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In this paper we introdue the lass of omposite aess strutures for seret sharing.

We also provide seret sharing shemes realizing these strutures and study their infor-

mation rates. As a partiular ase of this onstrution, we present the sublass of iterated

threshold shemes, a large lass of ideal seret sharing shemes.

Key Words: Cryptography, Seret sharing shemes, Threshold shemes.

Subjet Classi�ation: (MSC 2000) 94A60

1. INTRODUCTION

Seret sharing shemes are methods for distributing a seret K among a set P of

partiipants. Eah partiipant reeives a piee of the seret, or share, in suh a way

that only spei�ed subsets of P are able to reonstrut the seret by pooling their

shares. If non-allowed oalitions annot obtain any information about the seret

then the sheme is said to be perfet.

The family of quali�ed subsets � � 2

P

is alled the aess struture of the

sheme. It is onsidered to be monotone, that is, if A � B � P and A 2 �, then

also B 2 �. Thus the set of minimal elements in �, denoted �

m

, determines the

whole struture � and it is alled the basis of �.

One of the basi parameters of a seret sharing sheme � is its information rate,

whih is the rate between the length (in bits) of the seret and the maximum length

of the shares of the partiipants:

�(�;�;K) = �(�) =

log

2

jKj

max

P

(log

2

jS(P )j)

:

Here K is the set of all possible serets for � and S(P ) is the set of all possible

shares for P 2 P . A sheme � is alled ideal if �(�) = 1 (notie that always

�(�) � 1). An aess struture � is alled ideal if there is an ideal sheme realizing

it. More generally we de�ne the optimal information rate of the struture � as

�

�

(�) = sup(�(�;�;K))

where the supremum is taken over all possible � and K for �.
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The problems of haraterizing ideal aess strutures and �nding ideal shemes

for them are important and they have reeived great attention in the literature (see

for example [3, 4℄).

A partiular interesting lass of seret sharing shemes is the lass of threshold

shemes, whih were the �rst seret sharing shemes introdued independently by

Blakley [1℄ and Shamir [8℄ in 1979. The aess struture of a (t; n)-threshold sheme

onsists of all subsets of P with at least t out of n partiipants. Threshold shemes

are ideal and admit a vetor spae onstrution (see setion 3). In what follows,

for short we shall denote a (t; n)-threshold sheme simply by (t; n).

In the ase of threshold shemes all the partiipants have the same opportunity

for aeding to the seret. This property does not hold for general aess stru-

tures: some partiipants have a great hane than others. This di�erene among

partiipants is not unsuitable in pratie. On the ontrary, it an be useful as it

reets that usually in real life partiipants are, in a natural way, in a hierarhy and

not on equal terms. Then, strutures in whih partiipants are divided in several

lasses abound in the literature: Simmons' multilevel/multipart shemes, [9℄, sums

and produts, bipartite strutures, [7℄, ompartmented shemes, [2℄, et. In this

paper we present a very general onstrution of this type. Partiipants are divided

in several groups, eah of them having its own family of authorized oalitions. As

a partiular ase of this onstrution we introdue the lass of iterated threshold

shemes. We show that all shemes in this lass are ideal and admit a vetor spae

onstrution. We also show that many ideal shemes (all ideal shemes in the ase

of 4 partiipants and most ideal shemes in the ase of 5 partiipants) in fat belong

to this lass.

The organization of the paper is as follows: omposite aess strutures are

de�ned in setion 2, where some of their main properties are also stated. In setion

3 we show how to onstrut seret sharing shemes for these strutures. Setion 4

is devoted to study of a partiular type of omposite strutures, the so-alled lass-

reduible strutures. Finally, in setion 5 we study the partiular interesting ase in

whih all the strutures involved are either threshold or omposition of threshold

strutures.

2. COMPOSITION OF ACCESS STRUCTURES

Let P be a set of partiipants and let P = P

1

[� � �[P

r

, (r > 1) be a partition of

P (that is ; 6= P

i

6= P and P

i

\P

j

= ; if i 6= j). Let us write P

i

= fP

(i)

1

; : : : ; P

(i)

n

i

g

and n = n

1

+ � � � + n

r

. For a set A � P we denote A

i

= A \ P

i

. Obviously

A = A

1

[ � � � [A

r

. For i = 1; : : : ; r, let �

i

be an aess struture on P

i

, and let �

0

an aess struture on the partiipant set P = fP

1

; : : : ;P

r

g.

