rz ={((0,1,0),(1,1,0)), ((0,1,0), (0,1,1))},
Rg = {((1a070)7 (17 1a0))a ((17070)a (1 0, 1))}7 Ry = {((0a07 1)7 (07 L, 1))7 ((0 0,1,1,0, 1))}7
RIO = {((0707 0)7 (17 170))7 ((07 07 0)7 (07 17 1))7 ((07 07 0)7 (17 07 1))}7
Rll = {((07 1’ 0)’ (L 170))a ((Oa 1a 0)7 (Oa 1? 1))7 ((07 07 0)7 (L 0? 1))}a
R12 = {((1707 0)7 (17 170))7 ((07 07 0)7 (07 17 1))7 ((17 07 0)7 (17 07 1))}7
Ri3 = {((ana O)a (L 170))a ((Oa 0, 1)7 (Oa L, 1))7 ((07 0, 1)7 (L 0, 1))}a
Ry = {((1,1,0),(1,1,0)),((0,1,1),(0,1,1)),((1,0,1),(1,0,1))},
Ris ={((1,1,0),(1,1,0)), ((0,1,0), (0, 1,1)), ((1,0,0), (1,0,1)) },
Rlﬁ = ((07 17 0)7 (17 170))7 ((07 17 1)7 (07 17 1))7 ((07 07 1)7 (17 07 1))}7
Rir ={((1,0,0), (1,1,0)), ((0,0,1),(0,1,1)), ((1,0,1), (1,0,1)) }.
Note
1. S(v) = ¢ if and only if v ¢ V(Sup(4,)).
2. If v=(0,---,0), then S(v) # ¢.

viry Clpl, 1 <j <r}.

Zy) is said to be degenerate
Zn). The function g is said to
be degenerate if it is degenerate on some variable, else it is said to be non-degenerate. It is easy to verify
F3" if and only if g is non-degenerate. Suppose v = w) @ @ulir) where ulii) < olis)
@) i)y, ...

Let v € F§* and R = {(u(™), () ... (ul) alir))} € S(v). Define

N =n"
= By —1 kD
é 2(1~ D+) (R) } (4)

Q

(—1)wt2(v) > ReS(v)

Example 1 (continued) Cooo = C(R1)+C(R2)+C(R3)+- -+ C(Ri5)+C(Ri6)+C(Ra7) = (2_23)11 + (2_23)11 +
Tl 12 12 (12 (103 1\2 (12 (12 (13 (—1V3 1\ (—1\3 (_1\3 (—1\3 (_1\3
(223)1 _|_(24£)2 +(24£)2 _|_(24£)2 +(26£)3 _|_(24£)2 (243)2 _|_(24£)2 _|_(26£)3 (263)3 _|_(26£)3 +(26£)3 _|_(26£)3 +(26£)3 _|_(26£)3 —
—1
Note that if S(v) = ¢, then 3 pcg(,) C(R) = 0 and hence, if v ¢ V(Sup(4y)) then C, = 0.

The parameters C,, for v € FJ" are derived entirely from the ANF of g. Our next result expresses
(=1)9() in terms of C,,.

Theorem 3.2

(1% =14+ 3 Cy(-1)

veF™

where Cy is as defined by Equation 4.

Proof : As before let Sup(A4,) = {a) o)} where wt(al?)) = k;. Using Proposition 3.2 and Propo-
sition 3.4 we can write.

(_1)g(z) _ H (1 _ 1 . Z 2mwt(a)(_1)(u,z)@wt2(u))
2m=

a:Ag(a)=1 {ueFi":u<a}

The first term in the expansion of the above expression is clearly 1. For 1 <r <p = wt(Ay), the general
term is of the form

-1\" o(m—kiy)4+ (m—kiy) (_ 1)l @ Bulin) @) @wts (ui) @--@ulin))
= DD (=1)

u(il)ga(il) u(ir)ga(ir)

Let v = ul™) @---@ulr). Then R = {(ul™), o)), (ul") ali))} is a representation of v. Therefore the

general term is of the form
Z Z C(R)(— vx EBwt2 Z C
vEF" RES(v) veEF™

This gives us the desired result. [
Now we are in a position to state the main result of this section which relates Wy(v) to C,.

