
Computing Partial Walsh Transform from the Algebrai Normal Form of

a Boolean Funtion

Kishan Chand Gupta and Palash Sarkar

Cryptology Researh Group

Applied Statistis Unit

Indian Statistial Institute

203, B.T. Road

Kolkata 700108, India

e-mail:fkishan t,palashg�isial.a.in

Abstrat

We study the relationship between the Walsh transform and the algebrai normal form of a Boolean

funtion. In the �rst part of the paper, we arry out a ombinatorial analysis to obtain a formula for

the Walsh transform at a ertain point in terms of parameters derived from the algebrai normal form.

The seond part of the paper is devoted to simplify this formula and develop an algorithm to evaluate

it. Our algorithm an be applied in situations where it is pratially impossible to use the fast Walsh

transform algorithm. Experimental results show that under ertain onditions it is possible to exeute

our algorithm to evaluate the Walsh transform (at a small set of points) of funtions on a few sores of

variables having a few hundred terms in the algebrai normal form.

Keywords : Boolean funtion, Algebrai Normal Form, Walsh Transform.

1 Introdution

Boolean funtions are used for a wide variety of appliations in engineering and omputer siene. An m-

variable Boolean funtion g(x) is a map g : f0; 1g

m

! f0; 1g. One of the most useful tools for the study of

Boolean funtions is the Walsh transform, whih is essentially the Fourier transform applied to the funtion

(�1)

g(x)

. The Walsh transform measures the orrelations between an m-variable Boolean funtion and all

the m-variable linear funtions. These orrelations uniquely determine the funtion and hene it is possible

to work entirely with the Walsh transform. In fat, many properties of Boolean funtions are most easily

stated in terms of Walsh transform.

For pratial appliations it is often useful to be able to ompute the Walsh transform of a Boolean

funtion. It turns out that there is an exellent algorithm to do so, namely, the fast Walsh transform [1℄. For

an m-variable funtion the fast Walsh transform takes time O(m2

m

) and hene an be used for funtions

of around 30 variables. The fast Walsh transform is omputed from the desription of the funtion itself.

More preisely, the fast Walsh transform takes as input the bit string f(�

0

) : : : f(�

2

m

�1

) of length 2

m

,

where for 0 � i � 2

m

� 1, �

i

is the m-bit binary representation of i.

There is another way to uniquely represent a Boolean funtion, namely by its algebrai normal form,

whih expresses a Boolean funtion as a multivariate polynomial over F

2

, the �nite �eld of two elements.

The number of nonzero terms in the polynomial an be 2

m

in the worst ase. However, many interesting

1

lasses of Boolean funtions do have ompat algebrai normal form representation. (For example, an

m = 2k-variable bent funtion an have as few as k many terms in their ANF.)

In this paper, we study the relationship between the algebrai normal form and the Walsh transform of

a Boolean funtion. We obtain a formula for the Walsh transform of a Boolean funtion at a ertain point

v 2 F

m

2

in terms of ertain parameters derived from the algebrai normal form. We present an eÆient

algorithm to evaluate the formula and hene ompute the Walsh transform at v.

Our algorithm an be used to ompute the Walsh transform in ases where it is not possible to use the

fast Walsh transform. For example, it is possible in ertain ases to run our algorithm for 50 to 100 variable

funtions having a few hundred terms in their algebrai normal form. For suh funtions it is possible to

ompute the Walsh transform for a small set of points v. Note that it is pratially impossible to ompute

the Walsh transform of anm-variable funtion at all points in F

m

2

ifm is around 50 or more. Our algorithm

provides a method to probe the spetral domain of large variable funtions. This will provide some useful

information about the funtion suh as the size of its support and an estimate of its nonlinearity. Note

that for small number of variables, the fast Walsh transform is faster than our algorithm. Hene we do not

provide a substitute for the fast Walsh transform; rather we provide a tool to analyse a Boolean funtion

in situations where the fast Walsh transform annot be used.

Carlet and Guillot [3℄ study an alternative representation of Boolean funtions { the numerial normal

form (NNF). In Theorem 5 of [3℄, they obtain a formula for omputing the NNF from the ANF rep-

resentation and in Equation (6) of [3℄, they obtain a formula for omputing the Walsh transform from

the NNF representation. Using these two results, it is possible to obtain a formula for omputing the

Walsh transform from the ANF representation. In fat, in priniple this formula an be used to derive

the expliit relationship between the Walsh transform and ANF that we obtain in this paper. However,

arrying out this task appears to be a non-trivial exerise. More importantly, we do more than just obtain

the relationship between the Walsh transform and the ANF. We analyse this relationship and ultimately

obtain an algorithm to ompute the Walsh transform from the ANF. Obtaining this algorithm is the major

motivation of our paper. We note that our analysis and algorithm is not present in [3℄. (Atually, the

purpose of [3℄ is to study the NNF and its relationship with the other representations.)

Boolean funtions are studied extensively from di�erent perspetives { oding theory [7, 6℄, iruit

omplexity [2, 8℄ and ryptography [4, 9℄ are some examples. In all these areas, the Walsh transform is the

main tool in the analysis of Boolean funtions. However, to the best of our knowledge, the only previously

known algorithm for omputing the Walsh transform is the fast Walsh transform [1℄. Hopefully the present

work will motivate researhers to study the algorithmi issues of the Walsh transform more deeply.

2 Preliminaries

Let F

2

= GF (2). An m-variable Boolean funtion g(x) is a map g : F

m

2

! F

2

. We onsider the domain

of an m-variable Boolean funtion to be the vetor spae (F

m

2

;�) over F

2

, where � is used to denote the

addition operator over both F

2

and the vetor spae F

m

2

. The symbol + is used to denote addition over

integers. The inner produt of two vetors u; v 2 F

m

2

will be denoted by hu; vi. The weight of an m-bit

vetor u is the number of ones in u and will be denoted by wt(u). The support of a Boolean funtion g is

denoted by Sup(g) and is de�ned to be Sup(g) = fx : g(x) = 1g. The weight of g is denoted by wt(g) and

is de�ned to be wt(g) = jSup(g)j. The Walsh Transform of a Boolean funtion g(x) is an integer valued

funtion W

g

: f0; 1g

m

! [�2

m

; 2

m

℄ de�ned by (see [7, page 414℄)

W

g

(u) =

X

w2F

m

2

(�1)

g(w)�hu;wi

: (1)

2

Let H

m

be the 2

m

� 2

m

Hadamard matrix (see [7, page 44℄) whose rows and olumns are indexed by the

elements of F

m

2

suh that H

m

(u; v) = (�1)

hu;vi

. Then we an write

[(�1)

g(0)

; : : : ; (�1)

g(2

m

�1)

℄H

m

= [W

g

(0); : : : ;W

g

(2

m

� 1)℄: (2)

An m-variable Boolean funtion g(x

1

; x

2

; � � � ; x

m

) an be uniquely written as

g(x

1

; x

2

; : : : ; x

m

) =

M

(�

1

;�

2

;���;�

m

)2F

m

2

A

g

(�

1

; �

2

; � � � ; �

m

)x

�

1

1

x

�

2

2

� � � x

�

m

m

(3)

where A

g

(x

1

; x

2

; � � � ; x

m

) is a Boolean funtion. This representation is alled the algebrai normal form

(ANF) of g. We will all the Boolean funtion A

g

the ANF of g.

