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In this paper we introdu
e the 
lass of 
omposite a

ess stru
tures for se
ret sharing.

We also provide se
ret sharing s
hemes realizing these stru
tures and study their infor-

mation rates. As a parti
ular 
ase of this 
onstru
tion, we present the sub
lass of iterated

threshold s
hemes, a large 
lass of ideal se
ret sharing s
hemes.
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1. INTRODUCTION

Se
ret sharing s
hemes are methods for distributing a se
ret K among a set P of

parti
ipants. Ea
h parti
ipant re
eives a pie
e of the se
ret, or share, in su
h a way

that only spe
i�ed subsets of P are able to re
onstru
t the se
ret by pooling their

shares. If non-allowed 
oalitions 
annot obtain any information about the se
ret

then the s
heme is said to be perfe
t.

The family of quali�ed subsets � � 2

P

is 
alled the a

ess stru
ture of the

s
heme. It is 
onsidered to be monotone, that is, if A � B � P and A 2 �, then

also B 2 �. Thus the set of minimal elements in �, denoted �

m

, determines the

whole stru
ture � and it is 
alled the basis of �.

One of the basi
 parameters of a se
ret sharing s
heme � is its information rate,

whi
h is the rate between the length (in bits) of the se
ret and the maximum length

of the shares of the parti
ipants:

�(�;�;K) = �(�) =

log

2

jKj

max

P

(log

2

jS(P )j)

:

Here K is the set of all possible se
rets for � and S(P ) is the set of all possible

shares for P 2 P . A s
heme � is 
alled ideal if �(�) = 1 (noti
e that always

�(�) � 1). An a

ess stru
ture � is 
alled ideal if there is an ideal s
heme realizing

it. More generally we de�ne the optimal information rate of the stru
ture � as

�

�

(�) = sup(�(�;�;K))

where the supremum is taken over all possible � and K for �.
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The problems of 
hara
terizing ideal a

ess stru
tures and �nding ideal s
hemes

for them are important and they have re
eived great attention in the literature (see

for example [3, 4℄).

A parti
ular interesting 
lass of se
ret sharing s
hemes is the 
lass of threshold

s
hemes, whi
h were the �rst se
ret sharing s
hemes introdu
ed independently by

Blakley [1℄ and Shamir [8℄ in 1979. The a

ess stru
ture of a (t; n)-threshold s
heme


onsists of all subsets of P with at least t out of n parti
ipants. Threshold s
hemes

are ideal and admit a ve
tor spa
e 
onstru
tion (see se
tion 3). In what follows,

for short we shall denote a (t; n)-threshold s
heme simply by (t; n).

In the 
ase of threshold s
hemes all the parti
ipants have the same opportunity

for a

eding to the se
ret. This property does not hold for general a

ess stru
-

tures: some parti
ipants have a great 
han
e than others. This di�eren
e among

parti
ipants is not unsuitable in pra
ti
e. On the 
ontrary, it 
an be useful as it

re
e
ts that usually in real life parti
ipants are, in a natural way, in a hierar
hy and

not on equal terms. Then, stru
tures in whi
h parti
ipants are divided in several


lasses abound in the literature: Simmons' multilevel/multipart s
hemes, [9℄, sums

and produ
ts, bipartite stru
tures, [7℄, 
ompartmented s
hemes, [2℄, et
. In this

paper we present a very general 
onstru
tion of this type. Parti
ipants are divided

in several groups, ea
h of them having its own family of authorized 
oalitions. As

a parti
ular 
ase of this 
onstru
tion we introdu
e the 
lass of iterated threshold

s
hemes. We show that all s
hemes in this 
lass are ideal and admit a ve
tor spa
e


onstru
tion. We also show that many ideal s
hemes (all ideal s
hemes in the 
ase

of 4 parti
ipants and most ideal s
hemes in the 
ase of 5 parti
ipants) in fa
t belong

to this 
lass.

The organization of the paper is as follows: 
omposite a

ess stru
tures are

de�ned in se
tion 2, where some of their main properties are also stated. In se
tion

3 we show how to 
onstru
t se
ret sharing s
hemes for these stru
tures. Se
tion 4

is devoted to study of a parti
ular type of 
omposite stru
tures, the so-
alled 
lass-

redu
ible stru
tures. Finally, in se
tion 5 we study the parti
ular interesting 
ase in

whi
h all the stru
tures involved are either threshold or 
omposition of threshold

stru
tures.

2. COMPOSITION OF ACCESS STRUCTURES

Let P be a set of parti
ipants and let P = P

1

[� � �[P

r

, (r > 1) be a partition of

P (that is ; 6= P

i

6= P and P

i

\P

j

= ; if i 6= j). Let us write P

i

= fP

(i)

1

; : : : ; P

(i)

n

i

g

and n = n

1

+ � � � + n

r

. For a set A � P we denote A

i

= A \ P

i

. Obviously

A = A

1

[ � � � [A

r

. For i = 1; : : : ; r, let �

i

be an a

ess stru
ture on P

i

, and let �

0

an a

ess stru
ture on the parti
ipant set P = fP

1

; : : : ;P

r

g.