Definition 1. With the notation as above, we de�ne the omposite aess

struture of �

1

;�

2

; : : : ;�

r

, following �

0

, denoted �

0

[�

1

;�

2

; : : : ;�

r

℄, as

�

0

[�

1

;�

2

; : : : ;�

r

℄ = fA � P j 9B 2 �

0

suh that A

i

2 �

i

for all P

i

2 Bg

=

S

B2�

0

fA � P j A

i

2 �

i

for all P

i

2 Bg:

That is, eah of the sets P

i

plays the role of a partiipant for �

0

. A oalition

A � P is authorized if and only if it inludes, as subsets, authorized oalitions in

enough of the omponents �

1

;�

2

; : : : ;�

r

to onstitute an authorized subset for �

0

.

We have a pitorial representation of the sheme as given in Figure 1.
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FIG. 1 Pitorial representation of omposite strutures
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Composite seret sharing shemes an be useful for sharing serets when the set

of partiipants is divided into several groups, eah of them with its own family of

authorized oalitions. The relation among these groups is given by the struture

�

0

. It is not so diÆult to imagine a situation requiring a model of this type.

Example 1.

(a) Sums and produts. Two typial ompositions of aess strutures are

sums and produts, de�ned as follows: given a partition P = P

1

[ � � � [ P

r

,

and aess strutures �

1

; : : : ;�

r

, the sum of �

1

; : : : ;�

r

is

�

1

+ � � �+ �

r

= fA � P j A

i

2 �

i

for some ig

and the produt

�

1

� � � � � �

r

= fA � P j A

i

2 �

i

for all ig:

Sine �

1

+ � � �+ �

r

= (1; r)[�

1

; : : : ;�

r

℄ and �

1

� � � � � �

r

= (r; r)[�

1

; : : : ;�

r

℄,

both are partiular ases of our onstrution.

(b) Insertions. Let �

1

;�

2

be two strutures de�ned on the sets P

1

and P

2

,

and let P 2 P

1

. The insertion of �

2

at P in �

1

, denoted �

1

(P 7! �

2

),

is de�ned to be the struture on the set P

1

n fPg [ P

2

suh that for A �

(P

1

n fPg) [ P

2

, we have A 2 �

1

(P 7! �

2

) if and only if A \ P

1

2 �

1

, or

(A \ P

1

) [ fPg 2 �

1

and A \ P

2

2 �

2

(see Martin [6℄). It is lear that

�

1

(P

1

7! �

2

) = �

1

[�

2

; (1; 1); : : : ; (1; 1)℄.

Let us see some �rst properties of omposite strutures.

Proposition 1. (�

0

[�

1

;�

2

; : : : ;�

r

℄)

m

= �

m

0

[�

m

1

;�

m

2

; : : : ;�

m

r

℄.

Proof. Let � = �

0

[�

1

;�

2

; : : : ;�

r

℄ and A 2 �

m

. Let C = fP

i

j A

i

2 �

i

; i 6= 0g 2

�

0

. Let us assume that C =2 �

0

m

. Then there exists C

0

2 �

0

m

suh that C

0

( C.

Let us onsider the set

A

0

= A \

[

P

i

2C

0

P

i

:
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Then A

0

� A and A

0

2 �

m

whih ontradits the fat A 2 �

m

. Hene C 2 �

0

m

.

Let �x i suh that P

i

2 C and let us suppose A

i

=2 �

m

i

. Then there exists A

0

i

( A

i

suh that A

0

i

2 �

m

i

. Let D = A

i

n A

0

i

� P

i

. Then A n D � A and, sine the P

i

's

are a partition on P , A nD 2 �

m

. This ontradits that A 2 �

m

. Thus we have

�

m

� �

m

0

[�

m

1

;�

m

2

; : : : ;�

m

r

℄. The other inlusion is straightforward.

Next we shall show that omposition behaves well by duality. Let us remember

that for a given aess struture � on P , the dual struture of � is de�ned as the

set of oalitions whose omplement is not authorized,

�

?

= fA � P j P nA =2 �g:

Proposition 2. (�

0

[�

1

;�

2

; : : : ;�

r

℄)

?

= �

?

0

[�

?

1

;�

?

2

; : : : ;�

?

r

℄.

Proof. Let � = �

0

[�

1

;�

2

; : : : ;�

r

℄,

~

� = �

?

0

[�

?

1

;�

?

2

; : : : ;�

?

r

℄ and let A 2

~

�. There

is B 2 �

?

0

suh that if P

i

2 B then A

i

2 �

?

i

(i 6= 0). By de�nition, for this B, if

P

i

2 B then P

i

nA

i

=2 �

i

, i 6= 0. If A =2 �

?

then P nA 2 �. This means that there

exists B

0

2 �

0

suh that if P

i

2 B

0

then (P n A) \ P

i

= P

i

n A

i

2 �

i

for i 6= 0.