To illustrate di�erent de�nitions, terms and and notations we take two small examples.

Example 1 : g

1

(x

1

; x

2

; x

3

) = x

1

x

2

� x

2

x

3

� x

3

x

1

, and Sup(A

g

1

) = f(1; 1; 0); (0; 1; 1); (1; 0; 1)g.

Example 2 : g

2

(x

1

; x

2

; x

3

) = x

1

x

2

�x

2

x

3

�x

1

�x

2

, and Sup(A

g

2

) = f(1; 1; 0); (0; 1; 1); (1; 0; 0); (0; 1; 0)g.

3 Walsh Transform

In this setion, we express the Walsh transform of a Boolean funtion in terms of ertain parameters derived

from its ANF. The approah that we take is the following. Equation (2) expresses the relation between

(�1)

g(x)

and W

g

(u). Our �rst task is to obtain a formula for (�1)

g(x)

in terms of the ANF of g(x). Then

using Equation (2) we obtain the desired relationship between the Walsh transform and the ANF.

In obtaining a formula for (�1)

g(x)

in terms of the ANF, we �rst takle the speial ase when g(x) =

g(x

1

; : : : ; x

m

) = x

1

: : : x

m

. The result of this ase is used to analyse the general ase.

3.1 Case g(x

1

;x

2

; � � � ;x

m

) = x

1

x

2

� � �x

m

For x = (x

1

; � � � ; x

m

) 2 f0; 1g

m

, de�ne

N

(m)

r

(x)

4

= N

(m)

r

(x

1

; � � � ; x

m

)

4

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�����x

i

r

:

Lemma 3.1 Let x = (x

1

; : : : ; x

m

) 2 F

m

2

be suh that wt(x) = k. Then

N

(m)

r

(x) =

r

X

j=0

(�1)

j

�

k

j

��

m�k

r�j

�

:

Consequently, N

(m)

r

(x) is the Krawthouk polynomial p

r

(k;m) [7, page 130℄.

Proof : In the vetor (x

1

; � � � ; x

m

), k of the x

i

's are 1 and (m � k) of the x

i

's are 0. Hene the number

of terms of the type (x

i

1

� � � � � x

i

r

) with j number of 1's (0 � j � r) and (r � j) number of 0's

is equal to

�

k

j

��

m�k

r�j

�

: Sine j of the x

i

's are ones, we have, (�1)

x

i

1

�����x

i

r

= (�1)

j

. Hene we get

N

(m)

r

(x

1

; � � � ; x

m

) =

P

r

j=0

(�1)

j

�

k

j

��

m�k

r�j

�

whih is the Krawthouk polynomial p

r

(k;m) [7, page 130℄.

Corollary 3.1 1.

P

m

r=0

(�1)

r�1

N

(m)

r

(x

1

; � � � ; x

m

) = 0 for any vetor x = (x

1

; � � � ; x

m

) 6= (1; � � � ; 1).

2.

P

m

r=0

(�1)

r�1

N

(m)

r

(1; � � � ; 1) = �2

m

.

3

Proof : From [7, Equation (16), page 130℄ we have

P

m

r=0

(�1)

r�1

p

r

(k;m) = 0 for 0 � k < m and

P

m

r=0

(�1)

r�1

p

r

(k;m) = �2

m

for k = m. Hene using Lemma 3.1 the result follows.

Theorem 3.1 Let g(x) = x

1

x

2

� � � x

m

: Then

(�1)

g(x)

=

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(x)

!

:

Proof : Case 1: x 2 f0; 1g

m

suh that x = (1; � � � ; 1). Then L.H.S = (�1)

1

= �1. By Corollary 3.1(2) we

have

P

m

r=0

(�1)

r�1

N

(m)

r

(x) =

P

m

r=0

(�1)

r�1

N

(m)

r

(1; � � � ; 1) = �2

m

. Hene R.H.S =

1

2

m�1

(2

m�1

�2

m

) = �1.

Case 2: x 2 f0; 1g

m

suh that x 6= (1; � � � ; 1). Then L.H.S = (�1)

0

= 1. By Corollary 3.1(1) we have

P

m

r=0

(�1)

r�1

N

(m)

r

(x) = 0. Hene R.H.S =

1

2

m�1

(2

m�1

� 0) = 1.

3.2 Arbitrary g

Let g be a Boolean funtion and A

g

be its ANF. For �; x 2 F

m

2

and r 2 [m℄ = f1; : : : ;mg de�ne

N

(m)

r

(�; x)

4

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�

i

1

�����x

i

r

�

i

r

:

For � = (�

1

; �

2

; � � � ; �

m

) 2 F

m

2

and x = (x

1

; � � � ; x

m

), de�ne x

�

4

= x

�

1

1

x

�

2

2

� � � x

�

m

m

: Note that if �

i

= 1, then

x

�

i

i

= x

i

else x

�

i

i

= 1.

Proposition 3.1

(�1)

x

�

=

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

Proof : Let 1 = (1; : : : ; 1) and note that N

(m)

r

(1; x) = N

(m)

r

(x). We de�ne y = (y

1

; � � � ; y

m

) as follows.

For 1 � i � m, if �

i

= 1 then y

i

= x

i

else y

i

= 1. Now it is easy to hek the following

1. x

�

i

i

= y

i

and hene (�1)

x

�

= (�1)

y

.

2. N

(m)

r

(�; x) = N

(m)

r

(y).

From this the result follows.

The next result expresses (�1)

g(x)

in terms of A

g

.

Proposition 3.2

(�1)

g(x)

=

�

1

2

m�1

�

wt(A

g

)

Y

�:A

g

(�)=1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

Proof :

(�1)

g(x)

= (�1)

L

�2F

m

2

A

g

(�)x

�

=

Y

�2F

m

2

(�1)

A

g

(�)x

�

=

Y

�2F

m

2

�

(�1)

x

�

�

A

g

(�)

=

Y

�:A

g

(�)=1

(�1)

x

�

4

=

Y

�:A

g

(�)=1

1

2

m�1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

=

�

1

2

m�1

�

wt(A

g

)

Y

�:A

g

(�)=1

2

m�1

+

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x)

!

For � = (�

1

; � � � ; �

m

) and u = (u

1

; � � � ; u

m

) we de�ne u � � if u

i

� �

i

for 1 � i � m: In the rest of the

paper we will denote (wt(u) mod 2) by wt

2

(u). In the next two results we present a two step simpli�ation

of the sum

P

m

r=0

(�1)

r�1

N

(m)

r

(�; x) whih ours in Proposition 3.2.

