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In this paper we introduce the class of composite access structures for secret sharing.
We also provide secret sharing schemes realizing these structures and study their infor-
mation rates. As a particular case of this construction, we present the subclass of iterated
threshold schemes, a large class of ideal secret sharing schemes.
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1. INTRODUCTION

Secret sharing schemes are methods for distributing a secret K among a set P of
participants. Fach participant receives a piece of the secret, or share, in such a way
that only specified subsets of P are able to reconstruct the secret by pooling their
shares. If non-allowed coalitions cannot obtain any information about the secret
then the scheme is said to be perfect.

The family of qualified subsets I' C 2% is called the access structure of the
scheme. It is considered to be monotone, that is, if A C B C P and A € T, then
also B € T'. Thus the set of minimal elements in ", denoted I'"*, determines the
whole structure I' and it is called the basis of I'.

One of the basic parameters of a secret sharing scheme ¥ is its information rate,
which is the rate between the length (in bits) of the secret and the maximum length
of the shares of the participants:

log, |K|

p(5,T,K) = p(%) = maxp (log, |S(P)|)

Here K is the set of all possible secrets for ¥ and S(P) is the set of all possible
shares for P € P. A scheme ¥ is called ideal if p(£) = 1 (notice that always
p(X) <1). An access structure I is called ideal if there is an ideal scheme realizing
it. More generally we define the optimal information rate of the structure I" as

p*(T) = sup(p(%, T, K))

where the supremum is taken over all possible ¥ and K for T'.
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The problems of characterizing ideal access structures and finding ideal schemes
for them are important and they have received great attention in the literature (see
for example [3, 4]).

A particular interesting class of secret sharing schemes is the class of threshold
schemes, which were the first secret sharing schemes introduced independently by
Blakley [1] and Shamir [8] in 1979. The access structure of a (¢, n)-threshold scheme
consists of all subsets of P with at least t out of n participants. Threshold schemes
are ideal and admit a vector space construction (see section 3). In what follows,
for short we shall denote a (¢, n)-threshold scheme simply by (¢,n).

In the case of threshold schemes all the participants have the same opportunity
for acceding to the secret. This property does not hold for general access struc-
tures: some participants have a great chance than others. This difference among
participants is not unsuitable in practice. On the contrary, it can be useful as it
reflects that usually in real life participants are, in a natural way, in a hierarchy and
not on equal terms. Then, structures in which participants are divided in several
classes abound in the literature: Simmons’ multilevel/multipart schemes, [9], sums
and products, bipartite structures, [7], compartmented schemes, [2], etc. In this
paper we present a very general construction of this type. Participants are divided
in several groups, each of them having its own family of authorized coalitions. As
a particular case of this construction we introduce the class of iterated threshold
schemes. We show that all schemes in this class are ideal and admit a vector space
construction. We also show that many ideal schemes (all ideal schemes in the case
of 4 participants and most ideal schemes in the case of 5 participants) in fact belong
to this class.

The organization of the paper is as follows: composite access structures are
defined in section 2, where some of their main properties are also stated. In section
3 we show how to construct secret sharing schemes for these structures. Section 4
is devoted to study of a particular type of composite structures, the so-called class-
reducible structures. Finally, in section 5 we study the particular interesting case in
which all the structures involved are either threshold or composition of threshold
structures.

2. COMPOSITION OF ACCESS STRUCTURES

Let P be a set of participants and let P = PyU---UP,, (r > 1) be a partition of
P (that is § #P; # P and P;NP; = B if i # ). Let us write P; = {P\? ... P}
andm =ny + - +n,. Foraset A C P we denote 4; = AN P;. Obviously
A=A U---UA,. Fori=1,...,r, let I'; be an access structure on P;, and let T’y
an access structure on the participant set 7 = {Py,...,P,}.

DEFINITION 1. With the notation as above, we define the composite access
structure of 'y, Ty, ..., [, following 'y, denoted I'y[['1,T2,...,[,], as

Do[l,Ts,...,T] ={ACP|3IB €Ty such that A; € T; for all P; € B}
= Uper, {ACP | A; €T for all P; € BY.

That is, each of the sets P; plays the role of a participant for T'g. A coalition
A C P is authorized if and only if it includes, as subsets, authorized coalitions in
enough of the components I'y,T's, ..., ', to constitute an authorized subset for T'y.
We have a pictorial representation of the scheme as given in Figure 1.