Hene B \B

0

= ; and so B

0

� P nB and P nB 2 �

0

. We arrive to a ontradition,

and therefore

~

� � �

?

.

Conversely, onsider now A 2 �

?

, that is, P n A =2 �. By de�nition, for every

B 2 �

0

there exists P

i

2 B suh that P

i

nA

i

=2 �

i

. If A =2

~

� then for every B

0

2 �

?

0

there exists P

i

2 B

0

suh that P

i

nA

i

2 �

i

. Let �

m

0

= fB

j

g

j2J

be the basis of �

0

.

For eah j 2 J there exists P

i

j

2 B

j

suh that P

i

j

n A

i

j

=2 �

i

. Let B

0

= fP

i

j

g

j2J

.

Then B

j

is not ontained in P n B

0

beause B

0

\ B

j

6= ; for all j 2 J . Therefore,

B

0

2 �

?

0

. On the other hand, for all P

i

2 B

0

we have P

i

n A

i

=2 �

i

whih is a

ontradition. Hene

~

� � �

?

.

From this result, in partiular we have that the dual of the sum is the produt

of the duals, and the dual of the produt is the sum of the duals.

Corollary 1. The dual of a omposite aess struture is also a omposite

aess struture.

Obviously, every struture � an be expressed as a omposition in the ways

� = �[(1; 1); � � � ; (1; 1)℄ and � = (1; 1)[�℄. These ompositions are alled trivial.

We shall not onsider trivial ompositions any more. A struture that annot be

expressed as a nontrivial omposition is alled indeomposable. For example, it

is easy to see that threshold aess strutures (t; n) are indeomposable whenever

1 < t < n.

On the other hand, the expression �

0

[�

1

;�

2

; : : : ;�

r

℄ of a struture as a om-

position is in general not unique, beause the �

i

; i = 1; : : : ; r, an be, themselves,

deomposable. We have the following result.

Proposition 3. Let � = �

0

[�

1

;�

2

; � � � ;�

r

℄. Assume that for i = 1; : : : ; r, we

have �

i

= �

(i)

0

[�

(i)

1

;�

(i)

2

; : : : ;�

(i)

j

i

℄. Then

� = �

0

[�

(1)

0

[�

(1)

1

;�

(1)

2

; : : : ;�

(1)

j

1

℄; : : : ;�

(r)

0

[�

(r)

1

;�

(r)

2

; : : : ;�

(r)

j

r

℄℄

= (�

0

[�

(1)

0

;�

(2)

0

; : : : ;�

(r)

0

℄) [�

(1)

1

; : : : ;�

(1)

j

1

; : : : ;�

(r)

1

; : : : ;�

(r)

j

r

℄:

The proof is straightforward. The iterative appliation of this result yields the

following orollary.

Corollary 2. Let � be a deomposable struture. Then � an be written as

� = �

0

[�

1

; : : : ;�

r

℄ where all the strutures �

1

; : : : ;�

r

are indeomposable.

4



3. COMPOSITE SCHEMES FOR COMPOSITE STRUCTURES

Let � = �

0

[�

1

; : : : ;�

r

℄ be a omposite aess struture on P . In order to

onstrut a seret sharing sheme for �, we an ompose seret sharing shemes

for eah �

i

; i = 0; : : : ; r. Following Martin, [6℄, if the set K of serets to share has

ardinality q, then a perfet seret sharing sheme for � will be denoted PS(�; q).

Let us remember that for a partiipant P 2 P , S(P ) denotes the set of all possible

shares for P , and that the insertion shemes were introdued in Example 1. The

following result an be found in [6℄.

Theorem 1. Let �

1

;�

2

be aess strutures de�ned on partiipant sets P

1

and

P

2

, and let P 2 P

1

. If there is a PS(�

1

; q) and a PS(�

2

; jS(P )j), then there exist

a PS(�

1

(P 7! �

2

); q).

Let � = �

0

[�

1

; � � � ;�

r

℄. It is lear that � an be obtained from �

0

after r inser-

tions at the partiipants P

1

; : : : ;P

r

. Thus, the above Theorem an be generalized

to the following.

Proposition 4. Let � = �

0

[�

1

; : : : ;�

r

℄ be as above. If there exist a PS(�

0

; q)

and for i = 1; : : : ; r, a PS(�

i

; jS(P

i

)j), then there exists a PS(�; q).