Definition 1. With the notation as above, we de�ne the 
omposite a

ess

stru
ture of �

1

;�

2

; : : : ;�

r

, following �

0

, denoted �

0

[�

1

;�

2

; : : : ;�

r

℄, as

�

0

[�

1

;�

2

; : : : ;�

r

℄ = fA � P j 9B 2 �

0

su
h that A

i

2 �

i

for all P

i

2 Bg

=

S

B2�

0

fA � P j A

i

2 �

i

for all P

i

2 Bg:

That is, ea
h of the sets P

i

plays the role of a parti
ipant for �

0

. A 
oalition

A � P is authorized if and only if it in
ludes, as subsets, authorized 
oalitions in

enough of the 
omponents �

1

;�

2

; : : : ;�

r

to 
onstitute an authorized subset for �

0

.

We have a pi
torial representation of the s
heme as given in Figure 1.
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FIG. 1 Pi
torial representation of 
omposite stru
tures
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Composite se
ret sharing s
hemes 
an be useful for sharing se
rets when the set

of parti
ipants is divided into several groups, ea
h of them with its own family of

authorized 
oalitions. The relation among these groups is given by the stru
ture

�

0

. It is not so diÆ
ult to imagine a situation requiring a model of this type.

Example 1.

(a) Sums and produ
ts. Two typi
al 
ompositions of a

ess stru
tures are

sums and produ
ts, de�ned as follows: given a partition P = P

1

[ � � � [ P

r

,

and a

ess stru
tures �

1

; : : : ;�

r

, the sum of �

1

; : : : ;�

r

is

�

1

+ � � �+ �

r

= fA � P j A

i

2 �

i

for some ig

and the produ
t

�

1

� � � � � �

r

= fA � P j A

i

2 �

i

for all ig:

Sin
e �

1

+ � � �+ �

r

= (1; r)[�

1

; : : : ;�

r

℄ and �

1

� � � � � �

r

= (r; r)[�

1

; : : : ;�

r

℄,

both are parti
ular 
ases of our 
onstru
tion.

(b) Insertions. Let �

1

;�

2

be two stru
tures de�ned on the sets P

1

and P

2

,

and let P 2 P

1

. The insertion of �

2

at P in �

1

, denoted �

1

(P 7! �

2

),

is de�ned to be the stru
ture on the set P

1

n fPg [ P

2

su
h that for A �

(P

1

n fPg) [ P

2

, we have A 2 �

1

(P 7! �

2

) if and only if A \ P

1

2 �

1

, or

(A \ P

1

) [ fPg 2 �

1

and A \ P

2

2 �

2

(see Martin [6℄). It is 
lear that

�

1

(P

1

7! �

2

) = �

1

[�

2

; (1; 1); : : : ; (1; 1)℄.

Let us see some �rst properties of 
omposite stru
tures.

Proposition 1. (�

0

[�

1

;�

2

; : : : ;�

r

℄)

m

= �

m

0

[�

m

1

;�

m

2

; : : : ;�

m

r

℄.

Proof. Let � = �

0

[�

1

;�

2

; : : : ;�

r

℄ and A 2 �

m

. Let C = fP

i

j A

i

2 �

i

; i 6= 0g 2

�

0

. Let us assume that C =2 �

0

m

. Then there exists C

0

2 �

0

m

su
h that C

0

( C.

Let us 
onsider the set

A

0

= A \

[

P

i

2C

0

P

i

:
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Then A

0

� A and A

0

2 �

m

whi
h 
ontradi
ts the fa
t A 2 �

m

. Hen
e C 2 �

0

m

.

Let �x i su
h that P

i

2 C and let us suppose A

i

=2 �

m

i

. Then there exists A

0

i

( A

i

su
h that A

0

i

2 �

m

i

. Let D = A

i

n A

0

i

� P

i

. Then A n D � A and, sin
e the P

i

's

are a partition on P , A nD 2 �

m

. This 
ontradi
ts that A 2 �

m

. Thus we have

�

m

� �

m

0

[�

m

1

;�

m

2

; : : : ;�

m

r

℄. The other in
lusion is straightforward.

Next we shall show that 
omposition behaves well by duality. Let us remember

that for a given a

ess stru
ture � on P , the dual stru
ture of � is de�ned as the

set of 
oalitions whose 
omplement is not authorized,

�

?

= fA � P j P nA =2 �g:

Proposition 2. (�

0

[�

1

;�

2

; : : : ;�

r

℄)

?

= �

?

0

[�

?

1

;�

?

2

; : : : ;�

?

r

℄.

Proof. Let � = �

0

[�

1

;�

2

; : : : ;�

r

℄,

~

� = �

?

0

[�

?

1

;�

?

2

; : : : ;�

?

r

℄ and let A 2

~

�. There

is B 2 �

?

0

su
h that if P

i

2 B then A

i

2 �

?

i

(i 6= 0). By de�nition, for this B, if

P

i

2 B then P

i

nA

i

=2 �

i

, i 6= 0. If A =2 �

?

then P nA 2 �. This means that there

exists B

0

2 �

0

su
h that if P

i

2 B

0

then (P n A) \ P

i

= P

i

n A

i

2 �

i

for i 6= 0.