FIG. 1 Pictorial representation of composite structures

Composite secret sharing schemes can be useful for sharing secrets when the set
of participants is divided into several groups, each of them with its own family of
authorized coalitions. The relation among these groups is given by the structure
Iy. It is not so difficult to imagine a situation requiring a model of this type.

EXAMPLE 1.

(a) Sums and products. Two typical compositions of access structures are
sums and products, defined as follows: given a partition P = Py U --- U P,
and access structures I'y,..., T, the sum of 'y, ..., T, is

Ii+---+T,={ACP| A €T, for some i}
and the product

F1XXFTZ{AQ,P|AZ€FZfOI“aH'L}

SinceT'y +---+ T, = (1,r)[y,..., T ]and Ty x - x Ty = (r,7)[Tq, ..., Ty,
both are particular cases of our construction.

(b) Imsertions. Let I';,I'y be two structures defined on the sets P; and P,
and let P € P;. The insertion of I's at P in 'y, denoted T';(P +— T),
is defined to be the structure on the set Py \ {P} U Ps such that for A C
(Py \ {P}) U Py, we have A € T'1(P — I'y) if and only if ANP, € Ty, or
(ANP)U{P} € Ty and ANPy € T'y (see Martin [6]). It is clear that
[y (P = Ta) =Ty[2, (1,1),...,(1,1)].

Let us see some first properties of composite structures.
ProposITION 1. (Ty[[y,Ts,...,I)™ =TI, T, ..., T"].

Proof. Let T' =Ty['1,I5,...,Ty] and A € ™. Let C = {P; | 4; € T;,i # 0} €
Ty. Let us assume that C' ¢ T'y"™. Then there exists C' € T'y™ such that C' C C.
Let us consider the set

A=An |J P
P;eC’



Then A’ C A and A’ € I'"™ which contradicts the fact A € T'"™. Hence C' € I'y"™.
Let fix ¢ such that P; € C' and let us suppose A; ¢ I'}". Then there exists A, C A;
such that A € T*. Let D = A; \ A} C P;. Then A\ D C A and, since the P;’s
are a partition on P, A\ D € I'"™. This contradicts that A € I'™. Thus we have
r™ Cryry, Iy, ...,I'"]. The other inclusion is straightforward.

Next, we shall show that composition behaves well by duality. Let us remember
that for a given access structure I' on P, the dual structure of I" is defined as the
set of coalitions whose complement is not authorized,

I“"={ACP|P\A¢T}.
ProprosITION 2. (T'o[['y, Ty, ..., [ ]))* =T3[I7,T5, ..., Tx].

Proof. Let T = Tg[[y,Ts,...,T,], [ = T4}, T5,...,0% and let A € T'. There
is B € T'§ such that if P; € B then A; € '} (i # 0). By definition, for this B, if
P; € Bthen P;\ A; ¢ T';,1#0. If A ¢ T then P\ A € T'. This means that there
exists B’ € Ty such that if P; € B’ then (P\ A)NP; = P;\ A; € T; for i # 0.
Hence BNB' = and so B' C P\ B and P\ B € Ty. We arrive to a contradiction,
and therefore T C T'*.

Conversely, consider now A € T'*, that is, P\ A ¢ I". By definition, for every
B € Ty there exists P; € B such that P; \ A; ¢ T;. If A ¢ T then for every B’ € T}
there exists P; € B’ such that P; \ 4; € I';. Let I'f» = {B;};jes be the basis of T.
For each j € J there exists P;; € B; such that P;; \ A;; ¢ T';. Let B' = {Py; }je.
Then B; is not contained in P \ B’ because B' N B; # 0 for all j € J. Therefore,
B' € T}. On the other hand, for all P; € B’ we have P; \ 4; ¢ T'; which is a
contradiction. Hence I' D T'*.

From this result, in particular we have that the dual of the sum is the product
of the duals, and the dual of the product is the sum of the duals.

COROLLARY 1. The dual of a composite access structure is also a composite
access structure.

Obviously, every structure I' can be expressed as a composition in the ways
r =T[(1,1),---,(1,)] and T = (1,1)[[']. These compositions are called trivial.
We shall not consider trivial compositions any more. A structure that cannot be
expressed as a nontrivial composition is called indecomposable. For example, it
is easy to see that threshold access structures (¢,n) are indecomposable whenever
1<t <n.