The proof is obvious from Theorem 1. Furthermore, sine the proof of the

Theorem in [6℄ is onstrutive, we an e�etively give the PS(�; q). For the onve-

niene of the reader let us present the idea of this onstrution: we want to share

K 2 K among the partiipants in P . By using the PS(�

0

; q) we ompute the

shares s

1

; : : : ; s

r

of P

1

; � � � ;P

r

. Now, by using the PS(�

i

; jS(P

i

)j) we share eah s

i

among the partiipants in P

i

: s

(i)

1

; � � � ; s

(i)

n

i

. Then the shares given by PS(�; q) are

s

(1)

1

; : : : ; s

(1)

n

1

; : : : ; s

(r)

1

; : : : ; s

(r)

n

r

.

By studying the proof of the Theorem, we also onlude the following.

Corollary 3. Let � = �

0

[�

1

; � � � ;�

r

℄. With the notations above, we have

�(PS(�; q)) = minf�(PS(�

0

; q)) � �(PS(�

i

; jS(P

i

)j)) j 1 � i � rg:

Thus �

�

(�) � minf�

�

(�

0

) � �

�

(�

i

) j 1 � i � rg.

In partiular, if all the strutures �

i

; i = 0; : : : ; r, are ideal, then � is ideal.

A partiular interesting kind of aess strutures is formed by those admitting

a Brikell's vetor spae onstrution. Let us remember that a struture � on

P admits a vetor spae onstrution over the �nite �eld F

p

if there is a map

� : P �! F

d

p

(d large enough) and a vetor ~v 2 F

d

p

; ~v 6=

~

0, suh that for all A � P

we have ~v 2 h�(P

i

) j P

i

2 Ai if and only if A 2 � (see [2, 11℄). Suh a onstrution

diretly provides an ideal PS(�; p). Unfortunately no riteria is known to deide

when a struture � admits a vetor spae onstrution.

In the above onstrution usually one takes ~v = ~e

1

= (1; 0; : : : ; 0). However it

is lear that the partiular hoie of ~v is not relevant whenever ~v 6= 0.

It is well known that every (t; n)-threshold sheme admits a vetor spae on-

strution. Just take n di�erent non-zero elements �

1

; : : : ; �

n

2 F

p

and de�ne

�(P

i

) = (1; �

i

; �

2

i

; : : : ; �

t�1

i

) 2 F

t

p

for all i; 1 � i � n.

It is not lear when the omposition of strutures admitting a vetor spae

onstrutions admits a vetor spae onstrution. At the moment we simply state

the following result.
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Proposition 5. Let � = �

0

[�

1

;�

2

; � � � ;�

r

℄ be a omposite aess struture

suh that �

i

is a (t

i

; n

i

)-threshold struture for 1 � i � r. If �

0

admits a ve-

tor spae onstrution, then also � admits a vetor spae onstrution.

Proof. For 1 � i � r, we shall onsider the map �

i

: P

i

�! F

t

i

p

de�ned by

�

i

(P

(i)

j

) = (1; �

ij

; �

2

ij

; : : : ; �

t

i

�1

ij

)

where P

i

= fP

(i)

1

; : : : ; P

(i)

n

i

g. For �

0

we have a map �

0

: fP

1

; : : : ;P

r

g �! F

d

p

that

de�nes its vetor spae onstrution. Consider the maps 	

i

: P

i

�! F

t

i

�1

p

,

	

i

(P

(i)

j

) = (�

ij

; �

2

ij

; : : : ; �

t

i

�1

ij

)

and let �

i

:�! F

d+t

1

+���+t

r

�r

p

de�ned by

�(P

(i)

j

) = (�

0

(P

i

);

~

0; � � � ;	

i

(P

(i)

j

); : : : ;

~

0):

Let us show that � is a vetor spae onstrution for �. If A 2 �, let B = fP

i

j

A \ P

i

2 �

i

g be an element of �

0

. If P

i

2 B, take fP

(i)

j

1

; � � � ; P

(i)

j

t

i

g, t

i

di�erent

elements of A \ P

i

. There exists a linear ombination in F

t

i

p

�!

e

1

=

t

i

X

k=1

�

k

��

i

(P

(i)

j

k

)

suh that

P

t

i

k=1

�

k

= 1. Then we have

t

i

X

k=1

�

k

��(P

(i)

j

k

) = (�

0

(P

i

);

~

0; : : : ;

~

0):

As

�!

e

1

2 h�

0

(B)i, it follows that

�!

e

1

2 h�(A)i. Conversely, let A � P = P

1

[� � �[P

r

be suh that

�!

e

1

2 h�(A)i. Assume that all the oeÆients in the linear ombination

that gives

�!

e

1

are non-zero. Take A

i

= A \ P

i

. If A

i

6= ;, then 	

i

(A

i

) is a set of

linearly dependent vetors. Thus there exist a linear ombination

�!