Hen
e B \B

0

= ; and so B

0

� P nB and P nB 2 �

0

. We arrive to a 
ontradi
tion,

and therefore

~

� � �

?

.

Conversely, 
onsider now A 2 �

?

, that is, P n A =2 �. By de�nition, for every

B 2 �

0

there exists P

i

2 B su
h that P

i

nA

i

=2 �

i

. If A =2

~

� then for every B

0

2 �

?

0

there exists P

i

2 B

0

su
h that P

i

nA

i

2 �

i

. Let �

m

0

= fB

j

g

j2J

be the basis of �

0

.

For ea
h j 2 J there exists P

i

j

2 B

j

su
h that P

i

j

n A

i

j

=2 �

i

. Let B

0

= fP

i

j

g

j2J

.

Then B

j

is not 
ontained in P n B

0

be
ause B

0

\ B

j

6= ; for all j 2 J . Therefore,

B

0

2 �

?

0

. On the other hand, for all P

i

2 B

0

we have P

i

n A

i

=2 �

i

whi
h is a


ontradi
tion. Hen
e

~

� � �

?

.

From this result, in parti
ular we have that the dual of the sum is the produ
t

of the duals, and the dual of the produ
t is the sum of the duals.

Corollary 1. The dual of a 
omposite a

ess stru
ture is also a 
omposite

a

ess stru
ture.

Obviously, every stru
ture � 
an be expressed as a 
omposition in the ways

� = �[(1; 1); � � � ; (1; 1)℄ and � = (1; 1)[�℄. These 
ompositions are 
alled trivial.

We shall not 
onsider trivial 
ompositions any more. A stru
ture that 
annot be

expressed as a nontrivial 
omposition is 
alled inde
omposable. For example, it

is easy to see that threshold a

ess stru
tures (t; n) are inde
omposable whenever

1 < t < n.

On the other hand, the expression �

0

[�

1

;�

2

; : : : ;�

r

℄ of a stru
ture as a 
om-

position is in general not unique, be
ause the �

i

; i = 1; : : : ; r, 
an be, themselves,

de
omposable. We have the following result.

Proposition 3. Let � = �

0

[�

1

;�

2

; � � � ;�

r

℄. Assume that for i = 1; : : : ; r, we

have �

i

= �

(i)

0

[�

(i)

1

;�

(i)

2

; : : : ;�

(i)

j

i

℄. Then

� = �

0

[�

(1)

0

[�

(1)

1

;�

(1)

2

; : : : ;�

(1)

j

1

℄; : : : ;�

(r)

0

[�

(r)

1

;�

(r)

2

; : : : ;�

(r)

j

r

℄℄

= (�

0

[�

(1)

0

;�

(2)

0

; : : : ;�

(r)

0

℄) [�

(1)

1

; : : : ;�

(1)

j

1

; : : : ;�

(r)

1

; : : : ;�

(r)

j

r

℄:

The proof is straightforward. The iterative appli
ation of this result yields the

following 
orollary.

Corollary 2. Let � be a de
omposable stru
ture. Then � 
an be written as

� = �

0

[�

1

; : : : ;�

r

℄ where all the stru
tures �

1

; : : : ;�

r

are inde
omposable.
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3. COMPOSITE SCHEMES FOR COMPOSITE STRUCTURES

Let � = �

0

[�

1

; : : : ;�

r

℄ be a 
omposite a

ess stru
ture on P . In order to


onstru
t a se
ret sharing s
heme for �, we 
an 
ompose se
ret sharing s
hemes

for ea
h �

i

; i = 0; : : : ; r. Following Martin, [6℄, if the set K of se
rets to share has


ardinality q, then a perfe
t se
ret sharing s
heme for � will be denoted PS(�; q).

Let us remember that for a parti
ipant P 2 P , S(P ) denotes the set of all possible

shares for P , and that the insertion s
hemes were introdu
ed in Example 1. The

following result 
an be found in [6℄.

Theorem 1. Let �

1

;�

2

be a

ess stru
tures de�ned on parti
ipant sets P

1

and

P

2

, and let P 2 P

1

. If there is a PS(�

1

; q) and a PS(�

2

; jS(P )j), then there exist

a PS(�

1

(P 7! �

2

); q).

Let � = �

0

[�

1

; � � � ;�

r

℄. It is 
lear that � 
an be obtained from �

0

after r inser-

tions at the parti
ipants P

1

; : : : ;P

r

. Thus, the above Theorem 
an be generalized

to the following.

Proposition 4. Let � = �

0

[�

1

; : : : ;�

r

℄ be as above. If there exist a PS(�

0

; q)

and for i = 1; : : : ; r, a PS(�

i

; jS(P

i

)j), then there exists a PS(�; q).