On the other hand, the expression I['y[I'1,Ts,...,I';] of a structure as a com-
position is in general not unique, because the I';, i = 1,...,r, can be, themselves,
decomposable. We have the following result.

PROPOSITION 3. Let I' = T'g[T'1, T, ,T';]. Assume that for i = 1,...,r, we
have T'; = Agf) [Agl),Aéz), cee, Agz)] Then

T =ToA A, Al A ATIAl AP, Al

’ =
= (TolA, AP AT Al AW A A

PR
The proof is straightforward. The iterative application of this result yields the
following corollary.

COROLLARY 2. Let T' be a decomposable structure. Then T' can be written as
I =Ty[l'y,...,T,] where all the structures I'y, ..., T, are indecomposable.



3. COMPOSITE SCHEMES FOR COMPOSITE STRUCTURES

Let I' = [y[l'y,...,T;] be a composite access structure on P. In order to
construct a secret sharing scheme for I', we can compose secret sharing schemes
for each T';, 7 = 0,...,r. Following Martin, [6], if the set K of secrets to share has

cardinality ¢, then a perfect secret sharing scheme for T will be denoted PS(T, q).
Let us remember that for a participant P € P, S(P) denotes the set of all possible
shares for P, and that the insertion schemes were introduced in Example 1. The
following result can be found in [6].

THEOREM 1. Let I'1,T's be access structures defined on participant sets P and
Pa, and let P € Py. If there is a PS(T'1,q) and a PS(T2,|S(P)|), then there exist
a PS(Fl(P — FQ),q).

Let I' = Ig[T',--- ,T'y]. It is clear that I can be obtained from Iy after r inser-
tions at the participants Pi,...,P,. Thus, the above Theorem can be generalized
to the following.

PROPOSITION 4. Let I' = T[y[I'y,..., T[] be as above. If there exist a PS(To,q)
and fori=1,...,r, a PS(I';,|S(P;)|), then there exists a PS(T,q).

The proof is obvious from Theorem 1. Furthermore, since the proof of the
Theorem in [6] is constructive, we can effectively give the PS(T,q). For the conve-
nience of the reader let us present the idea of this construction: we want to share
K € K among the participants in P. By using the PS(Tg,q) we compute the
shares s1,...,8, of Py,---,P.. Now, by using the PS(T';,|S(P;)|) we share each s;
among the participants in P;: sgi), e ,sffi). Then the shares given by PS(T, q) are

(1) (1) (r) (r)

81 sy Smr ey S yeey Smpe
By studying the proof of the Theorem, we also conclude the following.

COROLLARY 3. Let ' =Ty[T'y, -+ ,T,]. With the notations above, we have
p(PS(T,q)) = min{p(PS(To,q)) - p(PS(Ti,|S(P) | 1 < i < 7).
Thus p*(T) > min{p*(Ty) - p*() | 1 <i < r}.

In particular, if all the structures T';, i = 0,...,r, are ideal, then T is ideal.

A particular interesting kind of access structures is formed by those admitting
a Brickell’s vector space construction. Let us remember that a structure I' on
P admits a vector space construction over the finite field I, if there is a map
®: P — F! (d large enough) and a vector & € FY, 7 # 0, such that for all A C P
we have 0 € (®(F;) | P; € A) if and only if A € T (see [2, 11]). Such a construction
directly provides an ideal PS(T',p). Unfortunately no criteria is known to decide
when a structure I' admits a vector space construction.

In the above construction usually one takes 7 = é; = (1,0,...,0). However it
is clear that the particular choice of ¥/ is not relevant whenever @ # 0.

It is well known that every (¢, n)-threshold scheme admits a vector space con-
struction. Just take n different non-zero elements a,...,a, € F, and define

®(P) = (1,a5,02,...,al" ) e T

i p
forall 7,1 <i<mn.

It is not clear when the composition of structures admitting a vector space
constructions admits a vector space construction. At the moment we simply state
the following result.



PROPOSITION 5. Let I' = [y[I'1,[s,---,T] be a composite access structure
such that T'; is a (t;,n;)-threshold structure for 1 < i < r. If Ty admits a vec-
tor space construction, then also T' admits a vector space construction.