0 =

X

j

�

ij

�	

i

(P

(i)

j

)

with every �

ij

6= 0. This means that t

i

� jA

i

j, and hene the vetors �

i

(P

(i)

j

) span

�!

e

1

. So A

i

2 �

i

. Moreover

�!

e

1

must be generated by B = f�

0

(P

i

) j A

i

6= ;g and

then B 2 �

0

. This ends the proof.

Let us note that the above proof is onstrutive. Thus, if we have a sheme for

�

0

, then we an e�etively onstrut a seret sharing sheme for �.

4. REDUCIBLE STRUCTURES

In this setion we briey study a type of deomposable strutures whih will be

useful for us in the sequel.
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Definition 2. Let � be an aess struture on the set of partiipants P . We

say that two partiipants P

i

; P

j

are related, denoted P

i

� P

j

, if for every A 2 �

m

we have:

a) if P

i

2 A then (A n fP

i

g) [ P

j

2 �; and onversely

b) if P

j

2 A then (A n fP

j

g) [ P

i

2 �.

Let us note that � is an equivalene relation on P . We say that the struture

� admits a lass redution (or shortly that it is reduible) if at least one of the

equivalene lasses of � has more than one partiipant. In this ase, the lass

redution allows us to de�ne a new aess struture on the set of partiipants

P

�

= P= � given by �

�

= �= �.

Remark 1. If two partiipants P

i

; P

j

are related, then the set fP

i

; P

j

g annot

be extended to a minimal oalition A 2 �. In fat, if A = fP

i

; P

j

g [ B 2 �

m

then,

by de�nition, fP

i

; P

j

g [B = fP

i

g [B 2 �

m

, whih ontradits the fat of A being

minimal. Conversely, if P

i

� P

j

it is easy to see that fP

i

; P

j

g � A for all A 2 �

?

suh that P

i

2 A or P

j

2 A.

The relationship between reduibility and deomposability is given by the fol-

lowing result.

Proposition 6. Let P = fP

1

; � � � ; P

n

g. For every equivalene lass [P ℄ 2 P

�

,

�x a representative Q 2 [P ℄ so that P

�

= fQ

1

; : : : ; Q

r

g. If n

i

= j[Q

i

℄j, then

� = �

�

[(1; n

1

); (1; n

2

); : : : ; (1; n

r

)℄:

In partiular, all reduible strutures on n � 3 partiipants are deomposable.

Proof. It is a diret onsequene of Proposition 1, the de�nition of related par-

tiipants and the above Remark.

The onverse of Proposition 6 is not true in general, that is, there exist deom-

posable strutures whih are irreduible.

The strutures � and �

�

have similar properties. Let us see some of them. To

that end we shall use the following notation: for a partiipant P

i

, we shall denote

by [P

i

℄ its equivalene lass in P

�

and by �(P

i

) its share given by the seret sharing

sheme � that realizes �.

Lemma 1. Let � be an aess struture on the set P. There is a seret sharing

sheme � realizing �, suh that:

a) �(�) = �

�

(�); and

b) if P

i

� P

j

then �(P

i

) = �(P

j

).

Proof. Keeping the notations as above, for every equivalene lass [P ℄ 2 P

�

, �x

a representative Q 2 [P ℄ so that P

�

= fQ

1

; � � � ; Q

r

g. Let �

0

be a seret sharing

sheme that realizes � and suh that �(�

0

) = �

�

(�). We de�ne �(P

1

); � � � ;�(P

n

),

as �(P

i

) = �

0

(Q

j

) if [P

i

℄ = [Q

j

℄. Let us onsider the projetion map � : P ! P

�

,

�(P

i

) = Q

j

if [P

i

℄ = [Q

j

℄. If A 2 �

m

then A does not ontain related partiipants,

hene �(A) 2 �

m

. Furthermore the shares given by � to the partiipants in A are

the same as the shares given by �

0

to the partiipants in �(A). Thus � is a sharing

sheme realizing �. Clearly � veri�es b). Moreover �(�) � �(�

0

) hene we get

equality here beause �(�

0

) = �

�

(�).

Remark 2. The above Lemma show the following nie haraterization of related

partiipants: Let � be an aess struture on P ; two partiipants, P

i

and P

j

, are

7



related if and only if there is a seret sharing sheme � realizing � suh that

�(P

i

) = �(P

j

).

A seret sharing sheme is said to be regular if it is optimal and gives equal

shares to related partiipants. From Proposition 6 and Lemma 1, given an aess

struture �, there is a one-to-one orrespondene between regular sharing shemes

realizing � and optimal sharing shemes realizing �

�

.

Proposition 7. Let � be an aess struture on the set P. Then

a) �

�

(�) = �

�

(�

�

).

b) � admits a vetor spae onstrution i� �

�

admits a vetor spae onstrution.