The proof is obvious from Theorem 1. Furthermore, sin
e the proof of the

Theorem in [6℄ is 
onstru
tive, we 
an e�e
tively give the PS(�; q). For the 
onve-

nien
e of the reader let us present the idea of this 
onstru
tion: we want to share

K 2 K among the parti
ipants in P . By using the PS(�

0

; q) we 
ompute the

shares s

1

; : : : ; s

r

of P

1

; � � � ;P

r

. Now, by using the PS(�

i

; jS(P

i

)j) we share ea
h s

i

among the parti
ipants in P

i

: s

(i)

1

; � � � ; s

(i)

n

i

. Then the shares given by PS(�; q) are

s

(1)

1

; : : : ; s

(1)

n

1

; : : : ; s

(r)

1

; : : : ; s

(r)

n

r

.

By studying the proof of the Theorem, we also 
on
lude the following.

Corollary 3. Let � = �

0

[�

1

; � � � ;�

r

℄. With the notations above, we have

�(PS(�; q)) = minf�(PS(�

0

; q)) � �(PS(�

i

; jS(P

i

)j)) j 1 � i � rg:

Thus �

�

(�) � minf�

�

(�

0

) � �

�

(�

i

) j 1 � i � rg.

In parti
ular, if all the stru
tures �

i

; i = 0; : : : ; r, are ideal, then � is ideal.

A parti
ular interesting kind of a

ess stru
tures is formed by those admitting

a Bri
kell's ve
tor spa
e 
onstru
tion. Let us remember that a stru
ture � on

P admits a ve
tor spa
e 
onstru
tion over the �nite �eld F

p

if there is a map

� : P �! F

d

p

(d large enough) and a ve
tor ~v 2 F

d

p

; ~v 6=

~

0, su
h that for all A � P

we have ~v 2 h�(P

i

) j P

i

2 Ai if and only if A 2 � (see [2, 11℄). Su
h a 
onstru
tion

dire
tly provides an ideal PS(�; p). Unfortunately no 
riteria is known to de
ide

when a stru
ture � admits a ve
tor spa
e 
onstru
tion.

In the above 
onstru
tion usually one takes ~v = ~e

1

= (1; 0; : : : ; 0). However it

is 
lear that the parti
ular 
hoi
e of ~v is not relevant whenever ~v 6= 0.

It is well known that every (t; n)-threshold s
heme admits a ve
tor spa
e 
on-

stru
tion. Just take n di�erent non-zero elements �

1

; : : : ; �

n

2 F

p

and de�ne

�(P

i

) = (1; �

i

; �

2

i

; : : : ; �

t�1

i

) 2 F

t

p

for all i; 1 � i � n.

It is not 
lear when the 
omposition of stru
tures admitting a ve
tor spa
e


onstru
tions admits a ve
tor spa
e 
onstru
tion. At the moment we simply state

the following result.
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Proposition 5. Let � = �

0

[�

1

;�

2

; � � � ;�

r

℄ be a 
omposite a

ess stru
ture

su
h that �

i

is a (t

i

; n

i

)-threshold stru
ture for 1 � i � r. If �

0

admits a ve
-

tor spa
e 
onstru
tion, then also � admits a ve
tor spa
e 
onstru
tion.

Proof. For 1 � i � r, we shall 
onsider the map �

i

: P

i

�! F

t

i

p

de�ned by

�

i

(P

(i)

j

) = (1; �

ij

; �

2

ij

; : : : ; �

t

i

�1

ij

)

where P

i

= fP

(i)

1

; : : : ; P

(i)

n

i

g. For �

0

we have a map �

0

: fP

1

; : : : ;P

r

g �! F

d

p

that

de�nes its ve
tor spa
e 
onstru
tion. Consider the maps 	

i

: P

i

�! F

t

i

�1

p

,

	

i

(P

(i)

j

) = (�

ij

; �

2

ij

; : : : ; �

t

i

�1

ij

)

and let �

i

:�! F

d+t

1

+���+t

r

�r

p

de�ned by

�(P

(i)

j

) = (�

0

(P

i

);

~

0; � � � ;	

i

(P

(i)

j

); : : : ;

~

0):

Let us show that � is a ve
tor spa
e 
onstru
tion for �. If A 2 �, let B = fP

i

j

A \ P

i

2 �

i

g be an element of �

0

. If P

i

2 B, take fP

(i)

j

1

; � � � ; P

(i)

j

t

i

g, t

i

di�erent

elements of A \ P

i

. There exists a linear 
ombination in F

t

i

p

�!

e

1

=

t

i

X

k=1

�

k

��

i

(P

(i)

j

k

)

su
h that

P

t

i

k=1

�

k

= 1. Then we have

t

i

X

k=1

�

k

��(P

(i)

j

k

) = (�

0

(P

i

);

~

0; : : : ;

~

0):

As

�!

e

1

2 h�

0

(B)i, it follows that

�!

e

1

2 h�(A)i. Conversely, let A � P = P

1

[� � �[P

r

be su
h that

�!

e

1

2 h�(A)i. Assume that all the 
oeÆ
ients in the linear 
ombination

that gives

�!

e

1

are non-zero. Take A

i

= A \ P

i

. If A

i

6= ;, then 	

i

(A

i

) is a set of

linearly dependent ve
tors. Thus there exist a linear 
ombination

�!