Proof. For 1 <1 <r, we shall consider the map ®; : P; — ]Ftpi defined by

(I)l(P](Z)) = (1,0{1']',0[%]-, . '7a7tj;'71)

where P; = {Pl(i), .. .,P,(zf)}. For Ty we have a map ® : {Py,..., P} — F that

defines its vector space construction. Consider the maps ¥; : P; — ]Ftpl L

‘I’i(P,(i)) = (aij,a?j, .. ,aﬁ;ﬁ’l)

and let ®; :— FHi++t=r defined by

S(P") = (®o(P,),0,- -+, wi(P}"),.... ).

Let us show that ® is a vector space construction for I'. If A € T, let B = {P; |
ANP; € T';} be an element of Ty. If P; € B, take {Pj(f), - ,P;:?}, t; different

elements of A N P;. There exists a linear combination in Iﬁ‘ﬁ;

t;
= A ‘I’i(Pj(,:))

k=1

such that S%_ Ay = 1. Then we have

-

t;
ST xc@(P) = (B0(Py), 0, ..., 0).
k=1

As e} € (®o(B)), it follows that e € (®(A)). Conversely, let A C P =P U---UP,
be such that & € (®(A)). Assume that all the coefficients in the linear combination
that gives & are non-zero. Take 4; = ANP;. If 4; # 0, then U, (A;) is a set of
linearly dependent vectors. Thus there exist a linear combination

= i
0=y w(PY)
J

with every \;; # 0. This means that ¢; < |A4;|, and hence the vectors <I>i(Pj(i)) span
2. So A; € T;. Moreover & must be generated by B = {®q(P;) | A; # 0} and
then B € I'y. This ends the proof.

Let us note that the above proof is constructive. Thus, if we have a scheme for
Iy, then we can effectively construct a secret sharing scheme for T'.

4. REDUCIBLE STRUCTURES

In this section we briefly study a type of decomposable structures which will be
useful for us in the sequel.



DEFINITION 2. Let I" be an access structure on the set of participants P. We
say that two participants P;, P; are related, denoted P; ~ P;, if for every A € I'™
we have:

a) if P; € A then (A\ {P;}) U P; € T'; and conversely
b) if P; € A then (A\ {P;})UP,; €.

Let us note that ~ is an equivalence relation on P. We say that the structure
I’ admits a class reduction (or shortly that it is reducible) if at least one of the
equivalence classes of ~ has more than one participant. In this case, the class
reduction allows us to define a new access structure on the set of participants
Po=P/~givenby ', =T/ ~.

Remark 1. If two participants P;, P; are related, then the set {P;, P;} cannot
be extended to a minimal coalition A € I'. In fact, if A = {P;, P;} U B € I'™ then,
by definition, {P;, P;} UB = {P;} U B € ', which contradicts the fact of A being
minimal. Conversely, if P; ~ P; it is easy to see that {P;, P;} C A for all A € '
such that P; € A or P; € A.

The relationship between reducibility and decomposability is given by the fol-
lowing result.

PROPOSITION 6. Let P = {Py,---,P,}. For every equivalence class [P] € P~,
fix a representative Q € [P] so that Pu = {Q1,...,Qr}. If n; = |[Qi]], then

I'= FN[(]-anl)a (17n2)7 EE (lanr)]'
In particular, oll reducible structures on n > 3 participants are decomposable.

Proof. Tt is a direct consequence of Proposition 1, the definition of related par-
ticipants and the above Remark.

The converse of Proposition 6 is not true in general, that is, there exist decom-
posable structures which are irreducible.

The structures I' and I'.. have similar properties. Let us see some of them. To
that end we shall use the following notation: for a participant P;, we shall denote
by [P;] its equivalence class in P., and by X(F;) its share given by the secret sharing
scheme ¥ that realizes I'.

LeEMMA 1. Let T' be an access structure on the set P. There is a secret sharing
scheme X realizing T, such that:
0) p(%) = p*(T); and
b) Zf Pl ~ Pj then E(Pl) = E(Pj)

Proof. Keeping the notations as above, for every equivalence class [P] € P, fix
a representative () € [P] so that P = {Q1, - ,Q.}. Let ¥’ be a secret sharing
scheme that realizes T’ and such that p(¥') = p*(T'). We define X(Py),--- ,X(P,),
as X(P;) = ¥'(Q;) if [P;] = [Q;]- Let us consider the projection map 7 : P — P.,
m(P;) = Q; if [P;] = [Q;]- If A € T™ then A does not contain related participants,
hence w(A) € I'"™. Furthermore the shares given by ¥ to the participants in A are
the same as the shares given by ¥’ to the participants in 7(A). Thus ¥ is a sharing
scheme realizing I'. Clearly ¥ verifies b). Moreover p(X) < p(X') hence we get
equality here because p(X') = p*(T).