Theorem 3.3 If g is an m-variable Boolean function then
Wy(v) = 2"(Cy + 6y) (5)
where 6, = 1 if v =0 else §, = 0.

Proof : From Theorem 3.2 we have

(_1)9(90) 1= Z Cv(_l)(vx

veF™

So [(=1)9 —1,...,(=1)9@" =) —1] = [Cy,...,Cym_1]H,,, where H,, is the (2™ x 2™) Hadamard matrix
(see [7, page 44]). Post multiplying both sides by H,, and noting that H,, H,, = 2™Ism we get

[(-1)9©@ . (=1)9C"=DH,, —[1,...,1]H,, = 2™[Cy,. .., Com_1].
ie. [W,(0),..., W,(2™ —1)] — [2™,0,...,0] = 2™[Cy,...,Com_;]. Hence 2™C,, = Wy(v) — 2™0, |

4 Simplifying C,

Theorem 3.3 relates Wy(v) to C,. Thus to compute Wy(v) it is sufficient to compute C,. However, the
definition of C,, given by 4 is in purely algebraic terms. We need to obtain a formula for ', which can be
computed by an algorithm. In this section we perform this task of simplifying C,,.

We start by defining certain terms. As in Section 3, we assume Sup(Ay) = {a oP)}. Given) #
S Clpl={1,2,---,p} and v € FJ", we define A(S,v) as follows. Let v = (vl, ,) and S {i1,- -, ir}.
Write alii) = (aj,l,---,aj,m) where o, € {0,1} for 1 < j < r, 1 <k < m. Let ¢(S,v) be a Boolean
formula which is true if and only if there is a k € [m], such that o = 0 for all j € [r] and v, = 1. Let

o(S) = ViESa(i) = a(il)\/...\/a(ir));} "

p(s) = wt(o(S)).

Here V represents the bitwise logical OR of two binary strings of the same length. Define
A(S,v) = 0 if (S, v) =1 }

= m otherwise.

Remark: If A(S,v) > 0, then the value of A(S,v) is independent of v and depends only on S.

Theorem 4.1
Cy = (=1)"20) 3™ (=1)7A(S,).

0#S Clp]

Proof : Fix a set S, such that, § # S = {i1,...,4,} C [p] and a vector v = (v1,...,vy,) € F3". Define
I'(S) = 2,%137:,% where k;;, = wt(alt)). As before, let a%) = (aj1,--,ajm), 1 < j < r and define
V= Z§:1 ajj. For 1 <k < m, define

by = 271 if N\, #0
=1 if \p =0,0, =0 (8)
= 0 if)\kzo,vk=1

Define n(S,v) = by -+ - by,.

Claim 1: A(S,v) =n(S,v)I'(9)

Proof of Claim 1: There are two cases to consider.

Case ¢(S,v) =1 : In this case, A(S,v) = 0 by Equation 7. Also ¢(S,v) = 1 implies that there is a k € [m]
such that o, = 0 for all j € [r] and vy = 1. This implies that A\, = 0 and v, = 1. Hence b; = 0 and so
n(S,v) = 0. Thus in this case we have A(S, v) =n(S,v)['(9).

Case ¢(S,v) = 0 : In this case A(S,v) = le = by Equation 7, where m; = u(S) and r = |S|. Also
b = 2% where z;, = 0 if A\, = 0; and 2, = 1 if \;, > 0. So

n(S, v) _ (2/\1—z1)(2/\2—z2) . (2/\m—zm) — 2(>\1+~~~+>\m)—(zl+---+zm)_

Since m; = pu(S) = wt(al) v ... v alir)) we have (z; + 22 + -+ + z,) = m1. Also we have

ZAk—zzaﬂ—zzaﬂ zk

k=1j=1 j=1k=1

So we get
k; kir
n(S,v) = 9t Am)—m1 _ iy +othin)
) 9mi1

By definition I'(S) = 2,%137:,% and so A(S,v) = 27,1% = n(S,v)['(S). This completes the proof of
Claim 1.
Claim 2:
Cyp = (=1)*=20) 3™ (=1)"n(S,v)[(S).
0#£SClp]
Proof of Claim 2: From Equation 4, we have C, = (—1)%(®) > ReS() C(R).