0 =

X

j

�

ij

�	

i

(P

(i)

j

)

with every �

ij

6= 0. This means that t

i

� jA

i

j, and hen
e the ve
tors �

i

(P

(i)

j

) span

�!

e

1

. So A

i

2 �

i

. Moreover

�!

e

1

must be generated by B = f�

0

(P

i

) j A

i

6= ;g and

then B 2 �

0

. This ends the proof.

Let us note that the above proof is 
onstru
tive. Thus, if we have a s
heme for

�

0

, then we 
an e�e
tively 
onstru
t a se
ret sharing s
heme for �.

4. REDUCIBLE STRUCTURES

In this se
tion we brie
y study a type of de
omposable stru
tures whi
h will be

useful for us in the sequel.
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Definition 2. Let � be an a

ess stru
ture on the set of parti
ipants P . We

say that two parti
ipants P

i

; P

j

are related, denoted P

i

� P

j

, if for every A 2 �

m

we have:

a) if P

i

2 A then (A n fP

i

g) [ P

j

2 �; and 
onversely

b) if P

j

2 A then (A n fP

j

g) [ P

i

2 �.

Let us note that � is an equivalen
e relation on P . We say that the stru
ture

� admits a 
lass redu
tion (or shortly that it is redu
ible) if at least one of the

equivalen
e 
lasses of � has more than one parti
ipant. In this 
ase, the 
lass

redu
tion allows us to de�ne a new a

ess stru
ture on the set of parti
ipants

P

�

= P= � given by �

�

= �= �.

Remark 1. If two parti
ipants P

i

; P

j

are related, then the set fP

i

; P

j

g 
annot

be extended to a minimal 
oalition A 2 �. In fa
t, if A = fP

i

; P

j

g [ B 2 �

m

then,

by de�nition, fP

i

; P

j

g [B = fP

i

g [B 2 �

m

, whi
h 
ontradi
ts the fa
t of A being

minimal. Conversely, if P

i

� P

j

it is easy to see that fP

i

; P

j

g � A for all A 2 �

?

su
h that P

i

2 A or P

j

2 A.

The relationship between redu
ibility and de
omposability is given by the fol-

lowing result.

Proposition 6. Let P = fP

1

; � � � ; P

n

g. For every equivalen
e 
lass [P ℄ 2 P

�

,

�x a representative Q 2 [P ℄ so that P

�

= fQ

1

; : : : ; Q

r

g. If n

i

= j[Q

i

℄j, then

� = �

�

[(1; n

1

); (1; n

2

); : : : ; (1; n

r

)℄:

In parti
ular, all redu
ible stru
tures on n � 3 parti
ipants are de
omposable.

Proof. It is a dire
t 
onsequen
e of Proposition 1, the de�nition of related par-

ti
ipants and the above Remark.

The 
onverse of Proposition 6 is not true in general, that is, there exist de
om-

posable stru
tures whi
h are irredu
ible.

The stru
tures � and �

�

have similar properties. Let us see some of them. To

that end we shall use the following notation: for a parti
ipant P

i

, we shall denote

by [P

i

℄ its equivalen
e 
lass in P

�

and by �(P

i

) its share given by the se
ret sharing

s
heme � that realizes �.

Lemma 1. Let � be an a

ess stru
ture on the set P. There is a se
ret sharing

s
heme � realizing �, su
h that:

a) �(�) = �

�

(�); and

b) if P

i

� P

j

then �(P

i

) = �(P

j

).

Proof. Keeping the notations as above, for every equivalen
e 
lass [P ℄ 2 P

�

, �x

a representative Q 2 [P ℄ so that P

�

= fQ

1

; � � � ; Q

r

g. Let �

0

be a se
ret sharing

s
heme that realizes � and su
h that �(�

0

) = �

�

(�). We de�ne �(P

1

); � � � ;�(P

n

),

as �(P

i

) = �

0

(Q

j

) if [P

i

℄ = [Q

j

℄. Let us 
onsider the proje
tion map � : P ! P

�

,

�(P

i

) = Q

j

if [P

i

℄ = [Q

j

℄. If A 2 �

m

then A does not 
ontain related parti
ipants,

hen
e �(A) 2 �

m

. Furthermore the shares given by � to the parti
ipants in A are

the same as the shares given by �

0

to the parti
ipants in �(A). Thus � is a sharing

s
heme realizing �. Clearly � veri�es b). Moreover �(�) � �(�

0

) hen
e we get

equality here be
ause �(�

0

) = �

�

(�).

Remark 2. The above Lemma show the following ni
e 
hara
terization of related

parti
ipants: Let � be an a

ess stru
ture on P ; two parti
ipants, P

i

and P

j

, are

7



related if and only if there is a se
ret sharing s
heme � realizing � su
h that

�(P

i

) = �(P

j

).

A se
ret sharing s
heme is said to be regular if it is optimal and gives equal

shares to related parti
ipants. From Proposition 6 and Lemma 1, given an a

ess

stru
ture �, there is a one-to-one 
orresponden
e between regular sharing s
hemes

realizing � and optimal sharing s
hemes realizing �

�

.