Remark 2. The above Lemma show the following nice characterization of related
participants: Let I' be an access structure on P; two participants, P; and P;, are



related if and only if there is a secret sharing scheme ¥ realizing T' such that
L(P;) = X(F).

A secret sharing scheme is said to be regular if it is optimal and gives equal
shares to related participants. From Proposition 6 and Lemma 1, given an access
structure T', there is a one-to-one correspondence between regular sharing schemes
realizing I' and optimal sharing schemes realizing I'..

PROPOSITION 7. Let I' be an access structure on the set P. Then

a) p*(T') = p*(I'~).
b) T admits a vector space construction iff T admits a vector space construction.

Proof. a) Let ¥ be a regular secret sharing scheme for I'. Then we define a
secret sharing scheme on P.. as

S.([P]) =S(P), i =1,....n.

Y. is well defined, realizes I'. and, obviously, has the same information rate as X.
Conversely, for a secret sharing scheme II realizing ', we define the scheme II™
on P as

o~ (p) =1([PR]), i=1,...,n.

In the same way, II™ realizes I' and has the same information rate as II. Then
p*(T) = p*('~). The same argument proves b). (Furthermore, note that one
implication also follows from Proposition 5). 1

5. ITERATED THRESHOLD SCHEMES

In this section we introduce an interesting class of composite secret sharing
schemes. This class is formed by composing threshold schemes or compositions of
threshold schemes. More formally, we define the class of iterated threshold access
structures as the smallest class C of access structures such that:

1. All threshold access structures are in C .

2. The composition of elements in C is also in C; that is, if g, Iy, -+, € C,
then I'y[T'1,T'2,...,T'v] € C (when this composition makes sense).

Schemes realizing iterated threshold access structures are called iterated thresh-
old schemes. As we shall see below, iterated threshold schemes can be also found
by composition of threshold schemes.

As composite structures, iterated threshold access structures have a pictorial
representation. In this case they can also be represented as labeled trees in the obvi-
ous way. For example consider the structure on a set of 5 participants given by I'™ =
{P,P,P;P;, P, Ps}. It can also be realized as the labeled tree shown in Figure 2,
where as usual (¢,n) means a ¢-threshold scheme on n participants. We will denote
this iterated threshold scheme as (2,2)[(1,1), (1,2)[(3, 3), (1,1)]]. Observe that this
representation is not unique. For example the schemes (2,2)[(2,2), (1,2)[(2, 2), (1, 1)]]
and (3,3)[(1,1),(1,1), (1,2)[(2,2), (1, 1)]] realize the same structure. In general we
have (.77.7)[“7 t)7 A] = (.7 +i—-1,j+t— 1)[(17 1)7 Tt (]-7 1)7 A] and (17.7)[(]-7 t)a A] =
(]-aj +1— 1)[(17 1)7 SO (17 1)7 A]

Iterated threshold schemes have some nice properties. Let us study some of
them.



FIG. 2 Labeled tree for an iterated access structure.

(2,2)

PROPOSITION 8. The dual of an iterated threshold access structure is an iterated
threshold access structure.

Proof. It follows from Proposition 2 and the fact that the dual of a threshold
access structure is also a threshold access structure.

PROPOSITION 9. Fwvery iterated threshold access structure admits a vector space
construction. In particular every iterated threshold access structure is ideal.

Proof. Tt suffices to prove the first fact. Let T' = ['g[I'1,...,T',] be an iterated
threshold access structure. According to Corollary 2, I' admits a representation
I‘(()l)[Fgl), - ,I‘g)], where I‘gl), e ,I‘g) are indecomposable, and hence threshold
access structures. Then, according to Proposition 5, it suffices to prove that 1"61)

admits a vector space construction. But I‘(()l) is again an iterated threshold ac-

cess structure. Thus we can apply again the above argument to 1"61). By iterat-

. - - . - . m—1
ing this reasoning a number of times, we shall arrive to an expression I‘(() ) =

F(()m) [Fgm),--- ,FS«':)], where Fgm),--- ,1“5«':) are threshold access structures and

Fém) is an indecomposable iterated threshold access structures, that is, also a
threshold access structure. Since (classical) threshold structures admit a vector
space construction (as the one seen in section 3) then, according to Proposition 5,

I‘(()mfl) also admits a vector space construction, and so, the same happens for I'. 1

Let us note that, as in the case of Proposition 5, the above proof is constructive.
Thus, we can effectively give vector space constructions for all iterated threshold
schemes.