Given S = {iy,---,i,}, the vectors a("),. .., ali") are fixed. Let D(S,v) be the set of all representations
of v of the form {(u(™), o)), ... (u(®) al?)}. The value of C'(R) for any such representation R is equal to
2,%137:;% and depends only on S. From definition, this value is equal to T'(S). In evaluating C, we have
to sum over all representations of v. The contribution of the set S to this sum is clearly |D(S,v)|I'(S).
Thus we obtain

Cy = (=1)"=) 37 |D(S,0)[T(S).

0#SCp]
From this it is sufficient to show that n(S,v) = |D(S,v)|. There are two cases to consider.
Case by = 0 for some k € [m] : This implies that v cannot be represented as {(u(), o)), ..., (u("), alir)}

for any choice of u(%) < al%). Hence D(S,v) = 0 and so we have n(S,v) =0 = |D(S,v)|.
Case by > 0 for all k € [m] : In this case D(S,v) # 0. Suppose R = {(u(), (™), ... (ulr), o)} €
D(S,v), where for 1 < j <, uls) = (uj1,...,ujm) € F§* and o) = (aj1,...,a;m) € F3™.

Define two r x m matrices My and My in the following manner. The (4, k)th entry of My (resp. Ms) is
aj . (resp. u;x). The conditions uli) < i) is equivalent to My < My, where the matrices are compared
entrywise. Since R is a representation of v, we must have,

ULk D ... B urp = vy for each k € [m]. (9)

Thus the problem of enumerating the set D(S,v) is equivalent to enumerating matrices Ms such that
My < M; and Equation (9) holds. Let ¢; be the number of possible choices for the kth column of Mj.
Then |D(S,v)| = ¢1...cn and it is sufficient to show that ¢, = by for each k € [m]. There are two cases
to consider.

Subcase A\, = 0 : In this case vy = 0 and b, = 1. Since A\ = 0, the kth column of M is the all zero column.
Hence the only possible choice for the kth column of Ms is also the all zero column and so ¢ = 1 = by.
Subcase A\ > 0 : In this case by = 21, We first observe that the XOR of the ones in the kth column
of My must be equal to vg. Thus we have to consider two cases according as vy = 0 or vy = 1. First
suppose v, = 0. The kth column of M contains A; ones. Since vy = 0, we can choose an even number of
these ones to form a column for the matrix My. Thus the number of choices for the kth column of M, is

cL = (/}f) + (/\Ql) + 4, A& = 2%~ = b, A similar argument holds when v, = 1.
(%]

This completes the proof of Claim 2. Theorem 4.1 is a direct consequence of Claim 1 and Claim 2. =

Theorem 4.1 provides a method for computing C,,. However, this requires an algorithm to consider
all possible subsets of [p] = {1,...,p}. If p is even moderately large, this yields an impractical algorithm.
Our next task is to show that it is actually not required to consider all the subsets of [p]. In this section
we present one such special case and in the next section we present a general algorithm to compute C,
without generating all the subsets of [p].

Theorem 4.2 Let Sup(Ay) = {a1,---,ap} and t > 0 be such that for any {i1,... i1} C {1,...,p}, we
have wt(c, V -+ V) = m. Then

C, = (_1)wt2(v) (i (2;1)]] (I;) + Z (—1)|S‘ A (S,’U))
j=t+1 0#SC[pl,|S|<t

Proof : We have from Theorem 4.1
Cy, = (_1)wt2(v) Z (_1)‘S| JAN (S,’U)
0#SC[p]

= (_1)wt2<v>(3 C VN AT ES Y (—1)SIA(5,U)).