Proposition 7. Let � be an a

ess stru
ture on the set P. Then

a) �

�

(�) = �

�

(�

�

).

b) � admits a ve
tor spa
e 
onstru
tion i� �

�

admits a ve
tor spa
e 
onstru
tion.

Proof. a) Let � be a regular se
ret sharing s
heme for �. Then we de�ne a

se
ret sharing s
heme on P

�

as

�

�

([P

i

℄) = �(P

i

); i = 1; : : : ; n:

�

�

is well de�ned, realizes �

�

and, obviously, has the same information rate as �.

Conversely, for a se
ret sharing s
heme � realizing �

�

, we de�ne the s
heme �

�

on P as

�

�

(P

i

) = �([P

i

℄); i = 1; : : : ; n:

In the same way, �

�

realizes � and has the same information rate as �. Then

�

�

(�) = �

�

(�

�

). The same argument proves b). (Furthermore, note that one

impli
ation also follows from Proposition 5).

5. ITERATED THRESHOLD SCHEMES

In this se
tion we introdu
e an interesting 
lass of 
omposite se
ret sharing

s
hemes. This 
lass is formed by 
omposing threshold s
hemes or 
ompositions of

threshold s
hemes. More formally, we de�ne the 
lass of iterated threshold a

ess

stru
tures as the smallest 
lass C of a

ess stru
tures su
h that:

1. All threshold a

ess stru
tures are in C .

2. The 
omposition of elements in C is also in C; that is, if �

0

;�

1

; � � � ;�

r

2 C,

then �

0

[�

1

;�

2

; : : : ;�

r

℄ 2 C (when this 
omposition makes sense).

S
hemes realizing iterated threshold a

ess stru
tures are 
alled iterated thresh-

old s
hemes. As we shall see below, iterated threshold s
hemes 
an be also found

by 
omposition of threshold s
hemes.

As 
omposite stru
tures, iterated threshold a

ess stru
tures have a pi
torial

representation. In this 
ase they 
an also be represented as labeled trees in the obvi-

ous way. For example 
onsider the stru
ture on a set of 5 parti
ipants given by �

m

=

fP

1

P

2

P

3

P

4

; P

1

P

5

g. It 
an also be realized as the labeled tree shown in Figure 2,

where as usual (t; n) means a t-threshold s
heme on n parti
ipants. We will denote

this iterated threshold s
heme as (2; 2)[(1; 1); (1; 2)[(3; 3); (1; 1)℄℄. Observe that this

representation is not unique. For example the s
hemes (2; 2)[(2; 2); (1; 2)[(2; 2); (1; 1)℄℄

and (3; 3)[(1; 1); (1; 1); (1; 2)[(2; 2); (1; 1)℄℄ realize the same stru
ture. In general we

have (j; j)[(t; t);�℄ = (j+ t�1; j+ t�1)[(1; 1); � � �

(t)

; (1; 1);�℄ and (1; j)[(1; t);�℄ =

(1; j + t� 1)[(1; 1); � � �

(t)

; (1; 1);�℄.

Iterated threshold s
hemes have some ni
e properties. Let us study some of

them.
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FIG. 2 Labeled tree for an iterated a

ess stru
ture.

(2; 2)

r

�

�

�

�

�

r

P

1

H

H

H

H

Hr

(1; 2)

�

�

�

r

(3; 3)

�

�

�
r

P

5

�

�

�

r

P

2

r

P

3

�

�

�r

P

4

Proposition 8. The dual of an iterated threshold a

ess stru
ture is an iterated

threshold a

ess stru
ture.

Proof. It follows from Proposition 2 and the fa
t that the dual of a threshold

a

ess stru
ture is also a threshold a

ess stru
ture.

Proposition 9. Every iterated threshold a

ess stru
ture admits a ve
tor spa
e


onstru
tion. In parti
ular every iterated threshold a

ess stru
ture is ideal.

Proof. It suÆ
es to prove the �rst fa
t. Let � = �

0

[�

1

; : : : ;�

r

℄ be an iterated

threshold a

ess stru
ture. A

ording to Corollary 2, � admits a representation

�

(1)

0

[�

(1)

1

; � � � ;�

(1)

r

1

℄, where �

(1)

1

; � � � ;�

(1)

r

1

are inde
omposable, and hen
e threshold

a

ess stru
tures. Then, a

ording to Proposition 5, it suÆ
es to prove that �

(1)

0

admits a ve
tor spa
e 
onstru
tion. But �

(1)

0

is again an iterated threshold a
-


ess stru
ture. Thus we 
an apply again the above argument to �

(1)

0

. By iterat-

ing this reasoning a number of times, we shall arrive to an expression �

(m�1)

0

=

�

(m)

0

[�

(m)

1

; � � � ;�

(m)

r

m

℄, where �

(m)

1

; � � � ;�

(m)

r

m

are threshold a

ess stru
tures and

�

(m)

0

is an inde
omposable iterated threshold a

ess stru
tures, that is, also a

threshold a

ess stru
ture. Sin
e (
lassi
al) threshold stru
tures admit a ve
tor

spa
e 
onstru
tion (as the one seen in se
tion 3) then, a

ording to Proposition 5,

�

(m�1)

0

also admits a ve
tor spa
e 
onstru
tion, and so, the same happens for �.