Proof. a) Let � be a regular seret sharing sheme for �. Then we de�ne a

seret sharing sheme on P

�

as

�

�

([P

i

℄) = �(P

i

); i = 1; : : : ; n:

�

�

is well de�ned, realizes �

�

and, obviously, has the same information rate as �.

Conversely, for a seret sharing sheme � realizing �

�

, we de�ne the sheme �

�

on P as

�

�

(P

i

) = �([P

i

℄); i = 1; : : : ; n:

In the same way, �

�

realizes � and has the same information rate as �. Then

�

�

(�) = �

�

(�

�

). The same argument proves b). (Furthermore, note that one

impliation also follows from Proposition 5).

5. ITERATED THRESHOLD SCHEMES

In this setion we introdue an interesting lass of omposite seret sharing

shemes. This lass is formed by omposing threshold shemes or ompositions of

threshold shemes. More formally, we de�ne the lass of iterated threshold aess

strutures as the smallest lass C of aess strutures suh that:

1. All threshold aess strutures are in C .

2. The omposition of elements in C is also in C; that is, if �

0

;�

1

; � � � ;�

r

2 C,

then �

0

[�

1

;�

2

; : : : ;�

r

℄ 2 C (when this omposition makes sense).

Shemes realizing iterated threshold aess strutures are alled iterated thresh-

old shemes. As we shall see below, iterated threshold shemes an be also found

by omposition of threshold shemes.

As omposite strutures, iterated threshold aess strutures have a pitorial

representation. In this ase they an also be represented as labeled trees in the obvi-

ous way. For example onsider the struture on a set of 5 partiipants given by �

m

=

fP

1

P

2

P

3

P

4

; P

1

P

5

g. It an also be realized as the labeled tree shown in Figure 2,

where as usual (t; n) means a t-threshold sheme on n partiipants. We will denote

this iterated threshold sheme as (2; 2)[(1; 1); (1; 2)[(3; 3); (1; 1)℄℄. Observe that this

representation is not unique. For example the shemes (2; 2)[(2; 2); (1; 2)[(2; 2); (1; 1)℄℄

and (3; 3)[(1; 1); (1; 1); (1; 2)[(2; 2); (1; 1)℄℄ realize the same struture. In general we

have (j; j)[(t; t);�℄ = (j+ t�1; j+ t�1)[(1; 1); � � �

(t)

; (1; 1);�℄ and (1; j)[(1; t);�℄ =

(1; j + t� 1)[(1; 1); � � �

(t)

; (1; 1);�℄.

Iterated threshold shemes have some nie properties. Let us study some of

them.

8



FIG. 2 Labeled tree for an iterated aess struture.

(2; 2)

r

�

�

�

�

�

r

P

1

H

H

H

H

Hr

(1; 2)

�

�

�

r

(3; 3)

�

�

�
r

P

5

�

�

�

r

P

2

r

P

3

�

�

�r

P

4

Proposition 8. The dual of an iterated threshold aess struture is an iterated

threshold aess struture.

Proof. It follows from Proposition 2 and the fat that the dual of a threshold

aess struture is also a threshold aess struture.

Proposition 9. Every iterated threshold aess struture admits a vetor spae

onstrution. In partiular every iterated threshold aess struture is ideal.

Proof. It suÆes to prove the �rst fat. Let � = �

0

[�

1

; : : : ;�

r

℄ be an iterated

threshold aess struture. Aording to Corollary 2, � admits a representation

�

(1)

0

[�

(1)

1

; � � � ;�

(1)

r

1

℄, where �

(1)

1

; � � � ;�

(1)

r

1

are indeomposable, and hene threshold

aess strutures. Then, aording to Proposition 5, it suÆes to prove that �

(1)

0

admits a vetor spae onstrution. But �

(1)

0

is again an iterated threshold a-

ess struture. Thus we an apply again the above argument to �

(1)

0

. By iterat-

ing this reasoning a number of times, we shall arrive to an expression �

(m�1)

0

=

�

(m)

0

[�

(m)

1

; � � � ;�

(m)

r

m

℄, where �

(m)

1

; � � � ;�

(m)

r

m

are threshold aess strutures and

�

(m)

0

is an indeomposable iterated threshold aess strutures, that is, also a

threshold aess struture. Sine (lassial) threshold strutures admit a vetor

spae onstrution (as the one seen in setion 3) then, aording to Proposition 5,

�

(m�1)

0

also admits a vetor spae onstrution, and so, the same happens for �.

Let us note that, as in the ase of Proposition 5, the above proof is onstrutive.

Thus, we an e�etively give vetor spae onstrutions for all iterated threshold

shemes.