0#SC[p],|S|>t+1 0#SC[p,|S|<t

Under the given condition if |S| > ¢ + 1 then using Equation 7 we have p(S) = m. Hence

C, = (—1)w0) _qys ~1)SLA (8,0
(-1) (MC[Z (¥t Y DA))

pLIS|>t+1 0#SC[pl,|S|<t

p
— (_1)wt2(v) (Z (_1)j 2mlir (?) + Z (_1)|S‘ JAN (S,U))

j=t+1 0£SClplSI<t

This completes the proof. [|

Under the condition of Theorem 4.2, to evaluate C, we only have to consider all non empty subsets of
[p] of cardinality at most ¢. If ¢ is reasonably small, this is much better than considering all non empty
subsets of [p]. In the next section, we develop this idea to obtain an algorithm to compute C,.

5 Algorithm

In general we are interested in computing the Walsh transform of g at all the points v € F;”. However, if m
is relatively large (say around 50), then it will be practically impossible to compute the Walsh transform at
all the 2™ points. In such a situation, it will be of interest to compute the Walsh transform at a particular
point or for a small set of points. The fast Walsh transform takes time O(m2™) and computes the Walsh
transform at all the 2 points. In fact, to the best of our knowledge, there is no known algorithm which
can compute the Walsh transform at a particular point in time less than 2.

Our approach is to design an algorithm that consists of two parts. In the first part, the algorithm
does a certain amount of preprocessing and prepares a list. In the second part, the algorithm takes as
input a particular v € F3" and computes C,. (Using Theorem 3.3 this also gives us W,(v)). Once the
preprocessing is complete, the second part can be run for different v without running the first part. This
makes it efficient to compute Wy(v) for a set of v.

We start by defining certain parameters. For () # S C [p] recall from equation (6) that o(S) = V;cq ¥
and p(S) = wt(o(S)). For j =0,---,m define

(=D)IFIA(S, v).

Note that if S = {i} and oY) = (0,...,0), then u(S) = 0. The vector (0,...,0) € Sup(A,) implies that
the constant term in the ANF of g is equal to 1. The values of By, ..., B,, are independent of v and only
the value of B depends on v.

Theorem 5.1 For any v € F3*, we have

—1)» —1—-By—---— Bpm_1

¢y = -y [t o

+B|. (10)

10

Proof : Define)
A .
AL (=2)51 =3 (=2)(7) = -1+ (-1)".
0#SClp] Jj=1
Then A = 3% Bj. Consequently, By, = A — By — - — Bp—1. To see this note that >, B; =
S0 Suis)=i (—2)5 = Spssc(—2) = A
From Theorem 4.1 we have
Cp, = (=1)v=0 3 (—)IIA(S,v)
0£5Cp]

=)0 Y S (C1)SIASLY)

L7=0 p(S)=j

= (=)¥e0 LY (C)PEIA(S,) + (~1)¥IA(S,0)

This completes the proof. [|
Our algorithm is based on Equation (10). The intuition behind the algorithm is the following. For
most sets S, the value of 1(S) will be equal to m and will be accounted for by B,,. Thus if we can avoid
computing By, directly, then we will be saving a lot of computation. We will compute By, ..., B, 1 and
then use Equation (10) to compute the value of C,,. However, the value of B has to be computed. We next
describe how this is done.
Define

S = Geplum<m | "
Sy, = J(Sl) = {O’(S) 1S € Sl}

Example 2 (continued) From now onward, we consider the Boolean function gs(z1,z2,23) = x129 ®
Tox3 BT B X2, s0 Sup(Ay,) = {(1,1,0),(0,1,1),(1,0,0), (0,1,0)}. This Boolean function is taken different
from the previous one so that |S;| and |Sy| are different. Here p =4, m = 3. It is easy to see

81 = {1}, {2} {3}, {4}, {1,3}, {1,4}, {2,4}, {3,4}, {1,3,4}},

Sy = {o({1}) = (1,1,0),0({2}) = (0,1,1),0({3}) = (1,0,0),0({4}) = (0,1,0)} and hence |S;| = 9 and
|S2| = 4. Note by definition of o, o({1,3}) = (1,1,0) vV (1,0,0) = (1,1,0) = o({1}). And this is the reason
for |Sa| < |Si].