Proposition 3.3

N

(m)

r

(�; x) = (�1)

r

X

fu2F

m

2

:u��;wt(u)�rg

�

m�wt(�)

r�wt(u)

�

(�1)

hu;xi�wt

2

(u)

Proof : Note x

i

1

�

i

1

= x

i

1

if �

i

1

= 1 and x

i

1

�

i

1

= 1 if �

i

1

= 0: So x

i

1

�

i

1

= 1� (1� x

i

1

)�

i

1

= 1� (x

i

1

)�

i

1

and hene x

i

1

�

i

1

� � � � � x

i

r

�

i

r

= (r mod 2)� h(x

i

1

; � � � ; x

i

r

); (�

i

1

; � � � ; �

i

r

)i: We have

N

(m)

r

(�; x) =

X

1�i

1

<i

2

<���<i

r

�m

(�1)

x

i

1

�

i

1

�����x

i

r

�

i

r

=

X

1�i

1

<i

2

<���<i

r

�m

(�1)

(r mod 2)�h(x

i

1

;���;x

i

r

);(�

i

1

;���;�

i

r

)i

:

= (�1)

r

X

1�i

1

<i

2

<���<i

r

�m

(�1)

h(x

i

1

;���;x

i

r

);(�

i

1

;���;�

i

r

)i

:

Given � = (�

1

; : : : ; �

m

) and 1 � i

1

< i

2

< : : : < i

r

� m, de�ne an m-bit vetor u in the following manner.

For 1 � j � m, if j 2 fi

1

; : : : ; i

r

g, then u

j

= �

j

else u

j

= 0. We say that fi

1

; : : : ; i

r

g produes u from �. If

fi

1

; : : : ; i

r

g produes u from �, then it is easy to verify the following relations.

1. h(x

i

1

; � � � ; x

i

r

); (�

i

1

; � � � ; �

i

r

)i = h(x

1

; : : : ; x

m

); (u

1

; : : : ; u

m

)i = h(x

1

; : : : ; x

m

); (u

1

; : : : ; u

m

)i � wt

2

(u);

2. u � � and wt(u) � r.

It is possible that two distint sets fi

1

; i

2

; : : : ; i

r

g and fi

0

1

; i

0

2

; : : : ; i

0

r

g produe the same u � �. This

will happen if and only if wt(�

i

1

; : : : ; �

i

r

) = wt(�

i

0

1

; : : : ; �

i

0

r

) = wt(�

j

1

; : : : ; �

j

s

); where fj

1

; : : : ; j

s

g =

fi

1

: : : ; i

r

g \ fi

0

1

; : : : ; i

0

r

g. We now laim that the number of distint sets fi

1

; i

2

; : : : ; i

r

g whih produe the

same u is

�

m�k

r�l

�

, where k = wt(�) and l = wt(u): To see this �x u � � with wt(u) = l � r. Let j

1

; : : : ; j

l

be suh that u

j

1

= : : : = u

j

l

= 1 and u

j

= 0 for j =2 fj

1

; : : : ; j

l

g. If fi

1

; : : : ; i

r

g produes u, we must have

fj

1

; : : : ; j

l

g � fi

1

; : : : ; i

r

g and �

j

= 0 for j 2 S = fi

1

; : : : ; i

r

g n fj

1

; : : : ; j

l

g

Thus the number of sets fi

1

; : : : ; i

r

g whih produe u is the number of ways we an hoose the set S of

r� l elements suh that �

j

= 0 for j 2 S. Sine wt(�) = k, the number of j 2 f1; : : : ;mg suh that �

j

= 0

is m�k. Sine S has r� l elements, the number of possible sets S is

�

m�k

r�l

�

, whih proves our laim. Hene

we an write

N

(m)

r

(�; x) = (�1)

r

X

fu2F

m

2

:u��;wt(u)�rg

m� k

r � l

!

(�1)

hu;xi�wt

2

(u)

This ompletes the proof.

5

Proposition 3.4

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x) = (�1)�

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

Proof : By Proposition 3.3

m

X

r=0

(�1)

r�1

N

(m)

r

(�; x) = (�1)

2r�1

m

X

r=0

X

fu2F

m

2

:u��;wt(u)�rg

m� wt(�)

r � wt(u)

!

(�1)

hu;xi�wt

2

(u)

= (�1)

X

fu2F

m

2

:u��g

m

X

r=wt(u)

m� wt(�)

r � wt(u)

!

(�1)

hu;xi�wt

2

(u)

= �

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

:

This ompletes the proof.

Let Sup(A

g

) = f�

(1)

; � � � ; �

(p)

g and k

i

= wt(�

(i)

). De�ne

V (Sup(A

g

))

4

= V (f�

(1)

; � � � ; �

(p)

g)

4

= fu

(i

1

)

� � � � � u

(i

r

)

: u

(i

j

)

� �

(i

j

)

; fi

1

; : : : ; i

r

g � [p℄; 1 � j � rg:

Example 1 (ontinued) For Boolean funtion g

1

(x

1

; x

2

; x

3

) = x

1

x

2

� x

2

x

3

� x

3

x

1

,

Sup(A

g

1

) = f(1; 1; 0); (0; 1; 1); (1; 0; 1)g and k

1

= k

2

= k

3

= 2.

Note that V (Sup(A

g

)) is a subspae of (F

m

2

;�). A Boolean funtion g(x

1

; � � � ; x

n

) is said to be degenerate

on variable x

i

if g(x

1

; � � � ; x

i�1

; 1; x

i+1

; � � � ; x

n

) = g(x

1

; � � � ; x

i�1

; 0; x

i+1

; � � � ; x

n

). The funtion g is said to

be degenerate if it is degenerate on some variable, else it is said to be non-degenerate. It is easy to verify

that V (Sup(A

g

)) = F

m

2

if and only if g is non-degenerate. Suppose v = u

(i

1

)

�� � ��u

(i

r

)

where u

(i

j

)

� �

(i

j

)

then we say that R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g is a representation of v. For v 2 F

m

2

, de�ne

S(v)

4

= set of all representations of v in the vetor spae V (Sup(A

g

)):

Example 1 (ontinued) For v = 000, we have S(v) = S(000) = fR

1

; R

2

; R

3

; � � � ; R

15

; R

16

; R

17

g where

R

1

= f((0; 0; 0); (1; 1; 0))g, R

2

= f((0; 0; 0); (0; 1; 1))g, R

3

= f((0; 0; 0); (1; 0; 1))g,

R

4

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1))g, R

5

= f((0; 0; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

6

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (1; 0; 1))g, R

7

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1))g,

R

8

= f((1; 0; 0); (1; 1; 0)); ((1; 0; 0); (1; 0; 1))g, R

9

= f((0; 0; 1); (0; 1; 1)); ((0; 0; 1; 1; 0; 1))g,

R

10

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

11

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1)); ((0; 0; 0); (1; 0; 1))g,

R

12

= f((1; 0; 0); (1; 1; 0)); ((0; 0; 0); (0; 1; 1)); ((1; 0; 0); (1; 0; 1))g,

R

13

= f((0; 0; 0); (1; 1; 0)); ((0; 0; 1); (0; 1; 1)); ((0; 0; 1); (1; 0; 1))g,

R

14

= f((1; 1; 0); (1; 1; 0)); ((0; 1; 1); (0; 1; 1)); ((1; 0; 1); (1; 0; 1))g,

R

15

= f((1; 1; 0); (1; 1; 0)); ((0; 1; 0); (0; 1; 1)); ((1; 0; 0); (1; 0; 1))g,

R

16

= f((0; 1; 0); (1; 1; 0)); ((0; 1; 1); (0; 1; 1)); ((0; 0; 1); (1; 0; 1))g,

R

17

= f((1; 0; 0); (1; 1; 0)); ((0; 0; 1); (0; 1; 1)); ((1; 0; 1); (1; 0; 1))g:

Note:

1. S(v) = � if and only if v =2 V (Sup(A

g

)):

2. If v = (0; � � � ; 0), then S(v) 6= �:

6

Let v 2 F

m

2

and R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g 2 S(v). De�ne

C(R)

4

=

(�1)

r

2

(k

i

1

�1)+���+(k

i

r

�1)

:

C

v

4

= (�1)

wt

2

(v)

P

R2S(v)

C(R):

9

=

;

(4)

Example 1 (ontinued) C

000

= C(R

1

)+C(R

2

)+C(R

3

)+� � �+C(R

15

)+C(R

16

)+C(R

17

) =

(�1)

1

2

2�1

+

(�1)

1

2

2�1

+

(�1)

1

2

2�1

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

3

2

6�3

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

2

2

4�2

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

+

(�1)

3

2

6�3

=

�1

Note that if S(v) = �, then

P

R2S(v)

C(R) = 0 and hene, if v =2 V (Sup(A

g

)) then C

v

= 0:

The parameters C

v

for v 2 F

m

2

are derived entirely from the ANF of g. Our next result expresses

(�1)

g(x)

in terms of C

v

.

Theorem 3.2

(�1)

g(x)

= 1 +

X

v2F

m

2

C

v

(�1)

hv;xi

where C

v

is as de�ned by Equation 4.

Proof : As before let Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g where wt(�

(i)

) = k

i

. Using Proposition 3.2 and Propo-

sition 3.4 we an write.

(�1)

g(x)

=

Y

�:A

g

(�)=1

0

�

1�

1

2

m�1

X

fu2F

m

2

:u��g

2

m�wt(�)

(�1)

hu;xi�wt

2

(u)

1

A

The �rst term in the expansion of the above expression is learly 1. For 1 � r � p = wt(A

g

), the general

term is of the form

�

�1

2

m�1

�

r

X

u

(i

1

)

��

(i

1

)

� � �

X

u

(i

r

)

��

(i

r

)

2

(m�k

i

1

)+���+(m�k

i

r

)

(�1)

hu

(i

1

)

�����u

(i

r

)

;xi�wt

2

(u

(i

1

)

�����u

(i

r

)

)

Let v = u

(i

1

)

� � � ��u

(i

r

)

. Then R = f(u

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

)g is a representation of v. Therefore the

general term is of the form

X

v2F

m

2

X

R2S(v)

C(R)(�1)

hv;xi�wt

2

(v)

=

X

v2F

m

2

C

v

(�1)

hv;xi

:

This gives us the desired result.

Now we are in a position to state the main result of this setion whih relates W

g

(v) to C

v

.

Theorem 3.3 If g is an m-variable Boolean funtion then

W

g

(v) = 2

m

(C

v

+ Æ

v

) (5)

where Æ

v

= 1 if v = 0 else Æ

v

= 0:

Proof : From Theorem 3.2 we have

(�1)

g(x)

� 1 =

X

v2F

m

2

C

v

(�1)

hv;xi

:

So [(�1)

g(0)

� 1; : : : ; (�1)

g(2

m

�1)

� 1℄ = [C

0

; : : : ; C

2

m

�1

℄H

m

; where H

m

is the (2

m

� 2

m

) Hadamard matrix

(see [7, page 44℄). Post multiplying both sides by H

m

and noting that H

m

H

m

= 2

m

I

2

m

we get

[(�1)

g(0)

; : : : ; (�1)

g(2

m

�1)

℄H

m

� [1; : : : ; 1℄H

m

= 2

m

[C

0

; : : : ; C

2

m

�1

℄:

i.e. [W

g

(0); : : : ;W

g

(2

m

� 1)℄� [2

m

; 0; : : : ; 0℄ = 2

m

[C

0

; : : : ; C

2

m

�1

℄: Hene 2

m

C

v

=W

g

(v)� 2

m

Æ

v

7

4 Simplifying C

v

Theorem 3.3 relates W

g

(v) to C

v

. Thus to ompute W

g

(v) it is suÆient to ompute C

v

. However, the

de�nition of C

v

given by 4 is in purely algebrai terms. We need to obtain a formula for C

v

whih an be

omputed by an algorithm. In this setion we perform this task of simplifying C

v

.

We start by de�ning ertain terms. As in Setion 3, we assume Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g. Given ; 6=

S � [p℄ = f1; 2; � � � ; pg and v 2 F

m

2

, we de�ne �(S; v) as follows. Let v = (v

1

; � � � ; v

m

) and S = fi

1

; � � � ; i

r

g.

Write �

(i

j

)

= (�

j;1

; � � � ; �

j;m

) where �

j;k

2 f0; 1g for 1 � j � r, 1 � k � m. Let �(S; v) be a Boolean

formula whih is true if and only if there is a k 2 [m℄; suh that �

j;k

= 0 for all j 2 [r℄ and v

k

= 1: Let

�(S) =

W

i2S

�

(i)

= �

(i

1

)

_ � � � _ �

(i

r

)

);

�(S) = wt(�(S)):

)

(6)

Here _ represents the bitwise logial OR of two binary strings of the same length. De�ne

�(S; v) = 0 if �(S; v) = 1

=

1

2

�(S)�jSj

otherwise:

)

(7)

Remark: If �(S; v) > 0, then the value of �(S; v) is independent of v and depends only on S.

Theorem 4.1

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

r

�(S; v):

Proof : Fix a set S, suh that, ; 6= S = fi

1

; : : : ; i

r

g � [p℄ and a vetor v = (v

1

; : : : ; v

m

) 2 F

m

2

: De�ne

�(S) =

2

r

2

k

i

1

+���+k

i

r

where k

i

j

= wt(�

(i

j

)

). As before, let �

(i

j

)

= (�

j;1

; � � � ; �

j;m

), 1 � j � r and de�ne

�

k

=

P

r

j=1

�

j;k

. For 1 � k � m, de�ne

b

k

= 2

�

k

�1

if �

k

6= 0

= 1 if �

k

= 0; v

k

= 0

= 0 if �

k

= 0; v

k

= 1

9

>

=

>

;

(8)

De�ne n(S; v) = b

1

� � � b

m

.

Claim 1: �(S; v) = n(S; v)�(S)

Proof of Claim 1: There are two ases to onsider.

Case �(S; v) = 1 : In this ase, �(S; v) = 0 by Equation 7. Also �(S; v) = 1 implies that there is a k 2 [m℄

suh that �

j;k

= 0 for all j 2 [r℄ and v

k

= 1. This implies that �

k

= 0 and v

k

= 1. Hene b

k

= 0 and so

n(S; v) = 0. Thus in this ase we have �(S; v) = n(S; v)�(S).