Many ideal secret sharing schemes (all of them admitting a vector space con-
struction) are in fact iterated threshold schemes. These include all ideal schemes
on participant set with n < 4 participants and most ideal schemes on n = 5 partic-
ipants. To see this we shall use the results developed in section 4.

PROPOSITION 10. Let I be an access structure on the set P. IfT'< is an iterated
threshold access structure, then I' is also an iterated threshold access structure.

Proof. Tt is a direct consequence of 6. 1

Remark 3. Let T be an access structure. If I'* is class reducible and it reduces
to an iterated threshold structure, then, in light of Propositions 8 and 10, we have
that I is also an iterated threshold structure.



TABLE 1
Ideal access structures on at most 4 participants.

| n | rm | Realization | Dual |
1 1 1 selfdual
2 12 (2,2) (1,2)
3 123 (3,3) (1,3)
12,23 (2,2)[(1,2),1] (1,2)[(2,2),1]
12,23,13 (2,3) selfdual
i 12,13,14 2.2)[1,(13)] 12)[1,63)]
12,14,23,34 (2,2)[(1,2),(1,2)] (1,2)[(2,2),(2,2)]
12,13,14,23,24 (2,3)[1,1,(1,2)] (2,3)[1,1,(2,2)]
12,13,14,23,24,34 (2,4) (3,4)
123,14 (22)[L,(12)[(2:2).1]] | L2[L22)[(12),1]
123,124 (3.3)[L,L,(1,2)] (L3)[L,L,(2.2)]
123,124,134 (2,2)[1,(2,3)] (1,2)[1,(2,3)]
1234 (4,4) (1,4)

Let us study now how many iterated threshold access structures exist on a set
P with at most five participants.

PROPOSITION 11. All ideal access structures on a participant set with at most
4 participants are iterated threshold access structures.

Proof. For a list of all ideal access structures on at most 4 participants we
refer to [11]. Clearly all ideal access structures on 1 or 2 participants are thresh-
old structures. All ideal structures on 3 participants except the one having ba-
sis Py P>, P,P3, P3P, are class reducible and therefore can be realized as iterated
threshold structures. Py P>, P,P;, P3P, is just (2,3). On 4 participants we find again
that all ideal structures are class reducible except Py Py, P, P3, Py Py, P,P3, P, Py, P3P,
and its dual, that are (2,4) and (3,4).

Table 1 contains all ideal access structures on n < 4 participants and their real-
izations as iterated threshold schemes. For short, in the second column participant
P; is simply denoted by i. Furthermore, the threshold scheme (1,1) is denoted by
1.

Let us examine now the case of n = 5 participants. For a list of all access
structures in this case to refer to [5]. There are 61 ideal structures, 49 of them
being reducible.

PROPOSITION 12. On five participants there are 53 iterated threshold access
structures out of 61 ideal structures. These 53 structures are all the reducible ideal
access structures, the three threshold structures (2,5),(3,5),(4,5), and the selfdual
structure (2,3)[(1,1),(1,1),(2, 3)].

Proof. In view of Propositions 7, 10 and 11, clearly all threshold and class re-
ducible ideal access structures are iterated threshold. The selfdual structure with
basis 124,125,134,135,234,235,45 is realized as (2, 3)[(1,1), (1,1), (2, 3)]. An exhaus-
tive search shows that there are no more iterated threshold structures.