Write Sy = {stry,...,str,} for some n > 0. For 1 <14 <n define val; = Zg(s):stri(—2)|s‘. In the first
part of our algorithm we prepare the list £ = ((stry,valy),..., (stry,valy,)). Note that this part does not
depend on v.

Example 2 (continued) Sy = {str; = (1,1,0),stro = (0,1,1),strs = (1,0,0),stry = (0,1,0)}. Now
val; = Zg(s):strl(—2)|5‘ = (=2)' + (=2)2 + (=2)2 + (=2)? + (-2)% = —2. Similarly valy = 2, valz3 = —2
and valy = —2

For str,v € F3", define (str,v) 2 S A v where 3Tr is bitwise complement of str and A is the bitwise

logical AND. The operation A is performed bitwise on str and v. Suppose) # S C [p] such that o(S) = str

11

and v € FJ". Then A(S,v) > 0 if and only if ¢(str,v) = (0,...,0). Thus

val;
B = Z quwt(str;)
Y (str; w)=(0,...,0)

Also for j =0,...,m — 1,
B; = Z val;.
wt(str;)=j

Hence once the list £ is prepared, it is easy to compute By, ..., B;,,—1 and B. Now we describe a method
for preparing the list L.

Example 2 (continued) We take v = (1,0,) then ¢((1,1,0),(1,0,0)) = (0,0,1) A (1,0,0) = (0,0,0).
Similarly 1/1((0,1,1) (1,0, 0)) (1, 0 ,0), 9((1,0,0),(1,0,0)) = (0,0,0) and %((0,1,0),(1,0,0)) = (1,0,0).
SoB=_bh 4 vl 24 22—] Agaln from definition By = 0, By = vals +valy = —2 + (—) =

quwt(stry) quwt(strg)
—4,By = wval; +valy =242 =4. Now A = -1+ (=1)? = 0. So C,, = (—1)¥2) [1“302731+B]
_[0—0-};&4—4 1
2

=-1

First we d2escribe2a rooted directed tree 7 whose nodes are the subsets of [p] = {1,...,p}. The root
node of T is the empty set. The children of a set S are the sets Si,...,Sg, where for 1 < ¢ < k,
Si = S U{max(S) + i} and £ = p — max(S). This ensures that if S’ is a node in the subtree rooted at S,
then S C S'.

Our algorithm will traverse all the nodes S of T for which u(S) < m. (Note that 7 has 2P nodes and
if an algorithm is required to traverse all the nodes of 7', then the algorithm will be exponential in p.)
From the structure of 7 we know that if 4(S) = m for some node S, then u(S’) = m for all nodes S’ in
the subtree rooted at S. This crucial fact makes the traversal particularly efficient. If during the traversal
we reach a node S with u(S) = m, then we need not visit any of the nodes in the subtree rooted at S.
This means that we are effectively pruning the subtree rooted at S from 7. The more we encounter this
pruning effect, the more efficient is our algorithm.

While traversing 7 we prepare the list £ in the following manner. Initially £ is the empty list. Let
First(L) = {str : (str,val) € L}. Suppose we have reached a node S with u(S) < m. If o(S) ¢ First(L),
then we add (o(S), (—=2)1°!) to £. On the other hand, if 7(S) € First(£), then we update val to val+(—2)1!,

Thus the operations on L are search and insert. We implement £ using a height balanced binary tree
(see [5]). Hence each search/insert operation requires time O(log £). One such search or insert operation
is required for each S such that (S) < m. Also the total time spent at any node which is visited is O(m).
Hence the total time required by the algorithm is O(m/|S;|log(|Sz2|)). We next present the algorithm for
computing C,.

Algorithm ComputeCv
Inputs :

1. sup(Ay), where g is an m-variable Boolean function.