Case �(S; v) = 0 : In this ase �(S; v) =

1

2

m

1

�r

by Equation 7, where m

1

= �(S) and r = jSj. Also

b

k

= 2

�

k

�z

k

where z

k

= 0 if �

k

= 0; and z

k

= 1 if �

k

> 0. So

n(S; v) = (2

�

1

�z

1

)(2

�

2

�z

2

) � � � (2

�

m

�z

m

) = 2

(�

1

+���+�

m

)�(z

1

+���+z

m

)

:

Sine m

1

= �(S) = wt(�

(i

1

)

_ � � � _ �

(i

r

)

) we have (z

1

+ z

2

+ � � �+ z

m

) = m

1

. Also we have

m

X

k=1

�

k

=

m

X

k=1

r

X

j=1

�

j;k

=

r

X

j=1

m

X

k=1

�

j;k

=

r

X

j=1

k

i

j

:

So we get

n(S; v) = 2

(�

1

+���+�

m

)�m

1

=

2

(k

i

1

+:::+k

i

r

)

2

m

1

:

8

By de�nition �(S) =

2

r

2

k

i

1

+���+k

i

r

and so �(S; v) =

1

2

m

1

�r

= n(S; v)�(S). This ompletes the proof of

Claim 1.

Claim 2:

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

r

n(S; v)�(S):

Proof of Claim 2: From Equation 4, we have C

v

= (�1)

wt

2

(v)

P

R2S(v)

C(R).

Given S = fi

1

; � � � ; i

r

g, the vetors �

(i

1

)

; : : : ; �

(i

r

)

are �xed. Let D(S; v) be the set of all representations

of v of the form f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g. The value of C(R) for any suh representation R is equal to

2

r

2

k

i

1

+���+k

i

r

and depends only on S. From de�nition, this value is equal to �(S). In evaluating C

v

we have

to sum over all representations of v. The ontribution of the set S to this sum is learly jD(S; v)j�(S).

Thus we obtain

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

jD(S; v)j�(S):

From this it is suÆient to show that n(S; v) = jD(S; v)j. There are two ases to onsider.

Case b

k

= 0 for some k 2 [m℄ : This implies that v annot be represented as f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g

for any hoie of u

(i

j

)

� �

(i

j

)

. Hene D(S; v) = ; and so we have n(S; v) = 0 = jD(S; v)j.

Case b

k

> 0 for all k 2 [m℄ : In this ase D(S; v) 6= ;. Suppose R = f(u

(i

1

)

; �

(i

1

)

); : : : ; (u

(i

r

)

; �

(i

r

)

g 2

D(S; v), where for 1 � j � r, u

(i

j

)

= (u

j;1

; : : : ; u

j;m

) 2 F

m

2

and �

(i

j

)

= (�

j;1

; : : : ; �

j;m

) 2 F

m

2

.

De�ne two r�m matries M

1

and M

2

in the following manner. The (j; k)th entry of M

1

(resp. M

2

) is

�

j;k

(resp. u

j;k

). The onditions u

(i

j

)

� �

(i

j

)

is equivalent to M

2

�M

1

, where the matries are ompared

entrywise. Sine R is a representation of v, we must have,

u

1;k

� : : :� u

r;k

= v

k

for eah k 2 [m℄. (9)

Thus the problem of enumerating the set D(S; v) is equivalent to enumerating matries M

2

suh that

M

2

� M

1

and Equation (9) holds. Let

k

be the number of possible hoies for the kth olumn of M

2

.

Then jD(S; v)j =

1

: : :

m

and it is suÆient to show that

k

= b

k

for eah k 2 [m℄. There are two ases

to onsider.

Subase �

k

= 0 : In this ase v

k

= 0 and b

k

= 1. Sine �

k

= 0, the kth olumn ofM

1

is the all zero olumn.

Hene the only possible hoie for the kth olumn of M

2

is also the all zero olumn and so

k

= 1 = b

k

.

Subase �

k

> 0 : In this ase b

k

= 2

�

k

�1

. We �rst observe that the XOR of the ones in the kth olumn

of M

2

must be equal to v

k

. Thus we have to onsider two ases aording as v

k

= 0 or v

k

= 1. First

suppose v

k

= 0. The kth olumn of M

1

ontains �

k

ones. Sine v

k

= 0, we an hoose an even number of

these ones to form a olumn for the matrix M

2

. Thus the number of hoies for the kth olumn of M

2

is

k

=

�

�

i

0

�

+

�

�

i

2

�

+ � � �+

�

�

i

2b

�

i

2

�

= 2

�

k

�1

= b

k

. A similar argument holds when v

k

= 1.

This ompletes the proof of Claim 2. Theorem 4.1 is a diret onsequene of Claim 1 and Claim 2.

Theorem 4.1 provides a method for omputing C

v

. However, this requires an algorithm to onsider

all possible subsets of [p℄ = f1; : : : ; pg. If p is even moderately large, this yields an impratial algorithm.

Our next task is to show that it is atually not required to onsider all the subsets of [p℄. In this setion

we present one suh speial ase and in the next setion we present a general algorithm to ompute C

v

without generating all the subsets of [p℄.

Theorem 4.2 Let Sup(A

g

) = f�

1

; � � � ; �

p

g and t > 0 be suh that for any fi

1

; : : : ; i

t+1

g � f1; : : : ; pg, we

have wt(�

i

1

_ � � � _ �

i

t+1

) = m: Then

C

v

= (�1)

wt

2

(v)

0

�

p

X

j=t+1

(�1)

j

2

m�j

�

p

j

�

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

9

Proof : We have from Theorem 4.1

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

jSj

4 (S; v)

= (�1)

wt

2

(v)

0

�

X

;6=S�[p℄;jSj�t+1

(�1)

jSj

4 (S; v) +

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

:

Under the given ondition if jSj � t+ 1 then using Equation 7 we have �(S) = m. Hene

C

v

= (�1)

wt

2

(v)

0

�

X

;6=S�[p℄;jSj�t+1

(�1)

jSj

1

2

m�r

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

= (�1)

wt

2

(v)

0

�

p

X

j=t+1

(�1)

j

1

2

m�r

�

p

j

�

+

X

;6=S�[p℄;jSj�t

(�1)

jSj

4 (S; v)

1

A

This ompletes the proof.

Under the ondition of Theorem 4.2, to evaluate C

v

we only have to onsider all non empty subsets of

[p℄ of ardinality at most t. If t is reasonably small, this is muh better than onsidering all non empty

subsets of [p℄. In the next setion, we develop this idea to obtain an algorithm to ompute C

v

.

5 Algorithm

In general we are interested in omputing the Walsh transform of g at all the points u 2 F

m

2

. However, if m

is relatively large (say around 50), then it will be pratially impossible to ompute the Walsh transform at

all the 2

m

points. In suh a situation, it will be of interest to ompute the Walsh transform at a partiular

point or for a small set of points. The fast Walsh transform takes time O(m2

m

) and omputes the Walsh

transform at all the 2

m

points. In fat, to the best of our knowledge, there is no known algorithm whih

an ompute the Walsh transform at a partiular point in time less than 2

m

.