Let us note that, as in the 
ase of Proposition 5, the above proof is 
onstru
tive.

Thus, we 
an e�e
tively give ve
tor spa
e 
onstru
tions for all iterated threshold

s
hemes.

Many ideal se
ret sharing s
hemes (all of them admitting a ve
tor spa
e 
on-

stru
tion) are in fa
t iterated threshold s
hemes. These in
lude all ideal s
hemes

on parti
ipant set with n � 4 parti
ipants and most ideal s
hemes on n = 5 parti
-

ipants. To see this we shall use the results developed in se
tion 4.

Proposition 10. Let � be an a

ess stru
ture on the set P. If �

�

is an iterated

threshold a

ess stru
ture, then � is also an iterated threshold a

ess stru
ture.

Proof. It is a dire
t 
onsequen
e of 6.

Remark 3. Let � be an a

ess stru
ture. If �

?

is 
lass redu
ible and it redu
es

to an iterated threshold stru
ture, then, in light of Propositions 8 and 10, we have

that � is also an iterated threshold stru
ture.
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TABLE 1

Ideal a

ess stru
tures on at most 4 parti
ipants.

n �

m

Realization Dual

1 1 1 selfdual

2 12 (2,2) (1,2)

3 123 (3,3) (1,3)

12,23 (2,2)[(1,2),1℄ (1,2)[(2,2),1℄

12,23,13 (2,3) selfdual

4 12,13,14 (2,2)[1,(1,3)℄ (1,2)[1,(3,3)℄

12,14,23,34 (2,2)[(1,2),(1,2)℄ (1,2)[(2,2),(2,2)℄

12,13,14,23,24 (2,3)[1,1,(1,2)℄ (2,3)[1,1,(2,2)℄

12,13,14,23,24,34 (2,4) (3,4)

123,14 (2,2)[1,(1,2)[(2,2),1℄℄ (1,2)[1,(2,2)[(1,2),1℄℄

123,124 (3,3)[1,1,(1,2)℄ (1,3)[1,1,(2,2)℄

123,124,134 (2,2)[1,(2,3)℄ (1,2)[1,(2,3)℄

1234 (4,4) (1,4)

Let us study now how many iterated threshold a

ess stru
tures exist on a set

P with at most �ve parti
ipants.

Proposition 11. All ideal a

ess stru
tures on a parti
ipant set with at most

4 parti
ipants are iterated threshold a

ess stru
tures.

Proof. For a list of all ideal a

ess stru
tures on at most 4 parti
ipants we

refer to [11℄. Clearly all ideal a

ess stru
tures on 1 or 2 parti
ipants are thresh-

old stru
tures. All ideal stru
tures on 3 parti
ipants ex
ept the one having ba-

sis P

1

P

2

; P

2

P

3

; P

3

P

1

, are 
lass redu
ible and therefore 
an be realized as iterated

threshold stru
tures. P

1

P

2

; P

2

P

3

; P

3

P

1

is just (2; 3). On 4 parti
ipants we �nd again

that all ideal stru
tures are 
lass redu
ible ex
ept P

1

P

2

; P

1

P

3

; P

1

P

4

; P

2

P

3

; P

2

P

4

; P

3

P

4

and its dual, that are (2; 4) and (3; 4).

Table 1 
ontains all ideal a

ess stru
tures on n � 4 parti
ipants and their real-

izations as iterated threshold s
hemes. For short, in the se
ond 
olumn parti
ipant

P

i

is simply denoted by i. Furthermore, the threshold s
heme (1,1) is denoted by

1.

Let us examine now the 
ase of n = 5 parti
ipants. For a list of all a

ess

stru
tures in this 
ase to refer to [5℄. There are 61 ideal stru
tures, 49 of them

being redu
ible.

Proposition 12. On �ve parti
ipants there are 53 iterated threshold a

ess

stru
tures out of 61 ideal stru
tures. These 53 stru
tures are all the redu
ible ideal

a

ess stru
tures, the three threshold stru
tures (2; 5); (3; 5); (4; 5), and the selfdual

stru
ture (2; 3)[(1; 1); (1; 1); (2; 3)℄.

Proof. In view of Propositions 7, 10 and 11, 
learly all threshold and 
lass re-

du
ible ideal a

ess stru
tures are iterated threshold. The selfdual stru
ture with

basis 124,125,134,135,234,235,45 is realized as (2; 3)[(1; 1); (1; 1); (2; 3)℄. An exhaus-

tive sear
h shows that there are no more iterated threshold stru
tures.
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TABLE 2

Iterated threshold s
hemes on 5 parti
ipants (up to equivalen
e).