2. ve ™
Output : C,.

Part 1: Computation of list L.
Set L equal to the empty list.
Set str equal to the empty string.

Traverse(str).

Assume L = ((stry,valy), ..., (stry,val,)) at the end of Traverse.
Part 2 : Computation of C,.

Set By =-++ = Bpp—1 = 0.

12

For i =1 to n do
if (wt(str;) = j)) then B; = Bj + val;.
if (4(stry,v) = (0,...,0)) then B = B + %2k

quwt(str;) *

End For.
Cy = (=1)"20) (G ((-=1)P =1 = 75" Bi) + B).
Return C,,.

End Algorithm ComputeCv.

The subroutine Traverse() performs a depth first search on the tree 7 described before. The details of the
algorithm Traverse() are given below. In the algorithm we use the notation o(tstr) for a p-bit string tstr
to mean o(S) where S = {i : tstr; = 1}.

Algorithm Traverse(str)

Input : a binary string str of length at most p.

For i = |str| to p — 1 do
Set j =1 — |str|.
Set tstr = str||07]|1.
If (u(tstr) < m) then
If (o(tstr) ¢ First(L), then
Add (o(tstr), (=2)wHistr) o L.
Else suppose (o(tstr),val) is present in L.
Set wal = val 4 (—2)wHtstr),
End If.
If (|tstr| < p), then Traverse(tstr).
End If.
End For.
End Algorithm Traverse

From the above discussion we obtain the following result.

Theorem 5.2 Let vi,...,v; € F3" and g be an m-variable Boolean function. Then {W,(v;) : 1 < i < t}
can be computed in time O(m(|S1|log(|Sz2|) + t|S2l)).

Proof : Part 1 of Algorithm ComputeCv has to be executed only once for all the vectors vq,...,vs. This
takes time O(|S1|log(|S2])). Part 2 of Algorithm ComputeCv has to run once for each of the vectors
v1,...,v;. Each execution of Part 2 takes time O(|S2|). This gives the time complexity of the algorithm.
Correctness of the algorithm follows from the previous discussion. [
Remark : It is important to note that for small ¢ it is possible to have |S1|log(|Sz|) +#|S2| < min(2P, 2™).
In such situations it is possible to efficiently compute the Walsh transform of ¢ for a small set of points.
Cardinality of |S;| and |Sz| depends on ANF and in the worst case can be O(2P). To keep |Si| and |Ss]
within a controlable limit, the ANF should be a sparse multinomial and support of ANF should contain
terms with very high weights (nearly m). In Section 6, we provide some experimental data to support this
intuition.

6 Experimental Results

Similar to Section 3, let Sup(Ay) = {aD), ..., P} We write o) = (01, @m) where o ; € {0,1} for
1<i<p,1<j<m. Forl<j<m,definep; =p—>", a; Let pmez = ma:z:je[m}(pj), Pavg = D iy &

i=1 m
p wt(a®)

and Wayg = Y5y —, - We use the notation S; and S as defined in Equation 11.

13

Tables 1 and 2 consider the cases p > m and p < m respectively. (Here we note that the class of
Boolean functions for which p is less than m is also very rich. For example this class includes an important
subset of the class of bent functions.) The results in these two tables show that p;’s (specially py,q.) are
crucial to the complexity of the algorithm. If p,,q, is comparatively larger than the other p;’s then the size
of |S1] is exponential in pp,q;. Also note that in general |Sy| > 2Pmaz,

m,p |S2| |SI |7 2fmaz Pmazxs Pavgy Wavg
100,250 | 546 | 2135470,1048576 20,15,94
100,250 | 547 | 3184044, 2097152 21, 15,94
100,250 | 549 | 5288601,4194304 22,15,94
100,250 | 549 9482897, 8388608 23,15,94

100,250 | 550 | 17871500, 16777216 24,15,94
100,250 | 552 | 34648698, 33554432 25,15,94
100,250 | 553 | 68203122, 67108864 26,15,94