Our approah is to design an algorithm that onsists of two parts. In the �rst part, the algorithm

does a ertain amount of preproessing and prepares a list. In the seond part, the algorithm takes as

input a partiular v 2 F

m

2

and omputes C

v

. (Using Theorem 3.3 this also gives us W

g

(v)). One the

preproessing is omplete, the seond part an be run for di�erent v without running the �rst part. This

makes it eÆient to ompute W

g

(v) for a set of v.

We start by de�ning ertain parameters. For ; 6= S � [p℄ reall from equation (6) that �(S) =

W

i2S

�

(i)

and �(S) = wt(�(S)). For j = 0; � � � ;m de�ne

B

j

4

=

X

�(S)=j

(�2)

jSj

and B

4

=

m�1

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v):

Note that if S = fig and �

(i)

= (0; : : : ; 0), then �(S) = 0. The vetor (0; : : : ; 0) 2 Sup(A

g

) implies that

the onstant term in the ANF of g is equal to 1. The values of B

0

; : : : ; B

m

are independent of v and only

the value of B depends on v.

Theorem 5.1 For any v 2 F

m

2

, we have

C

v

= (�1)

wt

2

(v)

�

(�1)

p

� 1�B

0

� � � � �B

m�1

2

m

+B

�

: (10)

10

Proof : De�ne

A

4

=

X

;6=S�[p℄

(�2)

jSj

=

p

X

j=1

(�2)

j

�

p

j

�

= �1 + (�1)

p

:

Then A =

P

m

j=0

B

j

. Consequently, B

m

= A � B

0

� � � � � B

m�1

. To see this note that

P

m

j=0

B

j

=

P

m

j=0

P

�(S)=j

(�2)

jSj

=

P

;6=S�[p℄

(�2)

jSj

= A:

From Theorem 4.1 we have

C

v

= (�1)

wt

2

(v)

X

;6=S�[p℄

(�1)

jSj

�(S; v)

= (�1)

wt

2

(v)

2

4

m

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v)

3

5

= (�1)

wt

2

(v)

2

4

X

�(S)=m

(�1)

jSj

�(S; v) +

m�1

X

j=0

X

�(S)=j

(�1)

jSj

�(S; v)

3

5

= (�1)

wt

2

(v)

�

B

m

2

m

+B

�

= (�1)

wt

2

(v)

�

A�B

0

� � � � �B

m�1

2

m

+B

�

This ompletes the proof.

Our algorithm is based on Equation (10). The intuition behind the algorithm is the following. For

most sets S, the value of �(S) will be equal to m and will be aounted for by B

m

. Thus if we an avoid

omputing B

m

diretly, then we will be saving a lot of omputation. We will ompute B

0

; : : : ; B

m�1

and

then use Equation (10) to ompute the value of C

v

. However, the value of B has to be omputed. We next

desribe how this is done.

De�ne

S

1

= fS � [p℄ : �(S) < mg;

S

2

= �(S

1

) = f�(S) : S 2 S

1

g:

)

(11)

Example 2 (ontinued) From now onward, we onsider the Boolean funtion g

2

(x

1

; x

2

; x

3

) = x

1

x

2

�

x

2

x

3

�x

1

�x

2

, so Sup(A

g

2

) = f(1; 1; 0); (0; 1; 1); (1; 0; 0); (0; 1; 0)g. This Boolean funtion is taken di�erent

from the previous one so that jS

1

j and jS

2

j are di�erent. Here p = 4, m = 3. It is easy to see

S

1

= ff1g; f2g; f3g; f4g; f1; 3g; f1; 4g; f2; 4g; f3; 4g; f1; 3; 4gg,

S

2

= f�(f1g) = (1; 1; 0); �(f2g) = (0; 1; 1); �(f3g) = (1; 0; 0); �(f4g) = (0; 1; 0)g and hene jS

1

j = 9 and

jS

2

j = 4. Note by de�nition of �, �(f1; 3g) = (1; 1; 0) _ (1; 0; 0) = (1; 1; 0) = �(f1g). And this is the reason

for jS

2

j � jS

1

j.

Write S

2

= fstr

1

; : : : ; str

n

g for some n > 0. For 1 � i � n de�ne val

i

=

P

�(S)=str

i

(�2)

jSj

. In the �rst

part of our algorithm we prepare the list L = ((str

1

; val

1

); : : : ; (str

n

; val

n

)). Note that this part does not

depend on v.

Example 2 (ontinued) S

2

= fstr

1

= (1; 1; 0); str

2

= (0; 1; 1); str

3

= (1; 0; 0); str

4

= (0; 1; 0)g: Now

val

1

=

P

�(S)=str

1

(�2)

jSj

= (�2)

1

+ (�2)

2

+ (�2)

2

+ (�2)

2

+ (�2)

3

= �2. Similarly val

2

= 2, val

3

= �2

and val

4

= �2

For str; v 2 F

m

2

, de�ne (str; v)

4

= str ^ v where str is bitwise omplement of str and ^ is the bitwise

logial AND. The operation ^ is performed bitwise on str and v. Suppose ; 6= S � [p℄ suh that �(S) = str

11

and v 2 F

m

2

. Then �(S; v) > 0 if and only if (str; v) = (0; : : : ; 0). Thus

B =

X

 (str

i

;v)=(0;:::;0)

val

i

2

wt(str

i

)

:

Also for j = 0; : : : ;m� 1,

B

j

=

X

wt(str

i

)=j

val

i

:

Hene one the list L is prepared, it is easy to ompute B

0

; : : : ; B

m�1

and B. Now we desribe a method

for preparing the list L.

Example 2 (ontinued) We take v = (1; 0; 0), then ((1; 1; 0); (1; 0; 0)) = (0; 0; 1) ^ (1; 0; 0) = (0; 0; 0):

Similarly ((0; 1; 1); (1; 0; 0)) = (1; 0; 0), ((1; 0; 0); (1; 0; 0)) = (0; 0; 0) and ((0; 1; 0); (1; 0; 0)) = (1; 0; 0):

So B =

val

1

2

wt(str

1

)

+

val

3

2

wt(str

3

)

=

2

4

+

�2

2

= �

1

2

Again from de�nition B

0

= 0; B

1

= val

3

+ val

4

= �2 + (�2) =

�4; B

2

= val

1

+ val

2

= 2 + 2 = 4: Now A = �1 + (�1)

p

= 0. So C

v

= (�1)

wt

2

(v)

h

A�B

0

�B

1

�B

2

2

m

+B

i

=

�[

0�0+4�4

2

3

+

1

2

℄ = �

1

2

:

First we desribe a rooted direted tree T whose nodes are the subsets of [p℄ = f1; : : : ; pg. The root

node of T is the empty set. The hildren of a set S are the sets S

1

; : : : ; S

k

, where for 1 � i � k,

S

i

= S [fmax(S) + ig and k = p�max(S). This ensures that if S

0

is a node in the subtree rooted at S,

then S � S

0

.

Our algorithm will traverse all the nodes S of T for whih �(S) < m. (Note that T has 2

p

nodes and

if an algorithm is required to traverse all the nodes of T , then the algorithm will be exponential in p.)