Many ideal seret sharing shemes (all of them admitting a vetor spae on-

strution) are in fat iterated threshold shemes. These inlude all ideal shemes

on partiipant set with n � 4 partiipants and most ideal shemes on n = 5 parti-

ipants. To see this we shall use the results developed in setion 4.

Proposition 10. Let � be an aess struture on the set P. If �

�

is an iterated

threshold aess struture, then � is also an iterated threshold aess struture.

Proof. It is a diret onsequene of 6.

Remark 3. Let � be an aess struture. If �

?

is lass reduible and it redues

to an iterated threshold struture, then, in light of Propositions 8 and 10, we have

that � is also an iterated threshold struture.
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TABLE 1

Ideal aess strutures on at most 4 partiipants.

n �

m

Realization Dual

1 1 1 selfdual

2 12 (2,2) (1,2)

3 123 (3,3) (1,3)

12,23 (2,2)[(1,2),1℄ (1,2)[(2,2),1℄

12,23,13 (2,3) selfdual

4 12,13,14 (2,2)[1,(1,3)℄ (1,2)[1,(3,3)℄

12,14,23,34 (2,2)[(1,2),(1,2)℄ (1,2)[(2,2),(2,2)℄

12,13,14,23,24 (2,3)[1,1,(1,2)℄ (2,3)[1,1,(2,2)℄

12,13,14,23,24,34 (2,4) (3,4)

123,14 (2,2)[1,(1,2)[(2,2),1℄℄ (1,2)[1,(2,2)[(1,2),1℄℄

123,124 (3,3)[1,1,(1,2)℄ (1,3)[1,1,(2,2)℄

123,124,134 (2,2)[1,(2,3)℄ (1,2)[1,(2,3)℄

1234 (4,4) (1,4)

Let us study now how many iterated threshold aess strutures exist on a set

P with at most �ve partiipants.

Proposition 11. All ideal aess strutures on a partiipant set with at most

4 partiipants are iterated threshold aess strutures.

Proof. For a list of all ideal aess strutures on at most 4 partiipants we

refer to [11℄. Clearly all ideal aess strutures on 1 or 2 partiipants are thresh-

old strutures. All ideal strutures on 3 partiipants exept the one having ba-

sis P

1

P

2

; P

2

P

3

; P

3

P

1

, are lass reduible and therefore an be realized as iterated

threshold strutures. P

1

P

2

; P

2

P

3

; P

3

P

1

is just (2; 3). On 4 partiipants we �nd again

that all ideal strutures are lass reduible exept P

1

P

2

; P

1

P

3

; P

1

P

4

; P

2

P

3

; P

2

P

4

; P

3

P

4

and its dual, that are (2; 4) and (3; 4).

Table 1 ontains all ideal aess strutures on n � 4 partiipants and their real-

izations as iterated threshold shemes. For short, in the seond olumn partiipant

P

i

is simply denoted by i. Furthermore, the threshold sheme (1,1) is denoted by

1.

Let us examine now the ase of n = 5 partiipants. For a list of all aess

strutures in this ase to refer to [5℄. There are 61 ideal strutures, 49 of them

being reduible.

Proposition 12. On �ve partiipants there are 53 iterated threshold aess

strutures out of 61 ideal strutures. These 53 strutures are all the reduible ideal

aess strutures, the three threshold strutures (2; 5); (3; 5); (4; 5), and the selfdual

struture (2; 3)[(1; 1); (1; 1); (2; 3)℄.

Proof. In view of Propositions 7, 10 and 11, learly all threshold and lass re-

duible ideal aess strutures are iterated threshold. The selfdual struture with

basis 124,125,134,135,234,235,45 is realized as (2; 3)[(1; 1); (1; 1); (2; 3)℄. An exhaus-

tive searh shows that there are no more iterated threshold strutures.
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TABLE 2

Iterated threshold shemes on 5 partiipants (up to equivalene).

�

m

Realization Dual

12,13,14,15 (2,2)[1,(1,4)℄ (1,2)[1,(4,4)℄

12,23,34,45,14,25 (2,2)[(1,2),(1,3)℄ (1,2)[(2,2),(3,3)℄

12,14,23,24,25,34,45 (2,3)[1,1,(1,3)℄ (1,3)[1,1,(3,3)℄

12,13,14,15,23,25,34,45 (2,3)[1,(1,2),(1,2)℄ (2,3)[1,(2,2),(2,2)℄

12,13,14,15,23,24,25,34,35 (2,4)[1,1,1,(1,2)℄ (3,4)[1,1,1,(2,2)℄

�

5

2

�

(2,5) (4,5)