Table 1
m,p |S2| |SI |7 2Pmaz Pmazxs Pavgy Wavg
100,50 | 2258 365465, 131072 17,15,70
100,50 | 2392 1340716, 1048576 20,15,70
100,50 | 2429 8678491, 8388608 23,15,70
100,50 | 2465 | 67386792, 67108864 26,15,70
Table 2

From the definition, the parameters m, p, pu,g and wg,, satisfy the following relationship: m X pgyy =
P X (M — Weyg). For fixed m and p, pgyg decreases as wg,, increases. Similarly, for fixed m and pgyg, as p
increases so does wy,y. In Table 3, we show the change of w,, with p for m = 100 and p,,q = 16.

m,p |S2| |SI |7 2fmav Pmazxy Pavgs Wavg
100,50 | 9976 | 5313186, 524288 19,16, 68
100,100 | 2934 | 6482400, 524288 19,16,84
100,200 | 1414 | 4609688, 524288 19,16,92
100,400 | 827 | 6644436,524288 19,16, 96
Table 3

It is possible to run the algorithm in cases where m is large but py,q, is small. Table 4 provides some data
which illustrates this fact.

m,p |82| |81 |a 2pmaz Pmazs Pavgr Wavg
200,200 | 725 96213, 32768 15,12,188
400,200 | 2175 207969, 16384 14,12,376
800,200 | 1938 528605, 65536 16,12,752
3200, 100 | 2200 | 243188, 16384 14, 12,2316
3200,100 | 2502 | 4436706,4194304 22,12,2816

Table 4

In the above examples we see that |Sz| is small. In Table 5 we provide some examples for which |Sy| is
large but wg,, is small.

14

m,p |82| |81 |7 2pmaw Pmazs Pavgr Wavg
50,25 | 134260 21432167, 1048576 20,16, 18
60,30 | 150554 48852312, 8388608 23,16, 28
70,35 | 92849 61196173,16777216 24,16, 38
80,40 | 13403 17968626, 33554432 26,16,48
90,45 | 22728 | 585495610, 134217728 27,16, 58

Table 5

As long as ppqq is small (say less than 25), it is possible to run the algorithm for quite large values of both
m and p. Table 6 provides some evidence of this fact.

m,p |82| |SI |7 2Pmaz Pmazxy Pavgs Wavg
400,800 | 1578 1442226, 32768 15,14, 393
400,800 | 1588 | 2489671,1048576 20,14, 393

Table 6

Table 7 provides the actual running times taken by a simple C language implementation (Linux operating
system on Pentium IV, 2.4 GHz CPU, 1 GB RAM).

m,p |Sa| |S1| time in seconds
100,50 | 9976 | 5313186 50
100,100 | 625 | 103455 2
100,200 | 1297 | 71257808 830
400,800 | 1588 | 2489671 1059
Table 7

Note that the following are true for the experiments performed above.
1. |S1] is exponential in ppe, and hence the run time of the algorithm is exponential in ppqy.

2. The bounds on p are 0 < p < 2™. But for our algorithm to be useful the value of p can not be very
large because in that case ppq; can not be restricted to low values (say 25) and our algorithm will
not work.

3. The value of wq,g should be high i.e. ANF should be very sparse multinomial and support of ANF
should contain terms with very high weight.

4. In most cases, |Sz| is small compared to |Si|. Also |Sa| tends to grow as wgy, decreases.
5. In all the examples given above, the chosen functions were non-degenerate on all the variables.

Finally, in summary we note that for certain types of Boolean functions on large number of variables
algorithm ComputeCv can be used to compute the Walsh transform for a small set of points. This can
provide some useful information about the Boolean function. For example, one can obtain the weight (or
size of support) of g by computing W,(0). Also the ability to probe the spectral domain of the function at
random points can provide an estimate of the nonlinearity of the function.

15

7 Possible Improvements

In this section we discuss possible ways of improving the algorithm. From Theorem 5.2, we see that the
complexity of the algorithm depends on |S;| and |S3|. These two parameters are determined by the ANF
of the function. We discuss two ways of improving the efficiency.