From the struture of T we know that if �(S) = m for some node S, then �(S

0

) = m for all nodes S

0

in

the subtree rooted at S. This ruial fat makes the traversal partiularly eÆient. If during the traversal

we reah a node S with �(S) = m, then we need not visit any of the nodes in the subtree rooted at S.

This means that we are e�etively pruning the subtree rooted at S from T . The more we enounter this

pruning e�et, the more eÆient is our algorithm.

While traversing T we prepare the list L in the following manner. Initially L is the empty list. Let

First(L) = fstr : (str; val) 2 Lg: Suppose we have reahed a node S with �(S) < m. If �(S) =2 First(L),

then we add (�(S); (�2)

jSj

) to L. On the other hand, if �(S) 2 First(L), then we update val to val+(�2)

jSj

.

Thus the operations on L are searh and insert. We implement L using a height balaned binary tree

(see [5℄). Hene eah searh/insert operation requires time O(logL). One suh searh or insert operation

is required for eah S suh that �(S) < m. Also the total time spent at any node whih is visited is O(m).

Hene the total time required by the algorithm is O(mjS

1

j log(jS

2

j)). We next present the algorithm for

omputing C

v

.

Algorithm ComputeCv

Inputs :

1. sup(A

g

), where g is an m-variable Boolean funtion.

2. v 2 F

m

2

.

Output : C

v

.

Part 1 : Computation of list L.

Set L equal to the empty list.

Set str equal to the empty string.

Traverse(str).

Assume L = ((str

1

; val

1

); : : : ; (str

n

; val

n

)) at the end of Traverse.

Part 2 : Computation of C

v

.

Set B

0

= � � � = B

m�1

= 0.

12

For i = 1 to n do

if (wt(str

i

) = j)) then B

j

= B

j

+ val

i

.

if ((str

i

; v) = (0; : : : ; 0)) then B = B +

val

i

2

wt(str

i

)

.

End For.

C

v

= (�1)

wt

2

(v)

(

1

2

m

((�1)

p

� 1�

P

m�1

i=0

B

i

) +B).

Return C

v

.

End Algorithm ComputeCv.

The subroutine Traverse() performs a depth �rst searh on the tree T desribed before. The details of the

algorithm Traverse() are given below. In the algorithm we use the notation �(tstr) for a p-bit string tstr

to mean �(S) where S = fi : tstr

i

= 1g.

Algorithm Traverse(str)

Input : a binary string str of length at most p.

For i = jstrj to p� 1 do

Set j = i� jstrj.

Set tstr = strjj0

j

jj1.

If (�(tstr) < m) then

If (�(tstr) =2 First(L), then

Add (�(tstr); (�2)

wt(tstr)

to L.

Else suppose (�(tstr); val) is present in L.

Set val = val + (�2)

wt(tstr)

.

End If.

If (jtstrj < p), then Traverse(tstr).

End If.

End For.

End Algorithm Traverse

From the above disussion we obtain the following result.

Theorem 5.2 Let v

1

; : : : ; v

t

2 F

m

2

and g be an m-variable Boolean funtion. Then fW

g

(v

i

) : 1 � i � tg

an be omputed in time O(m(jS

1

j log(jS

2

j) + tjS

2

j)).

Proof : Part 1 of Algorithm ComputeCv has to be exeuted only one for all the vetors v

1

; : : : ; v

t

. This

takes time O(jS

1

j log(jS

2

j)). Part 2 of Algorithm ComputeCv has to run one for eah of the vetors

v

1

; : : : ; v

t

. Eah exeution of Part 2 takes time O(jS

2

j). This gives the time omplexity of the algorithm.

Corretness of the algorithm follows from the previous disussion.

Remark : It is important to note that for small t it is possible to have jS

1

j log(jS

2

j)+ tjS

2

j � min(2

p

; 2

m

).

In suh situations it is possible to eÆiently ompute the Walsh transform of g for a small set of points.

Cardinality of jS

1

j and jS

2

j depends on ANF and in the worst ase an be O(2

p

). To keep jS

1

j and jS

2

j

within a ontrolable limit, the ANF should be a sparse multinomial and support of ANF should ontain

terms with very high weights (nearly m). In Setion 6, we provide some experimental data to support this

intuition.

6 Experimental Results

Similar to Setion 3, let Sup(A

g

) = f�

(1)

; : : : ; �

(p)

g. We write �

(i)

= (�

i;1

; � � � ; �

i;m

) where �

i;j

2 f0; 1g for

1 � i � p, 1 � j �m. For 1 � j � m, de�ne �

j

= p�

P

p

i=1

�

i;j

. Let �

max

= max

j2[m℄

(�

j

), �

avg

=

P

m

i=1

�

i

m

and w

avg

=

P

p

i=1

wt(�

(i)

)

p

: We use the notation S

1

and S

2

as de�ned in Equation 11.

13

Tables 1 and 2 onsider the ases p > m and p < m respetively. (Here we note that the lass of

Boolean funtions for whih p is less than m is also very rih. For example this lass inludes an important

subset of the lass of bent funtions.) The results in these two tables show that �

i

's (speially �

max

) are

ruial to the omplexity of the algorithm. If �

max

is omparatively larger than the other �

i

's then the size

of jS

1

j is exponential in �

max

. Also note that in general jS

1

j � 2

�

max

.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 250 546 2135470; 1048576 20; 15; 94

100; 250 547 3184044; 2097152 21; 15; 94

100; 250 549 5288601; 4194304 22; 15; 94

100; 250 549 9482897; 8388608 23; 15; 94

100; 250 550 17871500; 16777216 24; 15; 94

100; 250 552 34648698; 33554432 25; 15; 94

100; 250 553 68203122; 67108864 26; 15; 94

Table 1

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 50 2258 365465; 131072 17; 15; 70

100; 50 2392 1340716; 1048576 20; 15; 70

100; 50 2429 8678491; 8388608 23; 15; 70

100; 50 2465 67386792; 67108864 26; 15; 70

Table 2

From the de�nition, the parameters m, p, �

avg

and w

avg

satisfy the following relationship: m � �

avg

=

p� (m� w

avg

). For �xed m and p, �

avg

dereases as w

avg

inreases. Similarly, for �xed m and �

avg

, as p

inreases so does w

avg

. In Table 3, we show the hange of w

avg

with p for m = 100 and �

avg

= 16.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

100; 50 9976 5313186; 524288 19; 16; 68

100; 100 2934 6482400; 524288 19; 16; 84

100; 200 1414 4609688; 524288 19; 16; 92

100; 400 827 6644436; 524288 19; 16; 96

Table 3

It is possible to run the algorithm in ases where m is large but �

max

is small. Table 4 provides some data

whih illustrates this fat.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

200; 200 725 96213; 32768 15; 12; 188

400; 200 2175 207969; 16384 14; 12; 376

800; 200 1938 528605; 65536 16; 12; 752

3200; 100 2290 243188; 16384 14; 12; 2816

3200; 100 2502 4436706; 4194304 22; 12; 2816

Table 4

In the above examples we see that jS

2

j is small. In Table 5 we provide some examples for whih jS

2

j is

large but w

avg

is small.