123,14,15 (2,2)[1,(1,3)[(2,2),1,1℄℄ (1,2)[1,(3,3)[(1,2),1,1℄℄

123,145 (2,2)[1,(1,2)[(2,2),(2,2)℄℄ (1,2)[1,(2,2)[(1,2),(1,2)℄℄

123,124,15 (2,2)[1,(1,2)[(2,2),1℄℄ (1,2)[1,(2,2)[(1,2),1℄℄

123,124,35,45 (2,2)[(1,2),(1,2)[1,(2,2)℄℄ (1,2)[(2,2),(2,2)[1,(1,2)℄℄

123,124,34,35,45 (2,3)[(1,2)[(2,2),1℄,1,1℄ (2,3)[(2,2)[(1,2),1℄,1,1℄

123,124,125 (3,3)[1,(1,3)℄ (1,3)[1,(3,3)℄

123,124,134,15 (2,2)[1,(1,2)[(2,3),1℄℄ (1,2)[1,(2,2)[(2,3),1℄℄

123,124,125,34,35 (2,3)[(2,2),1,(1,2)℄ selfdual

123,124,125,34,35,45 (2,4)[(2,2),1,1,1℄ (3,4)[(1,2),1,1,1℄

123,124,135,145 (3,3)[1,(1,2),(1,2)℄ (1,3)[1,(2,2),(2,2)℄

123,124,134,125,135 (2,2)[1,(2,3)[1,1,(1,2)℄℄ (1,2)[1,(2,3)[1,1,(2,2)℄℄

123,124,125,134,135,145 (2,2)[1,(2,4)℄ (1,2)[1,(3,4)℄

124,125,135,134,234,235 (2,2)[(2,3),(1,2)℄ (1,2)[(2,3),(2,2)℄

124,125,135,134,234,235,45 (2,3)[1,1,(2,3)℄ selfdual

�

5

3

�

(3,5) selfdual

1234,15 (2,2)[1,(1,2)[(3,3),1℄℄ (1,2)[1,(2,2)[(1,3),1℄℄

1234,125 (3,3)[1,1,(1,2)[(2,2),1℄℄ (1,3)[1,1,(2,2)[(1,2),1℄℄

1234,1235 (4,4)[1,1,1,(1,2)℄ (1,4)[1,1,1,(2,2)℄

1234,1235,145 (2,2)[1,(2,3)[(2,2),1,1℄℄ (1,2)[1,(3,2)[(2,1),1,1℄℄

1234,1235,1345 (3,3)[1,1,(2,3)℄ (1,3)[1,1,(3,2)℄

1234,1235,1245,1345 (2,2)[1,(3,4)℄ (1,2)[1,(2,4)℄

�

5

5

�

(5,5) (1,5)

Remark 4. Let us see with some detail how to �nd all iterated threshold aess

strutures on �ve partiipants. To that end we follow all possible partitions of P .

1,4 : (i; 2)[1;�℄; i = 1; 2. Clearly either the struture or its dual begins

(1; 2) and therefore has an isolated partiipant an is reduible to one with 4

partiipants.

2,3 : (i; 2)[(i; 2);�℄; i = 1; 2. The struture has a �nal branh (i; 2), hene

is reduible.

1,1,3: (i; 3)[1; 1;�℄; i = 1; 2; 3. where � is an iterated threshold sheme with

3 partiipants. There are 5 of suh strutures (see Table 1 in the appendix).

If i = 1; 3 we an rewrite it as (i; 2)[(i; 2);�℄ and therefore they are reduible.

Suppose i = 2:

(a) (2; 3)[1; 1; (1; 3)℄ is reduible.

(b) (2; 3)[1; 1; (1; 2)[(2; 2)(2; 2)℄ is reduible.
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() (2; 3)[1; 1; (2; 3)℄ realizes the irreduible ideal struture 124; 125; 135; 134;

234; 235; 45.

1,2,2 : (i; 3)[1; (j; 2); (t; 2)℄; i = 1; 2; 3. They are reduible.

1,1,1,2 : (i; 4)[1; 1; 1; (t; 2)℄; i = 1; : : : ; 4. They are reduible.

5 : They are ideal sine they are threshold shemes.

On the other hand, the 8 strutures on 5 partiipants that are not realizable as

iterated treshold shemes are the following:

123; 145; 24; 35 (Selfdual)

123; 124; 135; 25; 34 and its dual.

123; 134; 135; 145; 25; 34 and its dual.

123; 124; 125; 134; 135; 234; 45 (Selfdual)

123; 124; 125; 134; 135; 234; 235; 45 and its dual.

Table 2 ontains all ideal aess strutures on n = 5 partiipants that are

realizable as iterated threshold shemes and their realizations.
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