10



TABLE

2

Iterated threshold schemes on 5 participants (up to equivalence).

rm Realization Dual |
12,13,14,15 (2,2)[L,(1,4)] (1,2)[1,(4,4)]
12,23,34,45,14,25 (2 ,2)[( 2),(1,3)] (1,2)[(2,2),(3,3)]
12,14,23,24,25,34,45 (2,3)[1,1,(1 3)] (1,3)[1,1,(3,3)]
12,13,14,15,23,25,34,45 (2,3)[1,(1, 2) (1,2)] (2,3)[1,(2,2),(2,2)]
12,13,14,15,23,24,25,34,35 (2,4)[1,1,1,(1,2)] (3,4)[1,1,1,(2,2)]
25) (4,5)
123,14,15 (2,2)[1,(1,3)[(2,2),1,1]] (1 2)[1,(3,3)[(1,2),1,1]]
123,145 22)[1,(1,9[(2,2),22] | (1,2)[1,(2,2)[(1,2),(1,2)]
123,124,15 (2,2)[1,(1,2)[(2,2),1]] (1 2)[1,(2,2)[(1,2),1]]
123,124,35,45 (2,2)[(1,2),(1,2)[1,(2,2)]] | (1,2)[(2,2),(2,2)[1,(1,2)]]
123,124,34,35,45 @3NL2[22),10,L1] | 23)[(22)[(1,2),1],1,1]
123,124,125 (3,3)[1,(1,3)] (1,3)[1,(3,3)]
123,124,134,15 (2,2)[1,(1,2)[(2,3),1]] (1,2)[1,(2,2)[(2,3),1]]
123,124,125,34,35 (2,3)[(2,2),1,(1,2)] selfdual
123,124,125,34,35,45 (2,4)[(2,2),1,1,1] (3,4)[(1,2),1,1,1]
123,124,135,145 3,3)[1,(1,2),(1,2)] (1,3)[1,(2,2),(2,2)]
123,124,134,125,135 (2,2)[1,(2,3)[1,1,(1,2)]] (1,2)[1,(2,3)[1,1,(2,2)]]
123,124,125,134,135,145 (2,2)[1,(2,4)] (1,2)[1,(3,4)]
124,125,135,134,234,235 (2,2)[(2,3),(1,2)] (1,2)[(2,3),(2,2)]
124,125,135,134,234,235,45 (2,3)[1,1,(2,3)] selfdual
) (3,5) selfdual
1234,15 (2,2)[1,(1,2)[(3,3),1]] (1,2 )[1 (2,2)[(1,3),1]]
1234,125 (3,3)[1,1,(1,2)[(2,2),1]] (1,3)[1,1,(2,2)[(1,2),1]]
1234,1235 (4,4)[1,1,1,(1,2)] (1, )[1,1,1,(2,2)]
1234,1235,145 (2,2)[1,(2,3)[(2,2),1,1]] (1,2)[1,(3,2)[(2,1),1,1]]
1234,1235,1345 (3,3)[1,1,(2,3)] (1, )[1,1,(3 2)]
1234,1235,1245,1345 (2,2)[1,(3,4)] (1,2)[1,(2,4)]
() (5,5) (1,5)

Remark 4. Let us see with some detail how to find all iterated threshold access
structures on five participants. To that end we follow all possible partitions of P.

1,4: (i,2)[1,A], i = 1,2. Clearly either the structure or its dual begins
(1,2) and therefore has an isolated participant an is reducible to one with 4
participants.

2,3:(i,2)[(4,2),A], i =1,2. The structure has a final branch (4,2), hence

is reducible.

1,1,3: (,3)[1,1,A], i=1,2,3. where A is an iterated threshold scheme with
3 participants. There are 5 of such structures (see Table 1 in the appendix).
If i = 1,3 we can rewrite it as (4, 2)[(4,2), A] and therefore they are reducible.

Suppose i = 2:

(a) (2,3)[1,1,(1,3)] is reducible.
(b) (2,3)[1,1,(1,2)[(2,2)(2,2)] is reducible.
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(c) (2,3)[1,1,(2,3)] realizes the irreducible ideal structure 124, 125,135,134,
934, 235, 45.

1,2,2: (4,3)[1, (4, 2), (¢,2)], ¢=1,2,3. They are reducible.
11,12 (i,4)[1,1,1,(t,2)], i=1,...,4. They are reducible

5 : They are ideal since they are threshold schemes.

On the other hand, the 8 structures on 5 participants that are not realizable as
iterated treshold schemes are the following:

123, 145,24, 35 (Selfdual)
123,124,135, 25,34 and its dual.
123,134,135, 145,25, 34 and its dual.
123,124, 125,134,135, 234, 45 (Selfdual)
123,124,125,134,135, 234, 235,45 and its dual.
Table 2 contains all ideal access structures on n = 5 participants that are

realizable as iterated threshold schemes and their realizations.
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