14

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

50; 25 134260 21432167; 1048576 20; 16; 18

60; 30 150554 48852312; 8388608 23; 16; 28

70; 35 92849 61196173; 16777216 24; 16; 38

80; 40 13403 17968626; 33554432 26; 16; 48

90; 45 22728 585495610; 134217728 27; 16; 58

Table 5

As long as �

max

is small (say less than 25), it is possible to run the algorithm for quite large values of both

m and p. Table 6 provides some evidene of this fat.

m; p jS

2

j jS

1

j; 2

�

max

�

max

; �

avg

; w

avg

400; 800 1578 1442226; 32768 15; 14; 393

400; 800 1588 2489671; 1048576 20; 14; 393

Table 6

Table 7 provides the atual running times taken by a simple C language implementation (Linux operating

system on Pentium IV, 2.4 GHz CPU, 1 GB RAM).

m; p jS

2

j jS

1

j time in seonds

100; 50 9976 5313186 50

100; 100 625 103455 2

100; 200 1297 71257808 830

400; 800 1588 2489671 1059

Table 7

Note that the following are true for the experiments performed above.

1. jS

1

j is exponential in �

max

and hene the run time of the algorithm is exponential in �

max

.

2. The bounds on p are 0 � p � 2

m

. But for our algorithm to be useful the value of p an not be very

large beause in that ase �

max

an not be restrited to low values (say 25) and our algorithm will

not work.

3. The value of w

avg

should be high i.e. ANF should be very sparse multinomial and support of ANF

should ontain terms with very high weight.

4. In most ases, jS

2

j is small ompared to jS

1

j. Also jS

2

j tends to grow as w

avg

dereases.

5. In all the examples given above, the hosen funtions were non-degenerate on all the variables.

Finally, in summary we note that for ertain types of Boolean funtions on large number of variables

algorithm ComputeCv an be used to ompute the Walsh transform for a small set of points. This an

provide some useful information about the Boolean funtion. For example, one an obtain the weight (or

size of support) of g by omputing W

g

(0). Also the ability to probe the spetral domain of the funtion at

random points an provide an estimate of the nonlinearity of the funtion.

15

7 Possible Improvements

In this setion we disuss possible ways of improving the algorithm. From Theorem 5.2, we see that the

omplexity of the algorithm depends on jS

1

j and jS

2

j. These two parameters are determined by the ANF

of the funtion. We disuss two ways of improving the eÆieny.

Let g be the funtion under onsideration whose ANF is A

g

. Suppose we apply an aÆne transformation

to the variables of g to obtain f suh that jsup(A

f

)j < jsup(A

g

)j. In suh a situation it might be possible

to improve the run time of the algorithm. The problem is in obtaining an aÆne transformation whih will

perform this task.

Another approah to improve the eÆieny is to look for a more general and ompat algebrai repre-

sentation of a funtion. We briey disuss this approah below and indiate the diÆulty of this method.

Let g be of the form

g(x

1

; x

2

; : : : ; x

m

) =

M

(�;�)2list

(x

1

� �

1

)

�

1

� � � (x

m

� �

m

)

�

m

where list = ((�

(1)

; �

(1)

); � � � ; (�

(p)

; �

(p)

)) and �

(i)

; �

(i)

2 F

m

2

. The ANF of g is a speial ase of the above

form where �

1

= � � � = �

m

= 0.

Let r be suh that 1 � r � jlistj and suppose v = u

(i

1

)

� � � � � u

(i

r

)

where u

(i

j

)

� �

(i

j

)

then we say

R = f(u

(i

1

)

; �

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

; �

(i

r

)

)g is a representation of v .

Let R 2 S(v), suh that R = f(u

(i

1

)

; �

(i

1

)

; �

(i

1

)

); � � � ; (u

(i

r

)

; �

(i

r

)

; �

(i

r

)

)g where u

(i

j

)

� �

(i

j

)

and for

1 � j � r, let k

i

j

= wt(�

(i

j

)

). De�ne

C(R) =

(�1)

r

2

(k

i

1

�1)+���+(k

i

r

�1)

(�1)

hu

(i

1

)

;�

(i

1

)

i�����hu

(i

r

)

;�

(i

r

)

i

:

Now it is simple to hek that Theorem 3.3 holds. But in this situation it seems diÆult to simplify the

formula and obtain an algorithm to ompute C

v

.

8 Conluding Remarks

In this paper we have developed an algorithm to ompute the Walsh transform of Boolean funtion at a

point from its algebrai normal form. This an also be extended to evaluate the Walsh transform for a set

of points. The advantage of our method is that in ertain situations it is possible to run our algorithm to

evaluate the Walsh transform (at a small set of points) of Boolean funtions with large number of variables

and hene an be used in ases where the fast Walsh transform is not appliable.

An important parameter in the study of a Boolean funtion is its nonlinearity. To ompute nonlinearity,

it is neessary to ompute the Walsh transform at all the points. For Boolean funtions on a large number

of variables (� 40), it is pratially impossible to perform this task. In ertain situations, our algorithm

an be used to evaluate the Walsh transform at any partiular point. In suh situations, it is possible to use

our algorithm in onjuntion with some randomized heuristi (simulated annealing/ hill limbing/ geneti

algorithms) to estimate the nonlinearity of the funtion. Thus we feel that the algorithm developed in this

paper is a valuable tehnique for the study and analysis of Boolean funtions.

Aknowledgements: We wish to thank the reviewers for reading the paper and providing several sug-

gestions.

16

Referenes

[1℄ K. G. Beauhamp. Appliations of Walsh and Related Funtions. Aademi Press, 1984.

[2℄ M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi and M. Sudan. Linearity testing in harateristi

two. IEEE Transations on Information Theory, Vol. 42, No. 6, pp. 1781{1795, November 1996.

[3℄ C. Carlet and P. Guillot. A new representation of Boolean funtions. Proeedings of AAECC'13,

Leture Notes in Computer Siene, 1719, pp 94-103, 1999.

[4℄ C. Carlet and P. Sarkar. Spetral Domain Analysis of Correlation Immune and Resilient Boolean

Funtions. Finite Fields and their Appliations, Volume 8, Number 1, January 2002, Pages 120-130.

[5℄ E. Horowitz and S. Sahni. Fundamentals of Data Strutures, W. H. Freeman and Co., 1983.

[6℄ X.-D. Hou. Bent Funtions, Partial Di�erene Sets, and Quasi-Frobenius Loal Rings. Designs, Codes

and Cryptography 20(3): 251-268 (2000).

[7℄ F. J. MaWillams and N. J. A. Sloane. The Theory of Error Correting Codes. North Holland, 1977.

[8℄ N. Linial, Y. Mansour and N. Nisan. Constant Depth Ciruits, Fourier Transform, and Learnability.

Journal of the ACM, 40(3): 607-620 (1993).

[9℄ P. Sarkar and S. Maitra. Cross-Correlation Analysis of Cryptographially Useful Boolean Funtions

and S-Boxes. Theory of Computing Systems, 35(1): 39-57 (2002).

17