Let g be the function under consideration whose ANF is A,. Suppose we apply an affine transformation
to the variables of g to obtain f such that |sup(Af)| < |sup(Ay)|. In such a situation it might be possible
to improve the run time of the algorithm. The problem is in obtaining an affine transformation which will
perform this task.

Another approach to improve the efficiency is to look for a more general and compact algebraic repre-
sentation of a function. We briefly discuss this approach below and indicate the difficulty of this method.

Let g be of the form

9(171,«772,---,«77711) = @ (xl@gl)aln'(xm@ﬁm)am

(a,B)€list

where list = (a1, D), ... (a®), P))) and o), () € F5*. The ANF of g is a special case of the above
form where gy =--- = 5, = 0.
1

Let r be such th t g r < |lzst| and suppose v =ul @ ... ®ulir) where ulli) < (i) then we say
R={(u'"), a), e (ulir) alir),)} 1s a representation of v .
Let R € S(), such that R = {(ull 0, gy e (uln), alir) Bl) Y where uli) < (i) and for

L<j<r etk = wt(ali)). Define

(_1)r u(il)’ﬁ(il) DP u(ir)’ﬁ(ir)
O(R) = =iy, (' ot .

Now it is simple to check that Theorem 3.3 holds. But in this situation it seems difficult to simplify the
formula and obtain an algorithm to compute C,.

8 Concluding Remarks

In this paper we have developed an algorithm to compute the Walsh transform of Boolean function at a
point from its algebraic normal form. This can also be extended to evaluate the Walsh transform for a set
of points. The advantage of our method is that in certain situations it is possible to run our algorithm to
evaluate the Walsh transform (at a small set of points) of Boolean functions with large number of variables
and hence can be used in cases where the fast Walsh transform is not applicable.

An important parameter in the study of a Boolean function is its nonlinearity. To compute nonlinearity,
it is necessary to compute the Walsh transform at all the points. For Boolean functions on a large number
of variables (> 40), it is practically impossible to perform this task. In certain situations, our algorithm
can be used to evaluate the Walsh transform at any particular point. In such situations, it is possible to use
our algorithm in conjunction with some randomized heuristic (simulated annealing/ hill climbing/ genetic
algorithms) to estimate the nonlinearity of the function. Thus we feel that the algorithm developed in this
paper is a valuable technique for the study and analysis of Boolean functions.

Acknowledgements: We wish to thank the reviewers for reading the paper and providing several sug-
gestions.

16

References

1]
2]

3]

[4]

K. G. Beauchamp. Applications of Walsh and Related Functions. Academic Press, 1984.

M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi and M. Sudan. Linearity testing in characteristic
two. IEEE Transactions on Information Theory, Vol. 42, No. 6, pp. 1781-1795, November 1996.

C. Carlet and P. Guillot. A new representation of Boolean functions. Proceedings of AAECC’183,
Lecture Notes in Computer Science, 1719, pp 94-103, 1999.

C. Carlet and P. Sarkar. Spectral Domain Analysis of Correlation Immune and Resilient Boolean
Functions. Finite Fields and their Applications, Volume 8, Number 1, January 2002, Pages 120-130.

E. Horowitz and S. Sahni. Fundamentals of Data Structures, W. H. Freeman and Co., 1983.

X.-D. Hou. Bent Functions, Partial Difference Sets, and Quasi-Frobenius Local Rings. Designs, Codes
and Cryptography 20(3): 251-268 (2000).

F. J. MacWillams and N. J. A. Sloane. The Theory of Error Correcting Codes. North Holland, 1977.

N. Linial, Y. Mansour and N. Nisan. Constant Depth Circuits, Fourier Transform, and Learnability.
Journal of the ACM, 40(3): 607-620 (1993).

P. Sarkar and S. Maitra. Cross-Correlation Analysis of Cryptographically Useful Boolean Functions
and S-Boxes. Theory of Computing Systems, 35(1): 39-57 (2002).

17