�

m

Realization Dual

12,13,14,15 (2,2)[1,(1,4)℄ (1,2)[1,(4,4)℄

12,23,34,45,14,25 (2,2)[(1,2),(1,3)℄ (1,2)[(2,2),(3,3)℄

12,14,23,24,25,34,45 (2,3)[1,1,(1,3)℄ (1,3)[1,1,(3,3)℄

12,13,14,15,23,25,34,45 (2,3)[1,(1,2),(1,2)℄ (2,3)[1,(2,2),(2,2)℄

12,13,14,15,23,24,25,34,35 (2,4)[1,1,1,(1,2)℄ (3,4)[1,1,1,(2,2)℄

�

5

2

�

(2,5) (4,5)

123,14,15 (2,2)[1,(1,3)[(2,2),1,1℄℄ (1,2)[1,(3,3)[(1,2),1,1℄℄

123,145 (2,2)[1,(1,2)[(2,2),(2,2)℄℄ (1,2)[1,(2,2)[(1,2),(1,2)℄℄

123,124,15 (2,2)[1,(1,2)[(2,2),1℄℄ (1,2)[1,(2,2)[(1,2),1℄℄

123,124,35,45 (2,2)[(1,2),(1,2)[1,(2,2)℄℄ (1,2)[(2,2),(2,2)[1,(1,2)℄℄

123,124,34,35,45 (2,3)[(1,2)[(2,2),1℄,1,1℄ (2,3)[(2,2)[(1,2),1℄,1,1℄

123,124,125 (3,3)[1,(1,3)℄ (1,3)[1,(3,3)℄

123,124,134,15 (2,2)[1,(1,2)[(2,3),1℄℄ (1,2)[1,(2,2)[(2,3),1℄℄

123,124,125,34,35 (2,3)[(2,2),1,(1,2)℄ selfdual

123,124,125,34,35,45 (2,4)[(2,2),1,1,1℄ (3,4)[(1,2),1,1,1℄

123,124,135,145 (3,3)[1,(1,2),(1,2)℄ (1,3)[1,(2,2),(2,2)℄

123,124,134,125,135 (2,2)[1,(2,3)[1,1,(1,2)℄℄ (1,2)[1,(2,3)[1,1,(2,2)℄℄

123,124,125,134,135,145 (2,2)[1,(2,4)℄ (1,2)[1,(3,4)℄

124,125,135,134,234,235 (2,2)[(2,3),(1,2)℄ (1,2)[(2,3),(2,2)℄

124,125,135,134,234,235,45 (2,3)[1,1,(2,3)℄ selfdual

�

5

3

�

(3,5) selfdual

1234,15 (2,2)[1,(1,2)[(3,3),1℄℄ (1,2)[1,(2,2)[(1,3),1℄℄

1234,125 (3,3)[1,1,(1,2)[(2,2),1℄℄ (1,3)[1,1,(2,2)[(1,2),1℄℄

1234,1235 (4,4)[1,1,1,(1,2)℄ (1,4)[1,1,1,(2,2)℄

1234,1235,145 (2,2)[1,(2,3)[(2,2),1,1℄℄ (1,2)[1,(3,2)[(2,1),1,1℄℄

1234,1235,1345 (3,3)[1,1,(2,3)℄ (1,3)[1,1,(3,2)℄

1234,1235,1245,1345 (2,2)[1,(3,4)℄ (1,2)[1,(2,4)℄

�

5

5

�

(5,5) (1,5)

Remark 4. Let us see with some detail how to �nd all iterated threshold a

ess

stru
tures on �ve parti
ipants. To that end we follow all possible partitions of P .

1,4 : (i; 2)[1;�℄; i = 1; 2. Clearly either the stru
ture or its dual begins

(1; 2) and therefore has an isolated parti
ipant an is redu
ible to one with 4

parti
ipants.

2,3 : (i; 2)[(i; 2);�℄; i = 1; 2. The stru
ture has a �nal bran
h (i; 2), hen
e

is redu
ible.

1,1,3: (i; 3)[1; 1;�℄; i = 1; 2; 3. where � is an iterated threshold s
heme with

3 parti
ipants. There are 5 of su
h stru
tures (see Table 1 in the appendix).

If i = 1; 3 we 
an rewrite it as (i; 2)[(i; 2);�℄ and therefore they are redu
ible.

Suppose i = 2:

(a) (2; 3)[1; 1; (1; 3)℄ is redu
ible.

(b) (2; 3)[1; 1; (1; 2)[(2; 2)(2; 2)℄ is redu
ible.
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(
) (2; 3)[1; 1; (2; 3)℄ realizes the irredu
ible ideal stru
ture 124; 125; 135; 134;

234; 235; 45.

1,2,2 : (i; 3)[1; (j; 2); (t; 2)℄; i = 1; 2; 3. They are redu
ible.

1,1,1,2 : (i; 4)[1; 1; 1; (t; 2)℄; i = 1; : : : ; 4. They are redu
ible.

5 : They are ideal sin
e they are threshold s
hemes.

On the other hand, the 8 stru
tures on 5 parti
ipants that are not realizable as

iterated treshold s
hemes are the following:

123; 145; 24; 35 (Selfdual)

123; 124; 135; 25; 34 and its dual.

123; 134; 135; 145; 25; 34 and its dual.

123; 124; 125; 134; 135; 234; 45 (Selfdual)

123; 124; 125; 134; 135; 234; 235; 45 and its dual.

Table 2 
ontains all ideal a

ess stru
tures on n = 5 parti
ipants that are

realizable as iterated threshold s
hemes and their realizations.
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